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Resum- El present projecte és un estudi del potencial d’integrar per mitja de diverses tecniques
un model de llenguatge a un sistema de Reconeixement Optic de Partitures (OMR) basat en una
arquitectura Sequence to Sequence. Lobjectiu és millorar el rendiment del model sobre partitures
manuscrites antigues, que son especialment complexes d’interpretar a causa del seu elevat grau de
variabilitat i les distorsions que solen incorporar.

Paraules clau— Deep Learning, Reconeixement d’escriptura a ma, Reconeixement Optic de
Partitures, Sequence to Sequence, Model de llenguatge, Visi6 per Computador, Xarxes Neuronals
Recurrents

Abstract— The following project is a study of the potential of integrating a language model into a
Sequence to Sequence-based Optical Music Recognition (OMR) system through various techniques.
The goal is to improve the performance of the model on handwritten old music scores, whose

interpretation is particularly error-prone due to their high degree of variability and distortion.

Keywords— Computer Vision,

Deep Learning,

Handwriting Recognition, Language Model,
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1 INTRODUCTION

PTICAL Music Recognition (OMR) [1] is a disci-
O pline within the field of Document Analysis which
consists on the application of Computer Vision
techniques to gather and interpret the information stored in
images of music score sheets. Although interest in these
documents arose as early as the 1960s [2], the field has seen
mostly limited attention from the research community due
to the fact that music notation is more complex to interpret
than regular text writing. The key difference between both
systems is that music notation is position-sensitive, in the
sense that the meaning of each symbol is affected by its
placement in the score.
This has lead to the current situation, where there are
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many exciting open lines of research and original ideas to
be explored and developed. OMR has also been greatly en-
riched by the recent rise of Deep Neural Network technol-
ogy, which has provided researchers with better performing
models [3]], [4], [5].

This project focuses on the application of a Deep-
Learning-based OMR [3]] system on handwritten old scores,
which are particularly difficult to process due to pa-
per degradation, ink stains, corrections, irregular symbol
shapes, non-parallel staff lines and perspective distortion,
among others. These artefacts are the main cause of a sub-
stantial difference in state-of-the-art performance between
old and typeset scores. Figure [I] shows a page from J.S.
Bach’s original The art of the fugue and a modern transcrip-
tion by the OpenScores project in order to better illustrate
their differences.

The architecture that powers this work is the Sequence
to Sequence (Seq2Seq) [6] model, which has given very
promising results on close relatives of OMR, namely Opti-
cal Character Recognition (OCR) and Speech Recognition.
In these cases, experiments have been conducted where
Language Models (LM) [[7] , [8] assisted Seq2Seq models
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Fig. 1: Example of an Old Handwritten score and its modern transcription

to improve on the final results, but this step has been for the
most part omitted for OMR. The integration of said LM in
the context of music scores is the key contribution of this
work, with the purpose of alleviating possible recognition
mistakes and ultimately improving the performance of old
handwritten scores recognition.

The structure for this document is the following: section
[]is a description of the objectives set for this project. Sec-
tion [3] is the breakdown of the methodology that was fol-
lowed during the project and the planning that was estab-
lished at the beginning. Section[]is a summary of the state
of the art of OMR prior to this project. Section [5] is an
overview on the models which were studied in this work.
Section [6] is an overview of the datasets that were used to
train the various models. Section[7]is a detailed explanation
of the experiments that were performed in order to assess
the performance of the models. Section[§]is an explanation
of the results that were obtained. Finally, [0 summarises the
results and section [I0] gives an insight on possible future
work, as well as some closing words.

2 OBJECTIVES

The main goal for this project is to explore the integration of
a LM into an OMR system. In order to achieve this, several
subsidiary targets were established:

* To perform research on the state of the art for both
OMR, Seq2Seq and LM.

* Implementation of various LM integration methods for
Seq2Seq models.

 Data preparation for different datasets and training of
all integration methods.

* Validation of results gathered from all architectures
and comparison with the state of the art.

3 PLANNING AND METHODOLOGY

This project was developed under an iterative incremental
scheme for every integration method. The idea was adding
features incrementally while reflecting and improving on
the implementation by drawing parallels on previous dev
cycles. The original task definition is detailed below:

» Iteration 1: For the first iteration, the main tasks were
acquainting with data and performing the pre-training
step for the LM and the Seq2Seq. This was completely
agnostic to the chosen integration method and a re-
quirement to train further models. In parallel, thorough
State of the Art research was to be performed and the
first integration method developed (Shallow Fusion).

Project Planning
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Fig. 2: Gantt Chart for global project planning (weekly).
Note that dependencies between data preparation, state of
the art and all dev cycles have been omitted for readability,
as well as dependencies between dev cycles and full evalu-
ation.

* Iteration 2: For the second progress report, Deep fu-
sion was planned for development. Nonetheless, this
step suffered considerable delays due to problems in
training, which caused some rescheduling on the next
milestone.

¢ Iteration 3: For this milestone, Candidate and Cold
fusion were planned for development, as well as a joint
analysis of model performance. The latter method was
finally scrapped in favour of dedicating more time to
studying and comparing the others.

* Preparation of the final exposition and the Poster.

Figure [2| is a Gantt diagram with temporal details and
dependencies among tasks.

In terms of methodology, the project was developed using
preexisting code from [3] and implementing the required
changes to accommodate the various LM integration sys-
tems. The core model is written in Python 3.x []_-] using
PyTorch E] for Neural Networks and other Data Science li-
braries for processing (numpy [’} OpenCV [} Matplotlib El)
Other supporting tools were used for the sake of data safety

Ihttps://www.python.org/
Zhttps://pytorch.org/
3https://numpy.org/
4https://opencv.org/
Shttps://matplotlib.org/
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and workflow: Git for code version control and PyCharm /
Jupyter Notebook for code writing. Training was partially
performed on the Computer Vision Center compute cluster
Each development cycle consisted on checking a
method’s theoretical background, writing the correspond-
ing code, verifying its functionality with a few epochs of
training and launching the full training task once verified.

4 STATE OF THE ART

Prior to the Deep Learning “revolution” of the early 2010s
there was mainly one common architecture for OMR, which
consisted on a set of well-established steps. In their 2012 re-
view of OMR paper, Rebelo et al. [1]] summarised them as
image preprocessing, music symbol recognition, music no-
tation reconstruction and final representation construction.

This structure was challenged with the advances made in
Deep Learning, which allowed researchers improve both on
each phase of the pipeline individually (for instance, provid-
ing pixel-level binarization of music scores through Convo-
lutional Neural Networks (CNN) [9] or providing a system
to associate segmented symbols into a graph for notation
reconstruction [10]) and also through architectures capable
of performing the entire pipeline in a single step. Some ex-
amples can be found in the work of Van der Wel et al. [4],
who used a (CNN) stacked with a Seq2Seq model in order
to perform OMR on typeset scores, and Huang et al. [11]],
who presented a single-step CNN-based OMR architecture
which obtained state-of-the-art results on monophonic type-
set scores.

Fewer have ventured in the realm of OMR for handwrit-
ten scores using end-to-end deep neural models. Most no-
table works include the effort by Calvo-Zaragoza et al. to
recognise old scores in mensural notation using a CTC-
based model backed by an n-gram language model, and the
work by Bar6 et al. [3] expanding on CTC and also intro-
ducing an Attention-based [[12] Seq2Seq architecture.

In terms of Language Modelling, the earliest instance
of said technique in the context of a recognition task is
[13], which used n-grams in order to make OCR machines
context-aware and therefore more robust to recognition mis-
takes. Since n-grams are fairly cheap to implement and give
reasonably good results, they have been used fairly con-
sistently even in recent times [5], although with the rise
of DNN technology other approaches based on neural lan-
guage models have been tested. Examples which use RNNs
in conjunction with various recognition techniques include
[8]] and [14].

5 MODELS

The following section is devoted to describing the models
studied during the project.

5.1 Recurrent Neural Networks

Recurrent Neural Networks (RNN) [12] are a neural net-
work architecture family characterised by the existence of
temporal dependence between predictions. In other words,
a prediction may be influenced both by the input at the cur-
rent time step (if any) and the previous state of the model.
This architecture is particularly useful for many reasons: it

allows neural networks to have an arbitrary number of input
and output elements (because they can be segmented into
single vectors that are fed or outputted in consecutive time
steps) and it provides a natural way of processing of data
with strong sequential interdependence.

At the same time, this architecture has some drawbacks.
Since elements in a sequence need to be fed in consecutive
time steps, they may take longer to train than other archi-
tectures that can process the entire input sequence at once.
Moreover, in their simpler expression, RNNs have a limited
capacity to save information from very distant sequence el-
ements (as well as suffering from vanishing gradient prob-
lems).

To alleviate the aforementioned effects, more sophisti-
cated models have been devised with idea of strengthening
the system’s capacity to control the information that gets
sent into further iterations. In this project, Gated Recur-
rent Units (GRU) were used [[12]], which provide a series of
gate mechanisms in order to control the amount of informa-
tion from the previous state that is no longer relevant and
needs to be deleted (reset gate) and the amount of informa-
tion from the previous time step that needs to be consid-
ered in the current time step (update gate). This adaptation
capacity allows the model to keep important information
through longer time intervals. Also, since new data is gen-
erated through a Hyperbolic Tangent activation function, its
range is forced into the interval [—1, 1] and the problem of
exploding/vanishing gradient is much less significant.

5.2 Theoretical Background: Sequence to Se-
quence

Seq2Seq [6] models are an Encoder-Decoder architecture,
which is a family of models that is characterised by be-
ing split into two modules in which one generates an in-
termediate representation of the input data (“Encoder”) and
the other generates the output in accordance to the inter-
mediate representation (“Decoder”). As its name implies,
Seq2Seq architectures are used for situations where an arbi-
trary length output sequence can be obtained from the trans-
formation of an arbitrary length input sequence. This model
was originally conceived for Natural Language Processing
(neural machine translation, speech recognition, etc.) but
has seen some success outside the field.

The Encoder is a bidirectional stack of recurrent units,
which processes the input sequence both “left-to-right” and
“right-to-left” so as to have dependence information from
all time steps in the intermediate representation. In the orig-
inal concept of Seq2Seq, said representation was usually a
single vector of data which was updated with each itera-
tion of the Encoder. Once the input sequence is completely
processed, the Decoder module, which is usually a unidi-
rectional stack of recurrent units, receives a special token
(“Go”) as input alongside the intermediate representation,
from which it generates the first token of the output se-
quence. It then generates tokens from its previous output
and the intermediate representation until a special “End” to-
ken is predicted.
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Fig. 3: Sequence to Sequence model summary

5.3 Attention Mechanism

As mentioned earlier, in its original conception, Seq2Seq
stored information in a single limited vector that attempted
to compress the whole input sequence and then perform in-
ference conditioned by it. Attention mechanisms [15] are
a way of sidestepping this limitation by letting the model
decide what information is most relevant at inference time
(most specifically, the Decoding step).

Instead of encoding the information in a single vector,
each encoding step generates a feature vector that gets ap-
pended to the hidden state of the Seq2Seq. Then, an atten-
tion system can weight each of the feature vectors in order
to consider only the subset of required information for every
inference step.

5.4 Sequence to Sequence applied to Music
Scores

Seq2Seq models that have been exposed thus far do not con-
sider the input to be an image, but rather a generic collec-
tion of input vectors. In [3], the publication that serves as
the backbone for this work, a system that incorporates all
of the aforementioned techniques is crafted which also pro-
vides support for images as inputs and is tuned for OMR.
Figure [3]is a depiction of the model alongside this work’s
contribution of Language modelling and integration.
The model performs the following steps:

* A data augmentation system generates a unique varia-
tion of an input image by applying noise and geometric
transformations (only during training).

* The altered score image is fed into a Convolutional
Neural Network, which is based on a VGG19 [16] al-
beit with the last max pooling layer removed. This
Convolutional network outputs a set of feature vectors
that will serve as the input sequence for the recurrent
segment of the model.

* The convolutional feature vectors are fed into the bidi-
rectional Encoder. This segment generates an interme-

diate representation of the input sequence as a set of
vectors which forms the state of the model.

* When the Encoder is finished processing the input, the
state is fed iterativelly alongside the last predicted to-
ken in the sequence into the Decoder, whose output is
the final prediction. In order to assess which of the
input vectors are more relevant for each time step, an
attention mechanism weights the state vectors. This
is performed using location attention by Chorowsky et
al [17], which uses the previous attention vector, the
Decoder’s current hidden state and its previous output.

* During the Decoding step, a LM may be implemented
and integrated using one of the integration methods
that shall be discussed below.

5.5 Language Model

LMs are systems that provide the probability of a token
given a sequence of previous tokens. Let M be a LM and
¢ the predicted token at time step ¢, then

M@y .. yi—1) = P(yelyr - - - ye—1)- (1)

Many techniques exist for language modelling, but since
RNNSs have proven to be an effective model, this work fo-
cuses only on a single architecture based on four stacked
GRUs.

5.6 Language Model Integration

The task of Language Model integration with Seq2Seq
models with the purpose of improving the former’s perfor-
mance has been explored with various approaches. The fol-
lowing section is devoted to listing those that were found
most interesting and were considered for implementation.
Figure 4 shows a graphical representation of all methods.

¢ Shallow Fusion (Gulcehre et al. [[7]]): This is the sim-
plest and most straightforward method of integration.
Both models (LM and Seq2Seq) are kept independent
and the final prediction is calculated as
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Fig. 4: Language model integration summary

log P (y¢|y1.--yt—1) = log Por (yely1---ye—1)
+ AMog Prar (Yelyr---ye—1)
2)

where Pcr, Pras are the outputs of the classifier and
the language model respectively (interpreted as prob-
abilities). This method of integration requires pre-
training for both modules, and then the A parameter
is fine-tuned.

Deep Fusion (Gulcehre et al. [[7]]): This is an extension
of the Shallow Fusion approach that attempts to further
merge both models. It uses the hidden states of both
models for the final prediction. Let o be the sigmoid
activation function, sm be the softmax function and
Wpr and bp be learnable parameters

Pilyr..ye—1) = sm(WpphPF +bpr).(3)

The Deep Fusion hidden state h°¥" is the result of con-
catenating the Sequence to Sequence (Seq2Seq) con-
text vector ¢;, the Classifier’s hidden state htc L and a
gated version of the Language Model (LM)’s hidden
state, as seen in

Wt = [ew b ™5 gehiM] “)
The LM gate g, is in its turn computed as
g = o (vl ™M+ by) (5)

where v, and b, are learnable parameter vectors.

This method also requires both the LM and the classi-
fier to be properly pre-trained.

Candidate Fusion (Kang et al. [18]]). This approach
differs greatly from the ones preceding it, in the sense
that previous methods focused on merging the outputs
of both models, while this one reinforces the task of
the Decoder by feeding it the probabilities obtained by
the LM as

6

hy = Decoder([ct, yt_l,pfffl] yhi—1)  (6)

where ¢, is the current context vector, y; 1 is the previ-
ous prediction and p!™, is the probability distribution
obtained by the LM with the output of the previous
time step.

This method also requires both the LM and the classi-
fier to be properly pre-trained.

DATA

The datasets that were used to train the various models and
assess their accuracy are the following (See figure[3)):
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Fig. 5: Sample measures from the SM, SO and HW datasets
respectively

e Synthetic Modern (SM): A dataset consisting of
typeset scores. They are synthetically-generated poly-
phonic measures that contain a very wide array of sym-
bols including clefs, accidentals, ornament notes and
rests.

¢ Synthetic Old (SO): A dataset consisting of typeset
scores similar to those found in the SM dataset, but dis-
torted with typical paper and ink degradation artefacts
to make them look like old handwritten sheet music.
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Fig. 6: Example of the organisation of tokens in the ground truth file. Red areas limit the span of a primitive. Red arrows
indicate epsilon steps and blue arrows indicate primitives which are stored sequentially between epsilons

¢ Handwritten (HW): A collection of measures
from real handwritten scores from Pau Llinas, the
Kapellmeister of Santa Marfa del Pi in Barcelona dur-
ing the first half of the 18th century. These measures
come from a liturgical choral work, which implies it
is monophonic, it contains “voice” clefs and it con-
tains musical motifs within its time and context musi-
cal trends.

* Adjusted Synthetic Modern (ASM): A subset of the
SM dataset which was built on samples closer to those
found in Pau Llinas’ scores. More detail is provided in
section

Ground truth data is provided as a flat context-free se-
quence of tokens arranged in top-to-bottom left-to-right or-
der. The rationale behind this system is exemplified in Fig-
ure [6] The idea is the special epsilon token tells the clas-
sifier the next set of tokens is located on a different col-
umn. Another special token exists to account for single-
staff multiple-voice works, which is the vertical epsilon.

The symbols these datasets provide are the basic musi-
cal primitives that form more elaborate symbols. For in-
stance, notes are split into noteheads (as seen in Figure[d] its
pitch is indicated by appending the Space or Line in which
it is placed after a dot), flags (its orientation, upwards or
downwards is indicated as well), stems and, if notes are
tied, beams and their direction and value. There are var-
ious single-token symbols, which are barlines, accidentals,
dots, rests, time signatures and other less frequent elements.
For compound symbols like slurs and beams, an opening
and closing token is required before and after the group of
elements that conform the symbol.

7 EXPERIMENTS

To assess the performance of the various integration meth-
ods six experiments were performed under two training
strategies, which differ on the dataset that was used to train
the LM (SM or ASM respectively). For Shallow Fusion,
both experiments were performed witha A = 0.1.

7.1 Experiments on the SM dataset

Since the target of the project is to improve results on hand-
written scores, a training strategy was devised to prevent
optimisation toward synthetic scores. All integration meth-
ods require a pretrained LM and recogniser, which was per-
formed under the SM dataset. Then, a joint training phase
was deployed which used both the SO and the HW datasets
in parallel. The idea was to try to use the SO dataset as the

backbone for training, as it has more samples, while making
the most out of the few HW samples available.

Initially, the models were trained using a pool with 90%
of the samples belonging to the SO dataset and the remain-
ing 10% to the HW dataset. Every 10 epochs the propor-
tion of SO scores decreased by 10% over the total, down
to 10%. Since the number of SO samples is substantially
higher than the number of HW samples, the latter were
duplicated randomly whenever not enough of them were
available. The incorporated image augmentation system for
training helped prevent overfitting.

In order to keep track of the quality of the models and
pick the best performing ones, validation and test were per-
formed on HW dataset samples only.

Note also that the reason for not using datasets comprised
of samples coming from only one dataset was because pre-
vious experiments showed substantial performance hits.

7.2 Experiments on the ASM dataset

This batch of experiments was performed under the same
training strategy seen in[7.1] but a new dataset was compiled
to pretrain the LM. The idea was to try to find the samples
from the SM dataset which were more closely aligned to
the HW dataset. This was done because the HW dataset is
crafted from scores written in the 18th century for choral
interpretation in a religious context, while the SM dataset is
an arbitrary set of scores with differing characteristics.

In order to select those samples which were most rele-
vant, a selection study was performed in which the statisti-
cal distribution of tokens in the original HW dataset was
calculated. Then, the 66% of measures the SM dataset
which contained the highest ratio of tokens present in the
HW dataset were selected. This method has some draw-
backs, in the sense that it does not completely eliminate the
presence of foreign tokens. Nevertheless, it should be noted
that the highest interest for the LM is to be provided with
the biggest number of correct sub-sequences possible. By
establishing a more aggressive pruning strategy many rel-
evant sequences may have been lost and therefore the LM
may have underperformed.

8 RESULTS

Table[T]shows the performance in Symbol Error Rate (SER)
of the best epoch in each training iteration. SER is defined
as

I+R+S
T @

where I, R and S are the minimal number of token in-
sertions, removals and substitutions required to transform

SER(%) = 100



TABLE 1: SUMMARY OF PERFORMED EXPERIMENTS AND RESULTS IN SER(%). LOWER IS BETTER.

Method Dataset 90-10 80-20 70-30 60-40 50-50 40-60 30-70 20-80 10-90 0-100

Baseline [3] - 60.03 - - 66.20 - 43.38 - 37.86 3456 31.79
Deep SM 31.30 2852 29.87 2937 28.05 2611 2774 27.37 28.32 -
Shallow SM 36.79 3291 3327 3336 31.76 3275 30.87 30.72 30.58 -
Candidate SM 33.50 2893 28.64 28.08 2748 26.82 2723 26.61 25.80 -
Deep ASM 2824 2953 27.82 2736 2595 2721 2563 2515 25.54 -
Shallow ASM 3534 3475 36.67 3242 3423 3452 3376 3379 35.13 -
Candidate ASM 3207 28.61 2871 2755 2771 2720 2777 28.04 25.73 -

the predicted sequence to the ground truth sequence. These
results are analysed in subsection[8.1}

A qualitative analysis of the results was performed to
try to study the reason for the differences in performance
among the various methods. Details are shown in[8.2]

A perplexity study was also performed in order to assess
the difficulty of the LM task a priori. In order to try to eval-
uate the level of confidence on the predictions the various
models have, a different study based on the perplexity of
the classifier and the LM was performed. Results for this
analysis are shown on section[8.3]

8.1 Quantitative Analysis

The baseline result from [3] is shown on the first row of
the Table, which yields a best of 31.79% of SER. Most ex-
periments managed to obtain better results, with Deep and
Candidate fusion being the better performing ones.

The general pattern is that earlier iterations perform
worse than latter ones. There are a few exceptions, which
are the SM version of Deep Fusion and the ASM version of
Shallow Fusion, which have better results in intermediate
phases. This might be caused by local minima, which the
model optimises out of in the following epochs.

Another general remark is that models pretrained with
the ASM dataset seem to perform slightly better (except for
Shallow Fusion), although this difference could be also at-
tributed to optimisation, since it is neither substantial nor
absolute.

The most remarkable result is the 6% decrease in SER
that has been obtained in both Deep and Candidate fusion
for both pretraining datasets, but further study needs to be
performed in order to assess its causes.

8.2 Qualitative Analysis

In order to help illustrate the advantages and the flaws of the
various integration mechanisms, an example shall be pre-
sented through a full transcript of a measure using the ASM
version of Deep Fusion and Shallow Fusion.

Figure[7]shows the transcription of the image done by the
ASM-trained Deep and Shallow integration methods. This
bar is particularly interesting because it has various types of
notes and it has a slur, which is a particular type of token
whose start is classified separately from its end, requiring
some context awareness on top of correct recognition.

In general, the transcription by the Deep classifier can be
assessed as fairly accurate: the only mistakes are the last
notehead, which is assumed to be a quarter note two spaces
above the real one, and the last stem, which is interpreted
as the final bar line and the closing of the bar. The LM
provided a remarkably precise evaluation of the line as well,
with only an incorrect bar line at the second position and
incorrect positions of the notes.

Shallow fusion’s version omits the opening and closing
slurs, and also seems to miss the correct placement of notes.
Overall, the model seems to follow the LM strictly when
appropriate, and the classifier performs in a similar manner
as the Deep Fusion version. The same barline mistake is
also found in line 3 of the LM output, which is unsettling
but may be attributed to the fact that the model may not
expect its original barline output to be overridden by a clef
and therefore outputs a high-probability token.

Generally speaking, the model can understand the se-
mantic relationship between tokens (for instance, after a se-
quence of primitives that forms a symbol an epsilon will
be added). Moreover, most mistakes seem related to recog-
nition. This is especially true with noteheads, which are

Deep Fusion Shallow Fusion
Ground Truth Classifier P. LM Pry Classifier P, LM Pra
C-Clef.L1 C-Clef.L1 0.599 barline_light 0.850 C-Clef.L1 0.601 barline_light 0.864
epsilon epsilon 0.599 epsilon 1.000 epsilon 0.592 epsilon 1.000
}dl{ { startSlur startSlur 0.024 barline_light 0.164 0.337 barline_light 0.170
epsilon epsilon 0.452 epsilon 1.000  steamQuarterHalfDown 0.588 steamQuarterHalfDown  0.986
AT noteheadBlack.L5 noteheadBlack.L5 0.054 noteheadBlack.L4 0.997 epsilon 0.595 epsilon 1.000
| 1~ steamQuarterHalfDown  steamQuarterHalfDown 0.443 steamQuarterHalfDown  0.997 0.496 noteheadBlack.L4 0.984
L 1 F 7’ LB epsilon epsilon 0.601 epsilon 1.000  steamQuarterHalfDown 0.583 steamQuarterHalfDown  0.529
+ I 1} 1 | noteheadBlack.S3 noteheadBlack.S3 0.417 noteheadBlack.S4 0.499 epsilon 0.599 epsilon 1.000
| | | steamQuarterHalfDown steamQuarterHalfDown 0.615 steamQuarterHalfDown  1.000 noteheadBlack.S3 0.132 halfRest 0.972
\ ¥ \ Y epsilon epsilon 0.625 epsilon 1.000  steamQuarterHalfDown 0.580 steamQuarterHalfDown ~ 0.994
. endSlur endSlur 0.478 endSlur 1.000 epsilon 0.599 epsilon 1.000
epsilon epsilon 0.430 epsilon 1.000 barline_light 0.481 barline_light 0.271
noteheadHalf.S3 0.040 noteheadBlack.S5 0.706
steamQuarterHalfDown barline_light 0.181 steamQuarterHalfDown ~ 1.000
SER: 18.750% SER: 43.750%

Fig. 7: Measure from the HW dataset with its transcriptions and probabilities (Deep + ASM and Shallow + ASM models).
Some of the relevant mistakes are highlighted in red and orange depending on the token where the mistake is found
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commonly misplaced a few steps above or below their real
position. Other cases involve less frequent tokens which the
recogniser might not be properly acquainted with (such as
sharps, which in some cases are interpreted as whole notes).

Noteheads are also difficult to properly classify by their
duration. The model does not seem to understand the con-
cept of beat, since it outputs notes that would last longer
than the bar indicates. The LM seems equally affected by
this phenomenon.

In general, the hardest task is determining the content af-
ter each epsilon. Drawing a parallel to OCR, the epsilon
character acts like a space, after which many words may
fit the current context. Whenever a mistake is made after
an epsilon, a significant amount of error may be accumu-
lated because the model strays from the original context (in
the example, the fact that a stem was classified as a bar-
line altered the context of the sentence and forced an end
token). The LM cannot help in the situation mentioned in
the former issue, but it can help keep track of certain con-
textual tokens (slurs or the opening and closing beams for
compound notes).

It can also be observed that a high confidence by the LM
does not imply that the model will weight its output as cor-
rect, which is expected since integration methods are meant
to balance the predictions of both models.

8.3 Perplexity Analysis

Since there is a large proportion of issues that are closely
related to the probability distribution of tokens, I decided to
investigate a little bit further by analysing the perplexity of
the test dataset.

Perplexity is a measure of the degree of “choice” a model
faces when performing a transcription task. It can be in-
terpreted as the mean number of options from which to
choose at a certain time step. Let s be a text sequence of
N words (in this case, the whole test dataset concatenated)
and P(z; ...xy) the joint probability of the text sequence
calculated from the training dataset, the perplexity of the
sequence P P(s) is defined as

1
V= ¢))

PP(S) P(ml,...xN)

Since the joint probability is difficult to calculate, a sec-
ond degree Markov assumption is made, so that every text
token depends only of its direct predecessor. This assump-
tion was made because in the HW dataset, the maximum
number of tokens between epsilons is 2, which implies that
only one relevant token of information may precede a token.
Through this assumption and the chain rule, P(x; ...2N)
can be calculated as a bigram, expressed as

P(zy...xn) = P(z1) - P(xa]z1)-...- Plzn|zn-1). 9)

This was done considering training with the HW dataset
and the whole mix of HW, SM and SO datasets. The results
were a perplexity of 4.05 training with HW data and 6.02
training with the joint dataset.

The meaning of a 4.05 perplexity when training with HW
data is that, by training with this dataset, the average amount
of options is 4. Upon a closer inspection of the various bi-
gram distributions, an interesting conclusion can be drawn
(which was mentioned earlier as a part of the qualitative
analysis): the deviation in the level of choice is extremely
high depending on the bigram. There are certain probabil-
ities close to 1, such as the probability of an epsilon after
any atomic token, but there are many tokens that can be
succeeded by a significant amount of options. These usually
revolve around the various versions of noteheads, which the
LM cannot properly analyse. These have also been the to-
kens that the classifier has struggled the most with.

When using a broader dataset, the level of perplexity in-
creases, in this case from 4.05 to 6.72, because the model
has more information about the possible combinations of
bigrams and therefore has a broader choice. This was part
of the motivation behind creating a “closer” dataset.

In order to try to assess the confidence with which a
model predicts every token, a different take on perplexity
was used, which could be then compared to the theoretical
value obtained with the bigram model. Let d be the num-
ber of unique tokens in the dataset, z the hidden size and
M : h,s — R% where h € R* s € R? be the model in
question. If one considers M (h¢, s;—1) ~ P(X|z1...2¢—1),
then

t

P(seq) =~ H C(htyst—1)

i=1

(10)

which can be used with equation [§to calculate the em-
pirical perplexity of the model. This was done for the LM
and also for the classifier as a whole, even if in this context
the aforementioned assumptions do not hold, for illustrative
purposes. Results are shown in Table[2]

The main observation from this Table is that the LM
has a similar level of perplexity as the theoretical thresh-
old that was calculated. This implies that the training pro-
cess optimises the LM towards HW scores correctly even
when it uses samples from all datasets. The classifier, on
the other hand, suffers from having a much wider array of
options in most cases. Even more remarkable is the fact
that higher perplexity does not imply lower classifier per-
formance, since Candidate Fusion is actually one of the best
performing methods.

9 DiISCUSSION

After analysing the results from all experiments, some gen-
eral conclusions can be drawn. The most relevant result

TABLE 2: EMPIRICAL PERPLEXITY FOR THE LM AND THE CLASSIFIER

SM ASM
Deep Shallow Candidate Deep Shallow Candidate
LM 4.21 4.58 4.26 4.38 4.13 3.85
Classifier 5.79 5.06 7.63 4.89 5.72 7.80




is the 6 SER(%) improvement obtained by adding a LM
through Candidate or Deep fusion. Nevertheless, it is hard
to assess the reason why some LM integrations perform bet-
ter than others outside of a very subjective qualitative study.
A perplexity analysis showed that the model which had a
higher degree of choice was also one of the best perform-
ing, which is contrary to what would be expected. Shallow
fusion seems to underperform because it does not take the
LM sufficiently into account, for which I believe a more
thorough hyperparameter search (especially for the \ pa-
rameter) might be required.

The LM is good at palliating some syntactic mistakes
(such as tokens that require a specific successor) or pro-
viding information on tokens that are very frequent (which
the decoder can learn by default). However, there is a set of
possible recognition mistakes where the LM is not helpful.
These are mostly related to aesthetic arbitrary aspects of
music, such as notes, note lengths, expressiveness, finding
accidentals and beat. The latter could perhaps be enforced
through other means.

The adjustment strategy on the ASM dataset showed no
significant improvement. Instead, training with more hand-
written data might help achieve better results. This data
should also take into account that the time period matches
that of the target scores that will be recognised, as well as
its style and context.

10 CONCLUSION

The main objective for this project, which was exploring the
possibility of integrating a LM into a Seq2Seq-based hand-
written OMR system, has been successfully accomplished.
Three different LM integration methods have been imple-
mented and validated, and their final results have actually
improved on the state of the art. This proves that a LM
can effectively help palliate recognition mistakes on hand-
written music scores, although there is still work to be done
in order to lower error rates even further. A publication
has been submitted to ICDAR 2021 from the content of this
project [19]].

From the results shown in the Discussion section, I have
considered a few future lines of work. Since the beat seems
to be difficult to enforce through Deep Learning methods,
a combination of the logit output of the classifier and a
conventional grammar system with basic semantic analy-
sis could be used to enforce the correct amount of time per
measure, as well as some other syntactical mistakes. More-
over, Candidate Fusion has the ability to provide the clas-
sifier with future information. Perhaps this could be fed to
the attention mechanism to help it “find” possible tokens.
Lastly, another possibility would be to drop the Seq2Seq
architecture and attempt to perform OMR by using Trans-
formers, which have been obtaining outstanding results in
many NLP-related fields.

This project has been my first true contact with Deep
Learning research and it has given me the opportunity to
combine two of my greatest interests, which are music and
Al T have learnt a lot about many exciting topics within
computer vision, natural language processing and data sci-
ence, which I want to devote my professional life to. I have
also learnt that mistakes are bound to happen, for which one
should be prepared and watchful.

Overall, I am happy with the obtained results and I expect
to carry on this topic of research one way or another during
the following months.
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