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Spectral Super-Resolution
of Satellite Imagery with
Generative Adversarial Networks
Daniel Rojas Pérez

Abstract— Hyperspectral (HS) data is the most accurate interpretation of surface as it provides
fine spectral information with hundreds of narrow contiguous bands as compared to multispectral
(MS) data whose bands cover bigger wavelength portions of the electromagnetic spectrum. This
difference is noticeable in applications such as agriculture, geosciences, astronomy, etc. However,
HS sensors lack on earth observing spacecraft due to its high cost. In this study, we propose a novel
loss function for generative adversarial networks as a spectral-oriented and general-purpose solution
to spectral super-resolution of satellite imagery. The proposed architecture learns mapping from MS
to HS data, generating nearly 20x more bands than the given input. We show that we outperform
the state-of-the-art methods by visual interpretation and statistical metrics.

Keywords— generative adversarial networks, hyperspectral imaging,
spectral resolution, super-resolution, spectral angle mapper, loss function

multispectral imaging,

Resum- Les dades hiperspectrals (HS) son la interpretaci6 més precisa de la superficie, ja
gue proporciona informacié espectral fina amb centenars de bandes contiglies estretes en com-
paraci6 amb les dades multiespectrals (MS) les bandes cobreixen parts de longitud d’ona més
grans de I'espectre electromagnétic. Aquesta diferéncia és notable en ambits com I'agricultura,
les geociéncies, I'astronomia, etc. No obstant aix0, els sensors HS manquen a les naus espacials
d’observacié terrestre a causa del seu elevat cost. En aquest estudi proposem una nova funcié
de perdua per a generative adversarial networks com a solucié orientada a I'espectre i de proposit
general per la superresolucié espectral d'imatges de satel-lit. Larquitectura proposada apren el
mapatge de dades MS a HS, generant gairebé 20x més bandes que I'entrada donada. Mostrem que
superem els métodes state-of-the-art mitjancant la interpretacié visual i les métriques estadistiques.

Paraules clau-

generative adversarial networks, imatges hiperespectrals, imatges multies-

pectrals, resolucié espectral, superresolucié, spectral angle mapper, funcié de pérdua

1 INTRODUCTION

ring of information of the surface and atmosphere
of earth from a high altitude through remote sensing
technical procedures via sensors built in satellites. These
sensors often acquire information not only from the three
main visible wavelength bands but from finer spectral reso-
lution (width of each band of the spectrum), covering also

EARTH observation data is understood as the gathe-
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near infrared (NIR) and short-wave infrared (SWIR) wa-
velength bands that offer unique remote sensing capabiliti-
es. This spectrally different resolution data is classified into
multispectral (MS) and hyperspectral (HS) data. HS ima-
ging uses continuous and contiguous ranges of wavelengths
(i.e. continuous 1 nm channels in the range 400-1100 nm)
whilst MS imaging uses a subset of targeted wavelengths at
chosen locations (i.e. specific 20 nm channels in the range
400-1100 nm). There are a handful of MS sensors (i.e., EO-
1 ALI [1], Landsat 7 ETM+, Landsat 8 OLI) covering most
of the surface of the earth with high spatial and temporal
resolution. Alternatively, HS sensors (i.e., EO-1 Hyperion
[2]]) are fewer and only cover specific small areas due to the
scenes’ small swath, with poor spatial and temporal resolu-
tion.

Febrer de 2021, Escola d’Enginyeria (UAB)



2 EE/UAB TFG INFORMATICA: Spectral Super-Resolution of Satellite Imagery with Generative Adversarial Networks

2 RELATED WORK

In order to support the shortage of hyperspectral imaging,
imaging spectroscopy transformation techniques can be
proposed for producing imaging that can be used for direct
applications such as crop classification and indirect appli-
cations such as helping in the design stage of new sensors
by assessing or evaluating the spectral and spatial characte-
ristics.

Most of the work involving super-resolution has been in
the spatial and temporal modalities in which Deep Lear-
ning has achieved state-of-the-art results [3, 4]. There is
literature on related lines of research, such as performing
data fusion of MS and HS [3]] or single hyperspectral image
super-resolution [6]. Nevertheless, little study has been in-
volved with increasing the spectral information obtaining a
hyperspectral image from a multispectral image. However,
a few studies have proposed solutions to this specific task
using diverse techniques [[7] such as a spectral reconstructi-
on approach [8,[9], spectral resolution enhancement method
[10], a pseudo-HS image synthesis algorithm and a
latter extended pseudo-HS image transformation algorithm
[13]. All of these methods are linearly structured models
and do not consider nonlinearity relationships between MS
and HS bands. Thus, we will base our study on proposing a
nonlinear deep learning approach in order to solve this task.
Recently, a study proposed Convolutional Neural Network
Regression (CCNR) [[14] for the transformation of multis-
pectral data to quasi-hyperspectral data which will be im-
plemented in this study as means of a reference for compa-
rison of our proposed approach.

The principal contribution of our study is based on using
top-notch deep learning techniques to get the best possible
results on spectral super-resolution. We focused on the im-
plementation of Pair-Identical Image-to-Image Translation
using Generative Adversarial Networks (Pix2Pix) and pro-
posing an enhanced architecture especially suited for the
huge increasing of number of channels between the input
image and the output image which has not been proposed
till date. Also, we will extend our work to multi-image and
single-image spectral super-resolution in order to extract a
solid analysis.

3 REMOTE SENSING DATASETS

Data acquisition. The remote sensing data for building
the model are ALI and Hyperion imagery. Both land
imaging instruments are onboard the NASA EO-1, which
partially collects data over the same area at the exact same
time. ALI, the MS sensor, provides image data from 10
spectral visible NIR (VNIR) and SWIR discrete bands.
Hyperion, the HS sensor, collects 242 continuous spectral
channels ranging from 0.357 to 2.576 mm with a 10-nm
bandwidth. Both sensors have a similar spatial resolution,
pixel size, of about 30 meters.

ALI and Hyperion spectral, spatial and temporal domain
overlapping makes the two sensors the best choice for
building a solid model without the variance of external
factors affecting the reliability of the correlation that we
dealt to map.

The product scenes were acquired through USGS Earth
Explorer, selecting the L1Gst level of correction, a terrain
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Fig. 1: Comparison of MS and HS data.

corrected product provided in 16-bit radiance values. A
total of 31 scenes, during a span of 8§ years (2008-2016),
were collected from the surrounding area of Ciudad Real
due to the high-density of land dedicated to crop soil, which
produces a higher impact on surface reflectance of SWIR
bands [13]. From the 10 ALI bands, 9 of them are MS and
1 is a panchromatic (PAN) band, which we will dismiss
for our study due to the fact that it does not add relevant
spectral information. From the 242 Hyperion bands, 170
bands (8-57, 79-120, 131-165, 181-223) will be used, the
rest are uncalibrated or noisy and would cause a negative
impact on the prediction. Hence, 170 will be the number of
bands that we will predict from a 9-band input, resulting in
anearly 20x spectral super-resolution.

Data preprocessing. ALI and Hyperion have different
product properties, they differ on height, width, pixel size,
area covered and such more properties which require some
preprocessing before doing any experiment.

Despite being both sensors onboard the same satellite, the
pixel to pixel alignment and pixel size are not identical and
thus they require to be geometrically corrected. For the cor-
respondence of the scenes, ground control points (GCP) we-
re manually set and ALI scenes were geometrically correc-
ted using first-order polynomial interpolation and bilinear
resampling to match Hyperion scenes. Also, their extents
were clipped so they have the exact same size and shape
and cover the exact same area.

All data is normalized to the [0-1] range and converted to
32-bit float data.

Satellite sensors sometimes deliver a bad behaviour by mis-
sing information in some pixels. During a study of the data,
we noticed some spikes on the maximum values of different
bands from a single image scene caused by these corrupted
pixels. We corrected them by changing their value to the
median of the same pixel from the neighbour bands.

The data that will be provided to the model will be in a set

Fig. 2: Patch extraction example.
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Fig. 3: Overlapping ALI (left) and Hyperion (right) data.
ALIRGB: (6,5,4). Hyperion RGB: (45,21,14)

of multiple pair-identical patches extracted from the diffe-
rent product scenes, excluding the ones with clouds. The
dataset will finally be split in half, 50% of randomly chosen
patches for the training set and the rest 50% for the test set.

Single-Image model data The area for performing
Single-Image Spectral Super-Resolution analysis has been
selected through the USDA NASS Cropland Data Layer
(CDL), a crop land crop-specific land use data that covers
the USA, visualized in Figure [d] We decided to define the
area of interest based on the high crop density of the area.
Same preprocessing to ALI and Hyperion as explained in
last section have been realized.

4 METHODS

4.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a type of ge-
nerative model composed of two different networks: the
generator and the discriminator. The generator’s objecti-
ve is to generate fake data indistinguishible from real data.
On the other hand, the discriminator deals with classifying
whether a random sample has been artificially generated or
is a real sample data. Both networks will compete during
training in which the gain or loss of one of the networks is
offset by the gain or loss of the opposite, till the discrimina-
tor cannot correctly identify between the samples.

The generator, U-Net, consists of an encoder-decoder
architecture in which a convolution is applied after the last
layer in the decoder to map the number of output channels,
170 channels in our case.

The discriminator will decide whether the unknown image
was generated from the generator or not. The architecture
is also called a PatchGAN and will decide if patches from
the sub-image patches are real or not.

We will focus out study around the Pix2Pix [16] model, a
state-of-the-art framework for image translation based on
GAN:Ss extracting correspondence features between pairs of
images. This model is a general-purpose solution for image
translation tasks and is sometimes limited due to this gene-
ralization, which makes it non-specialized in capturing re-
lationships between original and constructed images of spe-

CDL2016 Area of Interest

|
|2

Fig. 4: Crop type data in the area of California, USA.

cific constraints, characteristics and abstractions.
Transforming Multispectral data to Hyperspectral data is a
clear example of a task and data that differs from the stan-
dard example solutions in which Pix2Pix is often showed
performing.

Pix2Pix is based on Conditional Generative Adversarial
Network (CGAN), whose generator network learns a map-
ping from the input image x to the target image y, i.e.,
{x — y} and the discriminator network will try to distin-
guish them if real or fake. The loss function of Pix2Pix is
defined by:

Lpixopix(G, D) = By y[log D(x,y)]+
+E[log(1 —D(x,G(x)))]+
+A - Eey[[ly— G(x)[1]

6]

4.2 SAM-GAN: Proposed enhancement

Most of the loss functions used in architectures are based
on two-dimensional feature extraction, computing the error
between data extracting them channel by channel. When
dealing with hyperspectral data, the most important featu-
res and relationships to aim to be extracted are not only on
the spatial dimension but on the spectral dimension too. In
this study, we propose a loss function that gathers both high-
level features from the spatial dimension and the long spec-
tral dimension in order to achieve a solid learning of the
structure of the HS data.

The loss function is based on Pix2Pix’s loss function but ad-
ding the Spectral Angle Mapper (SAM) metric to minimize
the errors of spectral features. SAM qualifies the similarity
of the original and the transformed vector reflectance across
the spectra through measuring the average angle between
them. The proposed SAM-GAN architecture’s loss functi-
on is defined by (@).

Lsam-Gan (G, D) = Lpixopix(G, D)+
ORVAIR0)
1 L 1 -1
+A - —arccos () El)gt)i(rf)
" i=1 [| Tt [[2 - [|Tre |2

I;,, and Iie are the i pixel of the ground truth image
and the transformed HS image, respectively; T equals

2)
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Fig. 5: SAM-GAN architecture

transpose, and 7 is the total number of pixels of each image.

The architecture is composed by U-Net as the generator
and Patch-GAN as the discriminator, the generator will
process a batch of 128 image patches and apply a series
of 6 contracting blocks, each of them composed by two
2-D convolutional filters with a kernel size of (3x3) are
computed on the patches followed by Batch Normalization
and a max pool operation (in the first three blocks we also
apply dropout of 50%). In each contracting block, the
width and height of the patches get split (i.e., 64x64 —
32x%32) and the number of channels doubled, achieving
on the deepest state of the generator a number of 2048
channels in 1x 1 patches. The batch will then get processed
by the expanding blocks which performs an upsampling, a
convolution, a concatenation with the output of the mirro-
red contracting block and finally two convolutional layers.
6 contracting blocks in total will set the patches on their
original structure and the feature mapping convolutional
last layer will match the output desired by our specific
task. The discriminator, similar to the contracting path of
the generator architecture, will decrease the spatial size
of the image while increasing the spectral dimension and
will output a matrix classifying whether a minipatch of the
image patch generated is real or fake.

For our experiments, we set a learning rate of 0.005 for
the first 70 epochs and then decrease it to 0.001 to allow
the model to learn a more optimal set of weights. This
architectures uses LeakyReLU for the contracting blocks,
ReLU for the expanding ones and Sigmoid for the final out-
put of the U-Net. The objective function is, as previously
stated, a weighted sum of the discriminator loss, the L1
reconstruction loss multiplied by A = 200 and the proposed
Spectral Angle Mapper loss multiplied by y = 200. Due

to the fact that through the training and tweaking process,
our model generated best results when the SAM loss had a
higher level of impact on the loss function.

Layer (type) Output Shape
Conv2d [-1, 32, 64, 64]
Contracting Block [-1, 64, 32, 32]
Contracting Block [-1, 128, 16, 16]
Contracting Block [-1, 256, 8, 8]
Contracting Block [-1,512,4, 4]
Contracting Block [-1, 1024, 2, 2]
Contracting Block [-1,2048, 1, 1]
Expanding Block [-1, 1024, 2, 2]
Expanding Block [-1,512, 4, 4]
Expanding Block [-1, 256, 8, 8]
Expanding Block [-1, 128, 16, 16]
Expanding Block [-1, 64, 32, 32]
Expanding Block [-1, 32, 64, 64]
Conv2d [-1, 170, 64, 64]
Sigmoid [-1, 170, 64, 64]

Total params:
Trainable params:

Non-trainable params:

117,456,074
117,456,074
0

Visual interpretation.

4.3 Evaluation metrics

The resulting generated imagery will be evaluated through
three different evaluation approaches:

The visual interpretation and
comparison of the results played an important role on the
training of the data since we were able to easily interpret
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whether we had to tune the model because of blurriness is-
sues or offset data. However, it will not be an important
decisive factor in the final comparison since the visual inter-
pretation of 170 bands can not be easily readable, although
we can have a good glance of it by visualizing three bands
composing the RGB channels in a False Color Composite
(FCO).

Statistical metrics. Quality of the data will also be statis-
tically evaluated. This evaluation will be separated in two
classes: band-wise evaluation and pixel-wise evaluation.
Band-wise evaluation will consider the next metrics:
Pearson’s Correlation Coefficient (PCC) measures the
linear correlation between the real and fake bands,

" 1(p5(l)—uf’)(p5‘(l)—uﬁ)
\/Z, 1P,, IJ~, \/Z, 1]7,, I-L,H)z

Root-Mean-Square Error (RMSE) measures the difference
between reflectances of real and fake bands,

PCC; =

RMSE, =

M-
o
<~

Peak Signal-to-Noise Ratio (PSNR) measures the quality
of the reconstructed image,

R2
PSNR, =10- loglo m

Structural Similarity index (SSIM) assesses the visual im-
pact of luminance, contrast, and structure characteristics of
the predicted image into a single index metric,

2uu g +C) (2044 ¢))
(ufg +uj +Ci)(of+05+Ca)

SSIM; =

where every metric will be measured for each band having
wavelength A, H and H are the real and fake data, pg
represents the reflectance value of real data at pixel j
in band i. The mean of all pixels in a single band is
represented by ( and n is the quantity of pixels in a band.
R equals to the maximum possible value of the image data.

Regarding the pixel-wise evaluation, we used more task-
specific metrics which take into account the 170-long vector
of reflectances of a single pixel. The next metrics will be
measured for the generated data:

Spectral Angle Mapper (SAM) evaluates the difference
between two spectra (real and fake pixel) by measuring the
angle.

évlp{?mpf;-m
\/Zl lp,j \/Zz Ipl]

Spectral Information Divergence (SID) is an information
theoretic spectral metric which considers each pixel as a
random variable and uses its spectral histogram to define
a probability distribution. The spectral similarity between
two pixels is measured by the discrepancy of probabilistic

oj = arccos

behaviours between their spectra.
SID; = D(pfi|pfi) +D(pii| pi)

N (3)
=Y pilog(pi/q:)
i=1

where D(pu |pU

5 EXPERIMENTS AND RESULTS

5.1 Model performance comparison

For all the experiments we run each model for 400 epochs
and evaluated the initial progress and the final model per-
formance over the test set at the final epoch. Same ran-
domly chosen data is used for the experiments as it has be-
en extracted to be used in an free-environmental external
factor, grabbing large portions of data from the same area
over the years and randomizing it so it is able to generalize
for its application to multiple use cases. We are going to
be comparing our base model with the last proposed deep
learning approach of the spectral super-resolution task by
[14] to appreciate the results of implementing a larger and
a more powerful deep learning structure able to learn mo-
re advanced features. Furthermore, we will compare with
the Pix2Pix model in order to measure how our network en-
hancement performs directly competing with its basic arc-
hitecture. In order for it to be a fair comparison, Pix2Pix
and SAM-GAN has the exact same architecture structure
and the exact same hyperparameter values for the exception
of adding to the loss function the weighted Spectral Angle
Mapper as defined previously.

Earlier learning than previous methods. The transfor-
med hyperspectral data are generated from the test dataset
samples and have been evaluated with all six statistical me-
trics. The results show a plot with x ranging from 0 to 20
epochs and the y axis shows the metric punctuation at any
given epoch.

The statistical measures show that SAM-GAN provides
the most superior performance in all spectral-based me-
trics such as SAM and SID and delivers a fast conver-
gence by getting to better results in a shorter period of ti-
me. Regarding band-wise metrics (PCC, RMSE, PSNR and
SSIM), our model show best performance at PCC, PSNR
and SSIM, getting best results than the other two architectu-
res. RMSE is a band-wise metric specialized in computing
2-dimensional spatial error, this feature is used by CNNR
(using MSE as an objective function, hence minimizing it
and obtaining better results) and Pix2Pix (with its recons-
truction loss) and both models are able to generate faster
and better results than our model in the first 10 epochs. Alt-
hough our model achieves similar results after the first 10
epochs.

The main difference between Pix2Pix and SAM-GAN is
the difference in learning time and we get slightly better
end-results while requiring the same computational time per
epoch. The difference in learning time is due to that Pix2Pix
is mainly benefited from the discriminator in order to learn
valuable features. This, in counterpart, makes the learning
process less stable and longer, since the discriminator plays
a huge role and has to learn classifying features too. On
the other hand, the SAM-GAN architecture benefits from
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the Spectral Angle Mapper loss by providing instant relati- CNNR pix2pix SAM-GAN

onship information between the whole spectral dimension,
causing in a rapid convergence.

Visual comparison. Visual comparison shows an even
clearer picture of the performance of the three tested mo-
dels. Same bands have been plotted, conforming a False
Color Composite combination in order to show the recons-
tructed bands. We are only showing 4 generated patches
examples of three bands out of 170 generated bands, so the
representation is limited but they provide a solid justificati-
on of the statistical results. Epochs 4, 9 and 12 are showed
in order to appreciate the early learning difference betwe-
en models. The 400th epoch is shown as it shows the final
results of the fully-trained architectures performing at their
best. Last row are the Ground Truth data showed for visual
comparison as the target result that the architectures were
trying to generate.

The visual comparison show great differences between the
methodologies of learning between the three different archi-
tectures. CNNR starts producing softer, granulated patches
due to the loss function that it is trying to minimize and the
fewer parameters that it has compared to other architectu-
res, which may cause a longer need of training time to le-
arn the appropiate mapping between multispectral data and
hyperspectral data, deducted from the non-variation of the
first epochs of training. Pix2pix shows some greater level
of detail in the first epochs although there are some parts
where the generated sample produced a non-desired predic-
tion. This issue is very common on the first steps of training
of Pix2Pix models as the discriminator is also learning to
classify between real or fake. After the 9th epoch, the re-
sults shown in the second and third row are better than the
CNNR competitor, showing fine-grained level of definition
and an overall superior structure. The SAM-GAN architec-
ture, our model, shows a very different generated samples
from the 4th stage of training but is at the same time a detai-
led patch with characteristics well-defining the ground truth
data. As previously mentioned, SAM-GAN benefits from a
very early adaptation to the task and it shows at 9th epoch,

epoch 4

epoch 9

= T = T 3
) r 3 "
K ) ~ .
N .

epoch 400

epoch 12

Ground Truth

Fig. 7: Generated samples from each architecture at diffe-
rent training steps.

visualizing two of the presented samples with a very high
fidelity. After three epochs, at the epoch 12th, SAM-GAN
already achieves nearly-perfect results while its competitors
still lack level of definition, showing quite different reflec-
tance values comparing to the ground truth patches.
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Fig. 8: Models evaluation

Fully-trained model comparison. The generated data
is evaluated with six statistical metrics. For the band-wise
metrics (PCC, RMSE, PSNR and SSIM), the evaluation is
computed for each narrow spectral band, comparing pairs
of bands from real and generated data from the test dataset
and computing the error. Hence, the boxplot presents the
performance of the bands, showing outlier bands that did
not get to perform as well as the others. Regarding the
pixel-wise metrics, these are computed comparing pixel-to-
pixel from real and generated patches and comparing the
whole vector of reflectance values of size 170.

It is observed that both Pix2Pix and SAM-GAN outper-
forms the CNNR architecture in all statistical metrics, due
to using more advanced deep learning techniques and being
able to extract higher-level features.

Between the two GAN architectures, SAM-GAN is clearly
performing better when compared to Pix2Pix on PCC,
SSIM and SAM, being the latter the objective function and
the evaluation metric it is scoring the best compared to the
other models. Both GANSs are getting similar performance
on RMSE and SID metrics. Due to the fact that Pix2Pix’s
L1 loss weights more than SAM-GAN’s L1 loss for the
final objective function, SAM-GAN does not outperform
on RMSE but is getting a solid score, similar to the other
models, and it means that SAM-GAN does not lose the
spatial features learning by adding the spectral dimension
learning. Our architecture does perform worse on PSNR
despite acquiring a very fast learning in that specific metric
as shown in Figure[6]

Band-wise metrics per band. It is interesting to observe
which are the bands causing a decrease on the evaluation
of the generated data independently of the model. Figure
O] shows the specific band (numerated by index in the
channel order mentioned in Section 2) performance, being
the x axis, the index of the band, and the y axis, the metric
score. This evaluation could not apply to SAM and SID due
to its nature of pixel-to-pixel comparison, not band-to-band.

Table 1: BAND-WISE METRICS

Architecture PCC RMSE PSNR SSIM
CNNR 0.767 0.00274 18.69 0.528
Pix2Pix 0.867 0.00215 20.37 0.741
SAM-GAN 0.886 0.00245 19.34  0.753

PSNR

Table 2: PIXEL-WISE METRICS

Architecture SAM SID
CNNR 0.0789 0.01391
Pix2Pix 0.0649 0.00991

SAM-GAN 0.0601 0.00944
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Fig. 9: Band-wise metrics per band.
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Figure [0] shows that the bands not performing as well in Table 3: BAND-WISE METRICS
every metric are always, in different measure, the same. The
explanation for this phenomenon may be that it is due to a Architecture PCC RMSE PSNR SSIM
polor bf}?d co-treglst;atlotn for specific .porltlorllst.of thefv:l?- Pix2Pix 0219 00048 1079 0317
velength spectrum due to errors or miscalculations of the SAM-GAN  0.891 0.00101 21.40 0.678

spacecraft’s sensor.

We should note that, despite those bands having worse per-
formance than the average, it still is achieving very decent
results. It depends on the application use whether the wor-
se bands add value to the generated data or not. In some
cases, just a handful of principal components are required
to perform a classification task or a segmentation task so it
wouldn’t be required to generate those bands and is not a
big deal to lose that information. In other cases, such as
sensor engineering, a more reliable generated data could be
required to be helpful at all.

5.2 Single-Image Spectral Super-Resolution

It is interesting to test models when having less amount of
data due to a lack of data or computational power to handle
it. In the past section, we trained and tested the model with
31 scenes, composing a total of nearly 2000 64 x 64 patches
for the whole dataset. In this section, we will train and test
the architecture making use of just 1 scene in the area of
California, composing a total of about 80 patches.

For this experiment, batch size of 128 was reduced to 16.
The rest of the hyperparemeters and model architecture re-
mained untouched and were not tweaked at any moment as
means of testing if the models were able to achieve good
results without the need of hyperparameter tuning.

It is observable in Figure[TI0|that SAM-GAN absolutely out-
performs Pix2Pix on every metric we evaluated both models
on. While SAM-GAN still gets a great performance similar
to the model trained on multiple scenes, this time, Pix2Pix
fails to map a decent prediction of HS data.

SAM-GAN’s fast learning ability that we remarked on the
past section is also noticeable in this experiment where the
architecture performs exceptionally.

The characteristics of model building in just one single sce-

Table 4: PIXEL-WISE METRICS

Architecture SAM SID
Pix2Pix 0.3151 0.12253
SAM-GAN  0.0643 0.00950

ne are that the testing patches areas are completely unseen
as we do not have patches over the same area from other
scenes. The explanation why SAM-GAN is still able to ge-
nerate great HS data is that our architecture learns the spec-
tral composition of the land. This results in an architecture
that does not need to overfit to the spatial data to generate
reliable HS data, but will perform greatly for seen spectral
compositions.

In fact, sligthly better SAM-GAN results were extracted
from this experiment compared to the other one. This is
because the spectral response of land slightly differs from
scene to scene due to environmental factors and physical
phenomenons such as the angle degree of sun impacting the
land, the season of the year, temperature, climate, etc. Sin-
ce the training and the testing have been realized over the
same scene, the spectral response features learned are the
same in the model building and will generate better results
because of scene adaptation. On the other hand, in the ex-
periment with large data, we were building a generalized
model considering all variations of environmental factors.



Daniel Rojas Pérez: Spectral Super-Resolution of Satellite Imagery with Generative Adversarial Networks 9

6 CONCLUSIONS

In this study, SAM-GAN, an enhanced Pix2Pix model, is
proposed in order to outperform state-of-the-art methods in
the spectral super-resolution task of satellite imagery. The
novel specialized loss function benefits from the Spectral
Angle Mapper metric to minimize the reflectance spectral
vector error pixel-to-pixel when comparing an artificially
generated HS image with a real HS image.

Overall, it seems clear that based on the early learning plots,
patch visualization and fully-trained statistical metrics eva-
luation, SAM-GAN achieves a desirable specific enhance-
ment over GAN-based Pix2Pix and other deep learning arc-
hitectures.

Furthermore, we analyzed how different our network is by
changing such a minor aspect of the architecture. By using
our own loss function we achieved better results than state-
of-the-art methods and completely understands the relati-
onship of reflectances between bands even when trained on
a very small dataset and tested on unseen land.

Hence, the objectives established at the initial phase of the
project were accomplished with a great degree of satisfacti-
on.

In the near future, this study aims to be expanded explo-
ring the super-resolution of spatial, spectral and temporal
dimensions in one single model. This is a task that would
not be aimed to replicate the performance of architectures
as the one that we proposed but create a general decent so-
lution.

Furthermore, proposing a directly task-related loss functi-
on will be a good path on the extraction of both high-level
and low-level spectral features by understanding with a mo-
re in-depth vision how sensors work and the interpretation
of continuous data.

ACKNOWLEDGMENT

The author wishes to thank Dr. Felipe Lumbreras for the
guidance and patience through the whole duration of this
study and the Computer Vision Center where I remained
as an intern. In addition, this work is partially supported
by the Spanish Ministry of Science and Innovation under
project BOSSS TIN2017-89723-P.

REFERENCIES

[1] USGS EROS Archive (2000). url:
https://www.usgs.gov/centers/eros/science/usgs-
eros-archive-earth-observing-one-eo-1-ali.

[2] USGS EROS Archive (2000). url:

https://www.usgs.gov/centers/eros/science/usgs-
eros-archive-earth-observing-one-eo-1-hyperion.

Zhang L. Nie J., Wei W., Li Y., Zhang Y. (2020). “De-
ep Blind Hyperspectral Image Super-Resolution”. In:
IEEE TNNLS.

Jiang J. Sun H., Liu X. et al. (2020). “Learning
Spatial-Spectral Prior for Super-Resolution of Hy-
perspectral Imagery”. In: IEEE TCIL.

(5]

(6]

(7]

(8]

(9]

[10]

[11]

Yokoya N. Grohnfeldt C., Chanussot J. (2020). “Hy-
perspectral and Multi-spectral Data Fusion: A Com-
parative Review”. In: IEEE GRSM.

J. Jiang (2020).
Super-Resolution-Benchmark.
https://github.com/junjun-jiang/Hyperspectral-
Image-Super-Resolution-Benchmark

Hyperspectral-Image-
url:

Yi C. Zhao Y., Cheung-Wai J. (2019). “Spectral Super-
Resolution for Multi-spectral Image Based on Spec-
tral Improvement Strategy and Spatial Preservation
Strategy”. In: IEEE TGRS.

V. Tiwari, V. Kumar, K. Pandey, R. Ranade, and S.
Agarwal, “Simulation of the hyperspectral data from
multispectral data using Python programming lan-
guage,” Proc. SPIE, vol. 9880, Apr. 2016, Art. no.
98800W.

V. Tiwari, V. Kumar, K. Pandey, R. Ranade, and S.
Agrawal, “Simulation of the hyperspectral data using
multispectral data,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp. (IGARSS), Jul. 2016, pp. 6157-6160.

X. Sun, L. Zhang, H. Yang, T. Wu, Y. Cen, and Y.
Guo, “Enhancement of spectral resolution for remo-
tely sensed multispectral image,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 8, no. 5, pp.
2198-2211, May 2015.

N. T. Hoang and K. Koike, “Development of
Bayesian-based transformation method of Landsat
imagery into pseudo-hyperspectral imagery,” Proc.
SPIE, vol. 9643, Oct. 2015, Art. no. 96430J.

N. T. Hoang and K. Koike, “Hyperspectral trans-
formation from EO-1 ALI imagery using pseudo-
hyperspectral image synthesis algorithm,” Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci., Tech.
Rep. XLI-B7, 2016, pp. 661-665. [Online]. Avai-
lable: https://doi.org/10.5194/isprs-archives-XLI-B7-
661-2016

N. T. Hoang and K. Koike, “Transformation of Land-
sat imagery into pseudo-hyperspectral imagery by
a multiple regression-based model with application
to metal deposit-related minerals mapping,” ISPRSIJ.
Photogramm. Remote Sens., vol. 133, pp. 157-173,
Nov. 2017.

Subir P, Nagesh K. (2020). “Transformation of Mul-
tispectral Data to QuasiHyperspectral Data Using
Convolutional Neural Network Regression”. In: IEEE
TGRS.

Swathandran S, Aslam MAM. “Assessing the role
of SWIR band in detecting agricultural crop stress:
a case study of Raichur district, Karnataka, India”.
Environ Monit Assess. 2019 Jun 16;191(7):442. doi:
10.1007/s10661-019-7566-1. PMID: 31203445.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A.
Efros. “Image-to-Image Translation with Conditional
Adversarial Networks”. CoRR abs/1611.07004 (2016)



10 EE/UAB TFG INFORMATICA: Spectral Super-Resolution of Satellite Imagery with Generative Adversarial Networks

APPENDIX

I wished to let this document with the appearance of an aca-
demic article and decided to insert the missing content such
as project learning objectives, methodology and planificati-
on in the appendix.

A.1 Project objectives

This study proposes transforming multispectral data to hy-
perspectral data in order to increase the spectral information
from the MS data by nearly 20 times —from 9 bands to 170
hyperspectral bands-.

The main objectives of this project, along the desired out-
come, are presented in the next enumeration:

1. The learning outcomes range from mastering deep le-
arning techniques applied to computer vision, manipu-
lation and processing of satellite remote sensing ima-
gery, learning the state-of-the-art of super-resolution
and deep learning in different modalities and be able
to use the knowledge to propose novel architectures,
performing a large quantity of computational experi-
ments and extract conclusions from analysis.

2. Extreme spectral super-resolution: increasing the
number of spectral bands in multispectral data by a
factor of over 10.

3. Replicate existing models to compare with and analy-
zing and understanding their strengths and flaws.

4. Generate architectures that are innovative and compe-
titive in a research area that does not have a large quan-
tity of literature or resources.

5. Achieve domain adaptation and transfer the learning to
other scopes of super-resolution such as single-image
super-resolution.

6. Propose a novel architecture that achieves state-of-the-
art performance

A.2 Methodology

The management of a project is of a great degree of impor-
tance to meet the final objectives and deliver them on time.
In order to choose the best alternative available, these next
points have been taken into consideration:

* Individual project: the work of the project is reali-
zed by a single person. Therefore, there is no need
of daily communication and coordination with collea-
gues, neither of a strict schedule.

* Weekly meetings with supervisor: weekly meetings
will be held with my supervisor to show the progress
and consult any doubts. This gives me the aim to set
weekly minor goals and work from the start of the pro-
ject.

Poor literature in the area: the research topic has not
been deeply studied by other researchers using the
techniques that are being planned to be utilized. Thus,
there is a level of uncertainty on the overall project,

which makes the timelines not as clear. However, the-
re is some literature on related lines of research, such
as performing data fusion of MS and HS [5] or single
hyperspectral image super-resolution [6]] (which will
be analyzed and studied to get a solid understanding
of the handling of similar data as ours).

* Novelty: although computer vision and deep learning
have already been introduced to me, remote sensing
and the satellite scene is a novelty, as well as other to-
ols that will be used. Therefore, the mastering of these
tools will be required in order to achieve the goals and
it could affect the timelines.

The time management methodology chosen is Kanbaue
to the fact that it is a methodology characterized for impro-
ving the speed and quality of work. It will cause a desire for
finishing the current work-in-progress set, as multi-tasking
is limited. Moreover, it enables a visible display of the pro-
ject and work in progress which will be of a great use when
communicating with the supervisor. Finally, weekly minor
goals will be set in order to increase the motivation and per-
formance.

A.3 Planification

1. Documentation (Weeks: 1st-2nd): study the literature,
actual and old, of superresolution and deep learning.
We will emphasize on the work related to our field and
desired satellites, but we will also explore other alter-
natives. Moreover, the study of the different charac-
teristics of satellites and their instruments will also be
realized. This phase is emphasized in the initial part of
the project but will remain active throughout the whole
project due to its importance and need.

2. Introduction of new tools (Weeks: 2nd-5th): learning
to use new tools such as GDAL [?], QGIS [?], Earth
Engine [?], among others, and the downloading and
processing of satellite imagery. This phase will be the
base to get my further work done.

3. Reproduction of state-of-the-art (Weeks: 3rd-7th): in
order to achieve a good understanding of the matter
and increase the familiarity with the new tools and
methods, a reproduction of the state-of-the-art scene
[14] (no code available) will be produced. This phase
overlaps with the previous phase due to the fact that
this phase is a way of improving the skills needed and
achieve a solid learning on the matter.

4. Proposing a novel architecture (Weeks: 7th-13th): mo-
re study and computational experiments will be done
in order to achieve a novel architecture that stands out
from others. This phase is the most exploratory one,
it will be based on research among different areas, le-
arning what can be done in order to improve a soluti-
on and thinking outside the box. Getting a very broad
knowledge, design architectures based on the charac-
teristics that will get the most out of it and performing
trial-and-error will be the objectives of this phase. The

ITrello is the desktop web application chosen for managing the project
with Kanban methodology.
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timeline for this phase starts from when a good prac-
tical understanding is achieved on the problem and it
ends soon enough to be able to propose new approac-
hes, such as the zero-shot learning.

. Single-Image learning approach (Weeks: 13th-17th):
the last main goal of the project is that the the network
can be applied to using very little sets of data, we hope
to achieve satisfactory results. This phase remains as
the last technical phase, the project could diverge to
some different specific goal if we find a viable solution
to an unsolved problem.

. Elaborating a final report (Weeks: 18th-22nd): a final
article report will be written up explaining our appro-
ach and solution to the problem, specifying the proces-
sing of data, the design of the architecture, decisions
taken, etc.
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