
This is the published version of the bachelor thesis:

Martínez Espelleta, Gerard; Lumbreras Ruiz, Felipe, dir. Visualització, creació i
millora de terrenys 3D. 2021. (958 Enginyeria Informàtica)

This version is available at https://ddd.uab.cat/record/257802

under the terms of the license

https://ddd.uab.cat/record/257802


TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

Visualització, creació i millora de terrenys
3D

Gerard Martı́nez Espelleta
7 de febrer de 2022

Resum– Durant les últimes dècades, la visió de mapes tridimensionals ha avançat moltı́ssim des
de l’aparició de Google Maps l’any 2005, el qual va popularitzar i fer disponible al públic general
aquest servei. No obstant les noves tecnologies com la visualització tridimensional del relleu només
s’apliquen a zones molt poblades deixant de banda una gran part de la superfı́cie del territori.
En aquest treball farem ús de tècniques de Deep Learning per a crear una xarxa neuronal que ens
permeti aplicar superresolució a un seguit d’imatges del terreny, a les que posteriorment afegirem un
relleu i mostrarem en un entorn 3D pel qual ens podrem desplaçar amb la intenció de poder explorar
tot el territori català.

Paraules clau– Visor 3D, Deep Learning, GAN, Generative Adversative Network, Mapa, Su-
perresolució, Web

Abstract– Over the last few decades, three-dimensional map viewing has come a long way since
the advent of Google Maps in 2005, which made this service popular and available to the general
public. However, new technologies such as three-dimensional relief visualization are only applied to
heavily populated areas, leaving apart a large part of the territory’s surface.
In this work we will use Deep Learning techniques to create a neural network that allows us to apply
superresolution to a series of terrain images, to which we will later add a relief and show in a 3D envi-
ronment through which we can move with the intention to be able to explore the entire catalan territory.

Keywords– 3D Visor, Deep Learning, GAN, Generative Adversative Network, Map, Superre-
solution, Web

✦

1 INTRODUCCIÓ - CONTEXT DEL TREBALL

Un dels avantatges del que disposem avui en dia en com-
paració amb fa uns anys és la possibilitat d’utilitzar mapes
en lı́nia per situar-nos, obtenir indicacions, o simplement
investigar el terreny. De fet, des de l’aparició del primer
servidor de mapes en lı́nia (”Xerox PARC Map Viewer”)
l’any 1993, aquest servei ha anat millorant any rere any,
passant per visors de mapes de renom com ”Terraserver”
l’any 1998 o “Nasa World Wind” l’any 2003. No obstant
això, no va ser fins a l’any 2005 que es va popularitzar
aquest tipus de servei amb l’aparició de Google Maps, el
qual es va tornar el principal servidor de mapes en lı́nia del
mercat.

• E-mail de contacte: 1531236@uab.cat
• Menció realitzada: Computació
• Treball tutoritzat per:Felipe Lumbreras Ruiz (Departament de

Ciències de la Computació)
• Curs 2021/22

Avui en dia, aquests serveis han anat evolucionant, perme-
tent aplicar diferents capes a la vista com imatges satèl·lit,
de relleu, del trànsit o fins i tot en els últims anys perme-
tent la visualització del relleu sobre imatges satèl·lit en 3D
o l’opció de poder visualitzar a vista de carrer la majoria del
globus.

Aixı́ i tot, visors com el de Google Earth o Apple Maps
només ofereixen una bona representació del terreny en zo-
nes que les companyies consideren més interessants. És
a dir, en zones d’alta afluència de persones, com podrien
ser grans ciutats o zones universitàries. Si sortim d’aquests
lı́mits, les imatges es comencen a veure borroses i sense re-
lleu visible.

En aquest projecte es farà us de tècniques de processat d’i-
matges i de Deep Learning per a crear un model que si-
gui capaç d’augmentar significativament la resolució d’una
imatge. A part es crearà un visor tridimensional accessible
de manera online que serà capaç de mostrar tot el mapa de
Catalunya mitjançant crides a un servidor, d’on anirà des-
carregant les imatges (que seràn arreglades pel nostre mo-

7 de febrer de 2022, Escola d’Enginyeria (UAB)



2 EE/UAB TFG INFORMÀTICA: Visualització, creació i millora de terrenys 3D

del) i els valors del relleu per posteriorment ajuntar-les en
un objecte tridimensional i col·locar-lo en un punt de l’es-
pai, creant aixı́ un mapa.

1.1 Objectius
L’objectiu principal d’aquest treball és el de crear una
aplicació que ens permeti, a partir d’un conjunt d’imatges
satèl·lit, millorar notablement la resolució d’aquestes
mitjançant xarxes neuronals que apliquin tècniques de
superresolució i posteriorment afegir-hi un relleu creant
aixı́ un objecte tridimensional. Finalment, crearem un
entorn tridimensional pel qual ens puguem desplaçar en el
que es trobin tots aquests objectes anteriorment creats.

És a dir, crear un mapa d’alta resolució i amb relleu pel qual
puguem navegar i on sigui possible veure tot el territori
català. Per tal de definir millor el projecte, l’hem dividit en
els següents propòsits.

Aquests serien:

1. Obtenció d’imatges satèl·lit: La resolució d’aquest
objectiu consistirà en investigar diverses fonts d’on
es puguin obtenir les imatges satèl·lit necessàries per
mostrar el territori. Un cop les tinguem crearem un
script per poder-les obtenir fàcilment.

2. Obtenir els valors del relleu: Aquests són necessaris
per crear els models tridimensionals. Per poder com-
pletar aquest objectiu s’haurà de trobar una font que
ens ofereixi valors del relleu català i posteriorment cre-
ar un script que ens permeti obtenir-los.

3. Creació d’una xarxa que ens permeti fer superre-
solució: Millorar la qualitat de les imatges mostrades
a la nostra aplicació passant aquestes per una xarxa
neuronal que apliqui un algoritme de superresolució.
Investigar els tipus de xarxa que permeten aplicar l’al-
goritme anteriorment mencionat, i un cop escollit el
model de xarxa a realitzar s’haurà d’escollir un entorn
per dissenyar-la i entrenar-la.

4. Creació d’una xarxa que ens permet millorar el re-
lleu obtingut: Obtenir el relleu més realista que sigui
possible, passant el relleu descarregat de la font esco-
llida per una xarxa neuronal que el millori. Buscar el
tipus de xarxa més adient per dur a terme aquest ti-
pus de feina, i un cop escollit, dissenyar i entrenar en
el mateix entorn que en el punt anterior o en un altre
diferent.

5. Crear entorn 3D: Crear un aplicatiu que permeti aga-
far una imatge del relleu i una imatge satèl·lit i ajuntar-
les en un objecte tridimensional que es mostrarà en un
entorn pel qual ens podrem moure.

1.2 Metodologia
Per tal de dur a terme aquest projecte d’una manera
ordenada i rigorosa es farà ús de la metodologia de Kanban
[1]. Aquesta metodologia és considerada una metodologia
”agile” que ens obliga a portar un control precı́s del que
s’ha fet, el que s’està fent i el que queda per fer mitjançant

la repartició de la feina en tres columnes diferents que
representen aquests estats.

Per tal de poder aplicar-la, es farà ús d’una eina anomenada
Trello [2] i es crearan tres columnes: una pels objectius
complerts, una pels objectius en els quals estem treballant i
una última pels objectius que encara no s’han fet.

Afegidament, es programaran un conjunt de reunions amb
el tutor per poder fer un correcte seguiment i comprovar que
tots els resultats es van assolint degudament.

1.3 Planificació

Per explicar la planificació del treball i alhora, per ajudar a
l’organització d’aquest, s’ha realitzat un diagrama de Gantt
organitzat per setmanes, el qual es pot trobar al dossier.
Aquest permet obtenir una vista general dels objectius
programats, de manera que resulta molt senzill saber quines
feines s’han de fer, quant temps s’ha de dedicar a cada
tasca i, per tant, quan ha d’estar acabada cada una d’elles.

Els apartats als quals dediquem més temps són aquells refe-
rents a la creació de xarxes neuronals, ja que a part del dis-
seny, s’haurà de dedicar temps a entrenar-les i testejar-les.
A més també s’haurà de dedicar una quantitat considerable
de temps al visor 3D, ja que es destinarà molt temps a revi-
sar la documentació de l’eina seleccionada.
Al dossier, es podrà trobar informació més detallada sobre
com s’ha distribuı̈t el temps de cada subobjectiu.

2 ESTAT DE L’ART

Aquest projecte compta amb dues parts importants. La
primera és la generació d’imatges satèl·lit d’alta resolució
a partir d’imatges de baixa resolució, i la segona part és la
generació de terrenys tridimensional a partir de les imatges
prèviament creades.

A continuació es mostrarà l’estat de l’art amb relació als
algoritmes i a les tecnologies existents.

2.1 Algoritmes existents de superresolució

La superresolució és una tècnica molt important en el
món de la visió per computador i s’utilitza principalment
en el món mèdic o en el món de la vigilància. Aquesta
consisteix en, a partir d’una imatge amb soroll o molt
pixelada, millorar la seva resolució, ja sigui suavitzant-la,
editant els valors dels pı́xels o fins i tot afegint-n’hi de nous.

Una de les estructures de xarxa més usada és la UNet.
Aquesta és una xarxa neuronal del tipus convolucional i es
fa servir principalment per la segmentació d’imatges, és a
dir, per poder diferenciar diferents elements dins d’una sola
imatge. No obstant això, també pot ser usada per realitzar
superresolució d’imatges modificant una mica la seva arqui-
tectura, com es pot observar en els casos següents:



Gerard Martı́nez Espelleta: Visualització, creació i millora de terrenys 3D 3

2.1.1 RUNet

Es tracta d’una implantació d’una UNet, però afegint-hi su-
mes després de cada ”block”de la xarxa, creant aixı́ una es-
tructura de residual blocks [3]. Aquestes sumes permeten a
la xarxa aprendre estructures més complexes.

2.1.2 Dense-UNet

La Dense-UNet [4] combina les caracterı́stiques de la UNet
i de la Dense-Net. És a dir que cada block no només rep
informació del block anterior sinó de tots els blocks que l’-
han precedit. Això ajuda a combatre la pèrdua d’informació
causada per les capes de ”downsampling”que incorpora la
UNet.

Fig. 1: Estructura d’una connexió densa
(font:https://towardsdatascience.com/review-densenet-
image-classification-b6631a8ef803)

2.1.3 SRGAN

Una altra estructura de xarxa molt utilitzada en aquest con-
text i que ha anat guanyant popularitat durant els últims
anys és la de les xarxes adversàries generatives, també cone-
gudes com a GAN.
Aquesta estructura consta de dues xarxes:

• Una xarxa generativa encarregada de generar les
imatges en superresolució

• Una xarxa discriminativa encarregada de valorar si
la imatge creada per la xarxa anterior és correcta o no.

Aquestes dues xarxes competeixen l’una contra l’altra de
manera que només pot guanyar una de les dues (el guany
d’una és el “loss” de l’altra). D’aquesta manera la xarxa no
s’entrena per millorar contra ella mateixa, sinó que ho fa
amb la intenció d’enganyar al discriminador. És per això
que els resultats són molt sovint capaços d’enganyar fins i
tot a un humà.

La SRGAN [5] és un tipus de GAN utilitzada per a millorar
la resolució d’imatges. Aquesta agafa una imatge en bai-
xa resolució i mitjançant l’agregació de nous pı́xels, intenta
millorar la qualitat d’aquesta.

2.2 Visors de relleu existents
Per altra banda, a l’hora de realitzar el visor 3D, hem pogut
observar que també existeixen entorns que realitzen les fun-
cions que nosaltres volem desenvolupar, tot i que tenen les
limitacions anteriorment mencionades en la introducció.

Fig. 2: Estructura d’una GAN

2.2.1 Google Maps

Google Maps és un servei web de visió de mapes oferit per
Google que ofereix imatge per satèl·lit, visió aèria, visió
de carrer, imatges 360º, indicacions per viatjar juntament
amb l’estat del trànsit i horaris de transport públic i fins i
tot imatges dels interiors d’alguns edificis. És usada per
més d’un bilió de persones d’arreu del món cada més i ha
estat desenvolupada en javascript i crides AJAX (la part del
client)

2.2.2 Google Earth

Google Earth és un altre servei de visió de mapes que su-
perposa les imatges i el relleu sobre un globus terraqüi, ofe-
rint aixı́ una sensació més realista. Aquesta plataforma té
imatges del 98% del globus terraqüi, a més de contenir dos
globus més; un de la Lluna i l’altre de Mart. També compta
amb un visor d’estrelles i un simulador de vol que et permet
volar per terreny realista i ubicacions reals. A part, també
inclou guies que et permeten visitar llocs turı́stics o monu-
ments sense sortir de casa.

Fig. 3: Visor de mapes Google Earth

2.2.3 Unity

Unity és un motor de videojoc multiplataforma creat per
Unity Technologies. Està disponible com a plataforma de
desenvolupament per a Microsoft Windows, OS X, Linux.
La plataforma de desenvolupament té suport de compilació
amb diferents tipus de plataformes com per exemple An-
droid, Windows, Linux o aplicacions web.

2.2.4 Unreal Engine

Unreal Engine és un motor de videojoc d’ordinador i conso-
les creats per l’empresa Epic Games. Està escrit en C++, la
qual cosa permet un alt grau de portabilitat i ofereix diverses
eines addicionals de gran ajuda per a dissenyadors i artistes.



4 EE/UAB TFG INFORMÀTICA: Visualització, creació i millora de terrenys 3D

Afegidament, també té suport de compilació per a diferents
plataformes igual que l’entorn anteriorment mencionat.

2.2.5 Godot

Godot Engine és un motor gràfic de desenvolupament de vi-
deojocs, multiplataforma, gratuı̈t i de codi obert, distribuı̈t
sota la llicència MIT. Permet desenvolupar videojocs en 2D
i en 3D mitjançant un sistema jeràrquic de nodes i escenes, i
inclou les eines necessàries per al desenvolupament de ma-
nera centralitzada i visual, seguint la mateixa lı́nia que altres
motors gràfics com Unity o Unreal Engine.

2.2.6 Three.js

Three.js és una biblioteca escrita en JavaScript per a crear
i mostrar gràfics animats en 3D en un navegador web i
pot ser usada en conjunció amb elements HTML5, SVG o
WebGL. El codi font és lliure i està emmagatzemat en un
repositori de GitHub.

A continuació podem veure una taula comparativa dels dife-
rents entorns de desenvolupament anteriorment mencionats:

TAULA 1: COMPARACIÓ DELS DIFERENTS ENTORNS
Motor Unity Unreal Engine Godot Three jsCaracterı́stica

Codi obert No Si Si Si
Llenguatge C# C++ C# Javascript
Visor Aplicació Aplicació Aplicació Navegador

3 DESENVOLUPAMENT DEL TREBALL

3.1 Obtenció de dades
El primer pas per tal de dur a terme el projecte és una bona
elecció de la font que utilitzarem per aconseguir les imat-
ges. És necessari trobar una font que no només ens ofereixi
imatges satèl·lit, sinó d’on també es puguin aconseguir da-
des del relleu i imatges amb una major qualitat per poder
entrenar correctament la xarxa de superresolució. Un cop
feta la recerca, s’han trobat les següents fonts d’on és pos-
sible descarregar les dades requerides:

3.1.1 Sentinel2

Sentinel2 [6] és una missió d’observació del grup
Copérnico. Aquesta compta amb dos satèl·lits que per-
meten la captura d’imatges multiespectrals (de 13 bandes),
d’infrarojos i de l’espectre electromagnètic. Afegidament,
compta amb una API bastant senzilla d’utilitzar i que ofe-
reix resultats amb un molt baix temps de resposta. Malgrat
això, s’ha decidit no fer ús dels serveis que ens ofereix Sen-
tinel, ja que l’API que s’utilitza per demanar les imatges és
de pagament i es prefereix buscar alguna plataforma gra-
tuı̈ta.

3.1.2 NASA

La NASA [7] és l’agència d’exploració espacial dels Estats
Units, i permet fer ús de la seva API de web map service
d’una manera gratuı̈ta amb un simple registre. Tot i que
amb aquesta API es poden obtenir imatges de tot el globus i

de forma gratuı̈ta, es pot notar com les imatges rebudes són
d’una qualitat considerablement menor que les que es podi-
en obtenir amb el satèl·lit Sentinel. A més, és bastant casu-
al que aquestes continguin núvols que evitin que es pugui
veure la superfı́cie correctament. Finalment, es va descartar
aquesta font perquè a part de tenir imatges de no massa bo-
na qualitat, el temps de resposta era superior a 10 segons, la
qual cosa perjudicaria l’experiència de l’usuari que utilitzés
el visor 3d.

3.1.3 Google Earth

Google Earth [8] es un visor en lı́nia de mapes en 3d. La
seva API permet obtenir dades del relleu d’un punt només
indicant-hi les coordenades. Aquesta API és gratuı̈ta i
fàcilment accessible mitjançant un compte de Google. Tan-
mateix, aquesta plataforma va ser descartada quan es va de-
cidir que es faria ús de mapes d’altura per calcular el relleu.

3.1.4 IGN

L’Institut Nacional de Geografia [9], és una entitat pública
encarregada d’investigar i organitzar les dades geogràfiques
del paı́s. Aquest compta amb una API gratuı̈ta que permet
obtenir imatges satèl·lit d’una manera ràpida i senzilla. Tot
i això, no s’ha fet ús d’aquesta API, ja que no oferia dades
sobre el relleu del territori.

3.1.5 ICGC

L’Institut Cartogràfic i Geològic de Catalunya [10] és
també una entitat pública encarregada d’investigar i
emmagatzemar dades geogràfiques, però en aquest cas,
dades exclusivament del territori català. Aquesta API
també ofereix l’opció de descarregar mapes d’altures on
es veu fàcilment el relleu del terreny o imatges de major
qualitat capturades des d’un avió. En el cas de les imatges
satèl·lit, aquestes són imatges obtingudes de Sentinel2 i
arreglades per la mateixa organització per eliminar núvols
i millorar-ne la qualitat. És per aquesta sèrie de motius
que s’ha decidit fer ús d’aquesta font d’imatges pel projecte.

Un cop escollida la font (i ja que la nostra aplicació ne-
cessita moltes imatges per funcionar de manera correcta),
s’ha creat un script que permet descarregar-les de manera
automàtica només passant-li les coordenades desitjades.

Aquest està escrit amb python i compta amb dues funcions
principals:

1. Convertidor de sistema de coordenades: L’API de
ICGC fa ús d’un sistema de coordenades anomenat
’EPSG:25831’, mentre que normalment en aplicacions
com Google Maps es fa ús d’un altre sistema anomenat
’EPSG:4326’. Per tant, per poder introduir les coorde-
nades desitjades d’una manera més còmoda, aquesta
funció converteix les dades d’un sistema a l’altre.

2. Obtenció de les imatges: Un cop obtingudes les coor-
denades en el sistema desitjat, només s’ha de realitzar
la sol·licitud d’imatge al servidor i emmagatzemar la
resposta d’aquest en cas que no retorni un error.



Gerard Martı́nez Espelleta: Visualització, creació i millora de terrenys 3D 5

A part també es va crear un script de revisió de dataset, el
qual comprovava que les imatges descarregades fossin ade-
quades (mitjançant tècniques com el percentatge de pı́xels
negres o el tamany de la imatge) i en cas que no ho fossin
les eliminava.

3.2 Creació d’algoritmes de superresolució

Per tal de poder dur a terme aquest treball, s’han construı̈t i
entrenat dos models diferents de xarxa neuronal: una UNet i
una GAN. Amb la intenció de complir aquest objectiu, s’ha
fet ús de diferents llibreries de python que ens facilitaven el
treball.
Les més destacades són:

• opencv: És una llibreria de codi obert que ofereix un
gran conjunt d’eines orientades a la visió per compu-
tador. En el nostre cas va ser útil a l’hora de llegir les
imatges i passar-les a la xarxa, ja que abans d’entregar-
les s’havien de modificar els canals d’aquestes.

• pytorch: És un entorn dissenyat per a python que per-
met el disseny, creació i entrenament de xarxes neuro-
nals, aixı́ com la seva posterior avaluació. Ha sigut la
llibreria base a partir de la qual s’han creat ambdues
xarxes.

• numpy: És una llibreria matemàtica compilada en
C++ i dissenyada per a python que ens permet realitzar
operacions a una gran velocitat. Ha sigut important a
l’hora de realitzar certs càlculs i obtenir els resultats de
la xarxa

3.2.1 Creació d’una UNet

Com s’ha mencionat anteriorment, s’ha triat crear una UNet
degut principalment a la seva senzillesa; com que és una
xarxa totalment convolucional, el tamany de la imatge que
sigui introduı̈da, serà exactament igual que el tamany de la
imatge que retorni la xarxa. A més, s’ha pensat que perme-
tria suavitzar els contorns dels pı́xels en les imatges pixela-
des de manera que quedarien més suaus, donant un efecte
de millor resolució.

3.2.1.1 Creació d’un dataset per a la UNet

Una xarxa neuronal necessita moltes imatges per poder ser
entrenada i que doni uns resultats acceptables. És per això
que es va decidir crear un Dataset propi amb imatges d’alta
resolució i de baixa. Per aconseguir això es van utilitzar dos
scripts; un primer que es baixava imatges d’alta qualitat de
Catalunya i un altre que ”netejava”aquest dataset, eliminant
aixı́ imatges en negre (fora de la zona del territori) o arxius
d’errors.

Un cop executats els dos arxius, es va aconseguir un data-
set amb més de 70.000 imatges en alta resolució. El següent
pas va ser disminuir la resolució d’aquestes per simular l’in-
put esperat. Això es va realitzar d’una manera senzilla apro-
fitant l’algoritme de redimensionament d’imatges que uti-
litza la llibreria opencv. Aquesta feia ús de nearest neigh-
bourg com a mètode de selecció de valor de pı́xel a l’hora

de fer una redimensió, per tant, només es va haver de dismi-
nuir la mida de les imatges i després augmentar-la per poder
obtenir una imatge pixelada i amb una baixa qualitat.

3.2.1.2 Disseny de la xarxa

La xarxa consta de tres parts, una part de codificació, una
part intermitja i una part de descodificació. Cada una d’a-
questes parts està formada per una estructura a la qual ano-
menarem Block. Cada Block està format per dues convolu-
cions i dues funcions d’activació de tipus ReLU agrupades
de la següent manera:

Fig. 4: Estructura d’un Block de la UNet

A la part de codificació l’objectiu de la xarxa és extreure
el major nombre de caracterı́stiques que li sigui possible
de la imatge. Per aconseguir aquest objectiu anirà unint
una sèrie de blocks amb operacions de max pooling de 2x2.
Això farà que alhora que el nombre de caracterı́stiques
augmenta, el tamany de la imatge va reduint-se. En el cas
d’aquest treball, la part de codificació compta amb 4 blocks
de profunditat.

La part intermitja només comptarà amb un block, el qual
augmentarà un cop més les caracterı́stiques i passarà les
dades a la part de descodificació.

La part de descodificació, amb el mateix tamany que la
de codificació és l’encarregada de generar la imatge que re-
torna la xarxa. En aquest cas, els blocks estaran units amb
convolucions verticals, o el que és el mateix operacions de
convolució transposades. Aquesta operació permetrà reduir
el nombre de caracterı́stiques, tornant la imatge a la seva
mida original. Afegidament, cada block que formi aques-
ta descodificació, rebrà també les caracterı́stiques que hem
extret a la fase de codificació per poder formar una imatge
final satisfactòria.

3.2.2 Creació d’una GAN

Un cop valorats els resultats obtinguts amb la UNet visibles
a l’apartat Resultats de la superresolució amb UNet es va
observar que per intentar aconseguir uns millors resultats
es podia fer ús d’una Generative Adversative Network o
GAN.

Una GAN [13] és un model de xarxa neuronal capaç de
generar un conjunt de dades de sortida amb les mateixes
qualitats que el conjunt de dades d’entrada. Aquesta
consisteix en dues xarxes neuronals que competeixen l’una



6 EE/UAB TFG INFORMÀTICA: Visualització, creació i millora de terrenys 3D

contra l’altra de manera que només pot guanyar una de les
dues (el gain d’una és el loss de l’altra.

La mecànica principal d’aquest tipus de xarxa és la de
l’entrenament ı̈ndirecte”mitjançant un discriminador (una
altra xarxa capaç d’identificar si un input s’assembla al
resultat esperat), de manera que la xarxa no s’entrena per
treure una imatge en concret, sinó que s’entrena per a
enganyar al discriminador.

3.2.2.1 Creació d’un dataset per a la GAN

Per tal d’entrenar aquesta xarxa, es va crear un dataset
similar al creat per a la UNet amb imatges en alta resolució
i en baixa resolució. Aixı́ i tot, les imatges de sortida
d’aquesta xarxa tenen un tamany diferent de les imatges
d’entrada.
És per aquest motiu, que es va crear un dataset format per
un conjunt d’imatges de 120x120 pı́xels, les quals serien
les imatges entrants i un altre grup d’imatges de 240x240
pı́xels, les quals representarien la sortida òptima de la xarxa.

Aquestes es van obtenir a partir d’una redimensió de les
imatges del dataset original. D’aquesta manera es podia
donar per segur que eren exactament de la mateixa àrea.

3.2.2.2 Disseny de la xarxa

Tal com s’ha comentat una GAN consta de dues parts, un
discriminador i un generador:

3.2.2.2.1 Discriminador

És l’encarregat de decidir si la imatge que se li passa com
a input és una imatge en alta definició o no. Està format per:

Una convolució d’entrada seguida per una Leaky
ReLu: Mitjançant aquestes capes iniciem l’extracció de
caracterı́stiques de la imatge.

Una sèrie de blocks: Els quals extreuen les caracterı́stiques
de la imatge. Cada block està format per una convolució, un
batch normalitzation (que normalitza les dades de sortida
de la convolució) i una funció d’activació Leaky ReLU, tal
i com podem observar a la figura inferior. Dues funcions

Fig. 5: Estructura d’un Block del Discriminador

Lineals: Aquestes són les encarregades de convertir totes
les caracterı́stiques extretes de la imatge a un sol valor que

definirà si la imatge entrant és en alta definició o no.

Una funció sigmoid: Aquesta funció d’activació ens per-
met col·locar el valor obtingut de les funcions lineals dins
de l’interval [0,1]. D’aquesta manera aquesta funció retor-
narà la probabilitat de que la imatge sigui en alta resolució
o no.

3.2.2.2.2 Generador

És la xarxa encarregada de generar imatges que siguin
capaces d’enganyar al discriminador.
Aquesta està formada per:

Una convolució inicial seguida d’una funció ReLU: Uti-
litzada per extreure les caracterı́stiques inicials de la imatge.

Una estructura mitjana: La qual consisteix en un número
de residual Blocks seguit d’una convolució, un batch nor-
malitzation i una suma de la x inicial amb la x resultant al
final de l’estructura. (Fig6)

Fig. 6: Estructura mitjana

Una estructura final d’upsampling: Aquesta estructura
consta d’una convolució, un pixel shuffle (el qual reordena
els pı́xels permetent aixı́ una convolució per subpı́xels) i
una ReLU final. (Fig7)

Fig. 7: Estructura de l’últim block del Generador

Una última convolució: Permet tornar a obtenir 3 canals
de sortida (RGB) com la imatge original.



Gerard Martı́nez Espelleta: Visualització, creació i millora de terrenys 3D 7

3.3 Creació de l’entorn 3D
Per tal de poder fer visibles els resultats obtinguts en
els anteriors apartats, s’ha de comptar amb un entorn
tridimensional on no només puguem veure les imatges del
terreny, sinó també la representació del seu relleu. Per tal
d’aconseguir això, s’ha discutit entre els diferents motors
gràfics que s’han pogut veure a l’estat de l’art.

Tot i que tots eren molt complets i que els que eren mo-
tors de videojocs, ja tenien incloses llibreries per a realit-
zar el càlcul de fı́siques i renderitzats, s’ha optat per a triar
Three.js com a llibreria per al nostre entorn, ja que, a part de
ser una llibreria de codi obert, en ser la seva interfı́cie una
aplicació en lı́nia ofereix una major integració amb la resta
de components que ja han sigut creats en altres llenguatges,
a part de permetre un accés a l’eina molt més senzill i lliure
d’instal·lacions per part de l’usuari final.

3.3.1 Three.js

Three.js és una llibreria de JavaScript que permet crear i
mostrar gràfics i animacions en 3D en un navegador Web.

Per tal que aquest motor funcioni, s’ha de crear un arxiu
HTML que tingui importada la llibreria de Three.js i tots
els arxius que continguin el codi. En el cas de la nostra
aplicació, hem creat sis arxius JavaScript que ajuden a
portar el control de tota la simulació:

3.3.1.1 scene.js

Es tracta de l’arxiu principal del projecte, en aquest es carre-
garà l’escena, juntament amb la càmera, l’skybox i el bucle
de l’animació, el qual és el bucle principal del motor. Des
d’aquı́ es realitzaran les crides a tots els altres arxius.

3.3.1.2 checkload.js

Aquest arxiu conté les funcions que seran usades per sce-
ne.js per comprovar si el terreny que està a punt de trepitjar
l’usuari està carregat o no. En cas que no estigui carregat, es
farà una crida al servidor per obtenir les imatges del terreny
i dibuixar-les. Aquest últim pas el farem mitjançant una ei-
na de JavaScript anomenada promises. Aquesta ens permet
executar una funció sense esperar al seu resultat i, un cop
s’aconsegueixi el resultat, utilitzar-lo. D’aquesta manera la
càrrega de terreny no aturarà el bucle principal de la pàgina
sinó que es durà a terme en segon pla.

3.3.1.3 terrain.js

Aquest arxiu és l’encarregat de dibuixar el terreny en pan-
talla. Compta amb dues funcions principals:

• LoadTerrain: A aquesta funció se li passa una imatge
(una de les imatges inicials) i el seu relleu i ho dibuixa
per pantalla a la posició que se li indiqui.

• LoadTerrainBinary: Aquesta funció rep el valor de
la imatge retornada pel servidor quan li fem una crida
des de l’arxiu checkload.js. Un cop rebuda, la desco-
difica (ja que la imatge ve en hexadecimal) i torna a fer

una crida al servidor per a obtenir el seu relleu. Un cop
aconseguit el relleu, el descodifica i extreu els seus va-
lors per posteriorment afegir-los a la imatge i dibuixar
el terreny com un pla tridimensional a la posició que
se li indica.

Tal com hem comentat ambdues funcions anteriors operen
amb una imatge del relleu i amb una del terreny.

Fig. 8: Imatge del terreny i imatge del relleu

Per tal d’extreure el relleu de la imatge fem ús d’una funció
la qual analitza el valor de cada pı́xel de la nostra imatge de
relleu i l’emmagatzema en una llista. Posteriorment recor-
re els valors dels vèrtexs del nostre pla on tenim la imatge
satèl·lit i va assignant els valors de les altures d’aquests a
partir de les dades emmagatzemades a la llista.

Fig. 9: Exemple de terreny amb el relleu generat

3.3.1.4 memorysaver.js

Aquest arxiu és l’encarregat de gestionar que el nostre
visor 3D no ocupi més memòria de la necessària, ja que si
fos aixı́ aquest es tornaria lent i complicat de fer servir.
Això ho aconsegueix mitjançant una funció que és cridada
cada cop que es genera terreny nou.

Aquesta comprova si les caselles que s’han generat anteri-
orment es troben encara dintre del rang de visió de l’usuari,
i en cas que no sigui aixı́ les elimina i actualitza les variables
de posició.

3.3.1.5 automate.js

És l’arxiu encarregat de carregar les imatges inicials au-
tomàticament. Aquest compta amb una funció que carre-
ga un cert nombre d’imatges (passat com a paràmetre), aixı́
com el seu relleu i ho afegeix en pantalla automàticament.



8 EE/UAB TFG INFORMÀTICA: Visualització, creació i millora de terrenys 3D

3.3.1.6 interface.js

Aquest fitxer controla el que es visualitza a la interfı́cie web.
Aquest compta amb tres estats:
Un estat inicial
En aquest estat l’usuari acaba d’entrar a la pàgina i, per tant,
encara s’han de carregar els components i les imatges inici-
als. Per evitar que aquest s’hagi de quedar esperant davant
d’una pantalla negra, es mostra una pantalla de càrrega en
la qual es mostra el nom de la web, aixı́ com una icona i un
sı́mbol de càrrega.

Fig. 10: Pantalla de càrrega

Aquesta pantalla es mantindrà fins que totes les imatges
inicials hagin sigut processades i es comencin a afegir a
l’escena.

Un segon estat
Un cop el relleu ha estat carregat i visible per pantalla,
aquest arxiu mostrarà a l’usuari la vista d’aquest relleu,
però hi superposarà una finestra amb les instruccions per
desplaçar-se per la pàgina. Un cop l’usuari les hagi llegit,

Fig. 11: Instruccions superposades a la vista del relleu

podrà prémer la creu que es troba a la cantonada superior
dreta de la finestra. En pressionar-la, passarem al tercer es-
tat, on desapareixerà la finestra i l’usuari ja es podrà moure
lliurement per l’entorn.

3.3.2 Estructura fı́sica de l’entorn

Per poder rebre les dades tractades, l’aplicació web necessi-
ta connectar amb un servidor per tal que aquest faci les ope-
racions necessàries. Per aquest motiu, s’ha creat la següent
estructura: Tal com podem veure a la figura 13, quan l’arxiu
de càrrega de terreny noti que necessita dades noves, con-
tactarà amb l’arxiu connectServer.php mitjançant una crida
ası́ncrona d’AJAX. Quan aquest rebi la crida amb les dades

necessàries per obtenir les imatges, es connectarà al servi-
dor server.py mitjançat l’ús de sockets, i aquest, un cop rebi
la connexió, demanarà les imatges mitjançant un HTTPRe-
quest al servidor del ICGC. Un cop hagi obtingut les imat-
ges, les tractarà si aixı́ s’escau i les retornarà a l’arxiu PHP
mitjançant sockets, el qual respondrà la crida AJAX retor-
nant les dades de la imatge desitjada en hexadecimal al nos-
tre arxiu de càrrega de terreny, el qual haurà de descodificar
la imatge per poder-la afegir com a textura al nostre relleu.

3.3.3 Processament de les dades

Quan al servidor li arriba una ordre de càrrega d’imatge,
a aquest se li indica si cal processar-la o no. En cas posi-
tiu, un cop ha obtingut la imatge del servidor del ICGC, la
descodifica i la divideix en 36 subimatges. A continuació
carrega la xarxa neuronal prèviament entrenada i aplica el
tractament de les imatges passant-les per la xarxa. Un cop
acabat el procés les imatges són novament ajuntades i envi-
ades a l’arxiu .php mitjançant sockets tal com s’ha explicat
en l’apartat anterior.

4 RESULTATS ASSOLITS

4.1 Mètriques d’avaluació
Per tal de poder avaluar numèricament els resultats obtin-
guts per les nostres xarxes, hem decidit fer ús de dues
mètriques usades normalment en altres casos on s’han de
comparar dues imatges. Aquestes són el PSNR i el SSMI.

4.1.1 PSNR

El PSNR o “Peak signal to Noise Ratio” és una mètrica que
indica la relació màxima entre la màxima energia possible
d’un senyal i el soroll que l’afecta.
En aquest cas, la mesura expressarà el “soroll” que s’ha
produı̈t durant el procés de superresolució de la imatge.

El PSNR es pot definir com:

PSNR = 10 ∗ log10
(
MAX2

I

MSE

)
Ón MAXI representa el valor màxim que pot prendre un
pı́xel a la imatge.
En el nostre cas, com que les imatges estan en RGB, hau-
rem de calcular el MSE com la mitjana dels MSEs dels tres
canals (R,G,B).

4.1.2 SSIM

L’SSIM és una mètrica que indica la similitud entre dues
imatges. La principal diferència amb la mètrica anterior
és que en aquest cas, l’SSIM no analitza la similitud en-
tre pı́xels, sinó que analitza la informació estructural de les
imatges, és a dir, les relacions que els pı́xels d’una mateixa
imatge tenen entre ells. L’SSIM es pot definir com:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)

Ón µx representa la mitjana de x, µy la mitjana de y, σx la
variància de x, σy la variància de y, σxy la covariància de x



Gerard Martı́nez Espelleta: Visualització, creació i millora de terrenys 3D 9

Fig. 12: Resultats obtinguts amb la UNet

Fig. 13: Estructura fı́sica de l’entorn

i y i finalment c1 i c2 són dues variables per estabilitzar la
divisió quan el denominador és petit.

4.2 Resultats de la superresolució amb UNet
Un cop creada la xarxa, aquesta va ser entrenada amb el
nostre dataset, fent servir un 70% d’entrenament i un 30%
de validació. Va ser executada en un jupyter notebook a
la web de Kaggle [12], ja que aquesta plataforma oferia
40 hores gratuı̈tes d’accés a les seves GPUs NVidia K80 a
diferència d’altres plataformes com Google o Amazon que
no permetien grans capacitats de còmput o t’obligaven a
pagar pel servei.

Un cop entrenada la xarxa, vam poder calcular el bon fun-
cionament d’aquesta mitjançant les mètriques anteriors.
Per aquesta xarxa, vam obtenir un PSNR mitjà de 18,57 dB.
Aquest és un valor molt baix, ja que normalment el valor en
una imatge com les que hem utilitzat en la nostra xarxa es
mouen entre els 40-50 dB.
Per altra banda, hem obtingut un SSIM mitjà de 0,21. En
aquest cas el valor també és força baix, ja que es sol moure
dintre del rang [0,1]. No obstant això, si apliquem aques-
tes mateixes mètriques entre la imatge original i el ground-
truth, podem veure com obtenim un PSNR de 17.35 dB i un
SSIM de 0,18. És a dir, que tot i que els resultats obtinguts
per la xarxa no han sigut els millors resultats esperables,
sı́ que han millorat la imatge inicial significativament, fent
que s’assemblés més a la imatge esperada que a l’original,
tal com es pot veure a la figura 12.

4.3 Resultats de la superresolució amb la
GAN

Per culpa del gran tamany d’aquesta xarxa, aquesta no va
poder ser entrenada a Kaggle com es va fer amb la UNet, ja
que aquesta plataforma només permetia executar un arxiu

durant un màxim de 9 hores seguides. Per aquest motiu es
va haver de migrar la xarxa a Azure, un entorn de Microsoft
que ens oferia una NVIDIA Tesla K80 per 0,55C l’hora.
A l’hora d’entrenar-la, vam decidir reduir la mida de les
imatges i poder augmentar aixı́ el tamany dels batches,
arribant a entrenar la xarxa amb un 70% del dataset i amb
batches de 15 imatges.
Un cop entrenada, vam aplicar les mètriques anteriors i
vam obtenir els següents resultats:
Vam obtenir un PSNR mitjà de 60,43 dB, el qual és un
valor molt més alt que el que es va obtenir amb la UNet.
No obstant, si calculem el PSNR de la imatge original amb
el groundtruth podem observar com aquest és de 65,08 dB,
és a dir, que la nostra xarxa no ha pogut aplicar la millora
desitjada a la imatge.
Per altra banda, si ens fixem en el SSIM podem observar
com es repeteixen els resultats, obtenint un 0,17 amb les
sortides de la xarxa i un 0,43 amb les imatges originals.

Aquest empitjorament és degut segurament a una falta d’en-
trenament de la xarxa, ja que aquesta estava dissenyada per
ser entrenada durant més de 100 èpoques d’entrenament i
durant aquest treball només se’n van poder realitzar 15.

4.4 Resultats del visor 3D
Per tal de poder avaluar els resultats del visor 3D, prendrem
com a mètrica el temps de resposta de les imatges i el
percentatge d’error que ens ofereix el nostre servidor en
demanar una imatge al ICGC.

Per tal d’avaluar-ho s’han pres 6 mostres de la càrrega ini-
cial de 25 imatges de la pàgina i s’han anotat els resultats a
la següent taula:

Temps de càrrega
(s) 23 11 19 12 17 10

Nº d’imatges faltants 0 1 0 0 0 2

Com podem observar, el nostre visor triga una mitjana de
15,5 segons en iniciar, però, tal com es pot observar a la
taula, com més temps porti el servidor encès, més petit serà
aquest valor.

Per altra banda, podem observar com el visor té una mit-
jana de 0,5 caselles d’error per càrrega (amb 25 imatges



10 EE/UAB TFG INFORMÀTICA: Visualització, creació i millora de terrenys 3D

Fig. 14: Resultats obtinguts amb la SRGAN

per càrrega), no obstant aquest valor pot variar depenent de
l’estabilitat de la xarxa o de l’estat del servidor del ICGC.

5 CONCLUSIONS

Basant-nos en els resultats obtinguts al final d’aquest tre-
ball, podem notar que, encara que finalment no s’hagin po-
gut assolir tots els objectius que s’havien proposat a l’inici
d’aquest treball, sı́ que s’ha assolit l’objectiu principal que
era el de crear un visor 3D que ens permetés explorar el re-
lleu de tota l’àrea de Catalunya. Afegidament també s’han
pogut crear dos models de xarxa neuronal, la primera de les
quals ha millorat les imatges originals, suavitzant-les i fent
més visibles petits detalls que en un principi haurien pas-
sat desapercebuts.La segona xarxa, en canvi, ha estat falta
d’entrenament, el que ha causat que no donés els resultats
esperats. No obstant hem pogut veure com l’estructura de
les GAN és molt potent i, ja que s’entrena a ella mateixa,
pot ser capaç de generar molt bons resultats.
Finalment, s’ha pogut demostrar que aquest tipus de tecno-
logia és capaç de resoldre problemes tan complexos com la
millora d’imatges i que pot ser usada en el nostre dia a dia,
des de la millora d’imatges aèries per a grans companyies
fins a la restauració de pel·lı́cules antigues.

REFERÈNCIES

[1] Laia Gilibets. (2020, November 11). Metodo-
logı́a Kanban. Retrieved November 11, 2021,
from: https://www.iebschool.com/blog/metodologia-
kanban-agile-scrum/

[2] Trello. (2019). Retrieved November 11, 2021, from
Trello.com website: https://trello.com/

[3] Hu, X., Naiel, M., Wong, A., Lamm, M., & Fieguth, P.
(n.d.). RUNet: A Robust UNet Architecture for Image
Super-Resolution.

[4] Lu, Z., & Chen, Y. (n.d.). Dense U-net for single ima-
ge super-resolution with shuffle pooling layer.

[5] Ledig, C., Theis, L., Huszár, F., Caballero, J., Cun-
ningham, A., Acosta, A., . . . Shi Twitter, W. (n.d.).
Photo-Realistic Single Image Super-Resolution Using
a Generative Adversarial Network.

[6] Sentinel. (n.d.). SentinelHub API. Sentinel-
Hub API. Retrieved September 24, 2021, from
https://www.sentinel-hub.com/develop/api/

[7] NASA. (n.d.). NASA Open APIs. NASA APIs. Retri-
eved September 24, 2021, from https://api.nasa.gov/

[8] Google. (n.d.). Google Earth Engine —. Google
Developers. Retrieved September 24, 2021, from
https://developers.google.com/earth-engine

[9] Instituto Geográfico Nacional. Re-
trieved November 14, 2021, from:
https://www.ign.es/web/ign/portal/ide-area-nodo-
ide-ign

[10] Institut Cartogràfic i Geològic de Catalunya. (2014).
Retrieved October 2, 2021, from Icgc.cat website:
https://www.icgc.cat/

[11] PyTorch. (2021). Retrieved December 19, 2021, from
Pytorch.org website: https://pytorch.org/

[12] Kaggle Code. (2021). Retrieved Decem-
ber 19, 2021, from Kaggle.com website:
https://www.kaggle.com/gerymaligne/xarxargb

[13] Wikipedia Contributors. Generative adversarial
network. Retrieved January 23, 2022, from website:
https://en.wikipedia.org/wiki/Generative adversarial network

[14] Unity Technologies. (2020). Unity - Unity. Re-
trieved October 9, 2021, from Unity website:
https://unity.com/es

[15] Unreal Engine — The most powerful real-time 3D
creation tool. (2019). Retrieved October 9, 2021, from
website: https://www.unrealengine.com

[16] Godot Engine. (2021). Free and open source 2D and
3D game engine. Retrieved October 9, 2021, from Go-
dot Engine website: https://godotengine.org/

[17] Three.js – JavaScript 3D Library. (2021). Retrie-
ved October 9, 2021, from Threejs.org website:
https://threejs.org/


