UrnB

»¥ Diposit digital
D &, de documents
Universitat Autdnoma 1) delaUAB

de Barcelona

This is the published version of the bachelor thesis:

Navarro Lorente, Laura; César Galobardes, Eduardo, dir. Desenvolupament de
Micro-kernels per ’analisi i sintonitzacié de rendiment sobre accel - leradores
(GPGPUs). 2021. (958 Enginyeria Informatica)

This version is available at https://ddd.uab.cat/record /257812
under the terms of the license


https://ddd.uab.cat/record/257812

TFG EN ENGINYERIA INFORMATICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTONOMA DE BARCELONA (UAB)

Desenvolupament de Micro-kernels per
I'analisi i sintonitzacidé de rendiment sobre
accel-leradores (GPGPUSs)

Laura Navarro Lorente

Resum- Aquest article presenta I'estudi i paral-lelitzacié en acceleradores GPU de patrons basats en els
problemes computacionals més habitualment utilitzats en el marc de la Computacié d’Alt Rendiment. La
paral-lelitzacié en GPU s’ha basat en I'aplicacié de diferents técniques d’optimitzacié mitjangant OpenACC i
CUDA, seguit d’'un analisi de I'impacte que aquestes técniques provoquen en el rendiment obtingut per diverses
mides de problema. També s’ha estudiat la importancia que prenen les transferéncies de dades entre Device
i Host a I'hora d’aconseguir acceleracions elevades. Per ultim, s’ha realitzat una comparacié dels resultats
de rendiment obtinguts entre CUDA i OpenACC, amb el que s’ha pogut concloure que tot i que OpenACC és
molt més rapid i senzill d'implementar té un clar desavantatge envers el rendiment obtingut amb CUDA en la
major part dels casos; aquest queda accentuat quan es tenen en compte els temps de transferéncia, que en
OpenACC s6n molt més lents.

Paraules clau— Acceleracié, Comparativa, Computacié d’alt rendiment, CUDA, GPU, OpenACC, Pa-
ral-lelisme, Patré computacional

Abstract— This article presents the study of patterns based on computational problems most commonly
used within High Performance Computing and their parallelization in GPU accelerators. Different optimization
techniques via OpenACC and CUDA have been used for GPU parallelization, followed by an analysis of the
impact these techniques caused on the performance obtained on several problem sizes. The importance of data
transfers between Device and Host for achieving high speedups has also been studied. Finally, a performance
comparison between CUDA and OpenACC has been made based on the obtained results, by which has been
concluded that OpenACC, although, is much faster and easier to be implemented than CUDA, it has a clear
disadvantage on performance compared to CUDA in most cases; this issue is accentuated when data transfer

times are taken into account, which in OpenACC are much slower.

Keywords—
Speed-Up

Comparison, CUDA, GPU, High Performance Computing, Kernels, OpenACC, Parallelism,

1 INTRODUCCIO

L High-Performance Computing (HPC) [1] té com
E a principal objectiu permetre 1’execuci6 d’aplicaci-
ons complexes i el processament de grans quantitats
de dades de forma més rapida mitjancant cldsters de proces-
sat, supercomputadores, i sistemes heterogenis de computa-
ci6 paral-lela a partir d’acceleradores. Per tant, solucionar
i aconseguir un alt rendiment de problemes que sén exi-
gents computacionalment utilitzant acceleradores GPGPUs
(General-Purpose GPU) [2] és una tasca complexa que ha
evolucionat molt al llarg dels dltims anys.

Aquest treball de final d’estudis forma part d’un projecte
més gran i ambicids en el que es vol automatitzar 1’analisi
de rendiment de possibles paral-lelitzacions realitzades en
acceleradores. Aquest projecte requereix com a entrada un
conjunt de dades sobre execucions en aquestes plataformes

e E-mail de contacte: [aura.navarrolo@autonoma.cat

e Menci6 realitzada: Enginyeria de Computadors

o Treball tutoritzat per: Eduardo César-Galobardes (DACSO)
o Curs 2021/22

i per aquest motiu, és necessari identificar una serie de pa-
trons que son representatius de 1’espai de programes que
actualment s’executen en GPUs. Aixi, la principal aporta-
ci6 d’aquest treball sera realitzar paral-lelitzacions amb sis-
temes heterogenis de CPU/GPU a través d’OpenACC [3] i
CUDA (Compute Unified Device Architecture) [4] de NVI-
DIA [5] del codi que engloba aquest conjunt de patrons.

Per aquest proposit, es dura a terme un analisi del ren-
diment del codi d’un conjunt de micro-kernels que ja ha
tingut una primera implementacié amb OpenACC [6] i pro-
posar possibles millores. OpenACC ens ajuda a simplifi-
car la paral-lelitzacié de programes o aplicacions de manera
senzilla gracies a la seva aplicacid a alt nivell mitjancant
directives de compilacié. Per altra banda, CUDA proporci-
ona una aplicacié més complexa perd que ens permet tenir
més control sobre les parts que es volen paral-lelitzar. A
diferencia d’OpenACC, el codi per a CUDA que s’executa
al host pot decidir quina informaci6 enviar a la memoria de
la GPU (memoria compartida), i llanca els kernels o fun-
cions que s’executen al dispositiu. A més, CUDA permet
tenir més control sobre la quantitat de threads que es volen

Febrer de 2022, Escola d’Enginyeria (UAB)



2 EE/UAB TFG INFORMATICA: Desenvolupament de Micro-kernels per sintonitzaci6 de rendiment sobre accel-leradores

utilitzar per executar cada part del codi, aconseguint aixi un
comportament més dinamic.

Aquest Treball de Final de Grau (TFG) esta relacionat
amb un projecte de recerca que es porta a terme pel Departa-
ment d’ Arquitectura de Computadors i Sistemes Operatius
(DACSO) [7] de la UAB anomenat “Computacié Avancada
per als Reptes de la sOcietat digital.” (CAROL) [8][9]. Una
part d’aquest projecte es desenvolupa al voltant de la imple-
mentacié i I’entrenament de models generats amb tecniques
de Maching Learning [10] per realitzar sintonitzacié de ren-
diment d’aplicacions paral-leles [11]. D’aquesta manera, el
model ajudara a la presa de decisions de la millor estrategia
a seguir a I’hora d’optimitzar un algorisme complet o de
forma parcial.

Per tal d’aconseguir aquest objectiu, és necessari tenir un
dataset [12] el més complert possible, amb diferents tipus
de problemes de rendiment, per tal de poder entrenar el mo-
del en el ventall més ample possible de regions de codi pa-
ral-leles (kernels) més freqiientment utilitzats.

A través d’aquest TFG es pretén fer la comparativa dels
rendiments obtinguts en les implementacions serie, Ope-
nACC i CUDA per tal d’ajudar al model automatic en la
presa d’aquest tipus de decisions de rendiment.

La resta d’aquest document esta organitzat de la segiient
manera. La Secci6 2 presenta els objectius proposats per
aquest projecte. A continuaci6, a la Seccié 3 s’explica I’es-
tat de I’art del camp de la paral-lelitzaci6 CUDA envers
OpenACC. Seguidament, a la Secci6 4 es descriu la meto-
dologia, és a dir, els passos seguits per a portar a terme els
objectius. La Secci6 5 mostra el desenvolupament i I’expe-
rimentacio realitzada. Tot seguit, la Seccid 6 exposa els re-
sultats obtinguts en les experimentacions on juntament amb
la Seccid 7 es raonen les conclusions extretes dels resultats
i linies futures.

2 OBJECTIUS

A continuaci6 s’exposen els objectius d’aquest projecte:

1. Analisi del conjunt de kernels actual i recerca de possi-
bles nous kernels amb diferents problemes de rendiment.

2. Analisi del rendiment obtingut en la codificaci6 en serie
dels kernels.

3. Revisi6 de la paral-lelitzacié proporcionada en Ope-
nACC i recerca de noves maneres d’implementar-ho per
tal d’optimitzar el codi, acompanyat de la respectiva ex-
perimentacio.

4. Implementaci6 de la paral-lelitzacié en CUDA de les re-
gions de codi paral-leles (kernels), acompanyada de la
respectiva experimentacio.

5. Exposicié dels resultats obtinguts a través d’un analisi i
una comparativa de les implementacions realitzades. Ex-
treure’n conclusions respecte sota quines condicions és
millor utilitzar OpenACC o CUDA.

3 ESTAT DE LART

Durant I’tltima decada, I’acceleracié d’aplicacions ha anat
evolucionant i s’ha cercat noves maneres de programacid
per aconseguir-ho. S’ha investigat 1’is de la programa-
ci6 per GPU per tal d’obtenir un rendiment a gran esca-
la en aplicacions complexes de diverses tipologies com in-
tel-ligéncia artificial o computacié d’alt rendiment.
D’aquesta manera, CUDA compta amb un conjunt ampli
de llibreries accelerades que permeten accelerar de manera

eficient aplicacions d’alt comput matematic.

Aix{ doncs, una alternativa a CUDA és I’OpenACC que
és una solucio senzilla per aprofitar la computacié en GPU,
ja que es requereixen molt pocs canvis de codi per a habi-
litar el suport per a les acceleradores. Tot i que fins ara era
necessari utilitzar el compilador pgi, NVIDIA I’ha reano-
menat com a NVIDIA HPC Compiler (nvc) [13], eliminant
la 1liceéncia necessaria en pgi i mantenint la compatibilitat
d’execuci6 de codi juntament amb directives OpenMP, MPI
i CUDA.

Hi ha estudis que conclouen que la diferencia de rendi-
ment entre les dues opcions és degut al fet que, amb Ope-
nACC no sempre és possible extreure’n tot el rendiment
possible a1’aplicaci6 donat que té limitacions a la seva espe-
cificaci6 que dificulten 1’ds complet dels recursos hardware
[14][15]. Per altra banda, existeixen estudis que adjudiquen
aquesta diferencia en el rendiment al compilador (fins ara
pgi) a conseqiiencia d’haver de traduir els kernels d’Ope-
nACC a codi objecte, aix0 no és necessari amb CUDA.[16].

No obstant, en altres estudis es dictamina que la trans-
feréncia de dades en OpenACC tendeix a ser més rapida
que en CUDA, pero alhora requereix fer més copies de da-
des (memcpy) fent que el temps de transferéncia acabi sent
més lent en OpenACC que en CUDA [15].

4 METODOLOGIA

La metodologia escollida per aconseguir els objectius d’a-
quest projecte ha estat la metodologia Agile [17]. Aques-
ta és del tipus Rapid Application Development (RAD) que
tracta d’aplicar models de millora de forma continuada a
través de la planificacio, del desenvolupament, la compro-
vaci6 i la millora d’aquestes tasques modificant aquells fac-
tors que no han estat realitzats correctament. Gracies a
aquesta metodologia es poden prendre millors decisions en
quant a la planificaci6 i organitzacié de les tasques i soluci-
onar els problemes que es presenten durant el desenvolupa-
ment del projecte.

Per tal d’aplicar aquesta metodologia al projecte, s’han
realitzat reunions setmanals de seguiment on s’han presen-
tat els avencos obtinguts en quant a la paral-lelitzacié del
conjunt de kernels, aixi com els resultats aconseguits. A
més, en aquestes reunions s’ha decidit si la versié presenta-
da era prou satisfactoria, en cas contrari s’han discutit pos-
sibles estrategies de millora.

Degut als atacs informatics soferts durant el mes d’octu-
bre 2021 a la UAB, el sistema de virtualitzacid, on estan
allotjats la major part dels serveis que proporciona la uni-
versitat, es va veure afectat. Per aquest motiu, no es van
poder utilitzar els serveis i aplicatius de la universitat du-
rant un llarg periode de temps. AixO va suposar un gran
inconvenient per la realitzacié d’aquest Treball de Final de
Grau donat que per al seu desenvolupament es requereix
fer us dels recursos proporcionats per DACSO, com sé6n els
clisters amb GPGPU instal-lada.

D’aquesta manera, es va haver de modificar la planifica-
ci6 proposada inicialment donat que es va veure greument
afectada, implicant també la modificacié de I’ordre d’exe-
cucio de les tasques i objectius.

Aquest projecte va comencar examinant el dataset actu-
al. Seguidament, es va realitzar un profiling de la imple-
mentaci6 en serie per tal de poder localitzar aquelles parts
del codi que provocaven un cost computacional més alt i



LAURA NAVARRO LORENTE: DESENVOLUPAMENT DE MICRO-KERNELS PER SINTONITZACIO DE RENDIMENT SOBRE ACCEL-LERADORES 3

dedicar-hi més esforcos a ’hora de paral-lelitzar els micro-
kernels. Aixi, es va aconseguir extreure el major rendiment
possible.

A conseqiiencia de les incidéncies sofertes ja esmentades
i a la falta de previsié per restablir els serveis proporcionats
per la universitat, es va decidir aprofitar el temps d’espera
fins a la restauracié dels servidors del Departament inclo-
ent una tasca a la planificacié. Aquesta va ser desenvolu-
par un motor d’execuci6 que permetés gestionar de manera
més senzilla i eficient I’execucio del conjunt de kernels amb
les diverses aproximacions de paral-lelitzacid (serie, Ope-
nACC, CUDA).

Per a realitzar aquesta tasca va ser necessari el muntat-
ge d’un setup a I’ordinador portatil personal per a la pa-
ral-lelitzaci6 amb CUDA i OpenACC, aix0 va permetre se-
guir desenvolupant el projecte amb els minims inconveni-
ents possibles.

Aix{ doncs, es va procedir amb la instal-lacié d’un dual-
boot amb Windows i Linux com a sistemes operatius, inclo-
ent tant la recerca i instal-laci6 de tots els drivers necessaris
per a la utilitzaci6 de CUDA i OpenACC en el ordinador
portatil com dels toolkits requerits per a la realitzacié del
profiling. A continuacid, s’ha realitzat les implementacions
en CUDA i OpenACC.

Un cop es van solucionar els problemes tecnics de la
UAB, es va realitzar un analisi del resultats del temps d’exe-
cuci6 obtinguts en ambdos casos (OpenACC 1 CUDA) pels
diferents kernels i per diferents mida de problema. D’a-
questa manera es va aconseguir fer una comparativa exhaus-
tiva respecte aquests resultats i es va poder extreure conclu-
sions sobre quin €s el me&tode de paral-lelitzacié més apro-
piat en cada un dels casos.

5 DESENVOLUPAMENT
5.1 Analisi dataset

Per tal de posar aquest projecte en context, s’ha analitzat
el dataset proporcionat. Aix0 ha aportat un coneixement
més profund del conjunt de kernels que s’ha hagut de pa-
ral-lelitzar. D’aquesta manera, els patrons que componen el
dataset actual sén:

* Kernel_Copy: realitza una copia d’un vector a un altre.

ENEEEEEE LTI T]

Fig. 1: Descripci6 de I’algorisme Copy

* Kernel_Scale : realitza una multiplicacié d’un vector per
un valor escalar.

AN — [ [ [ [ [ ]]

Fig. 2: Descripcié de I’algorisme Scale

¢ Kernel_Add: duu a terme una suma de dos vectors.

ENEEEN - EEEEEN [TTTTT]
Fig. 3: Descripci6 de I’algorisme Add

* Kernel_Triad: realitza una multiplicacié d’un vector per
un valor escalar i la suma del resultat amb un segon vec-
tor.

EEEEE (X e — [T T TT]
Fig. 4: Descripcié de I’algorisme Triad

¢ Kernel_Reduction: realitza la suma de tots els valors

d’un vector en un valor escalar.

to_recluce{] [N 00 [ e

TN

reduction

Fig. 5: Descripcid de I’algorisme Reduction

* Kernel 2PStencil: fa la mitjana entre els dos veins d’un
element d’un vector. Per tant, com es pot observar a la
segiient imatge, si I’index del vector senyala la posicié X,
Illavors fa la mitjana dels dos elements remarcats en verd
i emmagatzema el resultat a la posici6 X.

Fig. 6: Descripci6 de 1’algorisme 2PStencil

¢ Kernel 2D4PStencil: funciona de similar manera que el
Kernel 2PStencil amb la diferéncia de que en aquest cas
es realitzara la mitjana dels quatre veins que tenen con-
nectivitat a 4 d’una posici6é d’una matriu.

H

Fig. 7: Descripci6 de I’algorisme 2D4PStencil

¢ Kernel Stencil: calcula la mitjana dels sis elements veins
d’una posicié d’una matriu en 3D, i a diferencia dels dos
anteriors també inclou el valor d’aquesta posicié en el
calcul de la mitjana.

Fig. 8: Descripci6 de 1’algorisme Stencil
* Kernel MatXVec: realitza una multiplicacié d’una ma-
triu per un vector.

EEEEE -

Fig. 9: Descripci6 de I’algorisme MatXVec

¢ Kernel MatMult: realitza una multiplicacié de dues ma-
trius amb accessos a memoria optimitzats per I’execucid
en CPU.

_ *

Fig. 10: Descripci6 de I’algorisme MatMult

* Kernel MatMultNoOpt: tracta d’'una multiplicacié de
dues matrius perd, en aquest cas, sense optimitzacions



d’accessos a memoria.

RN

Fig. 11: Descripci6 de 1’algorisme MatMultNoOpt

* Kernel Stride (2, 4, 16, 64): realitzen la copia del vector
mitjancant salts de mida stride (2, 4, 16, 64).

Stride 2:  1dx=0,2,4,6..

DEgRnanE —
(R B T .

Fig. 12: Descripci6 de I’algorisme Stride2

Lolx [z x[]x]e]x]

* Kernel_Rows: realitza una copia d’una matriu per co-

lumnes.
] - .
||
||
||
||

Fig. 13: Descripci6 de I’algorisme Rows

5.2 Motor d’execucio

Per altra banda, s’ha implementat un motor d’execucié per
tal de facilitar I’execuci6 i la diferenciacié de les parts del
codi a analitzar. S’ha distingit entre aquelles parts ne-
cessaries per a I’execuci6 del codi i les funcions relacio-
nades amb els kernels i la seva paral-lelitzaci6. D’aquesta
manera s’ha dividit en dues parts:

» StreamHost: La part executora del codi, que és el frag-
ment de codi que és comti per a totes les implementacions
de paral-lelitzacié. Aqui es defineixen i s’inicialitzen les
variables i estructures, i es fa 1’assignaci6 i I’alliberaci6
de memoria en CPU. A més, conté les funcions pertinents
per al perfilat de rendiment, etc.

* StreamKernels_XX: S’ha generat un arxiu exclusiu d’e-
xecucié per a cada tipus de paral-lelitzacié que es por-
tara a terme en aquest projecte (serie, OpenACC, CU-
DA). Aquests arxius contenen el conjunt de kernels, as-
signacié i alliberament de memoria en GPU i la copia de
dades entre Host-Device en el cas de que sigui necessa-
ri. En aquests arxius, s’hi inclouran les modificacions es-
pecifiques per a cada tipus de paral-lelitzacio.

A part dels arxius amb el codi font s’han generat un con-
junt de scripts per tal de poder compilar i enllagar de forma
adient cadascun dels StreamKernels_XX. Aquests scripts es
mostren a continuacio.

commonFlags="-02 -DN=$size -DNTIMES=10"
Serie

# Compiler Stage and Linker

> gcc streamHost.c streamKernels.c $commonFlags -o

streamExe —1m

CUDA

# Compiler Stage
gcc —-c —-g streamHost.c $commonFlags -o streamHost
- @

3 nvcc —c¢ —arch=sm_60 $ScommonFlags

streamKernels_cuda.cu -o streamKernels.o
# Linker Stage

5 gcc streamHost.o streamKernels.o -o streamExe -L/

usr/local/cuda/lib64 -lcudart -1lm

EE/UAB TFG INFORMATICA: Desenvolupament de Micro-kernels per sintonitzaci6 de rendiment sobre accel-leradores

OpenACC

1 # Compiler Stage and Linker

> nvc —acc=gpu —-ta=tesla streamKernels_oacc.c

streamHost.c $commonFlags -Minfo=all -o
streamExe —1lm

Inicialment és necessari fer ds de flags de compilaci6 co-
muns per a totes les implementacions, on $size correspon
a la mida del problema. Per compilar la codificacié serie
en llenguatge C, és necessari fer servir el compilador gcc.
El mateix passa amb CUDA, pero amb la diferéncia de que
en aquest cas cal compilar la part del la part StreamKernels
amb nvce i enllagar-ho amb gcc. Per altra banda, per com-
pilar la implementacié OpenACC és necessari fer servir el
compilador nvc.

5.3 Muntatge setup

Per tal de ser capac¢ de compilar i executar el codi imple-
mentat s’ha muntat un setup a 1’ordinador portatil personal.
Les especificacions d’aquest ordinador sén, un processador
Intel® Core™ i7-9750H, amb 8 GB DDR4 de RAM i una
targeta grafica NVIDIA GeForce® GTX 1650 de 8GB [18].
D’aquesta manera s’ha instal-lat un sistema dual-boot amb
els sistemes operatius Windows i Linux. A continuacid, s’-
ha cercat i instal-lat tots els drivers necessaris per poder uti-
litzar CUDA a la targeta grafica de NVIDIA [19]. També
ha estat necessari fer una recerca d’eines per a la posterior
realitzaci6 del perfilat dels resultats [20].

Finalment, els resultats de la Seccié 6 s’han obtingut
d’utilitzar el cluster del Departament, que consta de les
segiients especificacions:

* Host: aolin-login.uab.es (AOLIN23)

e Processador: Intel® Core™ i5-2400 CPU (3.10GHz).
* Sistema operatiu: CentOS Linux 7 (Core).

* Memoria: 8§ GB memory.

* Targeta grafica: NVIDIA GeForce RTX 3080.

5.4 Implementacié6 amb CUDA

Com ja s’ha comentat anteriorment, la primera aproximacié
de paral-lelitzaci6é que s’ha portat a terme és amb CUDA.
54.1 Implementacié comi

Per a aix0, ha estat necessari definir els punters de les es-
tructures de dades que es faran servir dins el dispositiu
(GPU). Aixi doncs, s’ha hagut d’afegir al codi la segiient
definici6 per poder fer servir les estructures des de la GPU.
S’ha decidit utilitzar la nomenclatura d_ per indicar aquells
punters utilitzats en el Device.

Per altra banda, també ha estat necessari realitzar 1’ assig-
naci6 i I’alliberacié de memoria d’aquelles estructures que
es faran servir al Device [21]. Per fer-ho s’ha utilitzat res-
pectivament cudaMalloc () 1 cudaFree ().

En aquest cas, també ha estat necessari afegir extern “C”
per tal de poder cridar aquesta funcié des de la StreamHost
del codi en CPU. Ja que CUDA es compila com si fos un
arxiu C++ i, en canvi, la part executora es compila com si
fos un arxiu de llenguatge C. Aixi mateix, per aconseguir
fer les copies de la informaci6 des de fora del Device, s’ha
definit una funci6 de copia per a cada estructura, segons si la
informaci6 de I’estructura és necessaria copiar-la de Host-
Device o de Device-Host. D’aquesta manera s’aconsegueix
alliberar el temps d’execuci6 dels kernels del temps requerit
per a les copies.



LAURA NAVARRO LORENTE: DESENVOLUPAMENT DE MICRO-KERNELS PER SINTONITZACIO DE RENDIMENT SOBRE ACCEL-LERADORES 5

5.4.2 Paral‘lelitzacié dels kernels

Un cop estructurada la base, s’ha pogut comencgar amb la

implementacié de la paral-lelitzaci6 CUDA al conjunt de

patrons. Per al seu desenvolupament s’han de tenir en
compte diversos factors o regles que influeixen en la ob-
tenci6 de bons resultats al utilitzar GPUs. Aquests sén:

* Reutilitzaci6é de dades dins de la GPGPU a través de la
memoria compartida (SMP) [22] i de registres.

* Optimitzacié dels accessos a memoria (coalesced access).

* Maximitzar la relaci6 entre el nombre d’operacions i els
accessos a memoria.

* S’ha de mantenir la regularitat de I’execucié i procurar
reduir els controls de flux, instruccions o crides a funcié
per tal de minimitzar la divergeéncia.

« Maximitzar 1’ocupacié del multi-processador. Es a dir,
maximitzar la relacié entre el nombre de warps actius
i el nombre maxim de warps admesos en un multi-
processador de la GPU.

Seguint aquest conjunt de regles es podra aconseguir evi-
tar limitacions d’amplada de banda de memoria i assegurar
que la carrega computacional del problema és suficient per
compensar el cost d’ds de la GPU (overhead) amb els resul-
tats obtinguts. Aix0 s’ha de tenir en compte pel fet que la
sobrecarrega de comunicaci6 entre el host (CPU) i el device
(GPU) és generalment un dels colls d’ampolla en el rendi-
ment de sistemes HPC que utilitzen acceleradores. Es per
aquest motiu que per a problemes senzills no és una bona
estrategia executar-ho des de la GPU.

Kernel_Copy, Scale, Add, Triad

Inicialment, s’ha paral-lelitzat el Kernel_Copy, per fer-ho
ha estat necessari fer servir un GridDim d’una dimensi6 i
ceil(N2/N Threads) blocs i un BlockDim de 1024 thre-
ads. D’aquesta manera, el codi s’estructura de forma que
hi hagi el mateix nombre d’elements del vector que thre-
ads. Aixi, s’aconsegueix que cada thread faci només una
operaci6 de copia.

D’igual manera, s’ha paral-lelitzat el patré Kernel_Scale,
tot i que ara cada thread multiplica el valor del vector per
un valor escalar donat per parametre d’entrada.

Fig. 14: Implementacié en CUDA del Kernel_Copy.

|Id0||d1|IdZ|Id3|Id4|[d5|

El Kernel _Add realitza la suma de dos vectors, per aquest
motiu s’ha afegit un tercer vector a I’execucié del ker-
nel. En aquest cas, cada thread fa dos lectures a memoria
global, un per cada vector d’entrada. Per altra banda,
també ha estat necessari canviar la mida del GridDim per
ceil(N3/N Threads).

Per acabar, en el Kernel_Triad cada thread calcula pri-
merament la multiplicacié d’un vector per un valor escalar
i, a continuacid, es suma el resultat anterior amb un segon
vector.

Kernel_Reduction

Aquest patrdé consisteix en fer la suma de tots els va-
lors d’un vector i emmagatzemar el resultat en un valor
escalar. Per fer-ho ha estat necessari utilitzar un Grid-
Dim de N/N_Threads i mantenir el valor del Block-
Dim en N _Threads threads. D’aquesta manera, cudaKer-
nel_Reduction rebra per parametre el vector i la variable es-
calar on desar el resultat final.

Per implementar el codi per executar-ho amb CUDA ha

estat necessari definir un vector auxiliar on s’anira acu-
mulant la suma dels valors del vector, aquest s’anomena
to_reduce. Aquest vector és de tipus __shared__ i, aixi,
tots els threads del mateix bloc tenen accés a la mateixa
memoria compartida [23]. També és necessari inicialitzar-
lo amb els valors del vector passat per parametre, d_al.

ENERENER

| /.
EEEREREN
| A—
EXNEN | | | | | |
|
EN l | | | | | |

Fig. 15: Implementacié en CUDA del Kernel _Reduction.

Per altra banda, per portar a terme aquest algorisme amb
CUDA, es divideix el vector per la meitat stride = N/2
i es suma el primer element de la primera meitat amb el
primer de la segona, el segon element de cada particié entre
ells, etc. i s’emmagatzema el resultat a la posicié agafada
de la primera meitat del vector, reduint aixi el nombre de
posicions a sumar. Aquest procediment es repeteix fins que
només quedi un sol valor.

Per tal d’evitar carrera de dades cal sincronitzar els thre-
ads d’un mateix bloc entre iteracions mitjangant barreres
__syncthreads() [23]. Aixi, s’aconsegueix que els threads
s’esperin a la barrera fins que tots hagin executat la iteracié
abans de poder continuar amb 1’execucio.

Finalment, donat que quan N és més gran al nombre de
threads per bloc, s’ha d’utilitzar més d’un bloc i com que la
memoria compartida no es comparteix entre blocs, cal que
cada bloc calculi el seu reduction 1, al acabar, cada thread
amb ID O utilitza un atomicAdd per realitzar la reduccié
final entre blocs.

Kernel 2PStencil, 2D4PStencil, Stencill

Pels diferents Stencils s’ha de tenir en compte que els
marges del vector o matriu no generen cap sortida pel fet
que no tenen veins suficients per calcular la mitjana. Per
tant, pel Kernel 2PStencil s’han iniciat els calculs a par-
tir de I’element 1 del vector i s’ha utilitzat un GridDim
de N2/N_Threads. Aixd succeeix d’igual manera per a
I’dltim element del vector, ja que I’index només arribara fins
a N2 — 1. Per tal d’extreure un millor rendiment fent ds de
la memoria compartida, cada thread carregara a la memoria
compartida del seu bloc un element, exceptuant el primer i
ultim thread, que n’hauran de carregar dos. Gracies a aixo,
s’aconsegueix evitar accessos innecessaris a memoria glo-
bal, donat que els veins ja hauran carregat la informaci6
necessaria per cada thread.

En el cas de Kernel_2D4PStencil, s’ha definit una fines-
tra quadrada de N_Threads x N _Threads on cada thread
guarda a memoria compartida el seu element i, en el cas
que sigui un thread del perimetre de la finestra, ha de lle-
gir els veins exteriors, com es pot observar a la Figura 16.
Per ultim, al tractar-se d’una matriu és necessari utilitzar un
GridDim de dues dimensions mitjangant el tipus de dades
dim3(n/N_Threads,n/N_Threads).

Per ultim, en el Kernel_Stencil, la finestra té forma de cub
de N_ThreadsxN _Threads+xN _Threads cada thread car-
regara a la memoria compartida el seu element i dels veins



6 EE/UAB TFG INFORMATICA: Desenvolupament de Micro-kernels per sintonitzaci6 de rendiment sobre accel-leradores

ido | id1 | id2

ido | ido | id1 | id2 | id2

id3 | id3 | id4 | id5 | id5

id6 | id6 | id7 | id8 | id8

id6 | id7 | id8

Fig. 16: 2DP4Stencil: Elements a carregar per cada thread

si €s necessari. En aquest cas, com que 1’element d’entrada
és una matriu en 3D de n * n * n, s’ha de fer servir un grid
en tres dimensions on cada eix té n/N _Threads.

Kernel _MatXVec

Aquest kernel realitza la multiplicacié d’una matriu per
un vector. Inicialment es crea un vector on es guardara el
valor de la reduccid realitzada per obtenir el resultat final.
Després es realitzen els calculs intermedis a la memoria
compartida. Aixi, es divideix la matriu en submatrius de
N _Threads * N_Threads elements i el vector en subvec-
tors de N_Threads elements. Per aquest motiu, es llegeix
de memoria global aquestes regions per tal de reaprofitar el
maxim possible i reduir accessos a memoria. Un cop ca-
da bloc ha realitzat els seus calculs parcials de matriu per
vector, es realitza un afomicAdd per fer la reduccid entre
blocs.

‘o,n |n,1 |n,1+> . *

Fig. 17: Moviment de la finestra per MatX Vect

Kernel MatMult

El Kernel_MatMult realitza la multiplicacié de dues ma-
trius amb accessos a memoria optimitzats. Per tal de reduir
el nombre d’accessos a memoria, s ha decidit utilitzar I’es-
trategia de tiling, que consisteix en subdividir les matrius
en finestres més petites, en aquest cas de N_Threads *
N _Threads. Per aix0, €s necessari llegir aquesta part de
matriu més petita de les dues matrius d’entrada i es realit-
zen les multiplicacions de matrius parcials. Un cop realitza-
des, es mou la finestra N _T hreads elements de les matrius
d’entrada per continuar fent els calculs i anar afegint el re-
sultat al valor obtingut anteriorment.

N L

Fig. 18: Moviment de la finestra del tiling

S’ha de tenir en compte que si les dimensions de les ma-
trius no son multiple de N _Threads, la dltima iteraci6 del
moviment de la finestra no es calculara de manera comple-
ta donat que, les dltimes posicions aniran a parar fora de
la matriu original. Aquest problema, s’ha solucionat apli-
cant la tecnica de loop peeling, que consisteix en eliminar
aquelles condicions dins dels bucles que només afecten al
principi o al final de la iteracid. En aquest cas, s’ha utilitzat
per extreure la condicié que controla el marge final de la
matriu, ja que només prenia efecte en la dltima iteracié del
bucle.

Kernel_MatMultNoOpt

El Kernel_MatMultNoOpt, de la mateixa manera que el
Kernel MatMult, realitza la multiplicacié de dues matrius
pero aquesta vegada sense accessos optimitzats a memoria.
En aquest cas també s’ha utilitzat ’estrategia de tiling, amb
finestres de N_Threads * N_Threads. Aixi doncs, és ne-
cessari llegir les posicions englobades per les finestres de
les dues matrius d’entrada i realitzar els calculs necessaris.
Un cop realitzats, s’ha de moure la finestra N _T'hreads ele-
ments per continuar fent els calculs i anar afegint el resultat
al valor obtingut anteriorment. Per tltim i d’igual forma que
amb el Kernel MatMult, s’ha de tenir en compte que si les
dimensions de les matrius no sén multiple de N_T hreads,
la dltima iteraci6é del moviment de la finestra no es calculara
de manera completa, aquest problema també s’ha solucio-
nat aplicant la teécnica de loop peeling.

Kernel _Stride (2, 4, 16, 64)

Aquests kernels fan una copia d’un vector realitzant salts
de mida stride (2, 4, 16, 64). Aix0 s’ha implementat de
manera que hi hagi el mateix nombre de threads que d’e-
lements als vectors, i que cada thread utilitzi el seu index
j=blockIdx.x+blockDim.x+threadIdx.x a 1’hora de cal-
cular I’'index de la posicié que s’ha de fer la copia. Per
fer-ho, es multiplica I’index j per I’stride i s’aplica un
modul de la mida del vector per recorre’l de forma circu-
lar ((j x stride)%n) i, d’aquesta manera, cada thread fa la
copia d’un sol element.

Kernel_Rows

En el cas del Kernel Rows es du a terme la copia d’u-
na matriu per columnes accedint cada thread a una posi-
ci6 i realitzant la copia. Per la naturalesa d’aquest ker-
nel, s ha decidit que els blocs tinguin forma de colum-
na en comptes de fila, per tant dim3(1, N_Threads) i
al tractar-se d’una copia d’una matriu, el grid té la mida
dim3(n,n/N _Threads).

5.5 Implementacié amb OpenACC

A continuacid, s’ha realitzat la revisi6 de la paral-lelitzacié
proporcionada en OpenACC cercant diferents formes d’op-
timitzar cadascun dels patrons.

5.5.1 Implementacié comi

Inicialment, per tal de fer les copies de la informacié des
de fora del Device i aixi excloure’n el temps de copia del
temps d’execucié dels kernels, s’ha definit una funci6 de
copia per a cada estructura de la mateixa manera que a la
implementacié amb CUDA. Conjuntament s’ha obert una
regi6 data per a la transferencia de dades entre Host i Device
amb les que s’ha realitzat les operacions pertinents dins de
la GPU. D’aquesta manera, les directives acc enter data i
acc exit data defineixen on comenca i acaba una regi6 de
dades.

5.5.2 Paral-lelitzacié dels kernels

Un cop estructurada la base, s’ha pogut comengar amb la
implementacié de la paral-lelitzacié6 OpenACC al conjunt
de patrons, fent les millores oportunes per cada kernel.

Kernel_Copy, Scale, Add, Triad

Per aquests kernels, s’ha modificat completament la di-
rectiva donat que préviament es feia la paral-lelitzacié del
kernel juntament amb les copies d’entrada i sortida dels vec-
tors corresponents. Ha estat necessari paral-lelitzar el bucle
amb parallel loop 1 s’ha afegit la definicié de la mida del



LAURA NAVARRO LORENTE: DESENVOLUPAMENT DE MICRO-KERNELS PER SINTONITZACIO DE RENDIMENT SOBRE ACCEL-LERADORES 7

vector a utilitzar vector_length, i la clausula present informa
la GPU que ja compta amb les dades. D’aquesta manera, la
directiva proposada és la segiient:

#pragma acc parallel loop present (c2,b2)
vector_length (N_THREADS)

Kernel_Reduction

En el cas del Reduction, donat que fins ara comptava amb
la paral-lelitzaci6 del bucle i la clausula per accelerar el re-
duction, s’ha experimentat amb la mida del vector, ja que
aixo ajuda a millorar el rendiment.

#pragma acc parallel loop present (al) reduction

(+:reduc) vector_length (N_THREADS)

Kernel 2PStencil
En aquest kernel s’ha afegit la clausula per escollir la mi-
da del vector que s’ha utilitzat vector_length.

#pragma acc parallel loop present (b2, c2)

vector_length (N_THREADS)

Kernel 2D4PStencil

Donat que aquest patré préviament ja tenia la directiva on
es paral-lelitzava el bucle i utilitzava la clausula tile [24], s’-
ha experimentat amb la mida d’aquesta directiva. L’esmen-
tada clausula li dona al programador una forma d’expressar
la localitat dins de bucles niats, aixi, guia al compilador a
opcions d’optimitzacié addicionals . D’aquesta manera, s’-
ha intentat millorar el rendiment explotant tant la localitat
de dades com la reutilitzacié de dades dins dels bucles.

#pragma acc parallel loop present (b2,c2)
tile (N_THREADS, N_THREADS)

Kernel _Stencil

El procediment inicial per al Kernel_Stencil era aplicar
directives de paral-lelitzacié de bucle per a cadascun dels
tres nivells de bucle niats. La solucié proposada és la pa-
ral-lelitzacié del bucle més extern utilitzant la clausula file
en tres dimensions per tal de reutilitzar el major nombre de
dades possible.
#pragma acc parallel loop present (b2,

N_THREADS, N_THREADS, N_THREADS)

Kernel MatXVec

Per al Kernel MatXVec ha estat necessari paral-lelitzar a
dos nivells de bucle. Per una banda, al nivell extern ha estat
necessari la paral-lelitzaci6é dels bucles, juntament amb la
selecci6 de la mida del vector a utilitzar.

c2) tile(

#pragma acc parallel loop present (mat_atax, vxmi,
vxmo) vector_length (N_THREADS)

Per altra banda, al nivell intern ha requerit utilitzar la
paral-lelitzaci6 independent del bucle conjuntament amb la
clausula reduction per a la reducci6 dels valors de la varia-
ble auxiliar.

#pragma acc loop reduction (+:aux)

Kernel MatMult

Inicialment, en aquest patrd s’ utilitzaven directives de pa-
ral-lelitzacié de bucle per a cadascun dels tres nivells de
bucle niats. La modificaci6 que es presenta per al Ker-
nel_MatMult és paral-lelitzar el nivell més extern utilitzant
la clausula tile, i el bucle més intern aplicant un reduction
per realitzar la reducci6.

#pragma acc parallel loop present (d3,e3,£3)
tile (N_THREADS, N_THREADS)

#pragma acc loop reduction (+:aux)

Kernel_ MatMultNoOpt

El Kernel MatMultNoOpt ha requerit replantejar les di-
rectives inicials degut a que, de la mateixa manera que al
Kernel_Rows, es proposava 1’ds de la clausula collapse al
bucle extern, i després paral-lelitzar el bucle més intern junt
a la clausula reduction. Aix0 no €s necessari si, al bucle
més extern se li aplica la clausula tile.

#pragma acc parallel loop present (d3,
tile (N_THREADS, N_THREADS)

e3, £3)

Kernel_Stride (2, 4, 16, 64)
Per als Stride s’ha mantingut la paral-lelitzacié del bucle
i s’ha afegit la selecci6 de la longitud del vector.

#pragma acc parallel loop present (b2,c2)
vector_length (N_THREADS)

Kernel_Rows

En aquest cas ha estat necessari canviar el plantejament
inicial per tal de millorar el rendiment, donat que s’apli-
cava la clausula collapse que aplana els bucles niats en un
unic. Per tant, aquesta clausula és 1til quan existeixen molts
bucles niats o aquests sén molt curts. En canvi, la solucié
proposada com a alternativa és utilitzar la clausula file amb
la finalitat de dividir els bucles en finestres i aprofitar 1’alta
localitat que presenta el kernel.

#pragma acc parallel loop present (b2,c2)
tile (N_THREADS, N_THREADS)

6 EXPERIMENTACIO

Aquesta seccid mostra els resultats obtinguts en les dife-
rents experimentacions que s’han realitzat amb CUDA i
OpenACC. Com ja s’ha comentat anteriorment, els resultats
s’han extret de I’execuci6 de les implementacions al cldster
del Departament, concretament a AOLIN23.

Aquestes execucions s han realitzat amb diferents mides
de problemes, pero per simplificar 1’exposicidé dels resul-
tats s’ha reduit el nombre de mides de problema, utilitzant
Unicament quatre mides: una menuda, dues intermedies i
una de gran.

6.1 Resultats

Kernel_Copy, Scale, Add, Triad

Si s’observen els resultats de la Taula 1 es pot veure com
en el cas dels kernels Copy, Scale i Add tenen un comporta-
ment similar entre si. Aixo és degut a que es tracta d’opera-
cions lineals o vectorials, on cada thread calcula un element
del vector.

Per altra banda, a la Figura 19, el kernel Triad tot i tractar-
se del mateix tipus d’operaci6, OpenACC no és capag d’ob-
tenir els mateixos temps d’execucié que a CUDA.

TAULA 1: Speed up dels Kernels Copy, Scale 1 Add

Mida Copy Scale Add

N float CUDA OpenACC | CUDA OpenACC | CUDA OpenACC
7936 0,44 0,41 0,31 0,54 0,29 0,27
130560 4,71 3,72 9,44 7,05 6,69 4,59
1310720 | 39,39 34,10 58,08 50,64 38,14 35,99
9437184 | 70,37 73,10 84,45 86,43 73,23 70,35




8 EE/UAB TFG INFORMATICA: Desenvolupament de Micro-kernels per sintonitzaci6 de rendiment sobre accel-leradores

Kernel Triad

mCUDA mOpenACC

100 91,08

20
a 59,77 56,90
5 60
=
g . 35,47
(%]

20 9,63 ¢ a7 I

0,47 0,43 |
o o =
7936 130560 1310720 9437184
Mida del problema (N elements "float")
Fig. 19: Resultats obtinguts al Kernel_Triad.
Kernel Reduction

A la Figura 20, es poden observar els resultats obtinguts
per al kernel de reduccié. En aquest cas, els speedup no sén
tant elevats donat que el compilador és prou intel-ligent com
per treure’n un bon rendiment en CPU. També s’ha de tenir
en compte que en GPU, I’algoritme reduction, per definicié
no pot igualar la carrega entre threads i, per tant, no pot fer
un aprofitament de la paral-lelitzacié massiva.

Kernel Reduction

HCUDA mOpenACC

25 20,91
21,22 | 20,89

20 18,50
0 I I I
9437184

130560 1310720
Mida del problema (N elements "float")

-
T}

10,76

Speed up
=
o

0,77 0,22
—

7936

Fig. 20: Resultats obtinguts al Kernel_Reduction.

Kernel _2PStencil, 2D4PStencil, Stencil

En el cas de 2PStencil i 2D4PStencil el comportament
obtingut és molt similar tot i haver obtingut resultats lleu-
gerament millors per al kernel 2D4PStencil. En canvi, el
Stencil, al realitzar 1’accés a les dades diferent dels dos an-
teriors, inicament ha aconseguit la meitat del speedup d’a-
quests. Aix0 es pot observar a la taula segiient:

TAULA 2: Speed up de 2PStencil, 2D4PStencil i Stencil

Mida 2PStencil 2D4PStencil Stencil

N float CUDA OpenACC | CUDA OpenACC | CUDA OpenACC
7936 0,43 0,42 0,51 0,39 1,02 0,74
130560 9,35 7,35 13,49 11,46 16,95 11,24
1310720 | 56,92 52,43 62,95 70,17 63,14 40,02
9437184 | 93,85 93,67 108,91 115,36 78,11 55,49

Kernel MatXVec, MatMult, MatMultNoOpt

En aquest cas es pot comprovar com en implementacions
d’alta complexitat matematica, com pot ser el tractament
de matrius, els speedups creixen de manera important. Per
MatXVec, al tractar-se d’una matriu per un vector, la reuti-
litzacid de dades es realitza només per la matriu i, per tant,
els resultats no son tant elevats com en els altres dos casos.

Tant mateix, es pot observar a la Taula 3 com per als ker-
nels MatMult i el MatMultNoOpt s’accentua la millora dels
speedups al aconseguir reutilitzar un gran nombre de dades.
La millora del kernel MatMultNoOpt respecte el MatMult
és molt destacable i és a conseqiiencia de la forma d’accedir
a la memoria, ja que el MatMult té optimitzats els accessos
per a CPU amb memoria cache, pero a nivell de GPU no hi

TAULA 3: Speed up: MatxVect, MatMult, MatMultNoOpt

Mida MatxVect MatMult MatMultNoOpt

N float CUDA OpenACC | CUDA OpenACC | CUDA OpenACC
7936 0,58 0,75 11,96 14,14 12,88 9,79
130560 14,03 9,64 243,08 273,12 358,58 294,00
1310720 | 37,77 38,52 304,50 461,84 1511,96  1187,21
9437184 | 46,21 65,16 330,63 472,06 2367,07 1827,90

ha diferéncia entre aquestes dues implementacions.

Kernel Stride (2, 4, 16, 64)

Aquesta ocasié ha estat possible unificar els quatre ker-
nels Stride degut a que el comportament obtingut en tots
ells ha estat molt similar tant en CUDA com en OpenACC.

Kernel StrideX - CUDA

w—Stride? es=Stride4 Stridel6 Stride64

140
120

100 e —
80 / =
60 #

40
20

Speed Up

7936 130560 1310720 9437184

Mida del problema (N elements "float")
Fig. 21: Resultats obtinguts en CUDA al Kernel _StrideX.

No obstant, tot i que els accessos realitzats a memoria
no sén consecutius els speedups aconseguits sén favorables,
sobretot amb mides de problema grans.

TAULA 4: OpenACC Speed up de Kernel_Stride

Mida N float \ Stride2  Stride4  Stridel6  Stride64
7936 0.41 1.09 1.98 1.83
130560 5.89 16.03 23.37 31.47
1310720 32.52 74.41 75.33 76.60
9437184 87.22 96.41 71.96 132.23

Kernel_Rows

Finalment, el Kernel Rows es tracta d’operacions vecto-
rials, tot i que a diferéncia del kernel_Copy, els accessos a
memoria es realizen de manera consecutiva, aix0O causa una
reduccié del temps d’execuci6 a nivell de GPU i, per tant,
assolint SpeedUps majors.

Kernel Rows

HCUDA ™ OpenACC

700,00
600,00

10,10
500,00
£y
2 400,00
2 300,00
w
200,00
8,91
100,00 0,29 0,30 12,397
0,00 —re

7936 130560 1310720
Mida del problema (N elements "float")

634,41

316,33
| 302,67

9437184

Fig. 22: Resultats obtinguts al Kernel_Rows.

Total de threads per kernel

Els temps d’execucié anteriorment presentats son el re-
sultat de les versions implementades que després de certa
sintonitzacié han obtingut els millors rendiments. A la Tau-
la 5 s’han recollit el nombre de threads per bloc utilitzats
en cadascun dels kernels que composen el dataset, tan en
CUDA com en OpenACC.



LAURA NAVARRO LORENTE: DESENVOLUPAMENT DE MICRO-KERNELS PER SINTONITZACIO DE RENDIMENT SOBRE ACCEL-LERADORES 9

TAULA 5: Nombre de threads per bloc utilitzats a cada kernel

CUDA OpenACC
X Y Z|X Y Z
Copy/Scale/Add/Triad | 1024 - - 128 - -
Reduction 128 - - 128 - -
2PStencil 128 - - 128 - -
2S4PStencil 16 16 - 16 16 -
Stencil 8 8 8 16 4 32
MatXVec 64 4 128 - -
MatMult 16 16 - 8 8 -
MatMultNoOpt 16 16 - 16 16 -
Stride (2, 4, 16, 64) 1024 - - 128 - -
Rows 256 - - 1 128 -

Transferéencia de dades entre Device i Host

Ates que els temps d’execucid presentats no compten
amb el temps necessari per a la transferéncia de dades bidi-
reccionals entre Host 1 Device, no son del tot realistes. No
obstant, s’ha decidit exposar-los d’aquesta manera ja que
en un programa real s’hauria de tenir en compte el nombre
de kernels a executar i si aquests poden reutilitzar dades ja
existents al Device.

La Taula 6 mostra la quantitat de dades a transferir se-
gons la mida del problema i el temps que tarda CUDA i
OpenACC en realitzar aquestes transferencies. També es
pot observar com CUDA va molt més rapid a fer les trans-
feréncies que OpenACC.

TAULA 6: Temps de transferencia de dades Device-Host

Mida Mida transferencia CUDA  OpenACC
N float (kB) (ms) (ms)
7936 31 0.04 9.48
130560 510 0.16 8.75
1310720 5,120 1.18 10.87
9437184 36,864 6.97 21.52

Si afegim els temps de transferéncia de dades als temps
d’execucio dels kernels MatXVec, MatMult i MatMultNo-
Opt, que ja s’ha observat anteriorment que tenen speedups
molt diversos entre ells, es pot veure a la Taula 7 que 1’ac-
celeraci6 assolida s’ha vist minvada considerablement, es-
pecialment en el cas de OpenACC.

TAULA 7: Speed up amb transferéncia de dades

Mida MatxVect MatMult MatMultNoOpt
N float CUDA OpenACC | CUDA OpenACC | CUDA  OpenACC
7936 0.20 0.001 3.37 0.02 3.23 0.02
130560 1.09 0.02 53.20 1.26 49.86 1.07
1310720 1.17 0.13 133.40 24.25 327.53 43.79
9437184 1.34 0.44 234.03 167.63 1066.52 467.84

En general, es pot observar que pel kernel MatxVect, 1’e-
xecucio és igual o molt més lenta que en CPU, i passa igual
en els altres kernels amb la mida de problema més petita.
Per altra banda, la parel-litzacié en GPU segueix sent efec-
tiva en els kernels MatMult i MatMultNoOpt per mides de
problema grans.

6.2 Analisi dels resultats

En general, cal destacar que s ha assolit una acceleraci6 del
rendiment similar en tots aquells kernels que realitzen ope-
racions vectorials o lineals. En aquests casos, on la reutilit-
zacié de memoria és minima, s’ha pogut observar que Ope-
nACC i CUDA s6n capagos d’obtenir resultats similars. En
canvi, en problemes on la complexitat la marcaven els ac-
cessos a memoria, s’ha pogut observar en OpenACC una re-
laci6 directa entre les optimitzacions d’accessos a memoria
en caché (MatMult) i I’augment del rendiment en compara-

ci6 amb CUDA. No obstant, en el MatMultNoOpt, CUDA
ha tret molt més rendiment i, la dnica diferéncia entre els
kernels és la manera en com s’accedeix a memoria. Aquest
fet també es pot apreciar en els kernels Stencil, on CUDA
té un Speed-up major en el cas de les tres dimensions, perod
OpenACC mostra millors resultats en dues (2D4PStencil).

D’altra banda, s’ha pogut observar que la mida del pro-
blema influeix considerablement en el rendiment final de
les execucions. Generalment, les mides petites resulten més
lentes en GPU que en CPU, exceptuant els casos en que per
la naturalesa del problema els accessos a memoria solen ser
nombrosos i ineficients per a la CPU, com en els kernels
MatMult o MatMultNoOpt. En aquests casos, la GPU as-
soleix millors resultats en totes les mides de problema.

Finalment, com s’ha pogut observar a I’apartat anterior,
el temps de transferencia de dades té un gran impacte en
el rendiment final obtingut. També s ha pogut apreciar que
aquestes transferéncies prenen molt més temps en el cas de
OpenACC que en CUDA. No obstant aix0, es pot conclou-
re que en aplicacions on es puguin reutilitzar dades dins
del Device entre diferents problemes o kernels, reduint aix{
el nombre de transferencies entre Device i Host, es poden
aconseguir acceleracions molt elevades.

Aquesta resolucid es podria confirmar amb la llei d’ Am-
dahl (Equacié 1), la qual assegura que el maxim Speed-up
que es pot aconseguir d’una aplicacio esta limitat pel frag-
ment de codi que no es pot paral-lelitzar”. Aixi doncs, la
llei de Gustafson va afegir una limitacié6 al Speed-up d’ Am-
dahl, afirmant que “si la mida del problema varia, la part
serie no ho fara”[25]. Amb aixo, es recolza la conclusi6
extreta anteriorment, on es determina que si es reduissin les
transferencies de dades els resultats millorarien, ja que sén
la part no paral-lelitzable dels kernels1

Speed —Up = —————
f+ (17f)

p

6]

On f és la fraccié de programa no paral-lelitzable i p és
el nombre de processadors a utilitzar.

7 CONCLUSIONS

Un cop finalitzat el projecte, s’ha pogut comprovar que s’-
han completat tots els objectius, exceptuant la part d’intro-
duir nous kernels al dataset malgrat haver realitzat la recer-
ca. No obstant, s’han assolit tot i els inconvenients soferts
arran de I’atac informatic patit per la UAB i que aixd pro-
voqués el replantejament de la major part de la planificacio,
incloent-hi la realitzacié del muntatge d’un setup casola per
tal de poder continuar amb el desenvolupament del projec-
te i la implementacié d’un motor d’execucié. Aquest fet
també demostra que haver escollit la metodologia Agile ha
estat una bona decisio, ja que ha permes realitzar els canvis
esmentats a la planificaci6 el més aviat possible i aixi poder
continuar amb aquest projecte reduint els obstacles.

Per una banda, els resultats obtinguts en acceleradores
demostren que els patrons amb gran quantitat d’accessos a
memoria tenen un impacte critic en el rendiment dels nuclis
de comput i que la mida del problema repercuteix greument
en el rendiment. Per altra banda, els temps obtinguts de-
mostren, tal com s’esperava, que amb CUDA s’assoleixen
Speed-ups més destacables per norma general que en Ope-
nACC, exceptuant per mides petites de problema.

D’aquesta manera es pot concloure que OpenACC és
molt més senzill i rapid d’implementar que CUDA, pero



10 EE/UAB TFG INFORMATICA: Desenvolupament de Micro-kernels per sintonitzaci6 de rendiment sobre accel-leradores

requereix una exhaustiva avaluacid i una seleccid idonia de
les clausules a utilitzar. En canvi, CUDA dona molta més
Ilibertat a 1’hora de programar i control del comportament
del kernel dins de la GPU.

També es pot confirmar I’afirmacié donada en [15] es-
mentada a I’estat de I’art, i és que el temps de transferéncia
és inferior en CUDA que en OpenACC, aix0 fa que no s’ob-
tinguin millores tan elevades com en CUDA. Malgrat tot, si
s’utilitzen les clausules ideals per a cada problema, Ope-
nACC pot aconseguir igualar el rendiment de CUDA en la
major part dels casos.

Finalment, cal esmentar que com a treball futur quedaria
acabar de completar el ventall de micro-kernels del dataset
actual. Addicionalment es podria fer una revisié minuciosa
de la implementaci6 dels kernels en CUDA donat que pos-
siblement s’hi pugui realitzar alguna aportacié que desenca-
deni en una millora respecte a I’obtingut en aquest projecte.

AGRAIMENTS

Un especial agraiment al meu tutor i assessors, Eduardo
César i Anna Sikora, tant per I’ajuda i I’orientaci6 que m’-
han brindat durant tot el projecte com per oferir-me la pos-
sibilitat de fer un tastet del mén de la recerca universitaria.
Finalment, també m’agradaria agrair a la meva parella el
suport que m’ha donat durant aquests darrers mesos.

REFERENCIES

[1] “What is HPC? Introduction to high-performance
computing — IBM.” https://www.ibm.com/topics
/hpe. Ultim accés: 2021-10-07.

[2] Intel, “What Is a GPU? Graphics Processing Units De-
fined.” https://www.intel.co.uk/content/www/uk/en/
products/docs/processors/what-is-a-gpu.html, 2021.
Ultim accés: 2021-10-07.

[3] “OpenACC Getting Started Guide Version 20.4 for
x86 and NVIDIA Processors.” https://docs.nvidia.
com/hpc-sdk/pgi-compilers/20.4/x86/openacc-gs/in
dex.htm. Ultim accés: 2021-10-07.

[4] NVIDIA Corporation, “CUDA C++ Best Practices
Guide Design Guide.” https://docs.nvidia.com/cuda/p
df/CUDA _C_Best_Practices_Guide.pdf, 2022. Ultim
accés: 2021-12-21.

[5] NVIDIA, “About Nvidia.” http://www.nvidia.com/obj
ect/about-nvidia.html. Ultim accés: 2021-10-07.

[6] J. C. Bermudez-Rodriguez, “Adaptacié6 de kernels
d’OpenMP a GPGPU — Universitat Autonoma de
Barcelona,” 2020. Ultim accés: 2021-10-07.

[7] Universitat Autdonoma de Barcelona, “Departament
d’ Arquitectura de Computadors i Sistemes Operatius.”
https://www.uab.cat/web/departament-d-arquitectura
-de-computadors-i-sistemes-operatius- 13457332220
33.html, 2021. Ultim accés: 2021-10-07.

[8] “Computacié avangada per als reptes de la societat
digital (CAROL) (Ministerio de Ciencia e Innova-
cion bajo contrat PID2020-113614RB-C21) — UAB,”
2020. Ultim accés: 2021-10-07.

[9] J. Alcaraz, A. Sikora, and E. César, “Hardware coun-
ters’ space reduction for code region characterization,”
in Euro-Par 2019: Parallel Processing (R. Yahyapour,
ed.), (Cham), pp. 74-86, Springer International Pu-
blishing, 2019. Ultim accés: 2021-10-07.

[10] A.Panesar, “What Is Machine Learning? Machine Le-
arning and Al for Healthcare.” https://www.ibm.com/
cloud/learn/machine-learning, 2019. Ultim accés:
2021-10-07.

A. Martinez, A. Sikora, E. Cesar, and J. Sorribes,
“How to scale dynamic tuning to large parallel ap-
plications,” in Proceedings of the 2013 IEEE 27th,
IPDPSW 13, (USA), p. 355-364, IEEE Computer
Society, 2013. Ultim accés: 2021-10-07.

J. Alcaraz-Rodriguez, S. Sleder, A. TehraniJam-
saz, A. Sikora, A. Jannesari, J. S. Gomis, and
E. Cesar-Galobardes, “Building a Dataset for Clas-
sifying OpenMP Parallel Patterns via Machine Lear-
ning.” https://doi.org/10.5281/zenodo.3865286, May
2020. Ultim accés: 2021-10-07.

NVIDIA Corporation, “High Performance Computing
(HPC) SDK — NVIDIA.” https://developer.nvidia.c
om/hpe-sdk. Ultim accés: 2022-01-04.

T. Hoshino, N. Maruyama, S. Matsuoka, and
R. Takaki, “CUDA vs OpenACC: Performance Ca-
se Studies with Kernel Benchmarks and a Memory-
Bound CFD Application,” in 13th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud, and Grid Com-
puting, 2013. Ultim accés: 2022-01-04.

X. Li and P.-C. Shih, “Performance Comparison of
CUDA and OpenACC Based on Optimizations,” in
Proceedings of the 2018, HPCCT 2018, p. 53-57,
Association for Computing Machinery, 2018. Ultim
accés: 2022-01-04.

X. Li and P.-C. Shih, “An Early Performance Compa-
rison of CUDA and OpenACC,” MATEC Web of Con-
ferences, vol. 208, p. 05002, 01 2018. Ultim accés:
2021-12-21.

A. Bjork, “What is Agile? - Azure DevOps — Micro-
soft Docs.” https://docs.microsoft.com/en-us/azure/d
evops/learn/agile/what-is-agile, 2017. Ultim accés:
2021-10-07.

“Lenovo L340 Gaming Laptop.” https://www.lenovo
.com/us/en/p/laptops/ideapad/ideapad-gaming-lapt
ops/ideapad-1340- 15irh-gaming/88ipl301161. Ultim
accés: 2021-11-08.

Nvidia, “NVIDIA CUDA Installation and Verification
on Linux,” no. July, 2021. Ultim accés: 2021-11-08.
“Installation Guide Linux :: CUDA Toolkit Documen-
tation.” https://docs.nvidia.com/cuda/cuda-installati
on-guide-linux/index.html. Ultim accés: 2021-11-08.
E. Cesar-Galobardes, “Parallel Programming of Mas-
sively Parallel Processors. ;* pp. 1-46, 2020. Ultim
accés: 2021-10-07.

A. S.-S. Fong, K. Y. Wu, R. Chen, and L.-M. Cheng,
“A heterogeneous multiprocessing computer system
with shared memory,” Proceedings of TENCON ’93.
Ultim accés: 2021-11-08.

M. Harris, “Using Shared Memory in CUDA C/C++
— NVIDIA Developer Blog.” https://developer.nvid
ia.com/blog/using-shared-memory-cuda-cc/, 2013.
Ultim accés: 2021-11-07.

Jeff Larkin, “7 Powerful New Features in OpenACC
2.0.” https://developer.nvidia.com/blog/7-powerful-n
ew-features-openacc-2-0/. Ultim accés: 2022-01-10.
M. D. Hill and M. R. Marty, “Amdahl’s law in the
multicore era,” Computer, vol. 41, 2008.

[12]

[16]

[17]


https://www.ibm.com/topics/hpc
https://www.ibm.com/topics/hpc
https://www.intel.co.uk/content/www/uk/en/products/docs/processors/what-is-a-gpu.html
https://www.intel.co.uk/content/www/uk/en/products/docs/processors/what-is-a-gpu.html
https://docs.nvidia.com/hpc-sdk/pgi-compilers/20.4/x86/openacc-gs/index.htm
https://docs.nvidia.com/hpc-sdk/pgi-compilers/20.4/x86/openacc-gs/index.htm
https://docs.nvidia.com/hpc-sdk/pgi-compilers/20.4/x86/openacc-gs/index.htm
https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://www.nvidia.com/object/about-nvidia.html
http://www.nvidia.com/object/about-nvidia.html
https://www.uab.cat/web/departament-d-arquitectura-de-computadors-i-sistemes-operatius-1345733222033.html
https://www.uab.cat/web/departament-d-arquitectura-de-computadors-i-sistemes-operatius-1345733222033.html
https://www.uab.cat/web/departament-d-arquitectura-de-computadors-i-sistemes-operatius-1345733222033.html
https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/cloud/learn/machine-learning
https://doi.org/10.5281/zenodo.3865286
https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/hpc-sdk
https://docs.microsoft.com/en-us/azure/devops/learn/agile/what-is-agile
https://docs.microsoft.com/en-us/azure/devops/learn/agile/what-is-agile
https://www.lenovo.com/us/en/p/laptops/ideapad/ideapad-gaming-laptops/ideapad-l340-15irh-gaming/88ipl301161
https://www.lenovo.com/us/en/p/laptops/ideapad/ideapad-gaming-laptops/ideapad-l340-15irh-gaming/88ipl301161
https://www.lenovo.com/us/en/p/laptops/ideapad/ideapad-gaming-laptops/ideapad-l340-15irh-gaming/88ipl301161
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/
https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/
https://developer.nvidia.com/blog/7-powerful-new-features-openacc-2-0/
https://developer.nvidia.com/blog/7-powerful-new-features-openacc-2-0/

LAURA NAVARRO LORENTE: DESENVOLUPAMENT DE MICRO-KERNELS PER SINTONITZACIO DE RENDIMENT SOBRE ACCEL-LERADORES 11

APENDIX A: GRAFICS D’ INTERES

A.1 SpeedUp dels diversos micro-kernels

e CUDA 30

m— OpenACC 20
10

20
10

Kernel_Copy Kernel_Scale
80 90
70 80
0 70
60
=50 e
3 40 E
2 2 z 40
e e CUDA “ 30 e CUDA
20 20
s Ope NACC e OpenACC
10 10
0 0
PNBIRSREIEEREIaBEREEE PABIRIREIIE2REIasBRESE
NN A d R NON oD O O O oh M~ NN =a O NN Do NOWN O S N~
AN NN T OMNMAAL NN SN DS DM ANMNHNHT OMNAO NN AdS NS dN DM
L I VI o B BT S = B - < = T VY T - MO TF O
A NMm MmO AN MmO 0
Mida del problema (N elements "float") Mida del problema (N elements "float")
Fig. A.1: SpeedUp de Copy per diverses mides de problema Fig. A.2: SpeedUp de Scale per diverses mides de problema
Kernel_Add Kernel_Triad
80 100
70 0
60 80
- 70
250 S 60
T 0 T o
2 2 40
w 30 u e CUDA
s OpenACC
0 0

BNB3I8S83§555825888883 N O S Y
L EEEE SRR L P s R G G g
SNERSERIRNEGARE35832 SR A R R
R B B s B =) |
Mida del problema (N elements "float") Mida del problema (N elements "float")
Fig. A.3: SpeedUp de Add per diverses mides de problema Fig. A.4: SpeedUp de Triad per diverses mides de problema
Kernel_Reduction Kernel_2PStencil
25 100
90
20 80
. 70
515 S 60
3 T s0
[ @
<2 10 < 40
e e CUDA < 30 e CUDA
5 e OpeNACC 20 e OpeNACC
10
0 0

O ® & &
& A
R . S

%

O N % N

PR SNSRI
R S M S
$ EUARCA I AN

7936
15872
23808
31744
39680
47616
65280

130560

¥

195840
261120
326400
391680
524288
917504
1310720

@©
=1
Q
A
Pl
@
-

2490368
3014656

[=}
S
6
©
~
o
o

6553600
9437184

Mida del problema (N elements "float") Mida del problema (N elements "float")

Fig. A.5: SpeedUp de Reduction per diverses mides de problema Fig. A.6: SpeedUp de 2PStencil per diverses mides de problema

Kernel_2D4PStencil Kernel_Stencil

140 50
120
100

80

60

40

20

e CUDA
s OpenACC

SpeedUp
g 2
® o
2 B
[m]
[a]
SpeedUp
=N W s N N
o o o oo oo oo

PR2IRER23I3R383323888388%

9”‘) ‘b&‘o W%Q %VQ' @Q ,f;q’ ,\’\9 ,,;@ & .33 gmwhmww%ﬁﬁggﬁghomgwmﬁ

R U N A A N M FRAFRASTEREERa IR 2ERS

v id N k) OF T AW S D SeHANMman e 0e s oD
Mida del problema (N elements "float") Mida del problema (N elements "float")

Fig. A.7: SpeedUp de 2DPStencil per diverses mides de problema  Fig. A.8: SpeedUp de Stencil per diverses mides de problema



12

EE/UAB TFG INFORMATICA: Desenvolupament de Micro-kernels per sintonitzacié de rendiment sobre accel-leradores

Kernel_MatxVect

e CUDA
e OpenACC

\

7936
15872
23808
31744
39680
47616
65280

130560
195840
261120
326400
391680
524288
917504
1310720
1835008
2490368
3014656
3276800
6553600
9437184

Mida del problema (N elements "float")

Kernel_MatMult

e CUDA
m— OpenACC

S I R N
g f
LRl

S
o &P %P'\?@'» RS G
LI I A

,\q"’b & o
RG-S

Mida del problema (N elements "float")

Fig. A.9: SpeedUp de MatxVect per diverses mides de problema Fig. A.10: SpeedUp de MatMult per diverses mides de problema

Fig. A.11: SpeedUp de MatMultNoOpt per diverses mides de pro-

blema

BN W s
3 8 8 8
o © © © ©
(2
@

Kernel_MatMultNoOpt

s CUDA
mm— OpenACC

o & S O & O
&L S
SN S R

Mida del problema (N elements "float")

Kernel_Stride2

=——CUDA

e OpeNACC

SpeedUp
»—-Mu:-bwmwmmg
CoOO0OO0CO0O0 00O O
5
7]
7]

7936
15872
23808
31744
39680
47616
65280

130560
195840
261120
326400
391680
524288
917504
1310720
1835008
2490368

=
Pry
2
=
S
I

3276800
6553600
9437184

Mida del problema (N elements "float")

Fig. A.13: SpeedUp de Stride2 per diverses mides de problema

Kernel_Stridel6

e CUDA
s OpenACC

SpeedUp
-
o3 88888
s
7]
$

7936
15872
23808
31744
39680
47616
65280

130560

=
2
r-
I

[

195840
261120
391680
524288
917504
1310720
1835008
2490368

@
ry
g
P
=
I

3276800
6553600
9437184

Mida del problema (N elements "float")

Fig. A.15: SpeedUp de Stride16 per diverses mides de problema

Kernel_Rows

Mida del problema (N elements "float")

Fig. A.12: SpeedUp de Rows per diverses mides de problema

Kernel_Stride4

Mida del problema (N elements "float")

Fig. A.14: SpeedUp de Stride4 per diverses mides de problema

Kernel_Stride64

Mida del problema (N elements "float")

Fig. A.16: SpeedUp de Stride64 per diverses mides de problema



LAURA NAVARRO LORENTE: DESENVOLUPAMENT DE MICRO-KERNELS PER SINTONITZACIO DE RENDIMENT SOBRE ACCEL-LERADORES

A.2 Temps de transferencies entre Host i Device

Temps de Transferéncia - CUDA

8
7
6
o
ES
é 4
53
@
2
1
0

tDNDDgDLDOOOOODCDVDDONLDOOQ

m o~ Q9 WHWLD¢N8WWONQLDWOQW

g o 0 N~ VO W N N 0 o ‘-DNH’!V\DM@DOLDH

N N M A @K NN Q NN = W A S ~ 0 ;mQ wom M~

- M oM T W N W AN DN o e N ® = oM

- = &N Mm mwym M ® S Q o o

- = N N M W

Mida del problema (N elements "float")

Fig. A.17: Temps de transferencies per CUDA

Temps (ms)
i
v

7936
15872
23808
31744
39680
47616
65280

130560
195840
261120
326400
391680
524288

Fig

Temps de Transferéncia - OpenACC

917504
1310720
1835008
3014656
3276800
6553600
9437184

o
s
n
=
2
N
)

Mida del problema (N elements "float"

. A.18: Temps de transferencies per OpenACC

13



