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Desenvolupament de Micro-kernels per
l’anàlisi i sintonització de rendiment sobre

accel·leradores (GPGPUs)

Laura Navarro Lorente

Resum– Aquest article presenta l’estudi i paral·lelització en acceleradores GPU de patrons basats en els
problemes computacionals més habitualment utilitzats en el marc de la Computació d’Alt Rendiment. La
paral·lelització en GPU s’ha basat en l’aplicació de diferents tècniques d’optimització mitjançant OpenACC i
CUDA, seguit d’un anàlisi de l’impacte que aquestes tècniques provoquen en el rendiment obtingut per diverses
mides de problema. També s’ha estudiat la importància que prenen les transferències de dades entre Device
i Host a l’hora d’aconseguir acceleracions elevades. Per últim, s’ha realitzat una comparació dels resultats
de rendiment obtinguts entre CUDA i OpenACC, amb el que s’ha pogut concloure que tot i que OpenACC és
molt més ràpid i senzill d’implementar té un clar desavantatge envers el rendiment obtingut amb CUDA en la
major part dels casos; aquest queda accentuat quan es tenen en compte els temps de transferència, que en
OpenACC són molt més lents.

Paraules clau– Acceleració, Comparativa, Computació d’alt rendiment, CUDA, GPU, OpenACC, Pa-
ral·lelisme, Patró computacional

Abstract– This article presents the study of patterns based on computational problems most commonly
used within High Performance Computing and their parallelization in GPU accelerators. Different optimization
techniques via OpenACC and CUDA have been used for GPU parallelization, followed by an analysis of the
impact these techniques caused on the performance obtained on several problem sizes. The importance of data
transfers between Device and Host for achieving high speedups has also been studied. Finally, a performance
comparison between CUDA and OpenACC has been made based on the obtained results, by which has been
concluded that OpenACC, although, is much faster and easier to be implemented than CUDA, it has a clear
disadvantage on performance compared to CUDA in most cases; this issue is accentuated when data transfer
times are taken into account, which in OpenACC are much slower.

Keywords– Comparison, CUDA, GPU, High Performance Computing, Kernels, OpenACC, Parallelism,
Speed-Up
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1 INTRODUCCIÓ

EL High-Performance Computing (HPC) [1] té com
a principal objectiu permetre l’execució d’aplicaci-
ons complexes i el processament de grans quantitats

de dades de forma més ràpida mitjançant clústers de proces-
sat, supercomputadores, i sistemes heterogenis de computa-
ció paral·lela a partir d’acceleradores. Per tant, solucionar
i aconseguir un alt rendiment de problemes que són exi-
gents computacionalment utilitzant acceleradores GPGPUs
(General-Purpose GPU) [2] és una tasca complexa que ha
evolucionat molt al llarg dels últims anys.

Aquest treball de final d’estudis forma part d’un projecte
més gran i ambiciós en el que es vol automatitzar l’anàlisi
de rendiment de possibles paral·lelitzacions realitzades en
acceleradores. Aquest projecte requereix com a entrada un
conjunt de dades sobre execucions en aquestes plataformes
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i per aquest motiu, és necessari identificar una sèrie de pa-
trons que són representatius de l’espai de programes que
actualment s’executen en GPUs. Aixı́, la principal aporta-
ció d’aquest treball serà realitzar paral·lelitzacions amb sis-
temes heterogenis de CPU/GPU a través d’OpenACC [3] i
CUDA (Compute Unified Device Architecture) [4] de NVI-
DIA [5] del codi que engloba aquest conjunt de patrons.

Per aquest propòsit, es durà a terme un anàlisi del ren-
diment del codi d’un conjunt de micro-kernels que ja ha
tingut una primera implementació amb OpenACC [6] i pro-
posar possibles millores. OpenACC ens ajuda a simplifi-
car la paral·lelització de programes o aplicacions de manera
senzilla gràcies a la seva aplicació a alt nivell mitjançant
directives de compilació. Per altra banda, CUDA proporci-
ona una aplicació més complexa però que ens permet tenir
més control sobre les parts que es volen paral·lelitzar. A
diferència d’OpenACC, el codi per a CUDA que s’executa
al host pot decidir quina informació enviar a la memòria de
la GPU (memòria compartida), i llança els kernels o fun-
cions que s’executen al dispositiu. A més, CUDA permet
tenir més control sobre la quantitat de threads que es volen
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utilitzar per executar cada part del codi, aconseguint aixı́ un
comportament més dinàmic.

Aquest Treball de Final de Grau (TFG) està relacionat
amb un projecte de recerca que es porta a terme pel Departa-
ment d’Arquitectura de Computadors i Sistemes Operatius
(DACSO) [7] de la UAB anomenat “Computació Avançada
per als Reptes de la sOcietat digitaL” (CAROL) [8][9]. Una
part d’aquest projecte es desenvolupa al voltant de la imple-
mentació i l’entrenament de models generats amb tècniques
de Maching Learning [10] per realitzar sintonització de ren-
diment d’aplicacions paral·leles [11]. D’aquesta manera, el
model ajudarà a la presa de decisions de la millor estratègia
a seguir a l’hora d’optimitzar un algorisme complet o de
forma parcial.

Per tal d’aconseguir aquest objectiu, és necessari tenir un
dataset [12] el més complert possible, amb diferents tipus
de problemes de rendiment, per tal de poder entrenar el mo-
del en el ventall més ample possible de regions de codi pa-
ral·leles (kernels) més freqüentment utilitzats.

A través d’aquest TFG es pretén fer la comparativa dels
rendiments obtinguts en les implementacions sèrie, Ope-
nACC i CUDA per tal d’ajudar al model automàtic en la
presa d’aquest tipus de decisions de rendiment.

La resta d’aquest document està organitzat de la següent
manera. La Secció 2 presenta els objectius proposats per
aquest projecte. A continuació, a la Secció 3 s’explica l’es-
tat de l’art del camp de la paral·lelització CUDA envers
OpenACC. Seguidament, a la Secció 4 es descriu la meto-
dologia, és a dir, els passos seguits per a portar a terme els
objectius. La Secció 5 mostra el desenvolupament i l’expe-
rimentació realitzada. Tot seguit, la Secció 6 exposa els re-
sultats obtinguts en les experimentacions on juntament amb
la Secció 7 es raonen les conclusions extretes dels resultats
i lı́nies futures.

2 OBJECTIUS
A continuació s’exposen els objectius d’aquest projecte:
1. Anàlisi del conjunt de kernels actual i recerca de possi-

bles nous kernels amb diferents problemes de rendiment.
2. Anàlisi del rendiment obtingut en la codificació en sèrie

dels kernels.
3. Revisió de la paral·lelització proporcionada en Ope-

nACC i recerca de noves maneres d’implementar-ho per
tal d’optimitzar el codi, acompanyat de la respectiva ex-
perimentació.

4. Implementació de la paral·lelització en CUDA de les re-
gions de codi paral·leles (kernels), acompanyada de la
respectiva experimentació.

5. Exposició dels resultats obtinguts a través d’un anàlisi i
una comparativa de les implementacions realitzades. Ex-
treure’n conclusions respecte sota quines condicions és
millor utilitzar OpenACC o CUDA.

3 ESTAT DE L’ART
Durant l’última dècada, l’acceleració d’aplicacions ha anat
evolucionant i s’ha cercat noves maneres de programació
per aconseguir-ho. S’ha investigat l’ús de la programa-
ció per GPU per tal d’obtenir un rendiment a gran esca-
la en aplicacions complexes de diverses tipologies com in-
tel·ligència artificial o computació d’alt rendiment.

D’aquesta manera, CUDA compta amb un conjunt ampli
de llibreries accelerades que permeten accelerar de manera

eficient aplicacions d’alt còmput matemàtic.
Aixı́ doncs, una alternativa a CUDA és l’OpenACC que

és una solució senzilla per aprofitar la computació en GPU,
ja que es requereixen molt pocs canvis de codi per a habi-
litar el suport per a les acceleradores. Tot i que fins ara era
necessari utilitzar el compilador pgi, NVIDIA l’ha reano-
menat com a NVIDIA HPC Compiler (nvc) [13], eliminant
la llicència necessària en pgi i mantenint la compatibilitat
d’execució de codi juntament amb directives OpenMP, MPI
i CUDA.

Hi ha estudis que conclouen que la diferència de rendi-
ment entre les dues opcions és degut al fet que, amb Ope-
nACC no sempre és possible extreure’n tot el rendiment
possible a l’aplicació donat que té limitacions a la seva espe-
cificació que dificulten l’ús complet dels recursos hardware
[14][15]. Per altra banda, existeixen estudis que adjudiquen
aquesta diferència en el rendiment al compilador (fins ara
pgi) a conseqüència d’haver de traduir els kernels d’Ope-
nACC a codi objecte, això no és necessari amb CUDA.[16].

No obstant, en altres estudis es dictamina que la trans-
ferència de dades en OpenACC tendeix a ser més ràpida
que en CUDA, però alhora requereix fer més copies de da-
des (memcpy) fent que el temps de transferència acabi sent
més lent en OpenACC que en CUDA [15].

4 METODOLOGIA

La metodologia escollida per aconseguir els objectius d’a-
quest projecte ha estat la metodologia Agile [17]. Aques-
ta és del tipus Rapid Application Development (RAD) que
tracta d’aplicar models de millora de forma continuada a
través de la planificació, del desenvolupament, la compro-
vació i la millora d’aquestes tasques modificant aquells fac-
tors que no han estat realitzats correctament. Gràcies a
aquesta metodologia es poden prendre millors decisions en
quant a la planificació i organització de les tasques i soluci-
onar els problemes que es presenten durant el desenvolupa-
ment del projecte.

Per tal d’aplicar aquesta metodologia al projecte, s’han
realitzat reunions setmanals de seguiment on s’han presen-
tat els avenços obtinguts en quant a la paral·lelització del
conjunt de kernels, aixı́ com els resultats aconseguits. A
més, en aquestes reunions s’ha decidit si la versió presenta-
da era prou satisfactòria, en cas contrari s’han discutit pos-
sibles estratègies de millora.

Degut als atacs informàtics soferts durant el mes d’octu-
bre 2021 a la UAB, el sistema de virtualització, on estan
allotjats la major part dels serveis que proporciona la uni-
versitat, es va veure afectat. Per aquest motiu, no es van
poder utilitzar els serveis i aplicatius de la universitat du-
rant un llarg perı́ode de temps. Això va suposar un gran
inconvenient per la realització d’aquest Treball de Final de
Grau donat que per al seu desenvolupament es requereix
fer ús dels recursos proporcionats per DACSO, com són els
clústers amb GPGPU instal·lada.

D’aquesta manera, es va haver de modificar la planifica-
ció proposada inicialment donat que es va veure greument
afectada, implicant també la modificació de l’ordre d’exe-
cució de les tasques i objectius.

Aquest projecte va començar examinant el dataset actu-
al. Seguidament, es va realitzar un profiling de la imple-
mentació en sèrie per tal de poder localitzar aquelles parts
del codi que provocaven un cost computacional més alt i
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dedicar-hi més esforços a l’hora de paral·lelitzar els micro-
kernels. Aixı́, es va aconseguir extreure el major rendiment
possible.

A conseqüència de les incidències sofertes ja esmentades
i a la falta de previsió per restablir els serveis proporcionats
per la universitat, es va decidir aprofitar el temps d’espera
fins a la restauració dels servidors del Departament inclo-
ent una tasca a la planificació. Aquesta va ser desenvolu-
par un motor d’execució que permetés gestionar de manera
més senzilla i eficient l’execució del conjunt de kernels amb
les diverses aproximacions de paral·lelització (sèrie, Ope-
nACC, CUDA).

Per a realitzar aquesta tasca va ser necessari el muntat-
ge d’un setup a l’ordinador portàtil personal per a la pa-
ral·lelització amb CUDA i OpenACC, això va permetre se-
guir desenvolupant el projecte amb els mı́nims inconveni-
ents possibles.

Aixı́ doncs, es va procedir amb la instal·lació d’un dual-
boot amb Windows i Linux com a sistemes operatius, inclo-
ent tant la recerca i instal·lació de tots els drivers necessaris
per a la utilització de CUDA i OpenACC en el ordinador
portàtil com dels toolkits requerits per a la realització del
profiling. A continuació, s’ha realitzat les implementacions
en CUDA i OpenACC.

Un cop es van solucionar els problemes tècnics de la
UAB, es va realitzar un anàlisi del resultats del temps d’exe-
cució obtinguts en ambdós casos (OpenACC i CUDA) pels
diferents kernels i per diferents mida de problema. D’a-
questa manera es va aconseguir fer una comparativa exhaus-
tiva respecte aquests resultats i es va poder extreure conclu-
sions sobre quin és el mètode de paral·lelització més apro-
piat en cada un dels casos.

5 DESENVOLUPAMENT

5.1 Anàlisi dataset
Per tal de posar aquest projecte en context, s’ha analitzat
el dataset proporcionat. Això ha aportat un coneixement
més profund del conjunt de kernels que s’ha hagut de pa-
ral·lelitzar. D’aquesta manera, els patrons que componen el
dataset actual són:
• Kernel Copy: realitza una còpia d’un vector a un altre.

Fig. 1: Descripció de l’algorisme Copy

• Kernel Scale : realitza una multiplicació d’un vector per
un valor escalar.

Fig. 2: Descripció de l’algorisme Scale

• Kernel Add: duu a terme una suma de dos vectors.

Fig. 3: Descripció de l’algorisme Add

• Kernel Triad: realitza una multiplicació d’un vector per
un valor escalar i la suma del resultat amb un segon vec-
tor.

Fig. 4: Descripció de l’algorisme Triad

• Kernel Reduction: realitza la suma de tots els valors

d’un vector en un valor escalar.

Fig. 5: Descripció de l’algorisme Reduction

• Kernel 2PStencil: fa la mitjana entre els dos veı̈ns d’un
element d’un vector. Per tant, com es pot observar a la
següent imatge, si l’ı́ndex del vector senyala la posició X,
llavors fa la mitjana dels dos elements remarcats en verd
i emmagatzema el resultat a la posició X.

Fig. 6: Descripció de l’algorisme 2PStencil

• Kernel 2D4PStencil: funciona de similar manera que el
Kernel 2PStencil amb la diferència de que en aquest cas
es realitzarà la mitjana dels quatre veı̈ns que tenen con-
nectivitat a 4 d’una posició d’una matriu.

Fig. 7: Descripció de l’algorisme 2D4PStencil

• Kernel Stencil: calcula la mitjana dels sis elements veı̈ns
d’una posició d’una matriu en 3D, i a diferència dels dos
anteriors també inclou el valor d’aquesta posició en el
càlcul de la mitjana.

Fig. 8: Descripció de l’algorisme Stencil

• Kernel MatXVec: realitza una multiplicació d’una ma-
triu per un vector.

Fig. 9: Descripció de l’algorisme MatXVec

• Kernel MatMult: realitza una multiplicació de dues ma-
trius amb accessos a memòria optimitzats per l’execució
en CPU.

Fig. 10: Descripció de l’algorisme MatMult

• Kernel MatMultNoOpt: tracta d’una multiplicació de
dues matrius però, en aquest cas, sense optimitzacions
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d’accessos a memòria.

Fig. 11: Descripció de l’algorisme MatMultNoOpt

• Kernel Stride (2, 4, 16, 64): realitzen la còpia del vector
mitjançant salts de mida stride (2, 4, 16, 64).

Fig. 12: Descripció de l’algorisme Stride2

• Kernel Rows: realitza una còpia d’una matriu per co-
lumnes.

Fig. 13: Descripció de l’algorisme Rows

5.2 Motor d’execució
Per altra banda, s’ha implementat un motor d’execució per
tal de facilitar l’execució i la diferenciació de les parts del
codi a analitzar. S’ha distingit entre aquelles parts ne-
cessàries per a l’execució del codi i les funcions relacio-
nades amb els kernels i la seva paral·lelització. D’aquesta
manera s’ha dividit en dues parts:
• StreamHost: La part executora del codi, que és el frag-

ment de codi que és comú per a totes les implementacions
de paral·lelització. Aquı́ es defineixen i s’inicialitzen les
variables i estructures, i es fa l’assignació i l’alliberació
de memòria en CPU. A més, conté les funcions pertinents
per al perfilat de rendiment, etc.

• StreamKernels XX: S’ha generat un arxiu exclusiu d’e-
xecució per a cada tipus de paral·lelització que es por-
tarà a terme en aquest projecte (sèrie, OpenACC, CU-
DA). Aquests arxius contenen el conjunt de kernels, as-
signació i alliberament de memòria en GPU i la còpia de
dades entre Host-Device en el cas de que sigui necessa-
ri. En aquests arxius, s’hi inclouran les modificacions es-
pecı́fiques per a cada tipus de paral·lelització.
A part dels arxius amb el codi font s’han generat un con-

junt de scripts per tal de poder compilar i enllaçar de forma
adient cadascun dels StreamKernels XX. Aquests scripts es
mostren a continuació.

1 commonFlags="-O2 -DN=$size -DNTIMES=10"

Sèrie
1 # Compiler Stage and Linker
2 gcc streamHost.c streamKernels.c $commonFlags -o

streamExe -lm

CUDA
1 # Compiler Stage
2 gcc -c -g streamHost.c $commonFlags -o streamHost

.o;
3 nvcc -c -arch=sm_60 $commonFlags

streamKernels_cuda.cu -o streamKernels.o
4 # Linker Stage
5 gcc streamHost.o streamKernels.o -o streamExe -L/

usr/local/cuda/lib64 -lcudart -lm

OpenACC

1 # Compiler Stage and Linker
2 nvc -acc=gpu -ta=tesla streamKernels_oacc.c

streamHost.c $commonFlags -Minfo=all -o
streamExe -lm

Inicialment és necessari fer ús de flags de compilació co-
muns per a totes les implementacions, on $size correspon
a la mida del problema. Per compilar la codificació sèrie
en llenguatge C, és necessari fer servir el compilador gcc.
El mateix passa amb CUDA, però amb la diferència de que
en aquest cas cal compilar la part del la part StreamKernels
amb nvcc i enllaçar-ho amb gcc. Per altra banda, per com-
pilar la implementació OpenACC és necessari fer servir el
compilador nvc.

5.3 Muntatge setup
Per tal de ser capaç de compilar i executar el codi imple-
mentat s’ha muntat un setup a l’ordinador portàtil personal.
Les especificacions d’aquest ordinador són, un processador
Intel® Core™ i7-9750H, amb 8 GB DDR4 de RAM i una
targeta gràfica NVIDIA GeForce® GTX 1650 de 8GB [18].
D’aquesta manera s’ha instal·lat un sistema dual-boot amb
els sistemes operatius Windows i Linux. A continuació, s’-
ha cercat i instal·lat tots els drivers necessaris per poder uti-
litzar CUDA a la targeta gràfica de NVIDIA [19]. També
ha estat necessari fer una recerca d’eines per a la posterior
realització del perfilat dels resultats [20].

Finalment, els resultats de la Secció 6 s’han obtingut
d’utilitzar el clúster del Departament, que consta de les
següents especificacions:
• Host: aolin-login.uab.es (AOLIN23)
• Processador: Intel® Core™ i5-2400 CPU (3.10GHz).
• Sistema operatiu: CentOS Linux 7 (Core).
• Memòria: 8 GB memory.
• Targeta gràfica: NVIDIA GeForce RTX 3080.

5.4 Implementació amb CUDA
Com ja s’ha comentat anteriorment, la primera aproximació
de paral·lelització que s’ha portat a terme és amb CUDA.

5.4.1 Implementació comú
Per a això, ha estat necessari definir els punters de les es-
tructures de dades que es faran servir dins el dispositiu
(GPU). Aixı́ doncs, s’ha hagut d’afegir al codi la següent
definició per poder fer servir les estructures des de la GPU.
S’ha decidit utilitzar la nomenclatura d per indicar aquells
punters utilitzats en el Device.

Per altra banda, també ha estat necessari realitzar l’assig-
nació i l’alliberació de memòria d’aquelles estructures que
es faran servir al Device [21]. Per fer-ho s’ha utilitzat res-
pectivament cudaMalloc() i cudaFree().

En aquest cas, també ha estat necessari afegir extern “C”
per tal de poder cridar aquesta funció des de la StreamHost
del codi en CPU. Ja que CUDA es compila com si fos un
arxiu C++ i, en canvi, la part executora es compila com si
fos un arxiu de llenguatge C. Aixı́ mateix, per aconseguir
fer les còpies de la informació des de fora del Device, s’ha
definit una funció de copia per a cada estructura, segons si la
informació de l’estructura és necessària copiar-la de Host-
Device o de Device-Host. D’aquesta manera s’aconsegueix
alliberar el temps d’execució dels kernels del temps requerit
per a les còpies.
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5.4.2 Paral·lelització dels kernels
Un cop estructurada la base, s’ha pogut començar amb la
implementació de la paral·lelització CUDA al conjunt de
patrons. Per al seu desenvolupament s’han de tenir en
compte diversos factors o regles que influeixen en la ob-
tenció de bons resultats al utilitzar GPUs. Aquests són:
• Reutilització de dades dins de la GPGPU a través de la

memòria compartida (SMP) [22] i de registres.
• Optimització dels accessos a memòria (coalesced access).
• Maximitzar la relació entre el nombre d’operacions i els

accessos a memòria.
• S’ha de mantenir la regularitat de l’execució i procurar

reduir els controls de flux, instruccions o crides a funció
per tal de minimitzar la divergència.

• Maximitzar l’ocupació del multi-processador. És a dir,
maximitzar la relació entre el nombre de warps actius
i el nombre màxim de warps admesos en un multi-
processador de la GPU.
Seguint aquest conjunt de regles es podrà aconseguir evi-

tar limitacions d’amplada de banda de memòria i assegurar
que la càrrega computacional del problema és suficient per
compensar el cost d’ús de la GPU (overhead) amb els resul-
tats obtinguts. Això s’ha de tenir en compte pel fet que la
sobrecàrrega de comunicació entre el host (CPU) i el device
(GPU) és generalment un dels colls d’ampolla en el rendi-
ment de sistemes HPC que utilitzen acceleradores. És per
aquest motiu que per a problemes senzills no és una bona
estratègia executar-ho des de la GPU.

Kernel Copy, Scale, Add, Triad
Inicialment, s’ha paral·lelitzat el Kernel Copy, per fer-ho

ha estat necessari fer servir un GridDim d’una dimensió i
ceil(N2/N Threads) blocs i un BlockDim de 1024 thre-
ads. D’aquesta manera, el codi s’estructura de forma que
hi hagi el mateix nombre d’elements del vector que thre-
ads. Aixı́, s’aconsegueix que cada thread faci només una
operació de còpia.

D’igual manera, s’ha paral·lelitzat el patró Kernel Scale,
tot i que ara cada thread multiplica el valor del vector per
un valor escalar donat per paràmetre d’entrada.

Fig. 14: Implementació en CUDA del Kernel Copy.

El Kernel Add realitza la suma de dos vectors, per aquest
motiu s’ha afegit un tercer vector a l’execució del ker-
nel. En aquest cas, cada thread fa dos lectures a memòria
global, un per cada vector d’entrada. Per altra banda,
també ha estat necessari canviar la mida del GridDim per
ceil(N3/N Threads).

Per acabar, en el Kernel Triad cada thread calcula pri-
merament la multiplicació d’un vector per un valor escalar
i, a continuació, es suma el resultat anterior amb un segon
vector.

Kernel Reduction
Aquest patró consisteix en fer la suma de tots els va-

lors d’un vector i emmagatzemar el resultat en un valor
escalar. Per fer-ho ha estat necessari utilitzar un Grid-
Dim de N/N Threads i mantenir el valor del Block-
Dim en N Threads threads. D’aquesta manera, cudaKer-
nel Reduction rebrà per paràmetre el vector i la variable es-
calar on desar el resultat final.

Per implementar el codi per executar-ho amb CUDA ha

estat necessari definir un vector auxiliar on s’anirà acu-
mulant la suma dels valors del vector, aquest s’anomena
to reduce. Aquest vector és de tipus shared i, aixı́,
tots els threads del mateix bloc tenen accés a la mateixa
memòria compartida [23]. També és necessari inicialitzar-
lo amb els valors del vector passat per paràmetre, d a1.

Fig. 15: Implementació en CUDA del Kernel Reduction.

Per altra banda, per portar a terme aquest algorisme amb
CUDA, es divideix el vector per la meitat stride = N/2
i es suma el primer element de la primera meitat amb el
primer de la segona, el segon element de cada partició entre
ells, etc. i s’emmagatzema el resultat a la posició agafada
de la primera meitat del vector, reduint aixı́ el nombre de
posicions a sumar. Aquest procediment es repeteix fins que
només quedi un sol valor.

Per tal d’evitar carrera de dades cal sincronitzar els thre-
ads d’un mateix bloc entre iteracions mitjançant barreres

syncthreads() [23]. Aixı́, s’aconsegueix que els threads
s’esperin a la barrera fins que tots hagin executat la iteració
abans de poder continuar amb l’execució.

Finalment, donat que quan N és més gran al nombre de
threads per bloc, s’ha d’utilitzar més d’un bloc i com que la
memòria compartida no es comparteix entre blocs, cal que
cada bloc calculi el seu reduction i, al acabar, cada thread
amb ID 0 utilitza un atomicAdd per realitzar la reducció
final entre blocs.

Kernel 2PStencil, 2D4PStencil, Stencill
Pels diferents Stencils s’ha de tenir en compte que els

marges del vector o matriu no generen cap sortida pel fet
que no tenen veı̈ns suficients per calcular la mitjana. Per
tant, pel Kernel 2PStencil s’han iniciat els càlculs a par-
tir de l’element 1 del vector i s’ha utilitzat un GridDim
de N2/N Threads. Això succeeix d’igual manera per a
l’últim element del vector, ja que l’ı́ndex només arribarà fins
a N2− 1. Per tal d’extreure un millor rendiment fent ús de
la memòria compartida, cada thread carregarà a la memòria
compartida del seu bloc un element, exceptuant el primer i
últim thread, que n’hauran de carregar dos. Gràcies a això,
s’aconsegueix evitar accessos innecessaris a memòria glo-
bal, donat que els veı̈ns ja hauran carregat la informació
necessària per cada thread.

En el cas de Kernel 2D4PStencil, s’ha definit una fines-
tra quadrada de N Threads ∗N Threads on cada thread
guarda a memòria compartida el seu element i, en el cas
que sigui un thread del perı́metre de la finestra, ha de lle-
gir els veı̈ns exteriors, com es pot observar a la Figura 16.
Per últim, al tractar-se d’una matriu és necessari utilitzar un
GridDim de dues dimensions mitjançant el tipus de dades
dim3(n/N Threads, n/N Threads).

Per últim, en el Kernel Stencil, la finestra té forma de cub
de N Threads∗N Threads∗N Threads cada thread car-
regarà a la memòria compartida el seu element i dels veı̈ns
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Fig. 16: 2DP4Stencil: Elements a carregar per cada thread

si és necessari. En aquest cas, com que l’element d’entrada
és una matriu en 3D de n ∗ n ∗ n, s’ha de fer servir un grid
en tres dimensions on cada eix té n/N Threads.

Kernel MatXVec
Aquest kernel realitza la multiplicació d’una matriu per

un vector. Inicialment es crea un vector on es guardarà el
valor de la reducció realitzada per obtenir el resultat final.
Després es realitzen els càlculs intermedis a la memòria
compartida. Aixı́, es divideix la matriu en submatrius de
N Threads ∗N Threads elements i el vector en subvec-
tors de N Threads elements. Per aquest motiu, es llegeix
de memòria global aquestes regions per tal de reaprofitar el
màxim possible i reduir accessos a memòria. Un cop ca-
da bloc ha realitzat els seus càlculs parcials de matriu per
vector, es realitza un atomicAdd per fer la reducció entre
blocs.

Fig. 17: Moviment de la finestra per MatXVect

Kernel MatMult
El Kernel MatMult realitza la multiplicació de dues ma-

trius amb accessos a memòria optimitzats. Per tal de reduir
el nombre d’accessos a memòria, s’ha decidit utilitzar l’es-
tratègia de tiling, que consisteix en subdividir les matrius
en finestres més petites, en aquest cas de N Threads ∗
N Threads. Per això, és necessari llegir aquesta part de
matriu més petita de les dues matrius d’entrada i es realit-
zen les multiplicacions de matrius parcials. Un cop realitza-
des, es mou la finestra N Threads elements de les matrius
d’entrada per continuar fent els càlculs i anar afegint el re-
sultat al valor obtingut anteriorment.

Fig. 18: Moviment de la finestra del tiling

S’ha de tenir en compte que si les dimensions de les ma-
trius no són múltiple de N Threads, la última iteració del
moviment de la finestra no es calcularà de manera comple-
ta donat que, les últimes posicions aniran a parar fora de
la matriu original. Aquest problema, s’ha solucionat apli-
cant la tècnica de loop peeling, que consisteix en eliminar
aquelles condicions dins dels bucles que només afecten al
principi o al final de la iteració. En aquest cas, s’ha utilitzat
per extreure la condició que controla el marge final de la
matriu, ja que només prenia efecte en la última iteració del
bucle.

Kernel MatMultNoOpt
El Kernel MatMultNoOpt, de la mateixa manera que el

Kernel MatMult, realitza la multiplicació de dues matrius
però aquesta vegada sense accessos optimitzats a memòria.
En aquest cas també s’ha utilitzat l’estratègia de tiling, amb
finestres de N Threads ∗N Threads. Aixı́ doncs, és ne-
cessari llegir les posicions englobades per les finestres de
les dues matrius d’entrada i realitzar els càlculs necessaris.
Un cop realitzats, s’ha de moure la finestra N Threads ele-
ments per continuar fent els càlculs i anar afegint el resultat
al valor obtingut anteriorment. Per últim i d’igual forma que
amb el Kernel MatMult, s’ha de tenir en compte que si les
dimensions de les matrius no són múltiple de N Threads,
la última iteració del moviment de la finestra no es calcularà
de manera completa, aquest problema també s’ha solucio-
nat aplicant la tècnica de loop peeling.

Kernel Stride (2, 4, 16, 64)
Aquests kernels fan una còpia d’un vector realitzant salts

de mida stride (2, 4, 16, 64). Això s’ha implementat de
manera que hi hagi el mateix nombre de threads que d’e-
lements als vectors, i que cada thread utilitzi el seu index
j=blockIdx.x*blockDim.x+threadIdx.x a l’hora de cal-
cular l’ı́ndex de la posició que s’ha de fer la copia. Per
fer-ho, es multiplica l’ı́ndex j per l’stride i s’aplica un
mòdul de la mida del vector per recorre’l de forma circu-
lar ((j × stride)%n) i, d’aquesta manera, cada thread fa la
còpia d’un sol element.

Kernel Rows
En el cas del Kernel Rows es du a terme la còpia d’u-

na matriu per columnes accedint cada thread a una posi-
ció i realitzant la còpia. Per la naturalesa d’aquest ker-
nel, s´ha decidit que els blocs tinguin forma de colum-
na en comptes de fila, per tant dim3(1, N Threads) i
al tractar-se d’una copia d’una matriu, el grid té la mida
dim3(n, n/N Threads).

5.5 Implementació amb OpenACC
A continuació, s’ha realitzat la revisió de la paral·lelització
proporcionada en OpenACC cercant diferents formes d’op-
timitzar cadascun dels patrons.
5.5.1 Implementació comú
Inicialment, per tal de fer les còpies de la informació des
de fora del Device i aixı́ excloure’n el temps de còpia del
temps d’execució dels kernels, s’ha definit una funció de
còpia per a cada estructura de la mateixa manera que a la
implementació amb CUDA. Conjuntament s’ha obert una
regió data per a la transferència de dades entre Host i Device
amb les que s’ha realitzat les operacions pertinents dins de
la GPU. D’aquesta manera, les directives acc enter data i
acc exit data defineixen on comença i acaba una regió de
dades.
5.5.2 Paral·lelització dels kernels
Un cop estructurada la base, s’ha pogut començar amb la
implementació de la paral·lelització OpenACC al conjunt
de patrons, fent les millores oportunes per cada kernel.

Kernel Copy, Scale, Add, Triad
Per aquests kernels, s’ha modificat completament la di-

rectiva donat que prèviament es feia la paral·lelització del
kernel juntament amb les còpies d’entrada i sortida dels vec-
tors corresponents. Ha estat necessari paral·lelitzar el bucle
amb parallel loop i s’ha afegit la definició de la mida del
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vector a utilitzar vector length, i la clàusula present informa
la GPU que ja compta amb les dades. D’aquesta manera, la
directiva proposada és la següent:

1 #pragma acc parallel loop present(c2,b2)
vector_length(N_THREADS)

Kernel Reduction
En el cas del Reduction, donat que fins ara comptava amb

la paral·lelització del bucle i la clàusula per accelerar el re-
duction, s’ha experimentat amb la mida del vector, ja que
això ajuda a millorar el rendiment.

1 #pragma acc parallel loop present(a1) reduction
2 (+:reduc) vector_length(N_THREADS)

Kernel 2PStencil
En aquest kernel s’ha afegit la clàusula per escollir la mi-

da del vector que s’ha utilitzat vector length.

1 #pragma acc parallel loop present(b2, c2)
vector_length(N_THREADS)

Kernel 2D4PStencil
Donat que aquest patró prèviament ja tenia la directiva on

es paral·lelitzava el bucle i utilitzava la clàusula tile [24], s’-
ha experimentat amb la mida d’aquesta directiva. L’esmen-
tada clàusula li dóna al programador una forma d’expressar
la localitat dins de bucles niats, aixı́, guia al compilador a
opcions d’optimització addicionals . D’aquesta manera, s’-
ha intentat millorar el rendiment explotant tant la localitat
de dades com la reutilització de dades dins dels bucles.

1 #pragma acc parallel loop present(b2,c2)
2 tile(N_THREADS,N_THREADS)

Kernel Stencil
El procediment inicial per al Kernel Stencil era aplicar

directives de paral·lelització de bucle per a cadascun dels
tres nivells de bucle niats. La solució proposada és la pa-
ral·lelització del bucle més extern utilitzant la clàusula tile
en tres dimensions per tal de reutilitzar el major nombre de
dades possible.

1 #pragma acc parallel loop present(b2, c2) tile(
N_THREADS, N_THREADS, N_THREADS)

Kernel MatXVec
Per al Kernel MatXVec ha estat necessari paral·lelitzar a

dos nivells de bucle. Per una banda, al nivell extern ha estat
necessari la paral·lelització dels bucles, juntament amb la
selecció de la mida del vector a utilitzar.

1 #pragma acc parallel loop present(mat_atax, vxmi,
vxmo) vector_length(N_THREADS)

Per altra banda, al nivell intern ha requerit utilitzar la
paral·lelització independent del bucle conjuntament amb la
clàusula reduction per a la reducció dels valors de la varia-
ble auxiliar.

1 #pragma acc loop reduction(+:aux)

Kernel MatMult
Inicialment, en aquest patró s’utilitzaven directives de pa-

ral·lelització de bucle per a cadascun dels tres nivells de
bucle niats. La modificació que es presenta per al Ker-
nel MatMult és paral·lelitzar el nivell més extern utilitzant
la clàusula tile, i el bucle més intern aplicant un reduction
per realitzar la reducció.

1 #pragma acc parallel loop present(d3,e3,f3)
tile(N_THREADS, N_THREADS)

1 #pragma acc loop reduction(+:aux)

Kernel MatMultNoOpt
El Kernel MatMultNoOpt ha requerit replantejar les di-

rectives inicials degut a que, de la mateixa manera que al
Kernel Rows, es proposava l’ús de la clàusula collapse al
bucle extern, i després paral·lelitzar el bucle més intern junt
a la clàusula reduction. Això no és necessari si, al bucle
més extern se li aplica la clàusula tile.

1 #pragma acc parallel loop present(d3, e3, f3)
tile(N_THREADS, N_THREADS)

Kernel Stride (2, 4, 16, 64)
Per als Stride s’ha mantingut la paral·lelització del bucle

i s’ha afegit la selecció de la longitud del vector.

1 #pragma acc parallel loop present(b2,c2)
vector_length(N_THREADS)

Kernel Rows
En aquest cas ha estat necessari canviar el plantejament

inicial per tal de millorar el rendiment, donat que s’apli-
cava la clàusula collapse que aplana els bucles niats en un
únic. Per tant, aquesta clàusula és útil quan existeixen molts
bucles niats o aquests són molt curts. En canvi, la solució
proposada com a alternativa és utilitzar la clàusula tile amb
la finalitat de dividir els bucles en finestres i aprofitar l’alta
localitat que presenta el kernel.

1 #pragma acc parallel loop present(b2,c2)
tile(N_THREADS, N_THREADS)

6 EXPERIMENTACIÓ

Aquesta secció mostra els resultats obtinguts en les dife-
rents experimentacions que s’han realitzat amb CUDA i
OpenACC. Com ja s’ha comentat anteriorment, els resultats
s’han extret de l’execució de les implementacions al clúster
del Departament, concretament a AOLIN23.

Aquestes execucions s’han realitzat amb diferents mides
de problemes, però per simplificar l’exposició dels resul-
tats s’ha reduı̈t el nombre de mides de problema, utilitzant
únicament quatre mides: una menuda, dues intermèdies i
una de gran.

6.1 Resultats
Kernel Copy, Scale, Add, Triad

Si s’observen els resultats de la Taula 1 es pot veure com
en el cas dels kernels Copy, Scale i Add tenen un comporta-
ment similar entre sı́. Això és degut a que es tracta d’opera-
cions lineals o vectorials, on cada thread calcula un element
del vector.

Per altra banda, a la Figura 19, el kernel Triad tot i tractar-
se del mateix tipus d’operació, OpenACC no és capaç d’ob-
tenir els mateixos temps d’execució que a CUDA.

TAULA 1: Speed up dels Kernels Copy, Scale i Add
Mida
N float

Copy Scale Add
CUDA OpenACC CUDA OpenACC CUDA OpenACC

7936 0,44 0,41 0,31 0,54 0,29 0,27
130560 4,71 3,72 9,44 7,05 6,69 4,59
1310720 39,39 34,10 58,08 50,64 38,14 35,99
9437184 70,37 73,10 84,45 86,43 73,23 70,35
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Fig. 19: Resultats obtinguts al Kernel Triad.

Kernel Reduction
A la Figura 20, es poden observar els resultats obtinguts

per al kernel de reducció. En aquest cas, els speedup no són
tant elevats donat que el compilador és prou intel·ligent com
per treure’n un bon rendiment en CPU. També s’ha de tenir
en compte que en GPU, l’algoritme reduction, per definició
no pot igualar la càrrega entre threads i, per tant, no pot fer
un aprofitament de la paral·lelització massiva.

Fig. 20: Resultats obtinguts al Kernel Reduction.

Kernel 2PStencil, 2D4PStencil, Stencil
En el cas de 2PStencil i 2D4PStencil el comportament

obtingut és molt similar tot i haver obtingut resultats lleu-
gerament millors per al kernel 2D4PStencil. En canvi, el
Stencil, al realitzar l’accés a les dades diferent dels dos an-
teriors, únicament ha aconseguit la meitat del speedup d’a-
quests. Això es pot observar a la taula següent:

TAULA 2: Speed up de 2PStencil, 2D4PStencil i Stencil
Mida
N float

2PStencil 2D4PStencil Stencil
CUDA OpenACC CUDA OpenACC CUDA OpenACC

7936 0,43 0,42 0,51 0,39 1,02 0,74
130560 9,35 7,35 13,49 11,46 16,95 11,24
1310720 56,92 52,43 62,95 70,17 63,14 40,02
9437184 93,85 93,67 108,91 115,36 78,11 55,49

Kernel MatXVec, MatMult, MatMultNoOpt
En aquest cas es pot comprovar com en implementacions

d’alta complexitat matemàtica, com pot ser el tractament
de matrius, els speedups creixen de manera important. Per
MatXVec, al tractar-se d’una matriu per un vector, la reuti-
lització de dades es realitza només per la matriu i, per tant,
els resultats no són tant elevats com en els altres dos casos.

Tant mateix, es pot observar a la Taula 3 com per als ker-
nels MatMult i el MatMultNoOpt s’accentua la millora dels
speedups al aconseguir reutilitzar un gran nombre de dades.
La millora del kernel MatMultNoOpt respecte el MatMult
és molt destacable i és a conseqüència de la forma d’accedir
a la memòria, ja que el MatMult té optimitzats els accessos
per a CPU amb memòria cache, però a nivell de GPU no hi

TAULA 3: Speed up: MatxVect, MatMult, MatMultNoOpt
Mida
N float

MatxVect MatMult MatMultNoOpt
CUDA OpenACC CUDA OpenACC CUDA OpenACC

7936 0,58 0,75 11,96 14,14 12,88 9,79
130560 14,03 9,64 243,08 273,12 358,58 294,00
1310720 37,77 38,52 304,50 461,84 1511,96 1187,21
9437184 46,21 65,16 330,63 472,06 2367,07 1827,90

ha diferència entre aquestes dues implementacions.

Kernel Stride (2, 4, 16, 64)
Aquesta ocasió ha estat possible unificar els quatre ker-

nels Stride degut a que el comportament obtingut en tots
ells ha estat molt similar tant en CUDA com en OpenACC.

Fig. 21: Resultats obtinguts en CUDA al Kernel StrideX.

No obstant, tot i que els accessos realitzats a memòria
no són consecutius els speedups aconseguits són favorables,
sobretot amb mides de problema grans.

TAULA 4: OpenACC Speed up de Kernel Stride
Mida N float Stride2 Stride4 Stride16 Stride64
7936 0.41 1.09 1.98 1.83
130560 5.89 16.03 23.37 31.47
1310720 32.52 74.41 75.33 76.60
9437184 87.22 96.41 71.96 132.23

Kernel Rows
Finalment, el Kernel Rows es tracta d’operacions vecto-

rials, tot i que a diferència del kernel Copy, els accessos a
memòria es realizen de manera consecutiva, això causa una
reducció del temps d’execució a nivell de GPU i, per tant,
assolint SpeedUps majors.

Fig. 22: Resultats obtinguts al Kernel Rows.

Total de threads per kernel
Els temps d’execució anteriorment presentats són el re-

sultat de les versions implementades que després de certa
sintonització han obtingut els millors rendiments. A la Tau-
la 5 s’han recollit el nombre de threads per bloc utilitzats
en cadascun dels kernels que composen el dataset, tan en
CUDA com en OpenACC.
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TAULA 5: Nombre de threads per bloc utilitzats a cada kernel
CUDA OpenACC

X Y Z X Y Z
Copy/Scale/Add/Triad 1024 - - 128 - -
Reduction 128 - - 128 - -
2PStencil 128 - - 128 - -
2S4PStencil 16 16 - 16 16 -
Stencil 8 8 8 16 4 32
MatXVec 64 4 128 - -
MatMult 16 16 - 8 8 -
MatMultNoOpt 16 16 - 16 16 -
Stride (2, 4, 16, 64) 1024 - - 128 - -
Rows 256 - - 1 128 -

Transferència de dades entre Device i Host
Atès que els temps d’execució presentats no compten

amb el temps necessari per a la transferència de dades bidi-
reccionals entre Host i Device, no són del tot realistes. No
obstant, s’ha decidit exposar-los d’aquesta manera ja que
en un programa real s’hauria de tenir en compte el nombre
de kernels a executar i si aquests poden reutilitzar dades ja
existents al Device.

La Taula 6 mostra la quantitat de dades a transferir se-
gons la mida del problema i el temps que tarda CUDA i
OpenACC en realitzar aquestes transferències. També es
pot observar com CUDA va molt més ràpid a fer les trans-
ferències que OpenACC.

TAULA 6: Temps de transferència de dades Device-Host
Mida
N float

Mida transferència
(kB)

CUDA
(ms)

OpenACC
(ms)

7936 31 0.04 9.48
130560 510 0.16 8.75
1310720 5,120 1.18 10.87
9437184 36,864 6.97 21.52

Si afegim els temps de transferència de dades als temps
d’execució dels kernels MatXVec, MatMult i MatMultNo-
Opt, que ja s’ha observat anteriorment que tenen speedups
molt diversos entre ells, es pot veure a la Taula 7 que l’ac-
celeració assolida s’ha vist minvada considerablement, es-
pecialment en el cas de OpenACC.

TAULA 7: Speed up amb transferència de dades
Mida
N float

MatxVect MatMult MatMultNoOpt
CUDA OpenACC CUDA OpenACC CUDA OpenACC

7936 0.20 0.001 3.37 0.02 3.23 0.02
130560 1.09 0.02 53.20 1.26 49.86 1.07
1310720 1.17 0.13 133.40 24.25 327.53 43.79
9437184 1.34 0.44 234.03 167.63 1066.52 467.84

En general, es pot observar que pel kernel MatxVect, l’e-
xecució és igual o molt més lenta que en CPU, i passa igual
en els altres kernels amb la mida de problema més petita.
Per altra banda, la parel·lització en GPU segueix sent efec-
tiva en els kernels MatMult i MatMultNoOpt per mides de
problema grans.

6.2 Anàlisi dels resultats
En general, cal destacar que s’ha assolit una acceleració del
rendiment similar en tots aquells kernels que realitzen ope-
racions vectorials o lineals. En aquests casos, on la reutilit-
zació de memòria és mı́nima, s’ha pogut observar que Ope-
nACC i CUDA són capaços d’obtenir resultats similars. En
canvi, en problemes on la complexitat la marcaven els ac-
cessos a memòria, s’ha pogut observar en OpenACC una re-
lació directa entre les optimitzacions d’accessos a memòria
en caché (MatMult) i l’augment del rendiment en compara-

ció amb CUDA. No obstant, en el MatMultNoOpt, CUDA
ha tret molt més rendiment i, la única diferència entre els
kernels és la manera en com s’accedeix a memòria. Aquest
fet també es pot apreciar en els kernels Stencil, on CUDA
té un Speed-up major en el cas de les tres dimensions, però
OpenACC mostra millors resultats en dues (2D4PStencil).

D’altra banda, s’ha pogut observar que la mida del pro-
blema influeix considerablement en el rendiment final de
les execucions. Generalment, les mides petites resulten més
lentes en GPU que en CPU, exceptuant els casos en que per
la naturalesa del problema els accessos a memòria solen ser
nombrosos i ineficients per a la CPU, com en els kernels
MatMult o MatMultNoOpt. En aquests casos, la GPU as-
soleix millors resultats en totes les mides de problema.

Finalment, com s’ha pogut observar a l’apartat anterior,
el temps de transferència de dades té un gran impacte en
el rendiment final obtingut. També s’ha pogut apreciar que
aquestes transferències prenen molt més temps en el cas de
OpenACC que en CUDA. No obstant això, es pot conclou-
re que en aplicacions on es puguin reutilitzar dades dins
del Device entre diferents problemes o kernels, reduint aixı́
el nombre de transferències entre Device i Host, es poden
aconseguir acceleracions molt elevades.

Aquesta resolució es podria confirmar amb la llei d’Am-
dahl (Equació 1), la qual assegura que ”el màxim Speed-up
que es pot aconseguir d’una aplicació està limitat pel frag-
ment de codi que no es pot paral·lelitzar”. Aixı́ doncs, la
llei de Gustafson va afegir una limitació al Speed-up d’Am-
dahl, afirmant que ”si la mida del problema varia, la part
sèrie no ho farà”[25]. Amb això, es recolza la conclusió
extreta anteriorment, on es determina que si es reduı̈ssin les
transferències de dades els resultats millorarien, ja que són
la part no paral·lelitzable dels kernels.

Speed− Up =
1

f + (1−f)
p

(1)

On f és la fracció de programa no paral·lelitzable i p és
el nombre de processadors a utilitzar.

7 CONCLUSIONS

Un cop finalitzat el projecte, s’ha pogut comprovar que s’-
han completat tots els objectius, exceptuant la part d’intro-
duir nous kernels al dataset malgrat haver realitzat la recer-
ca. No obstant, s’han assolit tot i els inconvenients soferts
arran de l’atac informàtic patit per la UAB i que això pro-
voqués el replantejament de la major part de la planificació,
incloent-hi la realització del muntatge d’un setup casolà per
tal de poder continuar amb el desenvolupament del projec-
te i la implementació d’un motor d’execució. Aquest fet
també demostra que haver escollit la metodologia Agile ha
estat una bona decisió, ja que ha permès realitzar els canvis
esmentats a la planificació el més aviat possible i aixı́ poder
continuar amb aquest projecte reduint els obstacles.

Per una banda, els resultats obtinguts en acceleradores
demostren que els patrons amb gran quantitat d’accessos a
memòria tenen un impacte crı́tic en el rendiment dels nuclis
de còmput i que la mida del problema repercuteix greument
en el rendiment. Per altra banda, els temps obtinguts de-
mostren, tal com s’esperava, que amb CUDA s’assoleixen
Speed-ups més destacables per norma general que en Ope-
nACC, exceptuant per mides petites de problema.

D’aquesta manera es pot concloure que OpenACC és
molt més senzill i ràpid d’implementar que CUDA, però
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requereix una exhaustiva avaluació i una selecció idònia de
les clàusules a utilitzar. En canvi, CUDA dona molta més
llibertat a l’hora de programar i control del comportament
del kernel dins de la GPU.

També es pot confirmar l’afirmació donada en [15] es-
mentada a l’estat de l’art, i és que el temps de transferència
és inferior en CUDA que en OpenACC, això fa que no s’ob-
tinguin millores tan elevades com en CUDA. Malgrat tot, si
s’utilitzen les clàusules ideals per a cada problema, Ope-
nACC pot aconseguir igualar el rendiment de CUDA en la
major part dels casos.

Finalment, cal esmentar que com a treball futur quedaria
acabar de completar el ventall de micro-kernels del dataset
actual. Addicionalment es podria fer una revisió minuciosa
de la implementació dels kernels en CUDA donat que pos-
siblement s’hi pugui realitzar alguna aportació que desenca-
deni en una millora respecte a l’obtingut en aquest projecte.
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Últim accés: 2021-11-07.

[24] Jeff Larkin, “7 Powerful New Features in OpenACC
2.0.” https://developer.nvidia.com/blog/7-powerful-n
ew-features-openacc-2-0/. Últim accés: 2022-01-10.
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APÈNDIX A: GRÀFICS D’INTERÉS

A.1 SpeedUp dels diversos micro-kernels

Fig. A.1: SpeedUp de Copy per diverses mides de problema Fig. A.2: SpeedUp de Scale per diverses mides de problema

Fig. A.3: SpeedUp de Add per diverses mides de problema Fig. A.4: SpeedUp de Triad per diverses mides de problema

Fig. A.5: SpeedUp de Reduction per diverses mides de problema Fig. A.6: SpeedUp de 2PStencil per diverses mides de problema

Fig. A.7: SpeedUp de 2DPStencil per diverses mides de problema Fig. A.8: SpeedUp de Stencil per diverses mides de problema
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Fig. A.9: SpeedUp de MatxVect per diverses mides de problema Fig. A.10: SpeedUp de MatMult per diverses mides de problema

Fig. A.11: SpeedUp de MatMultNoOpt per diverses mides de pro-
blema Fig. A.12: SpeedUp de Rows per diverses mides de problema

Fig. A.13: SpeedUp de Stride2 per diverses mides de problema Fig. A.14: SpeedUp de Stride4 per diverses mides de problema

Fig. A.15: SpeedUp de Stride16 per diverses mides de problema Fig. A.16: SpeedUp de Stride64 per diverses mides de problema
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A.2 Temps de transferències entre Host i Device

Fig. A.17: Temps de transferències per CUDA Fig. A.18: Temps de transferències per OpenACC


