

PLANTA DE PRODUCCIÓN DE HIDRAZINA

TRABAJO DE FIN DE GRADO INGENIERÍA QUÍMICA

Tutor: María Eugenia Suarez Ojeda

Maria Morente Guardiola Daura Mercedes Carballo Flores Íñigo Fernández Martínez Sergi Muñoz Barrios

CERDANYOLA DEL VALLÉS, FEBRERO 2022

CAPÍTULO 11: MANUAL DE CÁLCULOS

Índice

Índice	2
11. MANUAL DE CÁLCULOS	4
11.1 DATOS BIBLIOGRAFICOS	4
11.2 BALANCES PREVIOS A DISEÑO	5
11.3 DISEÑO DE REACTORES	
11.3.1 DISEÑO REACTOR (R-201)	7
11.3.1.1 Dimensionamiento	7
11.3.1.1.1 Diseño de la virola	7
11.3.1.1.2 Espesor y diseño de tapa y fondos	
11.3.1.2 Peso del equipo R-201	13
11.3.1.3 Prueba hidráulica	14
11.3.1.4 Diseño del agitador	15
11.3.1.5 Modo de alimentación y disco de ruptura R-201	18
11.3.1.6 Boca de hombre R-201	18
11.3.1.7 Calor generado en R-201	18
11.3.1.8 Diseño refrigeración R-201	20
11.2.1.9 Aislamiento térmico I	24
11.3.2 DISEÑO REACTORES (R-202 A R-205)	24
11.3.2.1 Dimensionamiento	24
11.3.2.2 Espesor y diseño de tapas RCFP	26
11.3.2.3 Peso del equipo	27
11.3.2.4 Prueba hidráulica	28
11.3.2.5 Modo de alimentación y disco de ruptura	28
11.3.2.6 Calor generado en R-202 a R-205	29
11.3.2.7 Refrigeración R-202 a R-205	30
11.3.1.8 Aislamiento térmico II	33
11.4 DISEÑO EVAPORADORES (EV-301 A EV-303)	33
11.4.1 Funcionamiento del sistema de evaporadores I	33
11.4.2 Dimensionamiento de los evaporadores l	37
11.5 DISEÑO EVAPORADORES (EV-401 A EV-403)	38
11.5.1 Funcionamiento del sistema de evaporadores II	38
11.5.2 Dimensionamiento de los evaporadores II	41
11.6 DISEÑO COLUMNA DE DESTILACIÓN (CD-401)	42
11.6.1 SHORT-CUT CD-401	42
11.6.2 DISEÑO FINAL CD-401	45
11.6.2.1 Simulación CD-401	45
11.6.2.2 Dimensionamiento CD-401 y complementarios	48
11.6.2.3 Eficacia plato a plato y funcionamiento	51
11.6.3 CONCLUSIONES COLUMNA CD-401	52
11.7 DISEÑO DE EQUIPOS COMPLEMENTARIOS	53

11.7.1 Condensadores	53
11.7.1.1 Condensadores CO-301 a 303	53
11.7.1.2 Condensadores CO-401 a 403	58
11.7.2 Intercambiadores de calor	61
11.7.2.1 Intercambiador NaOCl (IC-201)	62
11.7.2.2 Intercambiador NH3 (IC-202)	67
11.7.2.3 Sistema de doble efecto I (IC-203, IC-204)	71
11.7.2.4 Sistema de calefacción para recirculación NH3 (IC-205 y CC-201)	80
11.7.2.5 Sistema de doble efecto II (IC-301, IC-302)	86
11.7.2.6 Intercambiador producto final (IC-401)	95
11.7.3 Bombeos y compresores	99
11.7.4 Calderas, chillers y torre de refrigeración	99
11.7.5 Tanques de almacenamiento	101
11.7.4.1 Tanque de almacenamiento salmuera	106
11.7.4.2 Tanque de almacenamiento producto final	106
11.7.6 Cálculos de tuberías	106
11.7.6.1 Cálculos de diámetro de tuberías	107
11.7.6.2 Cálculos de perdidas de fricción, carga total y NPSH disponible	109
11.8 CONCLUSIONES	110
11.9 BIBLIOGRAFIA	112

11. MANUAL DE CÁLCULOS

A continuación, se expondrán los diferentes cálculos seguidos para el diseño de equipos principales y complementarios del proceso que se llevará a cabo en la planta de producción de Hidracina (64% w.) de *Effectrix Chemicals*. El manual ha sido elaborado por el departamento de Proyectos y en éste se justificarán todas las decisiones de diseño tomadas desde entrada a planta, hasta la obtención del producto final. La mayoría de equipos de planta han sido diseñados por el departamento y empleando la herramienta HYSYS facilitada por AspenTech como simulador de proceso para el diseño de intercambiadores, columnas y demás equipos complementarios.

11.1 DATOS BIBLIOGRAFICOS

De cara al desarrollo de los cálculos se ha hecho uso de una serie de datos bibliográficos tanto sobre propiedades físicas como químicas de las diferentes materias. A continuación, se muestran los datos utilizados para el desarrollo de las simulaciones y modelos aplicados. Hay que mencionar que en los cálculos efectuados con el software de simulación HYSYS los datos empleados con los que proporciona dicha herramienta.

P.M. NaOCI:	58,44 g/mol
P.M. NH ₃ :	17,05 g/mol
P.M. NaOH:	40,00 g/mol
P.M. H ₂ O:	18,015 g/mol
P.M. NH ₂ CI:	51,48 g/mol
P.M. NaCl:	58,44 g/mol
P.M. N ₂ H ₄ :	32,045 g/mol
Gravedad:	9,81 m/s²
Conductividad del Uranus	15,1 J/s m K ³

Tabla 1. Datos bibliográficos

Densidad a 25°C NaOCI:	1110 kg/m ³
Densidad a 25°C NH ₃ :	0,73 kg/m ³
Densidad a 25°C NaOH:	2130 kg/m ³
Densidad a 25°C H ₂ O:	997 kg/m ³
Densidad a 25°C NH ₂ CI:	610 kg/m ³
Densidad a 25°C NaCl:	2160 kg/m ³
Densidad a 25°C H ₂ H ₄ :	1010 kg/m ³
Densidad a 5°C H ₂ O:	1000 kg/m ³

11.2 BALANCES PREVIOS A DISEÑO

El objetivo principal de la planta es producir 15.000 Tn/any de hidracina 64% w. Partiendo de este dato, se empezaron a realizar los balances de materia previos al diseño de equipos para obtener los datos necesarios para su diseño, con el objetivo de poder calcular el calor que generarían las reacciones que intervienen en el proceso.

Como primer paso se calculó la producción por hora de hidracina necesaria para llegar a los objetivos de producción:

 $15.000 \ Tn/any * \frac{0.64 \ Tn \ N_2 H_4}{1 \ Tn \ Producto} * \frac{1000 \ kg}{1 \ Tn} * \frac{1 \ kmol}{32.0452 \ kg} * \frac{1 \ ano}{300 \ dias} * \frac{1 \ dia}{24h} = 41.61 \ \frac{kmol \ N_2 H_4}{h}/h$

Ecuación 2. Producción anual de hidracina neta

Suponiendo unas pérdidas del 10% en proceso (2):

41.61 $\frac{kmol N_2H_4}{h} * \frac{1 \ kmol \ producido}{0.9 \ kmol \ sale \ de \ proceso} = 46.23 \ \frac{kmol N_2H_4}{h} / h$

Ecuación 2. Producción anual de hidracina bruta

Por lo tanto, los balances se diseñarán con el objetivo de que a salida de los reactores de producción de hidracina se obtengan 46.23 $\frac{kmol N_2H_4}{h}$.

De igual manera, se ha calculado la cantidad de agua que el producto contendrá, siguiendo los mismos cálculos con la fracción másica de agua (36% w.) y su peso molecular se obtiene que el producto final debería contener 41.63 $\frac{kmol H_2O}{h}$.

De manera que sumando el valor de la ecuación (1) con la cantidad de agua obtenida por el mismo método, se debería acabar obteniendo por línea de productos un caudal de 83,24 $kmol de producto/_{h}$.

Partiendo de estos valores y la reacción conocida con relación 1 a 1 para todos los agentes puede establecerse que, para producir un mol de hidracina, será necesario un mol de hipoclorito sódico.

$$\begin{split} NaOCl + NH_3 &\rightarrow NH_2Cl + NaOH \\ NH_2Cl + NaOH + NH_3 &\rightarrow N_2H_4 + H_2O + NaCl \end{split}$$

Ilustración 1. Reacciones método Raschig

De manera que si queremos producir de forma bruta $46.23 \frac{kmol N_2 H_4}{h}$ requeriremos una cantidad igual de hipoclorito de sodio que producirá la misma cantidad de monocloramina que acabará produciendo la hidracina. Por tanto, el reactivo limitante del proceso es el hipoclorito de sodio.

A continuación, se presentan unas tablas con los caudales iniciales de entrada a proceso y los respectivos alimentos de materias primeras claramente especificados:

Componente	Qe (kmols/h)	Qe (kg/h)
NaOCI	46,23	2701,74
NH₃	369,85	6298,51
H ₂ O	1617,49	29139,45

Tabla 2. Cauda	l de entrada a	(INSERTAR	NOMBRE DEL	REACTOR 1)

Este caudal está compuesto por las dos materias primeras que entran a proceso con su respectiva cantidad de agua en la que vienen disueltas (el agua actuara como un inerte en esta parte del proceso), se adjuntan tablas 3 y 4 especificando la composición de cada alimento.

Tabla 3. Composición del alimento de amoniaco

Tabla 4. Composición del alimento de hipoclorito

Caudal de alimento de NH₃ licuado (25% w.)		
Componente	Caudal (kmol/h)	
NH_3	369,848	
H ₂ O	1048,861	
Total	1418,709	

Caudal de alimento de NaOCl (12% w. Cl ⁻)		
Componente	Caudal (kmol/h)	
NaOCI	46,231	
Cl⁻ (libre)	46,231	
H ₂ O	568,624	
Total	614,855	

11.3 DISEÑO DE REACTORES

Partiendo de los datos obtenidos en el apartado anterior, se empezaron a diseñar los reactores del proceso. En primer lugar, un RCTA capaz de soportar el caudal de entrada a proceso y asegurar la conversión total de la primera reacción del método Raschig. Seguidamente, un sistema de RCFP en paralelo para obtener el producto final deseado y a la misma vez, no tener un único reactor de dimensiones superiores a lo considerado razonable.

11.3.1 DISEÑO REACTOR (R-201)

Para el diseño de R-201 se contempló diseñar un intercambiador de calor sencillo, no obstante, se diseñó un reactor con agitación para asegurar la conversión total de la mezcla con respecto del reactivo limitante.

11.3.1.1 Dimensionamiento

El equipo R-201 (RCTA) contara con tres partes principales: una virola (cuerpo cilíndrico), un cabezal tipo Korbbogen para soportar el peso del agitador y un fondo Klopper para aprovechar las características geométricas que esta ofrece.

11.3.1.1.1 Diseño de la virola

En primer lugar, al carecer de un valor de cinética para la reacción se determinó un tiempo de residencia para este reactor. Al ser una reacción violenta, con el equilibrio totalmente dirigido a productos, éste no podía ser demasiado elevado, pero si debía asegurar la conversión total. Se determino $\tau = 4 s$, de manera:

$$\tau = V/Q$$

Ecuación 3. Cálculo para el tiempo de residencia.

Donde:

- τ : tiempo de residencia (s).
- V: volumen del reactor (m^3) .
- Q: caudal volumétrico $(m^3/_s)$.

Conociendo el caudal másico y densidades de los componentes conocemos el caudal volumétrico de la mezcla, de manera que $Q = 2,405 \frac{m^3}{s}$.

*Estos cálculos se mostrarán en el próximo apartado para los balances del proceso.

Resolviendo la ecuación 3 para los valores presentados de τ y Q, se obtiene que $V = 9,6219 m^3$.

A partir de estas dimensiones, se aplicaron las correlaciones de la bibliografía (1) para el diseño de tanques agitados. Se aplicó una relación de aspecto L/D = 1'5 (donde L es la longitud y D el diámetro del cuerpo cilíndrico del reactor).

$$V = \left(\frac{\pi}{4}\right) \times D^2 \times L$$

Ecuación 4. Volumen de un cilindro.

Donde:

- V: Volumen del reactor (m^3) .

- D: diámetro sección circular (m)
- L: longitud sección circular (m)
- $L = 1'5 \cdot D$

Solucionando la ecuación 4 y aplicando la relación de aspecto se obtiene:

Tabla 5. Resultados relación de aspecto L/D.

Diámetro (m)	2,01
Longitud (m)	3,02

Para el cálculo de la altura de la sección cilíndrica, se partirá del valor de la longitud de la misma:

$$H = L + h_d$$

Ecuación 5. Cálculo para la altura.

Donde:

- H: altura sección cilíndrica (m).
- L: longitud sección cilíndrica (m).
- h_d : altura para separación de vapor (m).

En cuanto al valor de h_d , pese a que la reacción ocurre en fase líquida en su totalidad se le dará a este un valor del 20% de L, a modo de medida preventiva ante la posibilidad de formación de vapores o gases. Sustituyendo los valores de la tabla 5 para la longitud se obtiene una altura H = 3,624 m.

De esta manera, se obtiene que la virola del reactor tendrá unas dimensiones de:

Tabla 6.	Dimensiones finales de la virola.

Diámetro (m)	2,01
Longitud (m)	3,02
Altura (m)	3,624

11.3.1.1.2 Espesor y diseño de tapa y fondos

Para conocer el espesor de la pared del tanque se ha seguido el procedimiento de la bibliografía 1, al igual que en el apartado anterior. De esta manera, se ha determinado en primer lugar temperatura y presión de diseño para determinar posteriormente el espesor del equipo. Las correlaciones para las ecuaciones 6 y 7 son para ^oF y psia.

-Temperatura de diseño (T_D)

$$T_D = T_o \times \left(1 + \frac{A}{100}\right) + B$$

Ecuación 6. Correlación temperatura de diseño.

Donde:

- T_o : temperatura de operación (5°C = 41 °F)
- A y B: parámetros para diferentes rangos de temperatura
 A = -100

B = 70

De manera que $T_D = 70^{\circ}F = 21,11^{\circ}C$.

<u>-Presión de diseño (T_D)</u>

$$P_D = P_o \times \left(1 + \frac{A}{100}\right) + B$$

Ecuación 7. Correlación presión de diseño.

Donde:

- P_o : presión de operación (1 atm = 14,6959 psia)
- A y B: parámetros para diferentes rangos de presión
 A = -100
 - B = 15

Se obtiene una $P_D = 15 psia = 1,02 atm$.

		Temperatura (°F)			
	Límite inferior	Límite superior	Α	В	
Rango 1	-459.67	32	0	-50	
Rango 2	32	70	-100	70	
Rango 3	70	200	-100	250	
Rango 4	200	600	0	50	
Rango 5	600		0	50	
Tabla 3.2	Parámetros A y B predet	erminados para la pro Presión (esión (psia)		
	Límite inferior	Límite superior	Α	В	
Rango 1	0	15	-100	15	
Rango 2	15	50	-100	50	
Rango 3	50	265	0	25	
Rango 4	265	1015	0	50	
Rango 5	1015		5	0	

Figura 1. Intervalos para determinar A y B (Bibliografía 1).

-Espesor (t_{ASMF}) - virola

Seguidamente a la determinación de las condiciones de diseño, se sigue el criterio ASME para el espesor de las paredes del reactor (espesor), de manera

que se calcularon espesores para esfuerzos tangenciales y longitudinales. Para poder contener los diferentes agentes corrosivos que conlleva el proceso se ha seleccionado el "*Uranus*" como material para los reactores del proceso.

$$t = \frac{P \cdot R}{S \cdot E - 0'6 \cdot P}$$

Ecuación 8. Espesor para esfuerzos tangenciales.

Donde:

- P: presión de diseño (psia)
- R: radio de la virola (1005 mm = 39,567 in)
- S: tensión máxima por el material (71068.5)
- E: eficacia de la junta de soldadura (0,8 para metales)

Se obtiene una $t_{tan} = 0,0104 in = 0,264 mm$ para los esfuerzos tangenciales.

Mientras que para los longitudinales se emplea la ecuación 9:

$$t = \frac{P \cdot R}{2 \cdot S \cdot E - 0' 4 \cdot P}$$

Ecuación 9. Espesor para esfuerzos longitudinales.

El resultado determina que el espesor requerido para esfuerzos longitudinales es $t_{lon} = 0,0052 in = 0,13 mm$. Al ser $t_{tan} > t_{lon}$, se escogió el valor para esfuerzos tangenciales (8).

Para obtener el valor final de espesor siguiendo el criterio seleccionado, se determinaron relaciones para la corrosión y defectos, donde la única variable es el valor obtenido en la ecuación 8 y se aplicaran respectivamente:

- Corrosión: 0,2 mm/año para 20 años de vida útil del equipo.

$$t = 0,264 mm + 0,2 \frac{mm}{a \tilde{n} o} \times 20 a \tilde{n} o s = 4,264 mm$$

Ecuación 10. Relación para la corrosión.

- Defectos de construcción: añadir 10% del espesor calculado.

 $t = 4,264 mm + 0,1 \times 4,264 mm = 4,69 mm$

Ecuación 11. Relación para defectos de fabricación.

De manera que el espesor del reactor seria de 4,69 mm según el criterio ASME, pero por sobredimensionamiento con objetivo de aumentar la seguridad del funcionamiento del equipo se ha seleccionado un sobredimensionamiento del 50%, de manera que:

t_{ASME} (virola) = 4,69 mm + 0,5 × 4,69 mm = 7,03 mm

Ecuación 12. Sobredimensionamiento.

Por otra parte, el reactor cuenta con un cabezal Korbbogen y un fondo Klopper. Para determinar su espesor se ha seguido el mismo procedimiento, pero para el primer cálculo de t_{tan} deben seguirse las ecuaciones 13 y 14.

-Espesor (t_{ASMF}) – Cabezal Korbbogen

En este caso, se aplicará el valor del diámetro obtenido en el apartado anterior (D = 2010 mm = 79,13386 in).

$$t = \frac{P \cdot D}{2 \cdot S \cdot E - 0'2 \cdot P}$$

Ecuación 13. Espesor para esfuerzos tangenciales (tapa Korbbogen).

Se obtiene una $t_{tan} = 0,0104$ in = 0,26416 mm de espesor mínimo para la tapa. Aplicando a este valor las ecuaciones 10, 11 y 12 se obtiene:

 t_{ASME} (cabezal Korbbogen) = 7,0358 mm

-Espesor (t_{ASMF}) – Fondo Klopper

$$t = \frac{P \cdot D}{2 \cdot S \cdot E - 0'2 \cdot P}$$

Ecuación 14. Espesor para esfuerzos tangenciales (fondo Klopper).

El valor de $t_{tan} = 0.018477$ in = 0.4693 mm de espesor mínimo para el fondo. De igual manera que para el resto de componentes del reactor, se aplican las ecuaciones 10, 11 y 12 para obtener el espesor final del diseño:

t_{ASME} (fondo Klopper) = 7,374 mm

Con el objetivo de homogeneizar el diseño del equipo, se seleccionó el valor de espesor más elevado, concretamente el valor resultante de aplicar las ecuaciones de relación anteriores al resultado de la ecuación 14, por lo tanto, el espesor de R-201 será de 7,374 mm. De manera que las dimensiones finales de reactor se obtienen a través de relaciones geométricas, y en cuanto a la tapa y el fondo se ha empleado la calculadora en web de la empresa HORFASA.

A continuación, se muestra una tabla resumen de las dimensiones del reactor, unificando los resultados de la herramienta proporcionada por HORFASA:

Tabla 7. Resumen dimensiones del reactor (por partes).

Virola				
Material	Uranus			
Espesor (mm)	7,374			
Diámetro interno (mm)	2010			
Diámetro externo (mm)	2025			
Longitud (mm)	3020			
Cabezal K	lorbbogen			
Material	Uranus			
Espesor (mm)	7,374			
Diámetro externo (mm)	2025			
R (mm)	1620			
r (mm)	311,85			
h (mm)	22,122			
f (mm)	512			
H (mm)	541			
Volumen (L)	1054,5			
Fondo Klopper				
Material	Uranus			
Espesor (mm)	7,374			
Diámetro externo (mm)	2025			
R (mm)	2025			
r (mm)	202,5			
h (mm)	25,81			
f (mm)	388			
H (mm)	421			
Volumen (L)	812,4			
Características generales				
Volumen útil (m ³)	9,6219			
Altura fluido (m)	2,416			
D. ext				

Figura 2. Cabecera y fondo Klopper

11.3.1.2 Peso del equipo R-201

Para el cálculo del peso de R-201 en vacío se tiene en cuenta el espesor del componente, considerando que el material de fabricación es el Uranus.

A continuación, se muestran los cálculos correspondientes al de la virola, por diferencia entre diámetro interior y exterior, además de utilizar el mismo porcentaje de incremento para el techo tipo Korbbogen y el fondo tipo Klopper. Considerando que la altura utilizada es un sobredimensionamiento de un 20% de la altura real, para evitar problemas de gases u otros.

Partiendo de los valores de la Tabla 6 para la longitud y la altura de los equipos junto a los diámetros definidos en la tabla 7 se dispone;

Cálculo de virola:

$$V_{int} = H \cdot \frac{\pi}{4} \cdot D_{int}^2$$

Ecuación 15. Cálculo para el volumen interior (m^3) .

$$V_{ext} = H \cdot \frac{\pi}{4} \cdot D_{ext}^2$$

Ecuación 16. Cálculo para el volumen exterior (m^3) *.*

$$\Delta(V_{ext} - V_{int}) = V_{ext} - V_{int}$$

Ecuación 17. Diferencia (Cálculo volumen útil).

Analizando los datos obtenidos para los volúmenes en las ecuaciones 15 y 16 $V_{int} = 11,50 m^3$, $V_{ext} = 11,67 m^3$ obteniendo una diferencia de 170 L. El incremento en volúmenes representa un 1,47%, valor el cual se tendrá en cuenta para el procedimiento de cabezal y fondo del equipo.

Para el procedimiento de cabezal y fondo se seguirán las ecuaciones 15 para el cálculo del volumen interno aplicando los valores respectivos para cada parte definidos en la Tabla 7. Se aplicará el incremento definido anteriormente y se calculará la diferencia para conocer el volumen útil.

Cabezal Korbbogen:

$$V_{int} = 1054,5 L \rightarrow \Delta 1,47\% \rightarrow V_{ext} = 1070 L$$

 $\Delta (V_{ext} - V_{int}) = 1070 - 1054,5 = 15,50 L$

Fondo Klopper:

$$V_{int} = 812,4 L \rightarrow \Delta 1,47\% \rightarrow V_{ext} = 824,34 L$$

 $\Delta (V_{ext} - V_{int}) = 824,34 - 812,4 = 11,94 L$

Una vez obtenidos los volúmenes útiles de cada parte de R-201 se suman todos los valores obtenidos, dando como resultados un $V_{total} = 197,44 L$.

Aplicando a este volumen la densidad del material empleado (Uranus, $\rho_{Uranus} = 7700 \frac{kg}{m^3}$) se obtiene:

$$P_{vacio} = \rho_{Uranus} \cdot V_{total}$$

Ecuación 18. Cálculo para el peso R-201.

El peso total de R-201 será de 1520,29 kg de Uranus.

Remarcar que el volumen total del interior del tanque será de 13,37 m cúbicos.

11.3.1.3 Prueba hidráulica

Para la prueba hidráulica del reactor R-201 se trabajará a una presión un 50% superior a la presión de operación. De esta manera se espera prever posibles anomalías en los puntos de unión por soldadura en cabecera, fondo y demás secciones donde la soldadura puede haber dañado la integridad del equipo. Concretamente, la presión de operación de R-201 es de 1 atm, aplicando la regla del 50%, la presión de prueba (P_{prueba}) será de 1,5 atm de presión.

$$P_{prueba} = 1,5 \cdot P_{operación}$$

Ecuación 19. Cálculo para la presión de prueba hidráulica.

Para la prueba se procederá al llenado de R-201 con agua, de manera que el volumen del agua será el sumatorio de los volúmenes de virola, cabezal y fondo:

1.
ĺ

V_{virola} (m ³)	11,50
$V_{cabezal}$ (m ³)	1,0545
V_{fondo} (m^3)	0,8124
V_{agua} (m ³)	13,37

Sabiendo que la densidad del fluido en cuestión es de 1000 kg/ m^3 se procede al calculo para el peso del equipo en el momento de mayor carga, a partir del calculo del peso en vacío obtenido en la **Ecuación 18**.

 $P_{prueba \ hidráulica} = P_{vacío} + V_{agua} \cdot \rho_{agua}$

Ecuación 20. Cálculo para la presión de prueba hidráulica.

Donde:

- P_{vacio} : peso del equipo en vacío (kg).
- V_{agua} : volumen ocupado por el agua (m^3).
- ρ_{aava} : densidad del agua (kg/m³).

Resolviendo la **Ecuación 20** se obtiene un peso en lleno para la prueba hidráulica de 14.887,19 kg.

Finalmente, considerando el peso máximo que podría dar el equipo, se procede a una prueba hidráulica a las condiciones de operación en cuanto a volumen (9,6219 m^3). También se simulará con la densidad del fluido con el que operará R-201 (879,25 kg/ m^3):

 $P_{op} = P_{vacio} + (V_{operación}) \cdot \rho_{mezcla}$

Ecuación 21. Cálculo para el peso real del equipo en funcionamiento.

Donde:

- *P_{vacío}*: peso del equipo en vacío (kg).
- $V_{operación}$: volumen ocupado en operación (m^3) .
- ρ_{mezcla} : densidad del alimento a R-201 (kg/m³).

De manera que se espera que R-201 trabaje con un peso en operación de 9980,35 kg. Cabe remarcar que estos procedimientos han sido realizados de manera teórica, algún resultado puede variar una vez se lleve a cabo en la realidad.

11.3.1.4 Diseño del agitador

Partiendo de los datos obtenidos en los procedimientos anteriores se aplican las correlaciones de la tabla a continuación para el diseño de los agitadores:

Tabla 8.	Correlaciones	para	el	diseño	de	agitadores.
----------	---------------	------	----	--------	----	-------------

$D_a/D_t = 1/3$	<i>f/D</i> _t =0,02	$J/D_t = 0, 1$
$E/D_t = 1/3$	$W/D_a = 1/5$	$g/D_a=1/4$

Donde:

- D_t : diámetro interno del tanque (m).
- D_a : diámetro de turbina / agitador (m).
- f: espacio entre placas deflectoras (m).
- E: distancia desde la turbina al fondo del tanque (m).
- W: amplitud de palas de turbina (m).
- g: amplitud de placas deflectoras.

Los parámetros los cuales no han sido calculados anteriormente son los determinantes para el diseño del agitador como veremos a continuación. También han de diseñarse y dimensionar placas deflectoras, las cuales tienen el objetivo de romper el vórtice generado por la agitación. Partiendo del valor del diámetro interno (2,01 m):

D_a (m)	0,67
<i>f</i> (m)	1,347
J (m)	0,201
<i>E</i> (m)	0,67
W (m)	0,134
g (m)	0,503

Tabla 9. Resultado para las correlaciones.

Analizando los resultados descritos en la Tabla 9 puede definirse que el agitador de R-201 contara con un diámetro de 0,67 m, una distancia al fondo de 0,67m y unas palas con una amplitud de 0,134 m. En cuanto a las placas deflectoras estas se espaciarán en 1,347 m y contarán con una amplitud de 0,503m.

Cálculo de la velocidad angular:

Para determinar el tipo de agitador que se ajuste al objetivo de diseño se requerirá del cálculo para la velocidad angular requerida, así como para conocer la potencia que se requerirá para el funcionamiento del agitador

$$\left(\frac{N \cdot D_a \cdot \mu_L}{\sigma \cdot D_t}\right) \cdot \left(\frac{\rho_L \cdot \sigma^3}{g \cdot \mu_L^4}\right)^{0,25} = 2 \cdot \left(\frac{H}{D_t}\right)^{0,55}$$

Ecuación 22. Cálculo para la velocidad angular.

Donde:

- σ : valor entre 0,2 y 0,7 (se escoge 0,5 como valor intermedio).
- N: revoluciones del agitador (rps).
- μ_L : viscosidad del fluido (0,00152 kg/(m·s)).
- ρ_L : densidad del fluido (840,63 kg/ m^3).
- g: gravedad (9,81 m· s^2).
- D_a : diámetro de turbina (0,67 m).
- D_t : diámetro interno del tanque (2,01 m).
- *H*: altura del tanque (3,624 m).

Aplicando los valores definidos a la ecuación 19 se obtiene N = 2,23 rps = 133,6 rpm. Este valor nos permitirá calcular el valor de Reynolds para el comportamiento el fluido dentro de R-201 mediante la ecuación 20:

$$Re = \frac{{D_a}^2 \cdot N \cdot \rho}{\mu}$$

Ecuación 23. Calculo Reynolds (N en rps).

El resultado para el Reynolds es de $55,36 \cdot 10^4$. Finalmente, los resultados obtenidos en el procedimiento descrito se emplearán para determinar el tipo de agitador a emplear en R-201.

Figura 3. Correlación para diferentes tipos de agitador.

Como se observa la relación w/Da es de 0,2, por lo tanto, aplicándolo al método grafico de la Figura 3 se determina que el agitador a emplear será el 6, un agitador simple de 6 aspas inclinadas. Aplicándole el Reynolds obtenido se determina que el número de potencia será de 4 ($N_p = 4$) para el cálculo de la potencia utilizada para el funcionamiento del agitador.

$$P = N_p \cdot \rho \cdot D_a^{5} \cdot N^{3}$$

Ecuación 24. Calculo para la potencia.

Como resultado de la ecuación 21 se obtiene una potencia requerida de 5024,5 W. Sobredimensionando el sistema en un 50% teniendo en cuenta que gran parte de esta energía será empleada para el funcionamiento del motor se estima un requerimiento energético de 7,6 kW.

Figura 4. Esquema de reactores agitados.

11.3.1.5 Modo de alimentación y disco de ruptura R-201

Para evitar problemas de generación de electricidad estática el salto del líquido desde la tubería de alimentación hasta el nivel de llenado, se consideran como opciones llenar el reactor por debajo o utilizar un sistema de alimentación por la parte superior con tubería sumergida.

Para facilitar la mezcla y mayor comodidad se opta por escoger el sistema de alimentación de tubería sumergida.

El disco de ruptura estará diseñado de manera que este se rompa y libere presión si en el reactor se supera en un 10% del valor de presión de diseño (es decir, la presión interior supera 1,122 atm).

11.3.1.6 Boca de hombre R-201

En cuanto a la boca de hombre se dispondrá de una para el acceso del operario en labores de mantenimiento del reactor en los tiempos donde se corte la producción. Estas funcionaran por un sistema sin bisagra y dos manijas para su manipulación de 500 mm de diámetro y un soporte para presiones de hasta 10 bar.

11.3.1.7 Calor generado en R-201

Como se ha comentado anteriormente, la reacción llevada a cabo en R-201 es altamente exotérmica, por lo que se hicieron previsiones de calor producido en la reacción para el posterior diseño de la refrigeración del tanque.

$$NaOCl + NH_3 \rightarrow NH_2Cl + NaOH$$

Ilustración 2. Reacción en R-201 (R1).

Teniendo en cuenta que en R-201 solo interviene la reacción 1 para la producción de monocloramina se contemplan las siguientes entalpias:

Entalpias de formación ($^{kJ}/_{mol}$) a		
298 K		
NH ₃	-40,2	
NaOCl	-347	
NH ₂ Cl	-39.2	
NaOH	-425,93	

Tabla 10. Valores para las entalpias de los agentes en R-201. Fuente SciFinder.

Los valores de la tabla 10 han sido extraídos del portal on-line SciFinder, donde se pueden encontrar artículos relacionados al cálculo de parámetros de calor especifico y entalpias para todos los agentes químicos. En el apartado de bibliografía se añadirán los diferentes artículos estudiados.

Partiendo de estos valores se determinará la entalpia de reacción a la temperatura de referencia siguiendo la ecuación 22:

$$\Delta H_{298} = \sum n \cdot \Delta H_{f,P} - \sum n \cdot \Delta H_{f,R}$$

Ecuación 25. Calculo para la entalpia de la reacción.

Donde:

- n: coeficiente estequiométrico del agente en R1.
- $\Delta H_{f,P}$: entalpia de formación de los productos $\binom{kJ}{mol}$.
- $\Delta H_{f,R}$: entalpia de formación de los reactivos $\binom{kJ}{mol}$.

De manera que $\Delta H_{298} = -77,2 \ kJ/mol$ en el primer reactor (R-201). No obstante, la reacción se lleva a cabo a 5°C de temperatura, por lo tanto, este valor se verá afectado, obligando a requerir de una ecuación extra:

$$\Delta H_{T_2} = (\sum C p_P - \sum C p_R) \cdot (T_2 - T_1)$$

Ecuación 26. Cálculo para la entalpia a diferentes temperaturas.

Donde:

- ΔH_{T_2} : entalpia de reacción a la temperatura de operación ($T_2 = 278 K$).
- Cp_P : calor especifico de los productos (kJ/mol·K).
- Cp_R : calor especifico de los reactivos (kJ/mol·K).
- T_1 : calor de referencia (298 K).

Tabla 11. Valores para los calores específicos de los agentes en R-201. Fuente SciFinder.

$Cp(J/mol \cdot K)$			
NH ₃	80,08		
NaOCl	282,99		
NH ₂ Cl	109,823		
NaOH	167,187		

Con el conveniente cambio de unidades de los valores de la tabla 11 y aplicando la ecuación 23, se determina que la entalpia de la reacción a las condiciones de operación en R-201 será de la magnitud $\Delta H_{278} = -75,48 \text{ kJ/mol}$. Teniendo en cuenta que los moles que intervienen en R1 tienen una relación 1:1, el caudal molar que reaccionará en el reactor será de $Q_R = 92,46 \text{ kmol/h}$. Situando la entalpia en unidades compatibles a este caudal molar (en kJ/kmol), el producto de el caudal con la entalpia a la temperatura de operación devuelve el calor generado en R-201:

$$Q = Q_{R1} \cdot \Delta H_{278}$$

Ecuación 27. Cálculo para el calor generado en la reacción

De manera que se generará un calor $Q = -6,9787 \cdot 10^4 kJ/h$, el símbolo negativo define que el calor será desprendido del sistema hacia el exterior. Esta será la cantidad de calor a disipar con la refrigeración de R-201.

11.3.1.8 Diseño refrigeración R-201

El reactor contará con un encamisado de media caña para eliminar el calor generado por la reacción, concretamente se deben eliminar $6,9787 \cdot 10^4 kJ/h$ que equivalen a 1938,527 kJ/s. Como agente refrigerante se había planteado emplear el Freon, pero dada su composición con presencia de cloro y su desuso en la industria se ha optado por emplear un suministro de nitrógeno líquido proporcionado por "*Carburos Metalicos"*. El nitrógeno líquido, a demas, posee unas propiedades térmicas notablemente superiores al Freon como refrigerante, y su uso no presenta una peligrosidad elevada frente al medioambiente. No obstante, este debe estar a temperaturas muy bajas, por lo que será necesario contar con la columna de refrigeración proporcionada por la empresa suministradora.

El proceso de refrigeración ha sido diseñado de manera que el salto de temperatura en el refrigerante sea de 20° con respecto la temperatura de entrada. El nitrógeno entrará al sistema como un líquido a la temperatura de ebullición (-196° C = 77 K) y mantendrá una temperatura constante dentro de R-201 de 5°C. La alta capacidad del nitrógeno a la hora de eliminar calor ha provocado que el encamisado sea parcial al área exterior del reactor, ya que cubrir toda el área cilíndrica del equipo provocaría una bajada de temperatura en el interior por debajo de los 0° C, por lo que el agua se congelaría en su interior.

En primer lugar, se ha calculado la temperatura media logarítmica (DTML) conociendo los parámetros de temperatura de la operación:

$$DTML = \frac{(T - T_E) - (T - T_S)}{\ln\left(\frac{T - T_E}{T - T_S}\right)}$$

Ecuación 28. Cálculo para DTML.

Donde:

- T: temperatura en el interior de R-201 (278 K).
- T_E : temperatura de entrada refrigerante (77 K).
- T_S : temperatura de salida refrigerante (97 K).

El resultado de la ecuación 27 es DTML = 190,825 K.

Una vez calcula la DTML del sistema, se procede a calcular la masa necesaria de nitrógeno para eliminar el calor generado en el reactor:

 $Q_e = m * Cp * \Delta T$

Ecuación 29. Cálculo para el calor eliminado por masa de refrigerante.

Donde:

- Q_e : calor a eliminar (kJ/s).
- *m*: masa de refrigerante (kg/s).
- *Cp*: calor especifico del refrigerante (1,0404 $\frac{kJ}{kg * K}$).
- ΔT : salto de temperatura en el refrigerante (20).

Sabiendo que el calor a eliminar son 1938,527 kJ/s, para el salto de temperatura seleccionado se requerirá una masa de nitrógeno de 93,16 kg/s, esto se corresponde a un caudal volumétrico de 414,3 m^3/h de nitrógeno. Lo cual lleva a escoger una tubería de 8 pulgadas (200 mm de diámetro nominal) con un espesor de 0,188 in (4,78 mm). Fuente; tabla de la figura 5, a continuación:

DIÁMETRO '	FUBERÍA	3.1 - 4	CAUDAL	1001
m	pulg.	m³/h	l/s	gal/min.
0.050	2	11 - 14	3 - 4	40 - 70
0.075	3	25 40	7 - 11	110 - 175
0.100	4	50 - 79	14 - 22	225 - 350
0.125	5	90 - 140	25 - 38	400 - 600
0.150	6	140 - 230	38 - 63	600 - 1.000
0.175	7	220 - 340	60 - 95	950 - 1.500
0.200	8	290 470	80-130	1.300 - 2.100
0.250	10	500 - 790	140 - 220	2.200 - 3.500
0.300	12	790 - 1.260	220 - 350	3.500 - 5.500
0.350	14	1.150 - 1.800	320 - 500	5.000 - 8.000
0.500	20	2.950 - 4.540	820-1.260	13.000 - 20.0
0.750	30	7.920 - 13.680	2.200 - 3.800	35.000 - 60.0

Figura 5. Tabla para relación diámetro-caudal.

Conociendo el valor del diámetro nominal de la tubería y sabiendo que la sección en contacto a R-201 será la mitad (media caña) se aplica el cálculo típico para la velocidad de circulación de la siguiente manera:

$$v = \frac{m * 1/\rho}{0.5 * (\pi/4 * D^2)}$$

Ecuación 30. Cálculo para la velocidad de flujo (modificación media caña).

Donde:

- v: velocidad de flujo (m/s).
- m: caudal másico (kg/s).
- ρ : densidad de N_2 (809,5 kg/ m^3).
- *D*: diámetro de tubería de paso (m).

De manera que la velocidad del flujo de nitrógeno será de 7,326 m/s.

Una vez conocidos los parámetros del flujo de refrigerante y el área de paso del mismo, se procede a calcular el coeficiente individual de transferencia de materia referido al fluido (h_i) mediante el procedimiento a continuación. Cabe remarcar que el valor de los parámetros A, B y C es adimensional y extraído

de fuentes bibliográficas para el diseño de encamisados, en concreto 0,0023, 0,8 y 0,4 respectivamente.

$$\frac{h_i * D_{int}}{k} = A * \left(\frac{\rho * \upsilon * D_{int}}{\mu}\right)^B * \left(\frac{Cp * \mu}{k}\right)^C$$

Ecuación 31. Relación para coeficiente individual de transferencia de materia interna.

Donde:

- h_i : coeficiente individual de transferencia de materia $\binom{kJ}{s*m^2*K}$.
- *D_{int}*: diámetro interior de la tubería (m).
- ρ : densidad de N_2 (kg/ m^3).
- *v*: velocidad del flujo de refrigerante (m/s).
- k: conductividad del refrigerante $\binom{kJ}{s*m*K}$.
- μ : viscosidad del refrigerante (1,691x10⁻⁴ kg/m * s).
- *Cp*: calor especifico del refrigerante $(1,040 \ ^{kJ}/_{ka * K})$.

Obteniendo un valor para $h_i = 1690,72 \frac{kJ}{s * m^2 * K}$.

De igual manera se calcula el coeficiente de transferencia de materia para el líquido agitado en el interior del tanque (h_e) , en este caso los valores de A, B y C son 0.5, 0.6 y 0.33 para el tipo de agitación aplicada en R-201.

$$\frac{h_e * D}{k} = A * \left(\frac{\rho * N * {D_a}^2}{\mu}\right)^B * \left(\frac{Cp * \mu}{k}\right)^C$$

Ecuación 32. Relación para coeficiente individual de transferencia de materia externa.

Donde:

- h_e : coeficiente individual de transferencia de materia $\binom{kJ}{s*m^2*K}$.
- *D*: diámetro interior del cilindro del tanque (2,01 m).
- ρ : densidad del licor en R-201 (840,64 kg/ m^3).
- N: velocidad de agitación (2,23 rps).
- D_a : diámetro del agitador (0,67 m).
- k: conductividad del agua (0,058 $^{kJ}/_{s * m * K}$).
- μ : viscosidad del agua (0,001 kg/m * s).
- *Cp*: calor especifico del agua (4,18 $^{kJ}/_{ka * K}$).

Cabe remarcar que se toman las propiedades de conductividad, viscosidad y calor especifico del agua (medio de reacción y sustancia mayoritaria en R-201) dada la imposibilidad de simular la mezcla licor de R-201 en Aspen

HYSYS V10 por la presencia de monocloramina en el reactor. No obstante, al ser el agua el componente mayoritario y disolvente, la mezcla debería tener unas propiedades muy similares a esta. De manera que se obtiene como resultado $h_e = 21,74 \frac{kJ}{s * m^2 * K}$.

Una vez calculados los valores para los coeficientes de transferencia de materia interno y externo se procede a calcular el coeficiente global de intercambio de calor mediante la siguiente expresión:

$$\frac{1}{U} = \frac{1}{h_i} + \frac{1}{h_e} + \frac{\Delta x}{k}$$

Ecuación 33. Cálculo del coeficiente global de intercambio de calor (U).

Donde:

- Δx : espesor de pared R-201 (m).
- k: conductividad Uranus $(15,1x10^{-3} kJ/s*m*K^3)$.

De esta forma se obtiene $U = 1.9 \frac{kJ}{s * m^3 * K}$.

Una vez calculado el valor para el coeficiente de transferencia global es necesario calcular el área sector cilíndrico de R-201, pero como se comentó anteriormente, aplicar el encamisado en toda la zona provocaría una bajada de temperatura demasiado elevada lo que se traduciría en una cristalización en hielo del agua que contiene el equipo.

Teniendo este hecho en mente, se modificará la relación para el cálculo del calor disipado en consecuencia:

$$Q = U * A * DTML$$
$$Q = U * (1/_{A} * A) * DTML$$

Ecuación 34. Comprobación de eliminación deseada.

Donde:

- A: área de la zona cilíndrica de R-201 (25,65 m^2).

De manera que se obtiene un calor eliminado con valor de 2331,08 kJ/s frente a los 1938,527 kJ/s generados por la reacción. Se prefiere recubrir ¼ del área total del equipo con las condiciones designadas en este apartado, dada que la diferencia es de unos 400 kJ/s y los cálculos no son suficientemente rigurosas, ya que se han empleado las propiedades térmicas del agua cuando lo más probable es que en la realidad la conductividad de la mezcla licor alimentada a R-201 sea inferior. Por lo tanto, se toman esos 400 kJ/s de más a modo de sobredimensionamiento siempre y cuando este valor no provoque una caída de temperatura en el interior por debajo de los 0° C.

11.2.1.9 Aislamiento térmico I

Pese a que el reactor trabajara en temperaturas relativamente bajas, la superficie directa de contacto con el exterior será el encamisado, en el cual se barajaran temperaturas por debajo de los 100° bajo cero.

Con tal de evitar incidentes en planta por contacto directo con esta superficie se aplicarán diez capas de Rockwool®-133 con un espesor de 60 mm por capa para evitar intercambio de calor entre el exterior y el interior del reactor.

Con estas medidas de seguridad se espera reducir al mínimo el efecto del de las posibles temperaturas mayores a 35º C del verano en la zona y evitar que los operarios puedan entrar en contacto con el encamisado que podría provocarles quemaduras por frio si llegasen a entrar en contacto y aislar el resto del reactor sin encamisado para evitar posibles interferencias por la temperatura.

11.3.2 DISEÑO REACTORES (R-202 A R-205)

Para la segunda reacción (R2) no se logró determinar ningún tipo de parámetro referido a la cinética, de manera que la única fuente de diseño seleccionada fue un artículo donde se substrajo el buen funcionamiento de un sistema RCFP para llevar a cabo esta reacción.

 $NH_2Cl + NaOH + NH_3 \rightarrow N_2H_4 + H_2O + NaCl$

Ilustración 3. Reacción en R-202, 203, 204 y 205 (R2).

A causa del gran caudal de salida de R-201, se decidió diseñar un sistema de cuatro RCFP paralelos para reducir el caudal en cada uno, obteniendo unos reactores dentro de los rangos habituales de diseño, cada uno con su exceso 40:1 en amoniaco para llevar a cabo la reacción de forma satisfactoria.

11.3.2.1 Dimensionamiento

Partiendo de la misma fuente empleada para el diseño de tanques agitados (R-201) se diseñaron los reactores R-202, 203, 204 y 205 como tanques horizontales. Previo al desarrollo del diseño debe comentarse que esta correlación tiene en cuenta la presencia de vapores en el medio de reacción, sin embargo, a las condiciones de operación (30 bar y 150°C) todo el alimento suministrado a los reactores estará en estado líquido.

En primer lugar, se substrajo la información de diferentes proyectos donde empleaban RCFP junto al catalizador de R2 (los EDTA) para la producción de hidracina. En este se obtenían unos tiempos de residencia de unos 12,5 s para una conversión total en productos.

Al emplear como catalizador el sobreexceso de amoniaco (40:1) con respecto a la monocloramina se sobredimensiono el tiempo de residencia de la fuente

en un 20%, de modo que $\tau_{RCFP} = 15 s$. En cuanto al caudal alimentado a cada reactor este será una cuarta parte del caudal de salida de R-201, por lo que $Q = 3 m^3/s$. Aplicando la ecuación 3:

$$V(m^3) = Q \cdot \tau_{RCFP}$$

Obteniendo $V_{RCFP} = 45 m^3$ para cada uno de los 4 reactores requeridos. Partiendo de este primer cálculo, se volverá a aplicar los parámetros de diseño para determinar la relación de aspecto y espesores de las partes que componen al reactor como se realizó con R-201.

-Temperatura de diseño (T_p)

$$T_D = T_o \times \left(1 + \frac{A}{100}\right) + B$$

Ecuación 6. Correlación temperatura de diseño.

Donde:

- T_o : temperatura de operación (150°C = 302 °F).
- A y B: parámetros para diferentes rangos de temperatura.
 A = 0
 - B = 50

De manera que en los RCFP el valor de $T_D = 352 \ ^{\circ}F = 177,78 \ ^{\circ}C$.

<u>-Presión de diseño (T_D)</u>

$$P_D = P_o \times \left(1 + \frac{A}{100}\right) + B$$

Ecuación 7. Correlación presión de diseño.

Donde:

- P_o : presión de operación (30 bar = 435,113 psia)
- A y B: parámetros para diferentes rangos de presión A = 0
 - B = 50

Obteniendo como resultado una $P_D = 485,113 psia = 33,447 bar$.

De nuevo remarcar que los parámetros A y B para cada caso han sido extraídos de la Figura 1 (pág. 7).

Para el valor de presión de diseño obtenido se determinó una relación de aspecto $L/_D = 4$, de manera que se siguieron los cálculos siguientes:

$$L = \frac{4 \cdot V_{RCFP}}{\pi \cdot D^2 \cdot (1 - r_{vc})}$$

Ecuación 35. Cálculo para la longitud de RCFP

Donde:

- *L*: longitud del reactor (m).
- D: diámetro del reactor (m) se corresponde a ¼ de L.
- r_{vc} : volumen de vapor (en este caso 0).

Resolviendo la ecuación 2X se determina:

Tabla	12.	Dimensiones	de	R-202	a R-205.
1 0010		Difficitiones	ac	11 202	an 200.

Diámetro int (m)	2,428
Longitud (m)	9,71

11.3.2.2 Espesor y diseño de tapas RCFP

Una vez obtenidas las dimensiones del cuerpo cilíndrico del RCFP se dispuso a calcular el espesor de las paredes del mismo, teniendo en cuenta las nuevas condiciones de diseño y conociendo que el material de construcción también será el Uranus.

-Espesor (t_{ASMF}) – Cuerpo cilíndrico

Volviendo a aplicar las ecuaciones 8 y 9 para esfuerzos tangenciales y longitudinales, se determinó:

Tabla 13. Resultados e	ecuaciones 8 y	9 para parámetros RCFP
------------------------	----------------	------------------------

t _{tan} (mm)	264,414
t _{lon} (mm)	131,318

De manera que se escogió el espesor para esfuerzos tangenciales por su magnitud mayor.

Partiendo de este espesor, se aplicaron de nuevo las relaciones definidas en las ecuaciones 10 (corrosión), 11 (defectos de fabricación) y 12 (sobredimensionamiento criterio ASME), dando como resultado final los siguientes espesores:

Tabla 14. Resultados ecuaciones 10, 11, y 12 para parámetros RCFP.

<i>t</i> ₁ (mm)	268.414
t ₂ (mm)	295,2554
t _{ASME} (mm)	442,88

Finalmente, se obtiene que el cuerpo cilíndrico de cada reactor contara con un espesor t_{ASME} = 442,88 mm para soportar las cargas de presión que en este se ejercerán durante su vida útil.

En cuanto a las tapas, al tratarse de RCFP, no ha sido necesario realizar ningún diseño torisferico, ya que lo más habitual es diseñar las tapas de manera simple, por lo tanto, estaríamos hablando de secciones circulares de un espesor igual al del cuerpo cilíndrico y un diámetro acorde al requerido por el reactor. A continuación se presenta una tabla con las dimensiones finales para los reactores R-202 al 205. Remarcar de nuevo que el material empleado también es el Uranus.

Cuerpo Cilíndrico				
Volumen interior (m^3)	45			
Diámetro interno (mm)	2428			
Diámetro externo (mm)	3313,76			
Longitud (mm)	9710			
Espesor (mm)	442,88			
Tapas				
Diámetro (mm)	3313,76			
Espesor (mm)	442,88			

11.3.2.3 Peso del equipo

De igual manera que para R-201, los reactores R-202 a 205 serán construidos con el material Uranus, por lo tanto, se procederá a calcular su peso en vacío, lleno y en funcionamiento de la misma manera que se hizo anteriormente para R-201. Partiendo de los valores para el cuerpo cilíndrico de los equipos (Tabla X):

$$V_{int} = H \cdot \frac{\pi}{4} \cdot D_{int}^2$$

Ecuación 15. Cálculo para el volumen interior (m³).

$$V_{ext} = H \cdot \frac{\pi}{4} \cdot D_{ext}^2$$

Ecuación 16. Cálculo para el volumen exterior (m^3) .

$$\Delta(V_{int} - V_{ext}) = V_{ext} - V_{int}$$

Ecuación 17. Diferencia (Cálculo volumen útil).

Aplicando las ecuaciones 15, 16 y 17 para las medidas de los RCFP, se obtiene $V_{int} = 42,46 m^3$, $V_{ext} = 59,36 m^3$, valores los cuales proporcionan un volumen estructural de 16.900 L (16,90 m^3) de Uranus. De manera que el incremento entre volúmenes se corresponde con un 25%.

Esta vez las tapas del reactor son simples (sin forma torisferica), por tanto, el volumen útil del cuerpo cilíndrico se corresponde con el volumen total del equipo. De manera que conociendo el valor anteriormente proporcionado para la densidad del material y el volumen real del equipo se calcula el peso del equipo en vacío:

$$P_{vacio} = \rho_{Uranus} \cdot V_{total}$$

Ecuación 18. Cálculo para el peso R-201.

Obteniendo un peso para el equipo de 130.145,4 kg para cada uno de los reactores. Contando que serán cuatro reactores de las mismas características, el peso de Uranus total será de 520.581,6 kg.

11.3.2.4 Prueba hidráulica

Empleando agua pura como fluido para el llenado, se utilizarán los 42,46 m^3 calculados en el apartado anterior para el volumen de agua que será introducido en cada reactor. Conocida también la densidad del agua se aplica de nuevo la **Ecuación 20**:

$$P_{prueba \ hidr \acute{a}ulica} = P_{vac \acute{l}o} + V_{agua} \cdot \rho_{agua}$$

Ecuación 20. Cálculo para la presión de prueba hidráulica.

El sumatorio del peso del fluido para la prueba, junto al peso del equipo en vacío se obtiene un $P_{prueba\ hidráulica} = 172.605,4\ kg$ para el equipo en prueba hidráulica.

11.3.2.5 Modo de alimentación y disco de ruptura

La alimentación a los reactores R-202 a R-205 consistirá en una doble entrada; una entrada directa del producto obtenido en la operación de R-201 que se llevará a las condiciones de operación de R-202, 203, 204 y 205 previamente a la entrada al equipo. Por otra parte, también se alimentará la recirculación de amoniaco para lograr obtener la proporción 40:1 deseada.

Para aprovechar al máximo las dimensiones de los RCFP y no tener perdidas de presión notables se alimentarán de manera directa al reactor por cabecera.

Al ser equipos que operarán a altas presiones (30 bar) y temperaturas moderadas (150° C) se instalara un disco de ruptura en cada uno de los RCFP de planta, los cuales saltarán liberando presión del equipo si la presión en el interior del reactor supera la presión de diseño (33,45 bar). De esta manera se evitará que la presión aumente de manera descontrolada en el reactor, dado que la explosión de uno solo de ellos podría provocar la explosión de los otros reactores, dada su disposición en paralelo, lo cual se traduciría en unos daños más que considerables en planta y podrían llevar consigo consecuencias catastróficas en todo el polígono Nylon-66.

En cuanto a boca de hombre, al ser equipos a presión y de flujo pistón no se requiere diseñarla. En su lugar, se optará por alimentar agentes

anticorrosivos para su mantenimiento en las fechas designadas para mantenimiento de los equipos en planta.

11.3.2.6 Calor generado en R-202 a R-205

De igual manera que en R1, la reacción 2 (o R2 para abreviar) es altamente exotérmica, de manera que es necesario cuantificar esta cantidad de calor siguiendo el mismo procedimiento empleado en el apartado <u>11.3.1.6</u>, pero teniendo en cuenta ahora los agentes que intervienen en R2.

$$NH_2Cl + NaOH + NH_3 \rightarrow N_2H_4 + H_2O + NaCl$$

Ilustración 3. Reacción en R-202, 203, 204 y 205 (R2).

Conociendo los químicos que intervienen en R2 se requiere definir de nuevo las entalpias de estos para contextualizar mejor los cálculos empleados. En cuanto a las entalpias, estas se corresponden al valor para estado líquido, ya que las condiciones de operación mantienen los agentes en estado líquido.

Entalpias de formacio	ón ($^{kJ}/_{mol}$) a			
298 K				
NH ₃	-40,2			
NH ₂ Cl	-39.2			
NaOH	-425,93			
N_2H_4	50,63			
H_2O	-285,83			
NaCl	-411,12			

Tabla 16. Valores para las entalpias de los agentes en R-202 a 205. Fuente SciFinder.

Aplicando estos nuevos valores con sus respectivos coeficientes estequiométricos en R2 a la **Ecuación 22** se obtiene $\Delta H_{298} = -140,99 \text{ kJ/mol}$ para la temperatura de referencia. De nuevo se debe obtener el valor de la entalpia para las condiciones de operación. Definiendo los nuevos valores de Cp:

Tabla 17. Valores para los calores específicos de los agentes en R-202 a 205. Fuente SciFinder.

Cp (^J / _{mol} .	_K)
NH ₃	80,08
NH ₂ Cl	109,823
NaOH	167,187
N_2H_4	98,9
H_2O	75,30
NaCl	51,4

Con el pertinente cambio de unidades de J a kJ en el valor de Cp y aplicando de nuevo la **Ecuación 23** para $T_2 = 423 K$ (150°C dentro del reactor) se obtiene una $\Delta H_{423} = -157,426 kJ/mol$.

El caudal molar que interaccionará cuando R2 tenga lugar será de 46,23 kmol/h de hidracina, hidróxido de sodio y amoniaco, de manera que Q_{R2} = 138,69 kmol/h. Aplicando finalmente la **Ecuación 24**, el calor generado por R2 $Q = -21,8334 \cdot 10^6 kJ/h$.

Si solo empleásemos un RCFP para llevar a cabo R2 este sería el calor a disipar en el reactor, no obstante, se decidió dividir los caudales en cuatro partes iguales, de manera que el calor generado en los reactores R-202, R-203, R-204 y R-205 corresponderá a una cuarta parte del calor total generado. Por lo tanto, en cada RCFP se generará $Q_{RCFP} = -5,4583 \cdot 10^6 kJ/h$, calor el cual se deberá disipar con un sistema de refrigeración capaz de absorber el valor desprendido por cada uno de los reactores.

11.3.2.7 Refrigeración R-202 a R-205

Para la eliminación del calor generado por la reacción en cada uno de los RCFP para la segunda etapa se ha seguido el mismo método que para el diseño de la refrigeración de R-201. En este caso, en cada reactor se deben eliminar $5,4583 \cdot 10^6 kJ/h$ (1516,19 kJ/s). Para ello se diseña una refrigeración de media caña acorde a los requerimientos de esta segunda etapa, definidos por el tipo de reactor y sus dimensiones.

La operación en estos reactores se lleva a cabo a 150° C (423 K) y para su refrigeración se empleará, de igual manera que en R-201, un caudal de nitrógeno líquido con un salto de temperatura de 20 grados.

Antes de proseguir con la descripción de los cálculos efectuados, cabe remarcar que para el cálculo del coeficiente de transferencia de materia externo se ha modificado la ecuación teniendo en cuenta que un RCFP actúa, a efectos prácticos, como una tubería de paso.

De igual manera que en el diseño anterior se procede calculando la DTML característica del sistema mediante la ecuación 28:

$$DTML = \frac{(T - T_E) - (T - T_S)}{\ln\left(\frac{T - T_E}{T - T_S}\right)}$$

Ecuación 28. Cálculo para DTML.

En este caso, T = 423 K, de manera que se obtiene DTML = 335,9 K.

$$Q_e = m * Cp * \Delta T$$

Ecuación 29. Cálculo para el calor eliminado por masa de refrigerante.

Aplicando de nuevo la ecuación 29 con los mismos valores de Cp y ΔT (dado que es el mismo refrigerante) y el valor $Q_e = 1516,19 kJ/s$ se obtiene que la

masa necesaria de nitrógeno en cada RCFP será de 72,8657 kg/s, lo que se traduce en 0,09 m^3/s (324,047 m^3/s) de caudal volumétrico aplicándole la densidad del fluido. Recordar que el caudal de nitrógeno total para la refrigeración será 4 veces el valor calculado, es decir, 291,4628 kg/s a alimentar a 4 reactores.

$$v = \frac{m * 1/\rho}{0.5 * (\pi/4 * D^2)}$$

En este caso, siguiendo las indicaciones de la Figura 5 se determina que para un caudal de este calibre se requiere una tubería de 7 pulgadas (0,175 m). Aplicando el valor de 0,09 m^3/s en el lugar de " $m * 1/\rho$ " y el nuevo diámetro a la ecuación 30 se obtiene v = 7,48 m/s para la circulación del refrigerante.

$$\frac{h_i * D_{int}}{k} = A * \left(\frac{\rho * \upsilon * D_{int}}{\mu}\right)^B * \left(\frac{Cp * \mu}{k}\right)^C$$

Ecuación 31. Relación para coeficiente individual de transferencia de materia interna.

Partiendo de los valores presentados en el apartado <u>11.2.1.8</u> para las propiedades del refrigerante, los nuevos valores para el diámetro (0,175 m) y la velocidad de flujo $h_i = 1733,55 \frac{kJ}{s * m^2 * K}$. Los valores de A, B y C se mantienen para esta iteración.

$$\frac{h_e * D_{int}}{k} = A * \left(\frac{\bar{\rho} * \nu * D_{int}}{\bar{\mu}}\right)^B * \left(\frac{Cp * \mu}{k}\right)^C$$

Ecuación 36. Modificación relación para coeficiente individual de transferencia de materia externa.

Donde:

- $\bar{\rho}$: densidad media del licor en RCFP (kg/ m^3).
- $\bar{\mu}$: viscosidad media del licor en RCFP ($\frac{kg}{m * s}$).

Antes de comentar los resultados, se han calculado los valores medios para viscosidad y densidad de la mezcla de manera manual (dada la imposibilidad de simular correctamente el corriente de estos reactores) siguiendo las siguientes expresiones:

$$\bar{\rho} = \sum [\textit{Concentración}]_i * \rho_i$$

Ecuación 37. Cálculo para la densidad media.

$$\bar{\mu} = \sum x_i * \mu_i$$

Ecuación 38. Cálculo para la viscosidad media.

Donde:

- ρ_i : densidad de cada componente (i).
- μ_i : viscosidad de cada componente (i).
- x_i : fracción másica de componente.

En cuanto a la ecuación 37, se ha podido calcular el valor para todos los agentes que componen el corriente, dando como resultado una densidad media de 532,3478 kg/m³. Por otra parte, dada la falta de datos para la viscosidad de algunos de los agentes se ha decidido calcular la viscosidad media empleando únicamente la fracción másica de amoniaco (48,6% w.) y agua (44,9% w.) junto a sus viscosidades de $2,2x10^{-4}$ y $1x10^{-4}$ $kg/m \cdot s$ respectivamente, obteniendo así una viscosidad media de $1,5182x10^{-4}$ $kg/m \cdot s$.

Por otro lado, los valores de k y Cp se han mantenido los del agua, nuevamente, dada la imposibilidad de simular las propiedades reales del caudal. En este caso, el diámetro empleado es el diámetro de paso del reactor (2,428 m) y se mantienen los valores tabulados para el paso por tuberías de A, B y C empleados en la ecuación 31.

Finalmente, aplicando los valores obtenidos con las asunciones comentadas a la ecuación 36, se obtiene $h_e = 0.9691 \frac{kJ}{s * m^2 * K}$.

$$\frac{1}{U} = \frac{1}{h_i} + \frac{1}{h_e} + \frac{\Delta x}{k}$$

Ecuación 33. Cálculo del coeficiente global de intercambio de calor (U).

En este caso $\Delta x = 0.44288 m$, ya que el espesor para los RCFP de esta etapa es significativamente mayor que el del equipo R-201. Aplicando los valores obtenidos para h_i , h_e y sabiendo que k se mantiene igual que en el caso anterior, dado que los reactores de la segunda etapa también serán construidos con Uranus, se obtiene $U = 0.0329 \frac{kJ}{s*m^3*K}$.

Q = U * A * DTML

Ecuación 34. Comprobación de eliminación deseada.

Finalmente, se obtiene Q = 921,84 kJ/s tras aplicar la ecuación 34, conociendo el valor del área del cilindro (83,326 m^2). Este valor de Q no es suficiente para eliminar los 1516,19 kJ/s generados por la reacción, de manera que también deberán refrigerarse las tapas del reactor, es decir, debemos contemplar el área de contacto tapa-fluido.

Teniendo en cuenta los datos para las dimensiones de las diferentes partes de cada RCFP (Tabla 15), se obtiene un área recubierta total de 152,32 m^2 sumando el área de cada tapa con la del tramo circular. De esta manera se obtiene un valor para el calor eliminado de Q = 1683,32 kJ/s. Valor un tanto

más elevado que el requerido inicialmente, pero dada la falta de conocimiento sobre las propiedades reales del fluido a refrigerar, se opta por mantener estas condiciones de operación a modo de sobredimensionamiento. No obstante, la diferencia de 167,133 kJ/s no debería influir significativamente, teniendo en cuenta las condiciones de operación de los reactores.

11.3.1.8 Aislamiento térmico II

Para aislar el encamisado del exterior se recubrirá cada reactor con una capa de lana roca proporcionada por Rockwool®-133, evitando así el mal funcionamiento del refrigerante por contacto con la temperatura exterior en los días más calurosos y reduciendo el peligro de entrar en contacto con la superficie fría del encamisado. Se dispondrá de cuatro capas de aislante térmico de 300 mm de grosor, dando un total de 1200 mm de espesor total entre el sistema de reactores y el ambiente.

El revestimiento con el aislante ocupara todo el cuerpo cilíndrico de los reactores R-202, 203 204 y 205, incluyendo las tapas. El revestimiento también es capaz de soportar las altas temperaturas producidas en el equipo tras el encamisado, llegando a unas máximas de 250° C.

A continuación se presenta una tabla de características térmicas del aislante empleado para revestir todos los reactores del proceso:

Características Técnicas					
Propiedad		Descr	ipción		Norma
Densidad nominal (kg/m3)	37				EN 1602
Dimensiones (cm)	1200 x 100 x 2 / 1000 x 100 x 2,5 / 800 x 100 x 3 600 x 100 x 4 / 500 x 100 x 5				
Conductividad Térmica (W/m·K)	Temperatura (°C)	Conductividad Térmica	Temperatura (°C)	Conductividad Térmica	EN 12667
	10	0.040	150	0.076	
	50	0.048	200	0.095	
	100	0.061	250	0.122	
Reacción al fuego /Euroclase	A1			EN 13501.1	
Tolerancia de espesor (mm)	T4			EN 823	
Resistencia a la difusión de vapor de agua	MV2			EN 12086	
Temperatura máxima de servicio	ST(+)250		(250°C)		EN 14706
Absorción de agua a corto plazo (kg/m²)	WS		(< 1,0 kg/m ²)		EN 1609
Tasa de emisión de sustancias corrosivas	Trazas de iones soluble en agua CL		CL10		EN 13468

Ilustración 4. Propiedades térmicas del aislante Rockwool®-133.

11.4 DISEÑO EVAPORADORES (EV-301 A EV-303)

<u>11.4.1 Funcionamiento del sistema de evaporadores I</u>

El objetivo de los evaporadores es concentrar una solución consistente en un soluto no volátil y un solvente volátil. En las tres etapas de evaporación que se realizan en la planta para eliminar la sal obtenida en los reactores R-202, 203, 204 y 205 se tiene en cuenta el objetivo de concentrar al máximo el sólido extrayendo el disolvente que es una mezcla de agua e hidracina.

Los evaporadores utilizados actúan como un equipo "flash "por el que circulan dos fluidos los cuales deben estar a diferentes temperaturas para que se dé dicho intercambio.

En este caso el fluido que circula por los tubos y, por tanto, aporta calor al sistema, es vapor de agua, y por la carcasa circulará la mezcla producida en el conjunto de reactores R-202, 203, 204 y 205, con el fin de eliminar la sal (NaCl) del sistema. El vapor de agua que circula por los tubos entrará a una temperatura de 290 °C y saldrá a una temperatura de 120 °C en el primer efecto. Para los siguientes se empleará el caudal de calor generado en la condensación del vapor obtenido.

A partir de las presiones de vapor y de los puntos conocer de ebullición de los componentes de la mezcla, se considera que tanto el agua e hidracina serán las dos sustancias evaporadas. Si bien las proporciones vendrán determinadas en último término por la volatilidad de ambas especies en las condiciones de operación. De este modo, el condensado de líquido saldrá más concentrado y más puro en sal para facilitar el proceso de obtención del producto final, y de la misma forma, los tamaños de los equipos requeridos para dicha etapa serán más pequeños, requerirán un menor número de etapas y no requerirán un salto térmico tan acusado.

Para el diseño de estos equipos se ha empleado la herramienta Aspen HYSYS V10, ya que al tratarse de un proceso de triple efecto sería mucho más preciso recurrir a la simulación informática que no emplear métodos escritos que podían inducir a errores de precisión.

Figura 6. Esquema del sistema de efectos (eliminación NaCl).

En la figura anterior puede observarse el esquema simulado para el triple efecto. Cada efecto será alimentado con un caudal líquido cada vez más concentrado en sólido y se obtendrán unos vapores sin presencia de sal. El vapor será condensado a su salida del evaporador. El calor extraído del vapor en cada condensador, será empleado a modo de calefactor en la siguiente etapa. De manera que el calor del primer condensador (Q1) alimentara la etapa 2 y así sucesivamente.

Por otra parte, el líquido obtenido en cada etapa será el alimento de la siguiente y éste tendrá cada vez mayor concentración de sólido y una menor cantidad de líquido, obteniendo la salmuera concentrada en L3. Éste tendrá una composición molar de 98,31% en sal (NaCl), 1,53% en agua y un 0,16% en hidracina, unos 0,075 kmol/h como podremos ver en las extracciones de la simulación a continuación.

Alimentación		
Temperature	80.00	С
Pressure	101.3	kPa
Molar Flow	1756	kgmole/h
Master Comp Mole Frac (Hydrazine)	0.0265	
Master Comp Mole Frac (H2O)	0.9470	
Master Comp Mole Frac (NACL)	0.0265	

Vapor agua			
Temperature 290.0 C			
Pressure	202.6	kPa	
Molar Flow	4644	kgmole/h	

En las figuras 7 y 8 pueden extraerse las condiciones iniciales de la operación llevada a cabo en EV-101. Como se ha comentado anteriormente, el calefactor provocará la evaporación del fluido y una precipitación del sólido en la fracción no evaporada, la cual será extraída por vacío a la siguiente etapa.

Por un error del simulador no se devolvieron los caudales de cada componente de manera numérica, de manera que serán comentados a detalle más adelante.

El caudal alimentado a EV-101 contará con un caudal de 1662,93 kmol/h de agua, 46,53 kmol/h de hidracina y 46,53 kmol/h de cloruro sódico. Por los objetivos de diseño, a la salida del tercer efecto se deberían obtener el mismo

Figura 7. Composición alimento (EV-301).

Figura 8. Condiciones calefactor (EV-301).

caudal de sal y lo mínimo posible de hidracina para reducir así el máximo de perdidas posible.

A continuación, se procederá a detallar los caudales obtenidos en la primera etapa y posteriormente se interpretarán los datos finales, parando atención a detallar solamente el primer efecto.

Condensado1		
Molar Flow	604.5	kgmole/h
Master Comp Mole Frac (Hydrazine)	0.0049	
Master Comp Mole Frac (H2O)	0.9951	
Master Comp Mole Frac (NACL)	0.0000	

Figura 9. Composición condensado (EV-301).

Condensado EV-301 (Figura 9):

- Caudal *H*₂*0*: 601,54 kmol/h.
- Caudal N_2H_4 : 2,96 kmol/h.

Líquido EV-301 (Figura 10):

- Caudal *H*₂*0*: 1061,8 kmol/h.
- Caudal *N*₂*H*₄: 43,66 kmol/h.
- Caudal NaCl: 46,54 kmol/h.

Condensado2		
Molar Flow	620.3	kgmole/h
Master Comp Mole Frac (Hydrazine)	0.0144	
Master Comp Mole Frac (H2O)	0.9856	
Master Comp Mole Frac (NACL)	0.0000	

Figura 11. Composición condensado (EV-302).

Condensado3		
Molar Flow	484.6	kgmole/h
Master Comp Mole Frac (Hydrazine)	0.0715	
Master Comp Mole Frac (H2O)	0.9276	
Master Comp Mole Frac (NACL)	0.0010	

Figura 13. Composición condensado (EV-303).

L1		
Molar Flow	1152	kgmole/h
Master Comp Mole Frac (NACL)	0.0404	
Master Comp Mole Frac (H2O)	0.9217	
Master Comp Mole Frac (Hydrazine)	0.0379	

Figura 10. Composiciones liquido (EV-301).

L2	_	
Molar Flow	531.4	kgmole/h
Master Comp Mole Frac (NACL)	0.0876	
Master Comp Mole Frac (H2O)	0.8471	
Master Comp Mole Frac (Hydrazine)	0.0653	
	(0.00)	

Figura 12. Composición líquido (EV-302).

L3		
Molar Flow	46.86	kgmole/h
Master Comp Mole Frac (NACL)	0.9831	
Master Comp Mole Frac (H2O)	0.0153	
Master Comp Mole Frac (Hydrazine)	0.0016	

Figura 14. Composición líquido (EV-303).

Como puede verse en los caudales, la cantidad de sal será nula en el condensado y se irán recudiendo las concentraciones de los fluidos en el líquido conforme se avance en etapas. Sería conveniente reincidir en el hecho que L1 se corresponde con el caudal alimentado al siguiente efecto (EV-202). A continuación, se facilitarán las composiciones de los evaporadores obtenidas en EV-202 y EV-203:

Condensado EV-302 (Figura 11):

- Caudal H_20 : 611,37 kmol/h.
- Caudal N_2H_4 : 8,93 kmol/h.

Líquido EV-302 (Figura 12):

- Caudal *H*₂*0*: 450,15 kmol/h.
- Caudal N_2H_4 : 34,7 kmol/h.
- Caudal NaCl: 46,55 kmol/h.

Condensado EV-303 (Figura 13):

- Caudal *H*₂0: 448,74 kmol/h.
- Caudal *N*₂*H*₄: 34,65 kmol/h.

Líquido EV-303 (Figura 14):

- Caudal *H*₂*0*: 0,727 kmol/h.
- Caudal N_2H_4 : 0,075 kmol/h.
- Caudal *NaCl*: 46,06 kmol/h.

Analizando los datos de las figuras anteriores y los caudales definidos puede observarse como el determinarse que el sistema de 3 efectos logra concentrar la sal hasta el punto de extraer prácticamente el fluido en su totalidad. Entrando a perdidas de producto, se pierden en la salmuera **0,075 kmol/h**, por lo que en línea de producción quedaran 46,45 kmol/h de hidracina, lo cual supone unas pérdidas mínimas de producto. Por los algoritmos internos del sistema de simulación algunos valores disocian de lo esperado, esto se debe a los decimales en las composiciones molares que afectan al conteo de decimales en el programa.

El sistema de tres efectos muestra ser muy útil y versátil a la hora de concentrar el sólido en un efluente, reduciendo a mínimos la presencia de fluido en el concentrado sólido. Este sistema cuenta con la particularidad de trabajar a 1 atmosfera de presión en el primer efecto, mientras que en los siguientes se trabajará en condiciones de vacío, de manera que la temperatura de ebullición de la mezcla licor de los efectos 2 y 3 se verá significativamente reducida con respecto la primera etapa en EV-201. Este hecho provoca que cada etapa sea más sencilla de tratar que la anterior en términos energéticos.

11.4.2 Dimensionamiento de los evaporadores I

Por otra parte, la simulación devuelve unos valores de dimensionamiento para los evaporadores. Al ser un sistema donde la presión de operación va disminuyendo conforme se avanza a la etapa siguiente, las dimensiones de los evaporadores se pueden mantener constantes:

Vessel Volume [m3]	56.75
Vessel Diameter [m]	2.743
Height [m]	9.601
Liq Volume Percent [%]	50.00
Liq Percent Level [%]	50.00

Figura 15. Dimensiones de EV-201, 202 y 203.

Los evaporadores para la extracción de sal en multiefecto contarán con un volumen de 56,75 m³, 2,743 m de diámetro y alturas de 9,6 m, respetando los límites de edificación impuestos. A la vez, estos deberán contar con una altura de líquido del 50% con respecto la altura total del equipo en cuestión.

De esta manera, la sal se logra extraer del tramo final del proceso, produciendo una salmuera que será dispuesta a gestión externa para su venta como refrigerante en otras industrias cercanas al polígono Nylon-66, extrayendo un beneficio de este tratamiento.

11.5 DISEÑO EVAPORADORES (EV-401 A EV-403)

11.5.1 Funcionamiento del sistema de evaporadores II

Igual que en el caso de los evaporadores para la extracción de sal, se ha diseñado un conjunto de evaporadores en serie de triple efecto para extraer gran parte del caudal de agua presente en el efluente. Aun logrando una gran eliminación del caudal de agua, emplear un triple flash produce una ligera perdida de hidracina en el sistema. El objetivo de este segundo tramo es reducir notablemente el caudal y la composición de agua para un mejor funcionamiento para la columna de destilación final (CD-401).

Para ello también se ha utilizado la herramienta Aspen HYSYS V10, para el diseño y simulación del sistema.

Figura 16. Esquema del sistema de efectos (eliminación H₂Ol).

De igual manera que en el sistema anterior se ha diseñado el sistema aprovechando al máximo la energía generada, de forma que el calor extraído en los condensadores se empleará para proporcionar calor al evaporador siguiente. Por parte del líquido obtenido en cada evaporador, éste será el

alimento del efecto siguiente, de manera que se producirá un aumento de la hidracina en composición. La posibilidad de emplear el calor obtenido en el condensador es gracias a que en EV-42 y EV-403 se trabaja a condiciones de vacío, lo cual disminuye la temperatura de ebullición, así como sucedía en el tramo de evaporadores anterior.

El alimento de EV-401 consiste en un caudal de 1709 kmol/h con una composición de hidracina inicial del 2,73% (46,65 kmol/h), el resto de la composición es agua. En cuanto al vapor empleado para calentar el primer efecto consistirá en un caudal de 5125 kmol/h de agua a 190 °C.

Alimento		
Temperature	80.00	С
Molar Flow	1709	kgmole/h
Master Comp Mole Frac (H2O)	0.9727	
Master Comp Mole Frac (Hydrazine)	0.0273	

Vapor agua			
Temperature	190.0	С	
Pressure	sure 1254 kPa		
Molar Flow	5125	kgmole/h	

Figura 17. Composición alimento (EV-401).

Figura 18. Condiciones calefactor (EV-401).

Para calcular el valor del caudal de alimento se ha empleado un balance sencillo con los condensados de la etapa de evaporadores anterior. De manera que todos los caudales se suman entre sí. Los valores de X_i se corresponden con la composición de hidracina en el alimento. Los valores de la Tabla X se extraen a partir de las figuras mostradas en el apartado <u>11.4.1</u>.

 $V_1 + V_2 + V_3 = V_4$

Ecuación 39. Balance de materia global.

$$V_1 * X_1 + V_2 * X_2 + V_3 * X_3 = V_4 * X_4$$

Ecuación 40. Balance de componente.

V_1 (kmol/h)	604,50
X ₁	0,0049
V_2 (kmol/h)	620,3
X ₂	0,0144
V_3 (kmol/h)	484,6
X ₃	0,0715

Aplicando los valores de la Tabla 18 a las ecuaciones 39 y 40 se obtiene el caudal de alimento descrito anteriormente en la Figura 17.

Con estas condiciones de operación descrita, el funcionamiento del evaporador genera un condensado y un líquido concentrado con las siguientes composiciones:

Cond_H2O_1		
Molar Flow	387.1	kgmole/h
Master Comp Mole Frac (H2O)	0.9977	
Master Comp Mole Frac (Hydrazine) 0.00		

Figura 19. Composición condensado (EV-401).

Condensado EV-401 (Figura 19):

- Caudal *H*₂*0*: 386,21 kmol/h.
- Caudal N_2H_4 : 0,89 kmol/h.

Líguido EV-401 (Figura 20):

- Caudal *H*₂*0*: 1276,12 kmol/h.
- Caudal *N*₂*H*₄: 45,87 kmol/h.

Es conveniente remarcar que todo el caudal de hidracina que se obtiene en el condensado se traduce en pérdidas de producto.

Analizando los resultados obtenidos en las Figuras 19 y 20, el caudal perdido de hidracina es relativamente pequeño. No obstante, la cantidad límite de hidracina para llegar al objetivo de producción es de 41,61 kmol/h por la línea de productos.

El caudal L1 será el alimentado a EV-402, y el caudal L2 extraído de este será alimentado a EV-403, de donde se obtendrá el caudal final que se dirigirá a la columna de destilación. A continuación, se presentan las propiedades de los caudales obtenidos en el segundo y tercer efecto (EV-402 y EV-403):

Cond_H2O_2		
Molar Flow	399.6	kgmole/h
Master Comp Mole Frac (H2O)	0.9965	
Master Comp Mole Frac (Hydrazine) 0.0035		

Figura 21. Composición condensado (EV-402).

Cond_H2O_3		
Molar Flow	411.7	kgmole/h
Master Comp Mole Frac (H2O)	0.9926	
Master Comp Mole Frac (Hydrazine)	0.0074	

Figura 23. Composición condensado (EV-403).

22.7	kamolo/h
	Kymole/m
518	
Master Comp Mole Frac (Hydrazine) 0.0482	
	518 482

Figura 22. Composición líquido (EV-402).

L3		
Molar Flow	511.0	kgmole/h
Master Comp Mole Frac (H2O)	0.9190	
Master Comp Mole Frac (Hydrazine)	0.0810	

Figura 24. Composición del líquido (EV-403).

11		
LI		
Molar Flow	1322	kgmole/h
Master Comp Mole Frac (H2O)	0.9653	
Master Comp Mole Frac (Hydrazine) 0.0347		
5' 20.0 '''''''''''''''''''''''''''''''''		

Figura 20. Composición líquido (EV-401).

Condensado EV-402 (Figura 21):

- Caudal *H*₂*0*: 398,20 kmol/h.
- Caudal N_2H_4 : 1,40 kmol/h.

Líquido EV-402 (Figura 22):

- Caudal *H*₂*0*: 878.22 kmol/h.
- Caudal *N*₂*H*₄: 44,47 kmol/h.

Condensado EV-403 (Figura 23):

- Caudal *H*₂*0*: 408,65 kmol/h.
- Caudal N_2H_4 : 3,04 kmol/h.

Líquido EV-403 (Figura 24):

- Caudal *H*₂*0*: 469,61 kmol/h.
- Caudal N_2H_4 : 41,39 kmol/h.

Finalmente se obtiene a la salida del tercer efecto el caudal L3, el cual será alimentado a CD-401 para su destilación. En cuanto a las perdidas producidas de hidracina en este sistema se van en forma de condensado 5,33 kmol/h de hidracina, valor el cual supera las expectativas de pérdidas totales de un 10% inicial. Sin embargo. Los 41,39 kmol/h que serán alimentados a la columna son muy próximos al valor productivo deseado, de manera que el diseño de CD-401 se enfocara en reducir o anular al completo la perdida de hidracina.

Por otro lado, el sistema multiefecto muestra ser muy útil en la eliminación de agua, llegando a extraer 1.193,06 kmol/h de agua (junto a las pérdidas de hidracina). Este gran exceso de agua impedía un diseño correcto de CD-401, de manera que la obtención de un caudal de las condiciones de L3 se ajusta al objetivo de diseño. No obstante, requerir de eliminar tal cantidad de solvente hace que suponer un 10% de perdidas en los balances previos no sea suficiente.

11.5.2 Dimensionamiento de los evaporadores II

De igual manera que en los evaporadores del apartado <u>11.4</u>, la simulación de HYSYS facilita un dimensionamiento para los evaporadores EV-401, EV-402 y EV-403.

Vessel Volume [m3]	77.84
Vessel Diameter [m]	3.048
Height [m]	10.67
Liq Volume Percent [%]	50.00
Liq Percent Level [%]	50.00

Figura 25. Dimensiones de EV-401, 402 y 403.

Como puede observarse en la Figura 25, los tres evaporadores contarán con una altura de 10,67 m y un diámetro de 3,05 m. De esta manera se cumplirán las normativas de edificación del polígono *Nylon-66.* Por otra parte, el volumen interno del equipo será de 77,83 m^3 del cual debería estar lleno el 50% para el correcto funcionamiento del equipo.

11.6 DISEÑO COLUMNA DE DESTILACIÓN (CD-401)

Una vez se ha tratado el caudal en los evaporadores EV-401 hasta EV-403 se obtiene un caudal refinado de 511,0 kmol/h con una composición molar al 91,9% en agua y el resto de hidracina pura. Para obtener el producto de hidrato de hidracina (64% w.) se requiere llegar a una composición molar de un 50/50 de ambos componentes.

Para lograr este refinado se ha diseñado mediante la herramienta informática de simulación Aspen HYSYS, de igual manera que se han diseñado los equipos de intercambio de calor y evaporadores.

En los siguientes apartados, se describe el proceso realizado en el simulador, con una short-cut previa al diseño final para obtener una primera aproximación del diseño de CD-401, para el posterior diseño real de la misma.

Todos los cálculos y procedimientos descritos han sido realizados íntegramente a través del simulador, exceptuando el cálculo final de la altura de columna. Todos los cálculos se han realizado con bases teóricas obtenidas en la carrera e iterando diferentes valores dentro de las previsiones sopesadas por el equipo sin ningún calculo externo a los simulados.

11.6.1 SHORT-CUT CD-401

Conociendo el caudal de entrada a la columna y la composición que se deseaba obtener a la salida del calderín se estableció una composición de salida por destilado que contuviese un máximo en composición de hidracina por debajo del 1%, dado que las perdidas en proceso excedían, por poco, las perdidas previstas en proceso.

Estas condiciones se introdujeron en la simulación, iterando diferentes valores de presión y temperatura para lograr una diferencia notable en la volatilidad de los dos componentes, ya que a condiciones atmosféricas normales (1 atm) se obtienen volatilidades similares, de manera que la columna requeriría muchas etapas de equilibrio. Finalmente, empleando este método iterativo, se obtuvo un buen grado de separación a condiciones de presión (1 bar) y una temperatura próxima a la temperatura de ebullición de

la mezcla (la simulación en Short-Cut no facilita este valor, en cambio el diseño final si permite conocer estos valores en detalle).

En las siguientes Figuras se presentan los caudales teóricos obtenidos mediante el método short-cut (Fig.27), composiciones (Fig.26) y condiciones de operación de la columna y equipos complementarios (condensador y calderín).

Name	Alimentación	Agua	Hidracina+Agua
Vapour	0.0000	0.0000	0.0000
Temperature [C]	80.00	99.66	120.0
Pressure [kPa]	100.0	100.0	100.0
Molar Flow [kgmole/h]	511.0	429.1	81.92
Mass Flow [kg/h]	9786	7736	2051
Std Ideal Liq Vol Flow [m3/h]	9.788	7.751	2.036
Molar Enthalpy [kJ/kgmole]	-2.535e+005	-2.789e+005	-1.088e+005
Molar Entropy [kJ/kgmole-C]	22.20	23.58	44.24
Heat Flow [kJ/h]	-1.295e+008	-1.197e+008	-8.915e+006

Figura 26. Corrientes CD-401 (Short-Cut)

Figura 27. Esquema Short-Cut (Simulador)

Teniendo en cuenta los caudales descritos y posicionándolos correctamente en el sistema T-100 en el simulador, éste facilita los parámetros de operabilidad partiendo de las composiciones del Light Key (H_2O) y Heavy Key (N_2H_4) en "Bottoms" y en el destilado, como pueden verse a continuación en la Figura. X, junto a las condiciones de los equipos complementarios y a las relaciones de reflujo.

	C	MALE FOR
	Component	Mole Fraction
Light Key in Bottoms	H20	0.5000
Heavy Key in Distillate	Hydrazine	0.0010
Processor		
riessures		
Condenser Pressure	100.000 kPa	
Condenser Pressure Reboiler Pressure	100.000 kPa 100.000 kPa	
Condenser Pressure Reboiler Pressure	100.000 kPa 100.000 kPa	
Condenser Pressure Reboiler Pressure Reflux Ratios	100.000 kPa 100.000 kPa	
Condenser Pressure Reboiler Pressure Reflux Ratios External Reflux Ratio	100.000 kPa 100.000 kPa 3.455	

Figura 28. Parámetros de operabilidad CD-401 (Short-Cut)

Finalmente, la simulación ofrece el número de etapas de equilibrio ideales (3,538) situando el punto óptimo de alimento en el plato 3. El valor real obtenido para el numero de etapas necesarias será útil en el apartado <u>11.6.2.1</u>, para determinar la eficacia de cada plato.

También se dan unas temperaturas de los equipos complementarios junto a los caudales que se manejaran en el interior del sistema (Figura. X).

Minimum Number of Trays	3.019
Actual Number of Trays	3.538
Optimal Feed Stage 3.0	
mperatures	
Condenser [C]	99.66
Reboiler [C]	120.0
lows	
Rectify Vanour (komole/h)	1911.534
Recently vapour [kgmole/n]	
Rectify Liquid [kgmole/h]	1482.458
Rectify Liquid [kgmole/h] Stripping Vapour [kgmole/h]	1482.458 1911.534
Rectify Liquid [kgmole/h] Stripping Vapour [kgmole/h] Stripping Liquid [kgmole/h]	1482.458 1911.534 1993.458
Rectify Liquid [kgmole/h] Stripping Vapour [kgmole/h] Stripping Liquid [kgmole/h] Condenser Duty [kJ/h]	1482.458 1911.534 1993.458 -77820394.332

Figura 29. Parámetros de alimento a columna, condiciones equipos complementarios y corrientes internos

11.6.2 DISEÑO FINAL CD-401

11.6.2.1 Simulación CD-401

Con los valores obtenidos en el procedimiento de la short-cut, se mantuvieron los caudales y se introdujeron los valores obtenidos para el funcionamiento de la columna, de manera que la simulación fuese más precisa y rápida. Sin embargo, con el modelo de simulación para una columna real se pudieron ajustar más los parámetros, de manera que en este equipo no se produjesen perdidas de hidracina en el destilado. De manera que no se tendrá en cuenta el proceso Short-Cut para cálculos de eficacia del proceso. Esta no pudo ajustarse a los parámetros obtenidos en la simulación final, pero si fue una buena aproximación para orientar el diseño de CD-401.

Figura 30. Esquema columna CD-401

Introduciendo los valores obtenidos tras realizar el Short-Cut, la simulación devolvió un sistema de 4 etapas de equilibrio, pero se pudieron añadir etapas para reducir las pérdidas de producto con 10 etapas, como puede observarse en la figura anterior. Por otra parte, no hubo grandes cambios en los parámetros de operabilidad, por lo que el reflujo se mantuvo al mismo valor que se obtuvo en el apartado anterior.

Specifications	
	Specified Value
Reflux Ratio	3.455
Reflux Rate	<empty></empty>
Comp Fraction	1.000e-002
H2O Rate	429.1 kgmole/h
Comp Fraction - 2	0.5000

Figura 31. Relación de reflujo, Caudal de Destilado

Con estos valores, la simulación final proporcionó valores más exactos para los caudales obtenidos, como pueden observarse en la figura 32, a continuación:

Name	Alimentación1 @COL1	H2O @COL1	N2H4+H2O @COL1
Vapour	0.0000	0.0000	0.0000
Temperature [C]	80.00	99.63	120.0
Pressure [kPa]	100.0	100.0	100.0
Molar Flow [kgmole/h]	511.0	428.2	82.76
Mass Flow [kg/h]	9786	7715	2072
Std Ideal Liq Vol Flow [m3/h]	9.788	7.730	2.057
Molar Enthalpy [kJ/kgmole]	-2.535e+005	-2.792e+005	-1.088e+005
Molar Entropy [kJ/kgmole-C]	22.20	23.50	44.25
Heat Flow [kJ/h]	-1.295e+008	-1.196e+008	-9.002e+006

Figura 32. Caudales de CD-401 (Alimento, destilado y botoms)

Estos caudales cuentan con las siguientes composiciones (molares):

	Alimentación1	H2O	N2H4+H2O
H2O	0.9190	1.0000	0.4999
Hydrazine	0.0810	0.0000	0.5001

Figura 33. Composición de los caudales de CD-401

Concretamente, a partir de un alimento de 511,0 kmol/h con una composición del 91,9% de agua, se obtiene un destilado de agua pura (100% en composición molar) de 428,2 kmol/h. Mientras que por la línea de producto (salida del calderín) se obtienen 82,76 kmol/h con una composición prácticamente equimolar. Concretamente con un caudal de 41,38 kmol/h de agua y 41,37 kmol/h de hidracina. El objetivo del proceso era obtener un caudal de hidracina de 41,61 *kmol/h* (*Apartado 11.2*). De manera que no se alcanzaría la producción mínima deseada. Esto se debe a la gran cantidad de agua que entra en primera instancia con las materias primeras, y se debe eliminar en el tramo de evaporadores EV-401 a EV-403, este proceso es la causa de que asumir unas pérdidas máximas del 10% en proceso (valor

típico) no haya sido suficiente. No obstante, la perdida final es inferior a 0,5 kmol/h de hidracina.

La herramienta Aspen HYSYS también proporciona los gráficos de evolución de la temperatura, presión, caudales y composiciones a lo largo de la columna, como puede verse en los siguientes gráficos:

Gráfico 1. Evolución de la temperatura a lo largo de CD-401

Como puede observarse en el gráfico 1 mostrado anteriormente, la temperatura dentro de la columna no se mantiene constante a lo largo de las etapas, si no que en el plato de alimento (7) la temperatura será de unos 100°C y conforme se suba en la columna, la temperatura disminuirá. Por el contrario, conforme el caudal se acerca al calderín la temperatura aumentará notablemente.

Gráfico 2. Evolución de la presión a lo largo de CD-401

Por el contrario a la temperatura, la columna mantiene una presión constante de 1 bar en su interior, como se puede ver en el Gráfico 2.

En los Gráficos 3 y 4 puede verse la evolución de caudales y composición a lo largo de la columna en detalle, de manera que a la salida del calderín se obtiene la composición de producto deseada (0,4999 molar en hidracina).

11.6.2.2 Dimensionamiento CD-401 y complementarios

Finalmente, el dimensionamiento de esta columna de separación de agua e hidracina fue realizado también en la simulación junto al dimensionamiento de los equipos complementarios (condensador y calderín).

Vessel	Reboiler	Condenser
Diameter [m]	1.193	1.193
Length [m]	1.789	1.789
Volume [m3]	2.000	2.000
Orientation	Horizontal	Horizontal
Vessel has a Boot		
Boot Diameter [m]	<empty></empty>	<empty></empty>
Boot Length [m]	<empty></empty>	<empty></empty>
Hold Up [m3]	1.000	1.000
Include for Costing	₹	 Image: A set of the set of the

Figura 34. Especificaciones de los equipos complementarios

Como puede observarse en la figura anterior, ambos equipos (condensador y calderín) poseen dimensiones idénticas, con la única diferencia en la temperatura de operación como puede observarse a continuación en las Figura 35.

Туре	Total	Туре	Reg
Temperature	99.63 C	Temperature	120
Pressure	100.0 kPa	Pressure	100.0
Duty	7.759e+007 kJ/h	Duty	7.851e+007
Reflux Flowrate	1480 kgmole/h	Outlet Flowrate	82.76 kgmo

Figura 35. Condiciones de operación – Condensador/Calderín

Por otra parte, la simulación ofrece toda una serie de transparencias que muestran en detalle la arquitectura del equipo y de los elementos interiores que lo componen:

Active	Internals-1 🔹	Column Des	cription								Internals In	put Complete			
		Add	New	Auto Section	Duplicate	Impor	t Template	Export Temp	plate	View Internals Sur	nmary				
-	▶ 1	Section	Start Stage	End Stage	Mode	Internal Type	Tray/Packin Type	Number of Passes	Packin Vendo	g Packing r Material	Packing Dimension	Tray Spacing / Section Packed Height [m]	Diameter [m]	Details	
		CS-1	1_Main Tower	10_Main Towe	Interactive Sizing	Trayed	Sieve	1				0.6096	3.030	View	×
_	►···· 7····														
		Calcula	e Static Vapor H	ead in Pressure D	rop Calculations										
		C ^{Sump}	ALC I LESSONE DIG	p neross sump											
-	▶10	Diamete	r												
	\bigcirc	Liquid	d Residence Tim d Level	e 60.00) seconds										
Vie	w Hydraulic Plots	Expo	rt Pressure Droj	p from Top	Export Pressure D	rop from Bo	ottom	nitialize From	Rating	Send To Rati	ng				

Figura 36. Diseño interno de columnas en HYSYS

Figura 37. Diseño de platos en HYSYS

De esta manera, el programa obtiene las dimensiones tanto para el equipo en sí, como para las características de los platos y espacio entre los mismos.

A continuación, se facilitan unas tablas donde se pueden extraer las especificaciones de manera más detallada

Tabla 19. Especificaciones CD-401.

Tabla 20. Especificaciones platos CD-401.

Column	Internals	Summary	

Number Of Stages	10
Total Height [m]	6.096
Total Head Loss [mm]	887.3
Total Pressure Drop [mbar]	80.36
Number Of Sections	1
Number Of Diameters	1
Pressure Drop Across Sump [kPa]	<empty></empty>

Section	
Tray Type	Sieve
Diameter [m]	3.030
Tray Spacing [m]	0.6096
Number Of Passes	1
Hole Diameter [mm]	12.70
Hole Area to Active Area	0.1000
Deck Gauge Thickness	10 Gauge
Deck Gauge Thickness Value [mm]	3.404
Cross-Sectional Area [m2]	7.212
Active Area [m2]	5.769
Net Area [m2]	6.491

Tabla 21. Especificaciones internas de platos CD-401

Property	Side	
Downcomer Clearance (m	38.10	
Downcomer Width Top (m	ım)	474.2
Downcomer Width Botton	n (mm)	474.2
Downcomer Area Top (m2)	0.7212
Downcomer Area Bottom	(m2)	0.7212
Weir Geometry Property	Side	
Veir Geometry Property	Side	
Weir Geometry Property Weir Height (mm) Weir Length (m)	Side 50.80	
Weir Geometry Property Weir Height (mm) Weir Length (m) Panels	Side 50.80 2.202	
Weir Geometry Property Weir Height (mm) Weir Length (m) Panels Property	Side 50.80 2.202	
Weir Geometry Property Weir Height (mm) Weir Length (m) Panels Property	Side 50.80 2.202	

Columna (Tabla X)

- Las dimensiones de la columna serán de 6,096 m de altura con un diámetro de 3 m.
- Esta contará con 10 etapas de equilibrio en su interior.

<u>Platos (Tabla X y XX)</u>

- Los platos contarán con 3 metros de diámetro y un espacio entre ellas de 0,6096 m.
- El diámetro de los agujeros será de 12,70 mm, representando un área total de paso de 5,769 m2 para un área de plato de 6,491 m2.

11.6.2.3 Eficacia plato a plato y funcionamiento

Tras la simulación el programa también puede obtener valores para la eficacia (suponiendo la idealidad) y comportamientos detallados de los caudales a lo largo de la columna, a continuación se muestran unos ejemplos de esto.

			Optional Estimates					
	Stage	Pressure [kPa]	Temp [C]	Net Liquid [kgmole/h]	Net Vapour [kgmole/h]			
Condenser	0	100.0	99.66	1480	3.528e-006			
1_Main Tower	1	100.0	99.63	1480	1908			
2_Main Tower	2	100.0	99.63	1480	1908			
3_Main Tower	3	100.0	99.63	1479	1908			
4_Main Tower	4	100.0	99.78	1474	1908			
5_Main Tower	5	100.0	102.6	1464	1903			
6_Main Tower	6	100.0	110.4	1470	1893			
7_Main Tower	7	100.0	115.5	2019	1899			
8_Main Tower	8	100.0	118.5	2026	1936			
9Main Tower	9	100.0	119.5	2027	1943			
10_Main Tower	10	100.0	119.9	2027	1944			
Reboiler	11	100.0	120.0	82.76	1944			

Figura X. Evolución de caudales y condiciones etapa a etapa.

Figura 38. Eficacia plato a plato

Como puede observarse en la Figura 38, la eficacia es total para cada etapa. Para obtener una eficacia real se debería realizar el proceso para comprobar cuál es la eficacia real de cada etapa del equipo, ya que este valor es en condiciones ideales de funcionamiento y operación dentro de una simulación informática.

Figura 39. Funcionamiento interno de la columna (Grafica de Weeping).

Finalmente, HYSYS también grafica para predecir la posibilidad de *Weeping* o goteo en la columna. Este factor depende de la cantidad de líquido que circule a través de la columna y del mismo vapor. Mucho vapor produciría un arrastre del líquido, mientras que muy poco provocaría un goteo en las etapas.

El objetivo de trabajo ha de ser trabajar en el área bajo la curva de "*Maximum Entrainment"* y por encima del "*Weep".* La operación se realiza en un punto donde el caudal de líquido dentro de la columna sea bajo, pero el vapor elevado, como puede verse en la Figura 39.

Concretamente, en la Figura 38 puede verse que el caudal de vapor a lo largo de la columna aumenta conforme se aproxima al calderín, de igual manera que el caudal de líquido interno. Extrapolado al gráfico, estaría representado en la línea naranja que este presenta.

11.6.3 CONCLUSIONES COLUMNA CD-401

En cuanto al diseño de la columna, el hecho de contar con una herramienta de simulación simplifica de manera notable el procedimiento a seguir. Pese a priori parecer una columna compleja (dado que las propiedades de los dos elementos a separar son similares) se ha acabado ajustando a los objetivos deseados en cuanto a su arquitectura y funcionamiento.

Estos serían todos los apartados que engloban la línea de producción, a partir de este punto todos los apartados se enfocarán en el diseño de equipos complementarios y su funcionamiento en el proceso, partiendo desde tanques de almacenamiento (que se verán de manera teórica) hasta todos los intercambiadores de calor necesarios para el correcto funcionamiento del proceso.

11.7 DISEÑO DE EQUIPOS COMPLEMENTARIOS

Los equipos principales de proceso conllevan emplear ciertos equipos complementarios que también han sido simulados a través de la herramienta Aspen HYSYS de manera complementaria a los equipos. Es decir, la simulación en el programa también devuelve dimensiones y operabilidad de esos equipos, como se ha podido ver en el diseño de CD-401, donde se ha detallado el calderín y condensador de manera precisa.

Estos equipos son condensadores, intercambiadores de calor y tanques de almacenamiento.

Todos los cálculos han sido realizados contemplando una temperatura en el exterior de 25º C.

11.7.1 Condensadores

Por la parte de los condensadores, intervienen en los procesos de eliminación de NaCl y en la extracción de agua del sistema. A continuación, se procede a comentar la simulación en detalle.

Se describirá en detalle la simulación de CO-301 y de CO-401, ya que la única variable son los caudales a condensar y el requerimiento energético de cada condensador, ya que el diseño se ha realizado con el objetivo de homogenizar los diseños de los equipos en cuestión.

11.7.1.1 Condensadores CO-301 a 303

Condensador de EV-301 (CO-301):

Concretamente, CO-301 es el equipo encargado de condensar el caudal obtenido en forma de vapor de EV-301. Caudal el cual tiene las propiedades mostradas en la figura 40, a continuación:

Condensado1		
Molar Flow	604.5	kgmole/h
Master Comp Mole Frac (Hydrazine)	0.0049	
Master Comp Mole Frac (H2O)	0.9951	
Master Comp Mole Frac (NACL)	0.0000	

Figura 40. Composición condensado (EV-301).

Teniendo en cuenta el caudal a eliminar, el propio simulador contempla la temperatura a la que se obtendrá el vapor en EV-301, de manera que introduciendo un ΔP , devuelve un salto de temperatura y el requerimiento energético para la tarea designada:

Figura 41. Operabilidad de CO-301

Como puede observarse en la figura anterior, suponiendo una caída de presión de 20 kPa, el vapor perderá 22,43° C, lo que provocará su condensación. Para ello se requerirá de un desempeño energético de $2,562 \cdot 10^7 kJ/h$.

Por otra parte, también se proporcionan datos para su construcción y diferentes parámetros de diseño, así como la superficie de intercambio (U) e incluso valores para el espesor del equipo:

Overall U [kJ/h-m2-C]		51.00
Ambient Temperature [C]		25.00
onductive Properties		
	Metal	Insulation
Thickness [m]	0.010	0.030
Cp [kJ/kg-C]	0.4730	0.8200
Density [kg/m3]	7801	520.0
Conductivity [W/m-K]	45.00	0.1500
onvective Properties		102.0
Outside [k]/h-m2-C]	_	51

Figura 42. Propiedades del funcionamiento de CO-301.

Como puede observarse en las tablas que conforman la figura 42, CO-301 contará con un valor U de 51 kJ/h· m^2 ·C, es decir, una perdida de 51 kJ según la superficie, tiempo y temperatura para una temperatura exterior de 25° C. Sin embargo, el intercambio en el interior del equipo será de 102 kJ/h· m^2 ·C. Antes de pasar a ver las dimensiones del equipo, es importante remarcar el espesor de la pared del equipo, el cual es de 0,01 m.

Model Details		
Supplied Duty	Zones	1
Product Temp Spec	Volume [m3]	0.10
Duty Fluid	Duty [kJ/h]	2.562e+007
0.000	Product Temp [C]	80.00

Figura 43. Dimensiones de CO-301.

Finalmente, el condensador CO-301 contará con un volumen de $0,1 m^3$ según la simulación para producir un condensado a 80° C empleando el requerimiento energético anteriormente comentado.

Condensador de EV-302 (CO-302):

Para CO-302 el caudal de vapor a condensar se corresponde con la figura 44:

Condensado2		
Molar Flow	620.3	kgmole/h
Master Comp Mole Frac (Hydrazine)	0.0144	
Master Comp Mole Frac (H2O)	0.9856	
Master Comp Mole Frac (NACL)	0.0000	

Figura 44. Composición condensado (EV-302).

Figura 45. Operabilidad CO-302

Al tratarse de un caudal obtenido en un evaporador que funciona a unas condiciones diferentes de EV-301, se supone un $\Delta P = 10$ kPa, el cual devuelve una perdida de temperatura en el vapor de 25,39° C con un requerimiento de 2,644 · 10⁷ kJ/h.

Quitando el requerimiento energético para cada uno de los condensadores, todos contaran con las mismas dimensiones de medidas, temperatura del líquido de salida y demás parámetros internos del equipo como podemos observar en las figuras a continuación:

Overall U [kJ/h-m2-C]		51.00	
Ambient Temperature [C]		25.00	
onductive Properties			
	Metal	Insulation	
Thickness [m]	0.010	0.030	
Cp [kJ/kg-C]	0.4730	0.8200	
Density [kg/m3]	7801	7801 520.0	
Conductivity [W/m-K]	45.00	0.1500	
onvective Properties			
Inside U [kJ/h-m2-C]		102.0	
Outside II [k]/h-m2-C]		51.00	

Figura 46. Propiedades del funcionamiento de CO-302.

Model Details		
Supplied Duty	Zones	1
Product Temp Spec	Volume [m3]	0.10
Outv Fluid	Duty [kJ/h]	2.644e+007
- ,	Product Temp [C]	80.00

Figura 47. Dimensiones de CO-302.

Condensador de EV-303 (CO-303):

Para CO-303 el caudal de vapor a condensar se corresponde con la figura 48:

Condensado3		
Molar Flow	484.6	kgmole/h
Master Comp Mole Frac (Hydrazine)	0.0715	
Master Comp Mole Frac (H2O)	0.9276	
Master Comp Mole Frac (NACL)	0.0010	

Figura 48. Composición condensado (EV-303).

Figura 49. Operabilidad CO-303

Nuevamente, se supone una caída de presión idéntica a CO-302 (ya que EV-302 y 303 trabajan a las mismas condiciones de P y T) y se obtienen los mismos valores para la caída de temperatura y requerimiento energético que en el condensador anterior.

Overall U [kJ/h-m2-C] Ambient Temperature [C]		51.00 25.00
onductive Properties	Metal	Insulation
Thickness [m]	0.0	0.030
Cp [kJ/kg-C]	0.47	30 0.8200
Density [kg/m3]	78	01 520.0
Conductivity [W/m-K]	45.	00 0.1500
onvective Properties		
Inside U [kJ/h-m2-C]		102.0
Outside U [k]/h-m2-C]		51.00

Figura 50. Propiedades del funcionamiento de CO-302.

Model Details		
Supplied Duty	Zones	1
Product Temp Spec	Volume [m3]	0.10
Duty Fluid	Duty [kJ/h]	2.446e+007
,·	Product Temp [C]	80.00

Figura 51. Dimensiones de CO-303.

Finalmente, gracias a la homogeneidad en la simulación se obtienen CO-301, 302 y 303 con unas medidas idénticas, con la única diferencia que CO-301 contara con un requerimiento energético mayor dado que es el primer efecto del sistema.

11.7.1.2 Condensadores CO-401 a 403

De igual manera que en el apartado <u>11.7.1.1</u> los condensadores han sido diseñados con el objetivo de la homogeneidad entre los equipos.

Condensador de EV-401 (CO-401):

El caudal tratado en CO-401 se corresponde con la Figura 52:

Cond_H2O_1		
Molar Flow	387.1	kgmole/h
Master Comp Mole Frac (H2O)	0.9977	
Master Comp Mole Frac (Hydrazine)	0.0023	

Figura 52. Composición condensado (EV-401).

Figura 53. Operabilidad CO-401

Al tratarse de un sistema con un objetivo diferente al primer tramo de evaporadores, los condensadores de este segundo tramo conservaran un ΔP = 26,35 kPa en cada uno de ellos. También al tratarse de caudales donde prácticamente toda la composición es agua, el requerimiento energético será significativamente menor que en los condensadores CO-20X. Concretamente, en CO-401 se producirá una bajada de temperatura de 20,21° C con un requerimiento energético de 1,668 · 10⁷ kJ/h.

Overall U [kJ/h-m2-C]		51.00
Ambient Temperature [C]		25.00
onductive Properties	Metal	Insulation
Thickness [m]	0.010	0.030
Cp [kJ/kg-C]	0.4730	0.8200
Density [kg/m3]	7801	520.0
Conductivity [W/m-K]	45.00	0.1500
Convective Properties		102.0

Figura 54. Propiedades del funcionamiento de CO-401.

ones 1
olume [m3] 0.10
uty [kJ/h] 1.668e+007
roduct Temp [C] 60.00

Figura 55. Dimensiones CO-401

De igual manera que en los condensadores CO-20X, se obtienen los mismos parámetros para el funcionamiento de los condensadores CO-40X. Pero en este caso, la temperatura de salida del condensado es de 60° C. Las dimensiones de todos los condensadores del segundo tramo también serán de $0,1 m^3$.

Condensador de EV-402 (CO-402):

El caudal tratado en CO-402 se corresponde con la Figura 56:

Cond_H2O_2		
Molar Flow	399.6	kgmole/h
Master Comp Mole Frac (H2O)	0.9965	
Master Comp Mole Frac (Hydrazine)	0.0035	

Figura 56. Composición condensado (EV-402).

Figura 57. Operabilidad CO-402.

En este caso se obtiene una diferencia de presión de 26,38 kPa y una caída de temperatura de 20,62° C en el fluido al condensar. Todo con un requerimiento energético de $1,724 \cdot 10^7 kJ/h$.

Overall U [kJ/h-m2-C]		51.00
Ambient Temperature [C]		25.00
onductive Properties		
	Metal	Insulation
Thickness [m]	0.010	0.030
Cp [kJ/kg-C]	0.4730	0.8200
Density [kg/m3]	7801	520.0
Conductivity [W/m-K]	45.00	0.1500
Convective Properties		102.0

Figura 58. Propiedades del funcionamiento de CO-402.

Zones	1
Volume [m3]	0.10
Duty [kJ/h]	1.724e+007
Product Temp [C]	60.00
	Zones Volume [m3] Duty [kJ/h] Product Temp [C]

Figura 59. Dimensiones CO-402.

Al tratarse de un caudal a tratar superior al tratado en CO-401 el requerimiento energético para obtener un condensado a 6

0° C es ligeramente mayor con respecto al del primer condensador, no obstante, se lograron mantener las dimensiones y funcionamiento del equipo para esta tarea.

Condensador de EV-403 (CO-403):

El caudal tratado en CO-403 se corresponde con la Figura 60:

Cond_H2O_3						
Molar Flow	411.7	kgmole/h				
Master Comp Mole Frac (H2O)	0.9926					
Master Comp Mole Frac (Hydrazine)	0.0074					

Figura 60. Composición condensado (EV-403).

Figura 61. Operabilidad CO-403.

Nuevamente, manteniendo la caída de presión para tratar un caudal mayor se produce un requerimiento energético mayor, como en el caso anterior. De manera que se produce una caída de temperatura de 21,73° C con un consumo de $1,780 \cdot 10^7 kJ/h$.

Overall U [kJ/h-m2-C]		51.00
Ambient Temperature [C]		25.00
nductive Properties		
	Metal	Insulation
Thickness [m]	0.010	0.030
Cp [kJ/kg-C]	0.4730	0.8200
Density [kg/m3]	7801	520.0
Conductivity [W/m-K]	45.00	0.1500
Convective Properties		102.0
Outside II [k]/h-m2-Cl		51.00

Figura 62. Propiedades del funcionamiento CO-403.

Model Details		
Supplied Duty	Zones	1
Product Temp Spec	Volume [m3]	0.10
Outv Fluid	Duty [kJ/h]	1.780e+007
0.1.1	Product Temp [C]	60.00

Figura 63. Dimensiones CO-403.

Como se ha comentado a lo largo de este apartado, todos los condensadores están homogeneizados en sus dimensiones. No obstante, todos ellos reciben caudales diferentes, los cuales afectan directamente al requerimiento energético como se ha podido ver a lo largo de las figuras facilitadas. No obstante, se ha logrado obtener un total de 6 evaporadores de dimensiones idénticas para tratar 6 caudales de vapor distintos.

11.7.2 Intercambiadores de calor

Como se ha podido ver a lo largo del capítulo, las temperaturas de operación en los diversos equipos son muy diversas, e incluso en algunos puntos se requieren saltos de temperatura elevados, como en el paso de R-201 a los RCFP R-202 a 205.

Para poder llevar a cabo las operaciones y controlar las temperaturas de los caudales se han diseñado diversos intercambiadores de calor, donde algunos hacen de caldera y otros actúan a modo de refrigeración de los diferentes caudales de planta.

El diseño de estos equipos ha sido realizado a partir de simulaciones en Aspen HYSYS V10, programa que permite, partiendo de los caudales de entrada y salida que se requieran, un dimensionamiento preciso del equipo y sus datos para la operabilidad del mismo. Cabe remarcar también que el programa aproxima al alza varios de los caudales de paso, de manera que estos pueden diferir de los caudales expresados en las tablas de los balances presentadas en el capítulo 1.

11.7.2.1 Intercambiador NaOCl (IC-201)

En IC-101 se reducirá la temperatura del caudal de NaOCI suministrado por la empresa productora. Este se contempla que llegue a una temperatura de 25° C y teniendo en cuenta que el caudal necesario de NaOCI (12% w. Cl-) es de 614,855 kmol/h, la simulación de Aspen HYSYS es capaz de diseñar un intercambiador de carcasa y tubos en detalle.

Para este caso se ha empleado Freon-12, un agente refrigerante compuesto con cloro el cual se encuentra en desuso. Sin embargo, dadas las limitaciones de la versión del programa empleada, no se logró simular correctamente el caudal de lejía y el único refrigerante que compilaba era el Freon-12.

En la figura a continuación pueden verse las características de paso den los dos fluidos por el equipo y los datos de operación en el equipo:

Design Rati	Worksheet	Performance	Dynamics	Rigorous Shell&Tube				
Worksheet	Name			Entrada refrigerar	Salida refrigerant	Corriente entrada	Corriente salida	
Conditions	Vapour			0.0000	0.0000	0.0000	0.0000	
Properties Composition PF Specs	Temperature	e [C]		-29.80	-28.42	25.00	5.000	
	Composition	Pressure [kP	Pressure [kPa]		111.5	106.9	111.5	101.3
	Molar Flow	Molar Flow [kgmole/h] Mass Flow [kg/h]			6024	614.9	614.9	
	Mass Flow [7.284e+005	1.219e+004	1.219e+004	
	Std Ideal Lig	Vol Flow [m3/ł	n]	541.9	541.9	12.06	12.06	
	Molar Enthalpy [kJ/kgmole]			-5.206e+005	-5.205e+005	-2.820e+005	-2.834e+005	
	Molar Entro	py [kJ/kgmole-(]	156.1	156.7	37.02	32.00	
	Heat Flow [d/h]		-3.136e+009	-3.135e+009	-1.734e+008	-1.743e+008	

Figura 64. Caudales de paso IC-201.

			Hot : Sh	Stream (1) Iell Side	Cold Stream (2) Tube Side		
Fluid name			Hipoclorito d	e sodio	Freón 12		
			In	Out	In	Out	
Mass flow rate	kg/h	•	12185	12185			
Temperature	°C	•	25	5	-29.8	-28.42	
Vapor mass fraction			0	0	0	0	
Pressure (absolute)	kPa	•	111.458	101.325	111.458	106.869	
Pressure at liquid surface in colur	mn						
Heat exchanged	kW	•					
Exchanger effectiveness							
Adjust if over-specified			Outlet temper	rature 🔹	Outlet tempe	rature	
Estimated pressure drop	kPa	•	10.132		4.589		
Allowable pressure drop	kPa	•	12		22		
Fouling resistance	m²-K/W	•	0		0		

Figura 65. Características de paso por IC-201.

Partiendo de esta base de funcionamiento del equipo, donde se emplea un caudal de Freon-12 a -29.8° C que sale del sistema de tubos a -28.42° C, el cual logra reducir la temperatura del caudal alimentado a la temperatura de operación de R-201.n Por otro lado, estos datos son empleados para el dimensionamiento del equipo, tanto la carcasa como la cantidad de tubos internos que provocaran el enfriamiento del caudal.

Al final de este apartado se comenta el motivo de los altos caudales alimentados a IC-201 junto a la figura 65.

Front head type		A - c	hannel & rem	novable cover		•]		
Shell type		E - 0	E - one pass shell]		
Rear head type		S - f	loating head v	vith backing de	vice	•)		
Exchanger position		Hori	zontal	•					
Shell(s)			Tubes			Tube L	ayout		
ID 796.2	mm	•	Number	160		New	(optimun	n) layout	•
OD 820.2	mm	•	Length	6	m •	Tubes		622	
Series 1			OD	19.05 mm	•	Tube P	asses	2	
Parallel 1			Thickness	2.11 mm • P		Pitch		23.81	mm 🔻
						Patter	ı	30-Triang	ular 🔹
Baffles									
Spacing (center-c	enter) 80	0	mm •	Туре		S	ingle segi	mental 🔻	
Spacing at inlet			mm 🔹	Tubes in window			Yes •		j l
Number				Orientat	ion	F	lorizontal	•	
Spacing at outlet			mm 🔹	Cut(%d))				

Figura 66. Dimensiones de IC-201.

Concretamente, la operación de IC-201 contará con una carcasa de 796,2 mm de diámetro interno y 820,2 mm para el externo. En cuanto a los tubos internos habrá un total de 160 tubos de 6 metros de longitud, un diámetro externo de 19,05 mm y un espesor de pared de 2,11 mm. Habrá un total de 2 pasos por tubo para realizar la operación deseada. Finalmente, también contará con un bafle de centro a centro de 800 mm.

✓ Shell/Heads ✓ Covers ✓ Tubesheets ✓	Flanges	
Front head type	A - channel & removable c	over
Shell type	E - one pass shell	
Rear head type	S - floating head with back	ing devi
Exchanger position	Horizontal	•
Location of front head for vertical units	Set default	Ŧ
"E" shell flow direction (inlet nozzle location)	Near rear head	•
Double pipe or hairpin unit shell pitch	mn	n –
Tubeside inlet at front head	Set default	Ŧ
Flow within multi-tube hairpin (M-shell)	Set default	v
Overall flow for multiple shells	Set default	~

Figura 67. Características de los componentes del intercambiador IC-201.

En la figura 66 se muestra a modo de información adicional el tipo de componentes del cuerpo del intercambiador, como son la carcasa frontal, el área de paso y la cabeza flotante, donde se asignará la entrada de refrigerante.

A continuación, se muestra de manera más detallada las características de los tubos que conforman el intercambiador.

✓ Tube Lowfins Fins ✓	Inserts KHT Twisted Tubes Internal Enhancements
Number of tubes (total)	160
Number of tubes plugged	0
Tube length	6 m -
Tube type	Plain
Tube outside diameter	19.05 mm 🔻
Tube wall thickness	2.11 mm •
Wall specification	Average
Tube pitch	23.81 mm -
Tube pattern	30-Triangular
Tube material	Carbon Steel - 1
Tube surface	Smooth
Tube wall roughness	mm 🔻
Tube cut angle (degrees)	

Figura 68. Detalles de los tubos de paso IC-201.

Finalmente, la simulación también calcula el EDR, lo cual permite obtener un plano detallado del equipo y una tabla con las diferentes características técnicas del mismo. Partiendo de esos datos, el programa hace un primer presupuesto de los costes de construcción del equipo. Para IC-201 se requerirán un total de 160 tubos.

Weights	kg	Cost data	Dollar(US)
Shell	630.2	Labor cost	60090
Front head	383.7	Tube material cost	4186
Rear head	152	Material cost (except tubes)	10531
Shell cover			
Bundle	1027.2		
Total weight - empty	2193.1	Total cost (1 shell)	37403
Total weight - filled with water	3196.8	Total cost (all shells)	74806

Figura 69. Costes y peso de IC-201.

Como puede observarse en la figura 68, las diferentes partes del equipo llegara a pesar 2193,1 kg en vacío y 3196,8 kg en llenado con agua. En cuanto a los costes, HYSYS estima un coste total de 74.806 USD \$ (65.683 €).

A continuación, se adjunta la tabla de especificaciones generales de IC-201:

PLANTA DE PRODUCCIÓN DE HIDRAZINA CAPÍTULO 11: MANUAL DE CÁLCULOS

TEM	A Sheet							
			Linet Evelo		dian tinu	Chaot		
1	C		Heat Exchar	iger spec	fication	Sneet		
+	Company:							
2	Location:	0.07						
3	Service of Unit:	Our Referen	ce:					
4	Item No.:	Your Referenc	e:					
5	Date: Rev	/No.: Job No.:						
6	Size: /00 - 1400	mm ly	pe: AES	Horizontal		Connected	in: 2 parallel	1 series
7	Surf/unit(eff.)	87.1 m*	Shells/u	init 2		Surf	/shell(eff.)	43.5 m*
8			PERFC	DRMANCE O	F ONE UN			<u></u>
9	Fluid allocation				Shell Si	ide	lub	e Side
10	Fluid name				1210	-		
11	Fluid quantity, lotal		kg/h		1218	5	/20	3380
12	Vapor (In/Out)		kg/h	0	-	0	0	15688
13	Liquid		kg/h	1218	2	12185	728380	/12692
14	Noncondensable		kg/h	0		0	0	0
15								22.45
16	lemperature (In/Out)		-C	25		5	-29.8	-32.45
1/	Bubble / Dew poin	it		/	047.0	/	-21.42 / -21.42	-32.52 / -32.51
18	Density Vapor/	Liquid	kg/m*	/	017.6	/ 1033.16	/ 1480.94	5.63 / 1483.88
19	Viscosity		ср	/ 1	.0724	/ 1./813	/ 0.3668	0.0102 / 0.3/11
20	Molecular wt, Vap							120.91
21	Molecular wt, NC			,			6 0 005	0.552 (0.002
22	Specific heat		kJ/(kg-K)	/	3.64	/ 3.646	/ 0.885	0.552 / 0.882
23	Thermal conductivity		W/(m-K)	/	0.5553	/ 0.5264	/ 0.0997	0.0072 / 0.1001
24	Latent heat		kJ/kg				166.6	167
25	Pressure (abs)		kPa	111.4	111.458 109.865		111.458	89.95
26	Velocity (Mean/Max)		m/s		0.04 / 0.05		2.21	/ 8.44
27	Pressure drop, allow./o	calc.	kPa	12 1.592			22	21.507
28	Fouling resistance (mi	n)	m²-K/W	0 0			0	0 Ao based
29	Heat exchanged	247.2	kW			MTD (corrected) 44.02	°C
30	Transfer rate, Service	64.5		Dirty	469.3		Clean 469.3	W/(m²-K)
31		CONSTRU	CTION OF ONE S	HELL			SI	ketch
32			Shell Si	de		Tube Side		
33	Design/Vacuum/test p	ressure kPa	300 /	1	300 /	/		
34	Design temperature	°C	60			35	n tim	T _{Pw} -
35	Number passes per sh	ell	1	2				
36	Corrosion allowance	mm	3.18	3.18				Ч!!Ь!!// I
37	Connections	in mm	1 38.1 /	-	1 2	254 / -	┉╤╴┉╓╴	
38	Size/Rating	Out	1 38.1 /	-	1 2	254 / -		
39	Nominal	Intermediate	1 /	-	1	/ -		
40	Tube #: 622	OD: 19.05 Tks Ave	rage 2.11	mm Len	gth: 1.	.4 m P	itch: 23.81 mm	Tube pattern: 30
41	Tube type: Plain	Insert	None		Fin#:	#/1	m Material: Carbo	on Steel
42	Shell Carbon Steel	ID 700	OD 720		mm	Shell cover	Carbon	Steel
43	Channel or bonnet	Carbon Steel				Channel cover	Carbon	Steel
44	Tubesheet-stationary	Carbon Steel	-			Tubesheet-floa	ating Carbon	Steel
45	Floating head cover	Carbon Steel				Impingement	protection None	
46	Baffle-cross Carbon 9	Steel Tune	Single com	ental (`ut(%d)	20.76	H Spacing: c/c 14	0 mm
40	Baffle-long -	ivpe	Seal Type	citai C	at(760)	20.70	Inlet 224.7	71 mm
10	Supports-tube	ll-hend				Tunc	111et 254.7	inim
40	Bynass seal	0-benu	т.	uhe-tubecho	et ioint	Expanded o	nly (2 grooves) (App A	50
47	Expansion joint			Ture-tubeshe	Non	e cypaniced o	ing (E grooves)(App.A	17
51	RhoV2-Inlet nozzle	1632	Bundle entra	nce 5	- NON	e Bundle ev	cit 5	ka/(m-s ²)
52	Gackets - Shell side	Flat Metal Jac	et Fibe	Tube side		Elst	Metal Jacket File	kg/(m-s-)
52	Floating hear	d Flat Metal Jac	ket Fihe	Tabe side		Fiat	Metal Jacket Line	
54	Code requirements	ASME Code Sec VI	L Div 1		TEMA class	ss R - refinen/	service	
55	Weight/Shell	2193.1 Filled a	ith water 3106	8	Bundle	1027.2	ka ka	
56	Remarks	2155/1 Tilled W	ici water 3150.	•	Danale	IVENE	ĸġ	
57	nemarka							
58								

Figura	70.	Especificaciones	IC-201.

Estas serían todas las características para el funcionamiento y construcción de IC-201.

Es importante remarcar que los caudales definidos en la figura 64 son correctos para la parte de NaOCI, sin embargo, al tratarse de una molécula teórica simulada por el programa con una versión relativamente limitada se devuelve como un caudal másico que no se correspondería con la realidad. Por lo tanto, estas condiciones descritas de IC-201 deberían ser mucho menores y diferentes.

11.7.2.2 Intercambiador NH₃ (IC-202)

El caudal alimentado a planta de amoniaco también se considera que su temperatura de entrada es de 25° C, y se emplea el mismo refrigerante (Freon-12) para la operación. En este caso, no ha sido necesario emplear la herramienta de molécula teórica que proporciona HYSYS, ya que esta conlleva ciertos problemas en la simulación.

A continuación, se presentan las diferentes figuras que determinan la operación en IC-202, empezando por los caudales de paso que actúan en el equipo:

Design	Rating	Worksheet	Performance	Dynamics	Rigorous Shell&Tube			
Worksh	Worksheet Name		Entrada Refrigera	Salida Refrigerant	Entrada Fluido	Salida Fluido		
Conditions		0.0000	0.0000	0.0000	0.0000			
Properti	es	Temperature	e [C]		-39.80	-29.80	25.00	5.000
Composition Pressure [kPa]		106.9	100.8	92.50	40.64			
PF Specs Mo		Molar Flow [kgmole/h]		2017	2017	1419	1419	
		Mass Flow [kg/h]		2.439e+005	2.439e+005	2.520e+004	2.520e+004
Std Mol		Std Ideal Liq	Vol Flow [m3/h	1	181.5	181.5	29.16	29.16
		Molar Entha	lpy [kJ/kgmole]		-5.217e+005	-5.206e+005	-2.309e+005	-2.324e+005
		Molar Entro	py [kJ/kgmole-(]	151.6	156.1	62.41	57.22
		Heat Flow [k	J/h]		-1.052e+009	-1.050e+009	-3.276e+008	-3.298e+008

Figura 71. Caudales de paso IC-202.

✓ Process Data					
		Hot Stream (1) Shell Side		Cold Stream (2) Tube Side	
Fluid name		Amoniaco		Freón 12	
		In	Out	In	Out
Mass flow rate	kg/h 🔹	25199		243926	
Temperature	°C •	25	5	-39.8	-29.8
Vapor mass fraction		0	0	0	0
Pressure (absolute)	kPa 🔹	92.502	40.639	106.869	100.771
Pressure at liquid surface in column					
Heat exchanged	kW 🔹				
Exchanger effectiveness					
Adjust if over-specified		Outlet temperature		ture 🔹	
Estimated pressure drop	kPa ▼	51.864		6.098	
Allowable pressure drop	kPa 🔹	51.864		22	
Fouling resistance	<i>m²-K/W</i> ▼	0		0	

Figura 72. Características de paso por IC-202.

En este caso, se efectúa de nuevo una reducción de temperatura de 25 a 5° C en el alimento de amoniaco, mientras que el refrigerante alimentado pasa de -39,80 a -29,80° C. Estos caudales son respectivamente 1418,7 kmol/h para el amoniaco y 2017 kmol/h para el Freon-12. En la figura 72 se pueden ver estos datos en caudales másicos y operabilidad del equipo.

Geometry Tube Layout						
Front head type	ont head type B - bonnet bolted or integral with tubesheet					
Shell type	E - one pass shell					
Rear head type	M - bonnet 🔹					
Exchanger position	Horizontal •					
Shell(s)	Tubes	Tube Layout				
ID 739.05 mm •	Number 160	New (optimum) layout				
OD 759.05 mm •	► Length 6 m ▼	Tubes 190				
Series 1	OD 19.05 mm -	Tube Passes 2				
Parallel 1	Thickness 2.11 mm -	Pitch 23.81 mm -				
		Pattern 30-Triangular				
Baffles						
Spacing (center-center) 800	mm 🔻 Type	Single segmental 🔹				
Spacing at inlet 2553	3.48 mm ▼ Tubes in window	Yes 🔹				
Number 2	Orientation	Horizontal 🔹				
Spacing at outlet 255	3.48 mm ▼ Cut(%d)					

Figura 73. Dimensiones de IC-201.

Como puede observarse en la figura 73, algunos de los parámetros de diseño internos se mantendrán similares a lo largo de los diferentes diseños. Esto se debe al método tabulado que emplea el simulador. Para este caso, la operabilidad y dimensiones del tuvo son idénticas a IC-201, mientras que los diámetros interno y externo de la carcasa varían a 739,05 y 759,05 mm.

Shell/Heads Covers Tubesheets 🗸	 Flanges 		
Front head type	B - bonnet bolted or integral with tubesheet		
Shell type	E - one pass shell 🔹		
Rear head type	M - bonnet 🔹		
Exchanger position	Horizontal •		
Location of front head for vertical units	Set default 🔹		
"E" shell flow direction (inlet nozzle location)	Near rear head 🔹		
Double pipe or hairpin unit shell pitch	mm		
Tubeside inlet at front head	Set default 🔹		
Flow within multi-tube hairpin (M-shell)	Set default 🔹		
Overall flow for multiple shells	Set default 🔹		

Figura 74. Características de los componentes del intercambiador IC-202.

Nuevamente, se presentan los diferentes componentes de la estructura externa de IC-202. Como puede verse, aquí los componentes si se diferencian de IC-201.

✓Tube Lowfins Fins ✓	Inserts KHT Twisted Tubes Internal Enhancements
Number of tubes (total)	160
Number of tubes plugged	0
Tube length	6 m •
Tube type	Plain
Tube outside diameter	19.05 mm •
Tube wall thickness	2.11 mm •
Wall specification	Average •
Tube pitch	23.81 mm -
Tube pattern	30-Triangular 🔹
Tube material	Carbon Steel 1
Tube surface	Smooth
Tube wall roughness	mm v
Tube cut angle (degrees)	

Figura 75. Detalles de los tubos de paso IC-202.

En la figura 75 se presentan las características de los tubos que conforman la superficie de intercambio de IC-202.Como se ha comentado anteriormente, estas funcionaran con un flujo en dos pasos de Freon-12. Las dimensiones de las tuberías serán de 6 m de largo y un diámetro externo de 19,05 mm (con un espesor de pared de 2,11 mm). Para IC-202 se requerirán un total de 160 tubos.

Weights	kg	Cost data	Dollar(US)
Shell	187.9	Labor cost	14000
Front head	83.5	Tube material cost	548
Rear head	84.4	Material cost (except tubes)	2250
Shell cover			
Bundle	288.7		
Total weight - empty	644.5	Total cost (1 shell)	16799
Total weight - filled with water	849.8	Total cost (all shells)	16799

Figura 76. Costes y peso de IC-202.

En cuanto al peso del equipo será de 644,5 kg y 849,8 en vacío y llenado respectivamente, llevando a un coste total del equipo de 16.799\$ USD. Comparando estos datos para el coste del equipo con los de IC-201 (Figura 69) puede observarse que los costes y peso del equipo anterior son erróneos por causa de la simulación de la molécula de NaOCI, la cual lleva a este error en el resultado final. No obstante, los valores obtenidos para IC-202 si son acorde a otros equipos similares con esta finalidad.

Finalmente, se presenta las especificaciones generales de operabilidad y dimensiones del sistema IC-202:

_				Heat Exchar	nger Speci	rication	Sneet		
1	Company:								
2	Location:								
3	Service of Unit:	Ou	r Referenc	ce:					
4	Item No.:	Your	Reference	e:					
5	Date: Rev	No.: Job	No.:						
6	Size : 387 - 1200	mm	Тур	be: BEM	Horizontal		Connected in:	1 parallel	1 series
7	Surf/unit(eff.)	12.8	m²	Shells/u	nit 1		Surf/sl	hell(eff.)	12.8 m ²
8				PERFO	RMANCE OF	ONE UN	IIT		
9	Fluid allocation					Shell S	ide	Tube	e Side
10	Fluid name								
11	Fluid quantity. Total			ka/h		2519	19	243	3926
12	Vapor (In/Out)			ka/h	0		0	0	2428
13	Liquid			ka/h	25199)	25199	243926	241498
14	Noncondensable			ka/h	0		0	0	0
15				Ng/ 11	, ,				<u> </u>
16	Temperature (In/Out)			°C	25		4.98	-39.8	-31.68
17	Bubble / Dew point	+		- °C	25 / 8	9.64	23.54 / 88.15	-28.42 / -28.42	-31.7 / -31.7
18	Density Vapor/	Liquid		ka/m³	/ 87	77.38	/ 894.46	/ 1516.64	5.8 / 1493.08
19	Viscosity			.sy, in	/ (0.53	/ 0.7533	/ 0.4247	0.0101 / 0.3852
20	Molecular wt. Van				, ,		, 011555	, 01217	120.91
21	Molecular wt NC								120101
22	Specific heat			kJ/(ka-K)	/ 4	.214	/ 4.212	/ 0.861	0.549 / 0.877
22	Thermonic and the state				1 , 1	0.5740	1.05000	/ 0.1011	0.0071 (0.1012
23	Inermal conductivity			W/(m-K)	/ /	0.5749	/ U.3030	/ 0.1041	167.6
24	Latent neat			KJ/Kg	02.5/	0.2	07.100	107	02.075
20	Pressure (abs)			кра	92.50	0.26	07.100	100.009	92,975
20	Deserves dreep, allow /a	ala		m/s	E1 04	0.50	5 204	2.	12 002
27	Pressure grop, allow./c	aic.		KPa 2 K 044	51.00	04	5.594	22	15:095
20	Fouring resistance (min	500.0		m -r./ w		0			A A Daseu
19	y Heat exchanged 589.9 kW MTD (corrected) 48.56 °C								
20	Transfor rate Service	051.4		KW	Diete	2010.1	MID (c	orrected) 48.5	10 C
30	Transfer rate, Service	951.4	ONSTRU		Dirty	2019.1	MID (c	orrected) 48.5 Clean 2019.1	W/(m ² -K)
30 31	Transfer rate, Service	951.4 C	ONSTRU		Dirty SHELL	2019.1	MID (c	orrected) 48.5 Clean 2019.1	W/(m²-K) Sketch
30 31 32 32	Transfer rate, Service	951.4 C	ONSTRU	CTION OF ONE Shell S	Dirty SHELL ide	2019.1	Tube Side	orrected) 48.5 Clean 2019.1	W/(m²-K) Sketch
30 31 32 33 24	Transfer rate, Service Design/Vacuum/test p	951.4 C	ONSTRU kPa	CTION OF ONE Shell S 300 /	Dirty SHELL ide /	2019.1 300	Tube Side	orrected) 48.5 Clean 2019.1	W/(m ² -K)
30 31 32 33 34 35	Transfer rate, Service Design/Vacuum/test p Design temperature	951.4 C	CONSTRU kPa °C	CTION OF ONE S Shell S 300 / 60	Dirty SHELL ide /	2019.1	Tube Side / / / 35	orrected) 48.: Clean 2019.1	W/(m ² -K)
30 31 32 33 34 35 26	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corroziona allowance	951.4 C	KPa °C	KW CTION OF ONE S Shell S 300 / 60 1 3.15	Dirty SHELL ide /	2019.1	Tube Side / / / 35 1 2.19	Clean 2019.1	W/(m ² -K)
30 31 32 33 34 35 36 27	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance	951.4 C	CONSTRU kPa °C mm	kw CTION OF ONE 15 300 / 60 1 3.18 1 152 4	Dirty SHELL ide /	2019.1	Tube Side / / / 35 1 3.18 202.2 /	Clean 2019.1	W/(m ² -K)
30 31 32 33 34 35 36 37 29	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections	951.4 Q51.4 C	KPa °C mm mm	kw criion OF ONE 3 300 / 60 1 3.18 1 152.4 1 76.2	Dirty SHELL ide /	2019.1	Tube Side / / / 35 1 3.18 203.2 / -	orrected) 48.3	W/(m ² -K)
30 31 32 33 34 35 36 37 38 30	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating	951.4 951.4 C ressure ell In Out	KPa °C mm mm	kw CTION OF ONE 5 300 / 60 1 3.18 1 152.4 1 76.2	Dirty SHELL ide / / / / /	2019.1 300 1 1	MID (c Tube Side / / 35 1 3.18 203.2 203.2 / -	orrected) 48.3	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal	951.4 951.4 C ressure ell In Out Intermediate OD: 10.05	CONSTRU kPa °C mm mm	KW CTION OF ONE 15 300 / 60 1 3.18 1 152.4 1 76.2 Face 2.11	Dirty SHELL ide / - - - - - - - - - - - - -	2019.1 300	MID (c Tube Side / / 35 1 3.18 203.2 203.2 / - 12	clean 2019.1	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40 41	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 190 Tube tone: Plain	951.4 951.4 C ressure ell In Out Intermediate OD: 19.05	NSTRU kPa °C mm mm Tks. Ave	CTION OF ONE S Shell S 300 / 60 1 3.18 1 152.4 1 76.2 rage 2.11	Dirty SHELL / / / / / - / - mm Len	2019.1 300 1 1 gth:	MID (c Tube Side / 35 1 3.18 203.2 203.2 / - 1.2 m *	ch: 23.81 mm	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40 41 42	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 190 Tube type: Plain Shell Carbon Steel	951.4 951.4 C ressure ell In Out Intermediate OD: 19.05	ONSTRU kPa °C mm mm Tks. Ave Insert	CTION OF ONE S Shell S 300 / 60 1 3.18 1 152.4 1 76.2 rage 2.11 : None	Dirty SHELL ide / / / - / mm Len 4	2019.1 300 1 1 gth: Fin#	MID (c Tube Side / / 35 1 3.18 203.2 203.2 / / - 1.2 m Pit #/m	ch: 23.81 mm Material: Carbo	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40 41 42 43	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 190 Tube type: Plain Shell Carbon Steel Chappel or bonnet	951.4 951.4 C ressure ell In Out Intermediate OD: 19.05 ID Carbon S	NSTRU kPa °C mm mm Tks. Ave Insert 387.35	CTION OF ONE 3 Shell S 300 / 60 1 3.18 1 152.4 1 76.2 rage 2.11 None OD 406	Dirty SHELL / / / / - / - mm Len .4	2019.1 300 1 1 gth: Fin#	Tube Side / / / 35 1 3.18 203.2 / - 203.2 / - 1.2 m Pit : #/m Shell cover Channel cover	ich: 23.81 mm	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 190 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubestest stationappy	951.4 951.4 C ressure ell In Out Intermediate OD: 19.05 ID Carbon S Carbon S	Nonstructure kPa °C mm mm Tks. Ave Insert 387.35 iteel	CTION OF ONE 3 Shell S 300 / 60 1 3.18 1 152.4 1 76.2 rage 2.11 None OD 406	Dirty SHELL ide / - - mm Len .4	2019.1 300 1 1 gth: Fin#	Tube Side C 35 1 3.18 203.2 - 203.2 / - 1.2 m Pit :: #/m MID (cover Channel cover Channel cover Tubestest-float	inercied) 48.5 Clean 2019.1 Clean 2019.1	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 190 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary	951.4 951.4 C ressure ell In Out Intermediate OD: 19.05 ID Carbon S Carbon S	ONSTRU kPa °C mm mm Tks. Ave Insert: 387.35 iteel iteel	CTION OF ONE 3 300 / 60 1 3.18 1 152.4 1 76.2 rage 2.11 None OD 406 -	Dirty SHELL ide / - / - mm Len .4	2019.1 300 1 1 gth: Fin# mi	Tube Side / / 35 1 3.18 203.2 / - 203.2 / - 1.2 m Pit :: #/m #/m Shell cover Channel cover Tubesheet-float Impingement In Impingement float Impingement float	ch: 23.81 mm Material: Cart - 	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 190 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover	951.4 951.4 C ressure ell In Out Intermediate OD: 19.05 ID Carbon S Carbon S -	ONSTRU kPa °C mm mm Tks. Ave Insert: 387.35 iteel iteel	CTION OF ONE 3 300 / 60 1 3.18 1 152.4 1 76.2 rage 2.11 None OD 406 -	Dirty SHELL ide /	2019.1 300 1 1 gth: Fin# mi	Tube Side / / 35 1 3.18 203.2 / - 203.2 / - 1.2 m Pit * #/m MID (cover Channel cover Tubesheet-float Impingement p 1	ch: 23.81 mm Material: Cart rotection None	Sketch W/(m ² -K) Sketch Tube pattern: 30 pon Steel
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 46 47	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 190 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S	951.4 951.4 C ressure ell In Out Intermediate OD: 19.05 ID Carbon S Carbon S - -	ONSTRU kPa °C mm mm Tks. Ave Insert 387.35 iteel iteel Type	KW CTION OF ONE S 300 / 60 1 3.18 1 152.4 1 76.2 rage 2.11 None OD 406 - Single segn	Dirty SHELL ide / - / - / - / - / - / - / - / . / - / . / . / . / . / . / . / . / . / . / .	2019.1 300 1 1 1 gth: Fin# Cut(%d)	Tube Side / / 35 1 3.18 203.2 / - 203.2 / - 1.2 m Pirit * #/m MID (cover Channel cover Tubesheet-float Impingement p 16.26	ich: 23.81 mm Material: Carb rotection None H Spacing: c/c 1	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 190 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long -	951.4 951.4 C ressure ell In Out Intermediate OD: 19.05 ID Carbon S Carbon S - - -	ONSTRU kPa °C mm mm Tks. Ave Insert: 387.35 iteel iteel Type	CTION OF ONE S 300 / 60 1 3.18 1 152.4 1 76.2 rage 2.11 None OD 406 - Single segn Seal Type	Dirty SHELL ide / - 3 / - / - mm Len .4	2019.1 300 1 1 gth: Fin# mi	Tube Side / / 35 1 3.5 1 3.18 203.2 / 203.2 / - // - - - 1.2 m Piti #/m Shell cover Channel cover Tubesheet-float Impingement p 16.26 Ture	ilean 2019.1 Clean 2019.1 Clean 2019.1 Children Control Con	W/(m ² -K) Sketch Tube pattern: 30 bon Steel 05 mm .98 mm
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 190 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Burnacs ceal	951.4 951.4 C ressure ell In Out Intermediate OD: 19.05 ID Carbon S Carbon S - - - - -	ONSTRU kPa °C mm mm Tks. Ave Insert: 387.35 iteel iteel	CTION OF ONE S 300 / 60 1 3.18 1 152.4 1 76.2 rage 2.11 None OD 406 - Single segn Seal Type 0	Dirty SHELL ide / - 3 / - / - mm Len .4	2019.1 300 1 1 1 gth: Fin# mi	Tube Side / / / 35 1 3.18 203.2 / - 203.2 / - 1.2 m Pit : #/m Shell cover Tubesheet-float Impingement p 16.26 Type	interial: Cartering - rotection None H Spacing: c/c 1 Inlet 298	W/(m ² -K) Sketch Tube pattern: 30 bon Steel 05 mm .98 mm
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 190 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint	951.4 951.4 C ressure ell In Out Intermediate OD: 19.05 ID Carbon S Carbon S - - iteel U-bend	ONSTRU kPa °C mm mm Tks. Ave Insert: 387.35 iteel iteel	CTION OF ONE S 300 / 60 1 3.18 1 152.4 1 76.2 rage 2.11 None OD 406 Single segn Seal Type 0	Dirty SHELL ide / - 3 / - / - / - / - / - / - / - / - / - / -	2019.1 300 1 1 1 gth: Fin# Cut(%d) eet joint	Tube Side / / / 35 1 3.18 203.2 / - 203.2 / - 1.2 m Piti #/m Shell cover Channel cover Tubesheet-float Impingement p 16.26 Type Expanded or	ich: 23.81 mm Material: Carbon Material:	W/(m ² -K) Sketch Tube pattern: 30 oon Steel 05 mm .98 mm A 'i')
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 190 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint Rbol/2-Inlet portle	951.4 951.4 C ressure ell In Out Intermediate OD: 19.05 ID Carbon S Carbon S - - iteel U-bend - 161	ONSTRU kPa °C mm mm Tks. Ave Insert 387.35 iteel iteel	KW CTION OF ONE S 300 / 60 1 3.18 1 152.4 1 76.2 rage 2.11 None OD 406 - Single segn Seal Type 0	Dirty SHELL ide / - 3 / - mm Len .4 mental C Tube-tubeshe Type	2019.1 300 1 1 1 1 Sin# Cut(%d) cut(%d) cut(%d) cut(%d)	Tube Side / / / 35 1 3.18 203.2 / - 203.2 / - 1.2 m Piti * #/m Shell cover Channel cover Tubesheet-float Impingement p 16.26 Type Expanded or Tubesheet or Tubesheet or Type	ich: 23.81 mm Material: Cart rotection None H Spacing: c/c 1 Inlet 298	W/(m ² -K) Sketch Tube pattern: 30 bon Steel 05 mm .98 mm A 'i') ka/(m-c ²)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Cornosion allowance Connections Size/Rating Nominal Tube #: 190 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskrets - Shell side	951.4 951.4 ressure ell In Out Intermediate OD: 19.05 ID Carbon S Carbon S - - iteel U-bend - 161	ONSTRU kPa °C mm mm Tks. Ave Insert 387.35 iteel iteel	CTION OF ONE S 300 / 60 1 3.18 1 152.4 1 76.2 rage 2.11 None OD 406 - Single segn Seal Type 0 - Bundle entra	Dirty SHELL ide / / - mm Len .4 mental C Tube-tubeshe Type ance 67 Tube cide	2019.1 300 1 1 1 1 Sin# Cut(%d) cut(%d) cut(%d) cut(%d)	Tube Side / / / 35 1 3.18 203.2 / - 203.2 / - 1.2 m Piti * #/m Shell cover Channel cover Tubesheet-float Impingement p 16.26 Type Expanded or ne Bundle exi	t 245	W/(m ² -K) Sketch Tube pattern: 30 yon Steel 05 mm .98 mm A 'i') kg/(m-s ²)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Cornosion allowance Connections Size/Rating Nominal Tube #: 190 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Eloating head	951.4 951.4 ressure ell In Out Intermediate OD: 19.05 ID Carbon S Carbon S - - iteel U-bend - 161 -	ONSTRU kPa °C mm mm Tks. Ave Insert 387.35 iteel iteel	CTION OF ONE S Shell S 300 / 60 1 3.18 1 152.4 1 76.2 rage 2.11 None OD 406 - Single segn Seal Type 0 Bundle entra	Dirty SHELL ide / / - / - mm Len - - - - - - - - - - - - -	2019.1 300 1 1 1 1 Sut(%d) eet joint e No	Tube Side / / / 35 1 3.18 203.2 / - 203.2 / - 1.2 m Piti * #/m Shell cover Channel cover Tubesheet-float Impingement p 16.26 Type Expanded or ne Bundle exi Flat N	ich: 23.81 mm Material: Carb rotection None H Spacing: c/c 1 Inlet 298 Ily (2 grooves)(App., t 245 Metal Jacket Fibe	W/(m ² -K) Sketch Tube pattern: 30 yon Steel 05 mm .98 mm A 'i') kg/(m-s ²)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Cornosion allowance Connections Size/Rating Nominal Tube #: 190 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head	951.4 951.4 C ressure III Intermediate OU: 19.05 ID Carbon S Carbon S Carbon S - - - - - - - - - - - - -	ONSTRU kPa °C mm mm Tks. Ave Insert 387.35 iteel iteel iteel	kw CTION OF ONE S 300 / 60 1 3.18 1 152.4 1 76.2 rage 2.11 None OD 406 - Single segn Seal Type 0 Bundle entra	Dirty SHELL ide / / - / mm Len .4 .4 .4 .4 .4 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	2019.1 300 1 1 1 1 Sut(%d) cut(%d) cut(%d) TEMA c	Tube Side / / / 35 1 3.18 203.2 / - 203.2 / - 1.2 m Pit Shell cover Channel cover Channel cover Tubesheet-float Impingement p 16.26 Type Expanded or ne Bundle exi Flat N lass R - refinence	ich: 23.81 mm Material: Carb Material: Carb rotection None H Spacing: c/c 1 Inlet 298 Ily (2 grooves)(App., t 245 Metal Jacket Fibe	W/(m ² -K) Sketch Tube pattern: 30 pon Steel 05 mm .98 mm A 'i') kg/(m-s ²)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 77 83 54 55 54 55 54 55 54 55	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 190 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements	951.4 951.4 C ressure In Out Intermediate OD: 19.05 ID Carbon S Carbon S - iteel U-bend - 161 - ASME Co 644 5	ONSTRU kPa °C mm mm Tks. Ave Insert 387.35 iteel iteel iteel Type	KW CTION OF ONE S 300 / 60 1 3.18 1 152.4 1 76.2 rage 2.11 None OD 406 - Single segn Seal Type 0 0 Bundle entra 1 I Div 1 with water 840 1	Dirty SHELL ide / / / - / / - mm Len 4 - - / - / - / - / - / - / - / - / - - / - - / - - / - - / - - - - - - - - - - - - -	2019.1 300 1 1 1 gth: Fin# Cut(%d) cut(%	Tube Side / / / 35 1 3.18 203.2 / - 203.2 / - 1.2 m Pit 203.2 m Pit 203	ilean 2019.1 ilean 2019.1 ch: 23.81 mm Material: Carb rotection None H Spacing: c/c 1 Inlet 298 ily (2 grooves)(App t 245 Aetal Jacket Fibe iervice	V/(m ² -K) Sketch Tube pattern: 30 Tube pattern: 30 Tube pattern: 30 Non Steel 05 mm 98 mm 4 'i') kg/(m-s ²)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 77 88 55 56	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Cornosion allowance Connections Size/Rating Nominal Tube #: 190 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell	951.4 951.4 C ressure In Out Intermediate OD: 19.05 ID Carbon S Carbon S Carbon S Carbon S - - - - - - - - - - - - -	ONSTRU kPa °C mm mm Tks. Ave Insert 387.35 iteel iteel iteel Type	KW CTION OF ONE S 300 / 60 1 3.18 1 152.4 1 76.2 rage 2.11 None OD 406 - Single segn Seal Type 0 0 Bundle entra II Div 1 vith water 849.4	Dirty SHELL ide / / / - mm Len 4 A fube-tubeshe Type ance 67 Tube side 3	2019.1 300 1 1 1 gth: Fin# mi Cut(%d) eet joint e No TEMA c Bundle	Tube Side / / / 35 1 3.18 203.2 / - 203.2 / - 1.2 m Pit 203.2 / - 1.2 m Pit 2.2 m Pit 3.2 m Pit 3.	ich: 23.81 mm Material: Carb Material: Carb Inlet 298 Ily (2 grooves)(App.) t 245 Metal Jacket Fibe	V/(m ² -k) Sketch Tube pattern: 30 Tube pattern: 30 toon Steel 05 mm .98 mm A 'i') kg/(m-s ²)
3 4 4	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 190 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating heaa Code requirements Weight/Shell Remarks	951.4 951.4 C ressure In Out Intermediate OD: 19.05 ID Carbon S Carbon S Carbon S Carbon S - iteel U-bend - 161 - d - ASME Co 644.5	ONSTRU kPa °C mm mm Tks. Ave Insert 387.35 iteel iteel Type de Sec VI Filled v	KW CTION OF ONE S 300 / 60 1 3.18 1 152.4 1 76.2 rage 2.11 None OD 406 - Single segn Seal Type 0 Bundle entra II Div 1 vith water 849.4	Dirty SHELL ide / / / / mm Len / A mental C fube-tubeshe Type ance 67 Tube side 3	2019.1 300 1 1 1 gth: Fin# mi Cut(%d) eet joint eet joint e No TEMA c Bundle	Tube Side / / / 35 1 3.18 203.2 / - 203.2 / - 203.2 / - 1.2 m Pit : #/m Shell cover Channel cover Tubesheet-float Impingement p 16.26 Type Expanded or ne Bundle exi Flat N lass R - refinery s 288.7	ilean 2019.1	W/(m ² -k) Sketch Tube pattern: 30 Tube pattern: 30 toon Steel 05 mm 98 mm 4 'i') kg/(m-s ²)

Figura 77. Especificaciones IC-202.

11.7.2.3 Sistema de doble efecto I (IC-203, IC-204)

Para aumentar la temperatura a la entrada del sistema de reactores RCFP de la segunda etapa (R-202 a 205), ha sido necesario diseñar un sistema de doble efecto, para así reducir el sobresalto de temperatura de 5º C de salida de R-201 a los 150º C necesarios en el sistema de reactores en paralelo de la segunda etapa.

Para ambos intercambiadores se ha empleado vapor de agua a modo de agente calefactor, de manera que en un futuro se pueda diseñar un sistema de manera que algunos de los caudales salientes de proceso puedan recircularse como agente calefactor o refrigerante, aprovechando de esta manera al máximo la energía y materia obtenidas por proceso.

<u>IC-203</u>

El intercambiador IC-203 será el primer paso para elevar la temperatura del caudal de salida de R-201 a los 150° C de la siguiente etapa del proceso. Para esto será empleado un caudal de vapor de agua de 267,3 kmol/h a una temperatura de 385° C, lo cual llevará el caudal licor de R-201 (3559 kmol/h) a una temperatura de 70° C. Para que el salto no se realizase de 5 a 70° C, se trato de simular un sistema de calefacción de la tubería de salida de R-201 que llevase el caudal a 25° C previos a la llegada a IC-203. Sin embargo, no ha sido posible simular el corriente en la tubería de manera correcta por la presencia de monocloramina en el efluente, pero de igual manera el objetivo es diseñar un encamisado de tubería que calefactase a 25° C el caudal.

Design R	Rating	Worksheet	Performance	Dynamics	Rigorous Shell&Tube	•		
Workshee	et	Name			Entrada refrigerar	Salida refrigerant	Entrada fluido	Salida fluido
Condition	s	Vapour			1.0000	0.0000	0.0000	0.0000
Properties		Temperature	e [C]		385.0	150.0	25.00	70.00
Compositi	ion	Pressure [kP	a]		3500	3466	3500	3000
PF Specs		Molar Flow [kgmole/h]			267.3	267.3	3559	3559
		Mass Flow [kg/h]			4816	4816	6.223e+004	6.223e+004
	Std Ideal Liq Vol Flow [m3/		1]	4.825	4.825	82.68	82.68	
	Molar Enthalpy [kJ/kg	lpy [kJ/kgmole]		-2.302e+005	-2.763e+005	-1.703e+005	-1.668e+005	
		Molar Entro	py [kJ/kgmole-0	[]	170.7	81.23	69.04	79.89
		Heat Flow [k	J/h]		-6.154e+007	-7.386e+007	-6.062e+008	-5.938e+008

Figura 78. Caudales de paso IC-203.

✓ Process Data					
		Hot	Stream (1)	Cold Stream (2)	
		Tu	be Side	Sh	ell Side
Fluid name		Vapor de agu	a	Fluido salida F	Reactor 1
		In	Out	In	Out
Mass flow rate	kg/h 🔻	4816		62225	
Temperature	°C -	385	150	25	70
Vapor mass fraction		1	1	0	0
Pressure (absolute)	kPa 🔹	3500	3465.526	3500	3000
Pressure at liquid surface in column					
Heat exchanged	kW 🔻)			
Exchanger effectiveness					
Adjust if over-specified		Outlet temper	rature 🔹	Outlet temper	ature 🔹
Estimated pressure drop	kPa 🔻	34.474		500	
Allowable pressure drop	kPa 🔹	34.474		500	
Fouling resistance	m²-K/₩ ▼	0		0	

Figura 79. Características de paso por IC-203.

En la figura 79 pueden observarse como afecta a los dos caudales de entrada a IC-203 su paso por el equipo.

✓ Geometry Tube Layout					
Front head type	B - 6	bonnet bolted	or integral with tubesheet	•	
Shell type	E - 0	one pass shell		•	
Rear head type	M -	bonnet		•	
Exchanger position	Hori	izontal	•		
Shell(s)		Tubes		Tube Layout	
ID 739 m	nm 🔹	Number	160	New (optimu	m) layout 🔹
OD 771 n	nm 🔻	Length	6 m 🔻	Tubes	26
Series 1		OD	19.05 mm 🔹	Tube Passes	2
Parallel 1		Thickness	2.11 mm 🔹	Pitch	23.81 mm 🔹
				Pattern	90-Square 🔹
Baffles					
Spacing (center-center)	800	mm 🔹	Туре	Single seg	mental 🔻
Spacing at inlet	2113.48	mm 🔹	Tubes in window	Yes	•
Number	3		Orientation	Horizonta	l 🔻
Spacing at outlet	2113.48	mm 🔹	Cut(%d)		

Figura 80. Dimensiones de IC-203.

En este caso vuelven a modificarse solamente las medidas de la carcasa de IC-203 con respecto de los anteriores intercambiadores, de manera que las medidas de los tubos de paso internos se mantienen iguales que en IC-201 e IC-202. Por otro lado, en este caso los bafles presentaran mayor complejidad que en los equipos anteriores, contando IC-203 con 3 baffles en orientación horizontal espaciados del resto del sistema por 2113,49 mm.

✓ Shell/Heads ✓ Covers ✓ Tubesheets ✓	Flanges			
Front head type	B - bonnet bolted or integral with tubesheet			
Shell type	E - one pass shell			
Rear head type	M - bonnet 🔹			
Exchanger position	Horizontal •			
Location of front head for vertical units	Set default 👻			
"E" shell flow direction (inlet nozzle location)	Near rear head 🔹			
Double pipe or hairpin unit shell pitch	mm			
Tubeside inlet at front head	Set default 🔹			
Flow within multi-tube hairpin (M-shell)	Set default 👻			
Overall flow for multiple shells	Set default 👻			

Figura 81. Características de los componentes del intercambiador IC-203.

En cuanto a las partes que conforman la carcasa del equipo, al tratarse de un dimensionamiento más preciso se ha logrado mantener los mismos componentes que IC-202, como puede observarse en la figura 81.

✓Tube Lowfins Fins ✓I	Inserts KHT Twisted Tubes Internal Enhancements
Number of tubes (total)	160
Number of tubes plugged	0
Tube length	6 m •
Tube type	Plain
Tube outside diameter	19.05 mm 🔻
Tube wall thickness	2.11 mm •
Wall specification	Average
Tube pitch	23.81 mm -
Tube pattern	90-Square
Tube material	Carbon Steel
Tube surface	Smooth
Tube wall roughness	mm 💌
Tube cut angle (degrees)	

Figura 82. Detalles de los tubos de paso IC-203.

En la figura 82 puede observarse una tabla más detallada sobre las dimensiones de los tubos que componen el equipo IC-203. Para el sistema IC-203 se requerirán un total de 160 tubos.

Weights	kg	Cost data	Dollar(US)
Shell	192.8	Labor cost	11141
Front head	44.4	Tube material cost	132
Rear head	24.3	Material cost (except tubes)	1736
Shell cover			
Bundle	94.6		
Total weight - empty	356.1	Total cost (1 shell)	13008
Total weight - filled with water	424.8	Total cost (all shells)	13008

Figura 83. Costes y peso de IC-203.

Finalmente, los pesos del equipo para vacío y llenado son de 356,1 kg y 424,8 kg respectivamente, conllevando unos costes de construcción de 13.008\$ USD. Al tratarse de un intercambiador en el que se busca no producir un gran salto de temperatura, éste solo contara con una única carcasa de paso, de manera que sus costes totales se ven reducidos con respecto los anteriores intercambiadores diseñados.

En cuanto al caudal calentado en el sistema, se dirigirá directamente a IC-204 para el salto de temperatura final a 150° C para su posterior entrada al sistema de reactores para la segunda etapa.

En la página a continuación se facilita la tabla obtenida para las especificaciones del equipo IC-203.

PLANTA DE PRODUCCIÓN DE HIDRAZINA CAPÍTULO 11: MANUAL DE CÁLCULOS

_			Heat Exchai	nger Spec	ificatio	n Sheet		
1	Company:							
2	Location:							
3	Service of Unit:	Our Referer	ice:					
4	Item No.:	Your Referen	ce:					
5	Date: Rev	No.: Job No.:						
6	Size : 203 - 2100	mm Ty	/pe: BEM	Horizontal		Connected in	:1 parallel	1 series
7	Surf/unit(eff.)	3.1 m²	Shells/u	unit 1		Surf/s	hell(eff.)	3.1 m²
8			PERFO	ORMANCE O	OF ONE U	NIT		
9	Fluid allocation				Shell	Side	Tube	e Side
10	Fluid name							
11	Fluid quantity, Total		kg/h		622	225	48	16
12	Vapor (In/Out)		kg/h	0		0	4816	0
13	Liquid		kg/h	6222	25	62225	0	4816
14	Noncondensable		kg/h	0		0	0	0
15								
16	Temperature (In/Out)	-	°C	25	205.07	69.96	385	150
17	Bubble / Dew poin	t		115.4 /	205.07	111.26 / 201.49	242.58 / 242.58	242.42 / 242.42
18	Density Vapor/	Liquid	kg/m²	/	/62.33	/ /12.63	12.24 /	/ 905.22
19	Viscosity		ср	/	0.3063	/ 0.1/19	0.0241 /	/ 0.1826
20	Molecular wt, Vap						18.02	
21	Specific heat		kl/(ka-k)	/	4 33	/ 4517	2 241 /	/ / 203
22	specific fleat		K)/(Kg-K)	/	4.55	1104	2.241 /	/ 4.255
23	Thermal conductivity		W/(m-K)	/ (0.5373	/ 0.493	0.0567 /	/ 0.6848
24	Latent heat		kJ/kg				1804.6	1805.4
25	Pressure (abs)		kPa	350	0	3244.543	3500	3490.516
26	Velocity (Mean/Max)		m/s		2.44 /	3.5	1.3 /	/ 48.66
27	Pressure drop, allow /c	alc.	kPa 2 Kow	500	,	255,457	34.474	9.484
28	Fouling resistance (mir	2421	mK/W		U	MTD (see	U U	Ao based
29	Heat exchanged	5770.0	KVV	Diete	5024.2		rected) 188.27	W/(m ² K)
30	italister fate, service	CONSTRU		HELL	J924.5	CIE	an 5924.5 Ska	w/(m -k)
32		construct	Shell Sir	de .		Tube Side	JK	
33	Design/Vacuum/test p	ressure kPa	3900 /	/	3900	/ /		
34	Design temperature	°C	105			420		
35	Number passes per she	1	1			2	, ů ů ů · · · · · · ·	
36	Corrosion allowance	mm	3.18			3.18	└╥╟─╉┅┅┅	╨╨╨╋ <u>┍</u> ╢┸╜
37	Connections	In mm	1 152.4 /	-	1	88.9 / -		<u> </u>
38	Size/Rating	Out	1 152.4 /	-	1 .	31.75 / -		
39	Nominal	Intermediate	1 /	-	1	/ -		
40	Tube #: 26	OD: 19.05 Tks. Ave	rage 2.11	mm Len	gth: 2	2.1 m Pitc	h: 23.81 mm	Tube pattern: 30
41	Tube type: Plain	Insert	None		Fin#:	#/m	Material: Carbon	Steel
42	Shell Carbon Steel	ID 202.72	OD 219.0	8	mn	n Shell cover	-	
43	Channel or bonnet	Carbon Steel				Channel cover	-	
44	Tubesheet-stationary	Carbon Steel	-			lubesheet-floatin	ig -	
45	Floating head cover	-				Impingement pro	tection None	
46	Baffle-cross Carbon S	teel Type	Single segme	ental C	Cut(%d)	21.04 H	Spacing: c/c 90	mm
47	Baffle-long -		Seal Type				Inlet 335.48	mm
48	Supports-tube	U-bend	0			Туре		
49	Bypass seal		Τι	ube-tubeshe	eet joint	Expanded only	(2 grooves)(App.A 'i)
50	Expansion joint	-		Туре	e Nor	ne ne	1425	1 11 3
51	RhoV2-Inlet nozzle	1128	Bundle entra	nce 711		Bundle exit	1435	kg/(m-s*)
52	Gaskets - Shell side	-		lube side		Flat Me	tai Jacket Fibe	
23	Floating head	ASME Code Code	II Disc 1		TENAN	Dee Derfinan	vice	
55	Weight/Shell	256.1 Eilled u	with water 424.0		Rundle	ass K - retinery set	vice	
56	Remarks	550.1 Filled V	Mur water 424.8		bundle	94.0	кд	
57	Nerridiks							
58								

Figura 84. Especificaciones IC-203.

<u>IC-204</u>

El caudal calentado a 70° C a la salida de IC-203 será directamente alimentado a IC-204, donde empleando nuevamente vapor de agua a 385° C se acabará de elevar la temperatura del caudal a 150° C.

Design Rating	Worksheet Performance Dynam	nics Rigorous Shell&Tube			
Worksheet	Name	Entrada vapor agu	Salida vapor agua	Entrada fluido	Salida fluido
Conditions	Vapour	1.0000	0.0000	0.0000	0.3900
Properties	Temperature [C]	385.0	150.0	70.00	150.0
Composition	Pressure [kPa]	3500	3466	3000	3000
PF Specs	Molar Flow [kgmole/h]	1116	1116	3559	3559
	Mass Flow [kg/h]	2.011e+004	2.011e+004	6.222e+004	6.222e+004
	Std Ideal Liq Vol Flow [m3/h]	20.15	20.15	82.68	82.68
	Molar Enthalpy [kJ/kgmole]	-2.302e+005	-2.763e+005	-1.668e+005	-1.524e+005
	Molar Entropy [kJ/kgmole-C]	170.7	81.23	79.89	116.8
	Heat Flow [kJ/h]	-2.570e+008	-3.084e+008	-5.938e+008	-5.424e+008

Figura 85. Caudales de paso IC-204.

✓ Process Data						
			Hot St Tub	ream (1) e Side	Cold Stream (2) Shell Side	
Fluid name			Vapor de agua		Fluido salida r	eactor 1
			In	Out	In	Out
Mass flow rate	kg/h	•	4816		62225	
Temperature	°C	•	385	150	70	150
Vapor mass fraction			1	1	0	0
Pressure (absolute)	kPa	•	3500	3465.526	3500	3000
Pressure at liquid surface in column						
Heat exchanged	kW	•				
Exchanger effectiveness						
Adjust if over-specified			Outlet tempera	ture 🔹	Outlet temper	ature 🔹
Estimated pressure drop	kPa	•	34.474		500	
Allowable pressure drop	kPa	•	34.474		500	
Fouling resistance	m²-K/W	•	0		0	

Figura 86. Características de paso por IC-204.

En esta ocasión se requiere de un caudal de 1116 kmol/h de vapor de agua para elevar la temperatura de los 3559 kmol/h de 70 a 150° C, como puede interpretarse en las figuras anteriores.

✓ Geometry Tube Layout		
Front head type	B - bonnet bolted or integral with tubesheet	•
Shell type	E - one pass shell	•
Rear head type	M - bonnet	•
Exchanger position	Horizontal •	
Shell(s)	Tubes	Tube Layout
ID 739.05 mm -	Number 160	New (optimum) layout
OD 767.05 mm 🔻	Length 5.5 m -	Tubes 92
Series 1	OD 19.05 mm -	Tube Passes 2
Parallel 1	Thickness 2.11 mm •	Pitch 23.81 mm •
		Pattern 30-Triangular •
Baffles		
Spacing (center-center) 600	туре	Single segmental 🔹
Spacing at inlet 2063	3.48 mm ▼ Tubes in window	Yes 🔹
Number 3	Orientation	Vertical 🔹
Spacing at outlet 2063	3.48 mm ▼ Cut(%d)	

Figura 87. Dimensiones de IC-204.

Para el intercambiador IC-204 las dimensiones de la carcasa son de 739,05 mm para el diámetro interior y 767,05 para el diámetro exterior. En esta ocasión también se ha visto reducida la longitud de los tubos de paso del refrigerante a 5,5 m, pero manteniendo dimensiones de tubo y pasos por los mismos. En cuanto a los bafles esta vez se requiere disponer de 3 en el interior para el correcto funcionamiento, variando sus posiciones con respecto los intercambiadores anteriores.

✓ Shell/Heads ✓ Covers ✓ Tubesheets ✓	Flanges				
Front head type	B - bonnet bolted or integral with tubesheet				
Shell type	E - one pass shell				
Rear head type	M - bonnet 🔹				
Exchanger position	Horizontal •				
Location of front head for vertical units	Set default 🔹				
"E" shell flow direction (inlet nozzle location)	Near rear head 🔹				
Double pipe or hairpin unit shell pitch	mm				
Tubeside inlet at front head	Set default				
Flow within multi-tube hairpin (M-shell)	Set default				
Overall flow for multiple shells	Set default 🔻				

Figura 88. Características de los componentes del intercambiador IC-204.

En cuanto a las partes que conforman la estructura de IC-204 se vuelve a mantener el tipo de piezas requeridas para los anteriores equipos.

✓Tube Lowfins Fins ✓	Inserts KHT Twisted Tubes Internal Enhancements
Number of tubes (total)	160
Number of tubes plugged	0
Tube length	5.5 m •
Tube type	Plain •
Tube outside diameter	19.05 mm -
Tube wall thickness	2.11 mm •
Wall specification	Average
Tube pitch	23.81 mm •
Tube pattern	90-Square 🔹
Tube material	Carbon Steel - 1
Tube surface	Smooth
Tube wall roughness	mm 🔻
Tube cut angle (degrees)	

Figura 89. Detalles de los tubos de paso IC-204.

En la figura 89 pueden observarse a detalle las características de los tubos de paso de IC-204. Para el sistema IC-204 se requerirán un total de 160 tubos.

Weights	kg	Cost data	Dollar(US)
Shell	398.6	Labor cost	15640
Front head	140.1	Tube material cost	929
Rear head	72.1	Material cost (except tubes)	3302
Shell cover			
Bundle	443.7		
Total weight - empty	1054.5	Total cost (1 shell)	19871
Total weight - filled with water	1371.2	Total cost (all shells)	19871

Figura 90. Costes y peso de IC-204.

Para IC-204 los pesos varían a 1054,5 kg y 1371,2 kg en vacío y lleno respectivamente, con unos costes de 19.871\$ USD debido a la gran cantidad de caudal que debe alimentarse al equipo para realizar su función correctamente. Este equipo es crítico para el correcto funcionamiento del proceso, ya que si no alcanza a elevar la temperatura del caudal a 150° C la segunda etapa de reacción no podrá llevarse a cabo de manera correcta.

En la próxima página se facilita la tabla de especificaciones de IC-204.

PLANTA DE PRODUCCIÓN DE HIDRAZINA CAPÍTULO 11: MANUAL DE CÁLCULOS

			Heat Exchar	iger Speci	fication	Sheet		
1	Company:							
2	Location:							
3	Service of Unit:	Our Referen	ce:					
4	Item No.:	Your Reference	e:					
5	Date: Rev	No.: Job No.:						
6	Size : 307 - 4200	mm Ty	pe: BEM	Horizontal		Connected in:	: 1 parallel	1 series
7	Surf/unit(eff.)	22.6 m²	Shells/u	nit 1		Surf/sl	hell(eff.)	22.6 m²
8			PERFC	RMANCE O	F ONE UN	IT		
9	Fluid allocation				Shell S	ide	Tub	e Side
10	Fluid name							
11	Fluid quantity, Total		kg/h		6222	2	20	107
12	Vapor (In/Out)		kg/h	0		23886	20107	0
13	Liquid		kg/h	62222	2	38337	0	20107
14	Noncondensable		kg/h	0		0	0	0
15								
16	Temperature (In/Out)		°C	70		149.5	385	149.99
17	Bubble / Dew poin	:	°C	106.97 / 1	97.79 ·	106.26 / 197.16	242.58 / 242.58	242.49 / 242.49
18	Density Vapor/	Liquid	kg/m³	/ 7	12.87	16.27 / 719.53	12.24 /	/ 905.31
19	Viscosity		ср	/ ().171 (0.0126 / 0.0717	0.0241 /	/ 0.1822
20	Molecular wt, Vap					17.15	18.02	
21	Molecular wt, NC							
22	Specific heat		kJ/(kg-K)	/ /	4.51	2.584 / 4.884	2.241 /	/ 4.291
23	Thermal conductivity		W/(m-K)	/	0.494	0.0444 / 0.5053	0.0567 /	/ 0.6852
24	Latent heat		kJ/kg	1104	.4	1450	1804.6	1805
25	Pressure (abs)		kPa	300)	2959.524	3500	3494.78
26	Velocity (Mean/Max)		m/s		3.85 /	16.66	0.7	7 / 28.71
27	Pressure drop, allow./c	alc.	kPa	50		40.476	34.474	5.22
28	Fouling resistance (mi	ו)	m²-K/W		0		0	0 Ao based
29	Heat exchanged	14284	kW	•		MTD (co	prrected) 120.9	6 °C
30	Transfer rate, Service	5232.6		Dirty	5285.9	C	lean 5285.9	W/(m²-K)
31		CONSTRU	ICTION OF ONE S	HELL			S	ketch
32			Shell S	de		Tube Side		
33	Design/Vacuum/test p	ressure kPa	3300 /	1	3900	/ /		
34	Design temperature	°C	185			420		
35	Number passes per sh	ell	1			1	,Ĉ i Ĉ	
36	Corrosion allowance	mm	3.18			3.18		└─────────────────────────
37	Connections	In mm	1 152.4		1	203.2 / -		
38	Size/Rating	Out	1 203.2	-	1	76.2 / -		
39	Nominal	Intermediate	1		1	/ -		
40	Tube #: 92	OD: 19.05 Tks. Ave	rage 2.11	mm Len	gth: 4	4.2 m Pite	ch: 23.81 mm	Tube pattern: 30
41	Tube type: Plain	Insert	: None		Fin#:	#/m	Material: Carbo	on Steel
42	Shell Carbon Steel	ID 307.09	OD 323.	85	mn	n Shell cover	-	
43	Channel or bonnet	Carbon Steel				Channel cover	-	
44	Tubesheet-stationary	Carbon Steel	-			Tubesheet-floati	ing -	
45						Impingement pr	rotection None	
46	Floating head cover	-				-		
	Floating head cover Baffle-cross Carbon S	- teel Type	Single segm	ental Co	ut(%d)	43.28 V	/€ Spacing: c/c 410) mm
47	Floating head cover Baffle-cross Carbon S Baffle-long -	- teel Type	Single segm Seal Type	ental Co	ut(%d)	43.28 V	/¢ Spacing: c/c 410 Inlet 409.4) mm 7 mm
47 48	Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube	- teel Type U-bend	Single segm Seal Type 0	ental Co	ut(%d)	43.28 V Type	/e Spacing: c/c 410 Inlet 409.4) mm 7 mm
47 48 49	Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal	- Type teel Type U-bend	Single segm Geal Type 0 Ti	ental Co ube-tubeshe	ut(%d) et joint	43.28 V Type Expanded only	/e Spacing: c/c 410 Inlet 409.4 / (2 grooves)(App.A) mm 7 mm
47 48 49 50	Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint	- teel Type U-bend	Single segm Geal Type 0 Ti	ental Ci ube-tubeshee Type	ut(%d) et joint Non	43.28 V Type Expanded only e	/€ Spacing: c/c 41(Inlet 409.4 / (2 grooves)(App.A) mm 7 mm 'i')
47 48 49 50 51	Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle	- teel Type U-bend - 1206	Single segm Geal Type 0 Ti Bundle entra	ental Co ube-tubeshe Type nce 179	ut(%d) et joint Non	43.28 V Type Expanded only e Bundle exit	/¢ Spacing: c/c 41(Inlet 409.4 / (2 grooves)(App.A 5844) mm 7 mm 'i') kg/(m-s ²)
47 48 49 50 51 52	Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side	teel Type	Single segm Geal Type 0 Tr Bundle entra	ental Co ube-tubeshee Type nce 179 Tube side	ut(%d) et joint Non	43.28 V Type Expanded only e Bundle exit Flat Mo	/¢ Spacing: c/c 41(Inlet 409.4 / (2 grooves)(App.A 5844 etal Jacket Fibe) mm 7 mm (i') kg/(m-s ²)
47 48 49 50 51 52 53	Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head	- Type teel Type U-bend - 1206 - I	Single segm Geal Type 0 Ti Bundle entra	ube-tubeshee Type nce 179 Tube side	ut(%d) et joint Non	43.28 V Type Expanded only e Bundle exit Flat Mo	/¢ Spacing: c/c 41(Inlet 409.4 / (2 grooves)(App.A 5844 etal Jacket Fibe) mm 7 mm 'i') kg/(m-s²)
47 48 49 50 51 52 53 54	Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements	- Type U-bend - 1206 I - ASME Code Sec VI	Single segm Geal Type 0 Tr Bundle entra	ental Cr ube-tubeshee Type nce 179 Tube side	et joint Non TEMA cla	43.28 V Type Expanded only e Bundle exit Flat Mo ss R - refinery set	/¢ Spacing: c/c 41(Inlet 409.4 / (2 grooves)(App.A 5844 etal Jacket Fibe) mm 7 mm 'i') kg/(m-s²)
47 48 49 50 51 52 53 54 55	Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell	- Type U-bend - 1206 I - ASME Code Sec VI 1054.5 Filled w	Single segm Geal Type 0 Tr Bundle entra I Div 1 ith water 1371.	ental Cr ube-tubeshee Type nce 179 Tube side	ut(%d) et joint Non TEMA cla Bundle	43.28 V Type Expanded only e Bundle exit Flat Mo ss R - refinery set 443.7	/¢ Spacing: c/c 41(Inlet 409.4 / (2 grooves)(App.A 5844 etal Jacket Fibe rvice kg) mm 7 mm 'i') kg/(m-s ²)
47 48 49 50 51 52 53 54 55 56	Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell Remarks	teel Type	Single segm Geal Type 0 Tr Bundle entra I Div 1 ith water 1371.	ental Ci ube-tubeshee Type nce 179 Tube side 2	ut(%d) et joint Non TEMA cla Bundle	43.28 V Type Expanded only e Bundle exit Flat Mo ss R - refinery set 443.7	/¢ Spacing: c/c 41(Inlet 409.4 / (2 grooves)(App.A 5844 etal Jacket Fibe rvice kg) mm 7 mm 'i') kg/(m-s ²)
47 48 49 50 51 52 53 54 55 56 57	Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell Remarks	teel Type U-bend 1206 1 ASME Code Sec VI 1054.5 Filled w	Single segm Geal Type 0 Tr Bundle entra I Div 1 ith water 1371.	ental Ci ube-tubeshee Type nce 179 Tube side 2	et joint Non TEMA cla Bundle	43.28 V Type Expanded only e Bundle exit Flat Mo ss R - refinery set 443.7	/e Spacing: c/c 41(Inlet 409.4 / (2 grooves)(App.A 5844 etal Jacket Fibe rvice kg) mm 7 mm 'i') kg/(m-s ²)

Figura 91. Especificaciones IC-204.

11.7.2.4 Sistema de calefacción para recirculación NH₃ (IC-205 y CC-201)

<u>IC-205</u>

Antes del paso por el sistema de intercambiadore IC-301 e IC-302 se requiere recircular el sobrante de amoniaco (1802,97 kmol/h) extrayendo una purga de 323,62 kmol/h. Este caudal de purga planea ser utilizado en alguna de las operaciones de refrigeración del proceso e incluso diseñar un pequeño tramo de licuado para su posterior venta como efectivo de proceso.

El caudal ha sido despresurizado a la salida del sistema de reactores, no obstante, se plantea modificar el proceso de manera que la extracción se produzca antes de reducir la presión de operación, de manera que se ahorren algunos equipos complementarios. No obstante, esto no ha sido posible dada la falta de tiempo.

El sistema para la calefacción del caudal una vez se ha producido la purga sigue el siguiente esquema, donde INT-1 se corresponde con IC-205 y K-100 con el compresor que acabara de aumentar la temperatura y redirigir la recirculación de nuevo a el sistema de reactores de la segunda etapa.

Figura 92. Esquema para la calefacción de la recirculación de amoniaco (IC-205 + CC-201).

En esta ocasión, el caudal alimentado al equipo IC-303 es puramente amoniaco, en el cual se busca pasar de los 80º C a salida de IC-302 a 150º C para poder recircular el caudal de amoniaco a las condiciones de operación de los reactores de la segunda etapa.

Design Rating	Worksheet Performance Dynamics	Rigorous Shell&Tube			
Worksheet	Name	1	2	Entrada Fluido	Salida Fluido
Conditions	Vapour	1.0000	1.0000	1.0000	1.0000
Properties	Temperature [C]	280.0	213.4	80.00	129.2
Composition	Pressure [bar]	10.00	4.900	41.36	18.14
PF Specs	Molar Flow [kgmole/h]	1198	1198	1479	1479
	Mass Flow [kg/h]	2.167e+004	2.167e+004	2.519e+004	2.519e+004
	Std Ideal Lig Vol Flow [m3/h]	21.71	21.71	40.89	40.89
	Molar Enthalpy [kcal/kgmole]	-5.518e+004	-5.573e+004	-1.045e+004	-1.000e+004
	Molar Entropy [kJ/kgmole-C]	127.5	128.8	184.3	196.1
	Heat Flow [kcal/h]	-6.613e+007	-6.678e+007	-1.545e+007	-1.480e+007

Figura 93. Caudales de paso IC-205.

		Hot Stream (1) Tube Side		Cold Stream (2) Shell Side	
Fluid name		1->2		Entrada Fluido	->Salida Fluido
		In	Out	In	Out
Mass flow rate	kg/s	• 6.0185		6.9982	
Temperature	°C	• 280	213.4		129.2
Vapor mass fraction		1		1	1
Pressure (absolute)	bar	▼ 10	9.8	41.35804	40.84446
Pressure at liquid surface in colu	ımn				
Heat exchanged	kW	•			
Exchanger effectiveness					
Adjust if over-specified		Outlet temp	erature 🔻	Outlet temper	ature
Estimated pressure drop	bar	• 0.2		0.51358	
Allowable pressure drop	bar	• 0.26		0.51358	
Fouling resistance	m ² -K/W	• 0		0	

Figura 94. Características de paso por IC-205.

El caudal tratado en esta ocasión se corresponde con la extracción de amoniaco una vez efectuada la purga del sobrexceso obtenido en los reactores de la segunda etapa. Concretamente, se debe calefactar un caudal de 1479,35 kmol/h de amoniaco gas, produciendo un salto de temperatura de 80° C obtenidos por el paso en las tuberías a 129,2° C. Para alcanzar finalmente los 150° Cd e la recirculación se empleará el compresor CC-201 que se verá más en detalle en este apartado.

En cuanto al caudal de refrigerante, cabe remarcar que este se trata de los caudales obtenidos por la salida de condensados del tramo de evaporadores II, los cuales se unificarán y vaporizarán a 280° C para poder emplear el caudal total de 1198,4 kmol/g (el cual esta compuesto en más de un 99,9% en agua) como calefactor.

Cabe remarcar también el hecho de que el calefactor y calefactado de este intercambiador son ambos en fase gas, lo cual afectara directamente a la operabilidad del sistema como se puede observar en las figuras a continuación:

🖌 Geometry	Tube Layout					
Front head t	ype	B - 1	bonnet bolted o	or integral with tubesheet	•	
Shell type		E - 0	one pass shell		•	
Rear head ty	pe	M -	bonnet		•	
Exchanger p	osition	Hon	izontal	•		
Shell(s)			Tubes		Tube Layout	
ID	205 n	nm 🔻	Number	34	New (optimu	ım) layout 🔹
OD	219.08	nm 🔻	Length	1200 mm 👻	Tubes	34
Series	1		OD	19.05 mm 🔹	Tube Passes	4
Parallel	1		Thickness	2.11 mm 🔹	Pitch	23.81 mm 🔹
					Pattern	30-Triangular 🔹
Baffles						
Spacing (c	enter-center)	135	mm 🔻	Туре	Single se	gmental 🔻
Spacing at	inlet	223.97	mm 🔹	Tubes in window	Yes	-
Number		6		Orientation	Horizonte	al 👻
Spacing at	outlet	223.97	mm 🔹	Cut(%d)	43	

Figura 95. Dimensiones de IC-205.

Las dimensiones de IC-205 son de 205 mm y 219,08 mm para los diámetros interno y externo de carcasa. Al tratarse de un sistema donde ambos agentes de paso se encuentran en estado gas, se requiere de aumentar el número de pasos por tubo a 4, ya que en este estado la transferencia de calor se ve desfavorecida. Esto también modifica tanto el numero como las medidas de los tubos, dando lugar a unos tubos de 1200 mm, los cuales mantendrán el diámetro y espesor de los anteriores intercambiadores. También se ve afectada la estructura de bafles, modificando sus medidas y cantidad (6 baffles en IC-205).

Figura 96. Características de los componentes del intercambiador IC-205.

Para los componentes de la carcasa se sigue manteniendo la arquitectura generalizada hasta el momento en los intercambiadores IC-202 a IC-204.

✓ Tube Lowfins Fins	Inserts KHT Twisted Tubes Internal Enhancements
Number of tubes (total)	34
Number of tubes plugged	0
Tube length	1200 mm 🔻
Tube type	Plain -
Tube outside diameter	19.05 mm •
Tube wall thickness	2.11 mm •
Wall specification	Average -
Tube pitch	23.81 mm -
Tube pattern	30-Triangular 🔹
Tube material	Carbon Steel 🔹 1
Tube surface	Smooth
Tube wall roughness	mm 🔻
Tube cut angle (degrees)	

Figura 97. Detalles de los tubos de paso IC-205.

En la figura 97 pueden observarse con mayor detalle las características de los tubos de paso del calefactor en IC-205. El número de tubos para la operación en IC-205 se ve reducido a 34, pero con 4 pasos por cada uno de estos.

Weights	kg	Cost data	Dollar(US)
Shell	107.6	Labor cost	8227
Front head	20.8	Tube material cost	99
Rear head	20.3	Material cost (except tubes)	1218
Shell cover			
Bundle	71.7		
Total weight - empty	220.4	Total cost (1 shell)	9544
Total weight - filled with water	257.9	Total cost (all shells)	9544

Figura 98. Costes y peso de IC-205.

Al tratarse de un intercambiador para el paso de dos gases, sus pesos en vacío y llenado se ven reducidos considerablemente, contemplando que IC-205 será un intercambiador considerablemente más pequeño que el resto de la planta. Esto provoca también una reducción del precio a unos 9.544\$ USD.

En la página a continuación se presenta la tabla de especificaciones detallada de IC-205:

				Heat Excha	nger Spec	ificatio	n Sheet		
1	Company:								
2	Location:								
3	Service of Unit:	Our R	eferenc	:e:					
4	Item No.:	Your Re	ference	2					
5	Date: Rev	No.: Job N	o.:						
6	Size : 205 - 1200		Tvr	e: BEM	Horizontal		Connected i	n:1 narallel	1 series
7	Surf/unit/off)	22		Sholle/	unit 1		Surf/	(choll(off.)	22 m ²
0	sun/unit(en.)	2,5	n	DEDE			Sun/	snen(en.)	2.5 11
0	Fluid allo action			FENRY			S:1-	Tub	- 6:4-
9	Fluid allocation				5	Shell	Side	TUD	e 51de
10	Fluid name				Entra	da Fluido-	-> Salida Fluido	1	->2
11	Fluid quantity, lotal			kg/s		0.9	982	6.0	7185
12	Vapor (In/Out)			kg/s	6.99	82	6.9982	6.0185	6.0185
13	Liquid			kg/s	0		0	0	0
14	Noncondensable			kg/s	0		0	0	0
15									
16	Temperature (In/Out)			°C	80		130.29	280	207.41
17	Bubble / Dew poir	t		°C	80 /	80	47.54 / 47.54	180.08 / 182.2	149.19 / 151.53
18	Density Vapor,	Liquid		kg/m³	23.99 /		10.37 /	3.93 /	2.22 /
19	Viscosity			mPa-s	0.0108 /		0.0124 /	0.0144 /	0.0123 /
20	Molecular wt, Vap				17.0)3	17.03	18.08	18.08
21	Molecular wt, NC								
22	Specific heat			kJ/(kg-K)	2.177 /		2.259 /	2.125 /	2.489 /
23	Thermal conductivity			W/(m-K)	0.0386 /	i	0.0444 /	0.0425 /	0.0351 /
24	Latent heat			kl/ka	0.0500 /		0.0111 /	010425 7	0.0001 /
25	Dressure (abs)			har	/1 259	20.4	20 12222	10	4.0
26	Velocity (Mean/Max)				41.550	51 25 /	62.66	1227 /	/ 1062 /
20	Pressure drop allow //	alc		har.	0.512	50 50	22 21574	0.26	162 /09
20	Fressure urop, anow./ c	aic.		m ² K/M	0.515		23.21314	0.20	Ac based
20	Host exchanged	762		H1 - N/ W		0	MTD (co	reacted) 124.20	Ao based
29	Transfer rate Service	2404 7		KVV	Diet	2471.0		app 2471.0	W//m ² K)
21	fransier rate, service	2404.7	TDU			24/1.0		ean 24/1.0	w/(m - N)
31		CON		TION OF ONE SI			Tube Cide	эке	tcn
32	D: 0/ // /		.	Shell Sid	je	44	Tube Side		
35	Design/vacuum/test p	ressure	bar	40 / 70	′		215		
34	Design temperature		-0	/0			315	_ Ĭ'nĨ	
30	Number passes per sh	211	_	1			4		
30	Corrosion allowance		mm	3.18			3.18	╶╥╨╊┽──	
37	Connections	In	mm	1 32.46 /	-	1 4	26.64 / -		
38	Size/Rating	Out		1 18.85 /	-	1 4	26.64 / -		
39	ID	Intermediate		/	-		/ -		
40	lube #: 34	OD: 19.05 Tks.	Avera	ige 2.11	mm Len	gth: 12	200 mm Pitc	h: 23.81 mm	Tube pattern: 30
41	Tube type: Plain		nsert: I	None		Fin#:	#/m	Material: Carbon	Steel
42	Shell Carbon Steel	ID 2	15	OD 219.0	18	mn	Shell cover	-	
43	Channel or bonnet	Carbon Steel					Channel cover	-	
44	Tubesheet-stationary	Carbon Steel		-			Tubesheet-floatin	ng -	
45	Floating head cover						Impingement pro	otection None	
46	riouting neur corei	-				(Ja /0/ al)		Spacing: c/c 135	
47	Baffle-cross Carbon S	teel	Туре	Single segme	ental C	ut(%a)	43.02	· opacing: c/c 100	
-11	Baffle-cross Carbon S Baffle-long -	- iteel	Type Se	Single segme eal Type	ental C	ut(%a)	43.02	Inlet 223.97	mm
48	Baffle-cross Carbon S Baffle-long - Supports-tube	- iteel U-bend	Type Se	Single segme eal Type00	ental C	.ut(/>a)	43.02 H	Inlet 223.97	mm
48 49	Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal	- iteel U-bend	Type Se	Single segme eal Type 0 Tu	ube-tubeshe	et joint	43.02 H Type Expanded only	Inlet 223.97 y (2 grooves)(App.A 'i)
48 49 50	Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint	- iteel U-bend	Type Se	Single segme eal Type 0 Tu	ube-tubeshe Type	et joint	43.02 H Type Expanded only	v (2 grooves)(App.A 'i)
48 49 50 51	Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle	- iteel U-bend - 2980873	Type Se	Single segme eal Type 0 Tu Bundle entrar	ube-tubeshe Type	et joint	43.02 Type Expanded only ne Bundle exit	Inlet 223.97 y (2 grooves)(App.A 'i 28886) kg/(m-s²)
48 49 50 51 52	Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side	U-bend 2980873	Type Se	Single segme eal Type 0 Tu Bundle entrar	ube-tubeshe Type nce 28081 Tube side	et joint Nor	43.02 Type Expanded only ne Bundle exit Flat M	Inlet 223.97 y (2 grooves)(App.A 'i 28886 etal Jacket Fibe) kg/(m-s ²)
48 49 50 51 52 53	Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating hea	- iteel U-bend - 2980873 - d -	Type Se	Single segme eal Type 0 Tu Bundle entrar	ube-tubeshe Type nce 28081 Tube side	et joint Nor	43.02 Type Expanded only ne Bundle exit Flat M	Inlet 223.97 y (2 grooves)(App.A 'i 28886 etal Jacket Fibe)) kg/(m-s ²)
48 49 50 51 52 53 54	Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-lnlet nozzle Gaskets - Shell side Floating hea Code requirements	- iteel U-bend - 2980873 - d - ASME Code S	Type Se Sec VIII	Single segme eal Type 0 Tu Bundle entrar Div 1	ube-tubeshe Type nce 28081 Tube side	et joint Nor	43.02 Type Expanded only ne Bundle exit Flat M ass R - refinery se	Inlet 223.97 y (2 grooves)(App.A 'i 28886 etal Jacket Fibe)) kg/(m-s ²)
48 49 50 51 52 53 54 55	Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating hea Code requirements Weight/Shell	- iteel U-bend - 2980873 - d - d ASME Code S 220.4 Fi	Type Se Sec VIII lled wit	Single segme eal Type 0 Tu Bundle entrar Div 1 th water 257.9	ube-tubeshe Type nce 28081 Tube side	eet joint Nor TEMA cla Bundle	43.02 F Type Expanded only the Bundle exit Flat M Flat M 71.7	y (2 grooves)(App.A 'i 28886 etal Jacket Fibe rvice kg)) kg/(m-s ²)
48 49 50 51 52 53 54 55 55	Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating hea Code requirements Weight/Shell Remarks	- U-bend - 2980873 - d - ASME Code S 220.4 Fi	Type Se Gec VIII Iled wit	Single segme eal Type 0 Tu Bundle entrar Div 1 th water 257.9	ube-tubeshe Type nce 28081 Tube side	et joint Nor TEMA cla Bundle	43.02 F Type Expanded only ne Bundle exit Flat M ass R - refinery se 71.7	y (2 grooves)(App.A 'i 28886 etal Jacket Fibe rvice kg)) kg/(m-s ²)
48 49 50 51 52 53 54 55 55 56 57	Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-lnlet nozzle Gaskets - Shell side Floating hea Code requirements Weight/Shell Remarks	- U-bend - 2980873 - d - ASME Code S 220.4 Fi	Type Se Gec VIII Iled wit	Single segme eal Type 0 Tu Bundle entrar Div 1 th water 257.9	ube-tubeshe Jype nce 28081 Tube side	et joint Nor TEMA cla Bundle	43.02 Type Expanded only the Bundle exit Flat M ass R - refinery se 71.7	y (2 grooves)(App.A 'i 28886 etal Jacket Fibe rvice kg)) kg/(m-s ²)

Figura 99. Especificaciones IC-205.

<u>CC-201</u>

Como se ha podido observar anteriormente, IC-205 no alcanza a aumentar la temperatura del caudal a los 150° C necesarios para recircularlos correctamente a los reactores de la segunda etapa. Se contemplaba la posibilidad de introducirlos con esta diferencia de temperatura negativa con respecto a los 150° C necesarios, no obstante, al necesitar un compresor para recircular el caudal a los reactores se puede aumentar la temperatura del caudal sin necesidad de un intercambio de calor entre sustancias.

Para ello se simularon los parámetros de la siguiente manera:

Design Rating	Worksheet Performance Dynamics		
Worksheet	Name	Salida Fluido	3
Conditions	Vapour	1.0000	1.0000
Properties	Temperature [C]	129.2	189.4
Composition	Pressure [bar]	18.14	30.00
PF Specs	Molar Flow [kgmole/h]	1479	1479
	Mass Flow [kg/h]	2.519e+004	2.519e+004
	LiqVol Flow [m3/h]	40.89	40.89
	Molar Enthalpy [kcal/kgmole]	-1.000e+004	-9437
	Molar Entropy [kJ/kgmole-C]	196.1	197.4
	Heat Flow [kcal/h]	-1.480e+007	-1.396e+007

Figura 100. Trabajo de CC-201.

Teniendo en cuenta que el caudal de salida de IC-205 debe ser comprimido a 30 bar de presión para poder recircularlo a los reactores de la segunda etapa, se preveía un augmento de la temperatura del efluente tras su paso por el compresor. Concretamente, se produce un augmento de 129,2° C a 189,4° C, lo cual teniendo en cuenta perdidas por paso en tuberías y su posterior homogenización a la entrada de cada RCFP se considera correcto para la operación en los reactores.

Figura 101. Funcionamiento CC-201.

Se consideró la operación en el compresor adiabática, lo cual junto a los objetivos de operación definidos en la figura 100, hace que se requiera un

compresor que trabaje a 973,23 kW de potencia (se prevé adquirir una bomba del doble de esta capacidad para no trabajar al 100% del equipo).

A 6continuación, se presentan dos tablas obtenidas en la simulación que dan más detalles sobre la operabilidad del compresor de la recirculación de amoniaco:

Design	Rating	Worksheet Performance	Dynamics
Perform	nance	Results	
Results		Adiabatic Head [m]	1.064e+004
Power		Polytropic Head [m]	1.081e+004
		Adiabatic Fluid Head [kJ	/kg] 104.3
		Polytropic Fluid Head [k	J/kg] 106.0
		Adiabatic Efficiency	75.000
		Polytropic Efficiency	76.254
		Power Consumed [kW]	973.2
		Polytropic Head Factor	1.0003
		Polytropic Exponent	1.3836
		Isentropic Exponent	1.2700
		Speed [rpm]	<empty></empty>

Figura 102. Parámetros de funcionamiento intrínsecos de CC-201.

Duty [kcal/h]	8.374e+005	J
Adiabatic Efficiency	75	
Polytropic Efficiency	76	V
Pressure Increase [bar]	11.86	
Head [m]	1.081e+004	
Fluid Head [kJ/kg]	106.0	
Capacity [ACT_m3/h]	2728	
Speed [rpm]	<empty></empty>	
Linker Power Loss [kcal/h]	<empty></empty>	

Figura 103. Especificaciones dinámicas de CC-201.

11.7.2.5 Sistema de doble efecto II (IC-301, IC-302)

Tras la extracción de amoniaco se requiere reducir la temperatura del caudal para su posterior adición al sistema de evaporadores I. Para esto, se trata de reducir la temperatura a 80° C de los 110° C de salida de los reactores tras la despresurización del caudal

Para evitar un salto de temperatura demasiado elevado en un caudal de estas magnitudes, ha sido necesario volver a diseñar un sistema de doble efecto donde se reducirá la temperatura de 110º a 107,73º C en IC-301 y de estos 107,73º a 80º C finales en IC-302.

<u>IC-301</u>

Para la refrigeración del caudal se volverá a emplear agua a bajas temperaturas (5° C) que produzcan un salto significativo en la temperatura del caudal a refrigerar, pero que este no sea demasiado brusco.

Design Rating	Worksheet	Performance	Dynamics	Rigorous Shell&Tube	2		
Worksheet	Name			Entrada Refrigera	Salida Refrigerant	Entrada Fluido	Salida Fluido
Conditions	Vapour			0.0000	0.0000	0.0000	0.0000
Properties	Temperature	e [C]		5.000	30.00	110.0	107.7
Composition	Pressure [kP	a]		200.0	190.0	135.8	125.8
PF Specs	Molar Flow [Molar Flow [kgmole/h]			181.4	1756	1756
	Mass Flow [kg/h]		3268	3268	3.415e+004	3.415e+004
	Std Ideal Liq Vol Flow [m3/h]		3.274	3.274	32.96	32.96	
	Molar Enthalpy [kJ/kgmole]		-2.871e+005	-2.852e+005	-2.880e+005	-2.882e+005	
	Molar Entropy [kJ/kgmole-C]			50.37	56.64	65.36	64.87
	Heat Flow [k	J/h]		-5.207e+007	-5.174e+007	-5.058e+008	-5.061e+008

Figura	104	Caudales	de	naso	IC-301
riguru	104.	cuuuuies	uc	puso	10-301.

			Hot	Stream (1) nell Side	Cold S Tul	Cold Stream (2) Tube Side	
Fluid name			Fluido salida	reactor 2	Agua		
			In	Out	In	Out	
Mass flow rate	kg/h	•	34145		3268		
Temperature	°C	•	110	107.73	5	30	
Vapor mass fraction			0	0	0	0	
Pressure (absolute)	kPa	•	135.753	125.753	200	190	
Pressure at liquid surface in col	umn						
Heat exchanged	kW	•					
Exchanger effectiveness							
Adjust if over-specified			Outlet tempe	rature 🔹	Outlet temper	ature	
Estimated pressure drop	kPa	•	10		10		
			14		10		
Allowable pressure drop	кра	•	14		40		

Figura 105. Características de paso por IC-301.

El caudal a refrigerar es de 1756 kmol/h, en su mayoría compuesto por agua, un pequeño porcentaje de hidracina y sal disuelta. Este se encuentra a 110° C y aplicando un caudal de 181 kmol/h de agua a 5° C se logra reducir su temperatura en 3°, para no obtener un salto de temperatura excesivo en IC-302. La temperatura del refrigerante habrá aumentado de 5° C a 30° c tras su paso por IC-301.

Podrá haberse diseñado de manera que el salto de temperatura producido fuese mayor, reduciendo así costes en IC-302, sin embargo, por algún motivo intrínseco de la simulación se tornaba en error si se trataba de enfriar por debajo de los 100° C el caudal. Ha sido preferible simular un pequeño intercambiador que luego si funcionase en el efecto siguiente.

Geometry Tube Layout		
Front head type	B - bonnet bolted or integral with tubesheet	▼
Shell type	E - one pass shell	•
Rear head type	M - bonnet	•
Exchanger position	Horizontal •	
Shell(s)	Tubes	Tube Layout
ID 739 mm	Number 160	New (optimum) layout
OD 759 mm	▼ Length 6 m ▼	Tubes 42
Series 1	OD 19.05 mm •	Tube Passes 2
Parallel 1	Thickness 2.11 mm •	Pitch 23.81 mm •
		Pattern 30-Triangular -
Baffles		
Spacing (center-center) 400) mm • Туре	Single segmental 🔹
Spacing at inlet 255	3.48 mm Tubes in window	Yes 🔹
Number 3	Orientation	Horizontal 🔹
Spacing at outlet 255	3.48 mm ▼ Cut(%d)	

Figura 106. Dimensiones de IC-301.

En cuanto a las dimensiones, IC-301 estará en el rango de diámetro interno y externo de la carcasa del equipo estará en el rango de los anteriores diseños, dando como resultado 739 mm y 759 mm respectivamente. La operación por tubos se mantiene igual que en los diseños de IC-203 e IC-204, donde 160 tubos a dos pasos por tubo se cuenta con una longitud de 6 metros, diámetro de 19,05 mm y un espesor de 2,11 mm. Para este caso el elemento diferenciador del diseño está en los bafles, donde estos estarán espaciados por 400 mm y habrá un total de 3 a lo largo del equipo, espaciados a la misma distancia de la entrada y salida del equipo (2553,58 mm).

✓ Shell/Heads ✓ Covers ✓ Tubesheets ✓	 Flanges 	
⊈∎ ⊨≖		
Front head type	B - bonnet bolted or integral with tubesheet	•
Shell type	E - one pass shell	•
Rear head type	M - bonnet	•
Exchanger position	Horizontal •	
Location of front head for vertical units	Set default 👻	
"E" shell flow direction (inlet nozzle location)	Near rear head 🔹	
Double pipe or hairpin unit shell pitch	mm	
Tubeside inlet at front head	Set default	
Flow within multi-tube hairpin (M-shell)	Set default	
Overall flow for multiple shells	Set default	

Figura 107. Características de los componentes del intercambiador IC-301.

La arquitectura externa de IC-301 mantiene los mismos componentes que los anteriores intercambiadores para el cabezal, carcasa y cabeza de entrada de refrigerante.

✓ Tube Lowfins Fins ✓	Inserts KHT Twisted Tubes Internal Enhancements	
Number of tubes (total)	160	
Number of tubes plugged	0	
Tube length	6 m -	
Tube type	Plain	
Tube outside diameter	19.05 mm 🔹	
Tube wall thickness	2.11 mm •	
Wall specification	Average	
Tube pitch	23.81 mm -	
Tube pattern	30-Triangular 🔹	
Tube material	Carbon Steel - 1	
Tube surface	Smooth	
Tube wall roughness	mm 👻	
Tube cut angle (degrees)		

Figura 108. Detalles de los tubos de paso IC-301.

La figura 108 presenta a mayor detalle las características de los tubos de paso de IC-301. Para la operación del equipo se requerirán un total de 160 tubos, como ya se ha comentado anteriormente.

Weights	kg	Cost data	Dollar(US)
Shell	122.6	Labor cost	7632
Front head	13.2	Tube material cost	122
Rear head	14.1	Material cost (except tubes)	1205
Shell cover			
Bundle	77.8		
Total weight - empty	227.7	Total cost (1 shell)	8959
Total weight - filled with water	262.3	Total cost (all shells)	8959

Figura 109. Costes y peso de IC-301.

Al tratarse de un intercambiador relativamente pequeño, este contara con un peso bastante reducido, más parecido al intercambiador de gases IC-205, que no a los intercambiadores de líquido anteriores. Esto provoca una reducción de su precio total a 8.959\$ USD. Recordar que este intercambiador actúa a modo de corrección y no es definitivo.

En la página a continuación se presenta la hoja de especificaciones del intercambiador IC-301:

_				Heat Exchai	nger spec	ificatio	n Sneet		
1	Company:								
2	Location:								
3	Service of Unit:	0	ur Referer	nce:					
4	Item No.:	You	Ir Referen	ce:					
5	Date: Rev	No.: Jo	ob No.:						
6	Size : 205 - 1200	mm	T,	/pe: BEM	Horizontal		Connected in	:1 parallel	1 series
7	Surf/unit(eff.)	2.8	m²	Shells/u	unit 1		Surf/s	hell(eff.)	2.8 m²
8	,			PERFO	ORMANCE C	OF ONE U	NIT		
9	Fluid allocation					Shell	Side	Tube	e Side
10	Fluid name								
11	Fluid quantity Total			ka/h		341	45	32	268
12	Vanor (In/Out)			kg/h	0		0	0	0
13	Liquid			kg/h	3414	15	34145	3268	3268
14	Noncondensable			kg/h	0	15	0	0	0
15	Noncondensable			Kg/11	, v		v	0	U U
16	Temperature (In/Out)			°C	110		107 72	5	20
17	Pubble / Devracio	+			/	, 	100 / / 115 15	120.07 / 120.07	110 74 / 110 75
10	Density Vanari	/Liquid		ka/m ³	/	058.20	0.05 / 060.21	/ 1022.22	/ 1002.6
10	Viscosity vapor/	ciquiu		kg/m	/	0.201	0.0038 / 0.2009	/ 15012	/ 0.7072
20	Molecular wt Van			ср	/	0.251	0.0030 / 0.2330	7 1.3012	/ 0.1915
20	Molecular wt, Vap								
22	Specific heat			kl//ka K	/	4 271	0.022 / 4.265	/ 4.062	/ 4.041
22	specific near			6/(Kg-K)	/	4.271	0.522 / 4.203	/ 4.002	/ 4.041
23	Thermal conductivity			W/(m-K)	/	0.6499	0.012 / 0.6492	/ 0.578	/ 0.6182
24	Latent heat			kJ/kg			2244.3		
25	Pressure (abs)			kPa	135.7	753	131.381	200	197.929
26	Velocity (Mean/Max)			m/s		0.47 /	0.71	0.12	/ 0.12
27	Pressure drop, allow./c	alc.		kPa	14		4.372	40	2.071
28	Fouling resistance (min	n)		m²-K/W		0		0	0 Ao based
29	Heat exchanged	Q1 Q		1.3.47			MTD /	1 12 00.01	
	-	51.5		KVV			IVITD (CO	rrected) 90.91	чС
30	Transfer rate, Service	358.1		KW	Dirty	695.8	Cle	rrected) 90.91 ean 695.8	-د- W/(m²-K)
30 31	Transfer rate, Service	358.1	CONSTRU	ICTION OF ONE S	Dirty HELL	695.8	Cle	rrected) 90.91 ean 695.8 Ske	W/(m²-K) etch
30 31 32	Transfer rate, Service	358.1	CONSTRU	ICTION OF ONE S Shell Sid	Dirty HELL de	695.8	Tube Side	an 695.8	W/(m ² -K) etch
30 31 32 33	Transfer rate, Service Design/Vacuum/test p	358.1 ressure	C ONSTRU kPa	CTION OF ONE S Shell Sin 300 /	Dirty HELL de	695.8 300	Tube Side	rrected) 90.91 ean 695.8 Sk o	W/(m²-K)
30 31 32 33 34	Transfer rate, Service Design/Vacuum/test p Design temperature	358.1 ressure	CONSTRU kPa °C	CTION OF ONE S Shell Sin 300 / 145	Dirty HELL de /	695.8 300	Tube Side / / 65	rrected) 90.91 an 695.8 Sko	<u>ිද</u> W/(m²-K) etch
30 31 32 33 34 35	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sho	358.1	CONSTRU kPa °C	CTION OF ONE S Shell Sid 300 / 145 1	Dirty HELL de /	695.8 300	Tube Side / / / 65 1	an 695.8	<u></u>
30 31 32 33 34 35 36	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance	358.1 ressure	CONSTRU kPa °C mm	CTION OF ONE S Shell Sin 300 / 145 1 3.18	Dirty HELL de /	695.8	Tube Side / / 65 1 3.18	san 695.8	W/(m ² -K)
30 31 32 33 34 35 36 37	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections	358.1 ressure ell	CONSTRU kPa °C mm mm	KW CTION OF ONE S Shell Sir 300 / 145 1 3.18 1 88.9 /	Dirty HELL / /	695.8 300	Tube Side / / 65 1 3.18 25.4 / -	san 695.8	W/(m ² -K)
30 31 32 33 34 35 36 37 38	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating	358.1 ressure ell Out	CONSTRU kPa °C mm mm	CTION OF ONE S Shell Sin 300 / 145 1 3.18 1 88.9 / 1 152.4 /	Dirty HELL de / -	695.8 300 1 1	Tube Side / / / 65 1 3.18 25.4 / - 25.4 / -	san 695.8	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal	358.1 ressure ell Out Intermediate	CONSTRU kPa °C mm mm	KW CTION OF ONE S Shell Sin 300 / 145 1 3.18 1 88.9 / 1 152.4 / /	Dirty HELL de / - - -	695.8 300 1 1	Tube Side / / / 65 1 3.18 25.4 / - 25.4 / - 25.4 / -	san 695.8	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 42	358.1 ressure ell Out Intermediate OD: 19.05	CONSTRU kPa °C mm mm trs. Ave	CTION OF ONE S Shell Sin 300 / 145 1 3.18 1 88.9 / 1 152.4 / rage 2.11	Dirty HELL de - - - - - mm Len	695.8 300 1 1 1 gth:	Tube Side / / / 65 1 3.18 25.4 / - 25.4 / - 1.2 m Pitc	h: 23.81 mm	W/(m ² -K) etch
30 31 32 33 34 35 36 37 38 39 40 41	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 42 Tube type: Plain	358.1 ressure ell Out Intermediate OD: 19.05	kPa °C mm mm tks. Ave Insert	CTION OF ONE S Shell Sin 300 / 145 1 3.18 1 88.9 / 1 152.4 / 1 152.4 / rage 2.11 : None	Dirty HELL de - - - - - mm Len	695.8 300 1 1 1 sgth:	Tube Side / / / 65 1 3.18 25.4 / - 25.4 / - 1.2 m Pitc #/m	h: 23.81 mm Material: Carbon	W/(m ² -K) etch
30 31 32 33 34 35 36 37 38 39 40 41 42	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Cornosion allowance Connections Size/Rating Nominal Tube #: 42 Tube type: Plain Shell Carbon Steel	358.1 ressure ell Out Intermediate OD: 19.05	kPa °C mm mm : Tks. Ave Insert 205	CTION OF ONE S Shell Sin 300 / 145 1 3.18 1 88.9 / 1 152.4 / 1 152.4 / rage 2.11 : None OD 219.0	Dirty HELL de - - - - mm Len 08	695.8 300 1 1 1 sgth: Fin#:	Tube Side / / / 65 1 3.18 25.4 / - 25.4 / - 1.2 m Pitc #/m Shell cover	h: 23.81 mm Material: Carbon	W/(m ² -K) etch
30 31 32 33 34 35 36 37 38 39 40 41 42 43	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 42 Tube type: Plain Shell Carbon Steel Channel or bonnet	358.1 358.1 ressure ell Intermediate OD: 19.05 ID Carbon	kPa °C mm mm Tks. Ave Insert 205 Steel	CTION OF ONE S Shell Sin 300 / 145 1 3.18 1 88.9 / 1 152.4 / 1 152.4 / rage 2.11 : None OD 219.0	Dirty HELL de - - - - mm Len 08	695.8 300 1 1 1 gth: Fin#: mn	Implication Tube Side / 65 1 3.18 25.4 25.4 / - 1.2 m Shell cover Channel cover	h: 23.81 mm Material: Carbon	W/(m ² -K) etch
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 42 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary	358.1 358.1 ressure ell Intermediate OD: 19.05 ID Carbon Carbon	kPa °C mm mm Tks. Ave Insert 205 Steel Steel	CTION OF ONE S Shell Sin 300 / 145 1 88.9 / 1 152.4 / 1 152.4 / rrage 2.11 : None OD 219.0	Dirty HELL de - - - - mm Len 08	695.8 300 1 1 gth: Fin#: mn	Tube Side / 7 65 1 3.18 25.4 / 25.4 / 1.2 m m Shell cover Channel cover Tubesheet-floatin	h: 23.81 mm Material: Carbon - ng -	W/(m ² -K) etch
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 50 50 50 50 50 50 50 50 50 5	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 42 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover	358.1 358.1 ressure ell Intermediate OD: 19.05 ID Carbon Carbon	kPa °C mm mm Tks. Ave Insert 205 Steel Steel	CTION OF ONE S Shell Sia 300 / 145 1 3.18 1 88.9 / 1 152.4 / 1 152.4 / rage 2.11 : None OD 219.0	Dirty HELL / - - mm Len 28	695.8 300 1 1 1 gth: Fin#: mn	Tube Side / / / 65 1 3.18 25.4 / - 25.4 / - 1.2 m Pitc #/m Shell cover Channel cover Tubesheet-floatin Impingement pro	h: 23.81 mm Material: Carbon - ng - otection None	W/(m ² -K) etch
30 31 32 33 4 35 36 37 38 39 40 41 42 43 44 45 46	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 42 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S	358.1 358.1 ressure ell Intermediate OD: 19.05 ID Carbon Carbon - teel	KPa °C mm mm Tks. Ave Insert 205 Steel Steel	CTION OF ONE S Shell Sia 300 / 145 1 3.18 1 88.9 / 1 152.4 / 1 152.4 / 7 rage 2.11 : None OD 219.0 - Single segme	Dirty HELL / - - mm Len 08	695.8 300 1 1 1 1 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1	Tube Side / / 65 1 3.18 25.4 / - 25.4 / - 1.2 m Pitc #/m Shell cover Channel cover Tubesheet-floatin Impingement pro 39.94 H	h: 23.81 mm Material: Carbon - - - - - - - - - - - - - - - - - - -	W/(m ² -K) etch
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per shi Corrosion allowance Connections Size/Rating Nominal Tube #: 42 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long -	358.1 358.1 ressure ell In Out Intermediate OD: 19.05 ID Carbon Carbon - teel	KPa °C mm mm Tks. Ave Insert 205 Steel Steel Steel	CTION OF ONE S Shell Sia 300 / 145 1 3.18 1 88.9 / 1 152.4 / 1 152.4 / / rage 2.11 : None OD 219.0 - - Single segme Seal Type	Dirty HELL / - - mm Len 08	695.8 300 1 1 1 1 5 in#: mn wn ut(%d)	Tube Side / / 65 1 3.18 3.18 25.4 / - 25.4 / 1.2 m Pitc #/m n Shell cover Shell cover Channel cover Tubesheet-floatin Impingement pro- 39.94 H	h: 23.81 mm Material: Carbor - ng - stection None Spacing: c/c 410 Inlet 356.48	W/(m ² -K) etch
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per shi Corrosion allowance Connections Size/Rating Nominal Tube #: 42 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube	358.1 358.1 ressure ell In Out Intermediate OD: 19.05 ID Carbon Carbon - teel U-bend	KPa °C mm mm Tks. Ave Insert 205 Steel Steel Steel Steel Steel	CTION OF ONE S Shell Sia 300 / 145 1 3.18 1 88.9 / 1 152.4 / 1 152.4 / 7 rage 2.11 : None OD 219.0 - - Single segme Seal Type 0	Dirty HELL / - - mm Len 08	695.8 300 1 1 1 1 5 in#: mn ut(%d)	MID (col Clu Tube Side / 65 1 3.18 25.4 / 25.4 / - 25.4 / - 1.2 m Pitc #/m Shell cover Channel cover Tubesheet-floatin Impingement pro 39.94 H	h: 23.81 mm Material: Carbor - otection None Spacing: c/c 410 Inlet 356.48	W/(m ² -K) etch
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per shi Corrosion allowance Connections Size/Rating Nominal Tube #: 42 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal	358.1 358.1 ressure ell In Out Intermediate OD: 19.05 ID Carbon Carbon - teel U-bend	KPa °C mm mm Tks. Ave Insert 205 Steel Steel Type	KW Shell Sia 300 / 145 1 3.18 1 88.9 / 1 152.4 / 1 152.4 / rage 2.11 : None OD 219.0 OD 219.0 Single segme Seal Type 0 Tu	Dirty HELL / - - - mm Len 08 :ntal C	695.8 300 1 1 1 5 in#: mn ut(%d) et joint	Tube Side / / 65 1 3.18 25.4 / 25.4 / - 25.4 / - 1.2 m Pitc # #/m Shell cover Channel cover Tubesheet-floatin Impingement pro 39.94 H Type Expanded only	h: 23.81 mm Material: Carbor - otection None Spacing: c/c 410 Inlet 356.48	W/(m ² -K) etch
30 31 32 33 34 35 36 37 38 39 40 41 42 44 45 46 47 48 49 50	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per shi Corrosion allowance Connections Size/Rating Nominal Tube #: 42 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint	358.1 358.1 ressure ell Intermediate OD: 19.05 ID Carbon Carbon - teel U-bend -	KPa °C mm mm Tks. Ave Insert 205 Steel Steel Steel	KW Shell Sia 300 / 145 1 3.18 1 88.9 / 1 152.4 / 1 152.4 / / rage 2.11 None OD 219.0 OD 219.0 Single segme Seal Type 0 Tu	Dirty HELL de - - - - - - - - - - - - - - - - - -	695.8 300 1 1 1 1 5 in#: mn ut(%d) et joint	Tube Side / / 65 1 3.18 25.4 / - 25.4 / - 1.2 m Pitc #/m Shell cover Tubesheet-floatin Impingement pro 39.94 H Type Expanded only re	h: 23.81 mm Material: Carbor - otection None Spacing: c/c 410 Inlet 356.48 (2 grooves)(App.A 'i'	W/(m ² -K) etch
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per shi Corrosion allowance Connections Size/Rating Nominal Tube #: 42 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle	358.1 358.1 ressure ell Intermediate OD: 19.05 ID Carbon Carbon - teel U-bend - 2307	KPa °C mm mm Tks. Ave Insert 205 Steel Steel Steel	KW CTION OF ONE S Shell Sia 300 / 145 1 3.18 1 88.9 / 1 152.4 / 1 152.4 / rage 2.11 None OD 219.0 OD 219.0 Single segme Seal Type 0 Tu Bundle entrar	Dirty HELL de - - - - - - - - - - - - - - - - - -	695.8 300 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tube Side / / 65 1 3.18 25.4 / - 25.4 / - 1.2 m Pitc #/m Shell cover Tubesheet-floatin Impingement pro 39.94 H Type Expanded only te Bundle exit	h: 23.81 mm Material: Carbor - - - - - - - - - - - - - - - - - - -	W/(m ² -K) etch
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per shi Corrosion allowance Connections Size/Rating Nominal Tube #: 42 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side	358.1 358.1 ressure ell Intermediate OD: 19.05 ID Carbon Carbon teel U-bend - 2307	CONSTRU kPa °C mm mm Tks. Ave Insert 205 Steel Steel Steel	KW Shell Sic 300 / 145 1 3.18 1 88.9 / 1 152.4 / 1 152.4 / / rage 2.11 None OD 219.0 OD 219.0 Single segme Seal Type 0 Tu Bundle entrar	Dirty HELL de / - - - - - - - - - - - - - - - - - -	695.8 300 1 1 1 1 Fin#: mn ut(%d) et joint Non	Tube Side / / 65 1 3.18 25.4 / - 25.4 / - 1.2 m Pitc #/m Shell cover Channel cover Tubesheet-floatin Impingement pro 39.94 H Type Expanded only te Bundle exit Flat Me	h: 23.81 mm Material: Carbor - otection None Spacing: c/c 410 Inlet 356.48 (2 grooves)(App.A 'i' 286 tal Jacket Fibe	W/(m ² -K) etch
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sho Corrosion allowance Connections Size/Rating Nominal Tube #: 42 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head	358.1 358.1 ressure ell Intermediate OD: 19.05 ID Carbon Carbon - teel U-bend - 2307 - -	CONSTRU kPa °C mm mm Tks. Ave Insert 205 Steel Steel Steel	KW CTION OF ONE S Shell Sin 300 / 145 1 3.18 1 88.9 / 1 152.4 / 1 152.4 / / rage 2.11 None OD 219.0 OD 219.0 Single segme Seal Type 0 Tu Bundle entrar	Dirty HELL de / - - - - mm Len 08 ental C she-tubeshe Type nce 493 Tube side	695.8 300 1 1 1 1 fin#: mn ut(%d) et joint Non	Tube Side / / 65 1 3.18 25.4 / - 25.4 / - 1.2 m Pitc #/m Shell cover Channel cover Tubesheet-floatin Impingement pro 39.94 H Type Expanded only te Bundle exit Flat Me	h: 23.81 mm Material: Carbor - otection None Spacing: c/c 410 Inlet 356.48 (2 grooves)(App.A 'i' 286 tal Jacket Fibe	W/(m ² -K) etch
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 51 52 53 54	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per sho Corrosion allowance Connections Size/Rating Nominal Tube #: 42 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head	358.1 358.1 ressure ell In Out Intermediate OD: 19.05 ID Carbon Carbon - teel U-bend - 2307 - ASME Co	CONSTRU kPa °C mm mm Tks. Ave Insert 205 Steel Steel Steel Steel Steel Steel Steel	KW CTION OF ONE S Shell Sin 300 / 145 1 3.18 1 88.9 / 1 152.4 / 1 152.4 / 1 152.4 / / rage 2.11 None OD 219.0 OD 219.0 Single segme Seal Type 0 Tu Bundle entrar	Dirty HELL de / - - - - - - - - - - - - - - - - - -	695.8 300 1 1 1 1 fin#: mn ut(%d) et joint : Non TEMA cla	Tube Side / / / 65 1 3.18 25.4 / - 25.4 / - 1.2 m Pitc #/m 1.2 m Pitc #/m Shell cover Channel cover Tubesheet-floatin Impingement pro 39.94 H Type Expanded only re Bundle exit Flat Me Ss R - refinery ser	h: 23.81 mm Material: Carbor - otection None Spacing: c/c 410 Inlet 356.48 (2 grooves)(App.A 'i' 286 tal Jacket Fibe	W/(m ² -K) etch
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 50 51 52 53 54 55	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 42 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell	358.1 358.1 ressure ell In Out Intermediate OD: 19.05 ID Carbon Carbon Carbon Carbon Carbon - teel U-bend - 2307 - ASME Cc 227.7	CONSTRU kPa °C mm mm Tks. Ave Insert 205 Steel Steel Type Steel Steel ode Sec VII Filled w	KW CTION OF ONE S Shell Sin 300 / 145 1 3.18 1 88.9 / 1 152.4 / 1 152.4 / 1 152.4 / / rage 2.11 None OD 219.0 OD 219.0 OD 219.0 Tu Single segme Seal Type 0 Tu Bundle entrar	Dirty HELL de / - - - - - - - - - - - - - - - - - -	695.8 300 1 1 1 fin#: mn ut(%d) et joint et joint TEMA cla Bundle	Tube Side / / / 65 1 3.18 25.4 / - 25.4 / - 1.2 m Pitc #/m Shell cover Channel cover Tubesheet-floatin Impingement pro 39.94 H Type Expanded only re Bundle exit Flat Me ss R - refinery sen 77.8	h: 23.81 mm Material: Carbor - otection None Spacing: c/c 410 Inlet 356.48 (2 grooves)(App.A 'i' 286 tal Jacket Fibe	W/(m ² -K) etch Tube pattern: 30 n Steel
30 31 32 33 33 34 35 36 37 38 39 40 41 42 434 44 46 47 48 49 50 51 52 53 54 55 56	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 42 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell Remarks	358.1 assure ell In Out Intermediate OD: 19.05 ID Carbon Carbon Carbon - teel U-bend - 2307 - ASME Cc 227.7	CONSTRU kPa °C mm mm Tks. Ave Insert 205 Steel Steel Type Steel Steel ode Sec VII Filled w	KW Shell Sin 300 / 145 1 3.18 1 88.9 / 1 152.4 / 1 152.4 / / rage 2.11 None OD 219.0 OD 219.0 OD 219.0 Tu Single segme Seal Type 0 Tu Bundle entrar I Div 1 ith water 262.3	Dirty HELL de / - - - mm Len 28 mm Len 28 mm Len 70 28 mm Len 28 mm Len 20 mm Len 20 Len 20 mm Len 20 mm Len 20 Len 20 Len 20 Len 20 Len 20 Len 20 Len 20 Le	695.8 300 1 1 1 1 fin#: mn ut(%d) et joint et joint TEMA cla Bundle	Tube Side / / / 65 1 3.18 25.4 / - 25.4 / - 1.2 m Pitc #/m Shell cover Channel cover Tubesheet-floatin Impingement pro 39.94 H Type Expanded only re Bundle exit Flat Me 77.8	h: 23.81 mm Material: Carbor - otection None Spacing: c/c 410 Inlet 356.48 (2 grooves)(App.A 'i' 286 tal Jacket Fibe	W/(m ² -K) etch Tube pattern: 30 n Steel
30 31 32 33 33 34 35 36 37 38 39 40 41 42 434 44 46 47 48 49 50 51 52 53 54 55 56 57	Transfer rate, Service Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 42 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell Remarks	358.1 358.1 ressure ell Out Intermediate OD: 19.05 ID Carbon Carbon Carbon Carbon Carbon 2307 - teel U-bend - 2307 - 4 - ASME Ce	CONSTRU kPa °C mm mm Tks. Ave Insert 205 Steel St	KW Shell Sin 300 / 145 1 3.18 1 88.9 / 1 152.4 / 1 152.4 / / rage 2.11 None OD 219.0 OD 219.0 OD 219.0 Tu Single segme Seal Type 0 Tu Bundle entrar	Dirty HELL / - - - - mm Len 28 ental Cr ibe-tubeshe Type ibe-tubeshe Type ice 493 Tube side	695.8 300 1 1 1 Fin#: mn ut(%d) et joint toon too TEMA cla Bundle	Tube Side / / / 65 1 3.18 25.4 / - 25.4 / - 1.2 m Pitc #/m 1.2 m Pitc #/m Shell cover Channel cover Tubesheet-floatin Impingement pro 39.94 H Type Expanded only re Bundle exit Flat Me 77.8	h: 23.81 mm Material: Carbor - otection None Spacing: c/c 410 Inlet 356.48 (2 grooves)(App.A 'i' 286 tal Jacket Fibe	W/(m ² -k) etch Tube pattern: 30 o Steel

Figura 110. Especificaciones IC-301.

<u>IC-302</u>

Tras su paso por IC-301, el caudal entrará a IC-302 donde se producirá la bajada final de temperatura a los 80° C que se alimentará al tramo de evaporadores I. Para esta operación se ha vuelto a emplear un caudal de agua a 5° C con el mismo salto a 30° C que IC-301, pero en esta ocasión el caudal ha aumentado a 1996 kmol/h, ya que la simulación permitió realizar el diseño sin error, no así como IC-301.

Design Ratin	g Worksheet	Performance	Dynamics	Rigorous Shell&Tube			
Worksheet	Name			Entrada refrigerar	Salida refrigerant	Entrada fluido	Salida fluido
Conditions	Vapour			0.0000	0.0000	0.0000	0.0000
Properties	Temperature	e [C]		5.000	30.00	107.7	80.00
Composition	Pressure [kP	a]		400.0	390.0	130.0	100.0
PF Specs	PF Specs Molar Flow [kgmol Mass Flow [kg/h]	[kgmole/h]		1996	1996	1756	1756
		kg/h]		3.596e+004	3.596e+004	3.229e+004	3.229e+004
	Std Ideal Lig	Std Ideal Liq Vol Flow [m3/h]		36.04	36.04	32.33	32.33
	Molar Entha	Molar Enthalpy [kJ/kgmole]		-2.871e+005	-2.852e+005	-2.709e+005	-2.730e+005
	Molar Entro	Molar Entropy [kJ/kgmole-C]		50.36	56.64	72.25	66.60
	Heat Flow [k	J/h]		-5.731e+008	-5.694e+008	-4.757e+008	-4.793e+008

Figura 111. Caudales de paso IC-302.

✓ Process Data					
		Hot Si She	tream (1) ell Side	Cold Tu	Stream (2) ıbe Side
Fluid name		Fluido salida re	actor 2	Agua	
		In	Out	In	Out
Mass flow rate	kg/h 🔹	32287		35965	
Temperature	°C •	107.7	80	5	30
Vapor mass fraction				0	
Pressure (absolute)	kPa 🔻	130	100	400	390
Pressure at liquid surface in column					
Heat exchanged	kW 🔹				
Exchanger effectiveness					
Adjust if over-specified		Outlet tempe	rature 🔹	Outlet tempe	rature 🔹
Estimated pressure drop	kPa 🔻	30		10	
Allowable pressure drop	kPa 🔹	30		50	
Fouling resistance	<i>m²-K/W</i> ▼	0		0	

Figura 112. Características de paso por IC-302.

La operación de IC-302 permite la reducción a los 80° C como ya se ha comentado anteriormente, de manera que el caudal de 1756 kmol/h de agua, hidracina y sal (donde más del 95% se trata de agua) ya puede ser alimentado a EV-301 para acabar extrayendo el sólido disuelto (NaCl) en EV-303.

Geometry Tube Layout		
Front head type	B - bonnet bolted or integral with tubesheet	•
Shell type	E - one pass shell	•
Rear head type	M - bonnet	•
Exchanger position	Horizontal •	
Shell(s)	Tubes	Tube Layout
ID 728 mm -	Number 140	New (optimum) layout
OD 748 mm •	Length 5 m	Tubes 36
Series 1	OD 19.05 mm -	Tube Passes 2
Parallel 1	Thickness 2.11 mm -	Pitch 23.81 mm •
		Pattern 30-Triangular •
Baffles		
Spacing (center-center) 400	туре	Single segmental 🔹
Spacing at inlet 2053	3.48 mm Tubes in window	Yes 🔹
Number 3	Orientation	Horizontal 🔹
Spacing at outlet 2053	3.48 mm ▼ Cut(%d)	

Figura 113. Dimensiones de IC-302.

Los diámetros internos y externos de IC-302 se corresponden a 728 mm y 748 mm, lo cual permite afirmar que el diseño de la mayoría de carcasas de los intercambiadores del proceso ha sido homogeneizado a un espesor de 20 mm. En esta ocasión la longitud de los tubos de paso se ve reducida a 5 m manteniendo las mismas características para diámetro y espesor de tubo. Se mantienen los dos pasos por tubo, reduciendo su numero total a 140.

✓ Shell/Heads ✓ Covers ✓ Tubesheets ✓	Flanges
Front head type	B - bonnet bolted or integral with tubesheet
Shell type	E - one pass shell 🔹
Rear head type	M - bonnet 🔹
Exchanger position	Horizontal
Location of front head for vertical units	Set default 👻
"E" shell flow direction (inlet nozzle location)	Near rear head 🔹
Double pipe or hairpin unit shell pitch	mm 🔻
Tubeside inlet at front head	Set default 👻
Flow within multi-tube hairpin (M-shell)	Set default 👻
Overall flow for multiple shells	Set default

Figura 114. Características de los componentes del intercambiador IC-302.

En cuanto a la arquitectura externa de IC-302 se emplean piezas con la misma geometría que los anteriores equipos, de manera que lo único que diferenciara cada intercambiador en planta será el tamaño y no su estructura externa.

✓ Tube Lowfins Fins ✓	Inserts KHT Twisted Tubes Internal Enhancement	s
Number of tubes (total)	140	
Number of tubes plugged	0	
Tube length	5 m •	
Tube type	Plain •	
Tube outside diameter	19.05 mm •	
Tube wall thickness	2.11 mm •	
Wall specification	Average	
Tube pitch	23.81 mm •	2
Tube pattern	30-Triangular 🔹	
Tube material	Carbon Steel 1	
Tube surface	Smooth -	
Tube wall roughness	mm v	
Tube cut angle (degrees)		

Figura 115. Detalles de los tubos de paso IC-302.

En la figura 115 puede observarse de manera más detallada las características de los tubos de paso de refrigerante. Su área de operación y estructura se mantiene con respecto a la de los anteriores equipos, pero esta vez el número total de tubos se reduce también a 140 con 2 pasos por tubo.

Weights	kg	Cost data	Dollar(US)
Shell	148.3	Labor cost	7969
Front head	28.2	Tube material cost	156
Rear head	15.6	Material cost (except tubes)	1379
Shell cover			
Bundle	93.5		
Total weight - empty	285.6	Total cost (1 shell)	9504
Total weight - filled with water	343.8	Total cost (all shells)	9504

Figura 116. Costes y peso de IC-302.

Dadas las dimensiones del equipo, este contara con un peso reducido a 285,6 kg y un peso total de 343,8 kg en lleno. Para los costes totales del equipo se asciende a 9.505\$ USD para una sola carcasa.

A continuación, se presenta la figura de especificaciones técnicas de IC-302:

PLANTA DE PRODUCCIÓN DE HIDRAZINA CAPÍTULO 11: MANUAL DE CÁLCULOS

Heat Exchanger Specification Sheet	
near exchanger specification sheet	

\vdash	Company:											
2	Location:											
3	Service of Unit:	(Dur Referen	ce:								
4	Item No.:	Yo	ur Referenc	:e:								
5	Date: Rev	No.: J	lob No.:									_
6	Size : 205 - 1800	mm	Ту	pe: BEM	Horizontal		Connec	ted in:	1 parallel	1	series	
7	Surf/unit(eff.)	3.7	m²	Shells/u	unit 1			Surf/sł	nell(eff.)		3.7 m²	
8				PERFO	ORMANCE O	OF ONE U	NIT					
9	Fluid allocation					Shell	Side		T	Tube S	ide	
10	Fluid name											
11	Fluid quantity, Total			kg/h		322	.87			3596	5	
12	Vapor (In/Out)			kg/h	0		0		0		0	
13	Liquid			kg/h	3228	37	32287		35965		35965	
14	Noncondensable			kg/h	0		0		0		0	
15												
16	Temperature (In/Out)			°C	107.	.7	80.01		5		30	
17	Bubble / Dew point	:		°C	107.73 /	112.59	105.72 / 110).59	143.53 / 143.54	i4 1	39.35 / 139.35	
18	Density Vapor/	Liquid		ka/m³	/	938.06	/ 961	.18	/ 1022.2	28	/ 1003.65	;
19	Viscosity			cp	/	0.2511	/ 0.3	703	/ 1.501	2	/ 0.7974	
20	Molecular wt. Vap						,					
21	Molecular wt. NC											
22	Specific heat			kJ/(ka-K)	/	4.103	/ 4.0)44	/ 4.062	2	/ 4.041	
22	The second second second second			NUC 10		0.6677		633	/ 0.575		1.0.0100	
23	Inermal conductivity			W/(m-K)	/	0.66//	/ 0.6	533	/ 0.578	8	/ 0.6182	
24	Latent heat			kJ/kg								
25	Pressure (abs)			kPa	130)	121.224		400		356.162	
26	Velocity (Mean/Max)			m/s		0.67 /	0.83		3.	.26 / 3	3.84	
27	Pressure drop, allow./c	alc.		kPa	30		8.777		50		43.838	
28	Fouling resistance (min	1)		m'-K/W		0			0	0	Ao based	
29	Heat exchanged	1011.3		kW			MT	ID (cor	rected) 74.	.98	•	
	30 Transfer rate, Service 3633.3							,				С
30	Transfer rate, Service	3633.3			Dirty	3727.5		Cle	an 3727.5		W/(m²-	C K)
30 31	Transfer rate, Service	3633.3	CONSTRU	ICTION OF ONE S	Dirty HELL	3727.5		Cle	an 3727.5	Skete	W/(m²- ch	C K)
30 31 32	Transfer rate, Service	3633.3	CONSTRU	CTION OF ONE S Shell Si	Dirty HELL de	3727.5	Tube Side	Cle	an 3727.5	Skete	W/(m²-	C K)
30 31 32 33	Transfer rate, Service Design/Vacuum/test pr	3633.3 ressure	CONSTRU kPa	CTION OF ONE S Shell Si 300 /	Dirty HELL de /	3727.5	Tube Side	Cle	an 3727.5	Sketo	W/(m²-	C K)
30 31 32 33 34	Transfer rate, Service Design/Vacuum/test pr Design temperature	3633.3 ressure	CONSTRU kPa °C	CTION OF ONE S Shell Si 300 / 145	Dirty HELL /	3727.5	Tube Side / / 65	Cle	an 3727.5	Sketo	W/(m ² -l	C K)
30 31 32 33 34 35	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she	3633.3 ressure	CONSTRU kPa °C	CTION OF ONE S Shell Si 300 / 145 1	Dirty HELL de /	3727.5	Tube Side / / 65 2	Cle	an 3727.5	Sketo	W/(m ² -	C K)
30 31 32 33 34 35 36	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance	3633.3 ressure ell	CONSTRU kPa °C mm	CTION OF ONE S Shell Si 300 / 145 1 3.18	Dirty HELL de /	3727.5	Tube Side / / 65 2 3.18	Cle	an 3727.5	Sketo	W/(m²- ch	C K)
30 31 32 33 34 35 36 37	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections	3633.3 ressure III In	CONSTRU kPa °C mm mm	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 /	Dirty HELL /	3727.5 500 1	Tube Side / / 65 2 3.18 76.2 /	Cle	an 3727.5	Sketo	W/(m²- ch	C K)
30 31 32 33 34 35 36 37 38	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating	3633.3 ressure III In Out	CONSTRU kPa °C mm mm	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 / 1 88.9 /	Dirty HELL de / -	3727.5 500 1 1	Tube Side / / 65 2 3.18 76.2 / 76.2 /	Cle	an 3727.5	Sketo	W/(m²-	C K)
30 31 32 33 34 35 36 37 38 39	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal	3633.3 ressure III Out Intermediat	CONSTRU kPa °C mm mm	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 / 1 88.9 /	Dirty HELL de / - -	3727.5 500 1 1	Tube Side / / 65 2 3.18 76.2 / 76.2 / /	Cle	an 3727.5	Sketo	W/(m²- ch	C (K)
30 31 32 33 34 35 36 37 38 39 40	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 36	3633.3 ressure In Out Intermediat OD: 19.05	CONSTRU kPa °C mm mm te Tks. Ave	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 / 1 88.9 / / rage 2.11	Dirty HELL de / - - mm Len	3727.5 500 1 1 gth:	Tube Side / / 65 2 3.18 76.2 / 76.2 / 76.2 / 1.8 m	Cle	an 3727.5	Sketo	W/(m ² -	C K)
30 31 32 33 34 35 36 37 38 39 40 41	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 36 Tube type: Plain	3633.3 ressure In Out Intermediat OD: 19.05	CONSTRU kPa °C mm mm te Tks. Ave Insert:	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 / 1 88.9 / / rage 2.11 : None	Dirty HELL de / - - mm Len	3727.5 500 1 1 gth: Fin#	Tube Side / / 65 2 3.18 76.2 / 76.2 / 76.2 / 1.8 m	Cle	an 3727.5	Sketo	W/(m ² - ch	C K)
30 31 32 33 34 35 36 37 38 39 40 41 42	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 36 Tube type: Plain Shell Carbon Steel	3633.3 ressure III Out Intermediat OD: 19.05	CONSTRU kPa °C mm mm te Tks. Ave Insert: D 205	CTION OF ONE S Shell Si 300 / 145 1 152.4 / 1 88.9 / 1 88.9 / rage 2.11 : None OD 219./	Dirty HELL de / - - - mm Len 08	3727.5 500 1 1 gth: Fin#:	Tube Side / / / 65 2 3.18 76.2 / 76.2 / 76.2 / 1.8 m : n Shell cover	Cle	an 3727.5	Sketo	W/(m ² - ch	C K)
30 31 32 33 34 35 36 37 38 39 40 41 42 43	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 36 Tube type: Plain Shell Carbon Steel Channel or bonnet	3633.3 ressure III Out Intermediat OD: 19.05 II Carbor	CONSTRU kPa °C mm mm te Tks. Ave Insert: D 205 i Steel	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 / 1 88.9 / / rage 2.11 : None OD 219.4	Dirty HELL de / - - mm Len 08	3727.5 500 1 1 1 gth: Fin#	Tube Side / / / 65 2 3.18 76.2 / 76.2 / / 1.8 m : n Shell cover Channel co	Cle	an 3727.5	Sketo	W/(m ² -	C (K)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 36 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary	3633.3 ressure II Out Intermediat OD: 19.05 II Carbor Carbor	CONSTRU kPa °C mm mm te Tks. Ave Insert: D 205 a Steel a Steel	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 / 1 88.9 / 7 rage 2.11 : None OD 219.0	Dirty HELL de / - - mm Len 08	3727.5 500 1 1 1 gth: Fin#	Tube Side / / / 65 2 3.18 76.2 / 76.2 / / 1.8 m 	Cle - - Pitch #/m	an 3727.5	Sketo	W/(m ² -	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 36 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover	3633.3 ressure II Out Intermediat OD: 19.05 II Carbor Carbor -	CONSTRU kPa °C mm mm te Tks. Ave Insert: D 205 n Steel n Steel	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 / 1 88.9 / 7 rage 2.11 : None OD 219.0	Dirty HELL de / - - mm Len 08	3727.5 500 1 1 gth: Fin#: mr	Tube Side / / 65 2 3.18 76.2 / 76.2 / / 1.8 m : n Shell cover Channel co Tubesheet- Impingeme	Cle - - Pitch #/m wver floatin ent pro	an 3727.5	Sketo	W/(m ² -	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 36 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon Si	3633.3 ressure III Out Intermediat OD: 19.05 III Carbor Carbor Carbor - teel	CONSTRU kPa °C mm mm te Tks. Ave Insert: D 205 n Steel n Steel n Steel Type	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 / 1 88.9 / 1 88.9 / 7 rage 2.11 : None OD 219.0 - Single segme	Dirty HELL de / - - mm Len 08	3727.5 500 1 1 1 gth: Fin#: mr	Tube Side / / 65 2 3.18 76.2 / 76.2 / 1.8 m : n Shell cover Channel co Tubesheet- Impingeme 41.48	Cle - - Pitch #/m over floatin ent pro	an 3727.5	Sketo	W/(m ² -	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 36 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon Si Baffle-long -	3633.3 ressure III Out Intermediat OD: 19.05 III Carbor Carbor - teel	CONSTRU kPa °C mm mm te Insert: D 205 Steel	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 / 1 88.9 / 1 88.9 / 7 rage 2.11 : None OD 219.0 - Single segme Seal Type	Dirty HELL de / - - mm Len 08 28 20 20 20 20 20 20 20 20 20 20 20 20 20	3727.5 500 1 1 1 gth: Fin# wr ut(%d)	Tube Side / / 65 2 3.18 76.2 / 76.2 / / 1.8 m Shell cover Channel co Tubesheet- Impingeme 41.48	Cle Cle Pitch #/m vver floatin ent pro	an 3727.5	Sketa I _ I m Ti rbon Si 185 8.98	W/(m ² -	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 36 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon St Baffle-long - Supports-tube	3633.3 ressure III Out Intermediat OD: 19.05 III Carbor Carbor - teel	CONSTRU kPa °C mm mm Ths. Ave Insert: D 205 Steel Steel Steel Type Steel	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 / 1 88.9 / 1 88.9 / 7 rage 2.11 : None OD 219. OD 219. Single segme Seal Type 0	Dirty HELL de / - - mm Len 08 ental C	3727.5 500 1 1 1 gth: Fin# ut(%d)	Tube Side / / 65 2 3.18 76.2 / 76.2 / 76.2 / / 1.8 m : : Channel cover Channel cover Channel cover Iubesheet- Impingeme 41.48	Cle Cle Pitcl #/m Pitcl #/m floatin ent pro H	an 3727.5	Sketa m Ti rbon Si 185 8.98	W/(m ² -	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 36 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon St Baffle-long - Supports-tube Bypass seal	3633.3 ressure III Out Intermediat OD: 19.05 III Carbor Carbor Carbor teel	CONSTRU kPa °C mm mm te Insert: D 205 i Steel i Steel Steel Type Steel	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 / 1 88.9 / 1 88.9 / 7 rage 2.11 None OD 219./ OD 219./ Single segme Seal Type 0 Tu	Dirty HELL de / - - mm Len 08 ental C	3727.5 500 1 1 1 gth: Fin# ut(%d) et joint	Tube Side / / / 65 2 3.18 76.2 / 76.2 / / 1.8 m : : Channel co Tubesheet- Impingeme 41.48 Type Expandee	Cle Cle Pitcl #/m Pitcl #/m floatin ent pro H I l e d only	an 3727.5 an 3727.5	Sketa I I I I m Ti rbon Si 185 8.98 A 'i')	W/(m ² -	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 36 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon Si Baffle-long - Supports-tube Bypass seal Expansion joint	3633.3 ressure In Out Intermediat OD: 19.05 II Carbor Carbor - teel U-benc	CONSTRU kPa °C mm mm te Tks. Ave Insert: D 205 i Steel i Steel Type S	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 / 1 88.9 / / rage 2.11 None OD 219./ OD 219./ Single segme 5 Single segme 0 Tu	Dirty HELL de / - - - - - - - - - - - - - - - - - -	3727.5 500 1 1 1 gth: Fin#: mr ut(%d) et joint : Nor	Tube Side / / / 65 2 3.18 76.2 / 76.2 / / 1.8 m : m Shell cover Channel co Tubesheet- Impingeme 41.48 Type Expanded	Cle - - - Pitch #/m Pitch filoatin ent pro H a d only	an 3727.5	Sketo I m Ti rbon Si 	W/(m ² -	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 36 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon Si Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle	3633.3 ressure In Out Intermediat OD: 19.05 Il Carbor Carbor Carbor - teel U-benc - 247	CONSTRU kPa °C mm mm te Tks. Ave Insert: D 205 i Steel Steel Steel Steel Steel Steel	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 / 1 88.9 / / rage 2.11 None OD 219./ OD 219./ Single segments Seal Type 0 Tu Bundle entrar	Dirty HELL de / - - - - - - - - - - - - - - - - - -	3727.5 500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tube Side / / / 65 2 3.18 76.2 / 76.2 / 76.2 / 1.8 m Channel co Tubesheet- Impingeme 41.48 Type Expanded te Bundle	Cle Cle Pitch #/m wer floatin ent pro H I e e d only i	an 3727.5 an 3727.5	Sketo I m Ti rbon Si 185 8.98 A 'i')	W/(m ² - ch ube pattern: 30 teel mm mm	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 36 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon St Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side	3633.3 ressure In Out Intermediat OD: 19.05 II Carbor Carbor Carbor - teel U-bend - 247	CONSTRU kPa °C mm mm te Tks. Ave Insert: D 205 i Steel i Steel Type S d	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 / 1 88.9 / / rage 2.11 None OD 219.0 - Single segme Single segme Ceal Type 0 Tu Bundle entrar	Dirty HELL de / - - mm Len 08 ental C ube-tubeshe Type nce 185 Tube side	3727.5 500 1 1 1 gth: Fin#: mr ut(%d) et joint : Nor	Tube Side / / / 65 2 3.18 76.2 / 76.2 / / 1.8 m :	Cle Cle Pitch #/m Pitch #/m Vver floatin H I e e d only e e exit	an 3727.5 an 3727.5	Sketo n Ti rbon Si 185 3.98 A 'i')	W/(m ² - ch ube pattern: 30 teel mm mm kg/(m-s ²)	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 95 51 52 53	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 36 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon St Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head	3633.3 ressure III Out Intermediat OD: 19.05 II Carbor Carbor Carbor Carbor - teel U-benc - 247 - I	CONSTRU kPa °C mm mm te Tks. Ave Insert: D 205 i Steel i Steel Type Steel Steel	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 / 1 88.9 / / rage 2.11 None OD 219.0 - Single segme Single segme Single segme Tu Bundle entrar	Dirty HELL de / - - mm Len 08 ental C ube-tubeshe Type nce 185 Tube side	3727.5 500 1 1 gth: Fin# mr ut(%d) et joint : Nor	Tube Side / / / 65 2 3.18 76.2 / 76.2 / / 1.8 m / 1.8 m / 1.8 m / 1.8 m / / 	Cle Cle Pitch #/m #/m H floatin ent pro H d only l e exit lat Met	an 3727.5 an 3727.5	Sketo n Ti rbon Si 185 8.98 A 'i')	W/(m ² - ch ube pattern: 30 teel mm mm kg/(m-s ²)	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 50 51 52 53 54	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 36 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon St Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements	3633.3 ressure In Out Intermediat OD: 19.05 II Carbor Carbor Carbor - teel U-benc - 247 - 1 -	CONSTRU kPa °C mm mm Tiks. Ave Insert: D 205 in Steel in Steel Type S d Code Sec VII	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 / 1 88.9 / rage 2.11 None OD 219.0 CD 219.0 C	Dirty HELL de / - - - - mm Len 08 ental C - 08 ental C Jube-tubeshe Type nce 185 Tube side	3727.5 500 1 1 1 gth: Fin# mr ut(%d) et joint : Nor	Tube Side / / / 65 2 3.18 76.2 / 76.2 / 1.8 m n Shell cover Channel co Tubesheet- Impingeme 41.48 Type Expanded Bundle Ender Bundle Bundle Expanded	Clear	an 3727.5 an 3727.5	Sketo 1 1 1 m Tr rbon Sr 185 8.98 A 'i')	W/(m ² - ch ube pattern: 30 teel mm mm kg/(m-s ²)	
30 31 32 33 34 35 36 37 38 39 40 41 42 33 34 45 51 52 53 54 55	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 36 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon Si Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell	3633.3 ressure ill Out Intermediat OD: 19.05 Ill Carbor Carbor Carbor teel U-bend 247 - ASME C 285.6	CONSTRU kPa °C mm mm te Tks. Ave Insert: D 205 i Steel i Steel Steel Type Steel Code Sec VII Filled w	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 / 1 88.9 / rage 2.11 None OD 219.1 OD 219.1 Single segme Single segme Seal Type 0 Tu Bundle entrar	Dirty HELL de / - - - mm Len 08 ental C ube-tubeshe Type nce 185 Tube side	3727.5 500 1 1 1 1 gth: Fin#: mr ut(%d) et joint : Nor TEMA cla Bundle	Tube Side / / 65 2 3.18 76.2 / 76.2 / / 1.8 m : n Shell cover Channel co Tubesheet- Impingeme 41.48 Type Expanded Bundle Fl ass R - refine 93.5	Cle Cle Pitch #/m Pitch #/m Pitch #/m Pitch #/m Pitch e e e e e e e e e e e e e e e e e e e	an 3727.5 an 3727.5	Sketo 1 1 1 m Tr rbon Sr 185 8.98 A 'i') g	W/(m ² - ch ube pattern: 30 teel mm mm kg/(m-s ²)	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 50 51 52 53 54 55 56	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 36 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon St Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell Remarks	3633.3 ressure II Out Intermediat OD: 19.05 II Carbor Carbor Carbor Carbor Carbor 247 - 247 - ASME C 285.6	CONSTRU kPa °C mm mm te Tks. Ave Inserts D 205 a Steel a Steel a Steel Type Steel Code Sec VIII Filled w	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 / 1 88.9 / / rage 2.11 : None OD 219.0 OD 219.0 - Single segme Seal Type 0 Tu Bundle entran I Div 1 ith water 343.8	Dirty HELL de / - - mm Len 08 ental C ube-tubeshe Type nce 185 Tube side	3727.5 500 1 1 1 1 gth: Fin#: mr ut(%d) et joint et joint t: Nor TEMA cla Bundle	Tube Side / / 65 2 3.18 76.2 / 76.2 / 76.2 / 1.8 m : m Shell cover Channel co Tubesheet- Impingeme 41.48 Type Expanded Expanded Fi ass R - refine 93.5	Clear Clear Pitch #/m Pitch #/m Pitch #/m Pitch #/m Pitch #/m Pitch #/m	an 3727.5	Sketo 1 1 1 n Tr rbon Sr 185 8.98 A 'i') g	W/(m ² -	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 57 57 57 57 56 57 57 56 57 57 57 57 57 57 57 57 57 57	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 36 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell Remarks	3633.3 ressure In Out Intermediat OD: 19.05 II Carbor Carbor Carbor - Carbor - 247 - 247 - 1 - 247 - 247 - 247 - 245.6	CONSTRU kPa °C mm mm te Tks. Ave Insert: D 205 a Steel a Steel a Steel Type Steel Code Sec VII Filled w	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 / 1 88.9 / / rage 2.11 None OD 219./ OD 219./ OD 219./ COD 219./ OD 219./ OD 219./ OD 219./ OD 219./ OD 219./ I DIV 1 ith water 343.8	Dirty HELL de / - - mm Len 08 ental C ube-tubeshe Type nce 185 Tube side	3727.5 500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tube Side / / 65 2 3.18 76.2 / 76.2 / / 1.8 m M Shell cover Channel co Tubesheet- Impingeme 41.48 Type Expanded Bundle Fi Bundle Fi Buss R - refine 93.5	Cle Cle Pitch Pitch Pitch Pitch Cle Cle Pitch Cle Cle Cle Pitch Pitch Cle Pitch Cle Pitch Pitch Cle Pitch Pi	an 3727.5	Sketo 1 1 1 m Tr rbon Sr 185 8.98 A 'i') 9 9	W/(m ² - ch ube pattern: 30 teel mm mm kg/(m-s ²)	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 16 51 52 53 54 55 56 57 58	Transfer rate, Service Design/Vacuum/test pr Design temperature Number passes per she Corrosion allowance Connections Size/Rating Nominal Tube #: 36 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon Si Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell Remarks	3633.3 ressure In Out Intermediat OD: 19.05 Il Carbor Carbor Carbor - teel U-bend - 247 - 247 - 1 - 247 - 247	CONSTRU kPa °C mm mm te Tks. Ave Insert: D 205 steel steel Steel Steel Code Sec VII Filled w	CTION OF ONE S Shell Si 300 / 145 1 3.18 1 152.4 / 1 88.9 / 1 88.9 / / rage 2.11 None OD 219.0 OD 219.0 OD 219.0 OD 219.0 Tu Single segme Single segme Salarype 0 Tu Bundle entrar	Dirty HELL de / - - - mm Len 08 ental C ube-tubeshe Type nce 185 Tube side	3727.5 500 1 1 1 gth: Fin#: mr ut(%d) et joint et joint TEMA cla Bundle	Tube Side / / 65 2 3.18 76.2 / 76.2 / / 1.8 m : m Shell cover Channel co Tubesheet- Impingeme 41.48 Type Expanded Bundle Fi ass R - refine 93.5	Cle Cle Pitch Pitch Pitch Pitch c e d only Cle Pitch Pitch Cle Pitch Pi	an 3727.5	Sketo 1 1 1 m Tr rbon Sr 1855 8.98 A. 'i') g g	W/(m ² - ch ube pattern: 30 teel kg/(m-s ²)	

Figura 117. Especificaciones IC-302.

11.7.2.6 Intercambiador producto final (IC-401)

Finalmente, el ultimo intercambiador del proceso, IC-401, será el encargado de reducir la temperatura del producto una vez este se obtiene de CD-401. Concretamente, el caudal de producto de 82,76 kmol/h al 64%w. de hidracina sale del calderín a 120° C, temperatura a la cual no se puede almacenar el producto de manera segura, por lo tanto, es necesario reducir la temperatura a una más segura para la manipulación del producto.

Para ello se ha empleado un caudal de agua a 0º C que produzca una bajada de temperatura por debajo de los 60º C en el producto. A continuación, se presentan dos figuras que describen el paso por IC-401:

Design	Rating	Worksheet	Performance	Dynamics	Rigorous Shell&Tube			
Worksh	neet	Name			1	2	Entrada Fluido	Salida Fluido
Conditio	ons	Vapour			0.0000	0.0000	0.0000	0.0000
Properties		Temperature [C]			0.0000	20.17	120.0	52.60
Compos	ition	Pressure [bar] Molar Flow [kgmole/h]			1.013	0.8400	1.001	0.9811
PF Spece	s				350.0	350.0	82.76	82.76
		Mass Flow [kg/h]			6305	6305	2072	2072
		Std Ideal Lig Vol Flow [m3/h]			6.318	6.318	2.057	2.057
		Molar Entha	lpy [kcal/kgmol	e]	-6.854e+004	-6.818e+004	-2.600e+004	-2.753e+004
		Molar Entrop	py [kJ/kgmole-0	C]	-2.014e-003	5.319	44.26	15.12
		Heat Flow [k	cal/h]		-2.399e+007	-2.386e+007	-2.152e+006	-2.278e+006

Figura 118. Caudales de paso IC-401.

Figura 119. Características de paso por IC-401.

Como puede extraerse de la figura 118, el caudal empleado para refrigerar el producto es de 350 kmol/h de agua a 0° C, el cual tras la operación se recupera a 20,17° C habiendo provocado una caída en el caudal final de 120° C a 52,6° C. Esta temperatura es más segura para la manipulación del producto, el cual se dejará enfriar previamente a su almacenamiento en la zona final.

Geometry Tube Layout		
Front head type	B - bonnet bolted or integral with tubesheet	•
Shell type	E - one pass shell	•
Rear head type	M - bonnet	•
Exchanger position	Horizontal 🔹	
Shell(s)	Tubes	Tube Layout
ID 205 mm	Number 34	New (optimum) layout
OD 219.08 mm	▼ Length 1200 mm ▼	Tubes 34
Series 1	OD 19.05 mm -	Tube Passes 4
Parallel 1	Thickness 2.11 mm -	Pitch 23.81 mm •
		Pattern 30-Triangular -
Baffles		
Spacing (center-center) 135	5 mm 🔻 Type	Single segmental 🔹
Spacing at inlet 223	3.97 mm Tubes in window	Yes 🔹
Number 6	Orientation	Horizontal 🔹
Spacing at outlet 223	8.97 mm ▼ Cut(%d)	43

Figura 120. Dimensiones de IC-401.

Tratándose de un intercambiador para tratar un caudal total de 82,76 kmol/h de producto, las dimensiones de IC-401 son significativamente inferiores al resto de intercambiadores de planta, con un diámetro interno de 205 mm y uno externo de 219,08 mm. Por ser caudales más reducidos, los tubos ven reducidas sus dimensiones a 1200 mm de largo (manteniendo espesor y diámetro típicos) y aumentando el número de pasos por tubo a 4.

✓ Shell/Heads ✓ Covers ✓ Tubesheets ✓	Flanges
Front head type	B - bonnet bolted or integral with tubesheet
Shell type	E - one pass shell 🔹
Rear head type	M - bonnet 🔹
Exchanger position	Horizontal •
Location of front head for vertical units	Set default 👻
"E" shell flow direction (inlet nozzle location)	Near rear head 🔹
Double pipe or hairpin unit shell pitch	mm
Tubeside inlet at front head	Yes 🔹
Flow within multi-tube hairpin (M-shell)	Set default 👻
Overall flow for multiple shells	Set default 👻

Figura 121. Características de los componentes del intercambiador IC-401.

Nuevamente, pese a la significativa reducción de las medidas del equipo, la arquitectura externa del mismo sigue homogeneizada con el resto de equipos, manteniendo el mismo tipo de piezas para carcasa, cabezal y boca de entrada.

✓ Tube Lowfins Fins ✓	Inserts KHT Twisted Tubes Internal Enhancements
Number of tubes (total)	34
Number of tubes plugged	0
Tube length	1200 mm 🔻
Tube type	Plain
Tube outside diameter	19.05 mm 🔹
Tube wall thickness	2.11 mm •
Wall specification	Average
Tube pitch	23.81 mm •
Tube pattern	30-Triangular
Tube material	Carbon Steel
Tube surface	Smooth
Tube wall roughness	mm 🔻
Tube cut angle (degrees)	

Figura 122. Detalles de los tubos de paso IC-401.

Para comentar más detalladamente las dimensiones de los tubos de IC-401, los tubos han sido reducidos a un total de 34 pero con 4 pasos por cada uno de ellos, provocando así un intercambio eficaz con un caudal de agua circulante relativamente bajo y sin un salto de temperatura significativo.

Weights	kg	Cost data	Dollar(US)
Shell	107.4	Labor cost	7609
Front head	15.1	Tube material cost	99
Rear head	14.7	Material cost (except tubes)	1158
Shell cover			
Bundle	71.7		
Total weight - empty	208.9	Total cost (1 shell)	8865
Total weight - filled with water	246.2	Total cost (all shells)	8865

Figura 123. Costes y peso de IC-401.

En esta ocasión, el peso del equipo también queda reducido por tratarse de un intercambiador que va a tratar una cantidad de caudal muy reducida con respecto al resto de caudales de planta. Concretamente 208,9 kg en vacío y 246,2 en llenado. Los costes ascienden a un precio de 8.860\$ USD, precio razonable, teniendo en cuenta la eficacia que presenta frente a la necesidad de tratar el caudal de producto final.

En la página a continuación se presenta la tabla de especificaciones técnicas de IC-401:

PLANTA DE PRODUCCIÓN DE HIDRAZINA CAPÍTULO 11: MANUAL DE CÁLCULOS

			Heat Excha	nger Spec	<u>ification</u>	Sheet		
1	Company:							
2	Location:							
3	Service of Unit:	Our Refere	nce:					
4	Item No.:	Your Referen	ce:					
5	Date: Rev	No.: Job No.:						
6	Size : 205 - 1200	mm Ty	/pe: BEM	Horizontal		Connected in:	:1 parallel '	1 series
7	Surf/unit(eff.)	2.3 m²	Shells/u	unit 1		Surf/sl	hell(eff.)	2.3 m²
8			PERFO	DRMANCE O	F ONE UN	IT		<u></u>
9	Fluid allocation			.	Shell S	ide	lube	Side
10	Fluid name			Entrac	a Fluido->	Salida Fluido	1-	>2
12	Fluid quantity, lotal		kg/s	0	0.575	04	0	0
12	Vapor (In/Out)		kg/s	0.579	54	0.5754	1 7515	1 7515
14	Noncondensable		kg/s	0.37.		0.57.54	0	0
15	Honeondensable		kg/s			•	0	0
16	Temperature (In/Out)		°C	120)	52.6	0	20.17
17	Bubble / Dew poin	t	°C	120 /	120.04 1	119.43 / 119.47	100 / 100	94.89 / 94.89
18	Density Vapor/	Liquid	kg/m³	/ 1	898.88	/ 959.3	/ 1025.85	/ 1010.95
19	Viscosity		mPa-s	/	0.304	/ 0.594	/ 1.7499	/ 0.999
20	Molecular wt, Vap							
21	Molecular wt, NC							
22	Specific heat		kJ/(kg-K)	/	3.859	/ 3.733	/ 4.176	/ 4.201
23	Thermal conductivity		W/(m-K)	/ (0.3899	/ 0.394	/ 0.5689	/ 0.6036
24	Latent heat		kJ/kg					
25	Pressure (abs)		bar	1.00	1	0.98114	1.01325	0.84002
26	Velocity (Mean/Max)		m/s		0.06 / 0	0.07	1.17	/ 1.25
27	Pressure drop, allow./c	alc.	bar	0.913	87	0.01986	0.5	0.17323
28	Fouling resistance (mir	1)	m²-K/W		0		0 0	0 Ao based
29	Heat exchanged	146.8	kW			MTD (cor	rected) 70.52	°C
30	Transfer rate, Service	911.3		Dirty	905.3	Cle	an 905.3	W/(m²-K)
31		CONSTRU	DCTION OF ONE S	HELL			Ske	etch
				le Tube Side				
32	Design (/a course /b a b		Shell Si	ue /		Tube Side		
32	Design/Vacuum/test p	ressure bar	3 /	/	3 /	Tube Side / 70	0	0
32 33 34	Design/Vacuum/test p Design temperature	ressure bar °C	3 / 155	/	3 /	70 70		
32 33 34 35 36	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance	ressure bar °C ell	Shell Si 3 / 155 1 3 19	/	3 /	Tube Side / 70 4 3.18	Ĵ.	т. Т.
32 33 34 35 36 37	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections	ressure bar °C ell In mm	Shell Sin 3 / 155 1 3.18 1 35.05 /	/ /	3 /	Tube Side / 70 4 3.18 6.64 / -		
32 33 34 35 36 37 38	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Ratino	ressure bar °C III In mm Out	Shell Sin 3 / 155 1 3.18 3.18 1 35.05 / 1 18.85 /	- -	3 /	Tube Side / 70 4 3.18 6.64 / - 6.64 / -		
32 33 34 35 36 37 38 39	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID	ressure bar °C III In mm Out Intermediate	Shell Sin 3 / 155 1 3.18 3.18 1 35.05 1 18.85	- -	3 /	/ 70 4 3.18 6.64 / 6.64 / / -		
32 33 34 35 36 37 38 39 40	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube #: 34	ressure bar °C III In mm Out Intermediate OD: 19.05 Tks. Ave	Shell Sin 3 / 155 1 3.18 1 1.18.5 / 1 18.85 / / 2.11 /	/ / - - - - - mm Len	3 / 1 24 1 24 gth: 124	Tube Side / 70 4 3.18 6.64 / 6.64 / 0.64 / / - 00 mm	н: 23.81 mm	Tube pattern: 30
32 33 34 35 36 37 38 39 40 41	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube #: 34 Tube type: Plain	ressure bar °C III mm In mm Out Intermediate OD: 19.05 Tks. Ave Insert	Shell Sin 3 / 155 1 3.18 1 135.05 / 1 18.85 / / erage 2.11 : None :	- - - mm Len	3 / <u>1 2</u> <u>1 2</u> gth: <u>12</u> Fin#:	/ 70 4 3.18 6.64 / 6.64 / 70 - 00 mm Pitcl #/m - -	n: 23.81 mm Material: Carbon	Tube pattern: 30
32 33 34 35 36 37 38 39 40 41 42	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube #: 34 Tube type: Plain Shell Carbon Steel	ressure bar °C III mm In mm Out Intermediate OD: 19.05 Tks. Ave Insert ID 205	Shell Sin 3 / 155 1 3.18 1 1.18.85 / 1 18.85 2.11 / crage 2.11 219.0	- - - mm Len	3 / 1 2/ 1 2/ gth: 12/ Fin#: mm	Tube Side / 70 4 3.18 6.64 / - 6.64 / - () - 00 mm Pitcl #/m Shell cover	n: 23.81 mm Material: Carbon	Tube pattern: 30
32 33 34 35 36 37 38 39 40 41 42 43	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube #: 34 Tube type: Plain Shell Carbon Steel Channel or bonnet	ressure bar °C ell In mm Out Intermediate OD: 19.05 Tks. Ave Insert ID 205 Carbon Steel	Shell Sin 3 / 155 1 3.18 1 1 35.05 / 1 18.85 / crage 2.11 : None OD 219.0	- - - mm Len	3 / 1 2/ 1 2/ gth: 12/ Fin#: mm	Tube Side / 70 4 3.18 6.64 6.64 / 0 mm #/m Shell cover Channel cover	n: 23.81 mm Material: Carbon -	Tube pattern: 30
32 33 34 35 36 37 38 39 40 41 42 43 44	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube #: 34 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary	ressure bar °C ell In mm Out Intermediate OD: 19.05 Tks. Ave Insert ID 205 Carbon Steel Carbon Steel	Shell Sin 3 / 155 1 3.18 1 35.05 / 1 18.85 / crage 2.11 : None OD 219.0	- - - mm Len	3 / 1 20 1 20 gth: 120 Fin#: mm	Tube Side / 70 4 3.18 6.64 6.64 / 0 mm 9 #/m Shell cover Tubesheet-floatin	n: 23.81 mm Material: Carbon - - -	Tube pattern: 30
32 33 34 35 36 37 38 39 40 41 42 43 44 45	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube #: 34 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover	ressure bar °C ell mm Out Intermediate OD: 19.05 Tks. Ave Insert ID 205 Carbon Steel Carbon Steel -	Shell Sin 3 / 155 1 3.18 1 35.05 / 1 18.85 / crage 2.11 c None OD 219.0	- - - mm Len	3 / 1 2/ 1 2/ gth: 12/ Fin#: mm	Tube Side / 70 4 3.18 6.64 6.64 / 0 mm Shell cover Channel cover Tubesheet-floatin Impingement pro-	n: 23.81 mm Material: Carbon - - - - - - - -	Tube pattern: 30
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube #: 34 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S	ressure bar °C ell mm In mm Out Intermediate OD: 19.05 Tks. Ave Insert ID 205 Carbon Steel Carbon Steel - ·	Shell Sin 3 / 155 1 3.18 1 35.05 / 1 18.85 / 2 crage 2.11 : None OD 219.0 - - Single segmon	- - - mm Len 08 ental C	3 / 1 2/ 1 2/ gth: 12/ Fin#: mm	Tube Side / 70 4 3.18 6.64 6.64 / 6.64 / 00 mm Shell cover Channel cover Tubesheet-floatin Impingement pro 43.02 H	n: 23.81 mm Material: Carbon - itection None Spacing: c/c 135	Tube pattern: 30 o Steel
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube #: 34 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long -	ressure bar °C ell mm Out Intermediate OD: 19.05 Tks. Ave Insert ID 205 Carbon Steel Carbon Steel - ; teel Type	Shell Sin 3 155 1 3.18 1 35.05 1 18.85 1 2.11 : None OD OD 219.0 - Single segmin Seal Type	- - - mm Len 08 ental C	3 / 1 2/ 1 2/ gth: 12/ Fin#: mm ut(%d)	Tube Side / 70 4 3.18 6.64 6.64 / 6.64 / 00 mm Shell cover Channel cover Tubesheet-floatin Impingement pro 43.02 H	n: 23.81 mm Material: Carbon - - - - - - - - - - - - - - - - - - -	Tube pattern: 30 o Steel
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube #: 34 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube	ressure bar °C ell mm In mm Out Intermediate OD: 19.05 Tks. Ave Insert ID 205 Carbon Steel Carbon Steel - iteel Type U-bend	Shell Sin 3 / 155 1 3.18 1 1 35.05 / 1 18.85 / 2 / rage 2.11 // None OD 219.0 OD 219.0 - e Single segm Seal Type 0	- - - mm Len 08 ental C	3 / 1 2/ 1 2/ gth: 12/ Fin#: mm ut(%d)	Tube Side / 70 4 3.18 6.64 6.64 / 6.64 / 00 mm Shell cover Channel cover Tubesheet-floatin Impingement pro 43.02 Type	n: 23.81 mm Material: Carbon - - - - - - - - - - - - - - - - - - -	Tube pattern: 30 o Steel
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube #: 34 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal	ressure bar °C ell mm In mm Out Intermediate OD: 19.05 Tks. Ave Insert ID 205 Carbon Steel Carbon Steel - iteel Type U-bend	Shell Sin 3 / 155 1 3.18 1 35.05 / 1 18.85 / 2 2 2 2 2 1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	- - - mm Len 08 ental C	3 / 1 2/ 1 2/ gth: 12/ Fin#: mm ut(%d) et joint	Tube Side / 70 4 3.18 6.64 / 6.64 / 00 mm Shell cover Channel cover Tubesheet-floatin Impingement pro 43.02 H Type Expanded only	n: 23.81 mm Material: Carbon - - - - - - - - - - - - - - - - - - -	Tube pattern: 30 Steel mm mm j
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube #: 34 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint	ressure bar °C ell mm In mm Out Intermediate OD: 19.05 Tks. Ave Insert ID 205 Carbon Steel Carbon Steel - Steel Type U-bend	Shell Sin 3 / 155 1 3.18 1 35.05 / 1 18.85 / / rage 2.11 None OD 219.0 - Seal Type 0 Tu	- - - mm Len 08 ental C ube-tubeshe	3 / 1 2/ 1 2/ gth: 12/ Fin#: mm ut(%d) et joint : None	Tube Side / 70 4 3.18 6.64 / 6.64 / 00 mm Shell cover Channel cover Tubesheet-floatin Impingement pro 43.02 H Type Expanded only	h: 23.81 mm Material: Carbon - - - - - - - - - - - - - - - - - - -	Tube pattern: 30 Steel mm mm
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube #: 34 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RooV2-Inlet nozzle	ressure bar °C ell mm In mm Out Intermediate OD: 19.05 Tks. Ave Insert ID 205 Carbon Steel Carbon Steel - Steel Type U-bend - 396	Shell Sin 3 / 155 1 3.18 1 35.05 / 1 18.85 / / rage 2.11 None OD 219.0 - - e Single segm Seal Type 0 Tu Bundle entra	- - - - - - - - - - - - - - - - - - -	3 / 1 2/ 1 2/ 1 2/ fin#: mm ut(%d) et joint : None	Tube Side / 70 4 3.18 6.64 / 6.64 / 00 mm Shell cover Channel cover Tubesheet-floatin Impingement pro 43.02 H Type Expanded only Bundle exit	h: 23.81 mm Material: Carbon - - - - - - - - - - - - - - - - - - -	Tube pattern: 30 Steel mm mm mm b kg/(m-s ²)
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 51 52 51	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube #: 34 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side	ressure bar °C ell mm In mm Out Intermediate OD: 19.05 Tks. Ave Insert ID 205 Carbon Steel Carbon Steel - Steel Type U-bend - 396 -	Shell Sin 3 / 155 1 3.18 1 35.05 / 1 18.85 / / rage 2.11 : None OD 219.0 - - - Seal Type 0 The Bundle entrate	- - - - - - - - - - - - - - - - - - -	3 / 1 2/ 1 2/ 1 2/ fin#: mm ut(%d) et joint et None	Tube Side / 70 4 3.18 6.64 / 6.64 / 00 mm Shell cover Channel cover Tubesheet-floatin Impingement pro 43.02 H Type Expanded only Bundle exit Flat Me	h: 23.81 mm Material: Carbon - - - - - - - - - - - - - - - - - - -	Tube pattern: 30 Steel mm mm mm b kg/(m-s ²)
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 52 53	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube #: 34 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating hea	ressure bar °C ell mm In mm Out Intermediate OD: 19.05 Tks. Ave Insert ID 205 Carbon Steel Carbon Steel - Steel Type U-bend - 396 - d -	Shell Sin 3 / 155 1 3.18 1 35.05 / 1 18.85 / / rage 2.11 : None OD 219.0 - - - Seal Type 0 The Bundle entrated	- - - - - - - - - - - - - - - - - - -	3 / 1 2/ 1 2/ 1 2/ fin#: mm ut(%d) et joint : None	Tube Side / 70 4 3.18 6.64 / 6.64 / 00 mm Shell cover Channel cover Tubesheet-floatin Impingement pro 43.02 H Type Expanded only Bundle exit Flat Me	h: 23.81 mm Material: Carbon - - - - - - - - - - - - - - - - - - -	Tube pattern: 30 Steel mm mm mm b kg/(m-s ²)
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 45 52 53 45 52 53 54 55	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube #: 34 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating hea Code requirements	ressure bar °C ell In mm Out Intermediate OD: 19.05 Tks. Ave Insert ID 205 Carbon Steel Carbon Steel Carbon Steel - U-bend - 396 - d - ASME Code Sec V 20.0	Shell Sin 3 / 155 1 3.18 1 35.05 / 1 18.85 / 1 18.85 / / rage 2.11 None OD 219.0 - - - - Seal Type 0 The Bundle entrated Bundle entrated	ental C Jube-tubeshe Type Tube side	3 / 1 2/ 1 2/ 1 2/ gth: 12/ Fin#: mm ut(%d) et joint : None	Tube Side / 70 4 3.18 6.64 / 6.64 / 00 mm Shell cover Channel cover Tubesheet-floatin Impingement pro 43.02 H Type Expanded only Bundle exit Flat Me 58 71.7	h: 23.81 mm Material: Carbon - - - - - - - - - - - - - - - - - - -	Tube pattern: 30 Steel mm mm mm mm
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55 55 55 55 55 55	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube #: 34 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating hea Code requirements Weight/Shell	ressure bar °C ell In mm Out Intermediate OD: 19.05 Tks. Ave Insert ID 205 Carbon Steel Carbon Steel Carbon Steel - Steel Type U-bend - 396 - d - ASME Code Sec V 208.9 Filled	Shell Sin 3 / 155 1 3.18 1 35.05 / 1 18.85 / 1 18.85 / / rage 2.11 None OD 219.0 / CD 219.0 - - Seal Type 0 Tu Bundle entral III Div 1 with water 246.2	ental C Tube side	3 / 1 2/ 1 2/ 1 2/ fin#: mm ut(%d) et joint : None TEMA clas Bundle	Tube Side / 70 4 3.18 6.64 / 6.64 / 00 mm Shell cover Channel cover Tubesheet-floatin Impingement pro 43.02 H Type Expanded only Bundle exit Flat Me ss R - refinery ser 71.7	h: 23.81 mm Material: Carbon - - - - - - - - - - - - - - - - - - -	Tube pattern: 30 Steel mm mm mm j kg/(m-s ²)
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube #: 34 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating hea Code requirements Weight/Shell Remarks	ressure bar °C ell In mm Out Intermediate OD: 19.05 Tks. Ave Insert ID 205 Carbon Steel Carbon Steel Ca	Shell Sin 3 / 155 1 3.18 1 35.05 / 1 18.85 / / rage 2.11 None OD 219.0 - - Seal Type 0 Tu Bundle entration Bundle entration Bundle entration - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	3 / 1 2/ 1 2/ 1 2/ fin#: mm ut(%d) et joint : None TEMA class Bundle	Tube Side / 70 4 3.18 6.64 / 6.64 / / 00 mm Pitcl #/m Shell cover Channel cover Tubesheet-floatin Impingement pro 43.02 H Type Expanded only Bundle exit Flat Me 51.7	h: 23.81 mm Material: Carbon - - rection None Spacing: c/c 135 Inlet 223.97 (2 grooves)(App.A 'i' 5 tal Jacket Fibe	Tube pattern: 30 Steel mm mm) kg/(m-s ²)
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	Design/Vacuum/test p Design temperature Number passes per she Corrosion allowance Connections Size/Rating ID Tube #: 34 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating hea Code requirements Weight/Shell Remarks	ressure bar °C ell In mm Out Intermediate OD: 19.05 Tks. Ave Insert ID 205 Carbon Steel Carbon Steel Ca	Shell Sin 3 / 155 1 3.18 1 35.05 / 1 18.85 / / rage 2.11 None OD 219.0 - - Seal Type 0 Tu Bundle entration Bundle entration Bundle entration Bundle entration - - - - - - - - - - - - -	ental C Tube-side	3 / 1 2/ 1 2/ 1 2/ Fin#: mm ut(%d) et joint et joint TEMA class Bundle	Tube Side / 70 4 3.18 6.64 / 6.64 / / 00 mm Pitcl #/m Shell cover Channel cover Tubesheet-floatin Impingement pro 43.02 H Type Expanded only Bundle exit Flat Me 55 R - refinery ser 71.7	h: 23.81 mm Material: Carbon - ing - itection None Spacing: c/c 135 Inlet 223.97 (2 grooves)(App.A 'i' 5 tal Jacket Fibe	Tube pattern: 30 Steel mm mm) kg/(m-s ²)

Figura 124. Especificaciones IC-401.

11.7.3 Bombeos y compresores

A causa de la imposibilidad de simular correctamente los caudales internos del proceso no ha sido posible realizar el diseño de los diferentes sistemas de bombeo requeridos en el proceso. Concretamente, una bomba de desplazamiento positivo que eleve la presión del caudal de salida de RC-201 a 30 bar, dada la presencia de monocloramina en el caudal, la simulación no podía efectuarse por no conocer las propiedades reales de dicho compuesto. Igualmente, se ha contemplado que bombear el caudal de salida de RC-201 provocaría un aumento de temperatura, según las previsiones realizadas en borrador de unos 25° C, temperatura de entrada al sistema de IC-203 y 204. Finalmente, el ultimo bombeo instalado en planta se encargaría de transportar el efluente a CD-401 tras su paso por los dos sistemas de evaporadores de triple efecto.

En cuanto al bomba de entrada, se cuenta con el bombeo proporcionado por la empresa cercana que proporciona las materias primeras, por lo tanto, no se requiere de diseñar una bomba dentro de planta para el transporte del caudal de materias primeras, está viene diseñada por la empresa.

En cuento a compresores, solo se requerirá de uno para recircular el amoniaco a los reactores de la segunda etapa, este ha sido descrito en el apartado anterior junto a IC-205, ya que en la operación conjunta logran elevar la temperatura del amoniaco a algo mas de los 150° C requeridos para el reactor, contemplando así perdidas por su paso en tuberías.

11.7.4 Calderas, chillers y torre de refrigeración

Por limitaciones temporales no se ha podido diseñar de manera precisa el entramado de tratamientos secundarios de planta. Estos son; calderas que mantengan los diferentes caudales de calor requeridos para algunos intercambiadores (como IC-203 o IC-204), chillers para la refrigeración de algunos de los caudales empleados como refrigerante y torres de refrigeración para los caudales que se obtienen a altas temperaturas y pueden requerirse para tareas complementarias.

<u>Calderas</u>

Para hacer una aproximación de las calderas, se han sumado todos los requerimientos caloríficos de los equipos simulados a modo de borrador, determinando en una primera aproximación la necesidad de una gran cantidad de energía.

Para suplir las necesidades energéticas del proceso, se ha decidido adquirir 2 calderas con la misma capacidad energética (HATTSU H-S), con una

producción de hasta 50.00 kg/h de vapor de agua. A continuación, se presenta una fotografía extraída del equipo en cuestión.

Figura 125. Caldera de vapor ATTSU H-S.

Chillers

El objetivo de los chillers es recuperar los caudales de refrigerantes de planta a bajas temperaturas. Se emplearán 2, un chiller destinado a la recuperación del caudal de Freon-12 y devolverlo a los -39° C. Y un segundo chiller destinado a la recuperación del nitrógeno saliente de los encamisados de los reactores para devolverlos a los -196° C, temperatura a la cual se almacenan en el tanque proporcionado por "*Carburos Metálicos*". Se prevén consumos energéticos superiores a 1500 kW, por lo que se ha escogido el modelo 30 XBE para tratar y recuperar ambos caudales trabajando a eficiencias del 50% del equipo.

A continuación, se presenta una imagen extraída de catalogo para los dos chillers escogidos ara la operación de planta:

Figura 126. Modelo Chiller 30 XBE

<u>Torre de refrigeración</u>

En la torre de refrigeración se tratarán todos los caudales de agua hasta reducir su temperatura a 25°C y redirigirlo a la balsa de almacenamiento para recuperarlos según si deben ir a calderas o bombearlos a refrigerar otros caudales de planta.

Por causas de tiempo, no se ha podido diseñar la torre de refrigeración.

11.7.5 Tanques de almacenamiento

Pese a no ser necesario diseñar tanques de almacenamiento para las materias primeras, si que se ha investigado frente a una futura necesidad de almacenar dichas sustancias. En el apartado a continuación se comentará de forma teórica todos los parámetros a tener en cuenta para el diseño de tanques de esta índole. También sirve de forma introductoria frente al diseño de un pequeño tanque de almacenamiento de amoniaco que sale de proceso a modo de purga.

En el diseño de los tanques de almacenamiento de la planta se tienen en cuenta las materias primeras que se subministrarán: amoniaco licuado (25% w.) e hipoclorito de sodio (12% w.). Por otra parte, también se tiene en cuenta el diseño del almacenamiento del fluido refrigerante (N_2), pero este equipo será subministrado por la empresa "*Carburos Metálicos*". Se ha seguido el procedimiento marcado por la normativa API-650 y 653, normativa enfocada al diseño de tanques a presión atmosférica. Para el fluido refrigerante se contará con un tanque criogénico subministrado por la empresa mencionada anteriormente.

Al tratarse de tanques para almacenar amoniaco e hipoclorito también se han de seguir las normativas ITC-MIE-APQ-6 para el almacenamiento de

productos químicos corrosivos, asimismo el código ASME para la seguridad del equipo.

El diseño de estos tanques consistiría en una sección cilíndrica con una cabecera y fondo torisféricos, pero para proceder al diseño se deben determinar condiciones del mismo aplicando las siguientes correlaciones a las condiciones de funcionamiento del equipo.

Puesto que para el diseño de este tipo de equipos se sigue otro criterio, estas correlaciones no se contemplaron para anteriores diseños como R-201 (ecuaciones 6 y 7 para determinar las condiciones de diseño).

-Presión hidrostática (ΔP)

La presión hidrostática es la presión que viene dada por el peso del fluido en reposo.

$$\Delta P = \rho \cdot h \cdot g$$

Ecuación 41. Cálculo para la presión hidrostática.

Donde:

- ρ : densidad del fluido (Kg/m³).
- h: altura de la columna de líquido (m).
- g: gravedad (m/s^2).

<u>-Presión de diseño (P_)</u>

La presión de diseño es aquella utilizada para el diseño del equipo, esta presión debe ser superior a la presión de operación para que el equipo pueda resistir presiones ligeramente superiores a las de operación.

 $P_D = 1.15 \cdot (P_{op} + \Delta P)$

Ecuación 42. Correlación para obtener P_D .

Donde:

- *P*_{op}: presión de operación (1 atm).
- ΔP : presión hidrostática (atm).

-Temperatura de diseño (T_D)

De la misma manera que se sobredimensiona el equipo a efectos de la presión, se tiene que realizar lo mismo a los efectos de la temperatura. La temperatura de diseño será superior a la temperatura de operación.

$T_D = T_{op} + 15$

Ecuación 43. Correlación para obtener T_D .

Donde:

- T_{op} : temperatura de operación (° C).

Cabe destacar que de los parámetros de temperatura y de presión de operación se deberán saber los valores máximos y mínimos que puede conseguir el tanque, para que se eviten los posibles errores.

-Límite elástico (S)

El límite elástico es la tensión máxima a la que se puede someter el material sin posibles deformaciones permanentes. Este es diferente para cada tipo de material, en este caso se debería emplear acero inoxidable 316L, debido a la naturaleza corrosiva de las substancias. Podría seleccionarse un valor de 580 N/mm² de límite elástico.

<u>-Factor de soldadura (E)</u>

Este factor permite tener en cuenta el posible error que pueda contener el límite elástico, es decir, dimensiona el tanque en términos de tensión para asegurar que este no se deforme. Suele ser un valor típico escoger E = 0,8.

<u>-Factor M</u>

El factor M es la relación entre los radios del cabezal toriesférico, en la siguiente figura se muestran las variables que se utilizan según ASME.

Figura 127. Medidas de una estructura torisferica.

Una vez determinados los parámetros de diseño, se puede proceder a calcular las dimensiones pertinentes, un ejemplo serio:

Ilustración 1. Ejemplo de relación L/D.

$$L = 0.9 \cdot D$$
$$r = 0.085 \cdot L$$

Partiendo de una proporción de medidas, puede determinarse los valores de r y M a partir de la siguiente tabla:

L/r	1	1,25	1,5	1,75	2	2,25	2,5	2,75	3	3,25	3,5
М	1	1,03	1,06	1,08	1,1	1,13	1,15	1,17	1,18	1,2	1,22
L/r	4	4,5	5	5,5	6	6,5	7	7,5	8	8,5	9
Μ	1,25	1,28	1,31	1,34	1,36	1,39	1,41	1,44	1,46	1,48	1,5
L/r	9,5	10	10,5	11	11,5	12	13	14	15	16	38
Μ	1,52	1,54	1,56	1,58	1,6	1,62	1,65	1,69	1,72	1,75	1,77

Figura 128. Relación L/r y factor M.

Por otra parte, el equipo también sufre cierto desgaste y puede llegar a un estado crítico si no se sobredimensiona teniendo en cuenta los siguientes criterios:

-Espesor por causa de la corrosión (C1)

En materiales que van a trabajar en ambientes corrosivos se añade cierto espesor extra para prevenir el fallo del equipo. Este extra debe compensar la corrosión producida a lo largo de la vida útil del equipo, teniendo en cuenta que esta debería de rondar los 20 años de funcionamiento.

-Tolerancia de fabricación (C2)

La integridad del equipo puede verse comprometida por deformaciones producidas en la soldadura de las diferentes partes del tanque, de manera que se debe contemplar una tolerancia a la fabricación de al menos 2 mm.

Siguiendo la normativa ITC-MIE-APQ-6, los tanques de almacenamiento para líquidos corrosivos pueden ser tanques atmosféricos, se realizarían los cálculos de diseño siguientes:

Ilustración 2. Cálculo para el espesor del equipo según normativa ITC.

$$t_d = \frac{4.9 \cdot D \cdot (H - 0.3) \cdot G}{S_d \cdot E} + CA$$
$$t_t = \frac{4.9 \cdot D \cdot (H - 0.3) \cdot}{S_t \cdot E} + CA$$

Dónde:

- t_d : espesor de diseño (mm).
- t_t : espesor de carcasa para prueba hidráulica (mm).
- H: altura de diseño del líquido (m).
- G: gravedad específica de diseño del líquido almacenado.
- CA: tolerancia a la corrosión (mm).

- S_d : es la tensión admisible para condiciones de diseño (MPa).
- S_t : es la tensión admisible para la prueba hidráulica (MPa).
- E: factor de soldadura.
- D: diámetro nominal del tanque (m).

Tabla 22. Espesor mínimo de un tanque en función del diámetro.

Diámetro nominal del	Espesor nominal mínimo
tanque (m)	del cuerpo (mm)
<15	5
15 a 36	6
36 a 60	8
>60	10

Este tipo de tanques debe diseñarse de manera que haya cierto grado de ventilación en el mismo, para así prevenir posibles deformaciones que comprometan la integridad del equipo. Mediante el uso de las fórmulas descritas a continuación se puede determinar el requerimiento de ventilación del sistema:

Ilustración 3. Cálculo para determinar la ventilación del tanque.

$$C\nu = \frac{Q}{\lambda}$$
$$Q = 139.7 \cdot F \cdot A^{0.85} \cdot 1000$$
$$A = 2 \cdot \pi \cdot r \cdot H$$

Donde:

- Cv: capacidad de ventilación (Kg/h).
- Q: calor recibido por el recipiente (kJ/h).
- λ : calor latente de vaporización de la substancia (kJ/Kg).
- F: factor dependiente de A (habitualmente 0,5).
- A: superficie húmeda (m²).

Siguiendo los pasos descritos en este apartado se puede diseñar un tanque de almacenamiento para cualquier sustancia, teniendo en cuenta las propiedades de las mismas y del material utilizado para su construcción. Al tener una entrada continua en planta suministrada por una empresa cercana, no es necesario diseñar dichos tanques en la planta de *"Effectrix Chemicals"*, sin embargo, si se contempla este procedimiento para futuros proyectos en planta.

11.7.4.1 Tanque de almacenamiento salmuera

Para el diseño del tanque de almacenamiento de salmuera se ha optado por adquirir el efectivo solicitándolo a una empresa externa. Teniendo en cuenta que el caudal de salmuera obtenido es 46,86 kmol/h, el cual, con las composiciones determinadas en la figura 14, se traduce a una producción de 2707,55 kg/h de salmuera. Teniendo en cuenta que más del 95% de la composición es de sal (NaCl) se le aplica el valor de su densidad (2153,6 kg/m³) y se calcula la cantidad en metros cúbicos producida a la semana, concretamente 211,2 $m^3/semana$.

Contemplando los datos obtenidos con los cálculos aplicados, se van a emplear 2 tanques de recolección de salmuera por semana para su posterior envió a gestión externa como producto vendido. Los tanques serán de 110 metros cúbicos de capacidad hechos con acero al carbono para evitar problemas por corrosión.

11.7.4.2 Tanque de almacenamiento producto final

Tras el paso del producto final por IC-401, este ya está listo para almacenarse para su posterior transporte. Teniendo en cuenta que el caudal de producto es de 82,76 kmol/h se considera necesario emplear un tanque pulmón capaz de contener la producción semanal de hidracina 64% w. Teniendo en cuenta la composición del producto (50,01% molar en hidracina) se calcula la producción másica diaria (49717,97 kg/d) teniendo en cuenta la densidad del producto (calculada con la ecuación 37) se producen 49,47 $m^3/_{dia'}$ que se traducen a 346,29 $m^3/_{semana}$.

De esta manera se determina adquirir un tanque pulmón de 350 m^3 hecho de acero al carbono al mismo proveedor que el tanque de salmuera. De esta manera, se asegura el almacenamiento de la producción semanal frente a posibles incidentes con el envasado final del producto.

11.7.6 Cálculos de tuberías

En este apartado se calcula el dimensionamiento de los conductos de la planta por cada uno de los corrientes del proceso y servicios. Para el cálculo se utilizan las velocidades típicas de los fluidos utilizados y se menosprecia las pérdidas de carga producida en la tubería. En la siguiente tabla se muestran las velocidades típicas de los fluidos que pueden intervenir en un proceso.

Corriente	Propiedades del fluido	Velocidad (m/s)		
	Viscoso	0.1-0.5		
Líquido	Poco viscoso	0.5-1		
	Bombeo: impulsión	1.5-3		
Gas	Presión natural	2-4		
	Presión baja	4-15		
	Presión alta	15-25		
Vapor	Sobrecalentado	30-50		
	Saturado a baja presión (>10 ⁵ Pa)	15-25		
	Saturado a baja presión ((1-0.5) ·10 ⁵ Pa)	20-40		
	Saturado a baja presión ((0.5-0.2) $\cdot 10^5$ Pa)	40-60		
	Saturado a baja presión ((0.2-0.05) ·10 ⁵ Pa)	60-75		

Tabla 23. Propiedades típicas de un corriente (líquido gas o vapor).

Las velocidades típicas establecidas están dentro del rango, entre 15-20 m/s para gases y 1,5-3 m/s para líquidos.

11.7.6.1 Cálculos de diámetro de tuberías

Los diferentes sistemas de circulación de planta pasan desde conducciones de vapor hasta sistemas de paso entre las diferentes áreas de planta. Para ello, se calcula en primer lugar el diámetro de tubería necesario para dicha tarea.

$$A_s = \pi/_4 \cdot D_s^2 \quad D_s = \sqrt{\frac{4 \cdot A_s}{\pi}}$$

Ecuación 44. Cálculo para el diámetro de tubería de sección circular.

Donde:

- A_s : área de sección (m^2) .
- D_s : diámetro de la sección (m).

Sabiendo que el área ocupada de la tubería será el cociente entre el caudal volumétrico y la velocidad de paso, se puede calcular el valor para el área de sección. Para todos los cálculos de planta se han tenido en cuenta las velocidades de paso de los fluidos (v en m/s) y los caudales de cada tubería $(Q en m^3/s)$ requerida en el proceso.

$$A_s = \frac{Q_L}{v}$$

Ecuación 45. Cálculo para el área de sección.

Aplicando las ecuaciones anteriores se obtiene el valor final para el diámetro de la tubería. No obstante, este valor obtenido no será el diámetro final, ya que estas se crean a partir de un conjunto de diámetros concretos, los diámetros nominales.

Para garantizar la circulación, el diámetro nominal seleccionado tendrá que ser mayor o igual al diámetro calculado. El diámetro se ha seleccionado mediante el criterio mostrado a continuación:

NPS DN OD SCH	nañ inal o (Ni	ňo I del IPS)	Diámetro Exterior (pulgada)							Tub	os Céd	ula / Pi	pe Sche	dule						
1/4 6 0.405 1.240 1	0	DN	OD	SCH 5s	SCH IOs	SCH 10	SCH 20	SCH 30	SCH 40s	SCH STD	SCH 40	SCH 60	SCH 80s	SCH XS	SCH 80	SCH 100	SCH 120	SCH 140	SCH 160	SCH XXS
1/4 8 0.540 1.650 1		6	0.405		1.240				0.068	0.068	0.068		0.095	0.095	0.095					
319 101 0.675 1.650 1.650 1.67 0.67		8	0.540		1.650				0.088	0.088	0.088		0.119	0.119	0.119					
112 15 0.840 0.66 2.10 0.10 <td>1</td> <td>10</td> <td>0.675</td> <td></td> <td>1.650</td> <td></td> <td></td> <td></td> <td>0.091</td> <td>0.091</td> <td>0.091</td> <td></td> <td>0.126</td> <td>0.126</td> <td>0.126</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1	10	0.675		1.650				0.091	0.091	0.091		0.126	0.126	0.126					
ind ind <td></td> <td>15</td> <td>0.840</td> <td>0.065</td> <td>2.110</td> <td></td> <td></td> <td></td> <td>0.109</td> <td>0.109</td> <td>0.109</td> <td></td> <td>0.147</td> <td>0.147</td> <td>0.147</td> <td></td> <td></td> <td></td> <td>0.188</td> <td>0.29</td>		15	0.840	0.065	2.110				0.109	0.109	0.109		0.147	0.147	0.147				0.188	0.29
1 25 1.135 0.66 2.770 0.7<	4	20	1.050	0.065	2.110				0.113	0.113	0.113		0.154	0.154	0.154				0.219	0.30
114 32 1.660 0.66 2.77 0.6 2.78 0.6 2.78 0.6 2.78 0.6 2.78 0.6 2.78 0.6 2.78 0.6 2.78 0.6 2.78 0.6 2.78 0.6 2.78 0.6 2.78 0.6 2.78 0.6 2.78 0.6 2.78 0.6 2.78 0.6 2.78 0.6 2.78 0.78 <	1	25	1.315	0.065	2.770				0.133	0.133	0.133		0.179	0.179	0.179				0.250	0.35
11/2 40 1.900 0.06 2.770 0.06 2.70 0.0 0.00		32	1.660	0.065	2.770				0.140	0.140	0.140		0.191	0.191	0.191				0.250	0.38
1 5 1 2 1	4	40	1.900	0.065	2.770				0.145	0.145	0.145		0.200	0.200	0.200				0.281	0.40
21/2 65 2.875 0.88 3.050 0.8 3.050 0.88 3.050 0.88 3.050 0.88 3.050 0.88 3.050 0.88 3.050 0.88 3.050 0.88 3.050 0.88 3.050 0.88 3.050 0.88 3.050 0.88 3.050 0.88 3.050 0.88 3.050 0.88 3.050 0.88 0.26 0.26 0.26 0.316 0.308 0.307 0.30 0.30 0.37 0.37 0.36 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 <	5	50	2.375	0.065	2.770				0.154	0.154	0.154		0.218	0.218	0.218				0.344	0.43
3 80 3.500 0.68 3.050 1.08 3.05 1.08 3.05 1.08 3.05 1.08 3.05 1.08 <	(65	2.875	0.083	3.050				0.203	0.203	0.203		0.276	0.276	0.276				0.375	0.552
31/2 90 4.000 0.08 3.050 1 1 1 1 0 1.010 1.010 1.010 1.010 1.010 3.050 1.01 1.01 1.010 1.010 1.010 3.050 1.01 1.01 1.010<	8	80	3.500	0.083	3.050				0.216	0.216	0.216		0.300	0.300	0.300				0.438	0.600
4 100 4.500 0.68 3.050 0. 0.27 0.237 0.237 0.237 0.337 </td <td>9</td> <td>90</td> <td>4.000</td> <td>0.083</td> <td>3.050</td> <td></td> <td></td> <td></td> <td>0.226</td> <td>0.226</td> <td>0.226</td> <td></td> <td>0.318</td> <td>0.318</td> <td>0.318</td> <td></td> <td></td> <td></td> <td></td> <td></td>	9	90	4.000	0.083	3.050				0.226	0.226	0.226		0.318	0.318	0.318					
125 15.63 1.09 3.40 1.0 1.0 1.00 1	1	100	4.500	0.083	3.050				0.237	0.237	0.237		0.337	0.337	0.337		0.438		0.531	0.674
6 150 6.625 0.109 3.400 0.10 3.400 0.10 3.400 0.200 0.280 0.380 0.380 0.50 0.500 0.50 0.50 0.50 <td>1</td> <td>125</td> <td>5.563</td> <td>0.109</td> <td>3.400</td> <td></td> <td></td> <td></td> <td>0.258</td> <td>0.258</td> <td>0.258</td> <td></td> <td>0.375</td> <td>0.375</td> <td>0.375</td> <td></td> <td>0.500</td> <td></td> <td>0.625</td> <td>0.750</td>	1	125	5.563	0.109	3.400				0.258	0.258	0.258		0.375	0.375	0.375		0.500		0.625	0.750
8 200 8.625 0.109 3.760 0.250 0.250 0.322 0.322 0.322 0.320 0.320 0.50	1	150	6.625	0.109	3.400				0.280	0.280	0.280		0.432	0.432	0.432		0.562		0.719	0.864
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	200	8.625	0.109	3.760		0.250	0.277	0.322	0.322	0.322	0.406	0.500	0.500	0.500	0.594	0.719	0.812	0.906	0.87
12 300 12.750 0.156 4.570 0.250 0.250 0.375 0.375 0.406 0.560 0.500	2	250	10.750	0.134	4.190		0.250	0.307	0.365	0.365	0.365	0.500	0.500	0.500	0.594	0.719	0.844	1.000	1.125	1.000
14 350 14.000 1.55 4.780 0.250 0.312 0.375 0.438 0.548 0.500 0.50 0.50 0.50 </td <td>3</td> <td>300</td> <td>12.750</td> <td>0.156</td> <td>4.570</td> <td></td> <td>0.250</td> <td>0.330</td> <td>0.375</td> <td>0.375</td> <td>0.406</td> <td>0.562</td> <td>0.500</td> <td>0.500</td> <td>0.688</td> <td>0.844</td> <td>1.000</td> <td>1.125</td> <td>1.312</td> <td>1.000</td>	3	300	12.750	0.156	4.570		0.250	0.330	0.375	0.375	0.406	0.562	0.500	0.500	0.688	0.844	1.000	1.125	1.312	1.000
16 400 16.000 0.165 4.780 0.250 0.312 0.375 0.500 0.5	3	350	14,000	0.156	4,780	0.250	0.312	0.375		0.375	0.438	0.594		0.500	0.750	0.938	1.094	1.250	1.406	
10 100	4	400	16.000	0.165	4,780	0.250	0.312	0.375		0.375	0.500	0.656		0.500	0.844	1.031	1.219	1.438	1.594	
10 100	4	450	18 000	0.165	4 780	0.250	0 312	0.438		0.375	0.562	0.750		0.500	0.938	1 156	1 375	1 562	1 781	
1 1	5	500	20.000	0.188	5.540	0.250	0.375	0.500		0.375	0.594	0.812		0.500	1.031	1.281	1.500	1.750	1.969	
A A			22,000	0.188	5.540	0.250	0.375	0.500		0.375		0.875		0.500	1.125	1.375	1.625	1.875	2.125	
10 100	6	600	24.000	0.218	6.350	0.250	0.375	0.562		0.375	0.688	0.969		0.500	1,219	1.531	1.812	2.062	2 344	
10 10.000 0.012 0.000 0.012 0.000 0.012 0.000 0.025 0.017 0.000 0.000 0.011 0.000 0.025 0.017 0.000 0.000 0.011 0.000 0.025 0.0375 0.0375 0.050 0.000 0.000 0.000 0.011 0.000 0.025 0.0375 0.688 0.000 0.000 0.000 0.000 0.011 0.000 0.025 0.0375 0.688 0.500 0.000 0.000 0.000 0.011 0.000 0.025 0.0375 0.688 0.500 0.000			26,000			0.312	0.500	0.000		0.375	0.000	0.000		0.500						
100 10000 1000 1000 <th< td=""><td>7</td><td>700</td><td>28,000</td><td></td><td></td><td>0.312</td><td>0.500</td><td>0.625</td><td></td><td>0.375</td><td></td><td></td><td></td><td>0.500</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	7	700	28,000			0.312	0.500	0.625		0.375				0.500						
30 32.000 0.312 0.50 6.25 0.375 0.688 0.500 34 34.000 0.312 0.500 6625 0.375 0.688 0.500 36 900 36.000 0.312 0.500 6625 0.375 0.688 0.500 38 38.000 0.312 0.50 625 0.375 0.500 0.500 40 1000 40.000 0 0.500 0.375 0.750 0.500		,00	30,000	0.250	7 920	0.312	0.500	0.625		0.375				0.500						
1/2 0/00 1/2/00 0/3/2 0	8	800	32,000	0.250	7.520	0.312	0.500	0.625		0.375	0.688			0.500						
36 900 36.000 0.312 0.500 0.625 0.375 0.500 38 38.000 0.312 0.500 0.625 0.375 0.500 40 1000 40.000 0.500 0.375 0.500 0.500	0		34,000			0 312	0.500	0.625		0 375	0.688			0.500						
30 300 0.312 0.300 0.325 0.375 0.500 38 38.000 0.375 0.500 0.500 0.500 0.500 40 1000 40.000 0.375 0.500 0.500 0.500	0	000	36.000			0.312	0.500	0.625		0.375	0.750			0.500						
40 1000 0.375 0.500	,		38,000			5.512	5.500	5.025		0.375	5.750			0.500						
	1/	000	40.000						0 375	5.575				5.500						
0.500 0.275 0.750 0.500	1		40.000				0.500	-	0.575	0 375	0.750			0.500						
44 1100 44.000 0.300 0.375 0.730 0.500	1.	100	44.000				0.500	-		0.375	0.750			0.500						
	1.	100	44.000							0.375				0.500						
40 40.000 0.375 0.500		200	46.000							0.375			0.505	0.500						

Figura 129. Tabla de dimensiones de tubos de acero (OCTAL).

<u>11.7.6.2 Cálculos de perdidas de fricción, carga total y NPSH</u> disponible

Para realizar los cálculos referidos a dinámica de fluidos se ha empleado la herramienta de simulación ASPEN HYSYS V10. No obstante, se han tenido en cuenta los cálculos requeridos para los diferentes parámetros.

Cabe remarcar dos parámetros críticos que el simulador ya tiene en cuenta de forma implícita:

Perdidas en tramo recto (ev)

En primer lugar, para las perdidas por fricción en tramos rectos (ev recto) se calculan mediante el numero de Reynols y la rugosidad específica del material de la tubería. Con estos valores se emplea el Abaco de Moody para el calculo del parámetro *f*, con el que se puede calcular el valor total de perdidas.

$$e_v = f \cdot \frac{v^2 \cdot L}{2 \cdot D}$$
 para Reynols laminar $f = \frac{64}{Re}$

Ecuación 46. Cálculo para las perdidas en tramo recto.

Donde:

- f: factor de Moody.
- v: velocidad de circulación (m/s).
- L: longitud de tramo (m).
- D: diámetro de tramo (m).

Figura 130. Ábaco de Moody.

Perdidas por accidentes (ev acc)

Para perdidas pro fricción en los accesorios de los conductos se emplean cálculos similares a los de tramo recto, salvo que en este caso se tiene en cuenta el parámetro K característico de cada accesorio.

$$e_v = K \cdot \frac{v^2}{2}$$

		ACCIDENT	ĸ
		Entrada/sortida circuit	
		Entrada encanonada	0,78
		Entrada cantells vius	0,50
		Entrada arrodonida	0,04
		Sortida encanonada	1,00
		Sortida cantells vius	1,00
		Sortida arrodonida	1,00
		Colzes/Unions	
ACCIDENT	ĸ	Colze de 45° standard	0,35
Vàlvula de seient		Colze de 45° gran curvatura	0,20
oberta	9,0	Colze de 90° standard	0,75
¾ oberta	13,0	Colze de 90° gran curvatura	0,45
1/2 oberta	36.0	Colze de 90° petita curvatura	1,3
1/2 oberta	112.0	Corba de 180°	1,5
Vàhula angular oberta	20	T standard ús com a colze	1,0
Valvula di gular oberta	2,0	T standard amb bifurcació tancada	0,4
valvula de retenció (oberta)		T standard amb divisió de cabal	1,0 (a)
de charnera (frontissa)	2,0	Unió roscada	0,04
de bola	70,0	Maneguet d'unió	0,04
de disc	10,0	Vàlvula comporta	
Cabalímetres mecànics		oberta	0,17
de disc	7.0	³ ⁄ ₄ oberta	0,90
de pistó	15.0	1/2 oberta	4,5
rotatori	10,0	- ¼ oberta	24,0
do turbino	6.0	Vàlvula de diafragma	
	0,0	oberta	2,3
Canvi de diametre		¾ oberta	2,6
estretament	**(b)	1/2 oberta	4,3
eixamplament	**(b)	1/4 oberta	21,0

Ecuación 47. Cálculo para las perdidas por accesorios.

Figura 131. Parámetros K para diferentes accidentes.

11.8 CONCLUSIONES

A modo de resumen del capítulo 11, el diseño de la planta está incompleto en lo referido a requerimientos de planta. Los equipos de proceso están bien definidos y diseñados (reactores, intercambiadores, evaporadores y demás equipos principales), no obstante, dadas las limitaciones del simulador, no se han podido realizar correctamente muchos de los pasos por proceso.

Por otra parte, cabría remarcar la alta dificultad de diseñar los procesos secundarios de un proceso de esta índole, por ejemplo, aprovechar al máximo los caudales generados en proceso para tareas secundarias de refrigeración o calefacción, diseñar los pasos de refrigerante o calefactores en los diferentes equipos entre otros muchos conceptos que no se han podido diseñar de la manera diseñada por falta de tiempo.

Principalmente, el tiempo y la carga de trabajo repartida para el equipo de diseño ha sido desmedida en comparación al trabajo a realizar, de manera

que los diseños de servicios de planta no se han podido realizar con precisión y se ha recurrido a aproximaciones.

Poniendo el foco de atención en el proceso general, es evidente que este no será nada rentable energéticamente, por ejemplo, los caudales de paso en el proceso superan las 20 T/h, cantidades las cuales requerirán de un bombeo de alta potencia para efectuar su tránsito. Esto se debe, en gran parte, a la presencia de tal cantidad de agua en proceso desde el principio (1617,49 kmol/h), cantidad la cual podría reducirse drásticamente sustituyendo el caudal de amoniaco licuado por un caudal de amoniaco en fase gas, eliminando así los 1048,71 kmol/h de agua que entran con el amoniaco. Por motivos de tiempo, no se han modificado los diseños para realizar el proceso de tal manera, no obstante, sería la forma correcta de iniciar el proceso.

A consecuencia de la gran entrada de agua desde el inicio del proceso, es necesario instalar el tramo de evaporadores II para extraer el exceso de agua, ya que si no CD-401 seria de unas dimensiones desproporcionadas o incluso podría llegar a no cumplir con el objetivo del equipo. Con esto se logró reducir notablemente la cantidad de agua que entraría a CD-401, con la consecuencia de perder una pequeña cantidad de hidracina en cada evaporador del tramo. Estas pérdidas son muy reducidas en comparación al caudal de agua extraído, no obstante, se producen unas pérdidas totales en proceso que superan el 10% previsto inicialmente. Con la modificación para una entrada de amoniaco en fase gas en lugar de licuado se eliminaría este problema, y también se reducirían considerablemente los costes de producción, construcción y a fin de cuentas, sería un proceso rentable.

Finalmente, volver a remarcar que las limitaciones a la hora de trabajar y llevar a cabo el proyecto han pasado factura, dando lugar a un proceso a medias donde se ha priorizado el diseño del proceso principal y no se ha diseñado exhaustivamente los procesos secundarios de planta. Se hubiera preferido aprovechar al máximo la energía obtenida en los procesos para reaprovechar todos los caudales, reduciendo así costes en tratamientos secundarios o en equipos complementarios.

11.9 BIBLIOGRAFIA

(1) Plyasunov, Andrey V.; Geochimica et Cosmochimica Acta, (2003), 67(24), 4981-5009, CAplus

(<u>https://www.sciencedirect.com/science/article/abs/pii/S001670370300587</u> 8?via%3Dihub)

(2) Sci-Finder, portal on-line (<u>https://scifinder-n.cas.org/</u>)

(3) The Raschig Synthesis of Hydrazine; John W. Cahn and Richard E. Powell; Journal of the American Chemical Society 1954 *76* (9), 2565-2567 (<u>https://www.hydrazine.com/-</u> /media/Lonza/hydrazine/Docs/HydrazineTerminologyTDS.pdf)

(4) Manual para dimensionamiento de equipos.

(<u>http://catarina.udlap.mx/u dl a/tales/documentos/lpro/esquivel e jr/capi</u> tulo3.pdf)

Por motivos del ataque informático de principios de semestre muchas fuentes bibliográficas se han obtenido de manera ilícita, por lo que no se dispone de los links que redirijan a los artículos. Disculpen las molestias.