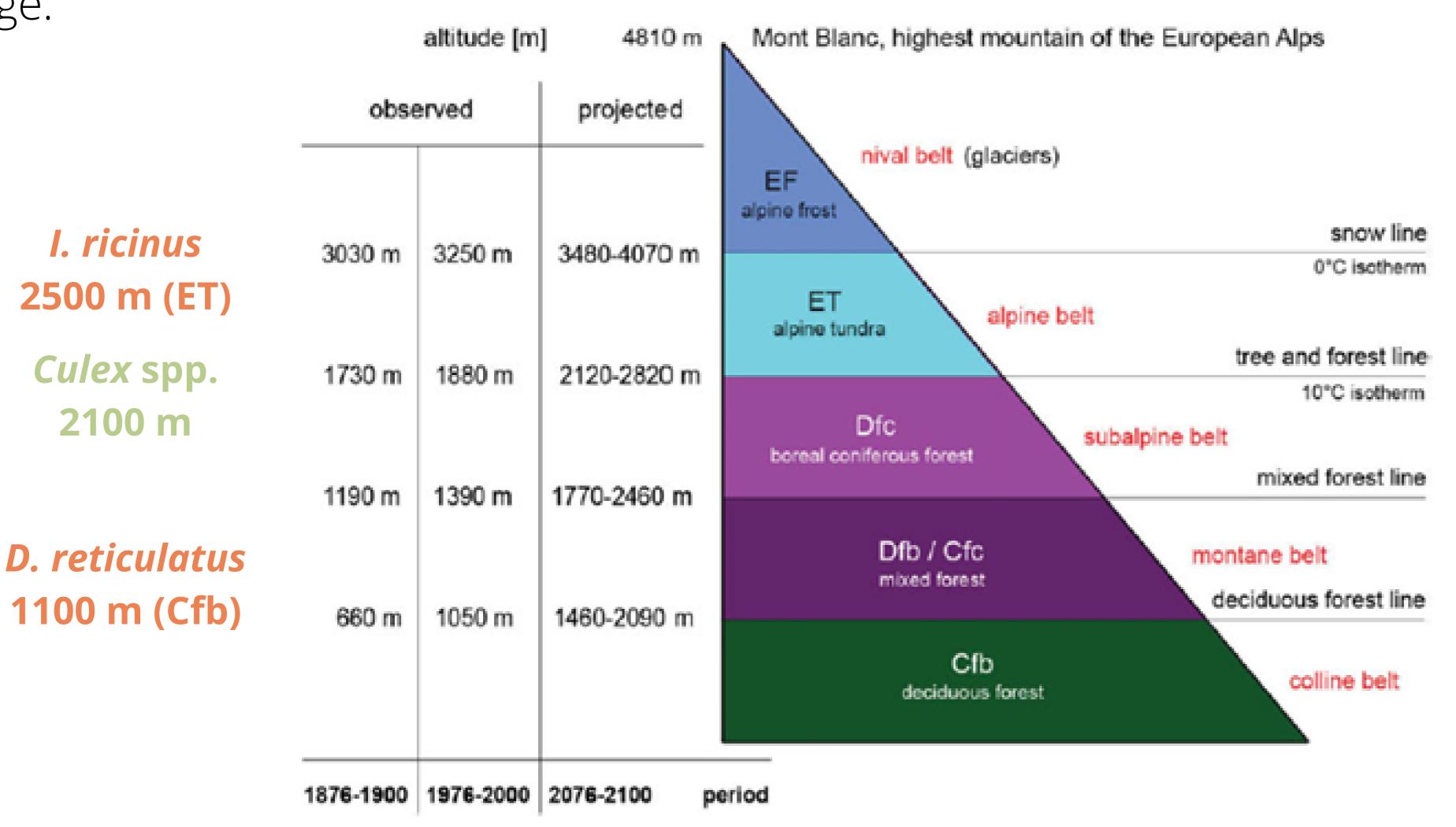


## CLIMATE CHANGE AND THE EMERGENCY


# OF INFECTIOUS DISEASES IN THE EUROPEAN ALPINE ECOSYSTEM



Gemma Serrano Simon Final Degree Project (June 2022)

### OBJECTIVES

Investigating the evidence documented to date on emerging diseases in the European alpine ecosystem and finding out if it can be attibuted to climate change.



**Figure 1.** Climate classification of Köppen-Geiger (Rubel et al., 2017)

| SCANDES                |                                      |
|------------------------|--------------------------------------|
| ALPS<br>PYRENEES<br>AF | CARPATHIANS BALKANS RHODOPE PENNINES |

**Figure 2.** European Alpine regions (Sundseth, 2010)

| DISEASE              | PATHOGEN                  | VECTOR           |
|----------------------|---------------------------|------------------|
| Lyme disease         | Borrelia burgdorferi s.l. | Ixodes ricinus   |
| Tick-borne relapsing | B. miyamatoi              | I. ricinus       |
| fever (TBRF)         |                           |                  |
| Anaplasmosis         | Anaplasma                 | I. ricinus,      |
|                      | phagocytophilum           | 1.trianguliceps  |
| Mediterranean        | Rickettsia conorii        | Riphicephalus    |
| spotted fever        |                           | sanguineus       |
| TIBOLA*              | R. slovaca                | Dermacentor      |
|                      |                           | marginatus       |
| Babesiosis           | Babesia microti           | R. sanguineus    |
| Bartonellosis        | Bartonella spp.           | I. ricinus       |
| Tularemia            | Francisella tularensis    | Ixodes spp.      |
|                      |                           | Dermacentor spp. |
| Omsk haemorrhagic    | Omsk haemorrhagic         | Dermacentor spp. |
| fever                | fever virus               |                  |
| Crimean-Congo        | Crimean-Congo             | Hyalomma         |
| haemorrhagic fever   | haemorrhagic fever        | marginatum       |
|                      | virus                     |                  |

| Tick-borne encefalitis<br>(TBE) | Tick-borne encefalitis virus (TBEV) | I. ricinus, D. reticulatus, D.marginatus               |
|---------------------------------|-------------------------------------|--------------------------------------------------------|
| Tahyna virus disease            | Tahyna virus (TAHV)                 | Culex pipiens/torrentium                               |
| West Nile fever                 | West Nile fever virus<br>(WNV)      | A. japonicus,<br>C. pipiens/torrentium                 |
| Bluetongue disease              | Bluetongue virus (BTV)              | C. p. pipiens C. torrentium C. obsoletum C. grisescens |
| Schmallenberg<br>disease        | Schmallenberg virus                 | C. obsoletum                                           |
| Dirofilariosis                  | Dirofilaria<br>repens/immitis       | Aedes spp.  Anopheles spp.                             |
| Malaria                         | Plasmodium spp.                     | A. petragnani                                          |
| Leishmaniasis                   | Leishmania infantum                 | Phlebotomus perniciosus                                |

Taula 1. List of pathogens found in circulating vectors, along with the disease they may cause or of which cases have already been found in humans or animals in European alpine regions (in red). \*TIBOLA (tick-borne lymphadenopathy)

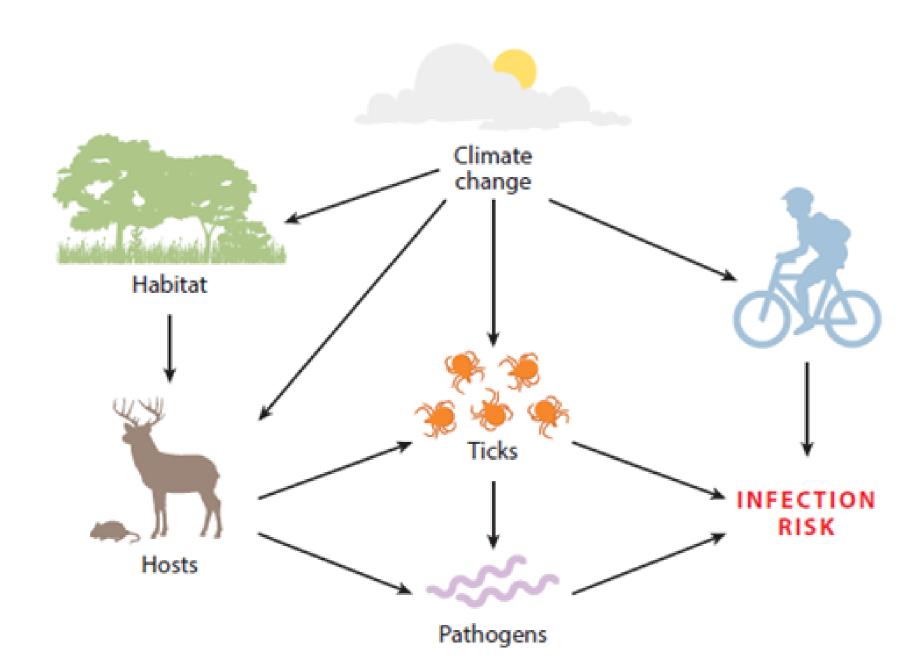



Figure 3. Schematic diagram showing how climate change can affect ticks directly or indirectly (Gilbert, 2021)

There has been an expansion of vectors, pathogens and their diseases to northern latitudes and upper altituds of Europe, spreading also to alpine ecosystems.

Climate change is making the european alpine ecosystem more suitable for the emergency of diseases but a direct attribution is yet controversial due to the participation of other factors.

#### REFERENCES

Gilbert, L. (2021). The Impacts of Climate Change on Ticks and Tick-Borne Disease Risk. https://doi.org/10.1146/annurev-ento-052720 Rubel, F., Brugger, K., Haslinger, K., & Auer, I. (2017). The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800-2100. Meteorologische Zeitschrift, 26(2), 115-125. https://doi.org/10.1127/metz/2016/0816

Sundseth, K. (2010). Natura 2000 en la región alpina. Comisión Europea. Dirección General del Medio Ambiente. http://doi.org/10.2779/74993