UrnB

»¥ Diposit digital
D &, de documents
Universitat Autdnoma 1) delaUAB

de Barcelona

This is the published version of the bachelor thesis:

Domingo Catafal, Josep Maria; Sanchez Pujadas, Francisco Javier, dir. De-
sign and implementation of a programming language with LLVM. 2023. (958
Enginyeria Informatica)

This version is available at https://ddd.uab.cat/record /272795
under the terms of the license

https://ddd.uab.cat/record/272795

BACHELOR’S THESIS IN COMPUTER SCIENCE, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTONOMA DE BARCELONA (UAB)

Design and implementation of a
programming language with LLVM

Josep Maria Domingo Catafal

Abstract— This article presents the design and development of a new programming language called
Craft, using Rust and LLVM. The goal of the project is to gain a deeper understanding of how com-
pilers work by creating one from scratch using these tools. The language is designed to be simple
and easy to understand, but at the same time, it aims to be fast and efficient, so some sacrifices
have to be made. The article covers the design and implementation of the language, including the
lexer, parser, semantic analysis, and code generation. The project also includes a discussion of the
challenges encountered during development and suggestions for future work. Overall, the project
serves as a valuable learning experience for understanding the inner workings of compilers and the
capabilities of Rust and LLVM.

Keywords— Programming Language, LLVM, Rust, SSA, Strongly Typed, Compiled

Resum- Aquest article presenta el disseny i desenvolupament d’'un nou llenguatge de programacio
anomenat Craft, utilitzant Rust i LLVM. Lobjectiu del projecte és aconseguir una millor comprensio
de com funcionen els compiladors creant-ne un des de zero amb aquestes eines. El llenguatge
esta dissenyat per ser senzill i facil d’entendre, pero al mateix temps, pretén ser rapid i eficient,
per la qual cosa s’han de fer alguns sacrificis. Larticle cobreix el disseny i la implementacié del
llenguatge, incloent-hi el lexer, el parser, I'analisi semantica i la generacié de codi. El projecte també
inclou una discussi6 sobre els reptes trobats durant el desenvolupament i suggeriments per a treballs
futurs. En general, el projecte serveix com una valuosa experiencia d’aprenentatge per comprendre

el funcionament intern dels compiladors i les capacitats de Rust i LLVM.

Paraules clau- Llenguatge de programacio, LLVM, Rust, SSA, Fortament tipat, Compilat

1 INTRODUCTION

ISTORICALLY, there has always been a dilemma
H between the speed of execution, and speed of de-
velopment. Some languages are easy to program:

they allow the programmer to not worry about low-level
concepts such as memory management, and create abstrac-
tions that streamline the development. The problem is that
these abstractions limit the language’s efficiency, and cre-
ate slower programs. Another reason that allows speeding
up the development is dynamic typing, as it frees the user
from the mental overhead that comes with deciding the type
that should be used. But this comes with its own disadvan-
tages, since it is very likely that you will encounter runtime
errors unless you use something like a static analyzer, and
even then errors can be frequent. These languages tend to
be interpreted in order to save the programmer the time it
takes to recompile the program, but it has an impact on the
runtime performance of the program if we compare it to
compiled languages. Python, for example, would be one of
the largest representatives of this group of languages. On

o Contact E-mail: jdomingocatafal @gmail.com

e Mencio realitzada: Computacié

e Tutorized by: Javier Sanchez Pujadas (Ciencies de la Computacio)
® Year 2022/23

the other hand we have languages like C, which have al-
most no abstraction and the programmer must be aware of
what the computer is doing in every line of code he writes.
They are languages that provide very good performance, but
slow down the development, as the programmer must take
into account many low-level concepts. An additional prob-
lem is that when managing memory manually, it opens the
door to a lot of runtime errors in the form of memory leaks
and segmentation faults. Currently, there are languages like
Rust that solve these memory management issues without
losing performance [1], but the development is still slow
and the compilation time long. These languages tend to be
strongly typed, which helps reduce runtime errors, since the
compiler will catch them.

In this article we will explore the different types of pro-
gramming languages, and we will implement a simple pro-
gramming language that aims to find balance between the
different trade-offs we talked about.

2 STATE OF THE ART

A programming language resembles, in a way, a natural lan-
guage, and like natural languages, there’s a lot of different
ones with different properties. We mainly have two differ-
ent ways to classify them: by paradigm and by how they

February 2023, Escola d’Enginyeria (UAB)

2 EE/UAB TFG INFORMATICA: Design and implementation of a programming language with LLVM

are implemented. The paradigm allows us to classify them
based on their features and the way we write programs with
them. It tells us something about the design of the language.
On the other hand we have the implementation which tells
us information about how the programs are run. About how
the code we write turns into instructions the CPU can exe-
cute. A programming language can have many implemen-
tations, but there’s usually one that is the “official” one, and
that’s the ones we are going to focus on.

2.1 Paradigms

In the following sections we are going to take a look at the
main paradigms in programming languages, even though,
some of them may be considered sub-paradigms of the oth-
ers. It’s also important to note that most programming lan-
guages can fit into multiple of these paradigms, and thus
they are multi-paradigm. We are going to discuss the most
popular paradigms, but there are many more.

2.1.1 Imperative

Imperative programming languages follow a model of pro-
gramming that is based on statements that change the state
of the program. When we write an imperative program, we
specify step by step what the computer has to do. Impera-
tive programming is often implemented as procedural pro-
gramming, a subtype in which statements are structured into
procedures (also known as functions). Most of the program-
ming languages we use nowadays can fit into this category,
including C, C++, Java, C#, Go, Lua, JavaScript, etc.

2.1.2 Object-oriented

It’s usually considered a subtype of imperative and procedu-
ral programming, even though there are languages in other
paradigms that are also object-oriented. In object-oriented
programming, data and behavior is grouped in units called
objects. These objects hold data, and they can be modified
by functions known as methods. The main representatives
of this paradigm are languages like Java, C# or C++. These
languages represent objects using classes and have many
abstractions like inheritance and polymorphism.

2.1.3 Functional

Functional programming has the idea of treating compu-
tation as the evaluation of mathematical functions. Most
of the functional languages are characterized by the use of
recursive functions, immutable data and anonymous func-
tions. Even though most modern languages incorporate
functional programming in one way or another, some lan-
guages that we could call functional are Haskell (being one
of the purest), OCaml, Clojure, Scala or Lisp, between oth-
ers.

2.1.4 Logic

Logic programming is a programming paradigm that is
based on formal logic. Some examples of logic program-
ming languages include Prolog or Datalog.

2.2 Implementations

Programming languages can be implemented in different
ways, but they generally fall into two main categories: com-
pilers and interpreters. Both have it’s upsides and it’s down-
sides, and usually, depending on the design of the program-
ming language and its goals, one may be a better option
than the other.

2.2.1 Interpreted

Interpreted languages, are languages that don’t need to be
compiled before they are run. When you run a program they
take the original source code and interpret it at runtime. The
major downside of this type of implementations is that we
may have made an error writing the code, and we won’t
find out until we run it. This can be quite dangerous since it
means the program can crash at runtime because of a typo or
some other kind of silly mistake that could’ve been caught
by a compiler.

On the other hand, they offer a good developer expe-
rience, specially for prototyping or writing quick scripts.
That’s because you don’t have to wait for the compiler to
generate the code, you can just run it and make modifica-
tions to the program while it’s running, without the need to
restart it. They can also be embedded into other programs
and be used to script the behavior of that program. An ex-
ample of that are game engines, that are usually written in a
compiled languages like C++, but they integrate a scripting
language for all the gameplay development.

Some popular interpreted programming languages are
Python, JavaScript, Lua or PHP. These are some of the most
popular languages altogether, and that’s because, they are
very friendly languages, with a low barrier of entrance.

2.2.2 Compiled

Compiled languages are languages that turn the source code
into machine code for a specific CPU architecture. They
usually have a better runtime performance than interpreters,
since they generate optimized machine code for that specific
architecture. Another good thing about compiled languages
is that they can catch a lot of bugs at compile time, since
they have to check weather the program is valid in order to
generate the machine code. This comes with the downside
that it slows down development time, since we need to re-
compile the code on every change before we can run it. And
with big projects, the compilation time can be significant.

Some popular compiled programming languages nowa-
days are C, C++, Go or Rust. There are different ways these
compilers are implemented. Some of them, like Go, gener-
ate all the machine code by themselves [2]. But others, like
Rust or C/C++ with the clang compiler, generate an inter-
mediate representation, and then use LLVM (we will look
into LLVM in more detail later on) to generate the machine
code [3]] [4]. This way they don’t have to re-implement the
code generation, they just use the one LLVM has, and take
advantage of all the optimizations it offers.

There’s another breed of compiled languages, like for ex-
ample Java or C#, that compile to bytecode, an interme-
diate instruction set, and then use a Virtual Machine that
compiles Just In Time (JIT) the bytecode to machine code.

JOSEP M. DOMINGO CATAFAL: Design and implementation of a programming language with LLVM 3

These languages have the benefit, that they have interoper-
ability with other languages that use that same Virtual Ma-
chine. For example in the case of Java, it uses the JVM (Java
Virtual Machine), and other languages, like Kotlin or Clo-
jure, also use that same virtual machine, which makes them
compatible with each other. This means that languages like
Kotlin have access to the plethora of existing Java libraries
[S]. Some other examples are Erlang with Elixir [6] or the
.NET languages.

3 GOoALSs

As we can see there’s a lot of different paradigms with dif-
ferent goals and design choices that make them suitable for
different things. The goal of this project is to design and im-
plement a basic programming language that is user-friendly
and that can be used to write simple programs. The lan-
guage philosophy will revolve around the following ideas:

* Compiled: It will be a compiled language, in order to
obtain a good performance and avoid run-time errors
as much as possible. Compiled languages do a better
job at catching programming errors.

Strongly typed: Having a strong type system helps
to avoid runtime errors, since a lot of the mistakes
the programmer can make are caught at compile time.
They also help document the code, making it easier
to understand what it’s doing. The downsides are that
they may make the code more verbose and, sometimes,
create a mental overhead when prototyping since the
programmer has to think of the type to use. For big-
ger projects, though, this last downside is usually also
present with dynamic typing, since dynamic typing
will create a mental overhead when reading the code
and trying to figure out the type of a variable.

Immutability: Immutability will be enforced by de-
fault in order to avoid side effects, and to facilitate de-
bugging. The user can still decide to make a variable
mutable, but it has to be a conscious choice and not a
given.

* Easy to use: The language has to be easy to use, giv-
ing a scripting-like feeling but with the benefits of a
compiled strongly-typed language.

The new language doesn’t aim to be an innovation, but
rather a collection of ideas grabbed from other popular lan-
guages mixed together. The end goal is to learn about the
internals of programming languages and better understand
the design choices behind them. The language will be im-
plemented using Rust and LLVM (more on that later), of-
fering an opportunity to gain familiarity with LLVM, one
of the most used technologies in the industry of compiler
development, and to tackle a significant project from the
ground up with Rust.

4 METHODOLOGY

Writing a compiler involves several steps. First, even
though not strictly part of the compiler development, the
language has to be designed. The syntax of the language,

the symbols and the reserved keywords have to be defined.
This design may evolve later on since we may find it’s am-
biguous or that it’s too complex to implement.

Secondly we need to define the formal grammar for the
language we designed. This will help us greatly when writ-
ing the parser. The grammar will tell us how the sentences
of the language are built.

Thirdly, we have the implementation steps, which are
four. The lexer, the parser, the semantic analysis and code
generation. We have to implement them in that order, since
they depend on the work done by the previous step. We will
see later on with more detail what this steps involve. But for
now, simply we know that, for every new feature we want
to add to the language, we have to implement it in every one
of these steps.

It’s also important to divide the languages into subsets,
since this way we can start testing it. We don’t need to im-
plement all the features in the lexer, then in the parser, etc.
We can implement the basic functionality in all the steps,
and then start again on the lexer and add a new feature and
so on. In the case of this project it was also important, since
there’s no time nor resources to implement all the features,
so only a subset of features of the original design was im-
plemented.

4.1 Git and GitHub

For version control Git was chosen since it’s the industry
standard and one of the most powerful tools out there. The
repo is hosted on GitHub [7]] which is great for open source
projects and allows us to use GitHub Actions, which run
certain automated tasks we define on GitHub servers for
free.

4.2 Quality Assurance

Apart from the implementation of the compiler itself, it’s
also important to test that it’s actually working properly. To
do that a test suit was developed, which consists of a few
Craft programs, each testing different functionalities of the
language, that are compiled and executed. Then the output
of the program is checked and if it’s not valid the test fails.
This helps detect if any feature was broken during develop-
ment, or if some edge cases were not taken into considera-
tion.

Additionally, to leverage the features GitHub offers, a
GitHub Action is run every time a Pull Request is opened.
GitHub Actions, allow us to automatically execute pro-
grams on GitHub servers when certain events are triggered
on a repo. In the case of this project, it was configured to,
whenever a Pull Request was opened, compile the project,
run the test suite, run a linter and check that the format-
ting of the code follows the style guide. If any of these
steps fails, the Pull Request cannot be merged to the main
branch. This way we make sure that only working code (at
least according to the test cases we defined) is merged into
the stable branch.

The usual workflow when developing a new feature,
would be to create a new branch, work on the code, and
once done, a Pull Request to the master branch would be
opened. Then the GitHub Actions would trigger, check ev-
erything is working as expected, and the code is formatted

4 EE/UAB TFG INFORMATICA: Design and implementation of a programming language with LLVM

correctly. I would also review the code, and, if everything
is correct, the Pull Request would be merged into master.

Hide all checks

° All checks have passed
4suc

uccessful checks

v (@ Continuous integration / Check (pull_request) Successful in 2m (Required Details.

v (@ Continuous integration / Test Suite (pull_request) Successful in3m (Required Details.

v . Continuous integration / Rustfmt (pull_request) Successfulin 17s

v (@ Continuous integration / Clippy (pull_request) Successful in2m (Required Details

° This branch has no conflicts with the base branch

Merging can be performed automatically

(VTIPS or view command line instructions

Fig. 1: Screenshot of a Pull Request where
all checks finished successfully

5 LANGUAGE DESIGN

5.1 Primitive types

By default, Craft comes with some built-in (primitive), data
types. These are the following:

* i64: 64 bit integer
* f64: 64 bit float
* string: array of characters

* bool: boolean

5.2 Start of the program

The starting point of craft programs is at the main function.

1 | fn main() {
2 printf("Hello World!\n");
302

5.3 Functions

As you can see from the previous snippet, functions are
declared with the fn keyword, followed by its name, and
the parameters between parenthesis. The parameters are
declared by specifing the identifier, followed by a colon
and the type of the parameter. The return type comes after
the closing parenthesis of the parameters. The braces that
suround the body of the function are always mandatory.

1 | fn something(a: i64, b: i64) i64 { ... }

5.3.1 Variable declaration

Variables are declared with the keyword let. The type of
the variable is infered from the value.

1 |let four
2 |let four

2 + 2; // type inferred to be an integer
2.0 + 2.0; // type inferred to be float

Variables are immutable by default, which means that
once initialized their value cannot be changed. They act like
constants that can be initialized at runtime. If the variable
needs to be mutated, it can, but only by adding the keyword
mut after let. So for example the following snippet would
fail to compile:

let i
i=i

0;

fn main() {
+ 1; // compile error, variable is not mutable!

A wN =

}

The correct way to do it would be like this:

fn main() {
let mut i = 0;
i =1+ 1; // compiles just fine, variable is mutable

A wN =

}

This design choice comes from the idea that a lot of bugs
come from mutating variables when we don’t actually want
to. By making them immutable by default, the user has
to make the conscious choice of telling the compiler that
he/she wants to mutate the variable. This way, if he/she
mutates a variable that didn’t intend to mutate, the compiler
will catch it.

5.4 Loops and control flow

The way to repeat instructions multiple times in Craft is by
using while loops. They can be used like this:

let mut i = 0;

while i < 100 {
// do stuff
i=1i+1;

aps wN =

}

Another way to repeat instructions is by using recursion:

fn fib(n: i64) i64 {
ifn<=1¢
n
} else {
fib(n - 1) + fib(n - 2)
}

No o bhwNn =

}

Apart from loops, we also have if statements to create
branches in our code. They can be used like so:

if a>b {
// do stuff
} else if a == b {
// do other stuff
} else {
// do other stuff

No o s wN =

}

Notice that in both if and while statements, parenthesis
around the conditional expression are not necessary. They
can still be used if the programmer desires but the idiomatic
way to do it is without parenthesis since it’s easier to read
and type.

5.5 Expressions and statements

Craft is an expression based language, which means that
most constructs in the language are expressions. An ex-
pression is a valid unit of code that evaluates to a value.
So for example, 2+2 is an expression, since it evaluates to
a value (4 in this case). On the other hand we have state-
ments, which don’t evaluate to a value. For example, (let
a = 2+2; is a statement that contains the 2 + 2 expression,
but the value is captured by the variable "a’, thus it’s not re-
turned, and it becomes a statement. Usually statements end
in semicolon, except special cases like for example loops.

So when we said that Craft is expression based, it means
that pretty much everything returns a value. For example if
statements, are not actually statements, but expressions. We
can do something like this:

JOSEP M. DOMINGO CATAFAL: Design and implementation of a programming language with LLVM 5

1 |letmax = if a>=b { a } else { b };

In the code snippet above we are assigning the value re-
turned from the if expression to a variable. We can do that,
because the last item in each of the branches of the if ex-
pression is returning an expression (of the same type in both
branches, else it’s a compile time error). Whenever the last
expression in a code block (anything surrounded by curly
braces) does not contain a semicolon, it means that block
will return the value of evaluating that expression. So this
actually works:

let four = {
2+ 2
¥

let x = {
let x = func();
X

0N U~ WN =

}

The block ends in an expression without semicolon, thus
it returns the value of evaluating that expression (4) and as-
signs that to the variable. This works for functions too:

fn add(a: i64, b: i64) i64 {
athb

}

fn max(a: 164, b: i64) i64 {
ifa>b {alelse{b}

No o wN =

}

If we were to add a semicolon to any of the return expres-
sions on the previous functions, we would get a compilation
error, since we would turn the expressions into statements,
and the function would not return anything.

It’s important to note that if expressions must have an
else branch, since a value always has to be returned from
the expression. If it’s used as a statement (it doesn’t return
a value), then it’s fine to have only the if branch.

Since blocks return values they can also be used for
grouping expressions. For example, we can change the
precedence of arithmetic operations using blocks:

1 |leta= 2+ {3+23; //auwill equal 10 ‘

What the previous code does is: it evaluates 2, then eval-
uates the block which returns 5, and then multiplies both
expressions.

5.5.1 Examples of expressions

// function calls

func()

// arithmetic operations
2+ 2

// if else

if x =y {xYelse {y}
// binary comparisons

X >y

// code blocks

{ expr }

QW NOUhWN =

5.5.2 Examples of statements

1 let a = 2 + 2; // variable declaration
2 |while true { } // loops
3 |if a > b { printf("hello world"); } // ifs without return expr.

5.6 Return statements

We talked about blocks returning values by leaving the last
expression without semicolon. So if we want a function to
return a value we just leave the last expression of the func-
tion without semicolon, and it will be returned. But what if
you need to return earlier, maybe based on some condition?
For those cases there’s the return statement, which instantly
returns from the function when called. It can be invoked
with the ret keyword. For example, when implementing a
recursive Fibonacci, we could do it like this:

fn fib(n: 164) i64 {
if n<=1¢
ret n;

}
fib(n - 1) + fib(n - 2)

ouhwNn =

5.7 Data structures

We talked about some primitive data types, but that’s not al-
ways enough to model more complex programs. That’s why
we can define custom data structures using structs. Structs
work the same way they do in other languages like C or
Rust. We declare them like this:

1 struct User {

2 name: string
3 age: i64

4 13

When creating an instance of a struct we do it the follow-
ing way:

1 let user = User!{
2 name: "Tux”,
3 age: 27,

4 1)

5.8 Arrays

Craft has support for arrays. They are fixed size and can be
declared like this:

1 ’let a=I[1,2, 3] i64;

The type annotations for an array follow the pattern
[type; sizel. For example, when declaring a function
that takes an int array of three elements as a parameter and
returns that same array:

1 fn do_nothing(arr: [i64; 3]) [i64; 3] {
2 arr

313

Whenever we want to access an element of an array we
use square brackets with the index of the element we want
to access. Arrays in Craft are zero indexed, meaning the
index of the first element is 0.

1 |let a
2 |letb

[1, 2, 3] i64;
2 +alel; // b=3

5.9 Print statements

In order to print to stdout with Craft, the printf statement
can be used. It works the same way as printf in C (it actually
calls libc under the hood).

1 |let x =2 + 2;
2 | printf("This is 2 + 2 => %d\n", Xx);

6 EE/UAB TFG INFORMATICA: Design and implementation of a programming language with LLVM

5.10 Naming conventions

In Craft function and variable names are written in
snake_case. It’s only structs that are written in PascalCase.

6 TECH STACK

Writing a compiler does not require many tools, but some of
them can help a lot in paving the road. For this compiler we
are going to mainly use two tools: The Rust Programming
Language and LLVM.

6.1 Rust

Rust is a systems programming language that was first re-
leased in 2010. It was developed by the Mozilla Foundation
with the goal of creating a safe and concurrent language
that would be suitable for low-level systems programming
tasks, such as operating systems, and performance critical
programs, like a browser engine. One of the major fea-
tures of the language is it’s guaranteed memory-safety (and
thread-safety) without requiring the use of a garbage col-
lector or reference counting (and thus not compromising on
performance). This combined with its powerful type sys-
tem, helps catch a lot of bugs at compile-time.

For this reason we are going to use this language. It’s
also really comfortable to use and comes with a lot of great
tooling like cargo, which is the command line tool used for
compiling, managing dependencies, etc. and clippy, a linter
that comes built in and gives great hints on how to improve
the code.

6.2 LLVM

LLVM is a toolchain for building compilers, i.e. a set of
tools that help us implementing compilers. It was created
in 2003 by Chris Lattner (also creator of the Swift pro-
gramming language) and has the support of companies like
Apple (LLVM is an integral part of XCode and Swift for
i0S application development), Google, IBM or Intel [8].
Currently, there are several mainstream programming lan-
guages that use it, such as C and C++ (via the Clang com-
piler), Rust, Swift, Crystal...

As we said LLVM has a lot of tools, but among all them,
the LLVM Core libraries are the most important and par-
ticularly relevant for us. We will be referring to them as
LLVM from now on for simplicity.

LLVM will allow us to generate assembly for a lot of
different architectures and apply many optimizations to the
code without any extra effort. It can even generate Web
Assembly, which allows us to run the language in modern
web browsers. The Craft compiler will generate LLVM IR
(Intermidiete Representation), and then it will be piped to
LLVM, which will take the IR, apply transformations to it,
in order to optimize it, and then the assembly for the target
architecture will be generated.

Generating LLVM 1R instead of assembly, also frees us
from some headaches. For example, since LLVM is archi-
tecture independent, when we generate the code, we don’t
need to worry about the number of registers, as we have
an unlimited number of virtual registers, which LLVM will
later map to the registers of the corresponding architecture.

As we discussed, LLVM also applies optimizations to the
generated code, like dead code elimination, constant fold-
ing, loop unrolling, etc. However, in order for LLVM to
perform these optimizations, we will have to generate the
code in SSA form (Static Single-Assignment). This means
that we can only assign a value to a variable once. If we
need to reassign a value, a new variable has to be created
that replaces the other one. The reason SSA is used is that
it makes applying optimizations a lot easier.

We will explore LLVM in more detail later in the article.

7 ARCHITECTURE

Most compilers are divided into two parts: the front-end
and the back-end. The front-end is the part of the compilers
that takes the source code and transforms it into an interme-
diate representation than will later be transformed into the
actual machine code by the back-end. In our case, since we
are using LLVM, we don’t need to worry too much about
the back-end, since LLVM will be in charge of generating
the machine code. Our job will be to go from the source
code to the LLVM intermediate representation (we will call
it IR from now on). The front-end of the compiler is typ-
ically composed of four main steps: lexical analysis (im-
plemented by the lexer), syntactic analysis (implemented
by the parser), semantic analysis and the intermediate code
generation.

Craft Compiler LLVM

P

» Optimizations

Parser

main.cft

Target
Architecture
Codgen

Binary %

Fig. 2: Diagram showing the compilation
workflow of a Craft program

£n main() {
let n = 5;
if func(n) {

3

Semantic
Analysis &
IR Codegen

3

—

7.1 Lexer

This step consists of breaking the source code into a se-
quence of tokens. A token is a basic building block of the
languages, such as a keyword or an identifier.

A lexer can be implemented using an external lexical an-
alyzer, but in our case it will be implement by hand, since
the goal is to learn how it works. Implementing a lexer
from scratch is actually really simple. It works the follow-
ing way:

1. Start by reading the source code character by character
until we reach the end.

2. If the character by itself forms a valid sequence (e.g.
a parenthesis) we create a token from it. If it doesn’t,
we continue reading characters until we find a valid
sequence and then create the token.

Note that sometimes we may find a valid sequence, but
that’s not enough to create a token, since it may be the

JOSEP M. DOMINGO CATAFAL: Design and implementation of a programming language with LLVM 7

start of another longer and valid sequence. We may need
to check the following character/s to check weather it con-
tinues. An example of such case would be the >’ operator,
since, by itself is a valid sequence, but it may be the start of
the *>=" operator. So we need to check if the next character
is an ’=" or something else.

The lexer requires a bit of work to set up, but after that,
expanding it is trivial, since we only need to add a new word
to the list of reserved words, in the case we want to add a
reserved word, or add a new rule that detects a new symbol
for example.

7.2 Parser

The lexer allowed us to identify the symbols of the program,
but it does not allow us to determine if their order is correct,
or if they follow the rules of the language (i.e. it’s syntacti-
cally correct). That is the job of the parser.

The parser takes the sequence of tokens obtained from the
lexer and transforms it into an Abstract Syntax Tree (AST).
This tree represents the structure of the program and de-
termines its syntactic structure. It will tell us the order in
which we need to execute the instructions.

To generate the AST, compilers use a context free gram-
mar. A grammar is a set of rules that tells us how to form
valid strings of tokens in a specific language. They are
formed of a set of symbols, which can be divided into termi-
nal and non-terminal symbols, and a set of production rules
that specify how the non-terminal symbols can be replaced
by sequences of terminal and non-terminal symbols. A con-
text free grammar is a type of grammar which rules do not
depend on the context in which the symbols appear.

The goal of the parser is to make the program obey the
rules of the grammar. Here’s an example of a simple gram-
mar for parsing function prototypes:

<proto> ::= fn <id> "(" <params> ")"

<id> ::= letter {letter | digit | "_"}
<params> ::= "("{ <param> {, <param> } }")"
<param> ::= <id>: <type>

In the example above, the things between the ’<>’ are
the productions, and the things to the right of *::=" tell us
how that rule is formed. For example the proto production
tells us that the prototype of a function is formed by plac-
ing the fn keyword followed by an identifier (which is de-
fined by the <id> production), an opening parenthesis, the
params (defined by the <params> production) and a closing
parenthesis. The curly braces indicate that the contents they
surround can be repeated zero or more times. If the braces
had quotes (i.e. ”{”) then that would mean that we expect
to have an actual curly brace on the code.

Translating the grammar to actual code is actually quite
simple, it’s almost a literal translation by implementing a
recursive descent parser. If we were to translate the proto
rule to code, it would look something like this:

1 fn parse_prototype() -> (Prototype, Err) {

2 // we expect to find the fn keyword,

3 // else it’s an error

4 match current_token().kind {

5 // The advance function moves to the next token
6 TokenKind::Fn => advance(),

7 _ => return Err("Expected fn keyword"),

8 IS

9

10 // we expect to find the function name,

1 // else it’s an error

12 let name = match current_token().kind {

13 TokenKind: :Identifier => current_token().lexeme,
14 _ => return Err("Expected an identifier”),

15 3

16

17 advance();

18

19 // we call the params rule

20 let params = parse_params();

21

22 // we are done, we return a struct

23 // with the info of the prototype

24 return Prototype {

25 name,

26 params,

27 };

28 |}

7.3 Semantic Analysis and [IR] Code Gener-

ation

Once we have an AST, we can traverse it to generate the
LLVM IR. Since this is a simple compiler, we are going
to do the semantic analysis in this step. With more com-
plex compilers, we may want to create a specific step of
semantic analysis, but in our case it is not necessary. Se-
mantic analysis basically checks things like if a variable ex-
ists when referencing it, or if the type of a variable is correct
(for example if we are multiplying an integer with a struct,
the semantic analyzer will catch it and throw a compilation
error).

LLVM has the concept of modules. A module contains
all the information associated with one code file. If we have
multiple files, we simply have to create different modules
and link them. Modules contain functions and functions are
made up of blocks. Blocks are defined by specifying a label.
These labels are like assembly labels, they define sections
within out code, and we can use them to make jumps to
the different sections. Blocks are made up of instructions,
similar to the instructions we find in assembly.

Module

Function

BasicBlock

Instruction

/

Fig. 3: Overview of the different building
blocks of LLVM

Let’s see an example of a small piece of code and what
it would look like in the intermediate representation of

8 EE/UAB TFG INFORMATICA: Design and implementation of a programming language with LLVM

LLVM. We have the following function that receives two
integers and returns the maximum:

1 | fn max(int a, int b) int {
2 ifa>b{al}else{ b}
303

If we translate it to LLVM IR we have the following code:

define 132 @max(i32 %a, 132 %b) {
entry:

%0 = icmp sgt 132 %a, %b

br i1 %0, label %btrue, label %bfalse

btrue:
br label %end

0N U~ WN =

9 |bfalse:
10 br label %end

12 |end:

13 %retval = phi i32 [%a, %btruel, [%b, %bfalse]
14 ret 132 %retval

15 |3

The first line of the previous code defines a function,
which receives two 32 bits integers. A label entry is defined
below.

The first thing it does, on the ’entry’ tag, is comparing
both integers (i.e. the if condition). The ’sgt’ keyword
[9], means ’signed greater than’, which, as the name says,
does a greater than signed comparison. The result of the
comparison is a one bit integer which acts like a boolean.
If it’s true, it will jump to the label btrue, otherwise to the
label bfalse.

In this case the two branches do the same thing: a jump
to the label end. There we come across a concept called
phi nodes [10][11]. The phi nodes are kind of an inverted
if. Depending on where we did the jump we will assign
one value or another to the variable %retval. If we come
from btrue, %retval is assigned %a, and if we come from
bfalse it is assigned to %b.

Now, why do the two branches jump to the end tag and
then do a conditional again in the end block? Couldn’t we
assign the value of retval directly inside the branch btrue
or bfalse and spare us that third conditional? Well the an-
swer is no, because then we would be generating code that is
not in SSA form (we would be assigning the value to %ret-
val in two different places if we weren’t using Phi nodes).
And as we mentioned earlier, LLVM requires the generated
code to be in SSA form. And that’s why phi nodes exist, to
be able to solve this kind of problem.

7.3.1 LLVM API

It’s important to understand the LLVM IR, but generating
all of that code by hand is a lot of work, and it would re-
quire us to put a lot of infrastructure in place. Fortunately,
LLVM comes with a C++ API, that makes generating the
IR alot easier. But there’s a little problem, we are not using
C++. Thankfully, there’s a Rust library called Inkwell [12]],
that offers a comfortable and idiomatic Rust interface to the
LLVM API. Under the hood it calls the C++ API by using
FFI (Foreign Function Interface).

The API is made of several entities. The most fundamen-
tal one is the BasicBlock, which represents the blocks that
we find inside a function, i.e. the set of instructions we find
within a label. If we group a bunch of BasicBlocks, we have
an entity call Function, which represents a function in the

IR. And by grouping a bunch of functions we get the Mod-
ule entity. As you may notice these entities represent the
different parts that we saw when we talked about the IR.

Another important entity is Context. We just need and
instance of it, and it will keep track of the state of the com-
pilation.

Finally, we have the Builder entity, which is the one in
charge of actually generating the code. For example, if we
want to generate a comparison, like the one we saw on the
IR example, we would call the Builder, telling it which
instruction to generate:

Builder.CreateICmpSGT(a, b, "some-name")

The first two parameters are the two values being com-
pared. The third indicates the name of the generated vari-
able (we can give it any name we want, it’s only useful for
debugging).

The previous call will generate the following code (which
is the third line of the IR example we saw):

%0 = icmp sgt i32 %a, %b

8 RESULTS

The aim of this bachelor’s thesis was to develop a program-
ming language using Rust and LLVM. The language was
designed to incorporate basic features such as if statements,
while loops, functions, structs, and arrays.

The implementation of the language was carried out us-
ing Rust as the primary programming language and LLVM
as the compiler back-end. The use of Rust allowed for a
pleasant development experience and a fast compiler, while
LLVM provided the necessary tools for code optimization
and generation.

The final result of the project is a functioning program-
ming language that includes the aforementioned features
and can be used to write and execute basic programs. The
implementation of the main features was successful, and the
language was able to perform as expected.

With the compiler as of today, we can write programs like
the following:

struct ComplexNum {

1
2 real: 64

3 imaginary: f64

4 13

5

6 | fn add(x: ComplexNum, y: ComplexNum) ComplexNum {
7 ComplexNum!{

8 real: x.real + y.real,

9 imaginary: x.imaginary + y.imaginary,

10 3

1 |}

13 | fn main() {

14 let x = ComplexNum!{
15 real: 1.0,

16 imaginary: 2.0,
17 b

18

19 let y = ComplexNum!{
20 real: 3.0,

21 imaginary: 4.0,
22 b

23

24 let z = add(x, y);
25 printf("x +y = %f + %fi\n", z.real, z.imaginary);
26 |3

Or this which prints an approximation of the Mandelbrot
set:

JOSEP M. DOMINGO CATAFAL: Design and implementation of a programming language with LLVM 9

fn mandelbrot(a: f64, b: f64) f64 {

1
2 let mut za = 0.0;

3 let mut zb = 0.0;

4

5 let mut i = 0;

6

7 while i < 50 {

8 za = (za*za - zbxzb) + a;
9 zb = (za*zb + zaxzb) + b;
10 i=1i+1;

1 }

12

13 za*za + zb*zb

14 |3}

15

16 | fn main() {

17 let xstart = -2.0;

18 let xend = 0.5;

19 let ystart = 1.0;

20 let yend = -1.0;

21

22 let xstep = 0.0315;

23 let ystep = -0.05;

24

25 let mut x = xstart;

26 let mut y = ystart;

27

28 while y > yend {

29 X = xstart;

30 while x < xend {

31 if mandelbrot(x, y) < 4.0 {
32 printf("x");
33 } else {

34 printf(" ");
35 3

36 X = x + xstep;
37 }

38 printf("\n");

39 y =y t ystep;

40 b

41 |3

The output of this program can be found on the appendix
A1l

Furthermore, the project provided an opportunity to gain
experience in using Rust and LLVM, as well as to gain
a deeper understanding of the design and implementation
of programming languages. The combination of Rust and
LLVM proved to be a powerful combination for developing
a compiler.

9 CONCLUSIONS AND FUTURE WORK

The development of a programming language is a long and
arduous process. It requires the work of a lot of very good
engineers, and a lot of time. The goal of this project was
not to create a production ready language packed with fea-
tures and an extensive standard library, but rather to create a
simple language with the basic functionality to make some-
thing useful. It was a project to learn about the internals of
compilers and programming language design. And I think
the goal was accomplished. We have a simple language that
allows us to create programs that actually run. However,
there are many opportunities for future work and improve-
ment, since, as stated, it takes a long time to develop a good
language:

* New features: It would be interesting to add new fea-
tures such as for loops with ranges, a pipe operator
similar to the one in Elixir, list comprehension like in
Python, and many more features that would make the
development process a lot more pleasant.

* Modules: As of now, all code has to go on one file,
there’s no way to import code from another one. A

module system has to be designed and implemented in
order to allow it.

* Error handling mechanism: Currently there’s no
way to handle errors. An error handling mechanism
has to be put in place. The idea would be to use some-
thing similar to the error handling mechanism in Rust,
rather than exceptions, since it gives the code linearity,
and they have to be explicitly handled on each case.

* Tooling: Some extra tooling like a formatter or a linter
could be included with the compiler.

REFERENCES

[1] Stanford CS 242: Programming Languages. Mem-
ory safety in Rust. Accessed the 6th of Febru-
ary 2023. Available at: https://stanford-
cs242.github.io/f18/lectures/05-1-rust-
memory-safety.html

[2] Go compiler. Generating machine code. Ac-
cessed the 6th of February 2023. Available at:
https://github.com/golang/go/blob/master/
src/cmd/compile/README . md#7-generating-
machine-code

[3] Guide to Rustc development. Code generation.
Accessed the 6th of February 2023. Available
at: |https://rustc-dev-guide.rust-lang.org/
backend/codegen.html

[4] Clang compiler. Accessed the 6th of February 2023.
Available at: https://clang.llvm.org

[5] Calling Java from Kotlin. Accessed the 6th of Febru-
ary 2023. Available at: https://kotlinlang.org/
docs/java-interop.html

[6] Erlang libraries from Elixir. Accessed the
6th of February 2023. Available at: |https:
//elixir-lang.org/getting-started/erlang-
libraries.html

[7]1 Craft Git Repository. Accessed the 6th of February
2023. Available at:
https://github.com/josepmdc/craft

[8] LLVM Foundation sponsors. Accessed the 7th of
February 2023. Available at: https://foundation.
1lvm.org/docs/sponsors/

[9] LLVM Language Reference. icmp instruction.
Accessed the 7th of February 2023. Available at:
https://1lvm.org/docs/LangRef.html#icmp-
instruction

LLVM tutorial LLVM IR for if/then/else. Accessed the
7th of February 2023. Available at: https://11lvm.
org/docs/tutorial/MyFirstLanguageFrontend/
LangImpl@5.html#llvm-ir-for-if-then-else

[11] LLVM Language Reference. phi instruction. Ac-
cessed the 7th of February 2023. Available at:
https://1lvm.org/docs/LangRef.html#phi-

instruction

https://stanford-cs242.github.io/f18/lectures/05-1-rust-memory-safety.html
https://stanford-cs242.github.io/f18/lectures/05-1-rust-memory-safety.html
https://stanford-cs242.github.io/f18/lectures/05-1-rust-memory-safety.html
https://github.com/golang/go/blob/master/src/cmd/compile/README.md#7-generating-machine-code
https://github.com/golang/go/blob/master/src/cmd/compile/README.md#7-generating-machine-code
https://github.com/golang/go/blob/master/src/cmd/compile/README.md#7-generating-machine-code
https://rustc-dev-guide.rust-lang.org/backend/codegen.html
https://rustc-dev-guide.rust-lang.org/backend/codegen.html
https://clang.llvm.org
https://kotlinlang.org/docs/java-interop.html
https://kotlinlang.org/docs/java-interop.html
https://elixir-lang.org/getting-started/erlang-libraries.html
https://elixir-lang.org/getting-started/erlang-libraries.html
https://elixir-lang.org/getting-started/erlang-libraries.html
https://github.com/josepmdc/craft
https://foundation.llvm.org/docs/sponsors/
https://foundation.llvm.org/docs/sponsors/
https://llvm.org/docs/LangRef.html#icmp-instruction
https://llvm.org/docs/LangRef.html#icmp-instruction
https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl05.html#llvm-ir-for-if-then-else
https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl05.html#llvm-ir-for-if-then-else
https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl05.html#llvm-ir-for-if-then-else
https://llvm.org/docs/LangRef.html#phi-instruction
https://llvm.org/docs/LangRef.html#phi-instruction

10 EE/UAB TFG INFORMATICA: Design and implementation of a programming language with LLVM

[12] Inkwell Documentation. Accessed the 4th of October
2023. Available at:
https://thedan64.github.io/inkwell/inkwell/
index.html

BIBLIOGRAPHY

[1] Nystrom, R. Crafting Interpreters. Published July
2021. ISBN 0990582930.

[2] Ball, T. Writing A Compiler In Go. Published August
2018. ISBN 398201610X.

[3] LLVM Kaleidoscope Tutorial: Implementing a Lan-
guage with LLVM. Accessed the 25th of October 2022.
Available at: https://11lvm.org/docs/tutorial

[4] Rathi, M. A complete guide to LLVM for program-
ming language creators. Mukuls Blogs. Accessed the
2nd of November 2022. Available at:
https://mukulrathi.com/create-your-own-
programming-language/llvm-ir-cpp-api-
tutorial

[5S] Mapping High Level Constructs to LLVM IR. Ac-
cessed the 20th of October 2022. Available at:
https://mapping-high-level-constructs-to-
llvm-ir.readthedocs.io/en/latest/README.
html

APPENDIX

A.1 Output of the Mandelbrot set program

XXXXXXK
XXXXXXXXXXXXKK XX
XXX KCXHKKXHXXKHHXKK
XXOOOOOOOGXXHOOCHXKX XXX
XXXXXXXXKKXXXRXXXXKKKXKKKKKK X
KHXXXAXXXXXXXXXXXXXKXXXXXXXXXKXX
x XAXXXXXXXAXXXXXXXXXXXXXXXXXXXXXXXX

X XX XXXXXXXHXXXXXXXKXXHKXXXXXXXXXXXXKXKX XX

XXXXXXX XXXHHXXXXXKXHXXXKHKKKXXXXKXHKKKXHXXXKXX
XXXXXXX XXX XXXHHXKXXHXXXKHKXKKKHKKKXXXXXEHXKKKKX KK XX
XXXXXRXXKKXX XXX HKOCHHKXXXXXKH XK

XXOOOO KKK KOOI KOKXXX XK OCHHKK XX KXKK XK
KAXXKKXXXKKKXXXXXXKKKKXKK XXX XX XX KK KXXX KX XK KKKK KK KKK KKK
2000O000KKOOGOOXHK XXX XXXXKIOCCEHKNKXXXAXXXXXKXXXXXKXXXRKX
AAXARHXXXKHXXX XXX XLAXK XXX XXX XXKXXXXXXXXAXXXXXXXXXXXXXXXXKXXX
XXXXXXXXXXXXXXXKXLXKXXXXXXXXXXXXXXXXXXXKXXKX XXX XXX XX XXX XXX
XOOXXHXXXXHXXXX XXX HHXKXXXXXXXHK XXX XXXX XX XEKXXKKXX XXX XX XXX XKXX

X XHXKXXXXKXXX KKK KHXKK XXX XHHKKXXKXXKK K KKK XXKK X XXKHHXK KKK

XXXXXXKHHXKXXXHXXHKKKXXXXXH K KKK XXX KKK KKK XKXKXXXKKKHKKXXKXXKKXKKKXKXKX

X OO0 KKK HKXXXN XXX K XXX
OO KGO0 XKXXXRXXX
XXXXKKKKXXKXXXKKHEXKKX KN XXXXKKKKKK KRN KKK XXKK KKK XX KKK KKKKKK
XXX XXX XXXKHKOOKHXRX X XXX XXXX XX XXX XX KKXKKKKXK
XAAHXXAAAXXXXHXHXAXXXXXXXXXRXXXXXKXXXXXAXXXXXXXXXXXXXXXXKKKX
XXXXXXXHXXXXHOERXKXXKKXHXXKX XXX XXX KXXHXXKXXXKKKXKXXXKXKK XK
XXXXXXX XXX HHXKK XXX XHHXKKXXKHXXHKKKKHXXKK XX XKHX KKK XXX KKK K

XXXXXXXXXXXX XXXHXKKXXKXXKXKKXKXXXKXXXKXHXKXXKKXKK XK
XXXXXXXKXKX XOOOXXKXXXXXXX XK XXHXXKXXXXXKE XK KKK XKXX
XXXXXXX 3OO XHIXK KX KKHXXXKXX
X XX XAXXKKKKXRRXXXKXXXXKXXKX XXX KKKKKXKK

X XAXKKXXKXKXXXXXXXXKXKK XX XX KKKKKKK
KHXXXAXXXXXXXXXXXXXKXXXXXXXXXKXX
XXXXXXXXXXXXXXXXXXXXXXXXXXX X
XXXXHXXXXXXXXXXXXKXXXX XXX XK
XXXXXXKKHXXKXXXXXXXX KK
XXXXXXXXXXXXKK XX
XXXXXNK

https://thedan64.github.io/inkwell/inkwell/index.html
https://thedan64.github.io/inkwell/inkwell/index.html
https://llvm.org/docs/tutorial
https://mukulrathi.com/create-your-own-programming-language/llvm-ir-cpp-api-tutorial
https://mukulrathi.com/create-your-own-programming-language/llvm-ir-cpp-api-tutorial
https://mukulrathi.com/create-your-own-programming-language/llvm-ir-cpp-api-tutorial
https://mapping-high-level-constructs-to-llvm-ir.readthedocs.io/en/latest/README.html
https://mapping-high-level-constructs-to-llvm-ir.readthedocs.io/en/latest/README.html
https://mapping-high-level-constructs-to-llvm-ir.readthedocs.io/en/latest/README.html

