
This is the published version of the bachelor thesis:

Palma Comas, Ferran; Franco Puntes, Daniel, dir. GymApp with IoT sensors
and controller hub, cloud repository and control from web app. 2023. (958
Enginyeria Informàtica)

This version is available at https://ddd.uab.cat/record/272793

under the terms of the license

https://ddd.uab.cat/record/272793


This is the published version of the bachelor thesis:

Palma Comas, Ferran; Franco Puntes, Daniel, dir. GymApp with IoT sensors
and controller hub, cloud repository and control from web app. 2023. (958
Enginyeria Informàtica)

This version is available at https://ddd.uab.cat/record/272793

under the terms of the license

https://ddd.uab.cat/record/272793


TFG IN COMPUTER SCIENCE, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

GymApp with IoT sensors and controller
hub, cloud repository and control from web

app

Ferran Palma Comas
February 2023

Abstract– Nowadays there are many systems that allow us to register several parameters of a training session:
calories burned, time spent, etc. However, there is no solution that allows us to know the state of the facilities in
which these training session is done in terms of temperature, humidity, capacity... This is therefore a need that
must be met: giving the user a way of knowing the conditions of his training center. To this end, it is proposed
to create a complete IoT system that is supported by cloud functions for data processing and storage, as well
as their display to the user. To do this, there are sensors that capture information from the environment, a cloud
that analyzes, processes and stores it, and a platform where the user can access the data in an attractive and
intuitive way.
Keywords– Z-Wave, sensors, Home Assistant, IoT hub, Cloud, Cloud Repository, Azure, Firebase, Grafana

✦

1 INTRODUCTION

Technology has advanced by leaps and bounds in all
aspects of society. It has made a strong entry into
the workplace, especially since the pandemic, a

time that is hard to imagine without telework and the pos-
sibilities it has brought. Around 99 % of companies with
more than 10 employees have computers and internet con-
nections by 2020[17].

This development has also reached homes. Nowadays,
it is hard to imagine a house without a WiFi network and,
at least, one computer. In fact, in Spain, more than 95%
of homes have broadband and more than 83% have at least
some kind of computer[16].

In fact, technology has drastically changed the way we
humans understand the world. Every day, more than 200
million users check twitter at least once a day[19]. More-
over, in 2020, 21.5% of all transactions were made using
the phone wallet[4].

However, this incredible advance does not seem to have
made much headway in the world of gyms, despite the fact
that this world is becoming increasingly popular among
Spaniards (it is estimated that in 2019 more than 5 million
Spaniards were enrolled in a gym [9], an increase of 26%
compared to the previous year).

• Contact: 1528193@uab.cat
• Specialization in: Computer Engineering
• Work tutored by: Daniel Franco Puntes (Departament

d’Arquitectura de Computadors i Sistemes Operatius)
• 2022/23

While it is true that there are many applications that serve
to provide information to the user about their training (calo-
ries burned in a session, the average heart rate of the ses-
sion...), users have no way of knowing how are the facilities
in which they practice their activity in the sense of occu-
pation, availability of the machines, etc. This information
is becoming increasingly relevant given the high occupancy
figures in gyms. While it used to be unthinkable to go to
the gym and not find any empty machine, today it is more
than usual to arrive at the gym on a Monday afternoon and
find that it is absolutely impossible to train given the large
number of people there.

It is in this context that this project makes sense. The
market niche to be targeted is very specific and there is cur-
rently no real solution to the problem posed in this work:
the aim is to be able to give to the user a way of consulting
real-time and historical data on his or her training centre
through a complete IoT system.

2 OBJECTIVES

Having deduced the main objective: to give the user a way
of consulting real-time and historical data on his or her
training centre through a complete IoT system, it is now
time to break this down into more specific objectives that
allow a deeper understanding of the system’s features.

1. Create a network of Z-Wave sensors that are capable
of capturing useful information from the environment.

2. Capture all this information using open software op-
tions (Home Assistant [13]) installed on a microcon-

February 2023, Escola d’Enginyeria (UAB)



2 TFG FERRAN PALMA: GymApp WITH IoT SENSORS AND CONTROLLER HUB, CLOUD REPOSITORY AND CONTROL FROM WEB APP

troller (Raspberry Pi 3 [10]).

3. Send the data remotely to some cloud service, such as
Azure.

4. Analyse and process the data in order to generate valu-
able information.

5. Display the cloud data through a low-code user-
friendly platform.

3 STATE OF THE ART

This project uses several technologies that need to be stud-
ied. However, a brief study of these technologies will be
made in order to justify their use, as an exhaustive study is
beyond the scope of this project.

The first of the technologies used is Z-Wave. Z-Wave is
a low-power communication protocol that operates, in Eu-
rope, in the 868.42 MHz band. This allows the communi-
cations of this protocol to have no interference with tech-
nologies such as WiFi or Bluetooth, which operate in the
2.4MHz band.

There are other similar protocols such as Zigbee. How-
ever, Z-Wave has one great strength: it is a closed stan-
dard. This means that no device using this protocol will
have compatibility problems with other devices of the same
type. This is not guaranteed when using Zigbee, because it
is an open standard.

Z-Wave is designed to provide secure, low-latency trans-
mission of small data packets at data rates of up to 100Kbps,
and its networks can currently consist of up to 4.000 de-
vices.

As far as the microcontroller is concerned, the Raspber-
ryPi 3 Model B+ is a board with 1GB of RAM, an Ethernet
port capable of working at speeds of up to 300 Mbps, SD
card support... which are more than enough specifications
for the system in question. There are other options a little
more powerful even within the same brand, however, for the
specifications of this project this device will be more than
enough and will allow easy scalability if necessary.

Home automation software has come a long way in re-
cent years. HomeAssistant is one such software. It first ap-
peared in 2013. It is open source, multi-platform and since
2017 it allows the integration of many technologies. As of
today, HomeAssistant is integrated with more than 2.300
technologies (including, for example, Z-Wave).

Another possible option would be to use OpenHab,
which is also an open source software that serves the same
purpose as Home Assistant. However, OpenHab requires a
more complicated installation as well as a larger amount of
resources to run.

Since the function of such software in this project is sim-
ply to bridge between the sensor network and the cloud,
Home Assistant seems to be a better option.

Just as home automation software has come a long way
in recent years, cloud-based technologies have not been left
behind.

There are now multiple of cloud options, including
Azure. This platform offers several of cloud services, in-
cluding real-time data ingestion systems that are capable of
receiving millions of events per second, others that are ca-
pable of analyzing this data virtually instantaneously, and

others that can store data on the scale of terabytes. More-
over, all these applications tend to be highly scalable and
flexible, adapting to the needs of each use case.

Finally, as far as user interface is concerned, there are
also multiple options: programming a web page to visu-
alise the data, use tools like Microsoft PowerApps to de-
velop a mobile application... There are many possible ways
to tackle this problem.

However, in our case the best option is Grafana. Grafana
is a service that allows you to create customised panels on
which to display data through a web application that can be
consulted both from a computer and from a smartphone. In
addition to requiring very little code to operate and having
several integrations that facilitate the collection of data.

4 METHODOLOGY AND PLANNING

The methodology followed in this project is the Kanban
[18] methodology. This methodology is based on the cre-
ation of cards corresponding to tasks. For each card, a com-
pletion status can be assigned (in addition to other items
such as a deadline or a short description of the task): pend-
ing, in process or completed. This allows, in a very graphic
way, to be able to understand the status of the tasks that
make up the project. In order to implement this methodol-
ogy, Notion boards have been used.

The tasks that make up the project have been grouped
into groups and the precedence and origin of each of these
has been defined, so that a cascade planning of the project
has been defined. According to the planning, for a phase
to start, the previous one must be finished. This planning
will allow to obtain, at the end of the last phase, a MVP
(Minimum Viable Product). Furthermore, the result of this
planning is a Gantt chart that clearly shows the time division
of each of these groups of tasks (this chart can be consulted
in the Github respository[5]). In addition, for each of the
groups, it can be seen which tasks make up the group and
what is the precedence relationship between each one of
them.

5 SYSTEM ARCHITECTURE

Figure 1 shows a schematic diagram describing the archi-
tecture of the system:

Basically the system works as follows: a sensors network
captures data from the environment (temperature, bright-
ness...) and sends it to the microcontroller. Once the infor-
mation is in the microcontroller, it is sent to the cloud. It is
in the cloud where this data is processed and analysed and
it is this service that is responsible of communicating with
the client to provide the information requested.

5.1 Sensors Network
The sensor network that we will use will communicate
using Z-Wave, which, as already mentioned, is a low-
frequency, secure, and low-consumption communication
protocol. In addition, the market has many sensors that use
this protocol, which allows us to create a system with a wide
variety of devices that can measure an infinite number of
different metrics.



Ferran Palma Comas: GymApp with IoT sensors and controller hub, cloud repository and control from web app 3

Fig. 1: System architecture

Regardless of the communication protocol we use, we
must have a hub or central node, to which all the sensors
communicate and which communicates with another device
(usually a microcontroller).

5.2 Microcontroller
At has been said, in order to be able to deal with the data
of the sensors, a microcontroller is usually needed. And the
microcontoller (in our case, as mentioned above, a Rasp-
berry Pi 3), needs some kind of software running on it to be
able to handle the data. The kinds of software that can be
used are varied and each one offers it’s own characteristics.

One of them is to use Home Assistant. Home Assistant is
a free software project aimed at home automation that puts
local control and privacy first.

This software is perfectly adapted to the needs of our ap-
plication. In addition, it has a number of features that make
it a very good choice:

• It is secure.

• It does not depend on any external company but on it’s
community, as it is a free software option.

• As a consequence of this last feature, it offers a high
level of data privacy.

• It has a large number of native functions as well as a
large number of Ad-Ons created by the community.

• It is certainly a simple tool to install and intuitive to
use.

• It has a large community behind it.

• It’s prepared to be supported by a Raspberry.

5.3 Cloud
As mentioned above, Home Assistant provides a simple
way to collect information from the sensors that are part
of the IoT network.

For this information to acquire value, an important step
is to be able to store and process it in the cloud.

There are many options on the market that allow this
functionality to be implemented. One of them is Azure, a
Microsoft service that offers multiple products and services
in the cloud, some of which are perfectly suited to the needs
of this project.

In addition, HomeAssistant offers an integration that al-
lows it to communicate with Azure in order to send the in-
formation it holds.

It is for all these reasons that Azure has been chosen as
the cloud service for this project.

5.4 Information Display
Being able to display information to the user in order for the
application to be of real use is as important, if not more im-
portant, as being able to process this information properly.

Therefore, it is of vital importance to choose a platform
that allows the user to consult the information of interest in
an easy, simple and intuitive way.

Furthermore, this platform must be simple to develop, as
this allows working with low-code tools (one of the objec-
tives of the project) and also to focus more on the flow and
processing of the data than on its presentation.

Azure offers a wide variety of options for displaying data,
both using the platform itself or using third-party tools.

One of these options is Grafana, which is a free software
tool that allows data to be displayed graphically. It can be
installed both locally and on a server and allows anyone
with a connection to the server to visualise the data available
to them in a very graphical, intuitive and attractive way.

At the administration level, Grafana also offers a plugin
that allows it to connect to Azure, it is very easy to use and
hardly requires any code, so it adapts perfectly to the use
case in which we are.

6 SYSTEM DEVELOPMENT

This section details technical aspects of the infrastructure
that has been built: from the installation of HomeAssistant
and the set up of the sensors network, through its connection
to Azure and the processing of data on this platform to the
installation and configuration of Grafana.

6.1 Z-Wave Network
Figure 2 will help us to understand in detail how the Z-Wave
sensor network works:

Fig. 2: Z-Wave Network scheme

The network consists of one sensor and a hub: the Multi-
sensor 6 and the Z-Stick Gen5, all from Aeotec.

The sensor is paired with the Z-Stick, which acts as a
central node and communicates with the microcontroller via
USB, transmitting the data it receives from the sensor to the
microcontroller.



4 TFG FERRAN PALMA: GymApp WITH IoT SENSORS AND CONTROLLER HUB, CLOUD REPOSITORY AND CONTROL FROM WEB APP

The power supply for the sensor is flexible. It can be
powered directly from the power supply via USB (using,
for example, the voltage provided by the board) or using
external batteries.

To pair the sensor with the hub, we have to follow the
user guide of the sensor [1] as well as the Z-Stick guide to
get the Z-Stick into pairing mode [2].

Once this is done, the Z-Wave network is set up and op-
erational, so the next step is to process the data from the
controller.

6.2 HomeAssistant
Installing Home Assistant requires a microSD memory
card, a board on which to install it (Raspberry Pi3) and a
software that can write image files (Balena Etcher [3]) to a
memory device.

However, before proceeding with the installation of
Home Assistant [15], it is extremely important to tell the
Raspberry that it must boot to the image contained on the
memory card.

Once done, we have to download the Home Assistant im-
age via the GitHub repository [14] and write it to the mem-
ory card using Balena Etcher. The next step is to insert the
memory card into the slot on the board and connect it to the
power supply and to the internet via an Ethernet cable.

After a few minutes, Home Assistant will be installed and
can be accessed via the url http://homeassistant.local:8123
as long as we are connected to the same network as the mi-
crocontroller (which acts as a local server).

Once Home Assistant is fully installed, a page will ap-
pear where some basic system parameters can be configured
and then the software is prepared to be used.

The first thing we need to do is to be able to detect the
sensors in Home Assistant. To do this, Home Assistant has
an integration that allows set up a Z-Wave network. Simply
install it and it will automatically detect the Z-Stick and,
consequently, all the devices that form part of its network.

By default, the Multisensor 6 [1] will send information
every hour. Since the intention of this application is to be
able to display information in real time, it will be good to
change this parameter so that the sending of information has
a lower periodicity.

To do this we have to go to the devices section of the
Home Assistant menu and configure the sensor data sending
time to the one desired. In our case, 10 minutes.

At this point, we now have a fully operational Z-Wave
network and we can see the information through the dash-
board that Home Assistant automatically generates.

Now it will be necessary to connect our Home Assistant
server to the Azure cloud. In order to understand in detail
how to configure this functionality, it is also important to
understand what an Event Hub is and how it works (this in-
formation can be found later in the document). Basically,
what we need to do to connect HomeAssistant to the Even-
tHub is provide a key called ConnectionString; this key can
be obtained from the EventHub permissions. So, to estab-
lish the connection, we must install the Azure integration in
HomeAssistant (as we have done with the Z-Wave one) and
provide the ConnectionString during installation. If this is
correct, HomeAssistant and Azure will be connected and
the data will start being sent to the cloud.

6.3 Azure

To understand the cloud application that has been imple-
mented, it is important to understand which components
make it up and how they are interconnected with each other.

As a main idea, it is necessary to understand that Azure
offers multiple applications and these are executed in clus-
ters, so, each time an application is created (i.e: a database)
it will be necessary to create a cluster, which, by definition,
may contain several instances of the same type of applica-
tion.

In other words, we could have a database cluster for one
application and within this cluster we could have several
independent databases.

In addition, it is also possible to have different clusters
that can be grouped into resource groups.

The figure 3 shows an overview of the components of our
cloud application (if you want to consult this or any other
image with bigger size, they are all available in the GitHub
repository [5] of the references):

Fig. 3: Cloud application scheme

The data coming from the sensor network is dumped on
an EventHub (let’s understand the EventHub as a raw data
container for the moment). These are processed and finally
sent to a database. In the picture, there is an additional com-
ponent called BlobStorage. This is basically a container the
same as EventHub except that BlobStorage is meant to store
raw data, while EventHub is meant to hold it for a retention
period and then delete it. For the system that we are im-
plementing, the BlobStorage is not necessary and therefore
our scheme is the one shown in the image without taking
this component into account.

6.3.1 Resource groups

As described in the official Azure documentation [8]: a re-
source group is a container that holds resources related to a
certain solution.

So, all the applications that we use to make the data cap-
tured by the sensors capable of being displayed in Grafana
will be grouped into a resource group.

Creating a resource group is a simple task and the process
can be found also in the official Azure documentation cited
above.

From now on, all the applications we use in the solution
we are implementing will be grouped into the created re-
source group.



Ferran Palma Comas: GymApp with IoT sensors and controller hub, cloud repository and control from web app 5

6.3.2 Event Hub

The first of the applications needed to implement the de-
sired solution is an Event Hub, as seen in Fig. 3.

An Event Hub is a real-time data ingestion system that is
capable of receiving millions of data per second.

The Event Hub is basically used as a container in which
to dump all the data provided by the sensors. This data is not
treated or processed, as this must be done in other phases of
the application.

To create an Event Hub, apart from having a resource
group in which to store it, it is necessary to create a names-
pace of Event Hubs. This can contain one or several Event
Hubs. The namespace refers to the clusters mentioned
above and their creation is necessary for each of the applica-
tions to be created, so from now on, it is understood that, to
create each of the applications, it is necessary to first create
a namespace that contains it.

The Event Hub creation interface asks us to enter several
fields in order to create it: the subscription that will be used
(this is necessary for anything that is created and will be
omitted from here on), the resource group in which it will
be located, the name of the namespace in which it will be
and the server on which it will be hosted (this step refers
to the geographic location of the Azure server where our
application will be hosted. Again, is repeated in the same
way as the subscription and the creation of the namespace
and, therefore, will also be understood in subsequent expla-
nations).

When we create the Event Hub, we get some informa-
tion such as the resource group it is part of, the geographic
location where it is hosted, the creation date...

Once the Event Hub is connected to Home Assistant, it
will offer us metrics about data ingestion. Figures 4, 5 and
6 show some of the metrics provided:

Fig. 4: Requests for data ingestion.

Fig. 5: Incoming and outgoing messages of the Event Hub.

Fig. 6: Performance measured as input bytes.

However, at the moment the data is not being processed
and, in fact, cannot be consulted as such.

6.3.3 Stream Analytics

In order to be able to process the raw data received and filter
it to store in a database only those data that are of interest to
us, Azure offers several tools. One of them is Azure Stream
Analytics.

This tool offers a way to process data through SQL
queries, so that, from a data source (in this case, the Event
Hub), data is filtered through queries and spat out to an out-
put. In this case, a database service offered by Azure: Azure
Data Explorer.

Azure Stream Analytics works through jobs. Several jobs
can be run at once and each job receives data from one or
more inputs, performs one or more queries (functions can
also be used, although this functionality has not been ex-
plored), and pushes the results to one or more outputs.

One of the jobs created runs the SQL query shown in
figure 7:

Fig. 7: Query for the job

In which, basically, the data is filtered to only get the
information provided by the sensor about the temperature
and omit all the other information. The following images
show the input data (figure 8) and the data obtained once
the query has been executed (figure 9):

Fig. 8: Data before the query.



6 TFG FERRAN PALMA: GymApp WITH IoT SENSORS AND CONTROLLER HUB, CLOUD REPOSITORY AND CONTROL FROM WEB APP

Fig. 9: Data after the query.

The filtered data is sent to the specified database and
saved in it’s corresponding table. In this particular applica-
tion, there are two jobs: the one corresponding to the images
and filtering the data concerning temperature and a second
with a very similar query but filtering the data concerning
to the humidity.

Each of these jobs sends the data to a different table in
the database (the details of the tables and the creation of the
database are specified in the corresponding section).

6.3.4 Azure Data Explorer

In order to be able to persist valuable data that has been
analysed in the cloud, a database is necessary.

Azure offers several applications that function as
databases. One of them is Azure Data Explorer. This tool is
very useful because the aplication that we will use to display
the data to the user offers a plugin that allows to connect to
such a database.

When we create the database we simply need to offer
Azure two values: how many days of retention the data has
and how many days this data is cached. By default, these
metrics have values of 365 and 31 days respectively. For
a first prototype of the system, these values are more than
enough, but it is good to know that this option is offered and
that, if necessary, the parameters can be modified.

Once the database is created, it is important to create the
tables that will contain the information. For each table we
must give it a name as well as define which fields it will
contain. For each field it is necessary to specify the name
and the type of data it will contain.

In our particular case, both tables had 4 fields: entity id
(String), state (String), last changed (Datetime) and last up-
dated (Datetime).

6.3.5 Aplication

For the user to be able to consult the data provided by our
IoT sensor network, it is necessary that the platform used
to display them (Grafana) is able to access the database we
have in Azure.

This connection cannot be established directly and a tool
provided by Azure must be used: the applications. These
are based on the use of Azure Active Directory, which is a
cloud-based identity and access management service.

Therefore, in order for Grafana to access the cluster in
which the Azure Data Explorer database is located, it is nec-
essary to create an application and connect it to Grafana.

To create an application, we must give it a name and,
once created, connect it to Grafana (this part is described in
detail in the Grafana section of the document).

However, this application by itself can’t provide Grafana
any information for the panels. It needs to have access to
the database. To do this, from the database itself, some per-
missions have to be modified to give the application read
permissions. The details of how this process is done are
detailed in the official Azure documentation [7].

6.4 Information Display
Once we have obtained processed information, it is time to
give it value through presenting it to the final user.

To do this, we have chosen to display the information in
panels so that both users and gym administrators can con-
sult it. These panels are grouped into dashboards, and these
dashboards are the ones that the user can consult. This gives
the project an extra point: it is useful not only for gym users
but also for gym administrators.

6.4.1 Webpage

The information of interest to the user and the gym manager
is not the same. So it will be necessary to differentiate be-
tween users and administrators in order to be able to provide
the interest information for each one.

The user will simply want to know what the status of the
room is at any given time, while the manager is likely to
be interested in having historical as well as current data to
make decisions based on it.

To be able to do this differentiation, when accessing the
application, the first thing that will be displayed will be a
web page in which, in the case of being an administrator,
authentication will be requested to be able to view the data,
and in the case of being a user, direct access to the informa-
tion panel will be possible.

A first prototype of the website has been created, as
shown in figure 10:

Fig. 10: Webpage prototype

As we can see, it consists of a form to authenticate and
an extra button to go to the panel without any credentials.
This form will be the one that the gym administrators will
have to fill in in order to have access to their dashboard. In
case of being a user, no authentication will be necessary and
the data can be consulted by clicking on the corresponding
button.



Ferran Palma Comas: GymApp with IoT sensors and controller hub, cloud repository and control from web app 7

6.4.1.1 Flask Server

In order to host this website, a server is required.
For this prototype, two options have been implemented:

a local server and one using a cloud server. To create the
server that is hosted locally, it has been done by an appli-
cation that uses Flask. Flask is a Python framework that al-
lows you to create and host web pages with very little code.

To use Flask, it’s necessary to install it in the machine that
is going to act as the server using the command pip3 install
flask. Once it is installed, just a basic script is needed, in
which parameters such as the address and port on which the
server will open can be defined. In this case, it will run
locally on port 80.

However, to display a web page other than the default
that comes with Flask, some HTML, CSS and JS have to
be written. The files that contain the code have to be ref-
erenced in the Flask aplication in order to show to the user
the webpage.

The details of this code are hosted in a GitHub repository
that can be consulted in the appendix [5] or in the following
link: https://github.com/ferranpalma/GymApp-with-IoT-
sensors-and-controller-hub-cloud-repository-and-control-
from-web-app

6.4.1.2 Azure App Service

As mentioned in the previous section, the website has
been posted both locally and remotely.

To hang it remotely, we have chosen to use a service of-
fered by Azure called WebApps. This allows you to host
web applications and that these can be accessed from an
address of the type: http://webAppName.azurewebsites.net.

In order to host the application there are various methods,
as can be seen on the Azure website. One of them is through
a VSCode extension, and just follow the tutorial as shown
on its official website[6].

Once the application is up, it can be consulted through
the following link: https://gymdatatfg.azurewebsites.net/,
as can be seen in figure 11:

Fig. 11: Webpage hosted in Azure servers

6.4.1.3 Firebase

Firebase is a platform for developing web and mobile
applications developed by Google. Among many other
services, Firebase offers user authentication applications.
This is the functionality of Firebase that has been used in

this project to be able to create administrator accounts that
have access to a different dashboards than users.

In order to use Firebase, we must register an application
with this Google service. Once the application is registered,
we will be given credentials that uniquely identify our ap-
plication.

The application offers multiple services, as mentioned.
One of these services is for authenticating and managing
users. This functionality allows us to choose which iden-
tification methods we will use, create accounts... In this
case, our application uses email authentication, so that the
user accounts we manage are identified by an email and a
password. The accounts can be created from the Firebase
console and the credentials simply need to be provided to
the gym administrators. By entering these credentials in the
website form, we can access the administrator panel. In or-
der to use Firebase authentication, it is necessary to use a
JavaScript script that can be consulted in the Github repos-
itory of the appendix (note that the code is not functional
as the keys are missing and, for security reasons, cannot be
shared).

6.4.2 Grafana

Grafana is a multi-platform open source analytics and in-
teractive visualization web application. It provides charts
and graphs that are fullfiled with information when Grafana
is connected to supported data sources. Those charts and
graphs are grouped into dashboards, that can be consulted
using a web browser.

Grafana has been used to host the dashboards for both
users and administrators.

6.4.2.1 Instalation

To install Grafana and make it run on a local server
on your machine, just install the necessary dependencies
and execute the commands detailed on its official website
[12].

Once the server is up, it is listening on port 3000, so, to
be able to work with it, just go to localhost:3000.

6.4.2.2 Grafana Cloud

If instead of wanting to host the Grafana server locally, we
want it to be hosted remotely so that the dashboards are
accessible from anywhere and we are not limited to being
able to consult them only if we are connected to the same
network as the local server, we can use Grafana Cloud.

This is a tool that works the same as the local server with
the only difference that it is hosted on the servers offered by
Grafana. To have access to this tool, all you have to do is
register on the Grafana website [11] and start creating the
panels in the same way that we will do it locally.

This service is free in its basic version and has a subscrip-
tion method depending on the needs of each application.



8 TFG FERRAN PALMA: GymApp WITH IoT SENSORS AND CONTROLLER HUB, CLOUD REPOSITORY AND CONTROL FROM WEB APP

6.4.2.3 Conexion with Azure Data Explorer

Grafana, in a similar way to Home Assistant, has plu-
gins developed by the community. Those plugins work
with both versions: local Grafana server and Grafana
Cloud.

One of these plugins allows to connect directly to the
Azure application that has access to the database.

To do so, is mandatory to install the plugin and fill in the
fields as shown in figure 12:

Fig. 12: Connection between Grafana and the Azure data
base.

The Cluster URL parameter corresponds to the cluster
where our database is running, while ClientID and Tenan-
tID correspond to two attributes of the application. Finally,
the secret also corresponds to the application and can be
created from the application through the Azure Active Di-
rectory platform.

Once this is done, it will be enough to choose which of
the cluster’s databases is the one we want to query (in our
case, the only one there is) and test the connection. If it is
correct, a confirmation message will be displayed as shown
in the image.

6.4.2.4 Design of the panels

Once we have the data accessible in Grafana, it is
time to design the panels in which to display the valuable
information we have obtained with our system.

As said before, those panels are grouped into dashboards.
In each dashboard it’s possible to have multiple panels that
are used to display information in different formats depend-
ing on convenience: bar charts, tables, pie charts...

Each of these panels executes queries to the database that
you specify to obtain the information to be displayed. Fig-
ure 13 shows an example of a query that is made to display
the temperature over time:

Fig. 13: Query to get the Temperature information in
Grafana.

In this case, not only has the query become necessary but
some modifications have had to be made, as shown in figure
14.

Fig. 14: Transformations applied to the query.

These modifications are called transformations in
Grafana, and they allow us to work on the data obtained
from the database to adapt it to the Grafana data types for
the panel to display the information. For example, in the
particular case of the query above, two transformations have
been required: one that allows us to change the data type
and format of the information (for example, transform a
String to a Number or specify the format of the time data)
so that Grafana is able to process it and another one that
allows us to rename the fields returned by the query.

It is important to note that these transformations can be
performed without fear of modifying or losing data from
persistent storage. The change of data type is done inter-
nally in Grafana and does not affect the database stored in
Azure; in fact, the application to which Grafana connects to
obtain the data only has read permission, so, as said, trans-
formations can be performed without fear of modifying or
losing data from persistent storage.

These dashboards, in addition to queries, offer a great
deal of customisation in the display of data. It is possible to
adjust the scale of the axes, the colours in which the graph
is displayed according to certain thresholds...

These customizations do not require code and are quite
intuitive. Figure 15 an image of the panel to which the
queries and transformations explained above correspond:

Fig. 15: An example of a simple Grafana panel.



Ferran Palma Comas: GymApp with IoT sensors and controller hub, cloud repository and control from web app 9

This panel is very simple but it serves to give an idea of
what a panel is. As will be seen later, the final panels are
much more elaborate.

7 FINAL RESULT

Finally, we have achieved the goal of the work: be able
create a proof-of-concept of a system than is able to give the
user (and the administrator) a way to consult real-time and
historical data on their training center through a complete
IoT system.

In the previous pages, all the pieces that make up the sys-
tem have been explained in detail. Since a lot of information
has been provided, it is now a good time to reorganize ideas
and make a general outline of the project in order to under-
stand how the final project looks when all the pieces of the
puzzle are together. Figure 16 shows a block diagram of the
system:

Fig. 16: Final block diagram

Basically, the sensors are capturing information and this
is sent to the hub using the ZWave protocol. From the hub,
the information is transmitted to HomeAssistant via USB.
In turn, HomeAssistant spits out all this data to the Azure
EventHub. This raw data is treated using Azure jobs and
once the data of interest is obtained, it is stored in a database
hosted by Azure. It is this database that Grafana accesses to
put the information on the panels. This can be done whether
Grafana is on-premises or using Grafana Cloud services.
So, when the user or administrator wants to consult the data
of the gym, they access a website that can be both in lo-
cal (and then, to access the web page, the user must be on
the same network as the server) or hosted by Azure (and
then it can be accessed from anywhere) and, depending on
their role (user or administrator), they are authenticated us-
ing Firebase if necessary, and are redirected to the corre-
sponding Grafana panel.

Figures 17 and 18 show the panels, both for the adminis-
trator (Fig. 17) and the user (Fig. 18):

Fig. 17: Administrator panel

Fig. 18: User panel

As we can see, the information displayed is very differ-
ent. For the plain user, only a history of temperatures in
the last 12 hours as well as the current temperature and hu-
midity is shown; the type of information that brings value
to this type of user. On the other hand, the administrator
panel shows much more information, such as temperature
and humidity histograms. This information may be valu-
able to the gym administrator as, based on this and their re-
quirements, they can make certain decisions (e.g.: automate
the air conditioning based on the data). This is providing an
extra value to the data for the managers of the entity.

In addition, the administrator dashboard allows it to be
edited while the user dashboard has this feature disabled,
since users should only be able to consult them.

8 CONCLUSION AND FUTURE LINES

Finally, it has been possible to develop the system that had
been proposed in the objectives with the added value that it
is not only useful for the user but also for the room admin-
istrator.

In addition, two options have been offered: either that the
entire system is hosted in the cloud or have a large part of it
locally, thus achieving a product that can be adapted to the
needs of each consumer.

This project has served to more than solidly justify the vi-
ability of a project of this kind: a sensor system that is easily
expandable and that sends information that is captured and
processed in the cloud with high scalability to end up being
presented to the end user in different ways depending on
their role.

Furthermore, the possible future lines of work are clearly
defined: to increase the network of sensors and to imple-
ment more Stream Analytics jobs to be able to capture more
information from the environment and thus provide the user
and especially the room manager with quality information
through which to make the appropriate decisions or auto-
mate certain tasks.



10 TFG FERRAN PALMA: GymApp WITH IoT SENSORS AND CONTROLLER HUB, CLOUD REPOSITORY AND CONTROL FROM WEB APP

In a more user-driven approach, sensors could be used
to detect which machines are free and which are occupied.
In an administrator-driven approach, the Z-Wave network
could be extended to be able to detect, for example, pos-
sible water leaks in the changing rooms and correct them
instantly. In an approach for both, sensors could be used to
monitor the capacity of the gym and individual rooms, thus
providing valuable information to both parties.

In terms of analysis and automation, work could be im-
plemented to establish correlations between variables and,
for example, automatically switch the air conditioning on or
off at a certain time.

The possibilities are almost limitless, and which lines of
work to follow will depend largely on the needs of each of
the application’s users.

In any case, and as already mentioned, a solid base has
been laid on which to continue building in a more efficient
way.

REFERENCES

[1] Aeotec. MultiSensor 6 user guide. Aeotec. October
2022.

[2] Aeotec. Z-Stick Gen5+ user guide. Aeotec. October
2022.

[3] BalenaEtcher. balenaEtcher. September 2022. URL:
https://www.balena.io/etcher/.

[4] CleverTap. 37 Mobile Payment Statistics Mar-
keters Need. October 2022. URL: https : / /
clevertap.com/blog/mobile-payment-
statistics/#infographic.

[5] Ferran Palma Comas. GymApp with IoT sensors
and controller hub, cloud repository and control
from web app. 2023. URL: https://github.
com / ferranpalma / GymApp - with - IoT -
sensors-and-controller-hub-cloud-
repository- and- control- from- web-
app.

[6] Azure Contributors. Quickstart: Deploy a Python
(Django or Flask) web app to Azure App Ser-
vice. January 2023. URL: https : / / learn .
microsoft . com / en - us / azure / app -
service / quickstart - python ? tabs =
flask.

[7] Azure Contributors. Visualize data from Azure
Data Explorer in Grafana. December 2022. URL:
https://learn.microsoft.com/en-us/
azure/data-explorer/grafana.

[8] Azure Contributors. What is a resource group.
October 2022. URL: https : / / learn .
microsoft . com / en - us / azure /
azure-resource-manager/management/
manage - resource - groups - portal #
what-is-a-resource-group.

[9] Deloitte. European Health Fitness Market Re-
port 2019. October 2022. URL: https : / /
www2 . deloitte . com / content / dam /
Deloitte/es/Documents/tecnologia-
media-telecomunicaciones/Deloitte-
ES - TMT - European - Health - Fitness -
Market-2019.pdf.

[10] Raspberry Pi Foundation. TitRaspberry Pi 3 Model
B+. Raspberry Pi Foundation. September 2022.

[11] Grafana. Grafana. December 2022. URL: https:
//grafana.com/.

[12] Grafana. Install Grafana. December 2022. URL:
https://grafana.com/docs/grafana/
latest/setup-grafana/installation/.

[13] HomeAssistant. September 2022. URL: https://
www.home-assistant.io/.

[14] HomeAssistant. HASS installer. September 2022.
URL: https : / / github . com / home -
assistant / operating - system /
releases/download/9.3/haos_rpi3-
64-9.3.img.xz.

[15] HomeAssistant. Install HASS in Raspberry Pi.
September 2022. URL: https : / / www .
home - assistant . io / installation /
raspberrypi.

[16] INE. Equipamiento y uso de TIC en los hogares - Año
2022. October 2022. URL: https://www.ine.
es/dyngs/INEbase/es/operacion.htm?
c=Estadistica_C&cid=1254736176741&
menu=ultiDatos&idp=1254735576692.

[17] INE. Indicadores sobre uso TIC en las empresas
- Años 2021-2022. October 2022. URL: https :
/ / www . ine . es / dyngs / INEbase / es /
operacion.htm?c=Estadistica_C&cid=
1254736176743&menu=ultiDatos&idp=
1254735576692.

[18] Kanbanize. ¿Qué es Kanban? Explicación para prin-
cipiantes. September 2022. URL: https : / /
kanbanize . com / es / recursos - de -
kanban / primeros - pasos / que - es -
kanban.

[19] Twitter. Twitter Metrics 2019-2020-2021. October
2022. URL: https : / / s22 . q4cdn . com /
826641620 / files / doc _ financials /
2021 / q4 / Final - Q4 ’ 21 - Selected -
Metrics-and-Financials.pdf.


