
This is the published version of the bachelor thesis:

Bendahmane, Mohammed; Ribas i Xirgo, Lluís, dir. Autonomous vehicle simula-
tion for studying driver distraction. 2023. (958 Enginyeria Informàtica)

This version is available at https://ddd.uab.cat/record/272811

under the terms of the license

https://ddd.uab.cat/record/272811

This is the published version of the bachelor thesis:

Bendahmane, Mohammed; Ribas i Xirgo, Lluís, dir. Autonomous vehicle simula-
tion for studying driver distraction. 2023. (958 Enginyeria Informàtica)

This version is available at https://ddd.uab.cat/record/272811

under the terms of the license

https://ddd.uab.cat/record/272811

TFG EN INGENIERÍA INFORMÁTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 1

Autonomous vehicle simulation for studying
driver distraction

Mohammed Bendahmane

Abstract—In the last decade we have seen a lot of interest in the domain of autonomous vehicle systems. While a lot of research is
going in to developing these systems and making partial autonomous driving possible, it is also important to consider the risks that
come with this technology, specifically driver distraction. We believe that it is important to have a safe environment where we can study
the effects that these autonomous systems have on driver attentiveness. It is for that reason that we decided to create a
proof-of-concept simulation software that allows us to study driver distraction in partially automated vehicles. The simulation consists of
a 3D environment generated using OpenStreetMap data of real world locations and an autonomous vehicle that a user can interact
with by choosing a destination for the vehicle to drive to autonomously. We can then introduce specific test scenarios that mimic real
world situations where the human driver has to take manual control of the vehicle in order to avoid an accident. These test scenarios
allow us to gauge the driver attentiveness and reaction speed when faced with such situations and therefore allowing us to better
understand the problem of driver distraction in autonomous vehicles.

Index Terms—Autonomous Vehicles, driver distraction, Godot engine, OpenStreetMap, Partially automated driving systems,
simulation.

✦

1 INTRODUCTION

W ITH the rising automation of vehicles, a new problem
faces vehicle manufacturers, which is driver distrac-

tion. In order to further understand this problem and our
proposed solution, first we need to classify the different
levels of automation.

According to SAE (Society of Automotive Engineers) [1]
there are six levels of vehicle automation [2]. These levels
range from level 0 where there is no automation to level
5 where the vehicle is fully automated and can completely
drive on its own without the need of a human driver to
supervise it.

At automation level 1 (driver assistance) the vehicle
offers assistance features, but the driver is still the one
responsible of monitoring the driving environment. This
means that the driver is required to have almost the same
level of concentration as they would at level 0.

Level 2 (partial automation) is similar to level 1, but with
even more assistance.

Starting from automation level 3 (conditional automa-
tion) we move from human monitored environment to the
vehicle being able to monitor the environment on its own.
However, at this level the vehicle still isn’t fully able to
handle all driving situation and at specific timely events it
may require urgent human intervention.

At automation level 4 (high automation), even if the
driver does not react to events that require human inter-
vention, the vehicle still has some safety measures in order
to pull over or avoid situations where human input would
be required.

• E-mail de contacto: 1534144@uab.cat
• Mención realizada: Ingenierı́a de Computadores
• Tutor: Lluı́s Ribas Xirgo
• Curso: 2022-2023

Febrero de 2023, Escola d’Enginyeria (UAB)

The two level of automation where we think that this
work can contribute the most are levels 2 and 3, where
driver spends considerable amounts of time without having
to manually drive the vehicle. Which highly increases the
chance of human distraction.

This project aims to create an environment where users
can experience these levels of vehicle automation in a safe
manner and provide researchers with the tools and data
necessary to understand and measure the effects of these
distractions.

In order to achieve this, we created a 3D world with
vehicles and pedestrians roaming the streets. We then test
the effects of driver distraction by letting the user drive
around in an autonomous vehicle and subjecting them to
various situations where they need to take manual control
of the vehicle to prevent causing an accident. This test
scenarios allows us to generate data relating to the user’s
interactions, specifically their awareness and reaction speed,
which can then be analysed by experts to help them better
understand this problem.

2 OBJECTIVE

The goal is to create a simulation where a user operates an
autonomous vehicle that drives from one location to another
and at random points in time the vehicle hands the control
to the user, which then has to react in the shortest time
possible in order to prevent an accident.

These scenarios can test the driver’s attentiveness and
reaction speed to see if they are able to handle different
situations that requires them to take manual control of the
vehicle at specific time intervals.

Such a simulation could be used as a tool to study the
effects of autonomous vehicles on driver distraction and
provide analytical data, that could be used to improve the
safety of autonomous vehicle systems.

TFG EN INGENIERÍA INFORMÁTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 2

3 SUB-OBJECTIVES

Throughout the development of this project, there are a
few sub-objectives that we would like to realize in order
to achieve our goals.

The first one is having a basic working simulation that
allows us to do various test on the users and gather the
information that results from these tests. This simulation
consists of multiple systems, including a 3D world which we
would construct from OpenStreetMap data, a vehicle that
can traverse this world both autonomously and manually
and a system that allows us to test the user’s awareness.

After finishing this part of the project and gathering
relevant data from the users. The goal would be to use
various techniques in order to analyse this data and if
possible, draw some conclusions form it.

Lastly, in order to make the simulation more appealing
and immersive to the users. We would focus on adding
more details to the world. These details consist of buildings,
additional objects, textures, visual effects, etc.

By having these three elements together, we believe that
this work could be useful to study the effects of driver
distraction in autonomous vehicles and possibly develop
new safety measures that reduce accidents caused primarily
by the lack of driver attentiveness.

4 STATE OF THE ART

There are numerous software solutions and research that
have been developed over the years in order to attempt to
solve all the different individual obstacles that this project is
trying to tackle.

In this section we will look at a few of these works,
what they have achieved and how some of them can help
or inspire our own project.

When it comes to creating a 3D simulated world there
are many solutions that have been developed over the years,
one of them is CARLA, which was developed at the CVC
(Computer Vision Center), Barcelona in collaboration with
other entities. This open-source tool offers the ability to train
autonomous driving systems, using a virtual 3D simulation
which can be fully controlled using the API that they offer
alongside many other tools that facilitate the training of such
systems [3].

For creating a 3D world specifically using OSM data
there is projects like OSM Buildings which offers a layer of
buildings rendered in 3D using data obtained from Open-
StreetMap [4]. These buildings contain all the basic metadata
relating to their properties, which can be extracted and used
for various applications.

On the topic of extracting data from OpenStreetMaps,
one popular tool is the Overpass API [5] which allows users
to query their database in order to extract OSM data in order
to be used for all kinds of projects. The main difference
between Overpass API and the main OSM API, is that it
is optimized for reading data rather than editing. It allows
us to query great amounts of data in a relatively short time,
which could help with creating the 3D environment of the
simulation in our project.

One important aspect of our project is creating a tool that
helps study driver distraction. We can find many studies
that try to tackle this same problem, one example is the

work presented in [6], which is a study that consists of
an experiment where they put thirty-seven participants in
a vehicle simulator under different conditions including
partially automated and manual driving, with or without
non-driving related task. Their objective was to examine
how non-driving related task affects driving performance
in partially automated vehicles.

There are many organizations investigating whether
current manufacturers are taking the problem of driver
distraction into account when designing their autonomous
driving systems, such as developing driver monitoring
systems (DMS) that detect when the driver is not paying
attention using cameras, sensors and other devices. One of
these organizations is the Insurance Institute for Highway
Safety (IIHS) [7], which developed a rating system [8] that
evaluates the safety of autonomous driving systems based
on how good they are at identifying driver distraction, how
they alert drivers once the distraction has been identified
and also whether they employ any safety measures when
the driver does not react to the alerts.

5 TOOLS AND RESEARCH

One of the most important tools that will be used over the
course of this project is OSM (OpenStreetMap) in order to
extract all the necessary data for the 3D world that we want
to create. OSM provides us with a “.osm” file which has the
same structure as an XML file. This file has different tags
that describe all the data it contains, some of this data is not
relevant to this project, which means that it is necessary to
learn what all these different tags mean. This information
can be learned from the OSM wiki [9], which provides
detailed explanations for any data that a “.osm” file might
contain.

As for the 3D engine, we use the Godot engine, which
is an open-source game engine that provides us with all the
necessary tools to create a 3D environment and scripting
capabilities for all the functionality that our simulation
needs.

Although this engine is relatively new compared to other
similar engines, it has extensive documentation [10], that
provides us with all the necessary information to learn how
it works.

Coding in Godot will be done with GDScript, which is
Godot’s main scripting language. It is an easy to use but
powerful scripting language that allows us to do all kinds
of 3D manipulation and implement all the functionality that
the simulation might need.

6 TASKS

Before we started the project, first we needed to get familiar
with all the different tools that we would be using, espe-
cially OpenStreetMap and the Godot engine.

This requires reading all the relevant documentation and
developing a small-scale project inside the Godot engine
that allowed us to test the limits of the engine and get fa-
miliar with the structure of the “.osm” files used to generate
the 3D environment.

After getting familiar with the environment and all the
tools needed for the project and in order to achieve the

TFG EN INGENIERÍA INFORMÁTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 3

previously mentioned objectives, the following tasks have
been carried out.

For creating the 3D environment, we used real world
data gathered by OpenStreetMap. This data describes a 2D
map and needs to be parsed in order to extract all the
relevant information, which then would be manipulated
and used to generate all the different 3D geometry of the
environment.

The geometry consists of 3D meshes of roads and build-
ings which can be placed in the 3D world according to the
coordinates given in the OSM data.

In order for the vehicle to drive autonomously from
one destination to another, we needed a node graph that
represents all the different roads. Which can be used to
apply a pathfinding algorithm.

The challenge here was to take all the road information
that we parsed from the OSM data and transform it into a
node graph.

After that we used a pathfinding algorithm that allows
the autonomous vehicle to traverse the world node by node
in order to reach a chosen destination.

In the real world this would not be possible, since
driving requires more than just following a set of nodes,
but for the purpose of this project we used pathfinding on a
node graph to simulate autonomous driving.

An important element of the simulation is the au-
tonomous vehicle which is not only capable of following
the path provided by the pathfinding system, but also, we
needed the user to be able to control it manually in order to
achieve the simulation’s purpose. Which means that we had
to provide all the necessary controls for the user to interact
with the vehicle and drive it manually.

Another important aspect is for the user to be able to
choose a location for the vehicle to drive to, autonomously.
For this we decided to create a 2D top view of the world
which would serve the same purpose as what a GPS device
would in a real vehicle.

In order to test and evaluate the driver’s attentiveness,
we wanted to create multiple scenarios that mimic real life
situations where the user has to manually control the vehicle
in order to avoid causing an accident. These scenarios allow
us to generate the necessary data needed to analyse the
user’s attentiveness and reaction speed.

Finally, in order to have a more polished application we
added a graphical user interface which provides the users
with all the relevant information that they need.

In the appendix A, we detail the planning and time
frames of these tasks.

7 DEVELOPMENT

The development of the features of this project requires
many techniques, the most important among them are re-
searching and finding the requirements of these features
before starting to work on them, after that comes the design
stage which allows us to decide what kind of data structures
and coding patterns to use and then finally comes the coding
stage where most of the development time is spent.

In this section we go over the development of all the
components that make up this project and we discuss how
they were achieved and some of the problems that we faced
and how we got over them.

7.1 Parsing OSM data
In order to extract data from OSM first we need to download
a “.osm” file that contains the data of the region that we
want to parse. There are multiple ways to download this
file. One of the popular ways of doing it, is using the Over-
pass API which allows for up to 300 MB of uncompressed
downloads.

Another way of downloading the region file is by using
the OSM website directly and choosing the region using the
provided interface. Although this method is limited by only
allowing us to download regions with up to 50.000 nodes.
For the purpose of our project this is enough, thus we will
be using this method.

After downloading the OSM file, which is structured like
an XML file, the next step is to find the nodes that make up
the elements that we are interested in. For now, these objects
are paths and buildings.

In the OSM file we can find different kinds of tags, the
most important ones being “node” and “way”. The node
components are the points that make up all the different
elements (paths, buildings, etc.). These nodes have three
important descriptors, the ID, the latitude and the longitude
of the node.

The way components represent the elements themselves
and for that reason, ways are composed of one or more
nodes. In addition to that each way has a unique ID and
many tags that describe what specific element it represents
and it’s details.

To extract the paths and buildings we look for the
“building” and “highway” tags respectively. Additionally,
we can find other tags that better describe these elements,
like the number of levels a building has or the type of path
which could range from just a sidewalk to a motorway with
multiple lanes.

After parsing the whole file, and extracting all the paths
and buildings, the next step is going through all the nodes
that represent these elements and converting the latitude
and longitude data to XY coordinates that we can use to
represent these nodes inside the engine or specifically inside
the scene where we are going to generate the 3D world.

7.2 Generating 3D meshes
Once we have parsed the necessary data that describes the
paths and buildings, we have to use this data to make 3D
meshes that allow us to visually represent these elements.

To create these meshes we use the ArrayMesh class from
the Godot engine’s library. This class allows us to create a
mesh using an array. This array contains many attributes
that we can set, but for now the attribute that we will be
using the ARRAY VERTEX which can be set by providing
an array of three-dimensional vectors where each one of
these vectors represents the XYZ coordinates of a vertex.

After generating the mesh of a single element (path or
building) we can then make an object out of this mesh that
we can later add to our 3D scene to be visualised.

In order to generate the mesh, we first need to create the
vertex array that we will later be passing to the ArrayMesh
class. This array is made out of vertices which need to be
structured in a way that each three consecutive vertices
make up a triangle, which means that the final mesh will be

TFG EN INGENIERÍA INFORMÁTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 4

made up by these triangles. The challenge lies in dividing
the shape of the building or path that we want to create into
these triangles.

In the following sections we describe how we divide the
shape of these elements into triangles that can later be used
to generate the final mesh.

7.2.1 Buildings
In the case of buildings, we use the data that we extracted
from the OSM file to find out which nodes make up this
building, after that we can make a polygon out of these
nodes that represents the area that a specific building occu-
pies.

Once we have this polygon the next step is deciding
where to put the walls and the roof of the building. In this
case the easiest way to do this, is by creating a wall between
each two consecutive nodes of the polygon, then making
the roof the same shape as the polygon that represents this
building.

After dividing the building into these smaller elements
(walls and roof) we then need to divide these elements
further in order to obtain the triangles that make up the
whole mesh.

In the case of the walls, it’s easy, since walls are basically
rectangles in this case, we can divide these rectangles diag-
onally in order to obtain two triangular segments for each
wall.

For the roof we need to find a way to divide a polygon
into triangles. If all the polygons were convex then this
would be easy but for some buildings that’s not true, so we
need to find a more complex algorithm that can deal with
concave shapes. There are many algorithms that can achieve
this, some more complex than others, but in our case, Godot
comes with a useful class called Geometry which provides us
with a method that can do this for us.

Finally, after we have divided a building’s shape into
triangles, we can pass our vertex array to the ArrayMesh
class which creates a mesh object that can be instantiated
and added to our 3D scene.

Fig. 1. Building meshes

7.2.2 Pathways

Similarly, to the buildings, we need to divide our paths
into simpler segments that can then be divided further into
triangles. In this case we take a path which is made up by
consecutive nodes and divided into rectangular segments
where each segment represents a straight path from one
node to the next. Just like we did before we can divide
these rectangular segments into two triangles by dividing
our rectangles diagonally.

With this we can generate all the triangles that make up a
path and then use those triangles to generate the final mesh,
just like we did with the buildings.

Fig. 2. Road meshes

7.2.3 Final result

Fig. 3. Final result

TFG EN INGENIERÍA INFORMÁTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 5

Combining both the building and pathway meshes we get a
basic 3D world that we can then keep adding details to.

We can see the final result in figure 3.

7.3 Node graph
Since one of our final goals for this project is to have a
vehicle that can drive autonomously in our 3D world, we
need a find a way for this vehicle to navigate the different
roads.

One of the simpler ways to achieve this is by using a
pathfinding algorithm which uses a node graph in order
to find or approximate the closest path from one node to
another. Before we can get into the pathfinding itself, first
we need create the node graph.

After parsing the OSM file, we obtained all the different
paths that make up a region, now the goal is to take
these paths and represent them as nodes inside the node
graph and additionally connect all the nodes that represent
connected paths and calculate the distance between these
nodes which can later be used in the heuristics function of
the pathfinding algorithm.

Before we start creating the node graph however we first
need to filter out all the non drivable paths, that way we end
up with only the roads that our vehicle can drive through.
Fortunately as we explained earlier the OSM file gives us
a tag that describes the type of the road, this being the
“highway” tag.

In the OSM wiki we can find a section that lists all the
values that the highway tag can have. By examining these
values, we can determine which types of highways are not
drivable, and with that we can filter out all the non drivable
paths and start creating our node graph.

7.4 Pathfinding
Now that we have a node graph that describes all the roads
and how they are connected, the next step is to implement a
pathfinding algorithm that allows us to find or approximate
a path from one node to another.

Before the implementation phase, we looked at different
algorithms that could be used, the most popular among
them being DFS (Depth first search), BFS (Breadth first
search), Dijkstra and A* algorithms.

After careful consideration we figured out that the A*
algorithm [11] would be the best choice in this case, not only
it is accurate enough for our project, but it also has good
performance for our real-time application, it’s simple to
implement and is widely used in game engines like Godot.

Since the A* algorithm is very popular in video game
development, the Godot engine already comes with an
implementation that we can access using the AStar class that
comes with its default library.

However, we can’t use this class directly because the ID
of the nodes that it uses has a limit of 32 bits meanwhile the
ID of the nodes that we extracted from the OSM files are 64
bits. In order to solve this issue, we implemented wrapper
methods that wrap the main AStar class methods that we
will be using. These wrapper methods do the conversion
between our original 64-bit IDs and the new 32-bit IDs that
we will be using with the AStar class. This way we can still
use the node graph that we created earlier while also being
able to use the AStar class alongside it.

7.5 Creating the vehicle

In this step of the project’s development, we need to make
a vehicle that the user can interact with in order to fulfil the
project’s goals.

We can divide the vehicle into three components which
can be developed separately. First, we have the vehicle
physics which determine how it should move when inter-
acted with. Then after that we have to provide an interface
for the user to control it. Lastly, we have to develop a simple
AI that allows the vehicle to drive autonomously when
given a path to follow.

Furthermore, the user control component needs to work
seamlessly with the AI component in order to allow the user
to switch between manual and autonomous driving modes
in a smooth manner.

7.5.1 Vehicle movement
This is the physics component of the vehicle. Fortunately,
the Godot API already comes with many classes that use the
physics engine in order to implement all the useful features
a physics body might need, like collision, mass, gravity,
friction, etc.

One important class that we use to implement the vehi-
cle physics and movement is the RigidBody class or specif-
ically its sub-class known as VehicleBody. This class on top
of providing us with an implementation of a physics object
that reacts to collision and physical forces it also comes with
an implementation for the wheels of the vehicle.

The wheels can be divided into two groups, front wheels
and rear wheels. The former are used for steering while the
latter are used for accelerating and braking. Each of the two
groups of wheels comes with a set of variables that can
be accessed and manipulated in order achieve the desired
movement.

For rear wheels we can use the engine force and brake
variables which values can be greater or equal to 0.

The acceleration which is represented by the engine force
variable is calculated by using two variables that control the
maximum RPM (Revolutions Per Minute) of the wheels and
the maximum torque that can be applied by the engine to
make the wheels revolve faster. These two variables are used
in the following formula to determine how much torque
(engine force) needs to be applied in each cycle of Godot’s
physics engine:

engine force = t h r o t t l e x maxTorque x
(1 − (currentRPM / maxRPM))

In this formula the user input affects the throttle variable
which in turn determines the acceleration of the vehicle.

Finally, the steering of the vehicle is controlled using the
steering variable of the front wheels which can range from
-1 to +1. This variable can be directly controlled by the user
input but we apply some additional interpolation in order
to make turning feel smoother and make it easier to control
for the user.

Once we calculate these three variables, we can then use
them to manipulate the internal variables of the VehicleBody.
The engine force determines how fast the back wheels of the
vehicle revolve which in turn affects the movement of the
vehicle, making it speed up in the direction of its forward

TFG EN INGENIERÍA INFORMÁTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 6

vector, in this case the forward vector is the direction that
the vehicle is facing. The brake variable is similar, but instead
of moving the vehicle forward it applies an opposing force
that causes it to slow down and stop. Finally, the steering
controls the angle of the two front wheels which combined
with the forward movement causes the vehicle to gradually
change the direction it is facing and thus changing the
direction of its forward vector.

7.5.2 Vehicle user control

Here we provide an interface for the user to interact with the
vehicle. For now, the control interface consists the WASD
and SPACE keys of the keyboard, although this can be
expanded upon in order to handle joysticks, steering wheels
and other types of control devices.

7.5.3 Vehicle AI

This is a simple AI system that allows the vehicle to traverse
the node graph in order to reach a specific target node. This
is achieved using the previously created node graph and the
pathfinding modules.

The way this simple AI system works is by constantly
moving the vehicle forward while steering it towards the
next node in our path. We also apply breaking when the
vehicle is turning in order to make sharper turns.

The challenge here lies in applying the right amount of
steering in order to reach the nodes of the path that leads
us to our target destination. This can be calculated using
vector math, specifically by taking the Y component of the
resulting vector of the cross product between the forward
vector of the vehicle and the target direction vector, this Y
component gives us the amount of steering that needs to be
applied in order for the vehicle to turn in the direction of
the target node and thus move towards it.

s t e e r i n g = (forwardVector x t a r g e t V e c t o r) . y

Calculating the forward vector and the target vector re-
quires three inputs. First, we need the current linear velocity
of the vehicle which is represented by a three-dimensional
vector which holds the value of the XYZ components of
the linear velocity, in other words it tells us how much
the vehicle is moving in each axis. The second input is
the current position of the vehicle in 3D space. Lastly, we
need the position of the next target node in our path. We
can obtain the forward vector of the vehicle by normalizing
the linear velocity vector. After that we calculate the target
vector by calculating the difference between the target node
position and the current vehicle position and normalizing
the resulting vector.

Fig. 4. AI system input/output diagram

A challenge that we faced while developing this AI
component, is making the vehicle drive in the right side of
the road instead of in the middle like it would do by default
when following the path given to it by the pathfinding
module.

This was solved by offsetting the position of all the nodes
of the path that we are following by the normal vector of
each path segment. The length of this normal vector can be
changed in order to determine how far to the right we want
the vehicle to drive, which is important when we have roads
with varying width.

7.5.4 Vehicle visuals
Finally after creating all the important systems of the vehicle
we added a 3D model [12] to give it some visuals as shown
in the following figure.

Fig. 5. Vehicle visuals

7.6 GPS system

The GPS system consists of a 2D view of the world which
tries to emulate a real GPS by allowing the users to view
their position on the map and choose a destination for the
vehicle to drive to autonomously.

There are many ways to achieve the 2D view of the
world, the simplest way that we came up with is to set up a
camera on top of the 3D world and make it look down at it.
This way we can see all the roads and buildings as if they
were on a 2D map. In addition to that we scaled down the
height of all building in order to give it a more 2D feel and

TFG EN INGENIERÍA INFORMÁTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 7

preventing tall buildings from obstructing the view in some
cases.

Fig. 6. GPS 2D view

After the user chooses a destination, we need a way
to guide them along the path in case they decide to drive
manually instead of letting the vehicle drive autonomously,
a simple solution is adding a guiding arrow that points them
towards the right direction.

7.7 Non-user-controlled vehicles

At this step, we have generated a basic world with buildings
and interconnected roads. We can take the vehicle that
we developed for the user to interact with the simulation
and use it to populate the world with non-user-controlled
vehicles in order to make the simulation more interactive by
providing one of the challenges that allows us to tests the
user’s attention and reaction speed.

In order to populate the simulation with these non-user-
controlled vehicles we can use the already developed node
graph which allows us to procedurally place vehicles in
many different nodes. However, so far we are only able to
place a few dozen vehicles due to performance limitations,
which we will solve later.

Even though the vehicle that we developed earlier has
the ability to navigate it’s way along a path, it cannot
however choose it’s own path based on where it is in the
world, since that is the user’s job. In this case we do need
to give these non-user-controlled vehicles a way to keep
choosing new paths every time they reach a destination.

Something that we didn’t consider earlier when develop-
ing the vehicle’s AI is the possibility to encounter obstacles
in the way while following a certain path. Now that we
have more than one vehicle roaming the map, we need to
develop a system that detects obstacles and react to them.
This system however will only be available to the non-
user-controlled vehicles, since the user is supposed to take
manual control of the vehicle when such situations arise.

In Godot we simulate a proximity sensor by creating a
box shaped area that allows us to detect when entities enter
or exit this area. By placing this box in front of the vehicle
we can then wait for specific objects to trigger the sensor,
like other vehicles for example. We can then brake or use
any other method to avoid whatever obstacle we want to
avoid. In our case we made the vehicles slow down when
detecting other non-user-controlled vehicles and completely
brake when detecting the user’s vehicle that way we can
prevent accidents that are cause by the AI vehicles rather
than the user.

7.8 Pedestrians
In addition to simulating vehicles roaming the generated
world we decided to also have pedestrians, which further
gives us new opportunities to test user awareness.

To populate the simulation with these entities we use the
same method used in the previous section to place vehicles
with a slight modification. Since pedestrians can’t be placed
on the road, we need offset their position after placing them
on a node that represents a point in a road. We also have the
choice between placing them on the right or left sidewalk,
which we randomize in order to get a more organic looking
placement.

Of course, these pedestrian entities like the vehicles
they need to move in order to make a more interactive
simulation.

Similarly, to what we did with the vehicle pathfinding
we use the nodes graph to implement their movement.
However this time we took a different approach, instead
of generating an entire path from their origin to a certain
destination we opted of a more random movement in order
to give them a different feel compared to the vehicle entities.
With this method we can make them roam around a single
location which prevents them from leaving certain locations
empty while having clusters of pedestrians in others. In-
stead, we have a more even distribution.

7.9 Chunk system
After creating a method to populate the map with vehi-
cles and pedestrians, we run into a common problem that
projects of this type run into which is performance.

With a few entities the simulation works fine, but that’s
not enough for what we are trying to achieve, which is
having thousands of these entities all over the map.

Fortunately we don’t need all of these entities to be active
at the same time, since our simulation revolves around the
user we only need to worry about what the user can see.

Which leads us to a very common method to solve these
kinds of problems, which is a chunk system that allows to
only activate the entities that are in proximity of the player.

There are many ways to implement this type of system.
In our case we opted for using dictionaries. We can use the
chunks coordinates as keys for the dictionary and for the
values we use a class that holds a list of all the entities that
are inside this chunk in addition to a variable that tells us
whether this chunk is active or not.

At the start of the simulation, we can begin populating
this dictionary with all the entities that exist. In order to
know in which, chunk an entity belongs, we just need to

TFG EN INGENIERÍA INFORMÁTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 8

have a variable that tells us the width and the height of each
chunk, after that we can figure out where to put each entity
by simply dividing it’s coordinates by the width/height of
the chunks.

The next step is to load and unload chunks based on
how far they are from the user coordinates. Every time we
unload a chunk, we deactivate all the entities that it holds,
which not only stops them from executing all code logic,
but also stops them from rendering to save on graphical
performance in addition to CPU performance.

Loading requires the same operations but in reverse,
meaning that we make the entities visible to the user and
resume their execution.

We wrote this chunk system to be flexible, which means
in addition to using it for pedestrian and vehicle entities
we can use it for any other entities that we would like in
the future and still keep a relatively good performance for a
simulation like this to work.

7.10 User interaction

In order to measure the user’s attentiveness and reaction
speed, we need to provide them with certain situations
that they can interact with in order to generate data that
measures these interactions.

These interactions consist of scenarios that mimic real
world situations where the driver has to take manual control
of the vehicle in order to prevent an accident.

Currently we have other non-user-controlled vehicles
that roam around the 3D world and additionally they can
serve as one of these obstacles that can test whether the user
is paying attention and whether they can react fast enough
in order to avoid a potential collision with another vehicle.

Another one of these situations or obstacles that we
developed is the pedestrians, which in addition to their
usual behaviour of walking on the sidewalk, we made it
so that sometimes a pedestrian decides to cross the street in
front of the user’s vehicle, which also requires manual input
in order to avoid.

Now that we have a few situations that test the user
awareness and reaction reaction speed, we can start collect-
ing the relevant data that these interactions generate.

When the user chooses a destination and the vehicle
starts driving autonomously to that location, at specific
points of that journey we can activate one of these test
scenarios and start timing how long it takes for the user to
start manually controlling the vehicle and also whether they
managed to avoid this dangerous situation or not. Finally,
when the user arrives at their chosen destination, we can
use the previous data to calculate the final score for that
particular journey, which we can then display to the user
along with the data of each individual interaction.

8 CONCLUSION

Solving the problem of driver distraction in autonomous
vehicles could be a great hurdle to overcome for vehicle
manufacturers and safety organizations. A lot of research is
needed to understand these distractions and how they affect
human awareness.

We believe that having a safe simulated environment for
researchers to gather the relevant data for their work could
prove very important to find real life solutions.

For this reason, we developed this software, which al-
lows us to generate 3D virtual environments using real
world data gathered by OpenStreetMap and use these en-
vironments in order to test the attentiveness of users by
putting them in the driver seat of a simulated autonomous
vehicle.

This work is by no means meant to be a software
simulator ready to be used for professional applications. It is
more of proof-of-concept which intends to show how such
an environment can be useful to study driver distraction in
autonomous vehicles.

This project could be expanded in the future using
cameras, sensors and other tools, to not only measure driver
reaction speed but also study driver behaviours such as
body and eye movements, heart rate, speech, among many
others. This kind of tracking might allow us to detect when
and what causes these distractions, how to better alert the
driver when detected and what other alternative safety
measures can be implemented.

REFERENCES

[1] SAE (Society of Automotive Engineers).
[https://en.wikipedia.org/wiki/SAE International]

[2] Levels of automation.
[https://web.archive.org/web/20180701034327/https://cdn.oe
moffhighway.com/files/base/acbm/ooh/document/2016/03/au
tomated driving.pdf]

[3] Alexey Dosovitskiy and German Ros and Felipe Codevilla and
Antonio Lopez and Vladlen Koltun, An Open Urban Driving Simu-
lator, Proceedings of the 1st Annual Conference on Robot Learning,
1-16, 2017
https://carla.org/

[4] 3D layer of buildings.
[https://osmbuildings.org/]

[5] An API for read-only queries of OSM data
[http://overpass-api.de/]

[6] Noa Zangi, Rawan Srour-Zreik, Dana Ridel, Hadas Chassidim,
Avinoam Borowsky, Driver distraction and its effects on partially
automated driving performance: A driving simulator study among
young-experienced drivers, Accident Analysis & Prevention, Vol-
ume 166, 2022, 106565, ISSN 0001-4575.
https://www.sciencedirect.com/science/article/pii/S00014575220
0001X

[7] Insurance Institute for Highway Safety (IIHS)
[https://www.iihs.org/about-us]

[8] IIHS creates safeguard ratings for partial automation
[https://www.iihs.org/news/detail/iihs-creates-safeguard-ratin
gs-for-partial-automation]

[9] The OpenStreetMap wiki.
[https://wiki.openstreetmap.org/wiki/Main Page]

[10] Godot Version 3.5 documentation. Juan Linietsky, Ariel Manzur
and the Godot community (CC-BY 3.0). Revision 7299355d.
[https://docs.godotengine.org/en/stable/index.html]

[11] A* pathfinding algorithm section from the Wikipedia.
[https://en.wikipedia.org/wiki/A* search algorithm]

[12] Vehicle 3D model.
[https://sketchfab.com/3d-models/low-poly-small-car-ebe7c5e98
a7448b5abb2eaf0cb22b766]

https://en.wikipedia.org/wiki/SAE_International
https://web.archive.org/web/20180701034327/https://cdn.oemoffhighway.com/files/base/acbm/ooh/document/2016/03/automated_driving.pdf
https://web.archive.org/web/20180701034327/https://cdn.oemoffhighway.com/files/base/acbm/ooh/document/2016/03/automated_driving.pdf
https://web.archive.org/web/20180701034327/https://cdn.oemoffhighway.com/files/base/acbm/ooh/document/2016/03/automated_driving.pdf
https://carla.org/
https://osmbuildings.org/
http://overpass-api.de/
https://www.sciencedirect.com/science/article/pii/S000145752200001X
https://www.sciencedirect.com/science/article/pii/S000145752200001X
https://www.iihs.org/about-us
https://www.iihs.org/news/detail/iihs-creates-safeguard-ratings-for-partial-automation
https://www.iihs.org/news/detail/iihs-creates-safeguard-ratings-for-partial-automation
https://wiki.openstreetmap.org/wiki/Main_Page
https://docs.godotengine.org/en/stable/index.html
https://en.wikipedia.org/wiki/A*_search_algorithm
https://sketchfab.com/3d-models/low-poly-small-car-ebe7c5e98a7448b5abb2eaf0cb22b766
https://sketchfab.com/3d-models/low-poly-small-car-ebe7c5e98a7448b5abb2eaf0cb22b766

TFG EN INGENIERÍA INFORMÁTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 9

APPENDIX A
PLANNING GANTT CHART

