
This is the published version of the bachelor thesis:

Alcon Acedo, Arnau Josep; Fornes Bisquerra, Alicia, dir. From image to MIDI:
Implementing a complete OMR system for sheet music. 2023. (958 Enginyeria
Informàtica)

This version is available at https://ddd.uab.cat/record/272800

under the terms of the license

https://ddd.uab.cat/record/272800

TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 1

From image to MIDI:

Implementing a complete

OMR system for sheet music
Arnau Josep Alcon Acedo

Resum—Llegir de manera computacional la informació que conté una partitura presenta molts reptes. Un d’aquests reptes és la
necessitat de coordinar diversos processos diferents. Aplicar deep learning permet consolidar alguns d’aquests processos en un
sol pas. Aquest projecte proposa un sistema complert de predicció de partitures partint d’un model seq2seq que pren petits
troçets de partitura, de la mida d’un compàs, en format PNG a l’entrada, i crea un arxiu MIDI amb la predicció a la sortida.
S’implementen les funcionalitats necessàries per tenir el pipeline sencer. Aquestes funcionalitats inclouen segmentar la partitura
en compassos, realitzar prediccions sobre aquests, i agrupar tots els MIDIs resultants en un de sol.

Paraules clau—OMR, segmentació de partitures, MIDI (Musical Instrument Digital Interface), pentagrames, compassos, deep
learning, seq2seq

Abstract—Computationally reading the information contained in music scores presents many challenges. One of those
challenges is having to coordinate several separate processes. Deep learning allows to consolidate a few of these processes into
a single step. This project proposes a complete sheet detection system with a seq2seq solution as its base that takes small, bar-
sized sheet music chunks in PNG format at the input and creates a prediction MIDI file at the output. It implements the required
functionalities to have the entire pipeline. These functionalities include segmenting a score into its bars, doing predictions on
these segments and combining all the MIDI outputs into a single MIDI file.

Index Terms—OMR, score segmentation, MIDI (Musical Instrument Digital Interface), staves, bars, deep learning, seq2seq

—————————— ◆ ——————————

1 INTRODUCTION -

Optical Music Recognition (OMR) is the field of research
that studies how to computationally read musical notation
in documents, as defined by Calvo-Zaragoza et al. [1]. The
goal is to teach a computer to identify, read, interpret and
transcribe the information contained in sheet music into a
format the machine can understand.

This field of study shares many similarities with the

field of Optical Character Recognition (OCR), whose goal
is to read and interpret typed, handwritten, or printed text
instead. During the last 20 years, however, OCR has seen
significantly more advances than OMR.

Calvo-Zaragoza et al. [1] identify and list numerous fac-

tors that contributed to slowing down research in this field.
Notable factors include the complex nature of the infor-
mation conveyed through music notation, its 2-Dimen-
sional structure, its inconsistent representation specifically
in older documents, and the lack of a unified and cohesive

research.
In recent years, however, OMR has seen a resurgence

with the advancements in deep learning, which have
shown very promising results in contrast with older OMR
solutions. However, as put by Bellini et al. [2] “despite the
availability of several commercial OMRs: PIANOSCAN,
NOTESCAN in Nithingale, MIDISCAN in FINALE, Poho-
toScore in Sibelius, SmartScore, SharpEye, etc., none of
these is satisfactory in terms of precision and reliability.
They provide a real efficiency close far from the 100% only
when quite regular music sheets are processed. This justi-
fies the research works around the definition of reliable
OMR algorithms”.

One such algorithm is the one proposed by Baró et

al.[3], Riba et al.[4] and modified by Santaella [5]. They im-
plement an OMR solution based on a seq2seq model. This
solution has been trained on small, bar-sized sheet music
chunks in PNG format synthetically generated by a script.
It has shown good results when tested against other PNGs
generated by said script.

This project implements the necessary steps to, using

this algorithm as its basis, be able to perform predictions
on a full page of sheet music.

————————————————

• Contact E-mail: arnaujalcon@gmail.com

• Menció realitzada: Enginyeria de Computació

• Treball tutoritzat per: Alicia Fornes Bisquerra (Computer Science)

• Academic year 2022/23

2 EE/UAB TFG INFORMÀTICA: FROM IMAGE TO MIDI

2 OBJECTIVES

The main goal of this project is creating a program that
takes a PNG of a music score as an input, does the neces-
sary processing to transform it into the preferred inputs of
the seq2seq model, executes a prediction on all these in-
puts, collects all of the MIDI outputs and combines them
into a single MIDI file representing the information read
from the original PNG.

The objectives the project needs to accomplish to
achieve this goal are the following:

• To research and understand the implementation of the
seq2seq model, and understand the formats it uses as
inputs and outpus.

• To implement functionalities that segment a PNG of a
music score into the small, bar-sized chunks the
seq2seq algorithm works best with.

• To implement functionalities that assemble the output
of executing the algorithm on the segmented bars into
a single MIDI file.

• To research the state of the art of OMR.

• To automate the connections between these function-
alities in a pipeline, from full sheet PNG to MIDI.

• To test the accuracy of this system’s readings with real
music scores to validate its practical application.

3 STATE OF THE ART

Most of the work in the OMR field can be found in scien-
tific publications each tackling different aspects of the pro-
cess. Although commercial applications do exist, there
does not exist a leading entity that defines a main general
implementation.

Most of the existing software does follow a similar pipe-

line that involves image pre-processing, symbol recogni-
tion and information reconstruction [6]. The techniques
used in every step do vary from project to project, and
there exists a lot of research exploring different techniques
and implementations.

Due to the nature of the information conveyed in music

scores, combined with the complexity of its representation,
older symbol recognition solutions involved a lot of steps,
each tailor-made to tackle a specific part of the process.
This is a sensible approach considering computers work
best when tackling specific and well-defined problems.
However, chaining all these processes together resulted in
their error rates, which were often acceptable for each in-
dividual step, multiplying together to unacceptable
amounts for what is expected of a practical application.

The recent development of deep learning technologies

has allowed for a new way of tackling this field. Deep neu-
ral networks have demonstrated an ability to tackle gener-
alistic problems very broad in scope. A lot of recent re-
search focuses on exploring different OMR solutions

involving deep neural networks, following in the steps of
its brother field, OCR, which is seeing huge advances
thanks to these.

The algorithm that this project adopts uses the neural

network model known as sequence-to-sequence, or
seq2seq in short, originally proposed by Mikolov in his
PhD thesis [7]. This family of machine learning ap-
proaches’ primary use is natural language processing. As
the name implies, seq2seq models turn one sequence into
another sequence. What’s particular about them is that
they use the previous output as the input context.

Unfortunately, not many databases are publicly availa-

ble for OMR related work. Deep learning models’ accuracy
often scales with database size, which severely hurts the
results of a lot of smaller scale research. The seq2seq has
been trained on synthetically generated sheet chunks,
which made it possible to work with a decent sized data-
base, but in exchange has performance issues when the
sheets style and font differs too much from the generated
ones.

Regarding image pre-processing, this paper by Vinaya

V et al. [8] touches on staff line removal, and the technique
they use to find the regions where the lines are will be use-
ful in this project alongside other techniques for line and
bar segmentation. I have not found any work that uses con-
volutions on custom kernels for staff line removal, a tech-
nique that I thought could be useful and will use in this
project.

Finally, regarding the step of information reconstruc-

tion, the MIDI reconstruction that I do in this project is not
really a part of the OMR field of study. MIDI is an old for-
mat with extensive documentation. The educational con-
tent creator javidx9 [9], also known as OneLoneCoder, has
a publicly available friendly implementation of a MIDI
parser [10] that has been very helpful in understanding the
MIDI specification and how I should approach my task.

4 METHODOLOGY

4.1 Pipeline structure

My system operates on three main blocks, which are:

1. Music score segmentation
2. Seq2seq prediction
3. MIDI assembly

The first block takes the PNG of a page of sheet music

and segments it into lines, each of them is then segmented
into bars, and these bars are temporarily saved as inde-
pendent PNGs in a separate folder.

The second block takes these PNGs one by one and ex-
ecutes a prediction using the trained seq2seq model, out-
putting that prediction as a MIDI file for each PNG.

The third block parses all these MIDI files, records the

noteON and noteOFF events it finds, which are the

ARNAU J. ALCON: FROM IMAGE TO MIDI 3

sections of the file relevant to playing back the song, and
stitches them all together alongside the necessary headers
and meta events, outputting a single MIDI file with the in-
formation read from the original sheet music.

4.2 First block: Music score segmentation

This block takes a PNG image at its input. It is assumed
that the image is of one page sheet music. Its goal is to seg-
ment this image into the small, bar-sized chunks that our
model can make predictions on. These segments do not
need to correspond to the actual bars in the original sheet,
but segmenting the bars is a way to do it. The segments of
the image are then saved independently in a separate
folder to feed into the seq2seq later.

4.2.1 Image pre-processing

Before segmentation starts, the image gets resized to 500
pixels wide per 600 pixels high. Most PNGs of a music
score page are around this size, which is why I settled on
these values. This is to prevent unexpected outcomes
caused by inputting an excessively large or small PNG,
while minimazing the impact the resizing has on the type
of image the algorithm expects.

Depending on how the score image was taken it may

present pixels that do not belong to the sheet around the
edges that could be misinterpreted in line or bar detecting,
so we crop the image’s edges. We apply a four-point trans-
form to straighten the image up in case it was slightly ro-
tated, and we grayscale and denoise it as well.

4.2.2 Line segmentation

Music scores almost always consist of several lines.
Each line is read from left to right and contains relevant
information on what the musician must play at a certain
point in time in the song. In a similar way to written text,
when all the information in a line has been read, the line
directly below it contains the information that should be
read next.

Line segmentation is the process of dividing the music

sheet with straight, horizontal lines spanning the entire
width of the sheet such as that the regions delimited by
these lines represent a music line each.

The preferred method for line detection is doing a

horitzontal projection of the image. The image is binarized
and for each of the 600 pixels of height, the binary value of
the 500 pixels at that height is added up. This results in a
one-dimensional array of size 600 where each value corre-
sponds to the amount of non-zero pixels in each row. The
lines having the staff will result in high peaks. The position
of these peaks in the histogram gives the location of staff
lines.

When I started investigating line segmentation I ex-
pected the use of convolutions with custom kernels and
was surprised to find no work with that particular ap-
proach. I wanted to try a second approach to line segmen-
tation using this particular technology and compare their
performances.

Convolutions are a very potent tool in the field of com-

puter vision. Convolving an image with a small matrix
called kernel results in a new image. Each pixel in that new
image holds a relation to the same pixel in the original im-
age and the pixels around it. What that relation is depends
on the kernel used. Common applications are image filters,
blurring and edge-detection. Convolutions are a pretty
deep and interesting topic but I won’t get into the details
in this paper. For a better, more extensive explanation I
highly recommend 3Blue1Brown [11]’s video on the sub-
ject.

For convolutions, I used the SciPy library’s implementa-
tion using FFTs (Fast Fourier Transform), which is essen-
tially a much quicker and less computationally expensive
way to calculate a convolution. My approach convolutes
the whole music sheet input with a custom-made kernel
that highlights in white the pixels that are part of horizon-
tal lines and paints black those that are not. This results in
notes being erased while the overall staff outline remains

Figure 1: Diagram of the project's pipeline

Figure 2: Input image and corresponding output histogram

4 EE/UAB TFG INFORMÀTICA: FROM IMAGE TO MIDI

and is highlighted. But we only care about detecting lines,
not staffs.

The resulting image is convoluted with a second custom

kernel, that consolidates white regions into large white
clusters. This results in a third image where all the infor-
mation of the original sheet has disappeared except for the
regions spanning each line. A single iteration of cv2 li-
brary’s dilation convolution is applied to eliminate any re-
maining noise and further consolidate the white areas.

Now we can very easily search lines around this image’s

central area. A very simplistic approach to this is iterating
the 375th column of the image pixel by pixel to search for
the regions of white pixels, the sheets’ staves, and the re-
gions of black pixels that separate them, and returning the
height at the centre of each black region. Drawing a hori-
zontal line at each of these heights on the original sheet re-
sults in it being segmented by lines.

The reason I arbitrarily selected the 375th column
(which represents the 3rd quarter of the image of a total
width of 500) is because the right-most and left-most edges
of the sheet do not contain staff lines, and the first quarter
and center of the image often have titles that can obstruct
the search. This means that the rare sheet with a title on the
third quarter can mess with this simple search, and a more
advanced search method to circumvent this will be dis-
cussed on another section.

4.2.3 Bar segmentation

The goal of this step is to end up with smaller subdivi-
sions of the original sheet that are better suited for predic-
tions on our model. In theory, taking each line and divid-
ing it in five equally sized chunks is a valid approach. This,
however, risks cutting straight through a note, so using the
bar divisions already present in the sheet is desirable.

Lines in sheet music are divided in several bars by
straight, vertical lines spanning the height of the staff or
staves in the line.

We want to find these vertical line divisions and seg-

ment the sheet using their positions. Santaella [3] imple-
ments a bar segmentation that involves using staff removal
to erase horizontal lines from the sheet and then computes

a vertical projection of the image. This is the same as the
horizontal projection explained for line segmentation but
for the other axis and executed on each segmented line.
The image is binarized and for each of the 500 pixels of
width, the binary value of the pixels at that widht is added
up.

As Santaella [5] outlines in his paper, finding the bar di-

visions in this projection is much harder than it was find-
ing the lines. He approaches the problem by searching for
low variance points, since the bar divisions should all have
about the same pixel height. I used his implementation of
this approach.

I implemented a second approach to bar segmentation

using a very similar system to the one I talked about in line
segmentation. I convolute the whole music sheet input
with a custom-made kernel that highlights in white the
pixels that are part of vertical lines and paints black those
that are not. This results in the exact opposite of the first
convolution I do on line segmentation. Staff lines are
erased and notes and bar divisions remain.

The resulting image is convoluted with a second custom

kernel, that consolidates white regions into large white
clusters. A single iteration of cv2 library’s dilation convo-
lution is applied to eliminate any remaining noise and fur-
ther consolidate the white areas.

Now we can search for bar divisions by moving hori-

zontally at each line’s center and finding the white col-
umns separating the black regions. This method, however,
doesn’t work for single-staff sheets, since these regions be-
tween staves in the same line aren’t present there.

Figure 3: Single staff and dual stave sheets at different stages of segmentation

Figure 4: Horizontal projection of a staff

Figure 5: Dual stave sheet at different stages of segmentation

ARNAU J. ALCON: FROM IMAGE TO MIDI 5

4.2.4 Voting system

The systems described in line segmentation and bar seg-
mentation share a last step in which a single, arbitrary
row/column of pixels is iterated in search of division lines.

This hypersimplistic approach works on visually clear,

ideal scenario scores. However, its ability to detect divi-
sions drops when executed on sheets with more visual
noise. This issue can be mitigated by using a voting system.

Instead of iterating a single, arbitrary line of pixels, we

iterate several, evenly spaced lines (columns for line seg-
mentation, rows for bar segmentation). For each string,
when a line or bar division is detected, the position of that
pixel (height for line segmentation, width for bar segmen-
tation) is added to a list just as I did in the simpler imple-
mentation. However, if this position has already been in-
serted into the list, it is instead added a “vote”. When all
the lines have been searched, the values of the list that have
not reached a minimum number of votes are rejected, ef-
fectively removing most of the false detections caused by
noise. When searching the pixel lines, before adding the
position to the list, we round it to the nearest multiple of
10 to ensure that the actual divisions receive votes and are
not rejected accidentally.

4.2.5 Mixed approach

I have also implemented a fourth approach to line and
bar segmentation that combines the two ideas. It uses the
same convolutions to highlight the relevant features of the
image and then computes the horizontal and vertical pro-
jections respectively to search for the divisions. I believed
they could compliment each other well.

4.3 Second block: Seq2seq prediction

This block executes predictions on all the images saved
in a particular folder by the previous block, based on the
trained model.

4.3.1 Seq2seq model

Sequence to sequence (seq2seq) is a family of machine
learning approaches that turns a sequence, often a text
string, into another sequence.

When trying to tackle problems such as language trans-

lation or text prediction using conventional neural net-
works, also called vanilla, it was noticed that the expected
output did not depend solely on the input sequence, it was
also dependant on the context around the input. This is an
intrinsec characteristic of language. When we translate a
sentence from one language to another, replacing every
word in the sentence with its equivalent in the other lan-
guage rarely results in a decent translation. Transmiting
the underlying context of the sentence that we subcon-
sciously understand is the key to a good translation.

One of the first successful solutions to this were

Recurrent Neural Networks. RNNs output sequence is
predicted using the input sequence and the previous out-
put. This allows the network to have a memory of sorts,
which uses to contextualize its predictions.

RNNs have a short memory though, and relevant con-

text to the prediction that is found far away from the cur-
rent sequence can be missed. This is known as the problem
of vanishing gradient. LSTMs and GRUs are networks that
solve this problem by judging the relevance of the context
and forgetting what is less impactful. Phi’s illustrated
guide to LSTMs and GRUs [12] offers a deeper explana-
tion.

The reason I explained all of this is because seq2seq

makes use of an RNN, or more often an LSTM or GRU. It
is an encoder-decoder model, which means its primary
components are one enconder and one decoder network.
The encoder turns each item into a corresponding hidden
vector containing the item and its context, and the decoder
turns the vector into an output item using the previous out-
put as input context.

This project borrows the seq2seq model implemented

and trained by Baró et al [3] and Torras et al [4], and mod-
ified by Santaella [5], to execute predictions. The model I
will use has the following structure:

For the encoder, data is first introduced into a convolu-

tional deep neural network (VGG19), then goes through a
dropout layer and lastly is entered to a GRU.

For the decoder, the attention mechanism used is a com-

bination of Bahdanau attention and location sensitive at-
tention.

4.4 Third block: MIDI Assembly

This block takes the MIDI files saved in a particular
folder by the previous block and outputs a single MIDI file
that combines them in order.

4.4.1 MIDI file structure

The MIDI protocol was first released in 1983. It has man-
aged to stay relevant for so long due to its clever design, it
has adapted very well to technology’s progress. But its
flexibility comes at a cost. Parsing a MIDI file to extract spe-
cific information for computer processing is no easy task.

 A MIDI file consists on a fixed size header followed by

tracks. The header informs you of how many tracks there
are in the file. Each track also has a header which informs
about its size, and is followed by the MIDI events in that
track.

MIDI events, or events for short, are the core of any

MIDI file. This is where the complexity of parsing MIDIs is
found. Since the protocol was created with the objective to
maximize bandwith optimization and flexibility, the

6 EE/UAB TFG INFORMÀTICA: FROM IMAGE TO MIDI

events data size is always contextual. For example, all
events start with their Delta value. This value represents
the time that should pass between this event and the pre-
vious one. This value can always be read onto a 4 byte in-
teger. But in a MIDI file this value can be read from the
seven less significant bits in 1 to 4 bytes, depending on
whether each of those bytes has its most significant bit set
or not. There are a lot more considerations that need to be
accounted for when parsing a MIDI file that I will not get
into here, more detailed explanations can be found in this
educational video [13] and in the official specification [14].

In this project the two types of event that we care about

extracting from the files the seq2seq outputs are NoteOn
and NoteOff events. The MIDI protocol does not encode
musical information in the way humans usually think
about it, but rather how instruments use it. For instance, a
keyboard that can communicate in MIDI protocol would
create a NoteOn event whenever a key is pressed, and a
NoteOff event when that key is released.

4.4.2 MIDI reading

I have repurposed OneLoneCoder’s MIDI parser imple-
mentation in C++ [10] so that it ignores everything but
NoteOn and NoteOff events. Whenever either of these
events happens, the entire event is written to a separate
text file that will be used later for reconstruction. I would
like to stress that the flexible nature of MIDI events meant
that implementing this reading process was far from sim-
ple.

An additional consideration was made to add a tick to

the delta value of the first NoteOn event of every file except
the very first one. This is because the first NoteOn event of
a file starts at delta = 0, but following events that would
happen at the same time are offset by 1 tick, an offset that
the separated MIDI files do not account for.

4.4.3 MIDI construction

I have implemented a C++ class FuseMidis to construct
my final MIDI file. You can keep adding as many MIDI
files as you want through the method addMidi, that reads
the NoteOn and NoteOff events and writes them onto a
separate text file. When the method constructPrediction is
called, the final MIDI file is crafted by stitching together a
default MIDI header, a single track whose track length de-
pends on the number of note events read, some predeter-
mined track settings such as instrument, tempo and key
signature, the note events read, and an end of track meta
event.

5 RESULTS

5.1 Line segmentation

I decided to evaluate line segmentation in binary terms:
either the algorithm has segmented all the lines in the sheet
correctly or it has not.

There are several factors that made me consider this

evaluation scheme. The first is that in the context of this
project, missing a single line or missing all of them is an
equal degree of failure, since it will completely mess up bar
segmentation and in consequence also prediction. The sec-
ond is that detecting all lines in a sheet correctly is not too
high a standard to expect of these algorithms. The third is
that I have not seen a single case in my testing where an
algorithm got all lines right except one. If the sheet’s noise
makes the algorithm miss a line, it often misses most of
them and places lines where there should be none. The last
consideration is that my testing dataset is small enough
that I can afford to manually check the segmenting test re-
sults, and I did not believe that an automated a system to
check the “correctness” of the line detection was worth im-
plementing.

I tested 4 implementations of line segmenting: horizon-

tal projection (P), convolution with simple detection (CS),
convolution with voting system (CV) and convolution
with horizontal projection (CP).

I tested them on databases containing 10 to 20 sheets of

the following characteristics:
1. Ideal – The perfect sheet. High quality, evenly

spaced, no title or lyrics, no noise.
2. Standard – A realistic good quality sheet. Some

noise, finger notations, title.
3. Hard – A realistic bad quality sheet. Scribbled,

poorly captured, a lot of noise.
4. Odd – Sheets with uncommon features. Lyrics,

weird note fonts, few space between lines.

The results shown are the percentage of properly seg-

mented sheets on each database.

Table 1: Line segmentation results

Figure 6: Stacked bar chart of line segmentation results

ARNAU J. ALCON: FROM IMAGE TO MIDI 7

We observe that on ideal sheets all 4 algorithms de-
tected lines without any issue. The simple detection’s per-
formance drops as soon as noise gets introduced, since
something going wrong in any pixel of the arbitrarily cho-
sen column/row makes the detection malfunction.

The voting system, as intended, makes the detection

more resilient to noise. Its performance, however, also
drops when the odd sheets are introduced. I have observed
that this is almost always because larger noise clusters are
not rejected by the voting system, resulting in line detec-
tions where there should be none. This problem could be
fixed by either tweaking the voting system to be stricter or
introducing a filter at the output that rejects lines that cre-
ate too thin regions.

The horizontal projection and the convolution with hor-

izontal projection perform about the same, which was to
be expected. The convolution version has performed a bit
better overall but my amount of testing is too low to deter-
mine that this approach is strictly better.

5.2 Bar segmentation

I evaluated bar segmentation with the same system I
used to evaluate line segmentation for the same considera-
tions.

I tested 4 implementations: vertical projection (P), con-

volution with simple detection (CS), convolution with vot-
ing system (CV) and convolution with vertical projection
(CP).

I tested them on databases containing 10 to 20 sheets of

the following characteristics:
1. Ideal – The perfect sheet. High quality, evenly

spaced, no title or lyrics, no noise.
2. Standard – A realistic good quality sheet. Some

noise, finger notations, title.
3. Hard – A realistic bad quality sheet. Scribbled,

poorly captured, a lot of noise.
4. Odd – Sheets with uncommon features. Lyrics,

weird note fonts, few space between lines.

All testing was done on lines properly segmented from

the database sheets. The results shown are the percentage
of properly segmented lines (not entire sheets) in each da-
tabase.

The performance of the bar segmentation is worse over-
all than that of line segmentation.

The results follow the same pattern as the line segmen-

tation, the ideal sheets are segmented almost perfectly, the
simple detection’s performance drops as soon as noise gets
introduced, the voting system mitigates that problem and
actually slightly outperforms the vertical projection on the
hard database.

The convolution with vertical projection outperformed

the vertical projection again but by a more meaningful
margin this time, which leads me to believe that there
might be some value to this approach.

5.3 Seq2seq prediction

Santaella [5] already tested the performance of the
seq2seq model on synthetic sheets and, at the time of writ-
ing, I have not yet been able to find a good way to evaluate
its performance numerically.

That said, what predictions I have tested and checked

manually so far have been relatively underwhelming.
Even predictions on simple, ideal sheets that have been
manually segmented are often off by a lot, though it does
get some notes right every now and then so the original
sheet is at least recognizible.

5.4 MIDI assembly

The MIDI construction has perfect performance. I have
ensured that the program parses any and all MIDI files
properly so long as they follow the specification. The note
events are read correctly, and the final file is constructed
with the exact notes read, in the correct order so long as the
files were properly named for sorting, which in this pipe-
line they are.

Table 2: Bar segmentation results

Figure 7: Stacked bar chart of bar segmentation results

Figure 8: Read notes text file, in binary editor

8 EE/UAB TFG INFORMÀTICA: FROM IMAGE TO MIDI

There is an improvement I could make to this step. That
is, the settings portion of the file is currently static and set
to default values. For the purposes of this project this
works perfectly fine, but if I want the file to play a different
instrument or at another tempo I have to manually edit the
settings text file. Having knowledge of the MIDI protocol
this is not a problem for me personally, but having a more
user-friendly way to select a few settings and those being
automatically transcribed to the settings file would be a
nice upgrade.

6 CONCLUSION

In this project I set off to implement a complete OMR
system, one that spanned the entire pipeline from a com-
plete music sheet PNG to a MIDI file. I have successfully
achieved this goal.

Regarding score segmentation, I theorized a way to use

convolutions to highlight the important features for line
and bar detection, implemented it alongside the current
standard, tested them both and found that combining both
approaches has a real potential to be a better option than
the current standard. More focused testing on this particu-
lar matter is needed to reach a definitive conclusion, but I
believe it to be promising.

Regarding the predictions themselves, I’m not satisfied

with the fact that I couldn’t achieve a more thorough and
scientific testing beyond manually executing and judging
the results, but Santaella’s previous work should be suffi-
cient for now.

Regarding the MIDI file parsing, although my work on

it is far from novel, I have had a lot of fun unravelling all
the quirks of the protocol and I find it very clever and in-
spiring. I look forward to working with the format again
in the future.

Finally, when it comes to the performance of the system

as a whole, it is still far from a complete product. The pre-
dictions are not precise, even on simpler music scores. The
reason for this is almost always the seq2seq prediction.
Maybe I could have tried to further process the images in
some way that could make the predictions better. Either
way, both the music score segmentation and the MIDI as-
sembly blocks are independent enough that it should be
very easy to swap the seq2seq for a different deep learning
OMR model that shares the same input and output for-
mats, so this project can be expanded in the future by try-
ing it on other models.

REFERENCES

[1] Jorge Calvo-Zaragoza, Jan Hajič Jr., & Alexander Pacha. (2020, ju-
lio). Understanding Optical Music Recognition.
https://doi.org/10.1145/3397499
[2] Bellini, P., Bruno, I. & Nesi, P. (2001, diciembre). Optical music
sheet segmentation. Proceedings First International Conference on
WEB Delivering of Music. WEDELMUSIC 2001.
https://doi.org/10.1109/wdm.2001.990175
[3] A. Baró, C. Badal and A. Fornés (2020). Handwritten Historical
Music Recognition by Sequence-to-Sequence with Attention Mecha-
nism.
http://158.109.8.34/people/afornes/publi/conferen-
ces/2020_ICFHR_ABaro.pdf
[4] P. Torras, A. Baró, L. Kang, A. Fornés (2021). On the Integration of
Language Models into Sequence To Sequence Architectures for
Handwritten Music Recognition. http://158.109.8.34/people/afor-
nes/publi/conferences/2021_ISMIR_PTorras.pdf
[5] T. Santaella (2021, july). TFG. Reconocimiento de partituras musi-
cales.
[6] Shatri, E., & Fazekas, G. (2020). Optical Music Recognition: State of
the Art and Major Challenges. arXiv. https://doi.org/10.48550/AR-
XIV. 2006.07885
[7] T. MIKOLOV (2012). PhD. Statistical Language Models Based on
Neural Networks.
https://www.fit.vut.cz/study/phd-thesis-file/283/283.pdf
[8] Vinaya V et al Int. (2014, May). Journal of Engineering Research
and Applications. https://www.ijera.com/papers/Vol4_issue5/Ver-
sion%203/C045031116.pdf
[9] javidx9. (2016, Feb). https://www.youtube.com/@javidx9
[10] OneLoneCoder/javidx9. (2022, Sep). https://github.com/One-
LoneCoder/Javidx9/blob/master/PixelGameEngine/SmallerPro-
jects/OneLoneCoder_PGE_MIDI.cpp
[11] 3Blue1Brown. (2022, 18 noviembre). But what is a convolution?
[Vídeo]. YouTube.
https://www.youtube.com/watch?v=KuXjwB4LzSA
[12] Phi, M. (2020, 28 junio). Illustrated Guide to LSTM’s and GRU’s:
A step by step explanation. Medium. https://towardsdatasci-
ence.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-expla-
nation-44e9eb85bf21
[13] javidx9. (2020, Mar) Programming MIDI. [Vídeo]. Youtube.
https://www.youtube.com/watch?v=040BKtnDdg0&t=1087s
[14] Official MIDI Specifications. https://www.midi.org/specifications

BIBLIOGRAPHY

Understanding LSTM Networks -- colah’s blog. (2015). Colah’s Blog.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Phi, M. (2020, 28 junio). Illustrated Guide to LSTM’s and GRU’s: A

step by step explanation. Medium. https://towardsdatasci-

ence.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-expla-

nation-44e9eb85bf21

Moses, K. (2022, 7 enero). Encoder-Decoder Seq2Seq Models, Clearly

Explained!! Medium. https://medium.com/analytics-vidhya/encoder-

decoder-seq2seq-models-clearly-explained-c34186fbf49b

Kostadinov, S. (2021, 7 diciembre). Understanding Encoder-Decoder

Sequence to Sequence Model. Medium. https://towardsdatasci-

ence.com/understanding-encoder-decoder-sequence-to-sequence-

model-679e04af4346

Jangid, A. (2021, 11 diciembre). Intuitive Understanding of Seq2seq

model & Attention Mechanism in Deep Learning. Medium.

https://medium.com/analytics-vidhya/intuitive-understanding-of-

seq2seq-model-attention-mechanism-in-deep-learning-1c1c24aace1e

Figure 9: The same notes in the assembled MIDI, in binary editor

http://158.109.8.34/people/afornes/publi/conferences/2020_ICFHR_ABaro.pdf
https://doi.org/10.1109/wdm.2001.990175
http://158.109.8.34/people/afornes/publi/conferences/2020_ICFHR_ABaro.pdf
http://158.109.8.34/people/afornes/publi/conferences/2020_ICFHR_ABaro.pdf
http://158.109.8.34/people/afornes/publi/conferences/2021_ISMIR_PTorras.pdf
http://158.109.8.34/people/afornes/publi/conferences/2021_ISMIR_PTorras.pdf
https://doi.org/10.48550/ARXIV.%202006.07885
https://doi.org/10.48550/ARXIV.%202006.07885
https://www.fit.vut.cz/study/phd-thesis-file/283/283.pdf
https://www.ijera.com/papers/Vol4_issue5/Version%203/C045031116.pdf
https://www.ijera.com/papers/Vol4_issue5/Version%203/C045031116.pdf
https://www.youtube.com/@javidx9
https://github.com/OneLoneCoder/Javidx9/blob/master/PixelGameEngine/SmallerProjects/OneLoneCoder_PGE_MIDI.cpp
https://github.com/OneLoneCoder/Javidx9/blob/master/PixelGameEngine/SmallerProjects/OneLoneCoder_PGE_MIDI.cpp
https://github.com/OneLoneCoder/Javidx9/blob/master/PixelGameEngine/SmallerProjects/OneLoneCoder_PGE_MIDI.cpp
https://www.youtube.com/watch?v=KuXjwB4LzSA
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://www.youtube.com/watch?v=040BKtnDdg0&t=1087s
https://www.midi.org/specifications

ARNAU J. ALCON: FROM IMAGE TO MIDI 9

Antonio Ríos Vila, David Rizo, & Jorge Calvo-Zaragoza. (2021, septi-

embre). Complete Optical Music Recognition via Agnostic Trans-

cription and Machine Translation. https://doi.org/10.1007/978-3-030-

86334-0_43

Dirac, L. [Seattle Applied Deep Learning]. (2019, 3 diciembre). LSTM

is dead. Long Live Transformers! [Vídeo]. YouTube.

https://www.youtube.com/watch?v=S27pHKBEp30

