
This is the published version of the bachelor thesis:

Morente Ribera, Adrian; Garcia-Font, Victor, dir. Development of an application
for the generation of KPIs. 2023. (958 Enginyeria Informàtica)

This version is available at https://ddd.uab.cat/record/272790

under the terms of the license

https://ddd.uab.cat/record/272790


TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

Development of an application for the
generation of KPIs

Adrian Morente Ribera

Resumen– El éxito empresarial requiere de medidas cuidadosas, planificación y análisis. Los
Indicadores Clave de Rendimiento (KPIs) son un conjunto de métricas que permiten evaluar el
rendimiento de una empresa y proporcionar información acerca de su potencial de mejora. La
monitorización de los KPIs permite a las empresas medir el éxito de sus operaciones y identificar las
áreas de debilidad. En el presente documento se expone el desarrollo de una aplicación para una
empresa del sector publicitario, que permitirá acelerar la generación de estadı́sticas por parte de la
empresa. Esta aplicación se encargará de generar gráficos relacionados con 8 KPIs diferentes, los
cuales podrán ser exportados aprovechando los datos de las campañas publicitarias existentes.

Palabras clave– KPIs, campañas y subcampañas publicitarias, operaciones CRUD, Escalabilidad,
Testabilidad, SonarQube, Arquitecturas Limpias, DTOs...

Abstract– Business success necessitates careful assessment, organization, and investigation. KPIs
(Key Performance Indicators) are a collection of measurements utilized to assess the performance
of a business and furnish understanding into the capacity for progress. By tracking KPIs and
surveying the relevant information, businesses can evaluate the accomplishment of their operations
and recognize regions of deficiency. This paper presents the formation of an application for a firm in
the advertising field, which will hasten the production of reports by the company. The application will
produce diagrams related to 8 distinct KPIs, that can also be exported through the utilization of the
data of the present advertisement campaigns.
Keywords– KPIs, advertising campaigns & sub-campaigns, CRUD operations, Scalability, Testability,
SonarQube, Clean Architecture, DTOs...

✦

1 INTRODUCTION

MEASUREMENTS are indispensable in ascertaining
business performance. One of the best means
of collecting data concerning the performance

of a company is through the utilization of KPIs (Key
Performance Indicators). The objective of KPIs [1] is
to assist in the decision-making process by constructing
a defined action trajectory for the company. These have
seen widespread application in the market since they allow
for the gathering of valuable information, measuring of
variables and results, determination of effective strategies,
making of decisions, and evaluation of the consequences
of past strategies. The success of KPIs has been on the
rise recently, primarily because of the recent advancements
in Information Technologies, which employ simpler, more
objective, and reliable data as opposed to traditional

• Contact email: adrian.morente.r@gmail.com
• Specialization: Information Technology
• Work mentored by: Vı́ctor Garcı́a Font (DEIC)
• Course 2022/23

communication channels.
The aim of this project, conducted during an internship

at the firm App2U, was to add functionalities for
the automated generation of KPIs to an existing ERP
(Enterprise Resource Planning) software utilized by a
company in the advertising sector. For the sake of
confidentiality, this company shall be referred to as X for
the remainder of the project.

2 INITIAL STATE OF THE PROJECT AND
STATE OF THE ART

The existing ERP had all the instruments necessary to
manage advertising campaigns. Prior to this application,
however, the company employed Excel to accomplish
commercial monitoring, collecting data concerning all the
campaigns and customers. Employing Excel to manage
advertising campaigns, however, was not the optimal
solution for our client since the information had to be re-
collected each month to generate a new version of the
statistics. Furthermore, after finalizing a contract, it had
to be shared with the marketing department to generate

Gener de 2023, Escola d’Enginyeria (UAB)



2 EE/UAB TFG INFORMÀTICA: DEVELOPMENT OF AN APPLICATION FOR THE GENERATION OF KPIs

the performance indicators, which could potentially lead to
divergences.

To address this issue, the company desired to incorporate
a new tool that could automatically generate KPIs as pie
charts to track the performance of the enterprise. My
responsibility in this project would be to integrate the
generation of KPIs within the existing ERP, allowing
for the visualization of the company statistics in an
effortless manner, as well as creating a new feature
for exporting this data to an Excel format. With this
application, administrators will be able to generate data
from the existing database without having to recalculate any
supplementary information, thereby reducing the time spent
by the company in calculating the performance statistics.

State of the art Key Performance Indicators (KPIs) are
used to measure the performance of a business in areas
such as cost, customer service, employee productivity, and
overall efficiency. Companies often use KPIs to track
progress and provide insight into how well their business is
performing. They are also used to help identify areas where
the company needs to improve and provide the necessary
resources to do so. By using KPIs, companies can ensure
they are running their business as efficiently as possible and
make informed decisions that will help them achieve their
goals.

3 OBJECTIVES

The main purpose of the project was to incorporate the
KPI generation tool into the existing ERP system. The
objectives were broken down into parts according to the
client’s demands and the current status of the product.

The MoSCoW prioritization method [10] was
implemented to all the project’s objectives, classifying the
requirements into four distinct groups: Must-have (M),
Should-have (S), Could-have (C), and Will-not-have (W).

• Must have (M): needs that are non-negotiable and
necessary for the project’s completion.

• Should have (S): encompasses important initiatives
that are beneficial, but not essential

• Could have (C): requirements that are desirable but
lack a significant impact if omitted

• Will not have (W): this category consists of tasks that
are not priority and will only be completed if there is
ample time

3.1 Export and visualize KPIs
For the generation of Key Performance Indicators (KPIs),
the client requested that the existing entity (campaigns) be
divided into two new entities, namely campaigns and sub-
campaigns. Furthermore, new fields were required to be
added to both entities. Following the division of campaigns
into sub-campaigns, the statistics about the sub-campaigns
could be extracted and subsequently exported into an Excel
spreadsheet for the generation of various diagrams.

In this first table the objectives related to exporting and
visualizing the KPIs are listed.

A. Database structure

Ref Objective Priority

A.1
Divide entity campaign
into campaigns and sub-campaigns S

A.2 Add new fields to campaigns M

B. CRUD operations for sub-campaigns

Ref Objective Priority
B.1 Create new screen for sub-campaigns S
B.2 Enable creation sub-campaigns M
B.3 Enable remove sub-campaigns M
B.4 Enable update sub-campaigns M

C. Visualize KPIs

Ref Objective Priority
C.1 Create API for KPIs C
C.2 Create screen for KPIs M

C.3
Create drop-down for displaying
the different KPI categories M

C.4 Format pie charts S

C.5
Export circular diagrams and
sub-campaigns to Excel M

C.6

Generate KPIs (Sectors, Supports,
Cities, percentage closed contracts,
contract typology, season, duration,
no engagement reason)

M

3.2 Scalability and testability
Apart from the requirements imposed by the client, the
company had internal objectives to be achieved in order to
make the code testable and scalable.

Scalability [2] prepares software for future growth while
creating a leaner product that is tailored to current needs
without excessive complexity. A system is deemed scalable
when it does not necessitate a redesign to maintain effective
performance after an increase in workload.

Furthermore, a significant objective of the development
was to test all potential scenarios to guarantee that the
application operates as anticipated. Having automated
tests that cover all conceivable cases is essential for
identifying and resolving bugs or unexpected behaviors
prior to releasing the ultimate version of the solution.

These objectives have been evaluated using two distinct
metrics.

• Scalability has been measured using SonarQube
[3], an automatic code review tool that assists in
the delivery of clean code. It boasts numerous
functionalities; however, I focused on the release of
quality code (D.1) and technical debt (D.2). The
former metric assesses the existence of potential bugs,
which may lead to unexpected behaviors that influence
the end user, whereas the latter ensures the codebase is
both clean and maintainable for subsequent iterations.



ADRIAN MORENTE RIBERA: DEVELOPMENT OF AN APPLICATION FOR THE GENERATION OF KPIs 3

• Testability has been measured by assessing the
coverage of our tests. Code coverage [4] is a
percentage measure of the degree to which the source
code of a program is executed when a particular
test suite is run. For our company standards the
domain coverage is required to be 100%, whereas the
coverage of the whole product (domain, application,
and infrastructure) is required to be higher than 80%
(D.3 & D.4) (The concepts of software layers, domain,
application, and infrastructure will be introduced later
in section 4.2)

Even though this was not an initial requirement of the
customer, both scalability and testability are essential for
granting the quality of the code. Thus, they have been
included as objective for the project and they were analyzed
at the final stage of it.

D. Test and release

Ref Objective Priority

D.1
(SonarQube)1 Minimize quantity
of bugs and code smells2 C

D.2
(SonarQube) Reduce technical
debt ratio3 C

D.3 Domain coverage S
D.4 Application coverage S

D.5
Responsible design for screen widths
between 769 and 1800 pixels M

4 METHODOLOGY

4.1 Planning methodology
I have been collaborating with a small team of three
developers, one of which was the project manager,
following an Agile methodology [7] . We divided our
meetings into daily and weekly sessions, along with sprint
planning and sprint review meetings. The daily meetings
served to ensure everyone was aware of their tasks and any
doubts or issues could be reported to the project manager;
these generally took approximately 15 minutes. At the end
of the week, an hour-long meeting was held to discuss
project-related matters. The project manager additionally
reviewed the code and functionalities of the development.
Redmine, a project management application with time
tracking, role-based access system, Gantt charts, and other
functionalities, was the tool utilized for organization. The

1. These objectives will be measured by the SonarQube application
2. Code smells [5] are structures in the code that indicate the violation

of fundamental design principles, they are not bugs since they are not
technically incorrect and do not prevent the program from functioning;
nevertheless, they indicate weaknesses in design that may slow down
future development or increase the risk of bugs or failures.

3. Technical debt [6] refers to the amount of time that we will need
in the near future to refactor the code in order to correct wrong patterns in
our code. For instance when we duplicate code instead of creating a class
or duplicate literals instead of introducing constants. In this case, the code
is submitted earlier but then in the future, we will have to return that time
to avoid errors.

product was delivered to the client after each sprint for
testing the implemented functionalities.

4.2 Software architecture methodology.
This project has been developed using a Clean Architecture
structure [8] [9], which has recently become an area of
increasing attention. Ideas such as Hexagonal Architecture
or Onion architecture have risen in popularity, with each
demonstrating different implementations yet sharing the
same objective of concern separation by dividing the
software into layers. The main characteristics of these
systems are:

1. Independent of frameworks. The architecture is not
tied to a specific framework, instead, the framework is
just used as an additional tool for our system.

2. Testable. Business rules can be tested without needing
UI, database, or external elements.

3. Independent of the UI. Changing the UI does not imply
changing anything about our business rules

4. Independent of the database. Business rules are not
bound to the database.

5. Independent of external agents.

Fig. 1: Representation of the distribution of concerns in
hexagonal architecture

Figure 1, illustrates the distribution of concerns within
hexagonal architecture, wherein the concentric circles
are representative of different areas of the system, with
deeper circles corresponding to higher-level software.
The Dependency Rule is the main principle of clean
architectures, which dictates that source code dependencies
must only point inwards, nothing in an inner circle can
know anything about an outer circle, and data formats used
in external layers cannot pass to the internal ones. Four
circles can be distinguished:

1. Entities. They encapsulate business rules. No change
in navigation, security, or database should affect this
layer.



4 EE/UAB TFG INFORMÀTICA: DEVELOPMENT OF AN APPLICATION FOR THE GENERATION OF KPIs

2. Use cases. This layer contains application-specific
business rules. It is responsible for orchestrating data
flow to and from the entities.

3. Interface adapters. They convert data from the data
format convenient for use cases and entities to the data
format suitable for external agencies.

4. Frameworks and drivers. The outermost layer is
composed of tools and frameworks that should not be
tied to our business logic.

When data is shared, it should always be in the most
suitable format for the inner circle and be passed inside
Data Transfer Objects (DTOs) or simple structs, avoiding
any dependency that violates The Dependency Rule.

5 PLANNING

The project was planned within a two-month span,
which included all the relevant objectives. The color
representation in the Gantt chart present in figure 2 has been
used to distinguish the four main stages of the project:

1. Database structure (Blue)

2. CRUD operations for sub-campaigns (Green)

3. KPI visualization (Orange)

4. Test and release (Grey)

Fig. 2: Gantt followed during the execution of the project

The complete Gantt diagram that was followed during the
execution of the project can be seen in appendix A.1

6 SYSTEM DESIGN

6.1 Requirement analysis
For designing this system, the first step was to determine
which requirements were needed for arriving to the desired
solution. The requirements have been splitted up into
functional and non-functional ones. The prioritization
according to the MoSCoW method, that has already been
mentioned in section 3 has been applied to functional
and non-functional requirements even though all functional
requirements were imposed by the client. Thus, they would
be checked by the client during the sprint.

Functional requirements:

Priority Functional Requirement
M Database modification.
S Add topology and sector to new campaign class.
M Add navigation KPIs button.
M Create screen for sub-campaigns and KPIs.
M CRUD operations for sub-campaigns.
M Statistics for the 8 KPIs.
S API for retrieving the KPI data.
M Excel generation.
S API for exporting the Excel.

Non-functional requirements:

Priority Functional Requirement
C Color palette for KPI charts.
S Format KPI charts with legends and percentages.
M Format Excel in a structure imposed by the client.
W Correct previous bugs of the ERP.
S Domain coverage (100%).
S Application coverage. At least (80%).
M Responsible design for computers
M Keep with the style of the existing project.
M Use Django 2.2 and Python 3.7 for the back-end.
S Use jQuery for the front-end.
S Pass SonarQube.

6.2 System use cases
As already discussed in Section 3.1, the primary objectives
of the application are to export and visualize the collected
data. In order to achieve this, it was necessary to restructure
the database and incorporate CRUD operations for the sub-
campaigns. Nevertheless, the system is primarily dedicated
to the two core features.

The use cases included in the application can be divided
into two categories, those that are available to all users and
those that are only available to administrators. Updating
or deleting an existing sub-campaign and generating new
sub-campaigns are restricted to administrators, whereas all
system users can access the sub-campaigns, export KPIs
and visualize KPIs.

A description of the system can be observed in Figure 3.

6.3 System classes
The most important features of this project are the exporting
the excel containing all the statistics and the generation of
KPIs within the existing ERP.

Thus, the class diagram will be focused on showing the
main classes that had to be used to reach this purpose. The
classes have been divided into three different categories:
persistent classes, DTOs for generating the KPIs, and DTOs
for exporting the Excel.

As it can be seen in figure 4 the persisting classes are
only composed of the campaign and sub-campaigns. The



ADRIAN MORENTE RIBERA: DEVELOPMENT OF AN APPLICATION FOR THE GENERATION OF KPIs 5

Fig. 3: System use cases

Fig. 4: Class diagram of the system. From left to right:
persistent classes, DTOs for generating the KPIs and DTOs
for exporting the Excel.

campaign class can have many sub-campaigns related to
it. It can be noticed that no additional information is
persisted in the database for the generation of KPIs or
Excel. This happens because each KPI needs different data
to be built which can be retrieved from the campaign and
sub-campaign entities.

Thus, the use cases for visualizing KPIs and exporting
KPIs will only use the information available in these
classes. As it has been mentioned in section 4.2, the
information that crosses the infrastructure, application, and
domain layers will travel within DTOs (Data Transfer
Objects) [11], which are immutable classes that encapsulate
the data to be transferred.

6.3.1 Visualize KPIs DTOs

When the user requests a specific KPI, the
GetKpiQueryDTO will be generated in the view and
will travel to the module responsible for retrieving the
sub-campaigns. Once the sub-campaigns are retrieved the
module responsible for building the KPI will create a list of
KpiItemsDTO that contain the information about every KPI
that will later be used to create a pie chart in the front end.

6.3.2 Export KPIs DTOs

The case of exporting the excel is similar to the previous
one; however, apart from the KPIs, the excel must include
additional information about the sub-campaigns. Thus,
the DTOs must contain significantly different data. The
ListExcelDTO will contain the information needed to build
the first page of the excel. Apart from containing the
values, this DTO contains the headings for the data, the
main description, and the sub-description for the page as
well as the sheet name.

The remaining pages, which contain one KPI in each
page will be built using the ChartInfoDTO, which contains
the same values that the ListExcelDTO. However, they
have been separated into 2 different DTOs in case the
implementation changes in the future.

For more information about the specific format of the
Excel please check the complete demo from the link present
in section 6.4 or check appendix A.2

6.4 UI & UX Design
For the design of the KPIs page, a navigation button was
added to the menu of the existing ERP to allow access to
the page. The two new views to be added to the ERP
were designed using Figma [12], a design tool frequently
used by companies for designing graphical interfaces for
applications.

The design of the landing page can be seen in Figure 5.

Fig. 5: Landing KPIs page contained within existing ERP

In this design, it is evident that the website has a left
navigation bar, providing access to the new feature of
the application. Upon navigating to the KPIs page, the
list of existing sub-campaigns contained in the specified
date range can be seen (if no date range is specified, all
campaigns will be visible in a paginated view).

The sub-campaigns will be presented in a list comprising
of their details, including name, client, sector, type, city, no
engagement reason (if relevant), and creation date.

The page will also feature a filter for dates and a selector
for the different types of pie charts which can be generated
from the data. Upon selecting an option to display a pie
chart, the design can be seen in Figure 6

The demo for checking the appearance of the Excel
exported file can be found in Appendix A.2. Data for the
demo has been generated exclusively for this purpose, as



6 EE/UAB TFG INFORMÀTICA: DEVELOPMENT OF AN APPLICATION FOR THE GENERATION OF KPIs

Fig. 6: Selector and pie charts containing the KPIs

the original data is confidential and cannot be disclosed.
For more information, please refer to the following link:
DEMO KPIs.

7 IMPLEMENTATION

7.1 Technologies
The project’s back-end was developed in Django, a back-
end server-side web framework written in Python which is
scalable, secure and maintainable. Django was chosen due
to the fact that the previous stages of the project had been
implemented with it.

Although the back-end was the primary focus, it was
necessary to make use of a front-end library to create the
KPI diagrams. ChartJS was eventually chosen, primarily
for its minimalism and its comprehensive documentation.
SCSS was employed for the styling of the front end. This
is an extension of CSS, allowing for the use of variables,
nested syntax and a more organised structure.

Lastly, Apache Subversion (SVN) was used as the
project’s Version Control System as it is the tool currently
in use by the company.

7.2 Main features
In this section the two main process interactions of my
project will be shown by using a sequence diagram.

7.2.1 Export Excel

The excel containing all the statistics of the company from
a given date range can be downloaded from the KPIs page.

As it can be seen in figure 7, the user interacts with the
view by selecting the date range. Then, the list of sub-
campaigns used to generate the statistics will be within
the range selected by the user. This date filter travels to
the GetExcelHandler class, which is responsible for calling
the SubcampaignFinder. The latter one is responsible for
getting the sub-campaigns from the database that match the
specified criteria. Once the list of sub-campaigns has been
retrieved they travel back to the handler.

Fig. 7: Sequence diagram containing the logic behind the
Export Excel Use Case

After that, there are two possibilities. In the case,
there is not any sub-campaign matching the criteria the
handler will send an empty response to the view, which
will be responsible for showing an error message to the
end user. If some sub-campaigns have been retrieved,
the GetExcelHandler will create the ListExcelDTO and
ChartExcelDTO that will go to the ExcelGenerator. The
ExcelGenerator is responsible for creating the structure
of excel and creating its pages; however, it delegates the
responsibility for creating the graphics on each page. This
last part is done by the ExcelController, who is responsible
for filling the excel with the appropriate information and
then sending back the file.

7.2.2 Generate KPIs

Apart from downloading the complete set of statistics via
excel, the users can also visualize the KPIs in the same
website by the generation of pie charts that include the
statistics of the category selected by the user.

Fig. 8: Sequence diagram containing the logic behind the
Generate KPIs Use Case

In the diagram present in figure 8, it can be seen that the
user selects the category and date ranges that are gathered
by the view. The view sends the information about the
category within the GetKpiQuery that will travel to the
KPIHandler. The only function of the KPIHandler is to call
the finder and check if there are any errors.

https://docs.google.com/spreadsheets/d/1JpOclIrCxcGjoQUBbjzV8zmW7oiAxyTSwTkwfB7r4xE/edit#gid=1643939202


ADRIAN MORENTE RIBERA: DEVELOPMENT OF AN APPLICATION FOR THE GENERATION OF KPIs 7

The KPIHandler is then responsible for getting the
filtered list of sub-campaigns in case the user has specified
a date range. This is done to reduce the computing time
for following queries, by collecting the statistics only from
a small set of sub-campaigns instead of getting it from all
of them. Then, once the sub-campaigns that contain the
information that is needed for generating the KPI have been
collected, the KpiFinder will create the list of KpiItem that
will be used by the view to build the pie charts.

8 RESULTS

During this section we will analyze the degree of
completeness of the original objectives of the project and
we will evaluate the final result of the project using some
metrics.

8.1 Analysis of initial requirements
The functional requirements were successfully
accomplished; however, the final stage of the project,
centred around release and testing, was delayed. This was
due to the fact that after submission of the results to the
client, modifications were requested. These modifications,
along with some additional testing, caused an 1-2 week
delay in the project.

Due to this lack of time, some non-functional
requirements had to be postponed for subsequent releases.
The list below comprises of all non-accomplished
requirements not related to test coverage nor to
vulnerability analysis.

• Color palette KPI charts: a basic color palette of
twenty colors has been created to manage most of the
KPIs. However, should the number of categories grow,
new colors will be randomly generated, which could
potentially lead to accessibility issues if two adjacent
colors are too similar.

• Correct previous bugs of the ERP (NF4): due to the
limited time remaining in the project, only minimal
effort was allocated to rectifying any existing errors.

8.2 Evaluation. Test coverage and
vulnerability analysis

At this stage, the outcome of the project will be evaluated
using the test coverage and the vulnerability analysis
generated by SonarQube, an application that reviews the
code in order to prevent bugs and other problems.

The test coverage, as previously mentioned, measures the
proportion of code that is covered by tests, guaranteeing that
the code uploaded to production works as intended. The test
coverage will be examined firstly for the domain layer and
then for the entirety of the application.

• Domain coverage: the requirement for all new projects
in the company is to have 100% of domain coverage
we cannot say that it was accomplished; however,
this 5% remaining coverage will be added in future
iterations.

Fig. 9: Domain coverage report

• Application coverage: as it can be seen, the result is far
away from the requirement, which was having at least
80% of application coverage.

This was mainly due to the fact that there is a lot
of legacy code, developed 1-2 years ago that did
not follow the architectural patterns present in the
company nowadays, introducing intricate code that is
difficult to test.

Fig. 10: Application coverage report

When analyzing the metrics generated by SonarQube,
it can be seen in figure 11, that some of the conditions
were accomplished, but most of them were not fulfilled.
The main reason for this is the legacy code previously
mentioned.

Fig. 11: General status of the project

This can be easily seen if we analyze figure 12 and 13.



8 EE/UAB TFG INFORMÀTICA: DEVELOPMENT OF AN APPLICATION FOR THE GENERATION OF KPIs

These figures compare the number of issues before and after
uploading the final code to the main branch of the version
control system.

Before September 2022:

• 77 bugs

• 166 code smells

• 0 vulnerabilities

Fig. 12: Initial status of the project

After September 2022:

• 76 bugs

• 173 code smells

• 0 vulnerabilities

Fig. 13: Final status of the project

Thus, the number of bugs reduced in 1 and only 7
code smells were introduced during the development of the
application for the generation of KPIs.

9 CONCLUSION

As assessed in the preceding section, the vast majority of
the objectives have been achieved. The key features, such
as the CRUD operations for sub-campaigns, the generation
of KPIs and the ability to export all the data in Excel, have
been successfully implemented at the end of the project.

As a comprehensive summary, the project has been a
success as all the requirements requested by the client
have been met and the application is currently running
in the production environment with no reported errors.
The development of KPIs and the exporting application
has drastically reduced the time needed by the advertising
company to monitor their statistics.

From a personal point of view, the development of the
application for the generation of KPIs was a challenging but
rewarding experience. Being a first-time developer using
Django, I had to overcome the learning curve and become
acquainted with the framework’s syntax and features.
Moreover, tackling the legacy code of the company’s
existing system was a challenge, as it necessitated me to
meticulously study and comprehend the existing codebase
in order to integrate my new application seamlessly.

Overall, the project was a success and the new
application has proven to be a valuable asset for the
company, providing real-time insights and metrics to aid
them in making informed decisions. The project has
also provided me with valuable experience in working
with Django and dealing with legacy code, which will be
advantageous skills in future development projects.

REFERENCES

[1] What is a Key Performance Indicator? [Online].
Available: https://www.kpi.org/KPI-Basics/

[2] Kevin Hobert. (2018, Jul 31). Writing
Clean Code — A Paradigm for
Scalable Codebase [Online]. Available:
https://medium.com/@kevinhobert29/writing-clean-
proper-code-8f7dd80a0626

[3] SonarQube [Online]. Available:
https://www.sonarqube.org/

[4] Wikipedia. ”Code coverage” [Online]. Available:
https://en.wikipedia.org/wiki/Code coverage

[5] Wikipedia. ”Code smell” [Online]. Available:
https://en.wikipedia.org/wiki/Code smell

[6] (2021, Apr 15). How To Evaluate The Technical
Debt With Sonarqube [Online]. Available:
https://www.bitegarden.com/how-to-evaluate-
technical-debt-sonarqube

[7] Atlassian. What is Agile? [Online]. Available:
https://www.atlassian.com/agile

[8] Javier Ferrer. (2016, May 12). Introducción
Arquitectura Hexagonal – DDD [Online]. Available:
https://codely.com/blog/screencasts/arquitectura-
hexagonal-ddd

[9] Robert C. Martin. (2012, Aug 13).
The Clean Architecture [Online].
Available: https://blog.cleancoder.com/uncle-
bob/2012/08/13/the-clean-architecture.html

[10] ProductPlan. MoSCoW
Prioritization [Online]. Available:
https://www.productplan.com/glossary/moscow-
prioritization/



ADRIAN MORENTE RIBERA: DEVELOPMENT OF AN APPLICATION FOR THE GENERATION OF KPIs 9

[11] Martin Fowler. Data Transfer
Object [Online]. Available:
https://martinfowler.com/eaaCatalog/dataTransferObject.html

[12] Figma [Online]. Available:
https://www.figma.com/design/



10 EE/UAB TFG INFORMÀTICA: DEVELOPMENT OF AN APPLICATION FOR THE GENERATION OF KPIs

APPENDIX

A.1 Gantt diagram

Fig. 14: Complete Gantt diagram followed during the execution of the project



ADRIAN MORENTE RIBERA: DEVELOPMENT OF AN APPLICATION FOR THE GENERATION OF KPIs 11

A.2 Demo Excel

Fig. 15: Expected view of the list of sub-campaigns within the exported excel

Fig. 16: Expected view of a KPI page within the exported excel


