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Analysis and Applications of VRFs

Adrián Castro Lara

Resum– En aquest projecte analitzarem i definirem què són les VRFs (Verifiable Random Func-
tions). A més a més, estudiarem la motivació que hi va haver darrere per tal de crear-les i
començar a utilitzar-les. Després, estudiarem dues maneres de com s’implementen, mitjançant
l’ús de criptografia de clau pública RSA i EC (Corbes El·lı́ptiques). Dins les EC analitzarem les
implementacions basades estrictament en corbes i les derivades d’elles mitjançant la utilització de
pairings. A continuació, estudiarem diferents tipus d’implementacions i aplicacions que fan ús de
les VRFs, com són les criptomonedes Cardano, Polkadot i Algorand i el criptosistema de NSEC5.
Per acabar, implementarem amb Python un protocol de VRF mitjançant EC basat en l’esquema de
signatura digital ECDSA (Elliptic Curve Digital Signature Algorithm) de Bitcoin per tal de solucionar
el problema de l’Anti-Exfil.

Paraules clau– VRF, Clau Pública, RSA, Corbes El·lı́ptiques (EC), Logaritme Discret, Pair-
ings, ECDSA, Nonce, Polkadot, Cardano, Algorand, NSEC5, Anti-Exfil, Bitcoin.

Abstract–In this project we will analyze and define what VRFs (Verifiable Random Functions) are.
In addition, we will study the motivation behind creating them and start using them. Then, we will
study two ways of how they are implemented, by using RSA and EC (Elliptic Curves) public key
cryptography. Within the EC we will analyze implementations strictly based on curves and those
derived from them through the use of pairings. Next, we will study different types of implementations
and applications that implement VRFs, such as Cardano, Polkadot and Algorand cryptocurrencies
and the NSEC5 cryptosystem. Finally, we will implement in Python a VRF protocol using EC based
on Bitcoin’s ECDSA (Elliptic Curve Digital Signature Algorithm) digital signature scheme in order to
solve the problem of Anti-Exfil.

Keywords– VRF, Public Key, RSA, Ellptic Curves (EC), Discrete Logarithm, Pairings, ECDSA,
Nonce, Polkadot, Cardano, Algorand, NSEC5, Anti-Exfil, Bitcoin.

✦

1 INTRODUCTION - CONTEXT OF THE
WORK

AVRF is a pseudo-random function that, using public
key cryptography, such as RSA or Elliptic Curves,
generates and provides a value, which appears to

be random, and a proof that this value has been generated
correctly.

The mechanism allows the owner of the private key to
compute and provide the random value and proof. Once
delivered, anyone can verify using the owner’s public key
that this value was generated correctly. However, for the
system to be secure and cryptographically useful, from the
public key, value, and proof must not be able to obtain the
owner’s private key.
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Once the basis and operation of VRFs have been ex-
plained and conceptualized, we will then proceed to explain
the motivation for which VRFs arose and the problems they
solve. By definition, a pseudorandom oracle [GGM86] is
not verifiable, unless the seed, s, is published, which is the
seed responsible for generating the pseudorandom values.
However, with the publication of the seed everyone could
generate the pseudo-random values, making the oracle dis-
pensable, since it would lose the property of unpredictabil-
ity. Therefore, in order to trust the values generated by
the oracle, without having to publish s, they must be ful-
filled certain characteristics of mutual trust and reliability
between the user generating the seed and the user who eval-
uates it. These problems are efficiently solved by generat-
ing a proof, together with the pseudorandom value, which
allows the correctness of this value to be verified.

Next, we go on to define the basic characteristics that all
systems that implement VRFs must have [GRPV22]:

• Uniqueness: For any fixed VRF public key and for
any input, it is not possible to find evidence for more
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than one VRF output.
• Provability: Given a value and its corresponding

proof, we must be able to prove and verify the value
correctly.

• Pseudorandomness: No value of the function can
be distinguished from chance, even after seeing every
other value of the function along with the proofs.

• Full collision resistance: As with cryptographic hash
functions, VRFs must be collision resistant. This fact
implies that it is infeasible to find two different inputs
with the same output.

2 OBJECTIVES

In this section we will describe the project objectives which,
more informally, have been discussed in the introduction.
Basically, this project will consist of two main objectives:

• Study and theoretically analyze the functioning of
VRFs and their two main implementation mecha-
nisms, through EC and RSA.

• Implement a protocol in Python using EC that high-
lights the functionality of the VRFs and solves the
Anti-Exfil problem.

However, we will also define specific objectives that will
help us achieve our main objectives. These specific objec-
tives are the following:

• Analyze and study the first manifesto and appearance
of the VRFs by Silvio Micali, Michael Rabiny, Salil
Vadhanz [MRV99].

• Understand Micali, Rabiny and Vadhanz’s implemen-
tation of VRFs using RSA.

• Study the cryptographic structure and use of Elliptic
Curves and pairings.

• Analyze the Dodis and Yampolskiy implementation
using pairings [DY05].

• Examine the different practical applications that exist
today on VRFs.

• Implement the VRF protocol using Python and inte-
grating it with the ECDSA scheme.

3 METHODOLOGY

The next important point to highlight is the methodology
we will use and follow to develop the project. Today, there
are many different types of methodologies depending on the
project or work to be done. In our case, as it is more of a
project of research and subsequent development, the one
that best fits our needs and objectives is the Scrum method-
ology [SS20].

This methodology is usually used in team projects to im-
prove and streamline cooperation. In our case it is not a co-
operative project, but it is true that many of the techniques
of organization and detection of problems will be useful in
our development. To begin, we will divide the project into
Sprints, which consist of events of fixed duration that serve
to determine the work that will be done in each of them in
order to reach the final objectives. In our case, each Sprint
will correspond to each of the partial and final deliveries
and will have an approximate duration of one month each.

In addition, each Sprint must have the Daily Scrums
which are daily sessions, in our case weekly, in which there
is a review of how the Sprint is going. Then, we attempt
to detect and solve errors or difficulties in order to be able
to satisfactorily meet the dates and work dedicated to each
Sprint. Finally, for each one once its delivery date arrives,
an assessment session must be held to see if the objectives
have been achieved. In addition, it must also be assessed
if they should make modifications in the following Sprints.
In order to plan it, we will use the Trello application that
allows you to manage a project by creating tasks, to which
you can define subsections and classify them by categories.
In addition, this online application allows us to add another
program called TeamGantt with which we can represent all
tasks and categories in a Gantt chart. This Gantt diagram
will allow us to see more graphically and visually the dis-
tribution of tasks over time and in the different Sprints.

4 THEORETICAL STUDY

4.1 History

The first appearance of VRFs was due to the authors Sil-
vio Micali, Michael Rabiny and Salil Vadhanz in their pa-
per Verifiable Random Functions in 1999 [MRV99]. In this
paper we are introduced to the concept in a very theoreti-
cal way with which the authors intend to effectively com-
bine the unpredictability and verifiability of pseudorandom
functions by means of a secret seed, s. This construction
that the authors will make is based on the implementation
of pseudorandom functions described by Goldreich, Gold-
wasser and Micali himself in their document [GGM86].

The goal of the 1999 paper is that by knowing s we can
evaluate a point x and provide a Nondeterministic Polyno-
mial Time (NP) proof so that it can be shown that fs(x) has
been generated correctly. Furthermore, the goal is also not
to compromise the unpredictability of fs at any other point
for which no proof is provided. However, what this initial
version intended was first of all to generate a VUF (Verifi-
able Unpredictable Function) and later through a mapping
system of bits based on the generation of trees to transform
it into a VRF. This implementation was quite complex, in-
efficient and difficult to apply.

In order to solve this, in 2005, Dodis and Yampolskiy in
their paper A Verifiable Random Function with Short Proofs
and Keys [DY05] presented, as the title indicates, a more
optimal way and efficient to generate VRFs by using bilin-
ear maps constructed from pairings.

4.2 VRF proposal by Micali, Rabiny, Vad-
hanz (1999)

This study, as we mentioned above, sought to solve the
problem faced by Goldreich, Goldwasser and Micali. This
problem is that a pseudorandom oracle is not verifiable, un-
less the seed s is published which is responsible for gen-
erating the values. However, publishing the seed would
cause everyone to be able to generate the pseudo-random
values and the oracle functionality would be dispensable,
as it would lose the property of unpredictability. This fact
causes that in order to trust the values generated by the or-
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acle, without having to publish s, the following characteris-
tics must be met:

• The user who generates the seed and evaluates it using
the oracle is completely trustworthy.

• The user who evaluates the seed gains a profit for gen-
erating the values correctly, or gains nothing for gen-
erating the values dishonestly.

For this reason, Micali, Rabiny and Vadhanz propose to
solve these problems efficiently by generating a proof, to-
gether with the pseudorandom value, which allows to verify
the correctness of this value. In order to solve this, the first
thing they propose is to generate a zero-knowledge proof
that allows the value to be authenticated. To do this, a Bel-
lare and Goldwasser [BG89] signature scheme is generated,
where the owner of the seed, s, through a pseudorandom
oracle fs can publish a commitment, c. Later, whenever
the owner wanted to prove that v is its value at a point x
to a verifier V, it can prove with zero-knowledge in V that
v = fs(x) and that c is a compromise of s.

However, as the authors themselves assure, this approach
provides us with a weak solution, as it presents some prob-
lems. The main drawback of this scheme is that it requires
interaction. Nevertheless, they claim that this problem can
be solved by using non-interactive zero-knowledge proofs
(NIZK) as Bellare and Goldwasser did [BG89]. This ap-
proach suffers from another drawback, which is that this
type of proofs presupposes that the verifier and the gener-
ator share a string of bits that is guaranteed to be random.
However, the following problems arise here regarding the
choice and generation of the R bit string:

1. The owner of the seed selects R: If he selects the shared
random string incorrectly, the robustness and reliabil-
ity of the NIZK system is no longer guaranteed, since
there may be many values v that are verifiable as fs(x).

2. Verifier selects R: If he selects the shared random
string incorrectly, the NIZK property is no longer guar-
anteed. In this way, the owner by proving that fs(x) =
v with respect to the incorrectly chosen R may cause
the verifier to leak knowledge about the seed s.

3. The owner of the seed and the verifier jointly select R
using a coinflipping protocol: This method is invalid
as it requires interaction and we are trying to avoid it.

4. A trusted third party selects R: We do not want to as-
sume the existence of a trusted third party.

In order to solve these drawbacks and problems, what
Micali, Rabiny and Vadhanz propose is to use a random
number generation scheme based on the RSA public key
cryptosystem.

4.2.1 RSA Public Key Scheme

The RSA cryptographic system was designed and published
in 1978 by R. Rivest, A. Shamir, and L. Adleman [RSA78].
The security and robustness of the algorithm is based on the
problem of integer factorization. This scheme is one of the
most widespread in public key cryptography

Although RSA can be used for encryption/decryption
schemes and for digital signature schemes. We will analyze
only the signatures, since they are the ones used by Micali,
Rabiny and Vadhanz. The RSA Digital Signature algorithm
consists of the following phases:

Key Generation:
1. We choose p and q (large prime numbers).
2. We calculate n as n = p · q.
3. We calculate ϕ(n) = (p− 1) · (q − 1).
4. We choose e such that 1 < e < ϕ(n) and

mcd(e, ϕ(n)) = 1.
5. We calculate d as d ≡ e−1 (mod ϕ(n)).
6. We obtain PK(e, n) and SK(d, n).

Digital Signatures: In order to explain the process of
creating digital signatures and their corresponding verifi-
cation, we will define a scenario where there are 2 users,
one called Alice and one called Bob.

1. We convert the message M to an integer m.
2. We calculate the value of the signature s(m) as s ≡

md (mod n) where d and n are Bob’s private keys.
3. Alice receives s and checks the signature by doing

m′ ≡ se (mod n) ≡ me·d (mod n) where e and n
are Bob’s public keys.

4.2.2 VRF implementation using RSA

Once we have seen the digital signature scheme with RSA
and its operation we will explain and evaluate the operation
of the VRFs proposed in 1999 through the use of RSA.
The algorithm they proposed can be separated into the
following functions:

-PrimeSeq(a,Q, coins)
Inputs: A value a that corresponds to the length of the
prime numbers to be generated, and a polynomial Q in
GF(2k) where k is the number of bits of a and finally a
string of l-bits called coins which can be interpreted as
the random seed.
Outputs: A prime number px of length k+1.
Procedure:

1. We generate a vector y of values of length j.
2. We pass the vector y to the PrimalyTest() func-

tion as a parameter, which is an external function
that generated the value of coins, and selects the
first number among all yj which is prime.

3. We return this prime number as px.
-G(1k)
Inputs: A security parameter 1k.
Outputs: A public key PK = (m, r,Q, coins) and a
private key SK(PK, ϕ(m)) where m is the RSA mod-
ulus, r is a random number such that r ∈ Z∗

m, coins is
the seed mentioned above, and Q is the polynomial in
GF (2k) where k is the number of bits.
Procedure:

1. We use the PrimeSeq() function that will re-
turn prime numbers and through the trial and er-
ror mechanism, we choose two prime numbers q1
and q2 that have length (k − 1)/2 and calculate
m = q1 · q2.

2. We calculate ϕ(m) = (q1 − 1) · (q2 − 1).
3. We choose from the variable coins a value r ∈ Z∗

m.
4. We choose a polynomial in GF (2k) of degree k that

is irreducible which we call Q.
5. We define PK = (m, r,Q, coins), SK =

(PK, ϕ(m)).
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-F(SK, x)
Inputs: A private key SK(PK, ϕ(m)) where PK =
(m, r,Q, coins) and a value x of length a-bits.
Outputs: A value v ∈ Z∗

m which is the proof itself.
Procedure:

1. We run the PrimeSeq() function so that we get
px = PrimeSeq(x,Q, coins).

2. We calculate v ≡ r1/px (mod m) which can be cal-
culated simply, since we know ϕ(m).

-V(PK, x, v)
Inputs: A public key PK = (m, r,Q, coins) and a value
x of length a-bits and the value to be verified v.
Outputs: 1/True in case it is verified, otherwise
0/False.
Procedure:

1. We run the PrimeSeq() function so that we get
px = PrimeSeq(x,Q, coins).

2. We check that px is greater than m and that it is a
prime number using the PrimalyTest() function.

3. We check that v ∈ Z∗
m and that r ≡ vpx (mod m).

4. If all the checks are true, we return a True, if any
of them fail, we stop execution and return a False.

Nevertheless, this algorithm presents the problem that the
inputs are limited to k-bits. In Appendix A.1 we can find
the tree-based method presented by the authors to solve this
problem. On the other hand, in Appendix A.3 we can find
the cryptographic security properties and characteristics of
the system.

4.3 VRF proposal by Yevgeniy Dodis and
Aleksandr Yampolskiy (2005)

Having seen the first and original implementation of VRFs,
in 2005 the authors Yevgeniy Dodis and Aleksandr Yam-
polskiy present a new method to implement VRFs based on
elliptic curves and pairings (bilinear groups). The authors
define their proposal as a simple and efficient construction
of a verifiable random function using pairings.

Their proposal arose, since the VRFs of Micali, Rabiny
and Vadhanz operate on a multiplicative group Z∗

n which
must be very large in order to be able to achieve reason-
able security due to being based on RSA . Another reason
for the emergence of Dodis and Yampolskiy’s implemen-
tation is the fact that the previous proposal with RSA is
complex, inefficient, and the inputs must be fixed at k-bit
length. It is for this reason that in the 2005 proposal for
inputs of any size their implementation of VRF generates
proofs of constant size. In order to achieve this, they use
a collision-resistant hash function which ensures that VRFs
with arbitrary inputs can be used.

As we mentioned above, the construction of Dodis and
Yampolskiy is based on bilinear groups which are based
on elliptic curve cryptography. This type of group has the
properties of Diffie-Hellman decision-based assumption
(DDH) and also Computational Diffie-Hellman assumption
(CDH) which we will see in more detail, but which
basically offer many useful properties such as verifiability.

4.3.1 Elliptic Curves Cryptography

The use of elliptic curves in the design of public-key cryp-
tosystems was first proposed in 1985 by Neal Koblitz
[NK87] and Victor Miller [VM85] in separate studies. The
way in which they proposed to use elliptic curves within the
world of cryptography is based on using the group of points
of an elliptic curve defined on a finite body. The security of
this cryptosystem is based on the discrete logarithm prob-
lem on elliptic curves, thus shedding light on elliptic curve
cryptography (ECC).

The main advantage that elliptic curve cryptography pro-
vides is that we can use smaller keys than other traditional
public key cryptography algorithms but obtain the same
level of security. Decreasing the size of the key makes the
computation and execution speed much faster and more ef-
ficient in some of the basic primitives, as well as saving
resources in both computing capacity and storage capacity.
The security level of an algorithm is a measure created to
compare the security offered by different cryptographic al-
gorithms when used with various key sizes. The level is
measured by a value n which is equivalent to the best known
attack against the algorithm when it requires 2n steps. Table
1 shows a comparison of key sizes for different cryptosys-
tems, as well as the level of security provided and the prob-
lems faced by each cryptosystem. So we can see that for a
security level of 128 with RSA we need keys of size 3072
bits while with elliptic curves we get the same security level
with 256 bit keys.

Cryptographic Algorithms

Security Level
Symmetric Key

AES,3DES
Integers Factorization

RSA
Discrete Logarithm
DSA, DH, ElGamal

Elliptic Curves
ECDSA, ECDH

80 80 1024 1024 160
112 112 2048 2048 224
128 128 3072 3072 256
192 192 7680 7680 384
256 256 15360 15360 512

TABLE 1. SECURITY LEVEL AGAINST KEY SIZE (BITS)
FOR DIFFERENT ALGORITHMS

Having contextualized elliptic curves and analyzed the
motivation behind their use, the first thing to do is to deter-
mine what an elliptic curve is and what shape does it have.

We can define an elliptic curve E/Zp (with p > 3) as
the set of all pairs (x, y) ∈ Zp such that they follow the
following equation: y2 = x3 + ax + b mod p, together
with an imaginary point at infinity ∂. One of the condi-
tions that elliptic curves must fulfill is that a, b ∈ Zp and
∆ = −16(4a3 + 27b2) ̸= 0 mod p. This ∆ value is known
as the discriminant and determines the necessary condition
to prevent the curve from having a vertex or from crossing
itself. If the condition is not met, the curve is not suitable
for use in cryptographic algorithms. The expression of the
equation of the curve specified above is known as the Weier-
trass short form.

Once we have seen its form, what we will do next will
be to define its group operation, which later is the one we
will use in each protocol. In the case of elliptic curves we
will define the sum group operation which will allow us
to define the concept of scalar multiplication. We define
the sum operation as the sum of two points that originate a
third and the scalar multiplication as nP = P + P + P...
up to n times.



Adrián Castro: Analysis and Applications of VRFs 5

To finish, it is necessary to determine what are the param-
eters of a curve for cryptographic uses:

• Base point G: is a point that allows generating all the
other points of the curve from itself and from the scalar
multiplication of different values.

• A prime number p: specifies the dimension of the
finite field.

• The coefficients a and b: define the curve E/Zp,
y2 = x3 + ax+ b mod p.

• The prime order n of the base point G.
• Cofactor f = #E/n where #E is the number of

points on the curve in Zp.

Regarding the algorithms and protocols that use ellip-
tic curves there are the Diffie-Hellman Key Exchange us-
ing Elliptic Curves (ECDH), the Elliptic Curve Integrated
Encryption Scheme (ECIES) and the Elliptic Curve Digital
Signature Algorithm (ECDSA), among others. However,
we will only analyze ECDSA, since as we mentioned above,
for the practical part we will implement a VRF solution in
the Bitcoin ECDSA protocol.

Elliptic Curve Digital Signature Algorithm (ECDSA)

In the same way that happened with the RSA signature
protocol, there is a protocol based on elliptic curves that
allows us to sign messages that can be verified using the
public keys of the signatories. The algorithm is made up
of three blocks: the first is in charge of key generation, the
second of the signature and the last of the signature verifi-
cation.

-Key Generation:
1. We choose a random integer kpriv = d ∈ (1. . . , n).
2. We calculate kpub = B = d ·G.

-Signature of messages:
The variables we need to perform the signature are
the message m, the private key d and the parameters
(p, a, b,G, n) of the elliptic curve. Once the parameters
are defined, the algorithm has the following steps:

1. We choose an ephemeral key ke ∈ (1. . . , n).
2. We calculate R = ke ·G where R is a point on the

curve (xR, yR).
3. We define r = xR mod n. If r = 0 we return to

step 1.
4. We calculate e = H(m).
5. We calculate s = (e+ d · r) · k−1

e mod n. If s = 0
we return to step 1.

6. We define the signature as S = (r, s).

-Verification of message signatures:
From a signature S = (r, s), a message m, the corre-
sponding public key B and the parameters (p, a, b,G, n)
of the elliptic curve we can check a signature as follows:

1. We verify that r ∈ (0. . . , n).

2. We calculate e = H(m).

3. We calculate w = s−1 mod n.
4. We calculate u1 = w · e mod n and u2 = w · r mod

n.
5. We calculate P = u1 · G + u2 · B, where P is a

point on the curve (xP , yP ).
6. If xP = r mod n the signature is valid, otherwise it

is invalid.

4.3.2 Bilinear Groups (Pairings)

Having seen elliptic curves and their cryptographic char-
acteristics and applications, we will next look at bilinear
groups also known as pairings. The concept of pairing
arises from some elliptic curves that present an additional
structure that allows us to obtain new cryptographic appli-
cations. Since the mathematics behind pairings are very
complex and there are a large number of calculations and
operations that are difficult to understand and interpret, we
will define the inner workings of a pairing as a black box.
What we will do is define how they work and what proper-
ties and characteristics they present.

To be able to define a pairing, we will first define the
cyclic groups G0, G1 and GT of prime order q with g0 ∈
G0, g1 ∈ G1 and gT ∈ GT which are generating elements
of each group. We will call G0 and G1, as the source groups
and GT as the target group. Then we can define a pairing
as an application e : G0 x G1 → GT which must satisfy the
following properties:

• Bilinearity, that is, for all P0, Q0 ∈ G0 and P1, Q1 ∈
G1:
e(P0, P1 +Q1) = e(P0, P1) · e(P0, Q1)

e(P0 +Q0, P1) = e(P0, P1) · e(Q0, P1)

• Non-degenerate, that is, gT = e(g0, g1) is a generator
of GT and that e(g, g) ̸= 1.

• In addition, it must also satisfy the following prop-
erty which is derived from bilinearity: e(αP0, βP1) =
e(P0, P1)

αβ = e(βP0, αP1)

Finally, it should be added that there are different types
of pairings, but not all of them have cryptographic applica-
tions, the only pairings known to have cryptographic appli-
cations are the Tate and Weil pairings.

4.3.3 VRF implementation using Pairings

In this section, having already seen the operation of ellip-
tic curves and pairings, we will proceed to describe the
construction presented by Yevgeniy Dodis and Aleksandr
Yampolskiy [DY05]. The characteristics and properties of
the resulting VRF are the same as the original Micali group
version, but with a different implementation. The protocol
consists of three parts:

-G(1k)
Inputs: A g value that is the generator of the G group.
Outputs: A random value SK that corresponds to the
private key and a value PK that is the public key both of
k-bits.
Procedure:

1. We choose a random value s ∈ Zp and define
SK = s.

2. We calculate PK = gs.
-ProveSK(x)
Inputs: A value x of k bits, SK which is the private key,
and the generator g of the group G.
Outputs: A y value of k-bits which corresponds to the
value generated with the VRF and a π proof.
Procedure:

1. We calculate y = e(g, g)1/(x+SK).
2. We calculate π = g1/(x+SK).
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-VerPK(x,y,π)
Inputs: A k-bit value x, PK which is the public key, the
generated value y, the corresponding proof π, and the
generator g of the group G .
Outputs: 1 if it was successfully validated or 0 otherwise.

1. We check if e(gx · PK, π) = e(g, g). We de-
velop thanks to the properties of bilinearity and
non-degeneracy as follows: e(gx · PK, π) =
e(gx · gs, g1/(x+SK)) = e(gx+s, g1/(x+s)) =
e(g, g)(x+s)/(x+s) = e(g, g).

2. We check if y = e(g, π). In the same way as we
did in the previous step, thanks to the properties
of bilinearity and non-degeneracy as follows: y =
e(g, π) → e(g, g)1/(x+SK) = e(g, g1/(x+SK)) →
e(g, g)1/(x+SK) = e(g, g)1/(x+SK).

3. If both conditions are met, we return a 1, since the
verification will be valid, otherwise we return a 0.

In the same way as with the proposal with the RSA, this
algorithm presents the problem that the entries are limited
to k-bits. In Appendix A.2 we can find the properties of
the hash functions presented by the authors to solve this
problem. On the other hand, in Appendix A.4 we can find
the cryptographic security properties and characteristics of
the system based on the Diffie-Hellman assumptions.

5 STATE OF THE ART AND CURRENT AP-
PLICATIONS

Although at the time when VRFs appeared there were not
many ideas or applications where they could be used and
implemented, today thanks to new advances, discoveries
and improvements in the VRFs protocol itself, it has al-
lowed these to be applied and used.

As we mentioned, in the beginning their implementation
was expensive and complex, but thanks to the improvement
of Dodis and Yampolskiy VRFs can be built efficiently and
guaranteeing a good level of security. It is for this reason
that most VRF applications today are implemented with el-
liptic curves or pairings, although there are also schemes
implemented with RSA.

Among the wide variety of applications where they are
or can be used, those applications where they generate the
most renown and impact are cryptocurrencies. It is not sur-
prising that a world as widespread and current as that of
cryptocurrencies would find an application for VRFs. Some
cryptocurrencies that use them are Polkadot, Cardano and
Algorand. On the other hand, in the field of internet secu-
rity schemes and protocols, they are also used to improve
existing ones, such as DNSSEC.

Finally, another field where VRFs can be of interest is
the world of online gambling such as poker, roulette, black
jack... In these types of applications there is a hallmark
called Provably Fair which is a credibility factor given to
the page as long as its data and results are proven to be
equally verifiable and randomly and correctly generated.
Today this distinction is achieved in many different ways,
however a very good practice would be to obtain it through
the implementation of a VRF. An example is Chainlink
[CHL] which is a web service that offers the generation of
proofs and random values using VRFs. Chainlink’s primary
goal is, through the use of a VRF, to enable and accelerate

the development of smart contracts focused on blockchain
gaming, security, layer two protocols, and other use cases.
This fact allows well-made systems that rely on chance
to be fair/equal and uncertain for all contract participants,
while successfully reducing the risk that an adversary can
exploit your contract by predicting its outcomes.

5.1 Cryptocurrencies
In this section we will describe how VRFs are used in some
cryptocurrencies. Specifically, we will study the use made
by Polkadot, Cardano and Algorand.

5.1.1 Polkadot

In the case of the Polkadot [AB22] cryptocurrency, the VRF
is used in the block production algorithm. This algorithm is
known as BABE (Blind Assignment for Blockchain Exten-
sion) and is executed between the validating nodes to deter-
mine the authors of new blocks. In this mechanism, time is
divided into epochs that at the same time are also divided
into slots, where each slot has a duration of 6 seconds. An
epoch is composed of 2400 slots making the duration of
each epoch 4 hours. For each slot a block is produced and
at the beginning of each epoch, all selected validators par-
ticipate in a random selection process to determine which
slot will be responsible for producing the block. Next, each
validator will be responsible for using the VRF to generate
a value and a proof of the correctness of this value. The
parameters used by this VRF are the following:

• The secret key ski. Each validator has its signature key
pair created specifically for this process.

• A random value r associated with the corresponding
epoch and which corresponds to the hash of the values
obtained from the execution of the VRF of the blocks
in the previous epoch up to (N − 2) blocks. This de-
pendency causes this pseudorandom value r to depend
on the pseudorandomness of previous N blocks.

• The number of slot slk.
Once the VRF is executed we obtain the two values dis-

cussed above, the result we will call y which corresponds to
the randomly generated value and its corresponding proof
p. Since this process is deterministic, relying on blockchain
data from previous epochs, other validators must be able to
verify this, and they can do so thanks to the p proof gen-
erated together with the validator’s public key. Next, the
value y is compared to a threshold that has been previously
defined in the protocol implementation. If the y value is less
than this threshold, then this validator will become a viable
candidate for block production for that slot. Finally, the val-
idator will create a block and send it to the network along
with (y, p). It should be noted that these allocations are ini-
tially secret and only known to the allocated validators and
it is at the moment they publicly claim that slot to produce
a block that they become public

5.1.2 Cardano

Regarding Cardano’s cryptocurrency [CAR] in the same
way that Polkadot does, it also divides by slots the cre-
ation of blocks. In their case these slots are called slots
of Ouroboros. The Cardano protocol also divides time into
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epochs and slots. Each epoch is divided into N slots. These
parameters are fixed by the developers of the protocol and
are encoded directly in the genesis block of the epoch. For
example, during the Cardano Incentivized Testnet (ITN), an
epoch was exactly 24 hours. During each epoch a special
random process is run from the first slot of an epoch where
each staking pool group and individual validator starts pro-
cessing a secret and secure random number. This is where
the VRF intervenes, whose inputs are as follows:

• The identifier of the slot.
• The validator’s VRF signing key.
• Nonce, which is derived from a hash made of 2/3

blocks of the previous epoch.
Once the pseudorandom value has been generated with

the VRF this value will allow the validator to create a new
block whenever and wherever it meets the requirements to
produce a new block in that slot. Thanks to this pseudo-
random generation there is no possibility to find out in ad-
vance which node will be entitled to produce the next block.
When the epoch ends, a special map is generated for the
next epoch. This map contains a list of pairs like [(num-
ber1, group1), (number2, group2), ..., (numberN, groupN)].
Numbers are slots identifiers and groupN are staking val-
idator identifiers. So, exactly in slot number N , a validator
will create a block and issue it to the Cardano network. The
entire network will then verify whether this validator had
the right to produce a block in slot N . If positive, the block
is verified and then accepted or rejected.

5.1.3 Algorand

Within the Algorand protocol [AL], at the core of the
blockchain there is a fast Byzantine agreement protocol.
However, this agreement is not made among all users of the
network but is limited to a small committee of users chosen
randomly for each round.

To decide which users participate in the agreement, a
VRF is used. Each user in the Algorand network has a
secret key SK and a verification key V K that is publicly
known to everyone. Then what each user participating
in the Algorand network does to decide if he is going to
be part of the committee to execute the Byzantine agree-
ment for block r is the following: Computes the function
Evaluate(SK,Qr) where Qr is a seed that is available to
everyone in the system. The result of the function execution
is a pair of values (Y, p) where Y is the random value gener-
ated with the VRF and p its proof. Once Y is obtained with
its corresponding prrof p, it checks that Y is within a certain
interval [0, P ] that depends on the user’s participation in the
system.

If the above check passes, then the user has a proof con-
sisting of (Y, p) values that validates his commission mem-
bership for block r. Given (Y, p) and the user’s verification
key V K, anyone can verify that Y is the unique valid out-
put and that it lies within a desired range, thus validating
that the user who has V K has been chosen to be part of
the r block committee. It should be noted that Algorand is
committed to decentralization, and it is for this reason that
they have published their source code and any details of the
VRF implementation can be consulted at the following link:
https://github.com/algorand/

libsodium/tree/draft-irtf-cfrg-vrf-03

The implementation they use for VRF is based on the
standardization by Sharon Goldberg, Moni Naor, Dimitris
Papadopoulos, Leonid Reyzin, and Jan Včelák [GRPV22].

5.2 Improvements in the DNS Protocol
After looking at the different cryptocurrencies that use
VRFs, we’ll explain how VRFs are used to add security
to the DNS protocol. Specifically, we will see how the
DNSSEC protocol, which adds security to DNS, incorpo-
rates this security through an implementation through VRFs
called NSEC5. This proposal has been published by Dim-
itrios Papadopoulos, Duane Wessels, Shumon Huque, Moni
Naor, Jan Včelák, Leonid Reyzin and Sharon Goldberg
[G17]. The VRF algorithm that we use in the practical part
together with ECDSA is the same one that they propose in
their paper on NSEC5. Therefore, later in the practical part
we will go into detail about its implementation. The pur-
pose of NSEC5 is to guarantee two security properties:

1. Privacy against offline zone enumeration.
2. Integrity of zone content, even if an adversary com-

promises the authoritative DNS server responsible for
answering DNS queries for that zone.

In order to achieve these objectives, the authors propose to
include a new functionality by using a VRF based on ellip-
tic curve cryptography. This VRF is also of special interest
as it is being standardized by the IETF and used by several
projects. In their paper they show how to integrate NSEC5
using EC-based VRF into DNSSEC. To do this, they take
advantage of precomputation to improve performance and
some optimizations at the DNS protocol level to shorten re-
sponses.

6 PRACTICAL IMPLEMENTATION

In this work, we have focused the practical side on the
implementation of a VRF and its application in the world
of cryptocurrencies, more specifically on the process used
by cryptocurrency wallets for signature of the transactions.
The specific case we will focus on is Bitcoin, but the solu-
tion can be applied to any cryptocurrency that uses ECDSA
as a transaction signature. Today, many people know about
the cryptocurrency Bitcoin (BTC) and all the importance
it has gained since its appearance, but not everyone knows
about the security and high level of cryptography behind it.

It should be noted that most transactions are carried out
from wallets and are delicate operations that need to be very
secure as there are BTC at stake which can mean a lot of
money. It is for this reason that the cryptographic opera-
tions behind it must be secure and convey trust to both end
users of the transaction. Currently, to carry out these trans-
actions, what is used to make the Digital Signature is the
ECDSA scheme. However, this scheme can present certain
weaknesses because depending on how the random value
used to sign is generated, the security of the cryptographic
scheme can be reached and compromised.

Bad random value generation can lead to different prob-
lems. Some of them are well known and mechanisms to
prevent them already exist, others are newer and are ap-
plied in more specific environments. In this work we will
focus on an attack known as Anti-Exfil [AE] and consists
in the fact that a wallet can leak the user’s secret key by

https://github.com/algorand/libsodium/tree/draft-irtf-cfrg-vrf-03
https://github.com/algorand/libsodium/tree/draft-irtf-cfrg-vrf-03
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carefully constructing its signatures. Since the commitment
occurs during signature generation rather than key genera-
tion, even if the user verifies that their keys were generated
from strong randomness, for example by generating their
seed words by rolling dice and then importing them into
multiple wallets to ensure they produce the same addresses,
it is still possible to execute the attack.

The way the attack works is that the wallet generates
a nonce, a unique one-time use number which in Section
4.3.1 we called ke. This nonce makes up one half of an
ECDSA signature, in a way that appears to be uniformly
random, but actually isn’t. There are many ways to do this:
the wallet could produce nonces that are known to an at-
tacker, allowing him to find the secret key used; could take
a byte or two of the user’s master seed in each nonce, al-
lowing it to find each secret key with several hundred sig-
natures, even from different keys; could subtly bias each
nonce (even with a single bit) so that the keys could be re-
covered using the hidden numbers problem [BS17]. Re-
gardless of the technique, these malicious signatures can be
impossible to detect.

Currently, these nonces are being generated following the
RFC6979 standard by creating deterministic nonces. How-
ever, using deterministic nonces cannot protect against bi-
ased attacks. Although RFC6979 guarantees that nonces
are uniformly pseudorandom, it is impossible for a user to
verify that it has actually been used since the generation of
the nonce following RFC6979 involves the use of the pri-
vate key, and in the case at hand, whoever must verify the
nonce does not have access to this key. There are several
known ways to prevent or detect such an attack:

• Users can re-derive their keys in a trusted wallet, calcu-
late signatures using RFC6979, and determine whether
the other wallet did the same or not. However, this
practice is dangerous and impractical.

• The wallet could provide a zero-knowledge proof that
it has successfully produced its nonces. This calcula-
tion is complex and computationally intensive.

• The wallet could do a multisignature between its own
key and a user’s key, which is derived from a pass-
word and need not be particularly secure. This would
be an effective defense, but complicates the backup
and recovery of coins, since wallets would have to im-
plement the same protocol to recognize each other’s
coins, and losing the password would loss of funds.

• The user could make a multisignature between several
wallets from different providers. This solution would
require additional steps for the user when generating
keys and signing.

It should be emphasized that all these measures end up
being complex and do not really demonstrate their effec-
tiveness against the main problem of Anti-Exfil. Currently,
the solution that exists and has been implemented against
this problem consists of the following: we will define two
users, the Hardware Wallet which is responsible for gen-
erating the signature and the Watch-Only Wallet which is
what asks for it and verifies it. Once the scenario is de-
fined, the solution is to use the sign-to-contract [STC] to
ask the Hardware Wallet to commit, using its nonce signa-
ture, with some random data provided by the Watch-Only

Wallet. This causes the commit to re-randomize the nonce,
removing any information it may have contained, and the
Watch-Only Wallet discards the random data to ensure that
no one can re-engineer it the result.

The steps performed by this sign-to-contract protocol are
the following:

1. The Watch-Only Wallet chooses uniformly random
data called b that it wants the Hardware Wallet to com-
mit to and sends a hash of that data to the Hardware
Wallet.

2. The Hardware Wallet calculates its nonce as it nor-
mally would; if using deterministic randomization en-
sure that the hash data of the Watch-Only Wallet is part
of its randomization. Send this nonce R to the Watch-
Only Wallet.

3. The Watch-Only Wallet then responds with the unfrag-
mented random data b it wants to commit to.

4. The Hardware Wallet calculates R+H(R||b) ·G and
signs the transaction using this value as the nonce.

The Hardware Wallet must send its nonce R to the
Watch-Only Wallet before receiving the random data b , oth-
erwise it could choose R after so that the final nonce is bi-
ased. However, the Watch-Only Wallet must send a com-
mitment b to the Hardware Wallet before it reveals R, or
the Watch-Only Wallet could cheat it to create three signa-
tures with the same R, but different b.

However, this protocol produces that instead of having
two communications, one to send the transaction to be
signed and another with the result of the transaction, there
are four communications. For this reason, we will imple-
ment a protocol based on VRF that will allow the number
of communications to be reduced, minimizing the risk of
Tampering or Spoofing. Despite this, we will increase the
size of the messages as there will be more values apart from
the signature which will consist of the VRF proofs and the
VRF value.

Our implementation consists of an ECDSA Signature to-
gether with a VRF for the generation of random numbers
and their corresponding proofs. In addition, for key gener-
ation we will use BIP32 [BIP], since from an entropy we
can generate a master key that will allow us to derive pub-
lic and private keys in different paths. One path will be
for the signatures and another for the VRF. Finally, those
values that should be randomly generated within the VRF
will be generated using the RFC6979 standard. The VRF
we will use is the same one used by Chainlink and NSEC5
which was presented by Goldberg [G17] and is based on
EC. Next, we will describe the different steps of the algo-
rithm in order to generate the signatures and the integration
of the VRFs within the signatures. It should be noted that
for the notation of the algorithm lowercase characters have
been used for numerical values and capital letters for points
on the elliptic curve.

User A wants to receive the signature of the message
m by user B:

1. User A generates a random value α.
2. User A requests the corresponding signature on the

message m from user B. User A sends m,α, P
where P is the public key of user B and its private
key is d, both derived with BIP32.
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User B receives m,α, P and makes the signature:
1. User B calculates ko = H(d,m).
2. Calculates Ro = ko ·G.
3. User B proceeds to calculate a pseudorandom value

and the corresponding proofs applying the VRF.
4. Derives a pair of public and private keys with BIP32

where PK is the public key and x is the private key.
5. Applies the H1(α) function which returns a H

value that corresponds to a point on the curve, since
H1 is a ”hash to curve” function.

6. Calculates γ = x ·H .
7. Picks a random value k ∈ (0. . . , n) with RFC6979.
8. Calculates c = H3(G,H, x ·G, x ·H, k ·G, k ·H)

where H3 is a function that performs the hash of
the six points passed as a parameter and returns a
integer of size l, in our case 256 bits.

9. Calculates s′ = k − c · x mod n.
10. User B calculates t = H2(f · γ), where f is the

cofactor of the curve on which we work and H2

is a function that performs the hash of a point and
reduces the number of bits to the required size, in
our case 256 bits.

11. Finally user B has the proof π = (γ, c, s′), and the
VRF value t = H2(f · γ).

12. Calculates ke = (t+ ko).
13. Calculates R = t ·G+Ro, this step and the 12th are

the modifications with respect to the original proto-
col that allows the VRF to be integrated.

14. Defines r = xR mod n.
15. Calculates e = H(m).
16. Calculates s = (e+ d · r) · k−1

e mod n. If s = 0 we
return to step 3.

17. Send to user A the set of Ro, R, s, (γ, c, s′).
User A receives the signature which corresponds to
the proofs and values Ro, R, s, (γ, c, s′) and checks
the signature and the values generated with the VRF:

1. Calculates U = c · PK + s′ ·G.
2. Calculates H = H1(α).
3. Checks that γ belongs to the curve.
4. Calculates V = c · γ + s′ ·H .
5. Checks that c = H3(G,H,PK, γ, U, V ).
6. User A calculates t = H2(f · γ).
7. Calculates R = t ·G+Ro.

8. Defines r = xR mod n.
9. Calculates e = H(m).

10. Calculates w = s−1 mod n.
11. Calculates u1 = w · e mod n and u2 = w · r mod n.
12. Calculates Z = u1 ·G+ u2 ·B, where Z is a point

on the curve (xZ , yZ).
13. Checks if xZ = r mod n.
14. If all the steps have been checked and validated cor-

rectly, the signature is valid.

It should be emphasized that in order to use the ECDSA
we had to make some adaptations in the protocol to be able
to integrate the VRF. This change is due to the fact that in
this protocol the random value ke, also know as nonce, is

always secret, and then we encounter the problem that we
cannot generate proofs to prove a value that the other user
cannot know. It is for this reason that thanks to the mod-
ifications made on the protocol we can combine the two
functionalities. To make the ECDSA signature we used the
elliptic curve of Bitcoin, the secp256k1. On the other hand,
for the integration of BIP32 we had to use Base58 to in-
teger conversion functions, since the private keys provided
by BIP32 are in WIF (Wallet Import Format) format. Addi-
tionally, we implemented a decompression function, since
public keys were made up of a single value instead of a dot.
This format is that the value provided is the x coordinate of
the point with the prefix 03 or 02 depending on whether it
is one value of y or the other.

For the implementation we used the Python program-
ming language and the Spyder interpreter together with
the Miniconda development environments. In addition, we
used Github to do code version control and to be able to per-
form synchronizations and backups more efficiently. The
implementation code can be found in the following Github
repository:
https://github.com/AdrianCL0/TFG_VRF_

BTC_ECDSA_schema
Finally, regarding the results of the execution and func-

tionality of the code we managed to integrate the VRF with
the ECDSA protocol and that the signatures are correctly
verified. In Appendix A.5 we can find the results of run-
ning the algorithm for different keys generated with BIP32
and different messages.

7 CONCLUSIONS

In this work we have studied what VRFs are and how they
arose and we have analyzed the different implementations
that have emerged over time as well as the cryptographic
schemes and operations behind each one. Next, we looked
at various protocols, applications, and cryptocurrencies that
make use of VRFs and how they apply and integrate them
into their schemes. Finally, we have implemented a proto-
col with Python that efficiently solves the Anti-Exfil prob-
lem in the ECDSA scheme by integrating a VRF based on
elliptic curves.

On the other hand, with regard to the conclusions of the
work, first of all it should be noted that we have been able
to verify that nowadays the majority of VRF implementa-
tions are with elliptical curves, since, as we commented
previously in Table 1, to obtain the same level of security
as elliptic curves the RSA keys must be much larger. This
difference means that when working with large numbers the
calculations are slower and, in addition, the amount of stor-
age required is also much higher.

Secondly, with regard to the main objectives defined at
the beginning of the project, we have been able to achieve
them all, both theoretical and practical. On the practi-
cal side, we were able to successfully implement a proto-
col with Python-based VRF that more efficiently solves the
Anti-Exfil problem of Bitcoin ECDSA signatures. We mea-
sure this efficiency in the number of messages and not in
size, since in this type of transaction the important thing
is the number of communications. In addition, it should
be emphasized that with this project we have been able to
appreciate the importance, applicability and scalability of

https://github.com/AdrianCL0/TFG_VRF_BTC_ECDSA_schema
https://github.com/AdrianCL0/TFG_VRF_BTC_ECDSA_schema
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VRFs. Nevertheless, when implementing them in security
or cryptographic protocols, one must be careful how they
are integrated. This fact is due to having to generate random
values and their corresponding proofs that prove them, if we
do it incorrectly we can be showing values that must remain
secret, thus compromising the security of the scheme.

To finish, the next horizons that this project raises for us
is the fact of publishing it in an official way to see what im-
pact and what reactions it has in the Bitcoin community as
a possible implementation for the solution of the Anti -Exfil
problem. In addition, the project can be adapted to differ-
ent types of signatures such as Schnorr or other types of
cryptocurrencies simply by changing the path chosen with
BIP32. This versatility gives it a lot of scalability in the
cryptocurrency world.
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APPENDIX

A.1 Extend Length Through Tree
A problem we encounter when implementing the 1999 and
2005 algorithms is the fact that the input and output lengths
are fixed at k-bits. What this limitation requires is that all
input values must have k-bits and if they do not have them,
their length must be adapted. In order to make this adapta-
tion, what Micali, Rabiny and Vadhanz propose is to create
a method by using a tree in which one more bit is added at
each level. This representation can be seen in Figure 1. Re-
garding the operation of the tree we will not go into detail,
since it is a complex and inefficient process that in practice
is not implemented due to these complexities and inefficien-
cies.

Fig. 1: Tree-shaped structure in order to increase the length
[MRV99]

A.2 Extend Length Using Hash Function
The authors Yevgeniy Dodis and Aleksandr Yampolskiy
propose to take advantage of the cryptographic hash func-
tions properties in order to be able to adapt the length of the
inputs. This method also allows you to do it in a more effi-
cient and less complex way than with the tree method. The
fact that we can use the hash function as a method to extend
the size of values is due to the fact that we assume that they
satisfy the following cryptographic properties:

• Preimages resistance: Given a hash value h, it must
be difficult if not nearly impossible to find any message
m such that h = hash(m). This concept is related to
the one-way function that hashes have since they are
not invertible. Hash functions that do not have this
property are vulnerable to preimaging attacks.

• Second preimage resistance: Given an input m1, it
must be hard to find an input m2 different from m1

such that hash(m1) = hash(m2). This property is of-
ten also known as weak resistance to collisions. Func-
tions that do not have this property are vulnerable to
second preimage attacks.

• Collision resistance: It must be hard to find two dif-
ferent messages m1 and m2 such that hash(m1) =
hash(m2). This property is also known as strong col-
lision resistance.

A.3 RSA Security Hardness Assumptions
To demonstrate the security of the cryptographic scheme,
we must be able to demonstrate that there is some calcula-
tion whose efficiency is asymmetric since in one direction
it is easy to calculate while in the other it has a high cost
and complexity. However, this fact is usually a very diffi-
cult task to prove, so what we often do is to rely on hardness
assumptions for our cryptographic applications. These as-
sumptions are based on long-running problems for which
no efficient algorithms are known and are therefore widely
known to be difficult. Next we will express the assumption
about the RSA [GM18]:

We define n as p · q where p and q are prime numbers.
Then, as we defined before, we get that ϕ(n) = (p − 1) ·
(q − 1). Next we choose e ∈ 1, 2, , ...ϕ(n)− 1 so that it is
relatively prime with ϕ(n). We then calculate d as d ≡ e−1

(mod ϕ(n)). Once the scheme is described, we can define
the RSA assumption as:

• Given e and n it is difficult to calculate the e-th roots.
More formally we can express it as:

RSA Assumption: We define
∏

n as the set of primes of
length n, then we have:

Another important aspect to consider is the fact of in-
verting the RSA algorithm, since if we have xe (mod n)
we can calculate x ≡ xd (mod n ) ≡ xe·d (mod n). The
fact of being able to reverse the operation is because if we
have ϕ(n) it is very easy to calculate d from e using the
Euclidean algorithm. Therefore we can define that calculat-
ing ϕ(n) must be complicated. Then we can determine that
the integer factorization method must be difficult and is a
necessary condition for the assumption of RSA. However,
today, it is not known for sure if this is a sufficient condi-
tion, since there could be other ways to calculate ϕ(n) that
do not involve factorization. Finally, we can add to the RSA
assumption that the RSA function is hard to invert when we
have any additional information.

A.4 Diffie-Hellman Security Assumptions
As we mentioned with the RSA scheme, the security of
cryptosystems is based on some calculation whose effi-
ciency is asymmetric since in one direction it is easy to cal-
culate while in the other it has a high cost and complexity.
In this case, the security of the scheme is based on a set
of assumptions about the Diffie-Hellman scheme. We re-
member that one of the main problems to be solved in this
case was the discrete logarithm, therefore we can define the
following assumptions [VL13]:

q-Diffie-Hellman Inversion Assumption (q-DHI): This
assumption defines that there is no efficient algorithm that
can calculate gx given the values of (g, gx, ..., gxq).

q-Decisional Bilinear Diffie-Hellman Inversion
Assumption(q-DBDHI): This assumption defines that
there is no efficient algorithm that can distinguish e(g, g)1/x

from random numbers despite having seen (g, gx, ..., gxq).
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A.5 Results of the Execution of ECDSA Signatures with VRF
ECDSA:
Keys from path m/44’/10’/0’/0/0
Public Key: 02ffec56c8736c699b427691aef33644b4642cf094bbca9d58f06ed1eaebd3165f
Private Key WIF format: Kx2o5VCMyJSAcpq5LCiD4o86F8BpfAFVgwDKVDBJQRrZm1AXqBCp

VRF:
Keys from path m/44’/17’/0’/0/0
Public Key: 0335870f875dbb666fdc2a730039a67dd742f8835bcf1261a86c5580c2e016fe02
Private Key WIF format: L2CGB7pdk2XYNbR5ebKEepZvDHrAQZbN8Y4H3tiDCMRibtUM7att

Alice’s public ECDSA key:
(115757351250351297023599834545792252529207263071997134313504216920487053432415,
85137358557283880708236127762603774765399049892229086247646851675756783015778)

Alice’s public VRF key:
(24211212504317337465140951375952004896569759471901747637054608762821397642754,
30241116528185981386117041395397081851738188707379160220684591256248425344497)

Message: 2c9b9fd094bd6b16192e4b41fbff6d711fbd1dae9b808183571563a015485fe5

Signature: S = (R,Ro, s):
[R=(23389333274020037964781922807009466269488426643601893506437313632573077514954,
45841191003302680375986448796210766718427935156935704244870825732681589540560),
Ro=(19384531857634888886609378445114082936139909167746934118712093802644001972118,
112917893998461843020092123826783257784289733518519637410507181422489402179658),
s=38611569640911476002199719061346581764780903929728520546925081329945395374920]

VRF: π = (γ, c, s′):
[γ=(35453045312751721374107397486724355496017912721452123142420509188472622226948,
78635192773237452238861092004385599280236931006740929353099687024281041166022),
c=54257705869948740883839784404496247170219564753049839423717736457559907547483,
s′=107600530931812337001591453382903244330101934065269503792080894307947211481390]

—————————————-Signature has been verified correctly—————————————-

ECDSA:
Keys from path m/44’/10’/0’/0/1
Public Key: 026ae84a437814da29f31acd60646fb34b447d7af7b3112f90710617813691412b
Private Key WIF format: Kyw6MW5eb6Ea1RfQt9UcWeYT8hiAFYDXwEBLnBfCckgYf1MaRR5Q

VRF:
Keys from path m/44’/17’/0’/0/1
Public Key: 03d8c7ec710a1acf04f1b987b28b514209171d7f8c961b792a98c3221061267f61
Private Key WIF format: KyafCNP31znK32NzYmxGHYpcdQWMKUxgTz3XXD6QjgYvkCmQ5zhp

Alice’s public ECDSA key:
(48355583017046964631678020268274888243076783384257837712557846600865924858155,
7947102240848647396495892996554781059806868502871873343971517318917291436238)

Alice’s public VRF key:
(98052809719552405694820027517980781773760722818908654293081830804128268713825,
84702380404789486948421337640693720066543943772648720394157774482391748073137)

Message: 9b876d416424c070cfe3798a842da6866844e7b7bb1545937c0d7d853e909ea6

Signature: S = (R,Ro, s):
[R=(5167369211061431568099829488239963194503287166330227662430593658143896643144,
30445164726322755935038714439983375958776975648541675478738570149632551037603),
Ro=(57835268114005997367959893524300397096316796251900616585225417982304963434108,
95685210221259969345973976371391675836180427983209335248865104391072899188274),
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s=11377215919908059237807777952859523228983014618534473960376274020312294661293]

VRF: π = (γ, c, s′):
[γ=(98410867586114013101901527305857982847722402572730510636150178773101102442785,
8054956920337414069107083087964851468137112314577533618578340435415807884512),
c=21674852007756840050376186214396396474392776362514483136364073483537664375413,
s′=33320818375271018635640208042602939723282423445380549215633137296916778409294]

—————————————-Signature has been verified correctly—————————————-

ECDSA:
Keys from path m/44’/10’/0’/0/2
Public Key: 0399439e3b183295d039d7d853ad27203754fae4815e216f0443b90c59a1aea1d2
Private Key WIF format: L3wbk3VKDTe5XBuJgWTzaf8sRiGr2GU26kV91Bh31MVd7ec7iRNa

VRF:
Keys from path m/44’/17’/0’/0/2
Public Key: 03d3f78241d9e94af71ae73e47be840febb4716e110bc634b402f321588e169dd0
Private Key WIF format: KyrixvmHnzBzAA2Uc7298NeHs5hriTq9Q6544qBDTj7ufciD9Sqt

Alice’s public ECDSA key:
(69323336655687859990002792904273939989323658599386838981703508563230385414610,
103005206900623153567570191235190695365050700014657951031492372035447171258153)

Alice’s public VRF key:
(95875321278439823411322365876805060162574918060915548904481903821716666621392,
48093803688087078916623729018712619810755375315627050723320890076945528409747)

Message: c4e665a2fb388e4ad38f8f46ff7bb2946c93755f14597ecb0568aa56b4b530e7

Signature: S = (R,Ro, s):
[R=(56193322683260037697980646113376484911082429909207099031901592305988746590498,
14108119192669758970963415425090602416272146627396421186942532695763166572577),
Ro=(75817590877669841130054458754344012976825113606601218171083652533612620849374,
57830815365643374196342962285857612342610955142604789511757998705761529510795),
s=71634584564997188745263946472408760150446643796114819899885709610231043237068]

VRF: π = (γ, c, s′):
[γ=(228443646581595955657244927148228236763996856737915563978519981221376384194,
12865088446797872751651582237972905348825151766102479215766820588638822227065),
c=37144625750165562133374651878400744661533182136624530680389817532733398940578,
s′=64225551763889950549871318304941876522712142966127836992330694214746465732330]

—————————————-Signature has been verified correctly—————————————-

————————–ALL 3 TRANSACTIONS HAVE BEEN SIGNED AND VERIFIED————————–


