
This is the published version of the bachelor thesis:

Monedero, Pol; Ventayol Marimón, Jordi, dir. Hardened Browser. 2023. (958
Enginyeria Informàtica)

This version is available at https://ddd.uab.cat/record/272792

under the terms of the license

https://ddd.uab.cat/record/272792

TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

Hardened Browser
Pol Monedero

Resum– L’augment en l’ús de telèfons intel·ligents al llarg dels anys ha canviat el focus del desen-
volupament de programari d’aplicacions natives i especifiques a una plataforma, a aplicacions en
lı́nia, i posteriorment, Aplicacions Web Progressives. Encara que aquest tipus d’aplicacions web
proporcionen molts dels beneficis de les aplicacions natives a una fracció del cost, la seva seguretat
ha de ser freqüentment actualitzada per prevenir atacs especı́fics. La necessitat de ser proactiu en
els aspectes de seguretat pot afluixar el ritme de desenvolupament, eliminant alguns dels avantatges
de les Aplicacions Web Progressives. Aquest projecte té com a objectiu desenvolupar una aplicació
nativa capaç de mostrar apps web de manera simple i segura, beneficiant tants als desenvolupadors
com als usuaris. Els desenvolupadors poden relegar la seguretat de l’app al Hardened Browser, i els
usuaris tindran una experiència fluida i lliure de vulnerabilitats.

Paraules clau– Aplicacions Web Progressives, navegador web, seguretat web, aplicacions
natives, desenvolupament de programari mòbil, proves de seguretat, ciberseguretat.

Abstract– The increase in smartphone usage across the years has changed the focus of software
development from native, platform-specific apps to online applications, and subsequently, Progress-
ive Web Apps. Although these types of web apps provide many of the benefits of native apps at a
fraction of the cost, their security must be frequently updated to prevent attacks. The need to be
proactive on the security aspects of the app can slow down new features and development, which
removes some of the advantages of Progressive Web Apps. The project aims to develop a native
application capable of displaying these types of apps in a simple and secure form, benefiting both
the developers and the users. Developers can leave the security aspects of the app to the Hardened
Browser, and users will have a fluid experience free of vulnerabilities.

Keywords– Progressive Web Apps, web browsers, web security, native apps, mobile soft-
ware development, security testing, cybersecurity.

✦

1 INTRODUCTION

1.1 State of the art

SINCE the introduction of smartphones to a wider audi-
ence in the 2010s, web traffic from these devices
began to rise from a 10% on 2012, to a 59% on

2022[1]. With such a rise in traffic, companies have
changed the focus of their efforts from native, platform-
specific apps to web apps. Web apps have a much wider
reach, as any device with a web browser can access, and are
much cheaper and faster to make, at the cost of being less
capable overall. On the other hand, platform-specific ap-
plications are much more integrated into the system. They

• E-mail de contacte: Pol.Monedero@autonoma.cat
• Menció realitzada: Tecnologies de la Informació
• Treball tutoritzat per: Jordi Ventayol Marimon (DEIC)
• Curs 2022/23

can read and write files from the local file system, ac-
cess hardware via USB or Bluetooth, and interact with data
stored on your device directly. Ideally, we would want the
reach of web apps and the capabilities of platform-specific
apps. In 2015, Alex Rusesell, a Google Chrome engineer,
and Frances Berriman, a designer, coined the term Pro-
gressive Web App (PWA)[2].

PWAs are web apps that have been designed to be cap-
able, reliable and installable, so as to resemble the cap-
abilities of platform-specific apps. Thanks to new and
upcoming APIs for the web, capabilities like file system
access, media controls or full clipboard support are no
longer restricted to native applications. Sites like https:
//whatwebcando.today/ track these advances, and at
a glance, we can see just how many features are already
available. Due to the advantages of PWAs, many compan-
ies have started to use this technology instead of native apps.
For example, Twitter released Twitter Lite in 2017, which
increased tweets sent by 75% and decreased bounce rate by
20%[3]. Hulu replaced their platform-specific desktop app

Febrer de 2023, Escola d’Enginyeria (UAB)

https://whatwebcando.today/
https://whatwebcando.today/

2 EE/UAB TFG INFORMÀTICA: Hardened Browser

in 2019 with a PWA and saw a 27% increase in return vis-
its[4]. With an increase in the usage of PWAs, we have to
take into account how secure they are. As with any web app,
the security is mostly handled by the browser itself, which
means a PWA is only as secure as the browser is. Due to
the importance of security in today’s landscape, we will be
studying how safe PWAs are in relation to native apps, and
if the security of these can be improved.

1.2 Objectives
The main goal of this project is to build a hardened mobile
browser using Build38’s security library, T.A.K, and any
other security measures necessary for a safe browsing ex-
perience. The browser will be an android application made
from the ground up, using the android web browser engine
component, WebView. Before any development can be star-
ted, however, we need to have a better understanding of how
PWAs, and apps in general, work.

Firstly, we will need to make a general comparison
between native apps and PWAs to know more about the
strengths and weaknesses of this new technology. Once we
know how PWAs stack up against native apps in a broad
sense, we can analyse the possible threats for each plat-
form and devise countermeasures or mitigations. With a
list of threats for PWAs and possible ways to counteract
them, we will have to determine which of these can be
solved with T.A.K. If a vulnerability cannot be handled by
the library, we will have to study how, or if it is feasible,
to implement a solution. The principal security features
we think should be implemented are: to make an integ-
rity check when the browser starts to ensure the applica-
tion hasn’t been tampered with locally, secure all backend
channels to prevent disclosures of confidential information,
securely store all confidential or sensitive data and server
authentication.

1.3 Methodology
This paper consists of two main parts, comparing PWAs
and native apps to each other, and developing a secure
app from which to display PWAs. To make the best
app possible, we needed a solid knowledge base about
both native apps and PWAs. To research how PWAs
came to be and how they are developing, we focused on
one of the main supporters of this technology, Google.
Their web.dev web page displays a plethora of articles
and research outlining the benefits of PWAs, their inner
workings, and their faults, from which we built a starting
foundation of the most important facts about PWAs. We
also needed to study the T.A.K library documentation,
from which we had to extract the capabilities of the library
and how it could help in our development. After in-depth
research about native apps, PWAs and T.A.K, we started
development. To build the app, we used the Android
developer guides and the T.A.K documentation in order
to understand and properly implement every capability
necessary in an adequate timeline.

1.4 Planification
To be able to complete the project in the allotted time frame,
we have followed the waterfall methodology. With this
methodology, we can focus on each phase of the project at
a time individually, and due to the fixed timeline on the pro-
ject, ensure we are up to date with the planning in a simple
way. To accomplish the aforementioned objectives, we will
need a work schedule to match the expected hours needed
for the project. Without taking into account the time re-
quired to make the paper and other documentation, we ex-
pected a total of 185h to complete the project. To better
outline this planning, we have provided a Gantt diagram in
appendix A.1.

2 NATIVE APPS VS. PWAS

As we have discussed previously, native apps and PWAs
both have different characteristics which make them a better
choice depending on what we want from our application.
In this section, we will note these key differences to find
exactly where each one excels at.

2.1 General comparison
• Language

– Native apps are developed with the languages
of each platform (Java/Kotlin for Android,
Objective-C/Swift for iOS). PWAs must use
HTML, CSS, JavaScript and any other frame-
works available for web development.

• Cost

– For a native app, developers need to learn the
language and build a version for each platform,
which means more development time to first
build the app and to update it afterwards. PWAs
are by nature cross-platform, which means we
only need a single codebase. Faster to build and
update.

• Developer Convenience

– To deliver a native app to the client, we will nor-
mally have to submit it to an app store. For each
store, we will need to pass the requirements spe-
cified and pay a fee. Every time we need to make
an update, we will need to do so on every plat-
form’s app. For PWAs, the user only needs a web
browser and the URL pointing to the app, skip-
ping any requirements. Developers only need to
update a single project.

• User Convenience

– Users need to commit to downloading a native
app. In order to receive new updates, they might
need to update it manually in the app store. PWA
users can add the app to the home screen without
downloading it. Updates are always seamless.

web.dev

Pol Monedero: Hardened Browser 3

• Performance

– Native apps have direct access to the operating
system, making them efficient and fast. PWAs
run from a browser, which means an extra layer
of abstraction. Overall, PWAs have more latency
and battery consumption.

• Capabilities

– Native apps have full access to all the features
of the device, such as geofencing (defining geo-
graphic areas and receiving notifications when
the device enters or leaves it) and NFC. PWAs
don’t have full access to the device. Some miss-
ing capabilities are NFC, interaction with other
apps, proximity sensors and ambient light detec-
tion.

• Security

– Native apps can be secured with login function-
ality, multi-factor authentication, certificate pin-
ning, mutual authentication and more. PWAs are
required to run under HTTPS, which ensures that
the connection between the client and the server
can’t be tampered with, but are much more lim-
ited if we want a hardened app, as we rely on the
browser for security features.

2.2 Security comparison
Now that we have a better idea of what native apps and
PWAs can do, we can focus on the security aspect of each
one.

2.2.1 Native app security

Native apps are generally more secure than PWAs. This is
due to having access to platform-specific security features
which can’t be used by PWAs. We can implement some of
the best security practices by following the android docu-
mentation.[5]

• Use TLS: Any backend connection must be secured.

• Certificate pinning: Restrict which certificates are
considered valid. Should only be used if we want max-
imum security, as changes in the server such as mov-
ing to another Certificate Authority (CA) will make the
app unable to connect to the server without receiving a
software update.

• Client authentication: Check the client certificate on
the server to control access.

• Use WebView object carefully: WebView objects
should only let users navigate to allowed sites, and
JavaScript should be disabled by default.

• Store data safely: Store all private user data safely

2.2.2 PWA security

Due to PWAs being run inside a browser, most of the se-
curity in the app comes from the browser itself, which we
can not modify freely. Although what we can do is limited,
some of the main aspects of PWAs can be secured.

• Use HTTPS: Every connection must be secured.

• Use service workers: Service workers are scripts that
allow the interception and management of network re-
quests. They provide security by not having direct ac-
cess to the DOM or cookies, and not being able to read
or set prohibited headers.

• Using the manifest file: The manifest file provides
information about the app, such as the name, descrip-
tion, icons etc... If a manifest file is set, it can not be
modified, which will make the name, description and
icon of the PWA secure.

• Secure data: Secure data locally to prevent Cross-site
scripting (XSS)

As we have seen, native apps have more security options,
with which we can customize much more how to protect our
app. In PWAs, we primarily rely on the browser, which can
make the app vulnerable to common web browser attacks,
such as XSS or Cross-Site Request Forgery (CSRF). Nev-
ertheless, modern web browsers use sandboxing, providing
an additional layer of security for our devices.

After comparing the characteristics of both native apps
and PWAs, and enumerating their strengths and drawbacks,
we can choose when to use each one. On the one hand, we
should use PWAs if we want a simple app that the user does
not have to download or update, and we don’t want to com-
mit to a cross-platform development. In exchange for the
ease of use and development, we will sacrifice some per-
formance and capabilities. On the other hand, we should
use native apps if we need specific capabilities like geofen-
cing or NFC, or if we want a more secure/faster application,
at the expense of a longer and costlier development.

3 THREAT ANALYSIS

With some of the key ways of protecting native apps and
PWAs, we can now focus on our specific app. It will be a
hybrid Android app, using a native app shell that displays a
WebView, which will connect to a PWA. As such, we will
need to take into account the security of both native apps
and PWAs.

To build the app in the most secure way possible, we will
be following the methodology commonly used for threat
analysis.

3.1 Assets
Firstly, we need to list which assets we have worth protect-
ing.

• User data: Data should be safely stored and transmit-
ted.

• Software: We want a robust app which will prevent
and/or detect tampering.

4 EE/UAB TFG INFORMÀTICA: Hardened Browser

• Hardware: The user’s hardware should be sandboxed
from the app.

• Remote services: Connecting to remote services such
as the PWA should be safe.

3.2 Threats
With the assets to protect, we can enumerate the possible
threats to our app.

• Unauthorized access to data

• Insecure data flow

• App tampering

• Denial of Service

3.3 Threat Matrix
With both the assets to protect and threats to be aware of, we
can build a matrix to highlight which we should prioritize.

Asset/Threat
(Impact/Prob.)

User
data

Software Hardware Remote
services

Unauthorized
access to data

B/B C/D D/D B/D

Insecure data
flow

A/A B/B D/D B/C

App tamper-
ing

C/C B/C C/D D/D

Denial of Ser-
vice

D/D D/D D/D B/B

Impact: A: Critical B: High C: Moderate D: Low
Probability: A: Very Likely B: Likely C: Unlikely

D: Very Unlikely

As we can see on the threat matrix, we should be partic-
ularly careful about data transfers, since user data can be
very sensitive and is vulnerable at multiple points in its life
cycle.

3.4 Specific Threats
Once we have highlighted the problems we should be
focusing on, we can extract the specific, actual threats we
need to be aware of in the app.

• Common web-based attacks such as XSS or CSFR

– We can disable JavaScript in the WebView and
reject any requests not in a whitelist of sites.

• Unencrypted traffic

– To ensure every connection is secure, we will
have to forbid any non-secure connection, such
as HTTP.

• Connecting to the wrong server

– To ensure the connection is to the correct server,
we can implement certificate pinning, which will
let us restrict which certificates are considered
valid.

• App tampering

– To prevent tampering, we will need to make a
check to ensure the app has not been modified.

• Device tampering (Rooting, debugging, hooking)

– To check for a tampered device, we will need to
use tools which make it possible to detect it. We
will need to prevent and detect the execution of
custom code in our app and if the app is being
debugged to prevent tampering.

• WebView

– To ensure the WebView is as secure as possible,
we will need to follow some important direct-
ives[6], such as keeping JavaScript disabled un-
less necessary, including JavascriptInterface (an
interface which allows Javascript in a WebView
to run native code in the app). Disabling Javas-
cript will prevent many popular web-based at-
tacks. Disabling access to resources not in the
scope of our app should also be considered. To
further enhance security, we should enable safe
browsing[7], a google tool that analyzes and
monitors the security of websites, and presents a
warning if marked as insecure. Disabling met-
rics collection and clearing the cache and ses-
sion storage periodically will improve security as
well.

3.5 Features implementation
With a list of the main threats we need to mitigate, we can
study how are we going to implement the countermeasures.
As we have presented previously, we will be using the
security library T.A.K by Build38 to increase the security
and reliability of the app. As such, some of the threats
enumerated can be mitigated by this library.

• Common web-based attacks such as XSS or CSFR.

– We can use the WebViewClient function
shouldInterceptRequest to intercept
a request and check if it’s connecting to a
whitelisted URL.

• Unencrypted traffic

– T.A.K implements the Secure Channel feature,
which provides a way to communicate with the
backend securely.

• App tampering

– T.A.K implements integrity checks. By regis-
tering each individual instance of the app in the
T.A.K Cloud when it’s first installed, we can
periodically use a T.A.K function to ensure the
app has not been modified.

Pol Monedero: Hardened Browser 5

• Device tampering (Rooting, debugging, hooking)

– T.A.K implements functions to analyze whether
the device is rooted or not. Additionally, T.A.K
implements tools to detect if the app has been de-
bugged and/or hooked.

• WebView

– Although JavaScript is disabled by default,
we can also use setJavaScriptEnabled
to choose if we want to enable it or not
(although some PWAs need JavaScript in
order to work). To disable access to local
files, we can use setAllowFileAccess.
On some very old android versions, ac-
cess to local files from external sources
is enabled, which we can disable with
setAllowFileAccessFromFileURLs
. To enable safe browsing, we have to add
EnableSafeBrowsing on the Android
Manifest. To disable metrics collection, we have
to add MetricsOptOut to the Android Mani-
fest. To clear the cache and session storage we
can use the WebStorage deleteAllData
function and the CookieManager functions
removeAllCookies and flush.

With a list of the capabilities of our app, and how we will
be implementing them, we can start development.

4 RESULTS

4.1 Browser Implementation
As stated previously, the objective of the project is to de-
velop a Hardened Browser which will serve as a platform
for PWAs, proving an easy way for a developer to build a
PWA without compromising on the security aspects, overall
giving the user a better experience.

In order to understand how the browser works internally,
we have made a diagram.

Fig. 1: Overview of the hardened browser app

The WebView is the most important component of our
app. The WebView class extends the Android View class,
which allows us to display web pages in our app. It is not
a fully-fledged web browser and lacks some functionality
such as an address bar or navigation controls. With min-
imal configuration, it is very simple to connect and dis-
play a PWA in our application via a WebView. We only
need to instantiate it and call the loadUrl method, which
will load the page provided. For our purposes, however,
we need to modify the WebView class in order to imple-
ment most of the features needed. We will have to modify
two classes, the WebView class itself, mainly for enabling
and disabling flags, and WebViewClient, which is the core
of the WebView, performing most of the work, such as
handling requests, key events, errors etc. Particularly, the
most important function of the class for our use case is the
method shouldInterceptRequest, which lets us in-
tercept every request made from the WebView. This is very
useful because we can restrict which requests we allow at
the lowest level, and even modify how these requests are
performed.

Looking back at the threats, we can mitigate four of
them by making some modifications to both classes. For
the main WebView, we can some change flags to im-
prove the security, such as disabling JavaScript (already
disabled by default, but necessary for many PWAs), dis-
abling the use of the cache, disabling mixed content (safe
origin loading resources from insecure origins) or en-
abling safe browsing, a google service that warns about
possibly dangerous sites when attempting to connect.
As for the WebViewClient, firstly we can override the
shouldOverrideUrlLoading, which is called every
time the user clicks on a link. As it receives the URL of the
requests, we can compare it against a whitelist and permit
the requests or deny them accordingly, warning the user that
they tried to connect to a non-whitelisted page.

Secondly, shouldInterceptRequest is called
every time the WebView fires any request. As such, we
can similarly deny requests targeting non-whitelisted pages.
Because we are intercepting the requests before they are
completed, we can modify how these requests will be com-
pleted. Using the Secure Channel functionality from T.A.K,
we can mitigate many threats, such as verifying the identity
of the server to prevent Man-in-the-middle attacks (MITM)
using certificate pinning and ensuring a secure connection
to the server.

To better understand how we can filter requests, we
provide below an example in pseudo-code and images de-
tailing its usage.

In these images, we can see how the app works. When
we open it, we will be directed to a webpage that has been
preprogrammed on the app by the developer. We can nav-
igate this page as we would on any other browser. If we
try to click on external links which are not included in the
whitelist, a message will warn us about it and the request
will be rejected. If the webpage tries to redirect us to a site
not whitelisted, it will show an error page, from which we
will have to press the back button to go back to the site.

6 EE/UAB TFG INFORMÀTICA: Hardened Browser

(a) Initial page (b) Another page in the same
domain

(c) User clicking on a page not
whitelisted or without a

certificate pinned

(d) Trying to load a
non-whitelisted link

Fig. 2: How the app loads in different circumstances

def shouldInterceptRequest(request):

#If the request is not in the whitelist, return error response

if shouldBlockNetworkRequest(request):

return error.html

#Some requests, such as file://, should not be handled by T.A.K

if takShouldHandleRequest(request):

Build new request based on previous request

newRequest = RequestBuilder(request.URL)

Make the request and build response with T.A.K secure

channel. As it implements certificate pinning, only

will finsish whitelisted request

response = takSecureChannel.Request(newRequest)

return response

Listing 1: Pseudocode of shouldInterceptRequest function

In this pseudo-code, we have the simplified logic of the
app. If we detect that a request is not on the whitelist,
we return the previously mentioned error page. Next, if
T.A.K should handle the request (most likely a page or
web content), we override the WebView to use the library’s
SSLSocketFactory implementation, instead of the stand-
ard Android one. In appendix A.2 we provide the full code
of the most important parts.

4.2 Security testing
In order to prove our app has properly implemented the se-
curity features proposed, we will need to test the app. We
will be testing the most important capabilities implemen-
ted, and comparing how the hardened browser compares to
Google Chrome, the world’s most used internet browser [8].

4.2.1 XSS and CSFR

We will start by trying to perform a Cross Site Scripting
(XSS) attack, which would allow an attacker to read any
information on the site to which the user has access, carry
out actions impersonating the user, or capture credentials.
XSS protection relies for the most part on the website itself
and how secure its user input parsing is. In our testing, we
have made a simple HTML application showing two mes-
sages, one of which has an embedded script, which may get
executed on the user’s machine. In this case, it only shows
an alert informing us about the execution of arbitrary code.
Even though this example could be safely patched, as it is
a simple stored XSS attack[9], there are many more ways
to perform XSS. For example, the Open Web Application
Security Project® (OWASP) maintains a Cheat Sheet with
over a hundred different ways to implement this attack[10].
Without robust and constant enforcement of security proto-
cols, PWAs might be vulnerable to this attack, which may
put into risk sensitive or confidential user information.

As we can see in the figures, opening the website with
Chrome will show an alert, which has been programmat-
ically called by the malicious message. The Hardened
Browser does not show any alert, meaning no javascript has
been executed on the host machine, as it is, by default, dis-
abled on the app. This demonstrates Chrome is vulnerable
to XSS attacks by itself, meanwhile, the Hardened Browser
can mitigate faults in the website security, ultimately pro-
tecting the user.

Pol Monedero: Hardened Browser 7

(a) Google Chrome (b) Hardened Browser

Fig. 3: Both browsers connecting to the website

4.2.2 Unencrypted traffic

A very important feature of any secure application is that
data transmitted or received must be encrypted. On the
Web, the main protocol for fetching resources is HTTP[11].
By default, HTTP does not encrypt traffic and is vulnerable
to packet sniffing (a technique where an attacker can de-
tect and observe the data flow in a network), which may put
in danger sensitive user information. Although HTTP has
been phasing out of the Web[12] in favour of HTTPS, which
implements a TLS/SSL layer on top, many websites today
may offer their contents on HTTP, in turn putting the user’s
data in danger. As an example, we have built a simple HTTP
and HTTPS site with a form which will make a GET re-
quest, to compare the differences using Wireshark, a packet
analyzer.

(a) HTTP request, which shows confidential information in plain text

(b) HTTPS request, which shows the confidential information encrypted

Fig. 4: Both browsers connecting to the website

As we can see in the figures, the HTTP request broad-
casts personal information in plain text, and any malicious
actor could get access to it by sniffing the network. In con-
trast, the same website but serving HTTPS, sends a TLS
packet, with the encrypted data in it (to confirm that both
have the same data, we have decrypted it). The Hardened
Browser directly disallows HTTP connections, as the Web-
View component doesn’t allow unencrypted traffic, and the
T.A.K library enforces certificate pinning, which requires
HTTPS. These measures make the Hardened Browser im-
pervious to packet sniffing, protecting the user’s data and
privacy.

4.2.3 MITM attacks

The Man-in-the-middle (MITM) attack consists in inter-
cepting the traffic between two systems. Using this tech-
nique, an attacker may impersonate a website, altering the
traffic by posing as the user in front of the server, and as the
server in front of the user. This means the attacker can see
all information transferred between both devices, as they are
in the middle. To test the Hardened Browser against MITM
attacks, we have deployed a DNS server in which we will
change the route of the content we are trying to access to a
possibly malicious one, which could cause the user to sup-
ply information to the malicious actor thinking it was the
real website.

(a) Trying to access the site
with Chrome

(b) Trying to access the site
with the Hardened Browser

Fig. 5: Both browsers connecting to the website via a
poisoned DNS

In the figures, we can see that both browsers detect we
are trying to connect to a site which doesn’t have the certi-
ficate matching the domain and shows a warning. Crucially,
Chrome still allows the user to bypass the warning, which
is a security risk in case the user is not aware of what it
entails. The Hardened Browser, due to implementing certi-
ficate pinning, refuses the connection as it can’t verify the
identity of the server. Although this attack normally re-
quires access to critical components in the infrastructure (a
router or access to DNS records), badly designed sites may
make it easier to execute it, such as using an HTTP to HT-

8 EE/UAB TFG INFORMÀTICA: Hardened Browser

TPS (301) redirect instead of the Strict-Transport-Security
response header[13] (HSTS). This type of misconfiguration
would allow an attacker to perform a MITM attack, us-
ing tools like sslstrip[14]. As we can see, the Hardened
Browser minimizes the possibility of a MITM attack, and
defends the users against it, while Chrome only warns the
user, which could be dangerous if the user ignores it.

4.2.4 App tampering

The threats not covered under the WebView fall under the
native app threats, such as rooting the device and debug-
ging or hooking the app, which could undermine the mitig-
ations performed on the WebView side. We have included a
root check with a T.A.K function at startup, which can de-
tect if a device is rooted with some accuracy, although false
positives and negatives are possible. We can also configure
T.A.K to crash when checking the integrity of the device at
startup if tampering is detected, which would prevent any
debugging and/or hooking.

4.2.5 WebView Hardening

As stated when specifying the features of the browser, we
can improve the WebView’s security by enabling some flags
in its configuration. Two of the flags we have enabled are
very important for our browser’s security; disabling javas-
cript and local file access. In the XSS and CSFR section,
we have seen the importance of having JavaScript disabled;
it makes it much harder to exploit vulnerabilities. In the
case of local file access, we don’t want the browser to have
access to anything that is not the web page we are trying to
access, as it would open up other paths for vulnerabilities.

(a) Trying to access local files
with Chrome

(b) Trying to access local files
with the Hardened Browser

Fig. 6: Both browsers connecting to local files

As we can see on the screenshots, Chrome allows brows-
ing the local file system, while the Hardened Browser disal-
lows it, which prevents websites from accessing local files,
enforcing a higher security standard.

5 CONCLUSIONS

The increase in smartphone usage across the years has
changed the focus of development from native, platform-
specific apps to web apps, and subsequently, PWAs. Al-
though PWAs rely on a secure backbone, general-purpose
browsers don’t provide a level of security as high as native
apps, which can lead to vulnerabilities affecting the user.
To combat these threats, we have partnered with Build38,
using their T.A.K security library to build a hardened nat-
ive app to display PWAs. As demonstrated in the testing,
the app implements a higher level of security than popular
browsers like Google Chrome, preventing many forms of
attacks and improving the user’s experience.

Our app would be convenient for developers that need an
extra degree of security but don’t want to invest in a nat-
ive app, as configuring it for a new project is as easy as
changing the target URL and app icons. With the Hardened
Browser, you can convert a PWA into a native app in a short
time and distribute it in stores like the Play Store without
having to make your own from scratch. For users, using
the Hardened Browser would be transparent, as they would
download the application as any other native app, but would
enjoy a higher degree of protection against many attacks
than using a normal web browser.

ACKNOWLEDGMENTS

Many thanks to Build38 GmbH for allowing me access to
the TAK library, especially to Jordi for all the assistance
across the months despite his busy schedule. I am also
thankful to my family for keeping my motivation and spirits
high during this time.

REFERENCES

[1] statcounter. ‘Desktop vs mobile market share world-
wide.’ (Sep. 2022), [Online]. Available: https :
/ / gs . statcounter . com / platform -
market - share / desktop - mobile /
worldwide/#yearly-2011-2022 (visited on
22/09/2022).

[2] A. Russell. ‘Progressive web apps: Escaping tabs
without losing our soul.’ (Jun. 2015), [Online].
Available: https : / / infrequently . org /
2015/06/progressive-apps-escaping-
tabs-without-losing-our-soul/ (visited
on 22/09/2022).

[3] Google. ‘Twitter lite pwa significantly increases en-
gagement and reduces data usage.’ (May 2017), [On-
line]. Available: https://web.dev/twitter/
(visited on 23/09/2022).

[4] Google. ‘Progressive web apps: Adoption has its be-
nefits.’ (Jan. 2022), [Online]. Available: https://
web.dev/learn/pwa/progressive-web-
apps/#adoption-has-its-benefits (vis-
ited on 23/09/2022).

[5] Android. ‘App security best practices.’ (Oct. 2022),
[Online]. Available: https : / / developer .
android . com / topic / security / best -
practices (visited on 02/11/2022).

https://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide/#yearly-2011-2022
https://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide/#yearly-2011-2022
https://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide/#yearly-2011-2022
https://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide/#yearly-2011-2022
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://web.dev/twitter/
https://web.dev/learn/pwa/progressive-web-apps/#adoption-has-its-benefits
https://web.dev/learn/pwa/progressive-web-apps/#adoption-has-its-benefits
https://web.dev/learn/pwa/progressive-web-apps/#adoption-has-its-benefits
https://developer.android.com/topic/security/best-practices
https://developer.android.com/topic/security/best-practices
https://developer.android.com/topic/security/best-practices

Pol Monedero: Hardened Browser 9

[6] Android. ‘Security tips.’ (Oct. 2022), [Online].
Available: https://developer.android.
com / training / articles / security -
tips#WebView (visited on 02/11/2022).

[7] Android. ‘Safetynet safe browsing api.’ (Nov. 2022),
[Online]. Available: https : / / developer .
android . com / training / safetynet /
safebrowsing (visited on 02/11/2022).

[8] statcounter. ‘Browser market share worldwide.’
(Dec. 2022), [Online]. Available: https://gs.
statcounter . com / browser - market -
share (visited on 14/01/2023).

[9] OWASP. ‘Types of xss.’ (Feb. 2022), [Online].
Available: https : / / owasp . org / www -
community / Types _ of _ Cross - Site _
Scripting (visited on 14/01/2023).

[10] OWASP. ‘Xss filter evasion cheat sheet¶.’
(Jan. 2023), [Online]. Available: https :
/ / cheatsheetseries . owasp . org /
cheatsheets / XSS _ Filter _ Evasion _
Cheat_Sheet.html (visited on 14/01/2023).

[11] Mozilla. ‘An overview of http.’ (Jan. 2023), [On-
line]. Available: https : / / developer .
mozilla.org/en- US/docs/Web/HTTP/
Overview (visited on 12/01/2023).

[12] Google. ‘Https encryption on the web.’ (Jan.
2019), [Online]. Available: https : / /
transparencyreport.google.com (visited
on 12/01/2023).

[13] Mozilla. ‘Strict-transport-security.’ (Jan. 2023), [On-
line]. Available: https : / / developer .
mozilla.org/en- US/docs/Web/HTTP/
Headers / Strict - Transport - Security
(visited on 12/01/2023).

[14] L1ghtn1ng. ‘Sslstrip.’ (Jun. 2022), [Online]. Avail-
able: https://github.com/L1ghtn1ng/
sslstrip (visited on 13/01/2023).

https://developer.android.com/training/articles/security-tips#WebView
https://developer.android.com/training/articles/security-tips#WebView
https://developer.android.com/training/articles/security-tips#WebView
https://developer.android.com/training/safetynet/safebrowsing
https://developer.android.com/training/safetynet/safebrowsing
https://developer.android.com/training/safetynet/safebrowsing
https://gs.statcounter.com/browser-market-share
https://gs.statcounter.com/browser-market-share
https://gs.statcounter.com/browser-market-share
https://owasp.org/www-community/Types_of_Cross-Site_Scripting
https://owasp.org/www-community/Types_of_Cross-Site_Scripting
https://owasp.org/www-community/Types_of_Cross-Site_Scripting
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://transparencyreport.google.com
https://transparencyreport.google.com
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://github.com/L1ghtn1ng/sslstrip
https://github.com/L1ghtn1ng/sslstrip

10 EE/UAB TFG INFORMÀTICA: Hardened Browser

APPENDIX

A.1 Planification Gantt diagram

Fig. 7: Planning Gantt diagram

Pol Monedero: Hardened Browser 11

A.2 Hardened Browser Code

A.2.1 WebView Client

private fun takShouldHandleRequest(request: WebResourceRequest?): Boolean {

return request?.url?.scheme?.startsWith("file://") != true

}

private fun shouldBlockNetworkRequest(request: WebResourceRequest?): Boolean {

val parsedUrl = request?.url?.host

if (parsedUrl != null) {

if (parsedUrl.contains(Constants.TARGET_PWA_URL) || parsedUrl in Constants.ALLOWED_URLS) {

return false

}

}

Log.i("TAK", "Blocked request "+ request?.url)

return true

}

//Called when the user interactively requests a resource (click a link)

override fun shouldOverrideUrlLoading(

view: WebView?,

request: WebResourceRequest?

): Boolean {

if (shouldBlockNetworkRequest(request)) {

Toast.makeText(context, "Trying to load non-whitelisted page", Toast.LENGTH_SHORT).show()

return true

}

return false

}

//Called when any resource is requested, if whitelisted continue, else, don’t load

// (might break some functionality)

override fun shouldInterceptRequest(

view: WebView?,

request: WebResourceRequest?

): WebResourceResponse? {

var tempReturn: WebResourceResponse? = null

if (shouldBlockNetworkRequest(request)) {

return WebResourceResponse("", "", context.assets.open("custom_pages/certificateError.html"))

}

if (takShouldHandleRequest(request)){

try {

var mimeType = "text/html"

val newRequest = Request.Builder()

.url(request?.url.toString())

.build()

val response = makeTAKrequest(newRequest)

if (request?.url?.toString()?.contains("css") == true)

mimeType = "text/css"

if (request?.url?.toString()?.contains("js") == true)

mimeType = "text/javascript"

Log.i("TAK", "Loading " + request?.url.toString())

tempReturn = WebResourceResponse(

mimeType,

"utf-8",

response.body?.byteStream()

)

} catch (exception: Exception) {

Log.i("TAK", "Exception getting url with TAK " + request?.url + exception)

return if (Constants.SHOULD_LOAD_PAGE_ON_TAK_EXCEPTION) {

null

} else {

WebResourceResponse("text/html",

"UTF-8",

context.assets.open("custom_pages/certificateError.html"))

}

}

}

return tempReturn

}

12 EE/UAB TFG INFORMÀTICA: Hardened Browser

A.2.2 WebView

init {

// Some PWA just don’t work without Javascript

this.settings.javaScriptEnabled = Constants.SHOULD_ENABLE_JAVASCRIPT

// Set custom webViewClient for our webview

this.webViewClient = CustomWebViewClient(context)

// Maximum cache size is 20mb as seen on line 98 on the source code,

// which is not enough for most PWAs, we might as well disable it.

// https://android.googlesource.com/platform/external/webkit/+/refs/heads/master/Source/WebKit/android/WebCoreSupport/WebCache.cpp

this.settings.cacheMode = WebSettings.LOAD_NO_CACHE

// Never allow secure origin to load resources from insecure origins

this.settings.mixedContentMode = WebSettings.MIXED_CONTENT_NEVER_ALLOW

//Whether the app can load local files

this.settings.allowFileAccess = false

//Enable safe browsing (Also in manifest)

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {

this.settings.safeBrowsingEnabled = true

}

}

