U "‘ B Diposit digital
de documents
Universitat Autonoma de la UAB

de Barcelona

This is the published version of the bachelor thesis:

Adserias Valero, Satl; Moure, Juan C, dir. Parallelization of an All-SAT solver.
2023. (958 Enginyeria Informatica)

This version is available at https://ddd.uab.cat/record/272821

under the terms of the license

https://ddd.uab.cat/record/272821

TFG EN ENGINYERIA INFORMATICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTONOMA DE BARCELONA (UAB)

Parallelization of an All-SAT solver
Saul Adserias Valero

Abstract— Advancements in SAT solving algorithms with heuristics and more sophisticated
inferring techniques have allowed a wide array of real world applications for SAT solvers to
prosper. In this work, an All-SAT solver based on the DPLL algorithm has been developed,
optimized, and ultimately parallelized, with the objective of learning about the intricacies of
SAT solvers from a performance engineering perspective. Ultimately, as a result of this work,
a correct and complete parallel All-SAT solver, based on task-parallelism and a divide-and-
conquer paradigm, has been successfully implemented and tested with set of benchmark

satisfiability problems.

Keywords— AllI-SAT, SAT, DPLL, solver, parallelization, tasks, CNF, unit propagation, back-

tracking, propositional formula.

1 INTRODUCTION

HE All-SAT problem consists in finding all the satis-
fying assignments of a propositional formula. It is a
variation of the more famous boolean satisfiability prob-
lem SAT, where only one satisfying assignment needs to
be found in order to form a solution.

More formally, given a propositional logic formula F de-
fined with a finite set of variables V' and a finite set of log-
ical operators that connects them, the All-SAT problem can
be stated as the search of a subset AT C A, where A is the
set of all assignment functions \; that have the set of vari-
ables V' as the domain and the Boolean set B = {T, F}
(where T and F are the truth values for true and false, re-
spectively) as the co-domain:

A={n:voBli<icoM),

such that
Ar={\ €eA|Fy, =T},

where F), is the truth value for the evaluation of the for-
mula F with the assignment of the variables v, € V ac-
cording to \;(vy).

It is well known that SAT belongs to the NP-complete
complexity class of problems [1]. Meanwhile, since All-
SAT is not a decision problem, it can’t be categorized the
same way as its counterpart. It can be said though, that it
is most proximal to a counting problem like #SAT, a #P-
complete problem that consists in giving the total number
of possible satisfying assignments, for a given formula (but
not the assignments themselves). It can be argued then that
All-SAT is harder than SAT but pretty similar to #SAT.

The relevance of SAT and it’s variants in computer sci-
ence and mathematics has fueled the development of a class

e E-mail de contacte: saul.adserias @autonoma.cat

e Mencio realitzada: Enginyeria de Computadors

o Treball tutoritzat per: Juan Carlos Moure (DACSO)
o Curs 2022/23

of software programs specialized in solving the problem
[2]]. They are commonly referred to as SAT solvers.

Remarkably, even though only algorithms with worst
case exponential complexity exist, actual solver implemen-
tations use multitude of heuristics and other techniques to
overcome this complexity limitation, making them useful
for many real-world problems from diverse areas of knowl-
edge such as artificial intelligence and electronic design au-
tomation. Some of this strategies will be later discussed.

With regards to this work, the focus has been set on
the development of a complete All-SAT solver based on
the systematic search of the solution space. The aim was
to learn while implementing some of the techniques that
form it, to later optimize them and ultimately parallelize the
whole solver.

Following is section |2} where some preliminary knowl-
edge for the context of the work is given. Next is section 3]
that will address all about the development of the solver and
the proposed versions. In section [d] we will present the ob-
tained results of the proposals, and finally in section[5]some
conclusions will be laid out to wrap the work.

2 PRELIMINARIES

In this section some notation and the definition of the DPLL
algorithm, along with the current state of the art for SAT
solvers, is presented.

2.1 Conjunctive normal form

For standardisation and performance purposes, most solvers
expect the input problem to be encoded in conjunctive nor-
mal form, or CNF for short. A CNF form of the problem
will be implicitly expected in the next sections.

A propositional formula F of n variables, defined as a
2-tuple of the sets (V, C), is in conjunctive normal form if
it is formed as the conjunction (denoted by A) of m clauses

February of 2023, Escola d’Enginyeria (UAB)

Cj eC:
]:201 /\CQ/\.../\Cm,
where each clause c; is a disjunction (denoted by V) of n;

literals [:
Cj :ll\/ZQ\/-“\/lncja

letting a literal [, be the truth value of a variable v, € V
(I = vg) or it’s negation (I, = —wy).

Crucially, a formula F in CNF form is satisfied if each
of the clauses is independently satisfied (i.e. has a literal
that evaluates to the T truth value). On the other hand, as a
byproduct, if a clause can’t be satisfied, so can’t be F.

As an example, the following formula G = (V, C):

G=(AVB)

A (BVC)
AN(—AV-XVY)
AN(—AVXVZ) (1)
A(mAV =YV Z)
AN(—AVXV-Z)
A

AV Y V-Z)
is in CNF, and is defined by the variable set
V={A B, C, X, Y, Z}
of size |V| = n = 6 and the clause set
C ={{A, B},
{B, C},
{_‘Aa —X, Y},
{_‘Aa Xa Z}a
{~4, ~Y, Z},
{_‘Aa Xa _'Z);
{~4, -y, ~Z}}

=3.

of size |C| = m = 7, where |c1 2| =2 and |c34,5,67

2.2 Additional notation

Taking some freedom in the definition and notation previ-
ously presented, assignment functions will sometimes be
only partially defined (A : V' — B). Also, this kind of
functions will sometimes be expressed as a set of ordered
pairs A = {(v, b) | v € V, b € B}, aside from the nor-
mal function notation. The two notations will be used in-
terchangeably, depending on the context. Additionally, the
expression v := b for any v € V and b € B will be short-
hand for A(v) = b.

Furthermore, we also define ¢ : L — V to be the func-
tion from the set of literals L = {v, —v | v € V'} to the set
of variables V' that maps each literal to it’s corresponding
variable, and § : L — B the function that maps a literal to
the truth value T or F if its polarity is positive or negative
(i.e. negated variable).

Finally, as each clause ¢ € C of a formula F can also
be seen as a formula itself, the statement ¢, will also be
the truth value of ¢ when applying the assignment A to its
occurring variables. Furthermore, a clause ¢ € C will also
be treated as subset of the set of literals (¢ C L).

EE/UAB TFG INFORMATICA: PARALLELIZATION OF AN ALL-SAT SOLVER

2.3 Basic algorithm: DPLL

The first notion of a SAT solver was developed by Davis,
Putname, Longemann and Loveland in the 1960s with the
DPLL algorithm [3}4]. This is an algorithm based on back-
tracking that performs a search of the solution space in a
depth first fashion.

As a brief overview, it can be divided in three main steps:

* the decision step, which consists on picking and as-
signing an unassigned variable (the “decision vari-
able”), which determines the “decision level”;

« the unit propagation step, where clauses that have
only one occurring literal with an unassigned variable
(called unit clauses”), are searched to forcefully as-
sign the corresponding variable (the “’propagated vari-
able”) so that the literal, and therefore the clause, eval-
uates to T (since it is the only way to satisfy the clause,
inferring the assignment);

* and finally the backtracking step, where the state of
the program is restored to the last valid decision level.
For a SAT solver this step is only done when one or
more variables have conflicting assignments in the unit
propagation step. A conflict arises when it is inferred
that the same variable has to be assigned to T and F
at the same time, (or equivalently, when a clause that
is not satisfied has no remaining literals with an unas-
signed variable, becoming thus unsatisfiable). Since
we want to use DPLL for the All-SAT problem the
backtracking will also need to be done after each solu-
tion is found.

The pseudocode in Algorithm |1| describes a recursive
DPLL implementation using the UNIT-PROPAGATION func-
tion defined in Algorithm[2]and the auxiliary function CON-
FLICT, defined in Algorithm E} to check for conflicts after
each propagation.

For the decision step, the function DECIDE-VAR imple-
ments the picking of an unassigned variable v € V accord-
ing to A, and the assignment is done in each of the recursive
calls building a new A function, for each of the recursive
calls, with the two truth values.

Finally, the backtracking step is, in this case, implicit,
since the only changing state is the assignment function A
and a new one is formed for each decision level, based on a
copy of the previous one, that only lives in the scope of its
level /.

Figure|[I|represents a full example of all the steps that the
DPLL algorithm makes, in conjunction with the effects on
the given formula, to solve the problem.

The two initial decisions A := T and X := F (d; and
ds) determine by unit propagation that Z := T and Z := F
(p1 and p2) at the same time, leading to a conflict that needs
to backtrack, chronologically, to the previous valid decision
level (b1).

The new decision path (d3) leads to another conflict,
meaning that the solver needs to backtrack to the first de-
cision level (b2), since the second has no more valid assign-
ments to explore.

Finally, when the decision A := F'is made (dy), clauses
3 through 7 are now satisfied. At the same time, by unit
propagation on the first clause, it is inferred that B := T

SAUL ADSERIAS VALERO: PARALLELIZATION OF AN ALL-SAT SOLVER

(AV B) ((
(BVC) ((
(mAV-XVY) (- (mAV-XVY)
(mAVXVZ) (mAVXVZ) (mAVX V) 2 =T
(RAV YV Z) (FAV-Y VZ) (FAV-Y VZ)
(mAVXV~-Z) (mAVXV~-Z) (mAVXV-2) =2 =F
(mAV Y V=Z) (mAV Y V=Z) (mAV Y V=Z)
d3\ X :=T
(AV B) (AV B)
(BVvC) Y- T(BvC)
(mAV X VYY) (mAV-XVY)
(mAVXVZ) (FAVXVZ)
dg \A:=F
(mAV-Y VZ) (mAV Y V) —pr = Z =T
(mAVXV-2) (mAV X V-2)
(mAV Y VZ) (mAV =YV)TZ:F
B:=T
(Av5) 7> (AVB)
(B\/C) (BVv(C)
(FAV-XVY) (mAV-XVY)
(mAVXVZ) (mAVXVZ)
(mAV YV Z) (mAV YV Z)
(mAV X V~-Z) (mAV X V~-Z)
(RAV Y V-Z) (mAV Y VZ)

Fig. 1: Example of the full solving procedure of the formula G (see equation |1 following the DPLL algorithm and the
decision, unit propagation and backtracking steps (denoted by the labeled arrows d, py, and ., respectively), where blue
represents literals that have an assigned variable but evaluate to F, orange identify the remaining literals in a unit clause,
and red determines propagated variable assignations (from unit propagation) that cause a conflict.

Algorithm 2 Function to propagate unit clauses in C' with
respect to the current assignment function A, returning an-

Algorithm 1 DPLL recursive procedure with F being the

propositional formula (defined as a tuple with the set of
variables V' and the set of clauses C'), A the assignment
function (initially (), and £ a marker of the decision level

other assignment function A, with the propagated variables
and its corresponding truth values. The 3! symbol meaning
unique existence.

(initially 0). 1: function UNIT-PROPAGATION(C, \)

1: function DPLL(F = (V, C), A, 0) 2 Ap 0
2: Ap ¢ UNIT-PROPAGATION(C, \)
3: if CONFLICT(A,,) = T then 3. for c € C do
4 | return{ 4 if cy = T then
5: | CONTINUE
5: A= AUN,
) if 3 ecs.t (6(), T/F) & X then
6: if 7\ =T then A = M U(e(D), 6(1)
7: | return \
8: return)\,
8: v — DECIDE-VAR(V, \) —
o: A%(”):T < DPLL(F, AU (v, T), £+1) Algorithm 3 Function that determines if there exist con-
flicting assignments in A, returning F and T respectively.
10: A%(”):F < DPLL(F, AU (v, F), £+1) 1: function CONFLICT())
2: if 3(v, T) € AA3(v, F) € A then
11: | return AY=T U AN=F 3 returnT
4: return F

(ps), satisfying both remaining clauses 1 and 2. This means
that, since with the partial assignment of the variables A :=
F and B := T the problem is satisfied, the variables C, X,
Y and Z remain free, making a total of 2% = 16 satisfying
assignments that form the solution. Note that the algorithm
ends here since it can’t backtrack to any valid decision level
anymore.

2.4 State of the art: CDCL & local search

Most modern solvers are originally based on the DPLL al-
gorithm but with the main addition of conflict driven clause
learning (abreviated CDCL) [5, 2. This is an optimizing
technique which was first introduced by the GRASP solver
[6] in the late 1990s and was quickly followed and refined
upon by other solvers, such as zChaff [7]], MiniSAT [8] or
Glucose [9] and practically all the participant solvers in the
annual SAT competitions [[10]].

The main idea behind the technique is the derivation of a
clause from the assignments that led to the conflict, to later
learn it (or more precisely, learn its negation). This is useful
because, essentially, a new constraint with the failed combi-
nation of assignments is appended to the problem, making
sure that the same conflict is not reached again.

Another benefit of this clause derivation is that, instead
of backtracking to the last valid decision level (like a stan-
dard a DPLL solver), the conflict can be analyzed to back-
track non-chronologically to the last decision level where
the clause becomes satisfied, pruning part of the search
space.

On the other hand, one major issue with the CDCL ap-
proach is that, while more clauses makes the solver find the
solution faster (in general), the number of learned clauses
can grow enough to become a performance issue. To solve
this problem most solvers include deletion policies that re-
move learned clauses based on their usefulness (mostly us-
ing heuristics).

Aside from complete algorithms based on systematic
global search, it is worth mentioning that there exists a class
of non complete solvers based on local search. This type
of solvers start with a given truth assignment of variables
(mostly based on heuristics), and try to improve on it until
a solution is found. One example of local search solvers are
stochastic ones [11 2].

The main advantage of such solvers is the speed at which
a solution can be found. On the other hand, if the solver
can’t find one solution, there’s no guarantee that it doesn’t
exist, making them non-suitable for applications where cor-
rectness is needed.

3 PROPOSALS

This section presents the development methodology and a
description of the main ideas behind the implementation of
each incremental version of the solver.

3.1 Development methodology

The approach for the development of the solver applied in
this work has most resembled an iterative and incremen-
tal methodology. The common pattern was the planning of
an iteration of the solver that fulfilled a series of specific

EE/UAB TFG INFORMATICA: PARALLELIZATION OF AN ALL-SAT SOLVER

requirements and objectives, followed by the implementa-
tion and subsequent testing of it. For the next iterations, the
same cycle applied in an incremental fashion, improving the
solver by adding new or modifying existing functionalities
of it.

Three main iterations, and therefore three main versions
of the solver, has been done: baseline version, optimized
version and parallel version.

First, an initial minimal version of the solver was envi-
sioned. The plan was to make a simple but yet functional
version of the solver that could read CNF formulas, encode
them in a useful internal representation, and also solve them
with a first implementation of a DPLL based algorithm. In
this version simplicity was of more importance than perfor-
mance.

For the second iteration, a performance aware approach
was taken, mainly improving the efficiency of the DPLL
algorithm. The aim was to make the solver more efficient
such that the future parallelization would be worth and fea-
sible.

Finally, the third major version of the solver focused on
the parallelization of the solver. The main idea was to de-
vise a strategy that would distribute the work between the
processors as evenly as possible.

3.2 Baseline version

3.2.1 Problem input

The baseline version implements a basic DPLL sequential
solver. It first reads a CNF formula in the DIMACS file
format (see appendix [A.T|for more details) and loads the in-
formation into two data structures: clss and clss_idxs.
Both are 1-dimensional vectors that hold, respectively, all
the literals of the formula encoded as integers, where a neg-
ative integer represents a negated literal, and the indexes
that bound each clause. By consequence, each variable is
represented by the absolute value of the literal.

With this two vectors it is possible to access each of the
literals of a given clause c; by getting the start and end
indices (assuming O indexing) s = clss_idx[j — 1]
ande = clss_idx[j] respectively, to access clss [s]
through c1ss[e — 1]. In figure 2] an example diagram of
both data structures is shown.

cls idxs [0] 2] 4] 7]10[13]16]

l(-! \(\i c3
1]

2[2[3]-1]-4]5]-1]4[6]-1]-56]-1]4]-6]-1]-5]-6]

clss |

Fig. 2: Example diagram of the vector pair clss and
clss_idxs for the formula G defined in equation E] and
encoded according to figure 5] The annotated arrows mark
the first literal of each clause c;.

3.2.2 Decision and backtracking

To model the assignment function, a specific data structure
named vars was created. This data structure is also a vec-
tor that has the truth value assigned to the variable vy in
vars [k — 1]. Since not all variables will be always as-
signed, a third truth value X was added to represent an unas-
signed state. This is also the starting truth value of each
variable.

SAUL ADSERIAS VALERO: PARALLELIZATION OF AN ALL-SAT SOLVER

This data structure provides the executing state of the
program. This means that, in order to backtrack, the solver
needs to restore the contents of this vector to its previous
state in the last valid decision level. To do so, a simple ap-
proach was to add d levels of depth to the vector, assigning
each depth level to a decision level. This way, a copy with
its state in each decision level could be saved independently,
making the backtracking step a simple process of pointing
to the correct depth level (see figure[3).

N/M

A
v

Ivl:0 XXX XX X]|X]|X
Ivl:1 TIX[X|F|IX]|F[X]|X
Ivl:2 T|ITIX|F|X|F|X]|X||D

WD1 | T| T|F|F[X|F|[T|F

v

Fig. 3: Example diagram of the structure of the vars vector
expanded with D levels of depth, each corresponding to a
different decision level.

Picking a decision variable requires establishing an or-
dering on the vars structure. We use an static heuristic
to prioritize the most frequent variables first. This heuristic
runs after the reading of the CNF formula and changes the
internal representation of each literal so that the ones that
represent the most frequent variables have the lowest abso-
Iute numbers. With this implemented, an auxiliary function
named pick_var was created in order to return a natural
number representing the most frequent unassigned variable
(based on the current assignation of vars).

3.2.3 Unit propagation

Function unit_prop iterates over each clause and counts
the number of literals that have an assigned variable. If one
of the literals satisfies the clause, the clause is discarded.
There are two remaining useful cases: all the literals of the
clause, but one, are assigned (a unit clause), and all the lit-
erals are assigned (a conflict).

When we identify a unit clause, an assignment for the
variable of the truth value that satisfies the clause is made
(i.e. Mo(1)) = 6(1) for I € ¢ where c is the unit clause and
[its remaining literal). Then the whole unit propagation
process is marked to be repeated again after passing over
the remaining clauses. This is the case because, upon prop-
agating a variable, some other unit clauses might appear,
making a cascade effect of propagations.

A conflict can only happen if a unit propagation also hap-
pened before: when a unit clause is found, it is possible that
another unit clause (not yet found), with an unassigned lit-
eral of the same variable, but with opposite polarity, exists.
Le., given two unit clauses c; and c, with the remaining
unassigned literals I, € c; and [, € c,, it applies that
é(le;) = d(le,) and 0(lc,) # 0(lc,). This means that, when
the first is propagated, the subsequent one will no longer be
identified as a unit clause, and neither is or can be satisfied,
as all its literals have an assigned variable but none evaluate

to the truth value T. This is an alternative method (compare
this method with the one in algorithm 3 to detect a conflict
after the variable has been already propagated to either of
the conflicting truth values.

A complete pseudocode implementing the described unit
propagation can be seen in algorithm 4] A function named
solve (with pretty similar structure to Algorithm [T) im-
plements all the steps of the DPLL algorithm.

Algorithm 4 Performs unit propagation by searching for
clauses in clss that only have one literal unassigned (unit
clauses). Returns F if contradiction was found, T if all
clauses are satisfied and X otherwise. It also uses the pa-
rameter ¢ to address the correct depth level of vars. The
symbol © represents an XNOR and c1ss [s: e] the range
ofitems clss[j] Vj € [s, e).

1: function UNIT-PROP(Y)

2: p+ T

3 u+ T

4 while p = T do

5: p+F

6 u<+T

7 for j € [0, |C|) do

8 u— X

9: Ny#£X < 0

10: Ix <0

11: S 4 clss_idx[j]

12: e+ clss_idx[j+ 1]

13: forl, € clss[s:e] do

14: v < varsll, abs(l;) — 1]
15: if v # X then

16: Ny#X & Nyzx + 1

17: t+—(v=T)o(>0)
18: if ¢ then

19: | BREAK
20: else
21 o Ik«
22: if ¢ then
23: | CONTINUE
24: u+— X
25 if nyxx = SIZE(clss[c]) then
26: | returnF
27: if n,x = SIZE(clss[c]) — 1 then
28: if Ix > 0 then
29: - vars[l, abs(lx) — 1]« T
30: else
31: .~ vars[l, abs(lx) — 1] «+ F
32: L p<+< T
33: | return u

3.3 Optimized version
3.3.1 Unit propagation

Starting from the baseline version, a few improvements
have been made with respect to the efficiency of the unit
propagation process. The baseline propagation step always
checks all the clauses. This is not entirely necessary, as the
new unit clauses (1) must be still not satisfied, and (2) must
have an occurring literal of the last decision variable. This
means that, potentially, only a very small subset of clauses

has to be actually checked.

The baseline version does not memorize which clauses
have been already satisfied, making the checking process
very redundant. To affront this, a new data structure called
clss_sat, conceptually identical to vars (see figure[3),
is used to save the satisfying state of each clause, for each
decision level. With this vector, analogously to a variable
in vars, the state of a clause c; in a given decision level ¢
would be saved in clss_sat [¢, j — 1], making it now
possible to easily discard a clause if it was already satisfied.

A second improvement is to use a pair of vectors
var_clss and var_clss_idxs that, for each variable,
points to all the clauses which have an occurring literal,
including its polarity. Analogously to the pair clss and
clss_idxs previously described, var_clss_idx [k —
1] contains positive integers that represent the starting posi-
tion in var_clss for the clause indexes of the variable vy,.
The clause indexes in var_clss are encoded as integers,
where the absolute value of them represents the clause index
itself, and the positive or negative sign states if the referred
variable has positive or negative polarity, respectively. Fig-
ure [shows an example diagram of both structures.

var_clss_idxs nﬂ_
A B

var_clss ‘ 1 ‘-3‘-4‘—5‘—6‘-7‘ 1 ‘ 2‘ ‘

Fig. 4: Example diagram of the vector pair var_clss and
var_clss_idxs for the formula G defined in equation
and encoded according to figure 5] The annotated arrows
mark the first clause index of each variable.

Thanks to these new structures, the propagation loop only
needs to iterate over all the clauses with a literal correspond-
ing to a recently assigned variable. There can be multiple
assigned variables that must be checked: the current deci-
sion variable, and all the variables that have been propa-
gated when analysing the effects of the assignment of the
decision variable.

Furthermore, since the polarity of a given variable literal
is also known, only those clauses where the assignment did
not satisfy (i.e. the polarity does not match the assigned
truth value, or §(1) # A(é(1))) need to be checked, or oth-
erwise the clauses would be already satisfied.

3.3.2 Memory management

One problem with the data structure vars, and the newly
added clss_sat, is that as now both conform the execu-
tion state of the program, both need d levels of depth to
make the backtracking step possible. This is not really ef-
ficient, as the spatial complexities of these structures are
O(nd) and O(md), respectively (where n is the number
of variables and m the number of clauses). In the worst
case, when d = n, the spatial complexities are O(n?) and
O(mn).

To use memory more efficiently, we encode the changes
done at each level of the decision tree on the vars and
clss_sat data structures, using a stack of logs. Each log
entry contains all the changes done on the variable/clause
state for a given decision level. The backtracking step im-
plemented in a function called backtrack retrieves in

EE/UAB TFG INFORMATICA: PARALLELIZATION OF AN ALL-SAT SOLVER

LIFO order (i.e. last in first out, or most recently added
first) the state changes and, therefore, reverse them.

This modification of the program yields a significant
amount of saved memory, as now the space complexity for
each of the logs of changes scales linearly with the number
of variables and clauses (i.e. O(n) and O(m)).

3.4 Parallel version

Lastly, with a more efficient solver in place, it was time
to parallelize its execution. The algorithm corresponds to
a divide-and-conquer pattern, which matches very well a
task-level type of parallelism. We used the OpenMP frame-
work [12]] to implement the parallel code.

Given a number k, a problem of n variables is splited
into 2% tasks, each of which solves a sub-problem where &
variables are already assigned to a different permuted state,
leaving n — k variables left to be assigned. This division
of the search space and the creation of each task is imple-
mented in a function named partition_solve. Since
tasks need not share any information between them, this
function is also accountable for the memory allocation of
all the data structures that form the execution state of the
program (i.e. vars, clss_sat and their respective stack
logs). Therefore, all the local data structures are declared
as thread private, upon the execution of each task. When
all this is done, the function just relegates execution to the
main DPLL procedure solve and deallocates the memory
used.

Conceptually, the divide-and-conquer structure, paired
with the usage of task parallelism, creates 2 tasks that will
be executed concurrently, with some number of them being
executed in parallel (depending on the total number tasks
and the computation resources at hand). Leaving the pa-
rameter k unfixed is useful, since not all tasks equal to the
same amount of work (i.e. some will be easier or more diffi-
cult than others) and setting a specific value for & allows for
some fine tuning of the desired number of spawned tasks for
a specific problem. Practically speaking, it allows the ad-
justing of the overhead cost, intrinsic to the creation of more
tasks, versus the better load balancing capability among the
available threads that smaller problems may provide. This
results in the ability to decide on an empirically optimal
number k, which yields the best execution time on an indi-
vidualistic problem fashion.

4 RESULTS

This section topic is about the execution of some prob-
lems and the performance related results that where ob-
tained when executing them with the previously described
versions.

4.1 Experimental methodology

All of the solver versions have been written using the C pro-
gramming language [13] and have been compiled with the
GNU Compiler Collection (GCC) on its version 12.20. The
performance related compiler flags are ~fshort-enums,
-03, -march=native and —fopenmp for the parallel
version. The CPU used for execution is an Intel i5-6600k

SAUL ADSERIAS VALERO: PARALLELIZATION OF AN ALL-SAT SOLVER

CPU @ 3.50 GHz with 4 physical cores and no multi-
threading.

The performance metrics in table 2 have been obtained
with the Performance Analysis Tools for Linux perf by
executing each compiled version with a set of three prob-
lems.

4.2 Workload

The problems used to test the various versions of the
solver are instances extracted from the SATLIB collection
of benchmark problems [14]. Table E] contains the main
characteristics for each of the problems.

In terms of the size in number of variables |V/], it can be
seen that all problems are in the 150 to 300 range. Mean-
while, with respect to the number of clauses |C|, the prob-
lem 3blocks is far larger than the other two, with 9000
clauses versus 600, approximately 14-15x more. The same
can be said, for the number of literals, with roughly the
same increase of 14x, making the three problems having
roughly the same length of 3 literals per clause. This makes
3blocks larger in terms of clause/literal dimensions.

On the other hand, with respect to the satisfying assign-
ments, we have that aim-200-3_4-yesl-1 has only
one, 3blocks 174 and u£f150-011 160 million, a far
greater number of solutions with respect to the other two.

Problem V| |C| |L| SAT-assignments
aim-200-3_4-yesl-1 200 680 2038 1

3blocks 283 9,690 26,810 174

uf150-011 150 645 1935 160,528,182

TABLE 1: NUMBER OF VARIABLES, CLAUSES, TOTAL
LITERALS AND SATISFYING ASSIGNMENTS FOR EACH OF
THE PROBLEMS

4.3 Analysis

Table 2| shows a summary of multiple execution metrics for
each of the proposed versions, and each of the problems
listed in the Table[l

Analysing these results, a performance improvement
trend can be seen across each incremental version, for all
the three problems. The optimized version, with respect to
the baseline one, solves the same problems 15.12x, 51.26x
and 39.47x times faster, being the best performance in-
crease for the problem 3blocks, the one that has more
clauses and more literals (even though the later is directly
proportional to the increase in the number of clauses).

This result is to be expected, since the main advantage of
the optimized version is the reduction of processed clauses,
directly reflected in the reduction of the number of executed
instructions.

Analogously, the parallel version performs 3.08x, 3.64x
and 2.77x times faster than the optimized sequential ver-
sion. Theoretically, the maximum performance increase
would be 4x (we use 4 cores, each executing one thread)
assuming perfect load balancing of the tasks to the execu-
tion threads and no slowdown in the core frequency of the
processor.

As discussed before, the k parameter comes into play
in the load balancing task. A different k£ was used for

each problem, selected manually based on empirical test-
ing. Starting from k = 2, k was increased with increments
of 1, up until a point where the execution time is higher than
the previous execution.

With this in mind, it can be said that the parallel execu-
tion of 3blocks comes very close to the optimum, with
a 91% efficiency using k = 5 (2° = 32 tasks). However,
foruf150-011, with a much larger £ = 11, only a 2.77x
improvement is achieved, which means that the efficiency
lowers to 69.25%. The explanation is that, depending on
the problem and the number of total generated tasks, the
difference between the bigger computation tasks versus the
smaller tasks changes, and some configurations of problem
and k are more unbalanced than others.

On the other hand, it’s worth noting that, overall, the
number of executed instructions is practically the same for
the optimized and parallel versions, with less than 1% in-
crease. What’s interesting is that, only for uf150-011,
the parallel version is the one which has less instructions,
which is odd, since, in theory, the execution of additional
overhead for the parallel code makes the opposite be true.

Finally, another point of interest is the fact that, for
uf150-011, both optimized and parallel versions have a
relatively low time % for the unit propagation procedure in
comparison with the baseline version for the same problem,
and also with the executions for the other two problems. A
profiling if these two cases further revealed that most of the
execution time was instead being wasted on the checking
for a satisfying solution, a process embedded in an auxil-
iary function all_sat that iteratively checks the contents
of clss_sat). This was then determined to be related to
the huge number of solutions of the problem with respect
to the others, since for each satisfying assignment found, a
check of all the clause states is consequently done (since no
F truth exists to stop the execution). More evidence for this
is the fact that the baseline version is unaffected because
the checking step for a satisfying assignment is embedded
in the unit propagation (since it iterates over all the clauses),
while the other versions do not.

5 CONCLUSIONS

In conclusion, this work has been of great for learning the
current state of the art and main applications of SAT solvers,
the fundamental algorithm DPLL and its unit propagation
process, and, in general, more deeply about SAT solving.

Some immediate future lines of work could be the im-
provement of the parallelization, focusing on a more clever
approach to the load balancing of the work. Also, at some
point, CDCL, dynamic heuristics or more efficient data
structures could be implemented. Aside from functional-
ity, more testing, with more problems and more resources
at hand could be of interest to qualitatively improve the per-
formance analysis.

ACKNOWLEDGMENTS

I want to thank my tutor Juan Carlos for all the help in the
development of this project and also to my closest people
for all the support.

EE/UAB TFG INFORMATICA: PARALLELIZATION OF AN ALL-SAT SOLVER

. Time Instructions unit_prop backtrack
Problem Version) IPC G) Rel. Speedup (time %) (time %)

Baseline 127625 2.73 13551.30 - 99.70 -

aim-200-3_4-yes1-1 Optimized 84.39 2.11 694.00 15.12x 81.94 6.51
Parallel (k =6) 27.37 1.71 698.93 3.08x 84.70 13.87
Baseline 1724.51 3.45 23064.15 - 99.88 -

3blocks Optimized 33.64 2.58 338.79 51.26x 86.89 5.02
Parallel (k =5) 9.25 243 341.57 3.64x 88.33 10.57
Baseline 31695 3.18 3938.36 - 98.28 -

uf150-011 Optimized 8.03 349 109.25 39.47x 10.90 1.03
Parallel (k = 11) 2.90 346 106.39 2.77x 12.06 2.87

TABLE 2: EXECUTION TIME, IPC, INSTRUCTIONS, RELATIVE SPEEDUP (WITH RESPECT TO THE EXECUTION OF THE
SAME PROBLEM ABOVE IT) AND % OF THE TOTAL TIME EXECUTING UNIT_PROP AND BACKTRACK FUNCTIONS,
RESPECTIVELY, FOR EACH OF PROPOSED SOLVER VERSIONS, GROUPED BY PROBLEM.

REFERENCES

[1]

[4]

[7]

(8]

[9]

[10]

S. A. Cook, “The complexity of theorem-proving
procedures,” in Proceedings of the Third Annual ACM
Symposium on Theory of Computing, ser. STOC *71.
New York, NY, USA: Association for Computing
Machinery, 1971, p. 151-158. [Online]. Available:
https://doi.org/10.1145/800157.805047

A. Biere, A. Biere, M. Heule, H. van Maaren, and
T. Walsh, Handbook of Satisfiability: Volume 185
Frontiers in Artificial Intelligence and Applications.
NLD: IOS Press, 2009.

M. Davis and H. Putnam, “A computing procedure
for quantification theory,” J. ACM, vol. 7, no. 3,
p. 201-215, jul 1960. [Online]. Available: https:
//doi.org/10.1145/321033.321034

M. Davis, G. Logemann, and D. Loveland, “A
machine program for theorem-proving,” Commun.
ACM, vol. 5, no. 7, p. 394-397, jul 1962. [Online].
Auvailable: https://doi.org/10.1145/368273.368557

P. Beame, H. Kautz, and A. Sabharwal, “Towards
understanding and harnessing the potential of clause
learning,” Journal of artificial intelligence research,
vol. 22, pp. 319-351, 2004.

J. Marques Silva and K. Sakallah, “Grasp-a new
search algorithm for satisfiability,” in Proceedings of

International Conference on Computer Aided Design,
1996, pp. 220-227.

Z. Fu, Y. Marhajan, and S. Malik, ‘“Zchaff sat solver,”
Princeton University. Princeton, NJ, vol. 8544, 2004.

N. Sorensson and N. Een, “Minisat v1. 13-a sat solver
with conflict-clause minimization,” SAT, vol. 53, no.
2005, pp. 1-2, 2005.

G. Audemard and L. Simon, “Glucose: a solver that
predicts learnt clauses quality,” SAT Competition, pp.
7-8, 2009.

S. O. Comitee, “The international sat competition web
page.” [Online]. Available: http://satcompetition.org/

[11]

[12]

[14]

H. H. Hoos et al., “On the run-time behaviour
of stochastic local search algorithms for sat,” in
AAAI/IAAI 1999, pp. 661-666.

R. Chandra, L. Dagum, D. Kohr, R. Menon, D. May-
dan, and J. McDonald, Parallel programming in
OpenMP. Morgan kaufmann, 2001.

B. W. Kernighan and D. M. Ritchie, The C Program-
ming Language, 2nd ed. Prentice Hall Professional
Technical Reference, 1988.

H. H. Hoos, “Satlib - benchmark problems.”
[Online]. Available: |https://www.cs.ubc.ca/~hoos/
SATLIB/benchm.html

https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/368273.368557
http://satcompetition.org/
https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

SAUL ADSERIAS VALERO: PARALLELIZATION OF AN ALL-SAT SOLVER

APPENDIX

A.1 DIMACS CNF file format

The file format utilized to encode all the problems is known
as DIMACS CNFE.

It’s a plain text format that starts with a header p cnf
<n> <m>, where n is the number of variables and m the
number of clauses of the formula.

Then, since it represents a formula in CNF, it encodes the
literals of each clause as a spaced string of integers, where
the minus sign represents a negation, delimiting the bound-
aries of each clause with a 0 and a newline at the end.

Additionally, comments can be added as any line starting
with the letter c.

p cnf 6 7
120
230
-1 -4 50
-1 460
-1 -5 60
-1 4 -6 0
-1 -5 -6 0

Fig. 5: An example encoding of the equation |1} in the DI-
MACS CNEF file format, where where literals A = 1 and
-A=-1,B=2and =B = -2, ...

A.2 Code

The code for all the presented AIll-SAT solver can
be found at https://github.com/sauld44203/
sat-solver.

https://github.com/saul44203/sat-solver
https://github.com/saul44203/sat-solver

