
This is the published version of the bachelor thesis:

Gutiérrez Gómez, Cristian; Lumbreras Ruiz, Felipe, dir. End-to-End Frame-
work for Continuous Space-Time Super-Resolution on Remote Sensing. 2023.
(Enginyeria Informàtica)

This version is available at https://ddd.uab.cat/record/280723

under the terms of the license

https://ddd.uab.cat/record/280723
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End-to-End Framework for Continuous
Space-Time Super-Resolution on Remote

Sensing

Cristian Gutiérrez Gómez

Abstract– In Remote Sensing, much effort has been dedicated to the Super-Resolution field to over-
come physical sensors limitations, and Deep Learning has vastly surpassed Interpolation and Re-
construction based methods. Spatial and multi-spectral based methods are commonly pre-dominant
in the field, and, motivated by the recent success stories of 3D spatial modeling with Implicit Neural
Representation, new continuous image modeling methods are appearing. In this present work, we
take advantage of already existing spatial and spectral techniques and continuous image represen-
tation with Local Implicit Image Function (LIIF) by adding the Temporal dimension into the problem,
leaning towards a continuous interpolation model of space and time as a first approximation to the
total modelization. Code available at https://github.com/ggcr/Super-Temporal-LIIF.

Keywords– Remote Sensing, Space-Time Continuous Super-Resolution, Temporal Interpola-
tion, Implicit Neural Representation, Local Implicit Image Function (LIIF).

Resum– Al Remote Sensing, s’han dedicat molts esforços al l’àrea de la Super-Resolució per
superar les limitacions fı́siques dels sensors, i el Deep Learning ha superat àmpliament els mètodes
basats en Interpolació i Reconstrucció. Mètodes espacials i multi-espectrals són predominants en
aquest camp i, motivats pels casos d’èxit recents del modelatge espacial 3D amb Representació
Neuronal implı́cita, estan apareixent nous mètodes de modelització continua aplicats en imatges. En
aquest treball, aprofitem les tècniques espacials i espectrals ja existents i la representació contı́nua
d’imatges amb Local Implicit Image Function (LIIF) afegint la dimensió Temporal al problema,
resultant en un model d’interpolació contı́nua d’espai i temps com a una primera aproximació a la
modelització total. Codi disponible a https://github.com/ggcr/Super-Temporal-LIIF.

Paraules clau– Remote Sensing, Super-Resolució Contı́nua Espacial-Temporal, Interpolació
Temporal, Representació Neuronal Implı́cita, Local Implicit Image Function (LIIF).

✦

1 INTRODUCTION

Remote Sensing collects data of the Earth’s surface
from a long distance, usually using satellites, air-
craft, or drones. The data collected can provide

valuable information about the environment, such as cli-
mate change, vegetation health, and weather patterns.

The spatial, spectral, and temporal resolutions of the data
refer to the level of detail (spatial resolution), wavelength
range (spectral resolution), and frequency of data collec-
tion (temporal resolution), respectively. Different satellites
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may use different types of sensors and have different reso-
lutions. Therefore, the data collected by one satellite may
differ from that of another, even if they are monitoring the
same area.

The spatial resolution of satellite sensors has improved
over the years, but even the most advanced sensors have
limitations. For example, let us consider the distance that a
pixel of the image represents over the ground, also known
as Ground Sampling Distance (GSD). We see that some
sensors can have a spatial resolution of 20 m/pixel of GDS
(where 1 pixel represents 20 meters), while others can have
a resolution of 40 m/pixel of GDS. Moreover, in many
cases, this level of resolution is insufficient for certain ap-
plications.

Multi-spectral satellites, such as the European Space
Agency’s (ESA) Sentinel S2, capture information from a
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wide range of areas, commonly called Areas Of Interest
(AOIs), by measuring the electromagnetic radiation gen-
erated by the Earth by specific ranges of wavelengths and
encapsulating them in different bands.

Moreover, the Sentinel S2 satellite can be divided into
two principal sources, the L1C includes the raw data cap-
tured as it is, and the L2A uses the aforementioned raw
data and applies some pre-processing techniques, resulting
in a much more usable data with artifacts and weird noise
removed. Because of this, for our project, we will focus
mainly on the Sentinel S2 L2A.

Fig. 1: Representation of Spatial and Spectral resolutions in
a Sentinel S2 L2A sample.

The representation shown in Figure 1 is composed of a
two-dimensional plane corresponding to the mapping be-
tween coordinates and pixels of a sample, together with
a third dimension that represents the different channels of
the image. Within these channels, we distinguish between
the non-visible spectral bands and the visible bands Red,
Green, and Blue, given that the latter are those within the
electromagnetic spectrum visible to the human eye and are
the most natural representation model for us, humans.

The Temporal resolution will be an added dimension to
our problem. The Sentinel mission orchestrated by ESA
has two identical S2 satellites, S2A and S2B respectively,
which reduces the temporal resolution in half; five days, in
which ten days is the time it takes a satellite to go around
the planet.

Fig. 2: Representation of Spatial, Temporal and Spectral
resolutions in two Sentinel S2 L2A samples.

An interpolation tool in the spatial, temporal, and spectral
spaces under our representation, shown in Figure 2, could

allow an effective modeling of the planet Earth and a sig-
nificant advance in the field. Ideally, we would stop having
a discrete sample space to have a continuous space, where
we could know the value of a point p = f(x, y, λ, t) for any
pair of coordinates (x, y), spectral band λ and time-stamp
t.

1.1 Objectives

Due to the complexity of the field of work where this project
is located, with so many conditions and fields of study,
the need arises for a systematic way to organize and break
down the project into smaller and more manageable com-
ponents, different phases will be established with different
sub-objectives to be achieved, these phases will be incre-
mental and sequential.

Phase 1: Obtaining Data Develop a Web service to ob-
tain data from different providers and different for-
mats where with universal queries we can commu-
nicate with different REST APIs. These universal
queries will allow us to apply filters on a large set of
data to obtain a subset of them. We will have to fil-
ter spatially in the form of coordinates, temporally in
the form of date ranges, finally we will have to offer
different bands from the suppliers separately.

1. Search for current suppliers.

2. Characteristics of each supplier.

3. Obtaining data from different APIs.

4. Support for other data (DSM, DEM) and popular
Datasets.

Phase 2: Data Processing Platform Develop a platform
for the processing and treatment of different types of
data. Using ETL processes (Extract, transform, load)
we will read a set of data, apply a calculation on them
and save them in memory. Simple operations will need
to be performed on large data sets in order to put them
into context and will serve as input for more complex
operations.

1. Read and View Bands, Masks, Metadata.

2. Square cropping operation.

3. Support for Shapefiles and Operation SHP crop-
ping.

4. Support for Digital Elevation Models.

Phase 3: Data Processing Techniques During this phase,
data processing techniques will be implemented in
which the ground truth of the spatial, temporal and
spectral resolutions will be altered. A research on the
applied methods will have to be carried out and imple-
mented on the data processing platform.

1. Overview of the State of the Art.

2. Spatial, Temporal and Spectral SR techniques.

3. Implementation of state of the art techniques in
the application.
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Phase 4: Modeling Finally, through everything built so
far, the State of the Art technique will be studied in
which they have been successful in performing a mod-
eling of interest for our project as Implicit Learning,
where experiments such as NeRF or LIIF have had
good results. And, by combining the techniques of the
previous phase, an approximation will be made to the
total modeling of the problem.

1. Simple Interpolation Model:
Baseline of the project.

2. Approach to a total Modeling:
Local Implicit Image Function (LIIF).

3. Analysis and explanation of results.

2 STATE OF THE ART

To overcome the physical limitations of sensors, new tech-
niques have been developed in Remote Sensing. Some of
which can be leveraged for our use case on satellite imagery
data.

2.1 Spatial Interpolation: Super-resolution
Techniques

In 1991, this limitation gave rise to a whole new field
of study within Computer Vision called Super-resolution,
based on the problem of Single Image Super Resolu-
tion (SISR). This problem attempts to recover the high-
frequency information, inherent in a High Resolution (HR)
image, under the premise of treating a Low Resolution (LR)
image as a High Resolution (HR) image that has been al-
tered with a function degradation:

LR = f(HR) . (1)

The problem, by definition, is a problem with infinite
solutions, which is why it is commonly called the “ill-
poisoned problem”.

Interpolation In the mid 1990s, the problem was tack-
led using Interpolation techniques, these are based on
nearby pixels to perform the transformation from LR
to HR. It is inevitable to lose high frequency informa-
tion, very opposite but close colors will be smoothed.
These techniques are usually fast since they can be im-
plemented with simple operations.

Example-based In the decade of the 2000s, techniques
based on Reconstruction emerged, in which we add
prior knowledge of the reality of a certain area as a
form of heuristic to guide our model to make better
approximations to reality, we need, therefore , a source
of truthful information as Ground Truth to be able to
carry out the transformation of the LRs.

Deep Learning During the decade of the 2010s, the cur-
rent of knowledge-based techniques was established,
which used a large dataset of LR and HR data, contrary
to the techniques based on Reconstruction, it does not
need prior knowledge of the reality of a certain area,
but learns to perform the mapping between LR and
HR to predict the missing high-frequency information
from any LR image.

More specifically, 2014 is the turning point in which
Deep Learning is positioned as a new current trend to solve
the SISR problem. The Super-Resolution Convolutional
Neural Network (SRCNN) [1] outperforms bicubic inter-
polation with only a few training iterations and outper-
forms Reconstruction-based methods with relatively mod-
erate training. Later in 2016, Liebel and Körner [5] applied
the same SRCNN on Sentinel satellite images with promis-
ing results.

Fig. 3: Sample of Sentinel S2 from the UAB campus ap-
plied on ESRGAN to upsample ×4 the spatial resolution.

From here Deep Learning is established as the standard
and variants of the SRCNN emerge with new architectures,
such as the Enhanced Super-Resolution Generative Adver-
sarial Networks (ESRGAN) [7] which adds a generative ap-
proach to CNNs, where through an unsupervised learning
technique in which it grants the power to automatically dis-
cover and learn regularities or patterns in the input data so
that the model can be used to generate or produce new ex-
amples that plausibly they could have taken from the origi-
nal data set (see Figure ??.

2.2 Continuous Representation

In recent years efforts have been devoted to finding a contin-
uous image representation, an example of this is Learning
Continuous Image Representation with Local Implicit Im-
age Function (LIIF) [8] , where each image is represented
as a two-dimensional feature map and the same decoding
function for an entire image. Given any coordinate, based
on the nearest neighboring features it will provide a new
RGB value.

Fig. 4: Sample of Premià de Mar’s Sentinel S2 applied to
the LIIF model for spatial super-resolution in the form of a
continuous representation of an RGB image.
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This model allows for a theoretically infinite spatial inter-
polation given its passage through a continuous LIIF repre-
sentation in which it expresses the coordinates of an image
with functions. An extra method is therefore necessary to
carry out a possible own extrapolation towards the tempo-
ral horizon, or a temporal interpolation by adding an image
of the same characteristics with a different temporal resolu-
tion.

2.3 Temporal Interpolation
Temporal interpolation has been a much-attacked problem
in the field of Video Motion, where models such as FILM:
Frame Interpolation for Large Motion [2] from Google, try
to temporally interpolate two images spaced in a range of a
few seconds. In a satellite image these magnitudes of sec-
onds become days since it is difficult to demonstrate how a
change in a period of time affects a specific area.

Fig. 5: FILM inter-frame interpolation over a Sentinel S2
sample of the Delta, an area prone to altering its spatial res-
olution with new artifacts.

3 METHODOLOGY

The present is a project within a large area that directly
and indirectly involves a multitude of challenges and fields
of study, to avoid falling into a rabbit hole one must be
very careful when define the goals and always keep them in
mind. This is why, as a direct consequence, the objectives
have been defined following the Work breakdown structure
(WBS):

Fig. 6: WBS representation of the work-load, each color
represents a new mile-stone.

In order to be able to carry out comprehensive control of
these goals, provisional start and end dates have been added
to them, and they have been added to a Trello board to be

able to follow the iterations on a Kanban methodology. This
allows you to see at a glance the overall status of the project
in each iteration. This allows us to represent a Gantt Chart
identifying our critical tasks. In parallel with the tasks, the
writing and delivery of the various reports that are carried
out during the realization of the TFG has also been speci-
fied.

For the development of the project, a version control sys-
tem (VCS) is used, such as Git, hosted remotely on GitHub.
There will be a private central repository where develop-
ment of the services will take place. And, in addition, the
services will have a mirror repository where they will be
open to the public, in Open Source.

4 EXPERIMENTS AND RESULTS

The experimental work-load will assemble the construc-
tion of three models. Similar to the incremental method-
ology followed by the spatial superresolution during the
decades from the 1990s to the 2010s, we will first develop a
“Baseline Interpolation model” that will serve as the base-
line for all the experiments. Later on, we will develop a new
model based on the LIIF technique, that ideally, will make
a continuous interpolation and thus, infinite by definition.

4.1 WorldStrat Dataset Pre-processing
In order to be able to compare models we will make us-
age of a set of established metrics in the Computer Vision
field, and, to be able to obtain metrics we need a source of
Ground Truth. In the case of Remote Sensing, there will
never be such source, instead we try to set as the Ground
Truth sources of information with a low Ground Distance
Sample (GDS), for example other Satellite Missions such
as ESA’s SPOT 6/7.

During the 36th Conference on Neural Information Pro-
cessing Systems (NeurIPS 2022) Track on Datasets and
Benchmarks, the European Space Agency (ESA) Phi-Lab
as part of the ESA-funded QueryPlanet project, presented
the WorldStrat Dataset [3], a dataset of nearly 10000 km2

of free high-resolution and matched low-resolution satel-
lite imagery of unique locations. Each high-resolution im-
age (GDS of 1.5 m/pixel) comes with multiple temporally-
matched low-resolution images from the freely accessible
lower-resolution Sentinel-2 satellites (GDS of 10 m/pixel).

Fig. 7: A WorldStrat dataset sample of Varna, Bulgaria. The
Sentinel S2 L2A low resolution (left) and a SPOT 6/7 high
resolution (right) sample. Right after doing the common
color conversion to RGB.

Therefore, if we consider the GDSs previously men-
tioned, in order to do the transformation of the low-
resolution image to the high-resolution bounds we will need
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to upscale the low-resolution image by a coefficient of
10
1.5 = 6.Û6 m/pixel, hence, we need to upscale the low res-
olution image by a factor of 6.Û6 times its size in order to
acquire the size of the high resolution image. The bits of
representation or color model representation are other fac-
tors to take into account.

4.1.1 Common Color model

First, we need a common color model representation for
all samples. In the low resolution Sentinel S2 L2A im-
age, we can compose a True Color Image with the mapping
suggested by its own documentation: (RGB) = (B04, B03,
B02). The SPOT 6/7 high resolution image is RGBN by
default, with an added extra band known as Near-Infrared
band (NIR) which has been used to improve the high-
resolution sample by Pan-sharpening. In this case, to com-
pose the True Color Image for the High-Resolution sample,
we will discard the extra NIR band. As a result of this we
can display both images in the RGB color model (Figure 7).

4.1.2 Adjustments

From Figure 7 we can also note out that the images are very
dark. This is because the orders of magnitude used in the
bits of representation. In Remote Sensing, it is common to
use many bits to represent information to ensure precision
and minimal loss of information. From the histogram of the
SPOT 6/7 high resolution image of Varna, Bulgaria we can
notice that a lot of the high-end spectrum of the picture is
not even used:

Fig. 8: The histogram of the Blue Channel for the SPOT 6/7
high resolution image of Varna, Bulgaria.

More formally, there is a notorious difference between
the Maximum and the Mean for all the pixels of each chan-
nel of the image (Table 1). Note that this problem is worse
than one could think, having dark spots in an image will
make the results of the metrics miss-leading, and we will
perform better than we should when doing the interpola-
tion, causing a lot of False-Positives (see Appendix A.1).

In order to solve this problem we will try to reduce it to
an already established problem. First of all, we will take
advantage that the Sentinel S2 L2A sensor already does a
pre-processing step adjusting the contrast without losing in-
formation (as mentioned in Section 1: Introduction). Even
though, other techniques, such as Histogram Equalization,
had been used and delivered great results at a first glance,

Blue channel Red channel Green channel

Max 8071 7211 6778
Mean 571.11 519.47 446.06

Table 1: The high resolution SPOT 6/7 is represented in
uint16, 16 bits of representation. Therefore the Max and
Mean values shown in the table are of type uint16.

we cannot modify the ground truth and we shall stay rigor-
ous.

Therefore, a low-resolution Sentinel S2 L2A sample will
be used as a reference to adjust the brightness of the re-
maining images of the set. By applying Histogram Match-
ing (hist match) we will balance the brightness of all the
images of the set in a linear fashion, without interfering di-
rectly into the color. Note that this technique will be applied
only to the V channel of the HSV (Hue, Saturation, Value)
color model representation which is widely used in color
theory and color transfer.

RGB −→ HSV −→ hist match(V) −→ HSV* −→ RGB*

Fig. 9: Histogram matching (1-N) between the selected LR
reference image and all other images.

As a result of this pre-processing step (see Figure 10) we
adjusted and balanced the brightness for all the images of
the set with respect to each other without interfering directly
into the color, therefore, our metrics should be more precise
and reliable along the way.

Fig. 10: A pre-processed WorldStrat dataset sample of
Varna, Bulgaria. The Sentinel S2 L2A low resolution (left)
has been adjusted and used as reference for the SPOT 6/7
high resolution (right) sample. Compare it with the initial
sample in Figure 7.

4.2 Metrics
If we take a look at the NTIRE challenge [4], the largest
benchmark of current state of the art Superresolution, we
can see that the predominant metric that every model takes
into account is Structural similarity (SSIM), which is used
to measure the similarity between two images (the upscaled
one and the ground truth). This metric is biased towards
factors of human perception, such as texture, when evaluat-
ing [6], and, may not be suitable for Remote Sensing, where
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we are interested high precision of pixel values rather than
the overall result.

4.2.1 Mean Squared Error (MSE)

Mean Squared Error is the foundational metric used to de-
termine the difference between two images. For each pixel
value it will calculate the squared difference, so-called er-
ror, to avoid negative values, and finally it will perform the
mean over the pixels of the image. This is a very numerical
metric of telling whether the interpolated image is different
from the ground truth or not. From this, a more natural way
of deducing the quality of our interpolation is required.

Given a High Resolution image HR and its Interpolation
image Ĩ, both of size m × n:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

(
HR(i, j)− Ĩ(i, j)

)2
. (2)

4.2.2 Peak Signal Noise Ratio (PSNR)

Peak Signal Noise Ratio (PSNR) is a metric widely used
in compression codecs but we can apply it to our scope of
work with Interpolation on mind. It measures a signal, de-
fined by the ground truth image, and a noise, defined by
the difference between the ground truth image and the cor-
responding interpolation. It then calculates the ratio be-
tween the maximum possible amount of power, the maxi-
mum pixel value (255), and the needed power of noise to
corrupt the given signal. This provides a quantitative mea-
sure of the quality of the overall interpolated image.

It is expressed in decibels (dB). The higher it is, the better
our low-resolution image has been reconstructed. A PSNR
of 0 is the worst reconstruction scenario, where the noise
has infected all our signal, and a PSNR of 255 is the best
reconstruction with a Mean Squared Error (Equation 2) of
zero.

Given a High Resolution image HR and its Interpolation
image Ĩ, both of size mxn, and the MSE then we define:

PSNR = 20 log
255

MSE
. (3)

Other publications on remote sensing also use a variant
of PSNR, cPSNR [6], because it takes into account the nec-
essary shifting to cover the average geolocation accuracy of
about 60 m. (±50 m. standard deviation). However, be-
cause we will be working with the dataset, as we don’t have
the ground truth of a random sample at a given location and
time, these dataset images have been shifted, if necessary,
to minimise the error.

4.3 Baseline Interpolation Model
Our first approximation to Spatial, Temporal, and Spectral
Interpolation will be with the so-called Baseline Interpo-
lation Model, where given four coefficients (x, y, λ, t) for
each resolution respectively, we will generate the corre-
sponding Interpolation.

4.3.1 Spatial and Spectral Resolutions

Given a high-resolution image HR and a low-resolution im-
age LR, the Spatial and Spectral scale coefficients (x, y, z)

should be able to transform from the LR dimensions to the
HR dimensions so that we can compare this interpolation
with the corresponding ground truth.

4.3.2 Adding the Temporal Resolution

However, with temporal resolution, we add an extra dimen-
sion to the problem. The t coefficient represents the number
of inter-frames generated between each pair of ground truth
frames. Figure 5 has a temporal coefficient t of 1 because it
generates one new inter-frame between each pair of original
frames.

In order to be able to perform temporal interpolation, we
will use the previous model with the additional feature of
being able to define time ranges. Each ground-truth frame
from the dataset is a time unit, and we interpolate a new
frame for any value between each time unit. This flexibility
allows the model to generate an image at any time between
a range of times. It is, therefore, capable of generating in-
finitely many possible images:

Fig. 11: Given two ground truth samples, a newly image is
interpolated at t = 0.5.

To evaluate the newly added temporal resolution, we can
take advantage of the temporal distribution of the data set.
Each sample has metadata with the date of acquisition, fol-
lowing a similar methodology as shown in Figure 11, N
samples of LR samples will be chosen so that the tempo-
ral interpolation of all of them generates an interpolation at
time t, where t will be the exact date of acquisition of our
HR ground truth sample.

Thus, given a high-resolution sample of the date of ac-
quisition of tHR and n LR samples of date of acquisition t1,
t2, . . . , tn respectively, and as a pre-requisite we sort them
by date, then, we can say that it must satisfy the following
Equation 4 to be able to generate an adequate temporal in-
terpolation that will be later compared with the HR ground
truth image.

t1 +

n−1∑
i=1

ti+1 − ti
2︸ ︷︷ ︸

t value of the interpolation

= tHR . (4)

Note that the pre-requisite of having a sorted array of
n LR samples as input is to simplify the check, since this
check could be implemented in O(n log n) time complex-
ity.

4.3.3 Temporal Dataset

A subset of 31 images has been selected from the dataset to
ensure that the model is robust and applicable to real world
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data (and within our computing resources). This subset will
evaluate the results and we make sure to include a vari-
ety of locations and labels, such as the International Panel
on Climate Change (IPCC) classification or the LCCS and
SMOD classifications that include vegetation typology and
urban density. It should also be noted that these samples
may come from different sources, such as Amnesty Inter-
national, whose intention is to identify destroyed villages in
areas of conflict.

Sample Location Label (LCCS, SMOD)

Amnesty POI-6-3-3 Pyongyang, North Korea Grassland, Sub-Urban
Amnesty POI-8-1-1 Ji-Paraná, Brazil Forest, Low density
Amnesty POI-13-1-1 N’Djamena, Chad Grassland, Urban
Landcover-8732 Nakhon Ratchasima, Thailand Agriculture, Very low density
Landcover-14956 Rivne, Ukraine Agriculture, Very low density
Landcover-31746 Fada, Chad Agriculture, Very low density
Landcover-461460 Jasper, United States Grassland, Semi-dense
Landcover-769356 Tianjin, China Settlement, Low density
Landcover-769486 Catania, Italy Rural, Very low density
Landcover-770156 Burgas, Bulgaria Settlement, Urban, Water
Landcover-770516 Mannheim, Germany Settlement, Urban Centre
Landcover-771435 Tekirdağ, Turkey Settlement, Sub-Urban
Landcover-771536 Beijing, China Settlement, Urban, Dense
Landcover-771547 Tabriz, Iran Rural, Low density
Landcover-772421 Luhansk, Ukraine Settlement, Very low density
Landcover-772423 Lakeland, United States Settlement, Urban, Water
Landcover-777404 Imperia, Italy Settlement, Urban, Dense
Landcover-777410 Chelyabinsk, Russia Settlement, Urban Centre
Landcover-1864782 Novokuznetsk, Russia Forest, Very low density
Landcover-1865521 Tyumen, Russia Forest, Very low density
UNHCR-7977 Latakia, Syria Settlement, Urban Centre
UNHCR-AFGs000003 Herat, Afghanistan Settlement, Urban Centre
UNHCR-AFGs003914 Kabul, Afghanistan Agriculture, Very low density
UNHCR-CODs026828 Mpondwe-Lhubiriha, Uganda Agriculture, Very low density
UNHCR-CODs026832 Sabha, Libya Forest, Tree-cover
UNHCR-NERs009694 Ngaoundéré, Cameroon Agriculture, Very low density
UNHCR-NERs009697 Yaoundé, Cameroon Settlement, Urban Centre
UNHCR-NGAs036019 Yola, Nigeria Water, Very low density
UNHCR-NGAs036021 Maiduguri, Nigeria Agriculture, Very low density
UNHCR-TGOs003383 Phitsanulok, Thailand Agriculture, Very low density
UNHCR-THAs001547 Kanchanaburi, Thailand Agriculture, Very low density

Table 2: The selected subset of images with the associated
corresponding location and labels.

Now that we have defined our own subset of images,
in order to provide temporal precision, for each sample
we will perform the aforementioned Temporal Check (Sec-
tion 4.3.2) which will glance the 5 low-resolution samples
whose single interpolation is closest to the high-resolution
date of acquisition (see Appendix A.2).

Then, we will perform a train-test split, having 21 images
in the train set and 9 images on the test set, that will persist
over the current work. Hence, all the displayed results will
be of the test set.

Finally, we perform a train-test split, which will ran-
domly split our Temporal Dataset into a Train set of 21
samples, and a Test set of 9 samples. From now on, all
the results will be computed over the Test set.

4.3.4 Results

When evaluating the interpolations, the temporal resolution
precision (Section 4.3.2) does not affect the results, and,
other factors are more important such as the quality of the
Sentinel S2 L2A sample or the presence of clouds and ar-
tifacts. We used the Bicubic interpolation method which
is considered the standard when doing comparisons in the
Super-resolution field.

Test-set samples
×2 ×4 ×6

MSE PSNR MSE PSNR MSE PSNR

Amnesty POI-13-1-1 381.23 22.36 461.16 21.52 490.31 21.25
Landcover-31746 208.19 24.97 258.37 24.02 274.22 23.76
Landcover-769356 393.17 22.24 441.27 21.73 456.63 21.58
Landcover-769486 231.16 24.6 281.46 23.71 300.29 23.42
Landcover-771536 404.31 22.2 458.0 21.63 476.51 21.45
Landcover-1865521 307.11 23.56 352.51 22.89 370.24 22.65
UNHCR-NERs009694 298.76 23.47 347.19 22.79 365.94 22.56
UNHCR-NGAs036019 352.65 23.07 380.54 22.68 391.58 22.54
UNHCR-THAs001547 528.38 21.72 559.54 21.36 572.88 21.21

Average 345.00 23.13 393.34 22.48 410.96 22.27

Table 3: Results of the selected subset of images indicating
the average MSE↓ and PSNR↑ (expressed in dB) scores ob-
tained from all its possible interpolations.

Finally, by doing the Bicubic Interpolation for each 5
temporal samples and then taking he average we can eval-
uate this Baseline model with an average PSNR score of
22.63 dB (see Table 3). However, if we consider only the
closest LR image to the HR date of acquisition, we obtain
an average PSNR score of 22.18 dB. For the sake of com-
parison we will keep the method that works best.

4.4 LIIF Interpolation Model

Local Implicit Image Function (LIIF) [8] changes the way
we think about images. Traditionally we represented im-
ages with a two-dimensional array of pixels in a discrete
manner, but LIIF is built from the promise that each pixel
of an image can be described as a continuous function of its
coordinates and its neighbour features. The main advantage
of this is that with our new continuous representation we
are no longer constrained by resolution, and we can gener-
ate arbitrary resolutions for any image, even for upsample
scales that the model wasn’t even trained.

The LIIF Continuous Representation of an image will
consist of a series of latent codes, a space in which items
resembling each other are positioned closer to one another,
distributed in spatial dimensions. Therefore we will have a
set of encoding-decoding functions that will do the trans-
formation between discrete image representation in Spatial
Space and LIIF Continuous representation in Latent Space
mapping coordinates to RGB values.

4.4.1 Encoding Function (EDSR)

The encoder is the responsible for generating a feature
map representing the input image in a continuous fashion
through latent codes, it will be parameterized through an
Enhanced Deep Residual Network (EDSR) omitting the up-
sampler module (that will be our LIIF decoder). The first
layer of this Network is named Head and will be the one to
perform the transformation from the input to a set of fea-
tures, then will go through a deeper and wider architecture
of 16 ResBlocks and 256 channels to improve performance.

In order to add the temporal dimension, we will perform
three dimensional convolutions during the whole EDSR
pipeline. This will make our model parameters and the fea-
tures generated explode by a temporal factor, depending on
how many temporal samples we use as the input.
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As a result of the training we will have our encoding
function with the guessed weights that will make the trans-
formation between the discrete image and the LIIF contin-
uous representation in Latent space.

4.4.2 Decoding Function (MLP)

The decoding function takes a coordinate as an input,
queries for local latent codes and then predicts the RGB
value as the output for that coordinate. For this purpose, a
Multi-Layer Perceptron with 5-layers, ReLU activation and
hidden dimensions of 256, will be used.

Feature Unfolding When querying for local latent codes,
the resulting latent code will be a result of applying a
concatenation of the 3×3×t neighboring latent codes.

Ensemble for Local Predictions In order to achieve
smooth transitions between different independent, but
close, predictions, we will apply 3 predictions from
each of the spatial, temporal or spectral dimensions,
thus increasing our features by a factor of 9, and
merge them together so that in the end-result, no
rough transitions are made by the model.

Once we have a set of ensembled unfolded latent codes,
the Multilayer Perceptron will make the transformation be-
tween LIIF continuous representation in Latent space and
the resulting discrete image.

4.4.3 Experiments

One of the main hypothesis to test is if adding another di-
mension (such as time) will achieve better results in LIIF.
To do this we have to compare two models within the same
conditions. We will first develop a Default LIIF model
that will essentially be the default LIIF model but applied
into our temporal dataset, it won’t consider time and will
be focused in spatial super-resolution, therefore we say that
this model supports 2 dimensions. Then, we will develop
the Temporal LIIF model in which we will introduce all
the necesary changes to add another dimension, it will be
focused in spatial and temporal super-resolution, therefore
we say that this model supports 3 dimensions.

The only change on LIIF that will affect both the models
is to instead of following the default methodology of train-
ing, which is to take any sample in the train set and keep that
sample as high-resolution and generate the low-resolution
sample by down-scaling it. In our case, because we already
have the high-resolution and low-resolution pre-established
from the dataset, we will modify the LIIF PyTorch data-
loader to include both the 5 temporal samples that will act
as the LR input and the Ground Truth HR.

Both models will have 120 epochs of training. With the
same train-set and test-set, and a repetition of 20 on the
train-set, that is, each sample will be repeated 20 times, and
thus our train-set of originally 21 samples, will now have
420 samples. We will then do some experiments to deter-
mine the size of the input on training, and temporal strate-
gies to achieve an arbitrary temporal scale, just like with the
spatial resolution.

4.4.3.1 Default LIIF (2 dimensions)

In order to see more precisely how time affects the model,
we trained a LIIF without taking time into account with the
default configuration that the authors provide in the paper
which is called Baseline EDSR configuration. To be able to
compare precisely, when either training or testing, we will
receive the 5 temporal LR samples as the input, keeping
with the middle one, that in most of the cases is the one
temporally closer to the HR’s date of acquisition, and ditch
the 4 temporal LR samples left (see Figure 13).

Because this model is trained only with a single LR tem-
poral sample, at first sight it has an obvious drawback that
it does not know time.

4.4.3.2 Temporal LIIF (3 dimensions)

During training, we obtain the high-resolution Ground
Truth sample and the corresponding 5 temporal LR sam-
ples, then down-scale the Ground Truth to LR dimensions
and apply a random crop of the image, this way the model
will not be biased by any remarkable features not desired for
the network’s overall knowledge, we will see how applying
random crops for 48×48, 72×72 and 128×128 dimensions
affects the overall result.

Also some experimental runs has been done regarding on
whether, during training, which temporal samples to take
into account. A complete view of the temporal set will
make more generic samples with common parts of the im-
age, but if we train with randomly changing dynamic groups
we could have better results because the model will learn
the mappings between each temporal samples depending on
the situation. We think that by randomly selecting different
temporal images as input, incentives the model to learn the
mappings between each temporal dimension.

Complete This model takes into account all the temporal
samples at all times. Thus, our temporal set will con-
sist of one unique set of all the 5 samples.

Tcomplete =
{
{1, 2, 3, 4, 5}

}
.

Random Adjacent Groups This model takes into account
a random range between 1 and 5 temporal samples,
this range will therefore form an Adjacent Group of
length between 1 and 5.

Tgroups =
{
{1}, {1, 2}, {1, 2, 3}, . . .

}
⊇ Tcomplete .

Random Adjacent Pairs This model takes into account
random adjacent pairs of the temporal samples. We
could sum this up as the previous Random Adjacent
Groups for Adjacent Groups of length 2.

Tpairs =
{
{1, 2}, {2, 3}, {3, 4}, . . .

}
.

Random Single This model takes into account a single
random temporal sample without the requirement of
them being adjacent but respecting its original order-
ing.

Trandom =
{
{1}, {2}, {3}, {4}, {5}

}
.
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Fig. 12: A general overview of Temporal LIIF, which consists on a modified version of the original LIIF implementation
with an added dimension. In our case, we use that added extra dimension for Time, resulting in a model capable of
interpolating any scale and temporal factor, hence, an infinite interpolation model of space and time for Remote Sensing.
We can specify any arbitrary resolution and value of time n.

Fig. 13: In blue, the 5 temporal samples. In green, the se-
lected “middle” sample. The architecture of Default LIIF
supports 2 dimensions and therefore is not capable of ac-
cepting inputs of 3 dimensions.

4.4.4 Results

Each of the models shown in Table 4 had been trained with
120 epochs of training. Each of the results correspond to
the average PSNR score for all the samples on the test-set
(similar to Table 3) and the chosen scales ×2, ×4 and ×6.
We say that the later is “Out-of-distribution” because we did
not include such scale during training.

Models
In-distribution Out-of-distribution

×2 ×4 ×6

Bicubic 23.13 22.48 22.27
Default LIIF 23.70 22.92 22.67
Temporal LIIF1

48×48 24.79 23.85 23.55
72×72 24.91 23.95 23.64
128×128 24.89 23.95 23.65

Temporal LIIF2

Complete 24.89 23.95 23.65
Groups 24.96 23.99 23.68
Pairs 21.32 20.80 20.62
Single 22.20 21.60 21.40

1 Trained with a Complete temporal strategy.
2 Trained with a random crop region dimensions of 128×128.

Table 4: Average of the test set results for fine-tuning the
parameters of the different models presented through this
present work. The results are expressed in PSNR↑ (dB).

Bicubic 4.3 is outperformed by Default LIIF 4.4.3.1 on
×2 and ×4 scales, even for Out-of-distribution scales ×6
the model is capable of outperforming the Bicubic.

In order to determine which random region crop dimen-
sions to choose we decided to go for the model that is more

consistent through the overall training, we obtain an aver-
age PSNR score for all 120 epochs of training of 23.57 dB,
23.57 dB and 23.79 dB, for the corresponding dimensions
of 48×48, 72×72 and 128×128. Therefore, a random re-
gion of 128×128 is more stable through the process and it
will be the dimensions chosen for the next experiments.

Finally, from the experiment done to determine the tem-
poral strategy we see that the Random Adjacent Groups
temporal strategy slightly outperforms the Complete tempo-
ral strategy. Thus, we can see that we were indeed correct
in the hypothesis made during Section 4.4.3.2 that randomly
selecting different temporal images as input, incentives the
model to learn the mappings between each temporal dimen-
sion. However, the Random Adjacent Pairs and the Random
Single temporal strategies achieve worse results.

From this present section we conclude that the best
model is the Temporal LIIF with a random region crop of
128×128 and a Random Adjacent Groups temporal strat-
egy, in Table 5 we can see the final overall results.

Models
In-distribution Out-of-distribution

×2 ×4 ×6

Bicubic 23.13 22.48 22.27
Default LIIF 23.70 22.92 22.67
Temporal LIIF 24.96 23.99 23.68

Table 5: Average of the test set results on the different mod-
els presented through this present work. The results are ex-
pressed in PSNR↑ (dB). The best performance is shown in
bold and the second best underlined.

5 CONCLUSIONS

In this present work we achieved the building, from the
ground up, of an End-to-End Framework for Continuous
Space-Time Super-Resolution on Remote Sensing data.
We built an effective web service that interacts with multi-
ple APIs to provide us from data, as well as a processing
cross-platform app capable of processing that same data.
We rigorously pre-processed the data without losing preci-
sion by taking advantage of already existing data from other
sources and built a brand new sub-set of data that is tempo-
rally precise. We then have shown how applying machine
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Fig. 14: A visual comparison of the results of the sample Landcover-771536 for a pre-determinated region, each of the
models has been applied a ×2 scale.

Fig. 15: A visual comparison of the results of the sample Landcover-769486 for all the image, each of the models has
been applied a ×6 scale.

learning into the process represents a great qualitative leap
in the results, and, going further, taking time into account by
adding another dimension in Local Implicit Image Function
(LIIF) [8] is indeed effective and leads to even better results.
Finally we have seen that by randomly selecting different
temporal images as input, incentives the model to learn the
mappings between each temporal dimension. This resulted
in a model capable of interpolating any scale and temporal
factor, hence, an infinite interpolation model of space and
time for Remote Sensing.
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[6] M. Märtens, D. Izzo, A. Krzic, D. Cox, “Super-
Resolution of PROBA-V Images Using Convolutional
Neural Networks,” in Astrodyn, pp. 387–402 (2019) 5

[7] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, “ESRGAN: En-
hanced Super-Resolution Generative Adversarial Net-
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APPENDIX

A.1 Evaluating pre-processing
In Section 4.1: WorldStrat Dataset Pre-processing we per-
form an Histogram Matching over a reference image with
the other images of the set in order to adjust our images.

Dataset Sample 1 Dataset Sample 2

Original Pre-pro. Original Pre-pro.

Bicubic Bicubic Bicubic Bicubic

MSE 200.17 MSE 355.41 MSE 154.75 MSE 215.55
PSNR 25.11 dB PSNR 22.62 dB PSNR 26.23 dB PSNR 24.79 dB

Fig. 16: A metric comparison of interpolation with the orig-
inal data and the pre-processed data.

We can do the same interpolation for both the Original
sample and the Pre-processed sample and we confirm the
hypothesis said during Section 4.1 that, indeed, we perform
worse once we have pre-processed the data. This is good
because we avoid having False Positives and thus, having
inaccurate metrics. Results shown in Figure 16.

A.2 Temporal Dataset
As stated in Section 4.3.2, we need a way to temporally
evaluate the results. By applying Equation 4 onto all the
possible combination of 5 images of any given sample we
can find the Interpolation that approaches the most at the
Ground Truth’s date of acquisition. Table 6 shows the re-
sult of applying this onto our subset, there are some perfect
interpolations that should yield the exact date of acquisi-
tion, such as Amnesty POI-8-1-1, and there are others that
are some days apart, such as UNHCR-AFGs000003. There
is a clear outlier in the data-set which is UNHCR-7977 in
which the Ground Truth t value is two and a half years apart,
this is an obvious error on the dataset. By any means, not
taking the outlier into account we consider the subset tem-
porally correct we consider the subset temporally correct as
they approximate the Ground Truth date of acquisition by
an average of 2.9 days without considering the outlier, and
by an average of 32.03 days considering the outlier.

Sample
Selected Images Interpolation Ground Truth Diff

(in this order) t value t value (days)

Amnesty POI-6-3-3 4, 2, 1, 8, 7 2017-10-11 2017-10-07 4
Amnesty POI-8-1-1 4, 1, 2, 3, 5 2018-07-01 2018-07-01 0
Amnesty POI-13-1-1 6, 3, 2, 5, 7 2020-11-12 2020-11-11 1
Landcover-8732 4, 1, 6, 3, 5 2021-02-05 2021-02-04 1
Landcover-14956 4, 7, 6, 1, 8 2019-10-18 2019-10-20 2
Landcover-31746 6, 3, 2, 4, 5 2019-03-01 2019-03-02 1
Landcover-461460 5, 8, 1, 6, 7 2018-07-20 2018-07-14 6
Landcover-769356 2, 4, 1, 3, 5 2018-03-26 2018-03-24 2
Landcover-769486 4, 7, 1, 3, 2 2020-03-13 2020-03-12 1
Landcover-770156 12, 6, 1, 7, 4 2020-03-13 2020-03-12 1
Landcover-770516 11, 6, 1, 7, 15 2018-11-16 2018-11-18 2
Landcover-771435 12, 10, 2, 3, 8 2019-03-26 2019-03-26 0
Landcover-771536 6, 1, 5, 4, 7 2020-04-30 2020-04-29 1
Landcover-771547 4, 8, 1, 7, 5 2017-07-31 2017-08-02 2
Landcover-772421 6, 5, 2, 3, 8 2021-08-25 2021-08-25 0
Landcover-772423 3, 2, 8, 5, 4 2018-02-08 2018-02-06 2
Landcover-777404 4, 3, 2, 8, 5 2019-10-04 2019-10-03 1
Landcover-777410 8, 2, 3, 4, 5 2019-05-05 2019-05-07 2
Landcover-1864782 7, 2, 4, 3, 8 2020-06-15 2020-06-17 2
Landcover-1865521 4, 5, 1, 7, 8 2021-05-29 2021-05-30 1
UNHCR-7977 5, 7, 1, 2, 3 2017-03-28 2014-10-04 906
UNHCR-AFGs000003 8, 1, 2, 3, 4 2018-05-31 2018-05-20 11
UNHCR-AFGs003914 7, 3, 1, 8, 2 2018-04-12 2018-04-01 11
UNHCR-CODs026828 3, 5, 1, 2, 4 2017-12-29 2017-12-27 2
UNHCR-CODs026832 4, 2, 1, 7, 5 2018-11-17 2018-11-09 8
UNHCR-NERs009694 6, 1, 4, 5, 7 2019-12-19 2019-12-18 1
UNHCR-NERs009697 3, 5, 8, 1, 2 2018-11-02 2018-10-22 11
UNHCR-NGAs036019 5, 1, 8, 7, 4 2018-12-11 2018-12-10 1
UNHCR-NGAs036021 3, 1, 6, 7, 4 2020-12-08 2020-12-06 2
UNHCR-TGOs003383 5, 2, 8, 4, 1 2018-04-27 2018-04-27 0
UNHCR-THAs001547 5, 4, 8, 1, 2 2020-11-28 2020-12-06 8

Average days difference without considering the outlier 2.9
Average days difference considering the outlier 32.03

Table 6: The subset of 5 images that approaches the most to
the given date of acquisition of our Ground Truth samples.


