
This is the published version of the bachelor thesis:

Alonso, Anthony Michael; Martinez Garcia, Carles, dir. Ethical Hacking Frame-
work for File System Hot-Swapping. 2022. (Enginyeria Informàtica)

This version is available at https://ddd.uab.cat/record/280721

under the terms of the license

https://ddd.uab.cat/record/280721


TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

Ethical Hacking Framework for File System
Hot-Swapping

Anthony Michael Alonso
July 2, 2023

Abstract– This project aims to develop a framework that enables researchers to use our USB file
system hot-swapping technique. This technique consists of changing the contents of any file on
the USB device after the user has inserted it into the host computer and without removing the said
device from the host, thus the hot-swapping aspect of the project. There are a multitude of legitimate,
as well as malicious, use cases for this technique. While performing the hot swap is not difficult,
this framework will facilitate investigation into this method by simplifying the process while providing
an easy-to-use interface. This paper aims to educate the reader on the use cases and limitations,
the minimally required equipment, the intricacies of this method, and finally, a walk-through of the
framework and the PoC we have created.

Keywords– framework, hot-swap, investigation, limitations, proof-of-concept, technique, walk-
through

Resumen– Este proyecto tiene como objetivo desarrollar un marco de trabajo que permita a los
investigadores utilizar nuestra técnica de “hot-swap” de sistemas de archivos USB. Esta técnica
consiste en cambiar el contenido de cualquier archivo en el dispositivo USB después de que el
usuario lo haya insertado en su computadora, llevándose a cabo sin retirar dicho dispositivo de esta,
de ahí el “hot-swap”, sustitución en caliente, del método. Hay una multitud de casos de uso legítimos,
así como maliciosos, para esta técnica. Si bien realizar el “hot-swap” no es una tarea difícil, creemos
que este marco de trabajo facilitará la investigación de este método al simplificar el proceso y
proporcionar una interfaz fácil de usar. Este documento tiene como objetivo educar al lector sobre
los casos de uso y limitaciones de esta tecnica, el equipo mínimo requerido, las particularidades
de este método y, finalmente, una guía paso a paso del marco de trabajo y un ejemplo de uso de este.

Palabras clave– guía paso a paso, hot-swap, investigacion, limitaciones, marco de trabajo,
técnica

✦

1 INTRODUCTION

THIS project’s research topic is to investigate and de-
velop a framework that can exploit the ability to
hot-swap the file contents of a USB device. The

traditional method of making changes to a file on a USB
device is to either make the modifications on a computer af-
ter inserting and opening the USB via a file browser, such
as Finder on macOS or File Explorer on Windows, or re-

• Contact E-mail: anthony@alonso.tv
• Specialization: Tecnologies de la Informació
• Project supervised by: Carles Martinez Garcia
• Curs 2022/23

move the USB from the host, make the desired changes
on another computer, and reinsert the USB into the target
host. Our technique focuses on implementing this ability
to change the contents of a specific file on a USB device,
without removing the USB from the host. The ability to
hot-swap contents of a USB opens up many exploitation
possibilities, which can be benign to a host or malicious.
Naturally, due to our curious nature and intent to provide
value to the framework for security researchers, we will fo-
cus on the “malicious” angle of exploiting this technique.

1.1 Use Cases

Taking this approach, some of the ways this method could
be used are as follows:

July 2023, Escola d’Enginyeria (UAB)



2 EE/UAB TFG INFORMÀTICA: Ethical Hacking Framework for File System Hot-Swapping

➾ Bypassing initial antivirus software scans of the USB.

➥ When a USB device is inserted into a computer
(assuming it has an antivirus solution installed,
such as BitDefender [1], and configured to do
so), its contents are usually scanned to check if
any malicious files are on the drive. If the files
are deemed harmless, the user can interact with
the USB device as expected, frequently involv-
ing read and write actions. The attentive reader
will notice that it was stated that this occurs when
a USB device is inserted. If we use our hot-
swapping method, we can modify the contents
of a file (or files) on the USB device without re-
moving it from the host, bypassing the scan of
the modified contents and permitting our “mali-
cious” code to reside on the host.

➾ Bypass the digital signature verification process [2] in
real-time to execute malicious code.

➥ When a user attempts to run digitally signed soft-
ware on a computer, the operating system usually
has mechanisms that verify its signature. This
process does its best to ensure that the software
has not been tampered with, protecting the user
from running unauthorized or malicious soft-
ware on their machine. With this hot-swapping
method, we can modify the contents of the soft-
ware after it has been determined to be benign,
thus bypassing the verification process and get-
ting our code onto the target machine.

2 TECHNIQUE ANALYSIS

We have extensively researched how to execute the hot
swap and understand what happens behind the scenes. Af-
ter completing this project and gaining research experience,
hopefully, we can get to the point at which we fully com-
prehend the processes that take place during the execution
of this method. Until then, we will explain what we know to
the best of our ability, aiming to point potential researchers
in the right direction to appreciate the procedures during the
hot swap.

2.1 Required Hardware & Software
It is not easy (more likely, impossible) to modify the con-
tents of a regular USB flash drive, much less establish a
connection to one while it is in use on another machine.
However, we are in luck; we do have the ability to emulate
mass storage devices (USB devices are a subset of these)
on computers with a compatible Linux kernel by using the
g_mass_storage kernel module [3]. We are going to use a
Raspberry Pi Zero W [4] (referred to as the “Pi” in this doc-
ument) to emulate a USB device via the g_mass_storage
kernel module. Attaching a USB-A adapter [5] to the Pi
will enable us to plug it into a computer to behave like a
USB device. Our setup can be seen in Figure 1.

All tests and software were performed and developed on
the Pi using Raspberry Pi OS Lite (32-bit) [6]. The Lite
version differs from the full version in that it does not come

Fig. 1: Our Raspberry Pi Zero W with a USB-A adapter attached
to it, enabling us to plug it into a computer easily.

with a fully-fledged GUI. The two reasons we chose to work
with this version of Raspberry Pi OS are:

1. We do not need a GUI; we only need a terminal since
we will connect to the Pi using SSH.

2. The Lite version is easier to set up from zero. If we
use the official imaging toolkit [7] provided by Rasp-
berry Pi, we can easily pre-configure handy options
like connecting to a Wi-Fi network, enabling SSH, and
so on, without being forced to follow the initial setup
steps displayed in the full version of Raspberry Pi OS.
This software is valuable because a special adapter is
needed for a keyboard or mouse, or a compatible key-
board/mouse combination is required to perform these
steps otherwise.

Once the OS is installed, there are 2 main configuration
modifications that one should perform:

1. Mandatory Enable the modules i2c-dev and dwc2 and
the dwc2 driver in their respective files. Our frame-
work has a script that makes these changes if neces-
sary. These adjustments enable the USB driver and the
gadget mode for the Pi.

2. Optional One may want to enable a Wi-Fi hotspot on
the Pi, depending on one’s environment. If this tech-
nique will be used outside of a familiar network and
one wishes always to connect via SSH to the Pi when-
ever the Pi is turned on, this option will allow it. Our
framework also includes a script to set this up. An im-
portant detail to remember is that the Pi will not have
access to the Internet when emitting its own Wi-Fi net-
work, and neither will any of the devices using the Pi’s
Wi-Fi hotspot. The hotspot can easily be disabled, but
depending on one’s environment, the Pi will not be ac-
cessible again until the hotspot is re-enabled.

After discussing the configuration of the Pi, we can discuss
what occurs when this technique is executed.

2.2 Technique Internals
We will attempt to explain what happens under the follow-
ing premise: A USB device named USB-1 has two files on



Anthony Michael Alonso: Ethical Hacking Framework for File System Hot-Swapping 3

it: file1.txt and file2.txt. The file whose contents we want to
hot-swap, file1.txt, is now referred to as the “target file” in
this section, if not by its original name.

2.2.1 Interacting with Files

When USB-1 is inserted into a computer, the interesting
part occurs upon interaction with it and its contents. When
a file is interacted with, let us say file1.txt, simply put, the
file’s contents are cached1 by storing them in the host’s
memory. We can verify this in the figure below (2).

(a) The file contents are not
loaded in memory because we
have not interacted with them, as
we can see here.

(b) The file contents are in mem-
ory now that we have interacted
with them by simply opening
them.

Fig. 2: Space in memory occupied by files in the USB. This
view was accomplished by using fincore, a tool that is part of the
linux-ftools [8] suite, developed by Google. RES indicates the
amount of memory occupied by the file contents; PAGES repre-
sents the amount of memory occupied by the file contents mea-
sured in pages; SIZE refers to the actual size of the file

Caching content in this way is typical, mainly due to its
positive effects on I/O operations performance-wise. Work-
ing on content located in memory is objectively faster than
working on content located on disk; this has been proven
countless times (e.g., Apache Spark compared to Apache
Hadoop [9]).

2.2.2 The Hot-Swap

Once the target file contents are in memory, the host will
keep them there to perform any other operations on these
contents for either: as long as the underlying operating sys-
tem deems them necessary or if they are removed from
memory due to other content having higher priority or re-
quiring the space. Regardless of the scenario, the operating
system decides when to do this based on its internal sched-
uler and scheduling algorithms. If we want to change the
contents of file.txt, we need to remove it from memory on
the host somehow. The obvious choice would be to remove
the USB from the host, make the changes, and insert it back
into the host. However, this would violate the principle of
hot-swapping.

After changing the Pi’s target file, we need the host to
remove its copy from memory. The way we have found to
“encourage” the host operating system to remove the file
contents from memory is to interact with other files that are
not the target file, either on the same USB or on another
USB. There are many ways to interact with USB contents:
opening a file to read it, modifying the contents of a file,
or opening a handle to the file for any reason. It is essen-
tial to get it in memory to convince the operating system
to remove the contents of the target file stored in memory.
The easiest method we have found is to calculate the hash

1In this case, cached implies that the contents have been stored on the
host in a way that will improve the performance of operations performed
on the contents. It does not refer to placing the contents in a hardware
cache.

of files that are not the target file. This process can easily
be implemented with a simple Bash and even PowerShell
one-liner.

After some time (it can vary between a couple of seconds
to a minute or two), the target file contents will be removed
from memory, and when the user opens the target file on the
host, the changes will be visible.

2.2.3 Limitations

As with any technique, there are some limitations re-
garding what modifications can be successfully performed.
Namely:

➡ File System Structure & Same Name: Once the USB
is inserted, one cannot change the structure of its con-
tents. Consequently, adding to and removing files from
the USB is impossible. Also, any changes to the target
file cannot include its name. The name must remain
the same, meaning we can only modify its contents. If
these conditions are not respected, the hot swap will
not work. We believe this is due to the metadata the
file system has at the time the USB device is inserted
into a computer. We have not found a way to hot-swap
metadata, so we are subject to this limitation for the
time being.

➡ Modification Size: The target file’s original size must
be respected (and, obviously, the size of the USB file
system) and not surpassed. For example, if the target
file, upon creation, consisted of 10 bytes of content,
we only have these 10 bytes of legroom. For argu-
ment’s sake, one can add more content to the target
file, another 10 bytes, making the total size of content
20 bytes, but only the first 10 bytes of the new 20-byte
file will be seen after the hot-swap is completed. We
can see this in action below in figure 3.

Fig. 3: In this example, the file originally had 6 bytes of content
“aaaaaa”. We can see here that the content was modified to “This
is a longer test”, which is 21 bytes, and only the first 6 bytes of
this new text was recognized by the host: “This i”.

3 FRAMEWORK DEVELOPMENT

To help test this method’s limits, we wrote a framework
named Sn34kyPi [10]. The framework design is heavily in-
spired by msfconsole [11], the console-based version of the
Metasploit Framework. At the time of writing this docu-
ment, Sn34kyPi comes with four main modules: filesystem,
creator, modifier, and usb. It also includes scripts to facil-
itate setting up a few key components on the Pi: enabling
and disabling a Wi-Fi hotspot, checking for the kernel mod-
ules required for the Pi to behave as a mass storage device,
and setting them up if needed. The following subsections
will explain the main components of the framework.



4 EE/UAB TFG INFORMÀTICA: Ethical Hacking Framework for File System Hot-Swapping

3.1 Why the Framework?
Performing the hot swap is not too complicated, especially
for someone comfortable using a terminal. However, while
it is relatively easy to accomplish, it can be challenging to
manage. Imagine having a few different file systems to
choose from, each of them of a different size and with a
different number of files, and each of those with its con-
tent. On top of that, how does one create and manipulate
files in a file system? The method we have grown accus-
tomed to is to perform these actions on a mounted file sys-
tem, implying the need for multiple directories to mount to
or dismount the file system each time we want to mount
another one. So now, we have multiple file systems with
multiple files that need to be mounted to modify them. All
this is far too complex to manage and efficiently test, which
is where Sn34kyPi comes in. This framework is designed
to take all the weight and problems off the shoulders of the
user and provide an easy-to-use interface that provides the
previously mentioned modules and scripts.

3.2 Framework Internals
Before we discuss the four main modules, we will provide
a general overview of the framework’s internals. First, we
can see the directory structure in Figure 4.

Fig. 4: There are two main directories modules and resources. The
former is where the framework’s modules are stored, while the lat-
ter is where we can find notes, bash scripts, and Python resources.

The modules directory (which can easily be ex-
panded by using the template module provided in re-
sources/python/template.py) contains the four main mod-
ules of the framework, those of which will be reviewed
in greater detail in the following subsections. The re-
sources directory contains two sub-directories of interest:
bash_scripts and python. The Python files residing in
python will be reviewed in section (3.2.6), while the scripts
in bash_scripts will be examined further in section (3.2.7).
The four primary modules themselves do not have much
code, given that resources/python/super_mod.py provides

the baseline for new modules and is inherited by them, only
requiring the author to override the methods: execute() and
short_description(). The details of the requirements to cre-
ate new modules have been defined in the README.md
file located in the project root, under the section Contribut-
ing.

There are a few primary commands used to interact with
modules: load <module_name> (used to load the specified
module into the current context), set <option> <value> (to
set an option of the currently loaded module to the speci-
fied value), run (used to execute the currently loaded mod-
ule), options (to view the available options of the currently
loaded module), and unload (unloads the currently loaded
module from the current context).

3.2.1 FileSystem

The filesystem module enables the user to create a FAT32
file system that will subsequently be used to contain any
files the user wishes to create with the creator (3.2.2) mod-
ule, modify with the modifier (3.2.3) module, and expose
via an emulated USB with the usb (3.2.4) module. It first
creates a container file using the dd tool, with the name and
size (in MiB) specified by the user. Afterward, it converts
this container file to a FAT32 file system. Figure 5 shows
the options available to the user.

Fig. 5: There are three simple options available to the user: the
file system name, the file system size (in MiB), and the FAT type.
Comments have been cut off due to size restraints.

3.2.2 Creator

This module expects the user to use a FAT-xx file system, as
does the rest of the framework. Once run, it will open the
specified file system and attempt to create the specified file
of the user-defined size, referred to as “x” in this section.
If the file already exists on the file system, it will notify the
user to use the modifier module instead. If the file is created,
it is filled with null bytes (\x00) until the file reaches the size
requested by the user. We can see the available options in
Figure 6.

When we originally wrote this module, it would fill the
file with x “A”s. We then realized that when we change the
file’s contents, if the new contents are less than the origi-
nal file size, the remaining “A”s would be left there, caus-
ing unintended content to be left over post-modification that
would either break the new content (if it is code) or mislead
the user into thinking they inserted those “A”s themselves.



Anthony Michael Alonso: Ethical Hacking Framework for File System Hot-Swapping 5

Fig. 6: Again, there are three options available to the user: the file
system name, the name of the file they want to create, and the file
size (in bytes). Comments have been cut off due to size restraints.

This realization caused the change to fill the file with null
bytes instead.

3.2.3 Modifier

The user can modify a target file using the modifier module
with command-line-provided content or a specified source
file. In the first scenario, the provided content replaces the
target file’s contents, byte by byte. The latter first checks
if the specified source file can be opened, and if so, it will
copy the contents byte by byte to the target file. The options
this module provides can be seen in Figure 7.

Fig. 7: There are four options in this module: the file system name,
the target file that the user wishes to modify, the content that will
be placed into the target file (provided by the user via the com-
mand line), and a source file whose contents will be placed into the
target file. The user can specify either the content or the source.
Comments have been cut off due to size restraints.

3.2.4 USB

The usb module exposes the specified file system as a mass
storage device, checking if it is FAT-xx beforehand, via
the g_mass_storage kernel module. If this module is run
and g_mass_storage has already been loaded, and the Pi
is therefore already exposing a mass storage device, it will
reload the kernel module, effectively removing and reinsert-
ing the USB device if the user chooses to do so. This mod-
ule offers the options shown in Figure 8.

3.2.5 Global Commands

Global commands are those available to the user while us-
ing the framework, not necessarily in the context of a mod-
ule. There are four of them, each described below:

Fig. 8: The usb module offers four options (three of them are not
required): the file system name (required), the serial number, the
product name, and the manufacturer name of the exposed mass
storage device (not required). Comments have been cut off due to
size restraints.

➡ set fs: The user can specify a FAT file system. Once
this command is executed, Sn34kyPi will check if the
provided value is a FAT file system before loading it
into the global context. Once loaded into the global
context, the rest of the global commands will interact
with this file system, and any loaded modules will au-
tomatically use the specified file system by default.

➡ show fs: This command outputs the name of the cur-
rently globally loaded file system.

➡ show files: This command shows the files contained
within the global file system in an easy-to-view list.

➡ show stats: This command outputs the stats of the
global file system and its files. In Figure 9, we can
see an example of what this command outputs.

Fig. 9: The output of the show stats command, run after having
loaded the example file system linux_test.bin

3.2.6 python

The python directory contains four crucial Python files,
which we can see in the following list:

➨ super_mod.py: This is the parent class of all modules
that are created in the modules directory. Its principal
methods are set() and get_options(). The former is
invoked when the user runs the set <option> <value>
command in the context of a loaded module, while the
latter is called when the user runs the options com-
mand after having loaded a module into the current
context. To gather the options of the module, we it-
erate over its attributes. It is important to note that it



6 EE/UAB TFG INFORMÀTICA: Ethical Hacking Framework for File System Hot-Swapping

is not sufficient to grab the attributes of the module it-
self but also the class attributes (which belong to the
parent class, SuperMod in this case). Although Su-
perMod does not currently have its attributes, Python
does distinguish them, so this is there in the case that
during the framework’s possible evolution, SuperMod
does end up with properties.

➨ properties.py: This is a rather simple dataclass [13] I
created to create properties (or attributes) for the mod-
ules. This dataclass defines a name, value, comment,
and a required field. All fields are Strings except
the required field, which is a Boolean. This design
choice was taken to simplify the framework’s creation
of modules, avoiding creating a structure such as a
Python dictionary to hold these values. This arrange-
ment also helps to maintain consistency and avoid
breakage if the user does not specify a comment or
if the module is required, given that these two fields
have default values. If the options command is run,
the command will not break if the user has not put any-
thing in these fields due to them having default values.

➨ context.py: Serves as the context for global com-
mands. When the user sets the global file system, they
interact with an instance of Context. This class was
created instead of storing the global information in Su-
perMod since upon loading a module, SuperMod is
instantiated along with the module (since the module
inherits this class), effectively “erasing” the data we
had stored. Using an instance of Context, we can eas-
ily pass it around, and the data will remain intact.

➨ template.py: As the name indicates, this class serves
as a template for creating new modules. There is little
to explain here.

3.2.7 bash_scripts

There are four primary bash scripts included in Sn34kyPi:

➥ hotspot.sh: This script enables a Wi-Fi hotspot on the
Pi. It is important to remember that Pi Zero W can-
not simultaneously provide Internet access and a Wi-
Fi hotspot. This is because this Pi does not have an
Ethernet port; therefore, its network card must be used
either for itself or dedicated to the Wi-Fi hotspot. This
side effect can be quite bothersome at times since the
user cannot access the Internet while connected to the
Pi’s hotspot, but currently, there is no way to avoid this
side effect.

An essential aspect of getting the hotspot to work is
the power source of the Pi. After exhaustive testing, we
concluded that some USB ports do not provide enough
voltage or amperage to the Pi, leading to strange be-
havior such as the hotspot turning off or not even turn-
ing on. From what we could gather, most computers’
USB ports are powered [12], while some ports are “un-
powered”. These “unpowered” ports provide a meager
amount of power, but not enough for the Pi to function
reliably, and we believe the computers we saw this is-
sue on have “unpowered” USB ports.

➥ hotspot-removal.sh The name is self-explanatory; it
turns off the services required for the hotspot to be en-
abled (hostapd and dnsmasq) and comments out the
lines written to /etc/dhcpcd.conf for the hotspot to
function, effectively turning off the hotspot and allow-
ing the Pi to connect to some other Wi-Fi network.

➥ mass_storage_requirements.sh This must be run to
enable the Pi to act as a mass storage device when re-
quested. Mainly, it makes sure the kernel modules re-
quired for g_mass_storage to run are loaded at boot
time, namely i2c-dev and dwc2. If these kernel mod-
ules are not loaded, trying to run g_mass_storage will
produce an error similar to: “udc-core: some error
message”.

➥ setup.sh This script checks for two things: ensuring
the Pi is running Bullseye (which this framework has
been successfully tested on) and that the Pi has an In-
ternet connection. It then proceeds to install the nec-
essary packages to create a virtual environment for
the user, after which it will activate the Python vir-
tual environment and download the necessary Python
packages the framework relies on to function correctly.
This is all done in the current working directory of the
user. We chose to work in a virtual Python environ-
ment to not “contaminate” any of the underlying sys-
tem’s Python packages and to avoid any version con-
flict between them.

4 SN34KYPI DEMONSTRATION

In this section, we will show off Sn34kyPi with a demon-
stration. In this demo, the bash scripts do not need to be
executed because we have already set up the Pi using them.
We have also already connected the Pi to a computer (so it
is running), and it is not emitting a Wi-Fi hotspot.

First, we will connect to the Pi via SSH and start the
framework. Note that we start the framework as sudo be-
cause we require root privileges to interact with kernel mod-
ules (i.e., g_mass_storage. We can visualize this first step
in Figure 10.

Fig. 10: Starting the framework on the Pi.

After starting the framework, let us create a FAT32 file
system, as shown in Figure 11.

We will create some files in demo.bin, as displayed in
Figure 12.

There is a reason the file extension for the second file is
.bat, and we will see its implications shortly. Let us con-
tinue the demo by modifying our new files as shown in Fig-
ure 13 and Figure 14.

We can verify the contents of, for example, file2.bat, as
shown in Figure 15.



Anthony Michael Alonso: Ethical Hacking Framework for File System Hot-Swapping 7

Fig. 11: Loading the filesystem module and executing it to create
a FAT32 filesystem of 1000 MiB named demo.bin

Fig. 12: Creating two files: file1.txt and file2.bat, of 50 bytes and
600 bytes respectively.

Fig. 13: With the modifier module, we copy the contents from the
file /home/anthony/ps.ps1 to file1.txt

Fig. 14: With the modifier module, we copy the contents from the
file /home/anthony/rev.bat to file2.bat

Now, we can load the USB and interact with its files on
our computer (a laptop with a Linux distribution installed).
We will do this with the usb module, as seen in Figure 16.
We can see that everything is working as expected: the de-
vice detected is 1 GiB in size, and it has the two files we
created and modified in the previous steps.

We can see something interesting if we view the USB
contents in our terminal (on the host computer, not the Pi),
as shown in Figure 17. Notice that the executable bit is en-
abled on file2.bat for all users, meaning we can execute the
file from the terminal, while file1.txt does not have the exe-
cutable bit set! This is not expected behavior since the FAT

Fig. 15: Verifying the contents of file2.bat within the framework.

standard does not support POSIX permissions [14] [15].
This is exciting! (More on how we discovered this in sec-
tion 4.1.)

Let us take advantage of this and hot-swap the contents
of the executable file (file2.bat) with a simple PoC bash
script using the modifier module. We will set the content
of file2.bat to our PoC, which will print the string “Hello,
friend” (Mr.Robot reference).

Fig. 16: Viewing the exposed USB device, performed with the usb
module.

Fig. 17: Viewing the exposed USB contents in the host terminal.
We can see that file2.bat has the executable bit enabled for all
users.

Figure 18 shows how the framework easily enables us to
replace a target file’s contents. After executing the module,
we need to remove the copy of file2.bat that the host op-
erating system stored in the host’s memory, as discussed in
section 2.2.2.



8 EE/UAB TFG INFORMÀTICA: Ethical Hacking Framework for File System Hot-Swapping

Fig. 18: Using the modifier module to insert our PoC bash script
into file2.bat

According to the plan, we will insert another USB de-
vice into the host computer and run a quick bash one-liner
(command used can be seen in listing (1) in the new USB
directory to calculate the hash of its files. We can see this in
action in Figure 19.

Listing 1: Bash one-liner to calculate the SHA256 hash of all files
in the current directory

f i n d . − type f − exec sha256sum {} \ ;

Fig. 19: Calculating the SHA256 hash of all files in the other USB
device. We stopped it once we saw that the contents of file2.bat
were removed from the host memory.

After some time (we can see precisely when the contents
are removed from the host memory using the fincore tool
we saw in Figure 2), the new contents will appear on the
host, after which we can execute the PoC content we in-
serted before in Figure 20.

4.1 Notes
After multiple failed attempts to acquire code execution
through batch files on Windows (an example we thought
would be engaging and exciting), we decided that for the
demo’s sake, we would create a simple bash PoC instead

Fig. 20: Voilà!

(which is what we showed in this section). After a few days,
we opened the USB device in the terminal and noticed that
the batch files we created had the executable bit set! We
determined that this occurs in the following scenario: Af-
ter making a simple batch file, it is read-only if we view it
in Linux. If we open the file in a Windows machine and
double-click on it from File Explorer, even if it does not
correctly execute, the executable bit is set when we view
the file on the Linux machine again. This requires more
investigation, which is why this framework was created!

5 CONCLUSIONS

After our extensive research, it is clear that hot-swapping a
USB file system opens the door to various possible vulner-
abilities. With the intent of discovering these vulnerabil-
ities, the framework created as a result of this project will
help us, and hopefully, any other researchers, uncover them.
This framework indeed requires some touching up, but in
its current state, it can pave the way for further investiga-
tion into USB file system hot-swapping. When researching
cybersecurity-related topics, as in our case, it is important
to try everything thoroughly, pay attention to the details, as
insignificant as they may seem, and not let the possibility
of failure deter one from investigating. If we had not con-
sidered this subject, we would have missed what could be
quite an exciting discovery.

ACKNOWLEDGEMENTS

I thank my tutor Carles Martinez Garcia for introducing me
to the original hot-swapping technique, leading to the start
of this project. Before this project, I had not contemplated
the possibility of something so seemingly ordinary being
vulnerable, but this experience has proved that everything
is “hackable”.

In addition to Carles, I would like to thank Porfidio
Hernández Budé for his time in helping me understand what
was occurring under the hood while performing the hot-
swapping. Although we could not fully determine what
transpires behind the scenes, his insights were invaluable
for me to understand further what may be happening, and
discussing the topic with another knowledgeable person
aided me further.

Finally, I thank my family and friends for enduring my
endless, sometimes incoherent, jabbering about all topics
related to this project.



Anthony Michael Alonso: Ethical Hacking Framework for File System Hot-Swapping 9

REFERENCES

[1] BitDefender, “Bitdefender Security Soft-
ware Solutions for Home Users,” Bitdefender.
https://www.bitdefender.com/solutions/

[2] NIST, “Security Considerations for
Code Signing,” 2018. Available:
https://csrc.nist.gov/CSRC/media/Publications/white-
paper/2018/01/26/security-considerations-for-code-
signing/final/documents/security-considerations-for-
code-signing.pdf

[3] The Kernel Development Community, “Mass
Storage Gadget (MSG) — The Linux
Kernel documentation,” www.kernel.org.
https://www.kernel.org/doc/html/latest/usb/mass-
storage.html (accessed Jun. 19, 2023).

[4] The Raspberry Pi Foundation, “Buy a Raspberry
Pi Zero W – Raspberry Pi,” Raspberrypi.org, 2017.
https://www.raspberrypi.org/products/raspberry-pi-
zero-w/

[5] Kubii, “Adaptador ZeroKey USB para Pi Zero,”
KUBII. https://www.kubii.com/es/hub-cables-
adaptadores/2063-adaptador-zerokey-usb-para-pi-
zero-3272496009271.html (accessed Jun. 19, 2023).

[6] Raspberry Pi Ltd, “Operating
system images,” Raspberry Pi.
https://www.raspberrypi.com/software/operating-
systems/

[7] Raspberry Pi Ltd, “Raspberry Pi OS,” Raspberry Pi.
https://www.raspberrypi.com/software/

[8] Google, “Google Code Archive - Long-term storage
for Google Code Project Hosting.,” code.google.com,
2010. https://code.google.com/archive/p/linux-ftools/
(accessed Jun. 23, 2023).

[9] IBM Cloud Education, “Hadoop vs. Spark: What’s
the Difference?,” www.ibm.com, May 27, 2021.
https://www.ibm.com/cloud/blog/hadoop-vs-spark

[10] AMAlonso64, “Anthony Alonso /
sneakypi · GitLab,” GitLab, 2023.
https://gitlab.com/AMAlonso64/sneakypi

[11] “rapid7/metasploit-framework,” GitHub, Aug.
14, 2020. https://github.com/rapid7/metasploit-
framework

[12] “USB,” Wikipedia, Mar. 19, 2022.
https://en.wikipedia.org/wiki/USB

[13] “dataclasses — Data Classes — Python
3.8.3 documentation,” docs.python.org.
https://docs.python.org/3/library/dataclasses.html

[14] Deland-Han, veganaize, AmandaAZ, and simonxjx,
“Overview of FAT, HPFS, and NTFS File Sys-
tems - Windows Client,” learn.microsoft.com,
Sep. 23, 2021. https://learn.microsoft.com/en-
us/troubleshoot/windows-client/backup-and-
storage/fat-hpfs-and-ntfs-file-systemsfat-overview

[15] “File-system permissions,” Wikipedia, Jun.
24, 2023. https://en.wikipedia.org/wiki/File-
system_permissions#File_system_variations


