
This is the published version of the bachelor thesis:

Sánchez Hernández, Sergi; Casas Roma, Jordi, dir. Convolutional Generative
Adversarial Networks. 2023. (Enginyeria Informàtica)

This version is available at https://ddd.uab.cat/record/280736

under the terms of the license

https://ddd.uab.cat/record/280736

THESIS FOR COMPUTER ENGINEERING, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

Convolutional Generative Adversarial
Networks

Sergi Sánchez Hernández

Resum– L’objectiu d’aquest treball és implementar tres models de xarxes GAN diferents, com són la
DCGAN, WGAN i WGAN-GP, per tal de generar imatges similars a les que conformen els datasets
de MNIST i de CelebA. Per a cadascun dels tres models es realitzen quatre entrenaments, utilitzant
diferents nombres d’imatges dels dos datasets per tal d’obtenir una sèrie de mètriques quantitatives
com són la FID, IS i Precision/Recall per tal d’analitzar la qualitat de les imatges generades i
comparar els models entre si. Els entrenaments duts a terme ens han indicat que el model DCGAN
és el que assoleix millors resultats, a pesar de les millores que inclouen els altres dos models.

Paraules clau– Intel·ligència Artificial, CelebA, Xarxes Generatives Adversàries, Distribució
d’Imatges, Generació d’Imatges, InceptionV3, MNIST, Distància de Wasserstein, Joc de Suma Zero

Abstract– The aim of this project is to implement three different GAN network models, such as
the DCGAN, WGAN and WGAN-GP in order to generate images similar to those that make up the
MNIST and CelebA datasets. For each of the three models, four training sessions are carried out,
using different numbers of images from the two datasets with the intention of obtaining a series
of quantitative metrics such as the FID, IS and Precision/Recall in order to analyze the quality of
the images generated and compare the models with each other. The experiments carried out have
shown us that the DCGAN model is the one that obtains better results, despite the improvements
included in the other two models.

Keywords– Artificial Intelligence, CelebA, Generative Adversarial Networks, Image Distribu-
tion, Image Generation, InceptionV3, MNIST, Wasserstein Distance, Zero-Sum Game

✦

1 CONTEXT

THE popularity of Artificial Intelligence has been
growing by leaps and bounds in recent years due to
the release of multiple potent models as CHATGPT

or DALL-E, which are able to perform tasks such as dia-
logue, process natural language, generate fictitious images,
etc. In this work, we will delve into one of the most impor-
tant innovations in the field of Machine Learning, like the
GAN’s. GAN’s (Generative Adversarial Networks) [1] are
an approach to generative models that use Deep Learning
algorithms, such as convolutional neural networks, to per-
form unsupervised machine Learning tasks. This approach
is based on treating the problem as a zero-sum game be-
tween two neural networks, one network in charge of learn-
ing to generate data similar to the real input data (Gen-

• Contact e-mail: sergisanher@gmail.com
• Specialization: Computing
• Work tutored by: Jordi Casas Roma (Computing)
• Course 2022/23

erator), and the other network learning to differentiate or
classify the real data (Discriminator). In this work we will
implement three GAN models to generate fictitious images
from two datasets, one dataset of black and white images
and another dataset of color images. The networks that we
will develop are:

• DCGAN [2] (Deep Convolutional GAN): It is the first
GAN network that incorporates convolutional layers
in both Generator and Discriminator, being a great ad-
vance over the non- convolutional GAN network.

• WGAN [3] (Wasserstein GAN): This network seeks to
correct the instability when training DCGAN’s, seek-
ing to obtain better results when trying to bring the
probability distributions of the Generator and Discrim-
inator closer.

• WGAN-GP [4] (Wasserstein GAN with Gradient
Penalty): It is considered an enhancement to the
WGAN network as it adds a gradient penalty that re-
duces the time it takes for the Generator and Discrim-
inator to converge/train.

We can appreciate that each model tries to improve

May 2023, Escola d’Enginyeria (UAB)

2 EE/UAB COMPUTER ENGINEERING THESIS: Convolutional Generative Adversarial Networks

the previous one, so we hope to be able to notice
these improvements when comparing the results of

this work.

2 OBJECTIVES

The main objective of this project is to be able to suc-
cessfully implement the proposed GAN models (DCGAN,
WGAN and WGAN-GP), and to compare their perfor-
mances and results in different datasets. Additionally, we
must carry out a series of preliminary objectives that will
allow us to fulfill the main objective. These preliminary
objectives are the following:

1. Study the operation of GAN networks and the models
that we will implement, both their architecture and the
key points that differentiate the models.

2. Carry out the implementation of the proposed net-
works in Python language from scratch, by using the
PyTorch library.

3. Implement a set of functionalities that will allow us to
visualize the results obtained by the networks, and be
able to compare them.

4. Adjust the hyperparameters of the models, train them
with two datasets and study the obtained results using
the metrics/functionalities.

3 METHODOLOGY AND PLANNING

To carry out this project, we’ll use the work management
methodology Scrumban [5], which is a union of the Scrum
and Kanban agile methodologies. Scrumban was born orig-
inally as a transition methodology for work groups that
wanted to transition from Scrum to Kanban or vice versa,
in order to make the change in methodology gradually and
more easily. Despite its initial purpose, the combination of
these two strategies was found to be more beneficial in some
cases.

This strategy uses a Kanban board where the phases
through which the tasks can be organized in different
columns are represented, and contain all the tasks to be
completed in the project. The tasks are represented by cards
that are initially in the first phase, and they will advance
through the board according to their progress until they are
finished. Scrumban also inherits the iterative component
of Scrum, dividing the course of the project into 2-week
Sprints, which will have different tasks to perform in order
to accomplish the Sprint goal.

In order to carry out this methodology, we will use the
KanbanTool [6] web application, which is specifically de-
signed for this strategy, and we can configure it according
to our project.

To develop this project, a series of tasks have been deter-
mined that roughly represent the most important steps to be
carried out and are grouped into three main phases:

• Initial: In this first phase, the analysis and study of the
subject are carried out in order to define the objectives,
planning, and methodology to follow. This first phase
has an estimated duration of one month.

• Development: In the development phase, we will im-
plement the proposed models, the qualitative metrics,
and all the extra features in order to perform the model
trainings and obtain the final results. The estimated
duration of the development phase is two months.

• Final: With the results obtained, we will have them
graphically, and we will finish writing this work. This
last phase has an estimated duration of nine days, end-
ing on June 13.

The Gantt chart of the planning is shown in A.1. A 14-
day margin has been left in order to contain all the possible
risks and inconveniences that may arise during the execu-
tion of the project. We will carry out the tasks in 2-week
Sprints, in which each Sprint will have set objectives with
different tasks to be done. In addition, we will also carry
out a version control of the project with Git [7], which will
allow access to the code for anyone who would like to re-
produce the results of this project.

4 STATE OF THE ART

In this section, we will present in broad strokes the most
important steps that have been taken on Generative Adver-
sarial Networks. In 2014, computer engineer Ian J. Good-
fellow presented the first generative model that used an an-
tagonic process to train two neural networks in order to gen-
erate synthetic images [1].

This first GAN model presented a revolution in the area
of deep learning, both for the innovation of the method to
obtain the results and for the results themselves. It was only
one year later that Alec Radford used convolutional and fil-
tering layers in the networks of the GAN model, in order
to improve feature extraction from the images and thus im-
prove the quality of the generated images, proposing the
DCGAN model [2]. Despite the results obtained, the train-
ing of this type of model had many problems, and many
corrections and improvements were proposed to solve them.
One of the models that best manages to correct these prob-
lems was the WGAN model proposed by Martin Arjovsky
in 2017 [3], which also tries to reduce the distance between
the distances of the real and fake image distributions us-
ing a different cost function. There were other models that
also tried to improve DCGAN, such as the WGAN-GP [4],
or BEGAN [8], by changing the cost function. In addi-
tion, other new models innovated in the architecture of the
Generator network, being the most important since it has to
learn to generate the best possible images.

Among these models is the ProGAN, which was pub-
lished in 2017 by Tero Karras [9], which progressively
trains both networks in terms of resolution, starting with
4x4 images up to 1024x1024 images. In this way, a higher
level of detail is achieved, resulting in images with higher
resolution. GANs have been a wide field of study for com-
puter engineers since they became known, so there are a
lot of different models, and naming them all is beyond the
scope of this paper. Among these, we would like to mention
Tero Karras StyleGAN [10], which uses the latent space
of image features to generate images with a set of desired
features. Xinato Wang’s Enhanced Super Resolution GAN
(ESRGAN) published in 2018 [11], increases the resolution
of images with great quality.

Sergi Sánchez Hernández: Convolutional Generative Adversarial Networks 3

5 DATASETS

We have selected two datasets to test the different models,
which are well-known datasets and have already been used
to compare the results of our models.

• MNIST: The MNIST Dataset [12] is made up of
70,000 gray-scale images of handwritten characters
with 28x28 pixels. This set of images is used in the
entire area of Machine Learning, and it will serve as a
starting point to implement and test our models. The
advantage of this dataset is that they are black-white
images, so the training will be much faster.

Fig. 1: Images from MNIST Dataset

• CelebA The CelebA dataset [13] is the quintessential
GAN dataset, being the most widely used to show the
results that a GAN model can generate and having spe-
cial relevance for the StyleGAN model. CelebA or
CelebFaces Attribute Dataset, is a set made up of more
than 200,000 color images of famous people’s faces,
with a resolution of 178x218 pixels.

Fig. 2: Images from CelebA Dataset

6 GENERATIVE ADVERSARIAL NETWORKS

Generative Adversarial Networks are a group of neural net-
work models that are characterized by using two deep neu-
ral networks that perform a zero-sum game between them,
one in charge of generating images similar to the real ones
(Generator), and another in charge of classifying between
real and fake images (Discriminator).

Fig. 3: Generative Adversarial Network Behaviour [14]

This process carried out by the two networks can be seen
in figure 3. The Generator, starting from a vector of random
data, will try to generate images similar to the real ones.
This set of false images together with a set of real images,
will be the input of the Discriminator, which will have to
classify them according to whether they are real or fake. In
the early stages of training, the Discriminator will classify

these sets quite well, but as training continues, it will be-
come increasingly difficult until it reaches the point where
the Discriminator is not able to differentiate between the
two sets. This point is called Nash Equilibrium, and it will
occur when the classifier is forced to guess if the images
are real or not (with a 50% probability), and we obtain loss
values of 0.5 in both networks. The Nash Equilibrium is
practically impossible to achieve in practice[15].

6.1 Loss Function
Loss functions in deep learning algorithms measure the dis-
tance between the obtained and expected results so that the
model can update its parameters and obtain better results. In
the case of GANs, their loss function is the zero-sum game
presented below.

LGAN (G,D) = Ex∼pdata(x)[log(D(x))]

+ Ez∼pz(z)[log(1−D(G(z)))]
(1)

Fig. 4: GAN Min-Max Loss Function

The first term of equation (1) corresponds to the loss
function of the Discriminator, and the second term of the
expression corresponds to the Generator loss function. The
first term calculates the weighted mean of the logarithm of
the Discriminator results on the real images, and the second
term does the same calculation on the images generated by
the Generator, but is subtracted from 1 to calculate the log-
arithm. In this way, classifying the real images as 1’s and
0’s as the false ones, the Discriminator wants to maximize
both terms by obtaining logarithms of 1, which results in 0,
while the Generator wants to minimize the second term by
obtaining logarithms of 0, which results in minus infinity.
As we have mentioned before, the Nash Equilibrium will be
reached when the result of the equation is 0.5, since the Dis-
criminator in both terms will classify the images randomly.

6.2 GAN Training Problems
Despite how idyllic the GAN training process appears, sev-
eral problems arise when dealing with real data.

• Hyperparameters: GAN networks are very sensitive
to hyperparameters, being able to obtain very different
results depending on their values, and it being difficult
to find the optimal values.

• Non-Convergence and Instability: The convergence
is achieved when the Generator creates images in-
distinguishable from the real ones, and therefore the
percentage of hits of the Discriminator is 50% (Nash
Equilibrium). This convergence may not be achieved
due to the following situations:

– The Discriminator network perfectly distin-
guishes between real and fake images, and there-
fore the Generator network cannot learn.

– The Generator network manages to always fool
the Discriminator, so the same Generator will
never modify its parameters, and it will not im-
prove.

4 EE/UAB COMPUTER ENGINEERING THESIS: Convolutional Generative Adversarial Networks

– Another possible scenario would be when the
losses from both networks oscillate in each it-
eration due to an incorrect Learning Rate value,
which controls the updating of the parameters of
both networks.

• Mode Collapse: This problem refers to when the
Generator produces very similar synthetic images with
very similar characteristics. In the case of the MNIST
dataset, the Generator would only be able to create im-
ages from one or two certain numbers.

Despite the fact that these problems do not have a complete
solution that prevents them, improvements have been made
to the original GAN and DCGAN models in order to allevi-
ate them.

6.3 DCGAN
The DCGAN (Deep Convolutional GAN) is a model
based on Ian J. Goodfellow’s GAN, but it adopts the
CNN (Convolutional Neural Network) architecture for the
Generator and the Discriminator. Instead of using linear
layers, the DCGAN used convolutional layers that allow
us to learn more information from the images as well
increase their dimension or vice versa. Both networks are
composed of a series of layers that are repeated in their
architectures. In our code, we have defined a block that
contains these repeated layers in order to have a shorter and
more understandable code. Next, we will describe a block
of the Generator network.

Generator Block:

• ConvTranspose2d: Applies a two-dimensional trans-
posed convolution to each of the image channels. This
transposed convolution allows us to extract the char-
acteristics of the image using a matrix/kernel, which
at the same time increases their dimensionality. In
the function, you have to define the input and output
sizes of the images, the size of the kernel that will ex-
tract the features and transform their dimensionality,
the stride that defines the dimensionality change, and
the padding that allows to omit N pixels of the edges
of the images (commonly not interesting pixels).

• BatchNorm2d: Normalizes the resulting images for
each channel after applying the convolution. This nor-
malization is applied for each batch of images and al-
lows for speeding up the training of the network since
it reduces the change in the distribution of the activa-
tions of the network during the tuning of the parame-
ters.

• ReLU: Activation function that transforms the nega-
tive parameter values of the network to a value of 0
and does not change the positive values. The formula
for this function is to calculate the maximum value be-
tween 0 and the value of the parameter.

The Generator block is composed of a Transposed Con-
volutional layer that increases the dimensionality of the in-
put data, a standardization of the images so that they have
a mean close to 0 and a standard deviation close to 1, and

Block Input Shape Output Shape
Block 1 100 x 1 x 1 1024 x 4 x 4
Block 2 1024 x 4 x 4 1024 x 8 x 8
Block 3 512 x 8 x 8 1024 x 16 x 16
Block 4 256 x 16 x 16 1024 x 32 x 32
ConvTranspose2d
Tanh 128 x 32 x 32 64 x 64

TABLE 1: GENERATOR NETWORK ARCHITECTURE.

finally the ReLU activation layer that transforms negative
values to 0.

The Generator is made up of 4 consecutive blocks where
the dimensionality is increased from the initial noise vector
of 100x1x1, up to a 64x64 image. The last layer does not
contain a standardization layer, and the activation function
is the Tanh. This architecture is given in Table 1.

This structure will be the same in the Discriminator,
changing the Transposed Convolution to a Convolution,
which decreases the dimensionality instead of increasing it,
and the ReLu to the LeakyReLU activation function (except
in the last layer, where the Sigmoid function will be used).

6.4 WGAN and WGAN-GP
As we have mentioned in section 6.2, the first GAN models
suffer from different problems, such as training instability
and hyperparameter sensitivity, among others. The WGAN
and WGAN-GP models arose to try to combat some of these
problems by adding improvements to the DCGAN model. It
is worth mentioning that the mathematical concepts behind
these two models are quite complex, therefore, due to the
space limitations of this project, reading Alexirpan’s sum-
mary [16] is recommended, to delve into the mathematics
behind these two models.

6.4.1 WGAN

This new model presents a paradigm shift, treating the im-
ages generated by the Generator and the real ones as data
distributions, which we want to overlap or be as close as
possible to obtain high quality images. In order to calculate
the distance between two distributions, WGAN chooses to
use a loss function that implements the Wasserstein Dis-
tance instead of the Jensen-Shannon (JS) divergence that is
used in DCGAN. Jensen-Shannon divergence is derived in
many cases in unstable training due to issues with the gra-
dients [17].

Also, the Jensen-Shannon Divergence does not take into
account the distance between these distributions, so in two
different scenarios where we have separate distributions
(bad Generator images) being in one scenario much more
noticeable than in the other, the gradients that we would
obtain would be the same, and would be insignificant. For
this reason, the DCGAN is very unlikely to converge, and
it is reflected in the loss values, since when one network
improves, the other worsens, like this indefinitely.

As we see in equation (2), this new loss function is quite
similar to the DCGAN, where the averages of the values
returned by the Discriminator are calculated for both real
and fake images. This new function dispenses with loga-
rithms, performs subtraction of the terms instead of addi-

Sergi Sánchez Hernández: Convolutional Generative Adversarial Networks 5

LWGAN(D,G) = E
x∼Pdata

[D(x)]− E
z∼Pz

[D(G(z))] (2)

Fig. 5: WGAN Loss Function

tion, and dispenses with subtracting the result of the second
term from 1. In WGAN, the final activation function Sig-
moid is removed from the Discriminator, in such a way that
the results will not be values in range [0, 1]. For this rea-
son, the Discriminator is renamed as Critic. In short, the
objective of the Critic is to separate the results of the terms
as much as possible (maximize), and the Generator wants
the result of the second term to be very similar to that of
the first term. This gives us a termination criterion for the
training, since when the generated images are very similar
to the real ones, the result of the loss function will tend to
zero. The termination criterion is correlated with generat-
ing high-quality images, according to the empirical results
of the WGAN authors. Therefore, when the loss values of
the two networks are close to 0, the quality of the fake im-
ages will be practically unbeatable.

6.4.2 WGAN - Weight Clipping

We have mentioned that in the DCGAN, when the Dis-
criminator improves its loss, the Generator worsens, and
vice versa indefinitely. In order to solve this problem, the
WGAN Critic seeks to limit the gradients, and thus be able
to reach a minimum. For this, the condition is added to
the Critic that it must be 1-Lipschitz, a mathematical prop-
erty that limits the result of the Critic to be between [0,
1], in order to limit the slope of the function and therefore
the gradients. In order to comply with this restriction, the
WGAN chooses to adjust the Critic weights to values be-
tween [-0.01, 0.01], and in this way obtain values close to
[0, 1], although they will not necessarily reach 1-Lipschitz.
As the authors of the WGAN indicate in their paper [3],
weight clipping is a terrible way to force the Critic to be
1-Lipschitz, since if the weights of the network are greatly
reduced, it will take a long time to converge, and if they are
reduced little, it will result in vanishing gradients.

6.4.3 WGAN-GP

The WGAN-GP model differs from the WGAN in the way
that it forces the Lipschitz constraint on the Critic. WGAN-
GP stands for WGAN with Gradient Penalty, since it re-
places Weight Clipping with a restriction on the Critic gra-
dients norm. In the WGAN, the network architecture is
modified since we are clipping the parameters of the net-
work, but with the gradient penalty, only the gradients that
will update these weights are modified.

GP = λEx̂∼px̂(x̂)

[(
∥∇x̂D(x̂)∥p − 1

)2
]

(3)

This penalty or regularization is added to the loss function
of the WGAN, and its objective is that the norm of the gra-
dients generated by the loss function be at most 1, in order
to comply with the Lipschitz restriction. The norm of the
gradient vector is used to measure the ”steepness” of the

loss function at current parameter values. Therefore, lim-
iting the norm of the gradients to a value of 1 ensures that
the loss function is 1-Lipschitz continuous. Next, we will
explain the steps carried out to calculate the penalty that is
represented in equation (3):

1. Image Interpolation: given a set of real and generated
images, a linear interpolation of these is performed,
represented as x̂.

2. Gradients Computing: the Critic gradients are com-
puted over the interpolated images, represented as
∇x̂D(x̂).

3. Gradients Norm: the norm of the gradients is calcu-
lated, where |·|p represents the norm operator.

4. Penalty Compute: The penalty calculation is per-
formed where λ is a hyper parameter that controls the
weight of the penalty. We have used a λ value of 10.

This gradient penalty penalizes the Critic gradients with
norms greater than 1, forcing the norm to be close to 1, thus
satisfying the Lipschitz constraint.

6.4.4 Gradient Penalty vs Weight Clipping

Both gradient penalty and weight clipping satisfy the Lips-
chitz constraint, limiting the GAN training in order to sta-
bilize it and having a useful loss value. Despite this, the
gradient penalty has many advantages over weight clipping:

1. Improved Training Dynamics: Weight clipping in-
volves constraining the weights of the Critic to a cer-
tain range, and this can lead to training instability. It
may struggle to find the balance between the Critic and
the Generator, resulting in poor convergence. In con-
trast, gradient penalty helps to stabilize the training by
penalizing the gradients without imposing a constraint
on the weight values.

2. Avoidance of Mode Collapse: Better training stability
prevents Mode Collapse which causes a poor diversity
of images. Since gradient penalty stabilizes better, it
helps to avoid it, and promotes the generation of di-
verse and high quality samples.

3. Flexibility in the Critic: Weight clipping can be sen-
sitive to the clipping value, requiring careful adjust-
ments to achieve the desired effect. On the other hand,
the gradient penalty doesn’t need to modify those pa-
rameters and doesn’t need manual tuning.

4. Consistency of Wasserstein Distance: The gradient
penalty approach is directly motivated by the Wasser-
stein distance, which measures the discrepancy be-
tween real and generated images. Unlike weight
clipping, it provides a theoretical foundation for the
WGAN-GP and ensures that the Critic approximates
the Wasserstein distance more accurately.

Overall, the gradient penalty in the WGAN-GP offers bet-
ter training stability and generates diverse and high quality
images. It is also important to mention that the WGAN-GP
takes longer to train than the WGAN.

6 EE/UAB COMPUTER ENGINEERING THESIS: Convolutional Generative Adversarial Networks

7 EVALUATION METRICS

In order to verify that the models we are training are ac-
tually learning, and can reach the objective of generating
good false images, we need some metrics that help us see
the evolution of the models during training and also at the
end.

• Fidelity: refers to how similar the false images gener-
ated are compared to the real ones.

• Diversity: refers to the variety of the generated im-
ages, which is the diversity of real images and their
distributions.

With these two properties, we can have a broad vision of
how well our Generator learns. There are many metrics
used for image comparison that are used in the GAN field:
FID (Fréchet Inception Distance), IS (Inception Score), Pre-
cision/Recall, KID (Kernel Inception Distance), PPL (Per-
ceptual Path Length), among others. We have decided to
implement FID, IS and Precision/Recall, since the first two
are most commonly used metrics to compare the results of
GAN models, and Precision/Recall because they are widely
used metrics in the area of Machine Learning.

7.1 Inception Score
The IS and the FID are the most commonly used metrics
in GAN network evaluation, and they are the ones that are
mainly used to compare the results between the different
models that exist. This metric measures both the fidelity
and diversity of the generated images, being, according to
its authors, a metric that has a good connection with the hu-
man evaluation of the images. The Inception-V3 [18] clas-
sifier is used, which has already been trained with the Ima-
geNet [19] data set that contains 1.000 different classes, in
order to obtain the probability distribution of the generated
images for each of the classifier classes. These probabili-

Fig. 6: Predictions Distribution of a CelebA Image

ties show us the probability that each of the classes appears
in the images, being indicative of diversity if we have an
extended distribution or fidelity, if we have classes of high
probability. In the case of figure 6, we see that the proba-
bility distribution of the image has a certain resemblance to
a normal distribution but is spiky. Ideally, we want each of
the images to have few classes with a high probability (high
fidelity), but overall, the dataset should be more evenly dis-
tributed (high diversity). The Inception Score seeks to com-
pare the distribution of each image with the total image dis-
tribution, obtaining a large difference between the distribu-
tions if the ideal case occurs and therefore a large IS value.
To calculate the IS value, the KullBack-Leibler Divergence

statistical formula is used, which measures how different
two distributions are, obtaining zero as the worst result or
infinity, although this does not happen in practice.

Despite being one of the most used metrics to compare
models, it is not very reliable since the calculation of this
metric does not take into account the real images, and the
InceptionV3 classifier has not been trained with images
from our datasets, so the best results may not be linked to
better generated images.

Despite this, the FID metric that has replaced the IS can
alleviate and solve some of these limiting factors.

7.2 Fréchet Inception Distance
As we have mentioned in the previous section, despite the
fact that both the FID and the IS are used to compare the dif-
ferent GAN models, the FID is a much more reliable metric.
This metric is based on the Fréchet Distance, which is a dis-
tance metric for curves and can be extended to distributions.

It works especially well with normal multivariate distri-
butions, which generalize the idea of a normal distribution
to high dimensions, and allow more complex distributions
to be modeled in a single parameterization, that is, a sin-
gle mean and a single standard deviation. In order to obtain
these distributions, we will use the Inception-V3 model pre-
trained with the ImageNet dataset as with the IS, but we will
remove the last layer of the network (SoftMax) and be left
with the activations of the last lineal layer of the model. We
will obtain these feature vectors for a subset of real and fake
images, which will be our multivariate normal distributions,
and then calculate the Fréchet Distance between these dis-
tributions.

The final objective of this metric is to ensure that the
characteristics of the real images and the false ones are as
similar as possible, so we will obtain smaller values the
shorter the distance between the activations and larger val-
ues the greater the distance.

Despite being a metric that compares real and fake im-
ages and gives us a good estimate of how similar they are,
it also has its limiting factors:

• Like the IS, it uses the pre-trained Inception-V3 model,
so it may not capture all the characteristics of the im-
ages of our datasets.

• In order to obtain a good FID, it is advisable to use a
large number of images to make the comparison and
obtain a better result. Since this is a computationally
expensive operation, it can greatly delay the trainings.

• The resulting FID value tends to be better (a smaller
value) the more samples are used to perform the calcu-
lation. This results in a lot of improvement in the FID
that is not reflected in the Generator model.

• Limited statistics were used. FID only uses the mean
and the covariance, which are the two main properties
of distributions, but they do not cover all aspects of
them.

7.3 Precision and Recall
Precision and Recall are two of the most used metrics in
neural networks, especially in classifier models, where it
is easy to keep track of well and badly classified samples.

Sergi Sánchez Hernández: Convolutional Generative Adversarial Networks 7

Our Generator model creates fake images with the goal of

Fig. 7: Fake and Real Image 2D Distribution

being very similar to the real ones therefore, we want their
distributions to be equal or the same. In figure 7 we can
observe the distribution of 5 real images and 5 false ones
of the CelebA dataset at epoch 8 in DCGAN, where the
distribution of the false images is quite accurate to the real
one.

7.3.1 Precision

Precision evaluates the fidelity of the images. Taking fig-
ure 7 as an example where we have two distributions, the
precision counts all those red values that overlap with blue
values, and divides this number by the total of red points.
In short, Precision measures the percentage of false images
that appear real over all the false images, although we could
suffer Mode Collapse if it only generates images from a
subset of the real distribution.

7.3.2 Recall

The Recall evaluates the diversity of the images. As in pre-
cision, it counts all those overlapping points between both
distributions but divides this number by the number of blue
points. Recall measures the percentage of false images that
appear real over the real images.

7.3.3 Implementation - KNN

In order to implement Precision and Recall we have used
the Inception-V3 network to obtain the feature vectors of a
subset of real and false images, just like the FID. We have
carried out a KNN algorithm, where for each of these fea-
ture vectors we have calculated the distance to the other vec-
tors of the same set of vectors (real or false images), in order
to keep the third shortest distance and use it as a radius of
the vector. Once we have these radii, we have to calculate
the distances between each of the false image vectors and
each of the real image vectors, and if the distance is less
than the vector radius, we increase the counter of precision
by 1. This process is also done in reverse to increase the
recall counter, and finally we divide these counters by the
total number of real vectors (or false if they are the same
size).

In this way, using the characteristics of the images that
are vectors of 2.048 values, we can calculate the Precision

and Recall more easily than using the values of the pixels
of the images.

8 MODELS IMPLEMENTATION

This section explains in broad strokes the steps we have fol-
lowed to carry out the training, from downloading the raw
datasets to obtaining the results. It is worth mentioning that
we will not explain step by step the training loop, nor the
differences between the models, which are a few. However,
you can consult our source code for a better understanding.

8.1 Data Acquisition

Both datasets (MNIST and CelebA) have been downloaded
from their respective official pages in order to preprocess
them. MNIST contains a total of 70,000 images, and the
CelebA dataset contains a total of 202.599. The fact of pro-
cessing the original files has allowed us to create different
files with different numbers of images for each dataset, al-
lowing us to carry out training with more or less images,
and check if the more images for the training have an im-
pact on better results. We have decided to create two sets
of images for each dataset, one of 30.000, and another of
70,000, which we will compress to be able to upload them
to Google Drive, and to be able to use them in Google Co-
lab.

8.2 Data Processing

To load the data from the compressed files, we have im-
plemented a CustomDataset class, which will allow us to
load the images dynamically during the training, and ap-
ply transformations to them. The images need to have the
same dimensions as the images generated by the Generator
(64x64), so they must be resized. We also have to normalize
the images for each channel to a mean and standard devia-
tion of 0.5, so that they have values between [-1, 1], and
finally, we convert the image arrays to tensors.

8.3 Before Training

In addition to loading the images, we have to declare other
objects/variables that are necessary to perform the training
of both neural networks, such as the gradient descent algo-
rithm, the loss function, and other hyper-parameters such
as the learning rate. In order to calculate the quantitative
metrics, we have created a class called GAN-Evaluator,
which has a set of methods that calculate the metrics (IS,
FID and Precision/Recall), and others that attend to them.
Before starting the training, it must be initialized, since it
will load the InceptionV3 model, and it will also calculate
and save the activations of the real images for later use in
FID and Precision/Recall. We also have created the GAN
utils class, which has a great variety of methods that will
be used mainly to generate and save plots, images gener-
ated by the Generator, training checkpoints, and the results
in text format. This class must be initialized before loading
the dataset, since it also sets a seed to determine the ran-
domization of the training, which will allow our results to
be reproducible.

8 EE/UAB COMPUTER ENGINEERING THESIS: Convolutional Generative Adversarial Networks

8.4 Training Strategy
We have to carry out 12 different training sessions, since
we have 4 datasets and 3 models. Each training consists
of a double loop, where we pass all the dataset images to
the model in batches, so that it generates false images and
the Discriminator/Critic compares them with that batch of
real images, and then modify the network parameters. This
process of passing all the images to the network occurs 50
times, also called epochs. Apart from the actual training of
the networks, for each epoch or number of epochs, we will
perform some calculations in order to generate and save the
results:

• Loss Values: for each epoch we will save the loss val-
ues from the Discriminator/Critic and the Generator.

• FID and IS: for each epoch we will generate 1.000
images to calculate the FID and IS, and then we will
store these values in an array.

• Precision and Recall: every 5 epochs we will cal-
culate and save in an array, the Precision and Recall
using the 1.000 images generated for the FID and IS
calculations.

Finally, when the 50 training epochs have been completed,
the following is performed:

• Losses Chart: the chart of the losses from the Dis-
criminator/Critic and the Generator per epoch is dis-
played, and save it.

• Training Time: the total training time is calculated.

• FID and IS Charts: the chart of the FID and IS values
per epoch is displayed and save it.

• Final Model: the Generator parameters of the model
are saved, obtaining the already trained model, which
can later be used to generate fake images.

• Text Results: a text file containing all the numerical
results of the training is saved.

9 RESULTS

In this section, we will show and comment on the results
obtained by each of the models, analyzing and compar-
ing them with each other. Before we begin, we want to
highlight that the IS metric has not given conclusive results
since, as we already explained, this metric is based on the
results obtained from the InceptionV3 classifier, which has
not been trained with our datasets.

9.1 DCGAN
To carry out the DCGAN trainings, we have used the T4
GPU, which is the least powerful offered by Google Co-
lab. As we see in table 2, the duration of the trainings has
been relatively short, since for the datasets of 70,000 im-
ages, they have lasted approximately 2 hours and 40 min-
utes. The results of the FID are in accordance with expec-
tations, obtaining better results the more images have been
used for the training, being a behavior that is repeated in the
other training sessions, and that is logical. The same effect
could also be expected in Precision and Recall although, as
we will see in this model and in the following ones, it is

Dataset Imgs. Time FID IS Pr Rc
MNIST 30k 1h 21m 51.15 2.17 0.05 0.13
MNIST 70k 2h 42m 49.54 2.13 0.08 0.10
CelebA 30k 1h 16m 59.25 2.30 0.39 0.06
CelebA 70k 2h 38m 51.40 2.38 0.50 0.11

TABLE 2: TRAININGS TABLE: DCGAN

not always true. In the MNIST datasets, the Precision and
Recall values are quite low, so we can intuit that the Gen-
erator is not capable of copying all the font styles that are
in the dataset, and can generate images that differ from the
real ones. On the other hand, in the CelebA dataset, we do
obtain a good value in Precision, indicating that the images
generated are of high quality, but there is little diversity due
to low recall.

Fig. 8: FID and IS values/epoch on CELEBA 70k

The FID metric has served us both in the DCGAN and in
the other models as a good metric to check for improvement
during training. Figure 8 shows the FID values obtained for
the CelebA70k dataset, obtaining high values at the begin-
ning, and converging to a value of 51 in the last epochs. For
datasets with 70,000 images, the FID has taken more epochs
to converge, and it could even have continued to improve.
On the other hand, the training sessions with fewer images
have either converged faster, as in the case with MNIST, or
they needed more training to converge in CelebA. On the
other hand, we can see that the IS values do not have a sub-
stantial improvement as training progresses, but that their
value is very similar in the first and last epochs of training.

Fig. 9: Losses Chart of CELEBA 70k

As we have already mentioned, the values of the loss
function in the DCGAN do not provide any information to
check the state of the training. In the chart of figure 9 we
can see that the loss values of both the Generator and Dis-
criminator move away from each other, without reaching
the Nash Equilibrium where both values are close to 0.5.
Despite this, the loss values are not triggered on one net-
work and set to 0 on the other, so as long as there are these
loss values, both networks are learning.

Sergi Sánchez Hernández: Convolutional Generative Adversarial Networks 9

Fig. 10: DCGAN Generated Images of CelebA 70k dataset

Figure 10 shows 5 images generated with the CelebA 70k
dataset, where we can see that the model has been able to
imitate facial characteristics quite well, and generate im-
ages with diverse features.

9.2 WGAN
To carry out the WGAN trainings, we have used the V100
GPU offered by Google Colab, which is more powerful than
the T4 used in the DCGAN and has allowed us to perform
the trainings 2.5 times faster than with the T4 GPU.

Dataset Imgs. Time FID IS Pr Rc
MNIST 30k 1h 37m 70.58 2.12 0.02 0.06
MNIST 70k 3h 23m 54.72 2.16 0.07 0.17
CelebA 30k 2h 3m 70.05 1.97 0.30 0.03
CelebA 70k 4h 19m 58.66 2.17 0.50 0.07

TABLE 3: TRAININGS TABLE: WGAN

Despite the fact that we are using a more powerful GPU,
the training times are a bit higher than in the DCGAN, need-
ing 4 hours and 20 minutes for the CelebA70k dataset, as
shown in table 3. In this model, the difference between
training with grayscale and color images is notorious, since
the time is longer for color images. The Precision and Re-
call values are generally lower than in the DCGAN.

Fig. 11: FID and IS values/epoch on CELEBA 70k

The FID values obtained by this model are worse com-
pared to those of the DCGAN, but instead, as shown in
figure 11, the FID values converge much earlier and in a
smoother way. This is because the Lipschitz restriction lim-
its the learning of the networks.

Fig. 12: Losses Charts of CELEBA 70k and MNIST 70k

In the case of the WGAN, this convergence is also no-
ticeable in the values of the loss function. Figure12 shows

us the chart of the loss functions of the CelebA and MNIST
datasets with 70,000 images, and we can see that their loss
values tend to converge. This convergence is correlated
with high-quality image generation, so we can assume that
in the case of CelebA, where there is a convergence to 0, the
quality of the images will no longer be improved. This point
of convergence is at epoch 30, and if we look at the previ-
ous FID chart, we can see that it is true that at epoch 30 the
values practically do not get better. In the MNIST dataset it
has not converged, so more training would be necessary to
obtain better results and images.

Fig. 13: WGAN Generated Images of CelebA 70k dataset

With the images shown in figure 13, we can confirm that
the WGAN has obtained worse results than the DCGAN,
since a slight worsening can be seen in the images.

9.3 WGAN-GP
To carry out the training of this model, we have used the
V100 GPU, as for the WGAN.

Dataset Imgs. Time FID IS Pr Rc
MNIST 30k 3h 1m 88.14 2.33 0.01 0.05
MNIST 70k 6h 40m 63.52 2.29 0.05 0.05
CelebA 30k 3h 28m 99.95 2.57 0.15 0.08
CelebA 70k 7h 52m 77.44 2.28 0.37 0.06

TABLE 4: TRAININGS TABLE: WGAN-GP

As we can see in table 4, the training times have practi-
cally multiplied by two respect to those of the WGAN since
the calculation of the gradient penalty for this model is com-
putationally expensive. The longest training has been with
the CelebA dataset with 70,000 images, which has lasted
almost 8 hours. The results obtained from the FID, Preci-
sion, and Recall are worse compared to those of the DC-
GAN and WGAN. This is because this model takes longer
to converge than the others since it limits the gradients and
therefore the speed at which the networks converge. These

Fig. 14: FID Charts of CELEBA 70k and MNIST 70k

FID results are not the best possible results for this model
since, as we can see in figure 14 where the FID values for
the CelebA and MNIST datasets with 70,000 images are
shown, the FID has not yet stagnated. This fact is much
more noticeable for the MNIST than for CelebA, although

10 EE/UAB COMPUTER ENGINEERING THESIS: Convolutional Generative Adversarial Networks

if we look at the values, we can see that they are decreasing.
We can also appreciate that the FID obtained is much better
for datasets with a larger number of images, so with more
images, the results would be even better. Therefore, with
more training and a greater number of images, we could
obtain better results, even better than those obtained with
WGAN.

Fig. 15: Losses Charts of CELEBA 70k and MNIST 70k

On the other hand, we have the loss function values,
which should be similar to those of the WGAN, trying to
converge to 0. As we see in figure 15, where we have the
loss values of CelebA and MNIST for 70,000 images, this
is more or less fulfilled. In the CelebA training, the loss of
the Generator continues to decrease once it has reached the
value of 0, due to the fact that the Critic distinguishes false
and real images very well.

Despite this, the FID values continue to decrease little by
little, meaning that the quality of the images increases. It
would be necessary to carry out a longer training to check
the behavior of the Generator, and to see if its large loss can
greatly increase the quality of the images to finally converge
to 0. On the other hand, in the case of MNIST, the two

Fig. 16: WGAN Generated Images of CelebA 70k dataset

loss values do converge to the value of 0. The low results
of the WGAN-GP compared to the other models are also
notorious in its images, since in figure 16 we can appreciate
that the quality of the first three images is not very good,
and the last two have not even formed a face.

10 CONCLUSIONS

We can affirm that we have achieved all the objectives pro-
posed for this project since we have successfully imple-
mented the three GAN models, together with a set of met-
rics to compare their results. The images generated by the
three models are distinguishable from the real ones, but we
have achieved some resemblance between them, especially
in the MNIST datasets. Regarding the quantitative metrics,
we have achieved acceptable results, despite the fact that we
expected the WGAN-GP model to obtain better results and
it has not. It is also necessary to take into account the limit-
ing factors of these, since the use of GPUs has been limited
due to their costs and the metrics are based on a pre-trained
classifier with a different dataset.

11 ACKNOWLEDGMENTS

I would like to first thank my project tutor, Jordi Casas
Roma, who has been a fundamental support and has guided
me in carrying out this work. I also want to thank both my
family and my romantic partner, for their confidence, and
the moral support they have given me, which has been es-
sential to keeping me motivated and focused.

REFERENCES

[1] Ian J. Goodfellow and Pouget-Abadie. Generative Ad-
versarial Networks. arXiv, 27, 2014.

[2] Alec Radford and Metz. Unsupervised Representation
Learning with Deep Convolutional Generative Adver-
sarial Networks. arXiv, abs/1511.06434, 2015.

[3] Martı́n Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein gan. ArXiv, abs/1701.07875, 2017.

[4] Ishaan Gulrajani and Ahmed. Improved Training of
Wasserstein GANs. arXiv, abs/1704.00028, 2017.

[5] S. Laoyan. Scrumban: lo mejor de
dos metodologı́as ágiles [2022] • Asana.
https://asana.com/es/resources/scrumban. [Online;
accessed on 03/12/2023].

[6] Kanban Tool – Tablero Kanban para Empresas.
https://kanbantool.com/es, 2023. [Online; accessed 2.
Jul. 2023].

[7] S.H. Sergi. Convolutional generative adversarial net-
works. https://github.com/sergissh/TFG.git, 2023.

[8] David Berthelot and Tom Schumm. BEGAN:
boundary equilibrium generative adversarial net-
works. CoRR, abs/1703.10717, 2017.

[9] Tero Karras and Timo Aila. Progressive growing
of gans for improved quality, stability, and variation.
CoRR, abs/1710.10196, 2017.

[10] Tero Karras and Samuli Laine. A style-based gener-
ator architecture for generative adversarial networks.
CoRR, abs/1812.04948, 2018.

[11] Xintao Wang and Ke Yu. ESRGAN: enhanced super-
resolution generative adversarial networks. CoRR,
abs/1809.00219, 2018.

[12] MNIST Dataset. https://yann.lecun.com/exdb/mnist,
2013. [Online; accessed on 03/06/2023].

[13] Ziwei Liu and Luo. Deep learning face attributes in
the wild. 2015.

[14] Thalles Santos Silva. A Short Introduction to
Generative Adversarial Networks - Thalles’ blog.
https://sthalles.github.io/intro-to-gans, March 2023.

[15] Farzan Farnia and Asuman E. Ozdaglar. Gans may
have no nash equilibria. ArXiv, abs/2002.09124, 2020.

[16] Read-through: Wasserstein GAN.
https://www.alexirpan.com/2017/02/22/wasserstein-
gan.html, May 2023.

[17] Lilian Weng. From GAN to WGAN.
https://lilianweng.github.io/posts/2017-08-20-gan,
August 2017. [Online; accessed on 06/07/2023].

[18] Christian Szegedy and Vincent Vanhoucke. Rethink-
ing the inception architecture for computer vision.
CoRR, abs/1512.00567, 2015.

[19] Olga Russakovsky and Jia Deng. Imagenet large scale
visual recognition challenge. CoRR, abs/1409.0575,
2014.

Sergi Sánchez Hernández: Convolutional Generative Adversarial Networks 11

APPENDIX

A.1 Project Planning

Fig. 17: Tasks and Gantt Chart

A.2 Generated Images

A.2.1 DCGAN

Fig. 18: Images Generated for CelebA 30k dataset

Fig. 19: Images Generated for MNIST 30k dataset

Fig. 20: Images Generated for MNIST 70k dataset

12 EE/UAB COMPUTER ENGINEERING THESIS: Convolutional Generative Adversarial Networks

A.2.2 WGAN

Fig. 21: Images Generated for CelebA 30k dataset

Fig. 22: Images Generated for MNIST 30k dataset

Fig. 23: Images Generated for MNIST 70k dataset

A.2.3 WGAN-GP

Fig. 24: Images Generated for CelebA 30k dataset

Fig. 25: Images Generated for MNIST 30k dataset

Fig. 26: Images Generated for MNIST 70k dataset

