UrnB

Universitat Autonoma
de Barcelona

Diposit digital
de documents
de la UAB

This is the published version of the bachelor thesis:

Lin, Chen Jieni; Senar Rosell, Miquel Angel, dir. Configuration template for
installations Within Wattwin Platform. 2023. (Enginyeria Informatica)

This version is available at https://ddd.uab.cat/record /280679
under the terms of the license

https://ddd.uab.cat/record/280679

BACHELOR THESIS IN COMPUTER ENGINEERING, SCHOOL OF ENGINEERING, AUTONOMOUS UNIVERSITY OF BARCELONA (UAB)

CONFIGURATION TEMPLATE FOR
INSTALLATIONS WITHIN WATTWIN

PLATFORM
Chen Jieni Lin

Resumen- El proyecto consiste en la implementacién de plantillas personalizadas en la plataforma
de Wattwin. Este nuevo modelo permitira que los usuarios puedan crearse instalaciones person-
alizadas, rompiendo con la limitacién actual a instalaciones fotovoltaicas y de aerotermia. De este
modo, los proyectos de los usuarios podran adaptarse mejor a sus necesidades.

Para lograrlo, se deben modificar algunas entidades existentes en la aplicacion y las relaciones entre
ellas, lo que implicara cambios tanto en el front end como en el back end y la base de datos, asi
como en el motor de busqueda. Es necesario comprobar que tras integrar la nueva funcionalidad, la
plataforma siga funcionando correctamente.

Palabras clave —
Angular, Node

Fotovoltaica, Sistemas de energias renovables personalizados, MongoDB,

Abstract— The project consists on the incorporation of plant templates into the Wattwin platform.
This new model will enable the application to provide customized installations for its customers,
extending beyond the existing photovoltaic and aerothermal options. Hence, the projects more
adaptable to their specific requirements.

To accomplish this objective, certain existing entities and their interrelationships need to be modified.
These modifications will affect not only the front end but also the back end, the database, and
the search engine. These changes are necessary to ensure the seamless operation of the entire

platform, including the successful integration of the anticipated new functionality.

Keywords— Photovoltaic, personalized renewable energy systems, MongoDB, Angular, Node

1 INTRODUCTION

ATTWIN is a company that offers Software As

s’s/ A Service (SAAS), which is a Business Pro-

cess Management (BPM) [1] platform focused

on the design and commercialization of renewable energy
installations.

The primary clientele of Wattwin comprises businesses
engaged in the sale and installation of renewable resource
systems to their own customers, such as EndesaX or Bon-
preu Esclat. Wattwin’s primary objective is to facilitate the
entire process by offering a comprehensive range of non-
integrated tools, starting from the initial stages of gener-

o Contact mail: 1530245 @uab.cat

® Specialization: Computer Engineering

o Tutored by: Miquel Angel Senar (Department of Computer Archi-
tecture and Operating Systems.)

e Year: 2022/23

ating an offer to subsequent maintenance tasks. For ex-
ample, the platform provides intuitive dashboards that en-
able users to monitor the progress of their ongoing projects.
These dashboards offer a quick overview of the current sta-
tus of each project, including steps such as client signa-
ture requirements, pending documentation, and completed
tasks. Moreover, Wattwin allows users to personalize their
projects by specifying the type of system (solar or aerother-
mal), the collaborating supply point company, and the pro-
posed tariffs. Additionally, the platform can furnish infor-
mation about the designated installation personnel along
with their contact details, as well as an estimated budget
based on the recommended tariff and actual consumption.

The company began by giving photovoltaic solutions and
is continuing with aerothermal. However, to fulfill the con-
stantly growing market demand, there is a need to widen
nowadays’ installations variety by including other services
and products such as electric car charging stations or other
energy management solutions.

July 2023, SCHOOL OF ENGINEERING (UAB)

2 UAB COMPUTER SCIENCE BACHELOR'’S THESIS : INSTALLATIONS CONFIGURATION TEMPLATE

The primary objective of this project is to incorporate
these services, which will be accomplished through the in-
troduction of a new form of installation known as “person-
alized or custom installations.” This approach allows users
to create solution configurations that covers a wide range of
projects, eliminating the existing limitations that are cur-
rently associated with photovoltaic and aerothermal sys-
tems.

1.1 Motivation

Wattwin fights against climate change. Being part of this
revolution makes my work as a computer engineer worth
more than just a few lines of code.

The existing workflow within our platform commences
with the creation of a solution entity that covers various
specifications, including the installation typology. Subse-
quently, they can generate customized budgets for poten-
tial installations, with each budget associated with a spe-
cific solution. Upon reaching this stage, the project can be
created by assigning a solution to it. Consequently, within
a single project, there exist multiple budgets, and multiple
distinct installation. However, it is important to note that
these installations must adhere to the same type, as they are
constrained by the shared solution, which acts as a limiting
factor regarding the typology.

With the increase in environmental awareness, the vari-
ety of products used to reach this aim is expanding too. To
follow up with market demands, the company needs a new
type of installation: personalized one. Nowadays, when a
customer generates a process instance, entity which cor-
responds to a project or service, in the platform, it has a
unique solution related to the typology: aerothermal or PV.

The aim of this project is to break this limitation as well
as adding a new type of installations. It is sought that the
installation does not inherit the solution typology but has
its own one. This would mean that one process instance
can have different kinds of installations. In the clientele
perspective means that the user can offer its clients in one
single project several type of renewable source systems, in-
stead of creating one project for each type of solution.

To achieve the objective of decoupling the relationship
between topology and installations, a new model known as
a ”’plant template” is required. This class will serve, among
others, the purpose of specifying the typology of the sys-
tem as well as some compulsory products (this list is called
bill of materials within this project), instead of relying on
the solution. The budget and project components will still
be associated with a solution. However, the key distinc-
tion lies in the fact that the solution will now have multiple
distinct templates. As each installation is assigned a plant
template, it means that a project can include various types
of installations, depending on the allowed templates within
the solution.

This modification will also facilitate the incorporation of
a new category of installations, which are the desired “’per-
sonalized” ones. If a template lacks any typology specifica-
tions, it means that it is a customized template. So that, the
projects will be able to have either photovoltaic, aerother-
mal or custom installations if the solution is configured so
that it allows all three types.

In summary, the proper execution of this project is ex-

pected to bring the platform a wider range of renewable
installation types and it will offer a more generic type of
project.

1.2 Objectives

The project is not independent of the rest of the platform; on
the contrary, it requires integration with the existing com-
ponents. Therefore, it is not only a matter of creating new
modules but also modifying the ones already present and
reassessing the relation between them.

The primary features to fulfill to reach the objective, or-
dered in descendant priority, are the following:

¢ Add a new type of installation type: personalized.
* Allow modify and configure the template.
¢ Clearly show the detail of the template.

* Maintain the consistency of existing modules in the
database with the new ones.

* Adapt the existing modules to the template module.

* Adapt the components to the most recent design.

2 METHODOLOGY

Wattwin follows the Scrum [2] methodology, which is part
of the Agile project management philosophy due to its iter-
ative and incremental approach.

By following this methodology, the company is split into
several teams of a small number of persons with a scrum
master, who leads the team and organizes the meetings. In
our situation, this person also plans the sprints by taking the
tasks from the product backlog '.

The scrum cycle has a duration of X weeks depending on
what the company establishes, in my situation, it is of three
weeks. Each cycle is formed by a scrum planning meeting,
some daily scrum meetings, a sprint review, and a sprint
retrospective meeting.

During the daily meetings, each person communicates
the plan for the day, corrects what was done from the plan
for the previous day, and explains the stoppers encountered
if any.

In our situation, the sprint review and retrospective, as
well as the sprint planning are joined together in one single
meeting. So that, at the same time we end the sprint by
telling the pro and cons of how the sprint has been carried
out, we start the new one by evaluating the tasks by giving
them story points? and assigning them to a developer. If
there are tasks that have not been finished in one sprint, it
usually persists in the following one.

The process of evaluation starts with explaining what the
task is about. Once in context, each developer should indi-
vidually weigh the task difficulty. In order not to influence
each one’s decision, everyone’s opinion is kept in secrecy
until everyone is ready, which is the moment when the fi-
nal punctuation of the task is discussed. If all the members

IList of tasks for the development team that comes from the roadmap
and its requirements.

2Unit of measure to express the amount of effort required to implement
a task.

CHEN JIENI LIN: RENEWABLE ENERGY INSTALLATIONS ENTITY CONFIGURATION TEMPLATE 3

of the team rated the task with the same number of story
points, then the mark is directly assigned. If not, the per-
sons who have not agreed must discuss until reaching an
agreement.

In addition, there are weekly follow-up meetings that
take place per team, to show the progress of one’s task to
the rest of the team. This is done to have a global image of
what is being accomplished.

et

Fig. 1: Task pipeline

On the other hand, in reference to the task progress, the
company follows a methodology in the form of the task
pipeline as shown in Figure 1. Each task travels from dif-
ferent phases and servers before it is completely done.

All tasks that belong to the sprint start in the “To do”
column until the developer begins the assignment in a local
branch when it is moved to “In process”. Once finished,
the team member requests that one’s task is merged into the
platform source code; from this moment on, the tasks enter
“Code Review” status. Meaning that it has to be checked by
the scrum master. If no problem is found, then it is merged
to Develop server and moved to “Developer Review”; oth-
erwise, it relies upon the same stage until corrections are
done.

In the “developer review” phase of the pipeline, as its
name indicates, the developer has to check whether the
task has been completed accurately, even merged with other
team members’ work. Sometimes, at this moment the de-
veloper notices some missing requirements or functional
compatibility with others’ tasks; then, the task has to be
restarted. When the programmer considers the task to be
complete, it is moved to the next step, finishing the task if
everything goes well.

The User Experience (UX) review phase takes place due
to the need of testing the product, not only from a functional
perspective but also from the user point of view, checking
whether the interaction human-product is convenient. In
Wattwin, there is a team more focused on this aspect, so
this becomes their duty. If any error is encountered, the task
is restarted; otherwise, it continues the flow of the pipeline
arriving at “Ready for testing”. This is a column where the
task rests until a periodically-planned merge to Quality As-
surance (QA) server takes place. This responsibility relies
on the scrum master.

Last but not least, the task arrives at the “User Accep-
tance Testing (UAT)” phase; when the role in charge is the
analyst of the quality assurance team, who guarantees the
quality of the product. For instance, ensures that the plat-
form follows a unified design pattern by checking that the
developer has strictly followed the design model agreed at
the design phase. This step is prior to the task backlog;
thus, it does not appear in the task development pipeline. If
any problem is encountered, the task goes back to the “To
do” list; if not, it will wait in “Done” until the periodically-

planned merge to the production server. The production
server is the one that hosts the final customer requests; in
other words, the final customer accesses this server.

The different servers coexist seeking progress in every
next server. Local servers can be compared to a personal
playground, where changes of any kind will not influence
and have any repercussions. The development server, in
Figure 1 named Develop, is like a shared playground, where
personal errors are exposed to other developers working
within this server. When it comes to the QA server, it should
be more similar to the production server; prior errors should
be cleaned.

3 PLANNING

Fig. 2: Gantt chart

The project is thought to be completed within three
months. Since we work with scrum methodology, as pre-
viously explained in the last section, all the tasks will be
divided into four sprints with a global distribution of tasks
as illustrated in Figure 2, which is a Gantt chart [3]. This di-
agram is used as a tool to control the work completed com-
pared to the planned. Each phase corresponds to a sprint
mentioned, with its expected duration.

Nevertheless, since the number of story points is an
agreement between all the members of the scrum team, it
cannot be known beforehand the number of tasks that each
scrum will have. Thus, the planning at the starting point of
the project it is just personal.

4 TECHNOLOGIES

The project’s front end® will be developed in Angular[4],
which is a framework of TypeScript[5] that in turn, is
a superset of JavaScript and adds optional static typing.
JavaScript is a scripting language understood by all major
web browsers.

When it comes to the back end?, LoopBack[6] is used.
This is an extensible Node.js[7] and TypeScript framework.
Node.js is an asynchronous event-driven JavaScript run-
time.

3Part of the website that the user interacts, visualizes, and experiences,
such as the Graphical User Interface (GUI).

4 Also called server side, it is the non-visual part of the website in charge
of data management and storage. It enables APIs so that the front end can
request processed data from the back end.

4 UAB COMPUTER SCIENCE BACHELOR'’S THESIS : INSTALLATIONS CONFIGURATION TEMPLATE

A framework is a structure that provides a set of extra
tools, libraries, and conventions over a programming lan-
guage. It usually facilitates the developer to organize the
code or makes it easier and faster to write and understand.

MongoDB is the database to which our LoopBack APIs
make their requests. It is classified as a NoSQL[8] or non-
relational database, which means that it is not structured like
relational ones: with table relations. It is simpler to design
and scale horizontally.

However, databases are not always enough. To speed up
some important searches, the platform uses ElasticSearch
(further on named ES) search engine. This is a system that,
if you provide the conditions that the data should meet, lists
the matching information from the computer system.

To perform version control and project storage, the com-
pany makes use of Bitbucket, which is a Git-based source
code repository.

5 INITIAL STATE OF THE PROJECT
AND STATE OF THE ART

The platform can be seen as a system with a set of input
data; after dealing with this data, it is able to generate an
output, which is usually some kind of document (technical,
offers, quotations, and the materials needed ...).

Nowadays, the input data is primarily focused on config-
urating a PV or Aerothermal project. For each of them, a
specific installation design is needed. The first one requires
a graphical design: a map is shown, the user searches the
desired location and draws the surface of the solar panel
and configures some parameters. While aerothermal one
requires a preset form with some questions.

Having the initial design settings completed, the cus-
tomer has available the initial bill of materials required for
the installation which is inherited from the solution, a set of
billing comparisons (showing the incomes, and savings. ..
), a tariff configuration option ...

Nevertheless, the platform has also other functionalities
not directly related to our project, such as its own mail
system, product catalog management, technician report
and management, customisable customer offer pipelines (to
control the state of all the projects that the customer is work-
ing with) ...

When it comes to the state of the art of technologies used,
Angular is at version 15. With the upgrades made, it has
been improving its performance, its support for accessibil-
ity... It has assured compatibility with the latest versions
of TypeScript while dropping support for the oldest ones.
Some of the big companies that use Angular as one of the
programming languages used include Microsoft (on its of-
fice suite product Office, for example) or Google (on its
mail system Gmail).

The most recent version of LoopBack is number 4; with
which this language has reached a catch-up with the latest
technologies, it has removed complexity and some incon-
sistency that existed among modules, and it has introduced
controllers and repositories for better composability.

6 REQUIREMENTS

This section will show the functional and non-functional re-
quirements withdrawn in the project, split into back end re-
lated ones and front end related ones.

6.1 Functional requirements

The requirements which define a functionality within the
software are called functional requirements. Some of the
principal requirements of our project are the following:

TABLE 1: FUNCTIONAL REQUIREMENTS

Back end
Back end

1- Allow creating new templates

2- Allow updating the already existing
templates

3- Allow obtaining statistics on the usage
of the templates

4- Adapt the actual solution configuration
flow to the templates

5- Allow obtaining the product order list
rules configuration from the solution tem-
plate

6- Allow obtaining the product tree from
the solution template

7- When saving an installation with a tem-
plate applied, it should store the default
values set by the template.

8- Populate the actual solution data set with
a plant template

9- Allow the visualization on a screen with
a list of existing templates while giving the
option to create a new one

10- Allow archiving and deleting existing
template

11- When configuring the template, allow
setting the option of enabling the energy
supply point view in the solution that ap-
plies the corresponding template.

12- When configuring the template, allow
setting the option of enabling technician
view in the solution that applies the corre-
sponding template.

13- When creating a new solution, enable
to choose all the existing template types.
14- Show the template selected in the solu-
tion detail screen.

Back end

Back end

Back end

Back end

Back end

Back end

Front end

Front end

Front end

Front end

Front end

Front end

6.2 Non-functional requirements

Non-functional requirements are specifications that im-
prove the main functionality of the system. Some of the
ones extracted from our project are:

CHEN JIENI LIN: RENEWABLE ENERGY INSTALLATIONS ENTITY CONFIGURATION TEMPLATE 5

TABLE 2: NON-FUNCTIONAL REQUIREMENTS

1- Apply the unified styles of the platform | Front end
to the new components

2- Separate the template-related function- | Front end
alities in different screens organized by

tabs

3- Give the option to show the templates | Front end
list in a table mode

4- Responsive design of the screens Front end

7 SYSTEM DESIGN

7.1 System classes

This subsection will illustrate the relationship between the
existing classes compared to the newly created ones to ful-
fill the requirements.

CLASS DIAGRAM

BoM_Td

FormsTemplate_Id

Fig. 3: New class diagram

The Figure 3 exposes the relation between the different
existing classes in the system and how are they related with
the new model created: Template.

Each class requires an identifier, which in the illustration
is simplified as “Id”, so that each instance can be singled
out. The attributes that are not relevant to our project are
not shown.

Our principal model has a unique name, an optional de-
scription, an identifier, some configuration data and three
booleans’ that represent what their name clearly indicates.
The first flag points out whether supply points are allowed,
and only in case they are, the second flag makes sense:
whether is possible to set several of them. When it comes
to the latest Boolean variable, it just shows if data related to
the installer will be shown.

As it can be seen, the new class have two types of re-
lations with other classes: belonging one and embedded
one. The main difference between relies in where the data
is stored. Template model stores the identifier of “solutio-
nEngine” and “FormsTemplate”; however, these objects are
stored in their own model. In short, it mentions an instance
of another model.

On the other hand, Template class embeds an “Bill Of
Materials (BOM)” object. This means that the instance of
the object is stored directly in the Template class. So that,
if one queries in the BOM document in the database, the
instance stored in Template will not be found.

SData type that can have only two possible values: “true” or “false”.

It can be seen from the class diagram that each of the
installation types has a Template instance’s identifier. But
when it comes to the solution model, it uses and there-
fore stores several Template identifiers, but it references one
Template instance as default one. Obviously, this default in-
stance must be included in the array of Templates stored.

CLASS DIAGRAM

PV_Installations_Id

"""""""" Solution_Id

belongsTo Solution Id bolongsTo
SolutionEngine_Td

ProcessInstance_Id
Solution_Id

SolutionEngine_Id
ConfigModel

Rerothermal Installations_Id
Solution_Id

Fig. 4: Old class diagram

Figure 4 shows the part of nowadays system’s class dia-
gram that is important to our project. By comparing Figures
4 and 5, it can be clearly seen how the previously mentioned
changes are put into practice.

The configuration model (configModel) attribute of the
solution engine class is the variable that indicates the in-
stallation typology. Since the relation between solution and
solution engine has dissolved and a solution accepts several
template identifiers, it means that several types of solution
engines are allowed per solution. That is why, despite main-
taining the relationship between the solution and the instal-
lations, a process instance can still have different types of
installations.

7.2 UX/UI design

In this subsection, some of the layouts and its interactions,
as well as the restrictions of the actions, will be exposed
with some graphical representations made with Figma® by
the designers of the company. The rest will be exposed
while explaining the implementation and its functionality.
Figure 5 shows what the user expects to see when accessing

°Q
v a-

Plantillas de instalacién

~

Mostrando 4 Plantillas de inste

B Y00 B

® =B

» B @

Fig. 5: Plant template list design

6Collaborative application for interface design.

6 UAB COMPUTER SCIENCE BACHELOR’S THESIS : INSTALLATIONS CONFIGURATION TEMPLATE

the template list. The upper left hand of the header of the
view is reserved for the title that counts the number of items
exposed, while on the right one appears a button with which
new templates are created. Just underneath the title, there is
a search bar and the filters configured with ElasticSearch.
When it comes to the items, the text in bold represents the
template name; while the icon beside represents its status,
which is changeable with the dropdown options shown once
clicked the icon at the end of the item card. The text shown
below the title is the optional description. At. the bottom,
there is some extra information: the creation date and the

type.

Crear plantilla de instalacién X

Rellena los siguientes campos para crear una plantilla de instalacion.

Nombre *
Descripcion

Tipo de instalacion *

BB Fotovoltaica ® ‘ W Aerotermia

Personalizada

Cancelar

Fig. 6: Plant template create view

= Verdetalle = Verdetalle
® Archivar @3 Desarchivar
@ Duplicar v W Eliminar v

Fig. 7: Active status drop
down menu

Fig. 8: Archived status drop
down menu

Figure 6 exposes the pop-up that would appear once the
button in the header of Figure 5 is clicked. This dialog has a
form where the name field is compulsory, while the descrip-
tion is not. Radio options represent the type, meaning that
only one of the three can be selected at a time. It can be con-
cluded that the fields marked with an asterisk are required
ones.

Each template has its actions, which are shown once
clicked the button at the end of the item card. It opens the
drop down menus shown in Figure 7 or 8 depending on the
status of the template. These actions allow users to change
the status, access the detail (although, if the user clicks the
title of the template it has the same interaction) or duplicate.

It has to be said that, the name must be unique, so if the
user enters a name that already exists the form will be in-
valid; thus, the “create” button must be disabled while an
error message should appear at the button of the input field.
Due to this restriction, when trying to publish an archived
template, it should check whether there already exists one
with that name. When it comes to duplicating, the name of
the newly created one will be slightly different.

8 IMPLEMENTATION

In this section, the main process interactions of the project
will be exposed.

8.1 Template list and CRUD operations

As previously mentioned, some of the requirements were
related to creating, updating (which are called CRUD oper-
ations) and the correct visualization of the templates.

Template list

U;e\f |Temp|ateListView‘ | PermissionService‘ | ElasticSearch

I Asks access i
— |

| Check permissions

L
F o

_, returns answer

-

alt [has permissions] | |

I ask for items !

return with items i i

[does not have permissions] | |
Error toaster |

Ugg\r |Temp|ateListView‘ | PermissionService‘ | ElasticSearch

L

Fig. 9: Template list sequence diagram

The Figure above shows the steps that the program per-
forms when the user wants to access the template list. There
is a clear distinction between the front end classes and back
end ones: only the service and the view belong to the former
group.

Once the enter link is clicked, the angular routing sys-
tem asks the template list class for the HTML object con-
taining the view. Before returning the results, it asks the
permission service whether the querying user has permis-
sion to do these actions or not. If positive, then the front
end emits a search petition to ES specifying the parameters
wanted. Only items that fulfil the requirements are returned.
The reason why it is asked to ES and not to the database
is that, as mentioned previously, the company handles the
large lists by storing a copy in the search engine to speed up
the querying process and further filtering if the user requires
it.

As the condition shown in Figure 9, when the user does
not have access permissions, a toaster is shown to notify the
user about the problem. Not only permissions issues trigger
this toaster, but any problem in the process; for example,
establishing the connection with ES, is also alerted to the
user by using toasters.

Once the user has accessed the template list, the “create”
button will be displayed. The creation process starts when
the user clicks this button, which should show a pop-up with
the creation form. However, this pop-up requires knowing
the solution engine allowed depending on the domain the
user is in. The domain can be understood as the version of
the platform, it may indicate the type of system subscrip-
tion that the user has. Some users, instead of subscribing,

CHEN JIENI LIN: RENEWABLE ENERGY INSTALLATIONS ENTITY CONFIGURATION TEMPLATE 7

Template CREATE

T

ElasticSearch

MongoDB

. F c
User TemplateListView

| Create new template
Crestenew template

| Get solution engines available _ |

- Get solution engines available.,|

retums SolutionEngines |

| Show pop-up with SolutionEngines
< Show pop-up with SolutionEngines

| Fill form
_

i ey data ervoi] 7

Error toaster

etortosster

| o Create button disabled

| < Show error message on the form

lSnow error message onthe form
user

l

TemplateListView F c MongoDB | | ElasticSearch

Fig. 10: Template create sequence diagram

have their own custom domain. Thus, the template list view
queries the solution engines allowed and displays it in form
of radio selectors in the dialog, as shown in Figure 6.

When the user has filled out the form, the correctness
of the data is checked, if it is right, then the template list
class enables the create button. Otherwise, the reason for
the error is notified in the pertinent field.

When the user confirms the creation, a query is sent to the
endpoint in charge of generating new templates. This API
reevaluates the data received, if it is negative, it returns an
error message to the front end, and the template list catches
the failure, showing a toaster with the problem.

Whereas, when positive, it creates the instance in the
database, copies the files specified in the template model
to ElasticSearch, and returns the new template to the front
end.

At this point, the template list reloads itself and asks the
items to show to ElasticSearch.

8.2 Template detail view

In this part, the detail view of the template will be explained.
It includes the configuration of it, the assignment of several
relations.

As exposed in Figure 11, the page header includes action
buttons that facilitate template editing and configuration of
its status, which is similar to the capabilities available in
the template list. Additionally, it displays pertinent infor-
mation about the template, including its name, description,
and status.

8.2.1 Statistics

This part satisfies the requirement of “facilitating the re-
trieval of statistical data related to template usage.” It needs
the development of an endpoint that interacts with the
database and retrieves information from the solution and
corresponding plant tables based on the template’s system
type.

On the front end, a dedicated tab will be available within
the detailed view, showing the data fetched by invoking the

mentioned endpoint, as shown in the Figure 11. This func-
tionality is particularly useful to users as it shows them the
popularity of the created templates.

Plantillas de instalacion

«

°Q

E® ® 2TB3PF YOO B

Fig. 11: Template statistics screen

8.2.2 Form template

Different types of installations utilize distinct design meth-
ods. For photovoltaic systems, a graphical interface is em-
ployed, enabling users to draw panels on a map, specify
their inclination, select the desired number of panels, and
access other related features. In the case of aerothermal sys-
tems, a specific form must be completed, providing the nec-
essary data to configure the installation. However, person-
alized installations present a challenge. Since the usage of
such open system types varies and lacks a fixed approach, a
flexible and customisable design interface is required: cus-
tom forms.

To improve the user experience, the platform offers sys-
tem default form templates, and users can also choose from
their own pre-existing form templates. This needs estab-
lishing a relationship between the form template model and
the plant template model, where each plant template can be
assigned a form template. Consequently, the form template
needs to be incorporated into the plant template model in
the back end. While in the front end, a tab should be added
to display available form templates, allowing users to se-
lect and assign them as shown in Figure 12. Additionally,
options for modifying or deleting the assigned form should
be provided. These actions require updating the database
and should make use of the previously created update end-
point. This view requires an additional component that rep-
resents the form’s empty state, as illustrated in Figure 18
in the Appendix. It is displayed when the template lacks
any assigned form template. To improve user experience,
the word ”Add” within the displayed text is interactive and
works similarly to the button. Clicking on it triggers a pop-
up display, following the graphical representation shown in
Figure 13.

The dialog box that appears requests a title for the form
that will be related, which will correspond to the name for
the design tab of the installation that applies the template.
Therefore, this input is required and if it is not filled, the
add button is disabled Similar behavior applies to the form
selector, which is an autocomplete input.

8 UAB COMPUTER SCIENCE BACHELOR’S THESIS : INSTALLATIONS CONFIGURATION TEMPLATE

Fig. 12: Form template filled

Anadir formulario X

Determina el titulo y la plantilla de formulario que se desea anadir.

Titulo *

Plantilla de formulario *

©

Cancelar

Fig. 13: Add form template pop up

The autocomplete input is a distinct component that func-
tions as a selector, enabling users to choose from multiple
options while also serving as an input field. The entered text
serves as a query parameter for filtering the names of form
templates stored in ElasticSearch. The outcome is presented
as a list of selectable options within the selector.

8.2.3 Bill of materials

The bill of materials serves as a data object that contains
various product types associated with the template. It pro-
vides the user with the ability to define default products,
distinguishing between those related to investment and op-
erational aspects. These defaults products are automatically
assigned to the installations that uses the template. In the
detail view of the installation, it can be found out a tab with
the same product table as the below.

To present these two distinct product lists, the interface
employs separate tabs, as shown in the figure below. Ad-
ditionally, configuration options in the form of toggles are
available. These toggles facilitate the disassociation of
products from the template’s bill of materials and enable the
inclusion of alternative products from the installation’s bill
of materials tab. Notably, the latter toggle only becomes
accessible when activated, indicating the user’s ability to
personalize products outside the predefined product list.

Fig. 14: Bill of materials

8.3 Relation between form template, plant
template and bill of materials

In Figure 14, the user has the option to add a product to
either the inversion material list or the operation material
list. This section focuses on the back end perspective of
the task. The user can customize the addition of a product,
rather than making it a default for all installations. They can
define rules regarding the quantity and whether the product
should be added.

These rules are influenced by two factors: the type of
installation and the related form template, if applicable.
Thus, the user can create rules associated with form tem-
plate fields or constants related to specific installation types.
For example, the user can restrict a product to be added
only to installations where the form template’s "How many
square meters has the flat” field is greater than m?2.

To achieve this, the product selection view needs to call
the backend endpoint generated in this section. This end-
point reads the related form template and retrieves the types
of fields it contains, such as selectors, text inputs, radio
groups, and text areas. Along with the constants dependent
on installation types, these elements form all the possible
variable restrictions. The endpoint then returns this object
to the frontend, which processes and displays it as a selec-
tor. Depending on the user’s selection, operational actions
(e.g., is greater than,” ”’is equal to,” ”is contained in”’) and a
selector to choose the corresponding option, or a text input
for free-form text, are presented.

8.4 Populating script

Given that the platform is currently operational with exist-
ing user data stored in the database, releasing this project as
it is would lead to problems. Errors would occur when the
plant template cannot be found in the current solution.

To address this problem, considering that the company
makes use of the non-relational database MongoDB, a
JavaScript script needs to be created for populating pur-
poses. The primary aim of this script is to break the connec-
tion between the solution and the plants, as well as between
the solution and the solution engine. This can be achieved
through two steps.

CHEN JIENI LIN: RENEWABLE ENERGY INSTALLATIONS ENTITY CONFIGURATION TEMPLATE 9

Firstly, it is necessary to determine the type of installa-
tion the solution is associated with. This information can
be obtained by locating the solution engine linked to the
solution. With this information, a new template can be gen-
erated, containing the bill of materials currently present in
the solution. The template ID should then be stored in both
the solution and the plants associated with that solution.

Subsequently, the solution ID of the plants, as well as
the solution engine and BOMTemplate (which is the model
that represents a bill of materials) of the solutions, can be
cleared. This will effectively eliminate these relationships.

However, it is important to note that executing this script
at the beginning of the project would cause the platform to
cease functioning. Therefore, the timing for executing the
script needs to be carefully chosen.

8.5 Solution - plant template relation

In order to establish a connection between these two models
in the context of the front end, it is necessary to incorporate
a means of establishing this relationship within the detailed
view of a solution.

As previously indicated, the solution contained a bill of
materials, which was displayed in the solution detail ac-
cording to the specific type of installation. However, with
the introduction of the new approach within this project, the
solution will no longer have a directly associated bill of ma-
terials. Instead, it will have the capability to encompass one
or multiple plant templates through a specific tab within the
solution. Since the plant templates defines the solution en-
gine, it is no longer needed when creating a new solution;
so it should be removed from its creation pop up.

Fig. 15: Plant template tab in solution detail view

Figure 15 exposes the appearance of the plant template
configuration tab when the solution does not contain any
plant template-related elements. By selecting either the ex-
plicit button located at the upper right corner or the "Add”
word highlighted in bold within the box, a pop-up window,
as depicted in Figure 16, will be displayed.

This dialog presents a list of all existing plant templates.
The list can be filtered using the search bar or the selector,
which offers four options: displaying all types of templates,
exclusively displaying aerothermal templates, exclusively
displaying power plant templates, or exclusively display-
ing custom templates. The search bar filters the templates

Afadir plantillas de instalacién X

Selecciona una o més plantilias de instalacién para anadir a la solucion.

Todos lostipos ~ ¥

Punto recarga coches eléctricos
Aerotermia residencial

Pasteleria
Placas solares

Aerotermia adosado

Fig. 16: Pop up to add plant template to solution

based on their name and description. These filtering mech-
anisms act over ElasticSearch, which serves as the source
for extracting the relevant data.

The plant templates included in the solution will be avail-
able to the user when creating a process instance using this
solution; if empty, it will show the panel exposed in Figure
15 in the Appendix. The order in which they appear will
correspond to the list provided, highlighting the importance
of the drag-and-drop functionality demonstrated in the em-
phasized instance shown in Figure 17. The dots on the left
indicate draggable components, allowing the user to rear-
range the items and select their desired order, thereby facil-
itating the future selection of popular options.

Furthermore, when the right button of an instance is
clicked, a drop-down option list is displayed. This list al-
lows the user to delete the plant template, view detailed in-
formation about the template (which will redirect the user
to the corresponding URL), and set or unset a plant tem-
plate as the default. Whenever there is a default option, the
display changes to the one illustrated in Figure 19

If the solution includes a default plant template, the sys-
tem will automatically create a plant using this default tem-
plate when the user creates a process instance (modifiable
if wanted). On the other hand, if there is no default plant
template, the system will not generate any plant directly,
leaving it up to the user to create one manually. In this case,
the user can choose from the plant templates provided by
the solution, if any are available.

Fig.

17: Solution’s plant template list

10 UAB COMPUTER SCIENCE BACHELOR'’S THESIS : INSTALLATIONS CONFIGURATION TEMPLATE

8.6 Back end modifications

This section represents the primary objective of the project,
which consists at modifying the solution entity, erasing
some of its relations such as the bill of materials, solution
engine, and other data that have been relocated to the plant
template. As well as breaking the dependency between so-
lution and plants, replacing it for plant template. This im-
plies changing all the endpoints, functions, utilities, models
that rely on the data erased from the solution model.

In the context of LoopBack, a model represents a data en-
tity, defining its structure, behavior, and interactions within
the application. LoopBack offers a wide variety of features
and utilities for effectively working with models, includ-
ing automated API generation, data validation, access con-
trol, and remote methods. The model defines the data that
will be persisted in Elastic search. Consequently, if the so-
lution and its solution engine must be removed from the
power plant, they must also be eliminated from the corre-
sponding model. The same applies to other entities requir-
ing modifications, such as the client applications, budgets,
and aerothermal plants.

Moreover, there exist certain functions referred to as
“before-save.” As the name implies, these functions execute
just before data is stored in the database. They are com-
monly employed to ensure data integrity and consistency
within a model and across different models. Previously,
the bill of materials instance associated with the solution
required verification prior to storage in the database. How-
ever, this section of code should now be migrated to the
newly created function plant-template-before-save.

Another set of tasks involves making changes to cer-
tain endpoints that depend on the relations within the so-
Iution. The modification process involves switching the
model from which the data is retrieved, while preserving
consistency. For instance, during the creation of a pro-
cesslnstance, configuration data was retrieved from the as-
signed solution. However, it should now verify whether the
solution possesses a default plant template and obtain the
relevant information from that template.

Additionally, it is important to examine the utility func-
tions, which are used in various locations and subse-
quently extracted into a central "util” to eliminate redundant
code. Similarly, constants, which represent shared variables
across multiple models.

9 OBSTACLES AND DIFFICULTIES

The execution of the project encountered difficulties due to
the inclusion of external tasks within the sprints, which im-
peded strict adherence to the expected timeline. Addition-
ally, from a personal perspective, the lack of time further
compounded the challenges faced.

As previously mentioned, the organization follows the
Scrum methodology, employing three-week sprints. Conse-
quently, the delays incurred must be accounted for in terms
of sprints. The inclusion of these external tasks resulted in
an unforeseen increase in workload, leading to a minimum
delay of two sprints, preventing the project from being com-
pleted within the designated time frame.

It should be noted that since the project is being con-
ducted within a company, meeting the deadline for the the-

sis does not signify the conclusion of the overall project.
Even after the completion of the thesis, the project will con-
tinue until all requirements have been fulfilled.

10 CONCLUSION

As it has been explained in section 9, only part of the project
has been finished on time; however, the skeleton of the
project is considered to be almost finished. The Table 3
in the Appendix provides a concise overview of the require-
ments and the corresponding sections in which they are ad-
dressed and explained.

The remaining functional requirements have been desig-
nated for subsequent sprints and are therefore outside the
scope of the thesis. Regarding the non-functional require-
ment pertaining to platform responsiveness, it has been ad-
dressed throughout each task, thus can be considered as
completed. However, non-functional tasks 1 and 3 have
been postponed intentionally, as the styling aspect is con-
sidered ’secondary” in comparison to functionality, and the
table display of the data has not yet been defined.

ACKNOWLEDGMENTS

I would like to thank Wattwin in general for their support
and for allowing me to carry out my final degree project at
the company. In particular, I would like to express my grat-
itude to Jose Maria Malaguilla, Roger Fisica, and Meritxell
Font for their tremendous assistance and patience.

REFERENCES

[1] What is BPM? (2022, Feb 2) [Online].
Available: https://www.sydle.com/blog/bpm-
60f88aeab250375797c93ee7

[2] Scrum - what is is, how it works, and
why it’s awesome [Online]. Available:
https://www.atlassian.com/agile/scrum

[3] What are Gantt charts? [Online]. Avail-
able: https://www.atlassian.com/agile/project-

management/gantt-chart
(4]
(5]

Angular [Online]. Available: https://angular.io/

TypeScript (2023, Mar 6) [Online]. Available:

https://en.wikipedia.org/wiki/TypeScript
[6] LoopBack [Online]. Available: https://loopback.io/

[7] Node.js [Online]. Available:
https://nodejs.org/en/about/
[8] NoSQL (2022, Nov 26) [Online]. Available:

https://en.wikipedia.org/wiki/NoSQL

CHEN JIENI LIN: RENEWABLE ENERGY INSTALLATIONS ENTITY CONFIGURATION TEMPLATE

APPENDIX

A.1 Additional Tables

TABLE 3: ACCOMPLISHED REQUIREMENTS

SECTION Functional | Non-functional
7.1 Template list and crud 1,2,9,10

operations

7.2 Template detail view

7.2.1 Statistics 3 2

7.2.2 Form template 2

7.2.3 Bill of materials 2

7.3 Relation between form 5,6

template, plant template and
bill of materials

7.4 Populating script 8
7.5 Solution-plant template 13,14
relation

7.6 Back end modifications 4

A.2 Additional images

Fig. 18: Form template empty

Fig. 19: Solution’s plant template list with default one

