
This is the published version of the bachelor thesis:

Contreras Rodríguez, Ainoa; López Peña, Antonio Manuel, dir. Adversarial
attack on a deep model of pedestrian detection in CARLA simulator. 2023.
(Enginyeria de Dades)

This version is available at https://ddd.uab.cat/record/281545

under the terms of the license

https://ddd.uab.cat/record/281545


TFG EN ENGINYERIA DADES, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

Adversarial attack on a deep model of
pedestrian detection in CARLA simulator

Ainoa Contreras Rodrı́guez

Abstract– Driving assistance and autonomous driving use deep perception models to perform tasks
such as object detection and classification. Once the models have been trained, it is important to find
cases where they can fail, with the aim of including them in subsequent retraining and achieving more
robust models. One way to find unforeseen situations is through simulation, thanks to which corner
cases can be forced. In this context, this project focuses on pedestrian detection by image using
CARLA simulator, based on automatic creation of scenarios in order to validate the performance of
the detector. One genetic algorithm automates the search for plausible scenarios designed to cause
the detector to fail, thus exposing its weaknesses. This detector validation procedure is considered
an adversarial attack method.

Keywords– Deep Learning, autonomous driving, ADAS, genetic algorithm, adversarial attack,
scene simulator, pedestrian

Resum– L’assistència a la conducció i la conducció autònoma utilitzen models profunds de percepció
per dur a terme tasques com la detecció i classificació d’objectes. Un cop entrenats els models,
és important trobar casos en què aquests puguin fallar amb l’objectiu d’incloure’ls en un posterior
reentrenament i aconseguir models més robusts. Una manera de trobar situacions no contemplades
és a través de la simulació, gràcies a la qual es poden forçar casos extrems. En aquest context,
aquest treball s’enfoca en la detecció de vianants per imatge utilitzant el simulador CARLA a partir
de la creació automàtica d’escenaris per tal de validar les prestacions del detector. Mitjançant un
algorisme genètic s’automatitza la cerca d’escenaris plausibles destinats a fer fallar el detector,
mostrant-ne aixı́ les debilitats. Aquest procediment de validació del detector es considera un mètode
d’atac adversari.

Paraules clau– Deep Learning, conducció autònoma, ADAS, algorisme genètic, atac adversari,
simulador d’escenes, vianant

✦

1 INTRODUCTION - MOTIVATION

EVEN though the idea of the autonomous vehicle
is not recent, during the last decade autonomous
driving and Advanced Driver Assistance Systems

(ADAS) [8] have progressed enormously thanks to big
advances in Deep Learning and in particular, in neural
networks. ADAS, for instance, can be found in multiple
vehicle models on the market and they offer technical
support to the driver in tasks such as detecting lane
markings, or maintaining a safe distance to the preceding
vehicle, among others. However, the inner functioning

• E-mail de contacte: ainoa.contreras@autonoma.cat
• Treball tutoritzat per: Antonio López (Department of Computer

Science UAB) i João-Vitor Zacchi (Fraunhofer IKS)
• Curs 2022/23

of the object detectors models that use neural networks
developed can be considered as a black box. It may not
be not clearly known when they function properly or not,
and it is required to ensure consolidation and security
mechanisms to guarantee that they operate as expected. It
is for this reason that researchers in the sector focus, on
the one hand, on innovation, and on the other hand, on
the consolidation and strengthening of already developed
systems. It is an aspect in which human beings are at risk
and the steps must be unyielding.

The use of neural networks allows the automation of
processes that previously required a human being, such as
object detection or speed control depending on the road or
weather conditions. Due to the fact that this automation
allows to consider a wide variety of scenarios, manual
generation of use cases limits the search.

Juliol del 2023, Escola d’Enginyeria (UAB)



2 EE/UAB TFG DADES: Adversarial attack on a deep model of pedestrian detection in CARLA

In order to train the neural network models, it is
necessary to collect specific data for each task, in the
context of autonomous driving and ADAS systems, these
are scenarios fin which the main actor is a vehicle traveling.
To carry out the data collection there are two options: real
data or synthetic data generated in a simulator. Due to the
great difficulty of collecting real data, it is essential to use
virtual tools for the training and testing phases. The use
of a simulator in the early stages allows to reduce the cost
and to have critical situations in a simple way, efficiently
complementing the conventional tests on the road.

Autonomous vehicles and vehicles that incorporate
ADAS use different sensors to interact with the
environment where they are located and adapt to situations
efficiently. The RGB camera is one of the mandatory
sensors and provides a color view of the scene ahead of the
vehicle. Thanks to this environment digitalization, the use
of model detectors is possible. In this case, we will focus
on pedestrian detection. The main task for the system is to
provide the required tools for early detection and prevent
rather than treat.

In this study, different use cases are explored
automatically conditioned to one purpose: failure in
detection. The analysis is accomplished through the use
of one genetic algorithm that explores different weather
parameters and the moment of the day within one use case
defined, and creates one scenario in the simulator. When
the scenario is generated with the information provided
by the algorithm, the objective deep model of pedestrian
detection is called for inference. The achieved adversarial
attack provides the minimum weather alteration that causes
failures on the pedestrian detection model selected and
origins a collision between one vehicle and one pedestrian
within one use-case previously defined.

The remainder of this paper is organized as follows:
Section II and III presents the objectives and planning
definition and Section IV provides an overview of related.
Section V outlines the details of our proposed diagnosis
framework, including the integration of image quality
metrics and the analysis of their impact on detection
algorithms. Section VI presents the experimental setup and
evaluation results. Finally, Section VII concludes the paper
by summarizing our contributions and discussing potential
avenues for future work in this domain.

2 OBJECTIVES

The main objective of this work is to automatically find
failure cases of a targeted deep object detection model.
We explore a parameterized space of simulated scenarios,
searching for adversarial weather conditions to the target
model. To this end, we describe the following objectives:

• Parameterization of one use-case.

• Adaptation of one exploratory algorithm, that is
objective functions and search space definition.

• Scenario generation within a simulator. The simulator
must receive input data from the exploratory algorithm

such as the weather parameters and generate a scenario
following this information.

• Integration of the target detection model as a
pedestrian detector within the simulator.

• Explore realistic weather conditions in order to
generate realistic scenarios.

• Compare the results with a benchmark: random
generation of parameters.

3 PLANNING

The organization and the planning of the different tasks
such as technical progress or deadlines can be found on
Figure 1. The assignments are shown with its intended
development time and it follows a linear structure, therefore
it is mandatory to complete the first tasks to move forward.
Blue color represents the tracking and official deadlines and
green color is used for the technical responsibilities.

4 STATE-OF-THE-ART

In the last few years, rapid advances in deep learning
techniques have greatly accelerated the momentum
of object detection technology. The object detection
algorithms can be divided into one or two-stage models.
Within the first group, we can highlight Fast RCNN [5]
and Faster RCNN [13] (2015), Mask R-CNN [6] (2017)
and G-RCNN [22] (2021), and for one-stage models, the
YOLO algorithm has been constantly improving since 2016
(YOLO [10] in 2016, YOLOv3 [11] in 2018, YOLOv4 [1]
in 2020, and YOLOv7 [21] and YOLOv8 [12] in 2022),
reporting the best accuracy and speed compared to other
models found.

Exploratory algorithms [20] have been a frequent
resource from ancient ages as well as they are nowadays.
Their greatest strength is that they can solve truly diverse
problems and adapt the exploration space for the objective
functions defined. Some of the state-of-the-art algorithms
go from the most simple but effective, such as backtracking,
A* or Dijkstra, going through Evolutionary Algorithms
(EAs) [20] such as Genetic Algorithm (GA), to more
sophisticated methods that have the ability to learn like
Reinforcement Learning (RL).

To address problems of high time and infrastructure cost
of testing autonomous systems, several simulators have
been developed. The most popular are Gazebo [4], CARLA
[3], TORCS [23] and AirSim [14]. Modern game engines
support creation of realistic urban environments and enable
visually realistic simulations, detection of infractions as
well as collisions.

As described in the next section, for this study the
pedestrian detector model chosen is YOLOv8 [12], the
exploratory algorithm is the genetic algorithm and the
autonomous driving simulator is CARLA [3].



AINOA CONTRERAS: Adversarial attack on a deep model of pedestrian detection in CARLA 3

Fig. 1: Gantt diagram of this project.

5 METHODOLOGY

5.1 Adversarial attacks

In the context of computer vision, more specifically
object detection, an adversarial attack can be defined as a
disturbance that is applied to an objective model in order
to obtain an erroneous classification or bounding box. On
the one hand, misclassification is considered when the
model incorrectly classifies the image when, prior to the
disturbance, it did so correctly. On the other hand, the
model can also detect the object in a different location of
the image, or the object can be partially detected. We can
find an example of an adversarial attack adding fog to the
input image in Figure 2. After the addition, the model is not
able to identify the pedestrian.

Attacking object Perturbation Adversarial example

+ =

Pedestrian X

fog

Fig. 2: Example of an adversarial attack where a model is
not able to detect the pedestrian after adding fog.

Since the model stages can be divided into training,
testing and development, the adversarial attacks can be
performed in each of these, following the classification
on [9] we can find: attacks in the training, testing and
development stages.The training stage adversarial attacks
refer to the fact that, in the training stage of the target model,
the adversaries carry out attacks by modifying the training
dataset, manipulating input features or data labels. Attacks
in the testing and development stage refer to change or alter
input data with the aim of obtaining different results without
modifying the model parameters.

We will focus on the attacks in the testing stage, which
can also be divided into two large groups: white-box
attacks and black-box attacks. The former have access to

the parameters, algorithm and structure of the objective
model whereas the latter do not have information about it.

In this project a black-box attack is carried out in the
testing stage, and the technique followed is the use of
the objective model as an oracle, querying by applying
inference in order to obtain the predictions.

5.2 Genetic Algorithms

Genetic algorithms belong to the Evolutionary Algorithms
[17] (EAs) group, this means that they use mechanisms
inspired by nature and solve problems through processes
that emulate the behaviors of living organisms. In a
genetic algorithm, a population of candidate solutions
(called individuals, organisms, or phenotypes) to an
optimization problem is evolved toward better solutions.
Each candidate solution has a set of properties (its
chromosomes or genotype) which can be mutated and
altered; traditionally, solutions are represented in binary
as strings of 0s and 1s, but other encodings are also
possible. The symbols that make up the string are
called genes. Chromosomes evolve through iterations,
called generations. In each generation, chromosomes are
evaluated using some measure of fitness, in our case a set
of score functions designed for this problem. The following
generations (new chromosomes) are generated by applying
the genetic operators repeatedly, these being the operators
of selection, crossover, mutation and replacement. The
genetic algorithm process visualization can be found on
Figure 3.

5.2.1 NSGA-II

Within genetic algorithms there are different methods that
can be adapted to the characteristics of the problem to
be solved. In this case study, the Nondominated Sorting
Genetic Algorithm II [2] is the perfect algorithm thanks to
the Pareto principle proposed to deal with multi-objectives
optimization problems.

The presence of multiple objectives in a problem
gives rise to a set of multiple optimal solutions (called
Pareto-optimal solutions), instead of a single solution.
Neither of these Pareto-optimal solutions are better than



4 EE/UAB TFG DADES: Adversarial attack on a deep model of pedestrian detection in CARLA

Begin

Initial population

Calculate the fitness value

Selection

Crossover

Mutation

Satisfy with ending
 contition

End

Yes

No

0 0 0 0 0 0

1 1 1 1 1 1

1 0 0 1 0 1

0 0 1 0 1 1 Population

Chromosome

Gene

Fig. 3: Flux diagram of the genetic algorithm and gene,
chromosome and population visual description.

the other, but each one meets different requirements for
each objective function. This fact creates the need to find
as many Pareto-optimal solutions as possible.

The NSGA-II algorithm follows the general scheme of a
genetic algorithm with a modified selection of mating and
survival. The survival method innovates by the fact that
the population Rt is the union of parents Pt and childs
Qt (where Qt is Pt after applying selection, crossover and
mutation operators), thus keeping half of the population
intact. The mating procedure is as follows:

1. It performs a non-dominated sorting on the current
population Rt and classifies by fronts, that is, they
are classified according to an ascending level of non-
domination. In Figure 4 we can see two different fronts
for an optimization problem of 2 functions f1 and f2.

Cuboid
i-1

i

i+1

f2

f1

Fig. 4: f1 and f2 optimization using NSGA-II. The filled
points belong to the first order front F1, and the unfilled
points belong to the second order front F2. The dashed box
represents the crowding distance cuboid computed for i.

2. Fill in the new population according to the ranking of
fronts.

3. If a front is partially used, such as F3 in Figure
5, crowding-sort is performed using the crowding
distance that is related to the density of solutions
around each solution. The crowding distance of the
i-th solution on its front is the average side length of
the cuboid (the cuboid is shown as a dashed box on

Figure 4) The less dense ones are chosen. Therefore, a
representative sample is taken from the set of solutions
from the front that we are selecting, trying to choose
the samples that are less crowded.

Non-dominated
sorting

Crowding distance
sorting

Qt

Pt

Rt

F1
F2

F3

Rejected

Pt+1

Fig. 5: NSGA II algorithm procedure. The Non-dominated
sorting and crowding distance sorting process is shown.
The current population Rt consists of Pt and Qt, both
of size N. A group Pt+1 of size N is chosen based on
the non-dominated classification. The ordering is carried
out regarding the fronts (F1, F2, F3, . . . ). In the case of
remaining a partially selected front, as is the case of F3, the
crowding distance sorting is carried out to select the less
crowded individuals. Pt+1 is given.

4. A new offspring Rt+1 is created from this new
population, on the one hand keeping the entire Pt+1

individuals, and on the other hand using the crowded
tournament selection (it is compared by front rank,
if equal, then by crowding distance), crossover and
mutation operators on Pt+1 to lead to Qt+1. The new
Rt+1 is the union of parents Pt+1 and childs Qt+1,
both of size N.

5.3 CARLA simulator
CARLA [3] is an open-source simulator for autonomous
driving research. It has been developed to encourage
development, training as well as validation of autonomous
urban driving systems. In addition to the open-source code
and protocols, this simulator provides open digital assets,
such as urban layouts, buildings and vehicles.

The simulation platform promotes flexible specification
of sensor suites. Carla can be used to study the
performance of three approaches to autonomous driving —
modular pipeline, an end-to-end model trained via imitation
learning, an end-to-end model trained via reinforcement
learning (RL). Carla’s features include scalability via a
server multi-client architecture, autonomous driving sensor
suite, flexible API [15], fast simulation for planning and
control, maps generation, traffic scenarios simulation, ROS
integration, and autonomous driving baselines.

5.4 YOLOv8
YOLOv8 [12] is the newest state-of-the-art YOLO [10]
model that can be used for object detection, image
classification, and instance segmentation tasks. The one-
stage object detector model is trained with the COCO



AINOA CONTRERAS: Adversarial attack on a deep model of pedestrian detection in CARLA 5

dataset [7], a 91-labeled dataset including high variability.
Thanks to its small model size and easy-to-use CLI
implementation, the inference procedure is more intuitive
and can be smoothly adapted in the code.

5.5 Adversarial sample generation

Adversarial samples were first named by Szegedy et al.
[18], and, as a general rule, are built from generating
images - having same features as the used for training - that
cause the objective model to classify them incorrectly with
high confidence.

In this study, the adversarial samples are generated by the
exploration of the weather parameters of the scene in order
to find the limitations of the detection model. Following the
nomenclature of a genetic algorithm explained in Section
5.2, one chromosome can be defined as one vector that
contains a set of parameters that define a scene in the
CARLA simulator [3], such as cloudiness or precipitation.
Each value is a gene. The dimension m of the vector is
defined by the number of parameters explored. In each
generation, n vectors are explored simultaneously, the
value known as the population size.

The process starts in the first iteration with the
exploration matrix N (Noise) initialized as the random
population. Each row stores the parameter values which
enable the scenario SC to be generated in the simulator.
When the scenario is created, the model inference is called
for collecting the detections. The last step is the score S
calculation for each scenario that will determine the new
matrix N’ according to the GA criteria. We can see in Figure
6 the exploration matrix N, the scenario generator vector
SC, the object detector OD, and the score vector S as well
as the scheme of the exploration process.

N1,1 N1,2 N1,3 ... N1,m

N2,1 N2,2 N2,3 ... N2,m

N3,1 N3,2 N3,3 ... N3,m

... ... ... ... ...

Nn,1 Nn,2 Nn,3 ... Nn,m

   SC1

   SC2

   SC3

    ...

   SCm

S1

S2

S3

Sm

OD

OD

OD

OD

OD

Fig. 6: Diagram of the adversarial samples generation
process using the Genetic Algorithm (GA). Each row N of
the matrix represents a noise vector that allows generating
a scenario SC in the simulator that employs the object
detector (OD). Subsequently, the output of the scenario
generated is applied in order to obtain a score S. The score
defines the new matrix N’ of the next generation following
the definition of the GA.

5.5.1 Scenario definition

A single use case is defined: one car is located at one point
on the map and drives forward, while a pedestrian is in a
static position in the middle of the same road, placed in
front of the vehicle.

The vehicle and the pedestrian are the single agents.
They are classified as PC (’Player Character’) and NPC
(’Non-Player Character’), respectively. This means that the
main actor is the vehicle and its behaviour is determined
within the scenario, different from the control of the
pedestrian, that belongs to the scenario definition. The
position of these agents in CARLA can be defined as
follows.

Pcar = (x, y, z) Pped = (x, y, z)

One scenario is defined by a set of parameters such as
the map, the initial position of the agents, the weather
conditions (rain, clouds, wet ground) or the moment of day.
We will divide this set in 3 groups: the basic parameters,
the explored parameters and the extra parameters. The basic
parameters of the scenario below will be defined by default.

• Map

• Car sensors

• Initial position of the vehicle

• Initial position of the pedestrian

• Initial speed of the vehicle

The parameters that will be explored by means of
the genetic algorithm are shown below, delimited with
minimum and maximum values.

• Precipitation [0,100]

• Fog density [0,100]

• Wetness [0,100]

• Cloudiness [0,100]

• Sun altitude angle [-90,90]

Precipitation, Fog density, Wetness and Cloudiness refer
to the level of rain, the concentration of fog, the intensity
of humidity and the cloud level in the sky presented by the
CARLA API [15] and include values from 0 to 100, where
0 is the minimum and 100 is the maximum. The variable
Sun altitude angle represents the altitude angle of the sun
and includes values from -90 to 90, the first being midnight
and the second being noon.

Concerning the selection of the initial position of the
agents, we must take into account one restriction: the
distance between the vehicle and the pedestrian at the
beginning of the simulation must be at least the braking
distance, this means that the car has to have enough
distance to brake and avoid hitting the passerby.

In order to satisfy the rule described above, the formula
for the linear acceleration [19] (Formula (1)) is applied, in
which v1 is the final velocity, v0 is the initial velocity, a is
the acceleration, t is the time taken and s is the distance
traveled.

v21 = v20 + 2as (1)



6 EE/UAB TFG DADES: Adversarial attack on a deep model of pedestrian detection in CARLA

CAR
Pcar = (x,y,z)

y ∈ Pcar

PEDESTRIAN

Pped = (x,y,z)

s < y ∈ Pped – y ∈ Pcar

Fig. 7: Diagram of the scenario that represents the study
in which we find a 2-lane road. The car is located in the
right lane, with coordinates x, y, z ∈ Pcar and a straight
trajectory in the lane. The variables x, y, z ∈ Pcar are
immutable. Located in the center of the right lane, in front
of the car, the pedestrian stands in a static and immutable
position x, y, z ∈ Pped. It must be ensured that, when
starting the simulation, the minimum braking distance of
the vehicle s between it and the pedestrian is conformed.

The values v1 and v0 are easily obtainable, such as a and,
based on these, the value s can be found. Therefore, the
restriction is defined as follows.

s < y ∈ Pped − y ∈ Pcar

Once the fixed and variable parameters for the
initialization of a scenario in CARLA have been defined,
the extra parameters are initialized randomly, since we
consider that they are not decisive in the study. This is
due to the fact that quotidian scenarios are preferred. The
remaining weather parameters are either less common,
such as dust storms, or are correlated with the explored
parameters, such as precipitation deposits to precipitation.

Regarding the technical specifications, the best
configuration for each of the designs is assured. This
means that the best sensor configuration, or the best
rendering option is guaranteed, among others.

5.5.2 Objective functions

Since it is an exploratory algorithm that minimizes the
score, we must define an objective function. In order to
generate valuable test scenarios, we must identify scenarios
that are more likely to lead to safety violations. In this case,
due to the nature of the problem, three objective functions
are defined:

• Journey distance() receives the initial and final
position of the vehicle and calculates the distance1

between both points, the objective is to maximize this
distance, therefore, to maximize this function.

1Euclidean distance d =
√

(x1 − x2)
2 + (y1 − y2)

2

Journey distance = d(initial Poscar, final Poscar)

• Total distance() receives the number of steps (frames)
of the simulation, the position of the vehicle for each
step, and the position of the pedestrian for each step.
The sum of the distances between them is performed
for each step in order to minimize this distance,
therefore, the objective is to minimize this function.

Total distance =
∑

i∈(s,...,steps)

d(Poscar[s], Posped[s])

• Scene alteration() receives the noise vector and
performs the sum of the explored parameters. The
amount of alteration of the parameters in one scenario
increases by increasing its value. The objective of
this function is to minimize the absolute value of
these parameters since smaller values of affectation are
preferred. Furthermore, day scenarios are preferred
over night scenarios.

Scene alteration =
∑

i∈(1,...,m)

Ni

Since we only want to take into account cases where there
has been a collision between the vehicle and the pedestrian,
the function Collision() returns -1000 or 0 depending on
whether there has been a collision between the vehicle
and the pedestrian or not, respectively, coming from the
Collision detector [16] used by CARLA. This value is used
to multiply the objective functions described below.

5.5.3 Exploration process

The main part of the project is the exploration of
parameters, in Figure 8 we find a flowchart describing the
NSGA-II algorithm and the interaction with the CARLA
simulator.

First, we initialize the NSGA II evolution parameters
such as population size, crossover probability, and stopping
condition, among others. The initial random population P is
also initialized. Next, for each individual in the population
P – it contains a vector with the parameters that condition
one scenario with respect to another, such as time, time of
the day or the initial position of the vehicle – it is started
and launches the simulation in CARLA. Subsequently, we
treat the simulation data to obtain one score for each of the
3 objective functions, and we return it to the NSGA II in
order to carry out the sorting by fronts, the calculation of
the crowding distance and obtaining P.

The first iteration of the algorithm (t=1) starts by
applying the selection, crossover and mutation operators
on Pt generating Qt. This is repeated in the CARLA
simulator, obtaining a value for each objective function
to be minimized by the algorithm. The next step is to
apply the non-dominated classification and calculate the
crowding distance with the new set Rt (where Rt = Pt∪Qt)
to obtain the new population Pt+1 and the set of Pareto



AINOA CONTRERAS: Adversarial attack on a deep model of pedestrian detection in CARLA 7

starting

Initiation initial population P

Fast non-dominated sorting and
computing crowding distance for P

Selection, crossover and mutation
operation for Pt, generating progeny

population Qt

Fast non-dominated sorting and
computing crowding distance for Pt

 and Qt

Elitist strategy, obtaining new
population Pt+1 and Pareto

solution set

Satisfy with
ending condition

Initiation simulation parameters

Running simulation model

Post-processing, output three-
objectives evaluation values,

 getting score

evolution, t=1

t += 1

No

Initiation simulation parameters

Running simulation model

Post-processing, output three-
objectives evaluation values,

 getting score

Obtaining optimal
solution setYes

NSGA II algorithm CARLA simulator

Fig. 8: Flowchart of the NSGA II algorithm combined
with the CARLA simulator. The process of the NSGA II
algorithm is described until reaching the optimal solution
and the interaction that it performs with the simulator for
each generation.

solutions.

The last step is to evaluate if the stopping condition is
met, in this case the maximum number of iterations. If
the evaluation is positive, the set of optimal solutions is
obtained, otherwise, the evolution continues.

6 EVALUATION

The aim of the adversarial attack is to miss the detection of
the pedestrian before reaching the danger zone, this means
that the vehicle will have no time to brake before hitting
the passerby.

To obtain realistic scenarios, the parameters explored
should be common in daily situations. It is clear that in
the case of the weather parameters, the alteration level is
objective, and the higher the value, the higher the level of
alteration. This is not that easy to say regarding the moment
of the day, since it can determine the best combination of
weather parameters according to different moments of the
day.

The first stages of the project did not take into account the
scene alteration minimization (Scene alteration function
in Section 5.5.2) and, therefore, nights scenarios were
preferred. The results shown that light shortage did not
help the model to detect the pedestrian and made the final
results conditioned by this bias. With the objective of
performing a pragmatic parameter exploration and reach
unbiased results, day scenarios are preferred. By using the
same objective function, weather conditions are minimized.

The number of combinations that one problem with 5
variables (where each one can take integer values between 0

Fig. 9: Bar plot comparing the percentage of total number
of collisions detected using GA and random methods.

and 100) is 1005. This order of magnitude makes the brute-
force assessment complex and unreachable.

As a benchmark, the automation of the parameters
combination generation is done employing random
generators. Applying equal generation hyperparameters
- such as population size or number of generations - for
both GA and random search, on Figure 9 is shown that
the guided search is reaching 50% of cases with collisions
facing the 21% obtained running random generation.
Following the generation timeline in Figure 10, the GA
follows one ascending trend with higher values of collision
in almost every generation. The mean number of collisions
found per iteration using random values is clearly lower.

Fig. 10: Line chart describing the evolution of the number
of collisions per iteration for each method used.

While the GA benefits from the instructions that provide
the objective functions and guide their solutions, the
random generation does not have any pattern. This is
clearly shown on Figure 11 and Figure 12. If we focus on
the results extracted from the guided search in Figure11,
some tendencies are found regarding the best results of
each iteration. The wetness impact is not significant, it
means that higher values of this parameter do not change
the final score. Similar situation for the cloudiness, since
values fluctuate from 20 to 40 out of 100. This can also
be explained because of the fog predominance, since it
generates higher altered scenes and specifically modified
in the pedestrian location. As said before, darker scenes
do not need higher parameter values, as demonstrated in
generation 2.



8 EE/UAB TFG DADES: Adversarial attack on a deep model of pedestrian detection in CARLA

Fig. 11: Evolution of the best combination of parameters
regarding the Scene alteration function using the GA
developed. The evolution is shown through generations.

Fig. 12: Evolution of the best combination of parameters
regarding the Scene alteration function using random
generation. The evolution is shown through generations.

The quantity is not as important as the quality and it
is also essential to take into account the diversity of the
scenarios generated. Due to the fact that the GA keeps the
best values and proceeds with a driven search, it makes
sense to have less varied samples. Only the combinations
of parameters that generated one scenario leading to a
collision are selected and the pairwise euclidean distance
is calculated among them. We can find on Table 1 that the
ranges are 48.9 - 100.6 and 79.1 - 127.5 for the genetic
algorithm and random generation techniques respectively.
The GA tends to the limit of the constraint, in this case the
minimization of the scene alteration, because the collision
is a much higher objective. This fact leads to finding
fewer but more varied collision cases using the random
generation approach. However, by using this technique, the
scene alteration minimization and the daily scene boost are
not achieved.

On Figure 13, the best configuration regarding
the Scene alteration function is shown. The best
combination of parameters is the following:

• Precipitation = 69.105

• Fog density = 48.378

• Wetness = 7.7714

GA Random
Range of distances 48.9 - 100.6 79.1 - 127.5

TABLE 1: FAILURE DIVERSITY, SHOWN AS THE RANGE
IN THE AVERAGE PAIRWISE EUCLIDEAN DISTANCE FOR
TEST CASES.

• Cloudiness = 18.843

• Sun altitude angle = 60.6

In this case, the generated scenario is leading to a
collision between the pedestrian and the ego vehicle. This
is because the detection of the pedestrian starts within the
braking zone, so the vehicle has no time to avoid running
over the pedestrian.

Fig. 13: First and last scene of the best configuration found
by the GA regarding the Scene alteration function. It
shows the collision between the car and pedestrian during
a cloudy and foggy day.

6.0.1 Validity

After revealing different cases where the object detector
has not been able to detect only by applying one selected
configuration of weather parameters and moment of the
day, it is demonstrated that there is still a way to improve
the state-of-the-art models’ performance. On the one hand,
in this case the object detector YOLOv8 implements static
detection, which involves an inherent lack of information.
On the other hand, it is important to consider that the object
detector has not been trained with specific data from the
CARLA simulator or scenes involving pedestrians. This
fact can also explain the results obtained.

Furthermore, identical configurations of the same
algorithm may give different results as they are not
deterministic. This means that YOLOv8 can provide
different detections for the same input.

Another fact to take into account is the random selection
of the physical description of the pedestrian for each



AINOA CONTRERAS: Adversarial attack on a deep model of pedestrian detection in CARLA 9

simulation generated. This can lead to have different
detections for same weather parameters and moment of the
day. For instance, colorful clothes help the objective model
to detect.

7 CONCLUSIONS

This work focuses on finding failure cases of onboard
object detection task supporting collision avoidance, with
emphasis on pedestrians. To carry this out, one use-case
has been described, the exploration parameters have been
defined as well as the exploration algorithm and the
initialization information for the simulator.

The NSGA-II and its interaction with CARLA have been
adapted, where the simulator incorporates the YOLOv8
object detector that obtains information from the rgb
camera car sensor. Thanks to this configuration, the
weather parameters and the moment of the day have been
explored in order to find the minimum weather alteration
on daily scenes that leads to a collision. This is due to the
fact that, the object detector does not detect soon enough
the pedestrian and exceeds the braking zone, consequently,
even if the vehicle starts the ”imminent collision” mode
(this means pressing the brake pedal to the maximum) there
is no other option than run over the pedestrian.

One realistic set of adversarial samples has been found
assuring the problem features described in the objectives
(Section 2). For example, on Figure 13, the cloudy and
foggy situation is perfectly feasible to find in real life and
the system should be aware of this corner case. Even with
the high-beam car lights on, the objective model is not able
to detect the pedestrian before entering the braking zone.
However, this could also be considered as a tricky sample
due to the fact that it is also complicated for a human to
detect the pedestrian.

Thanks to automatic search algorithms, the driven
exploration process is advantageous in relation to brute-
force algorithms. The former, due to its searching nature,
will follow the same tendency and provide less diverse
samples. This fact can also be seen as its strength because
of the same reason. It is easy to define one - or multiple -
objective functions and achieve the goals by reducing the
exploration space.

The next steps shall follow this line of work, that
is, enhancing the current state-of-the-art achieved by
applying specific modifications concerning the NSGA-II
specifications, such as mutation rate, parent selection or
crossover methods. Defining a static physical appearance
of the pedestrian may also improve the study assessment.
In all cases, the final step should be model retraining with
the new data generated in order to conclude with one robust
model for pedestrian detection.

During this project I have learned to design the
solution to a problem from the first to the last stage, as
well as define objectives and development deadlines. I
have learned to develop a genetic algorithm that has already
been implemented, such as NSGA-II, and adapt it to the

problem described, furthermore I have developed myself
from scratch with an autonomous driving simulator such as
CARLA.

ACKNOWLEDGEMENT

This project has been supported by the Computer Vision
Center on the early stages and Fraunhofer IKS on the last
stages, which have provided the necessary resources and
data. I would like to thank to Joao-Vitor Zacchi and Núria
Mata as well as Antonio López for all the support and
knowledge provided week after week.

REFERENCES

[1] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-
Yuan Mark Liao. Yolov4: Optimal speed and accuracy
of object detection, 2020.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm: Nsga-
ii. IEEE Transactions on Evolutionary Computation,
6(2):182–197, 2002.

[3] Alexey Dosovitskiy, Germán Ros, Felipe Codevilla,
Antonio M. López, and Vladlen Koltun. CARLA: an
open urban driving simulator. CoRR, abs/1711.03938,
2017.

[4] O.S.R Foundation. Vehicle simulation in gazebo.
https://classic.gazebosim.org/blog/vehicle%20simulation,
accessed on June 26, 2023.

[5] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV),
December 2015.

[6] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. Mask r-cnn, 2018.

[7] Tsung-Yi Lin, Michael Maire, Serge Belongie,
Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and
Piotr Dollár. Microsoft coco: Common objects in
context, 2015.

[8] Meng Lu, Kees Wevers, and Rob Van Der Heijden.
Technical feasibility of advanced driver assistance
systems (adas) for road traffic safety. Transportation
Planning and Technology, 28(3):167–187, 2005.

[9] Shilin Qiu, Qihe Liu, Shijie Zhou, and Chunjiang Wu.
Review of artificial intelligence adversarial attack and
defense technologies. Applied Sciences, 9(5), 2019.

[10] Joseph Redmon, Santosh Divvala, Ross Girshick, and
Ali Farhadi. You only look once: Unified, real-time
object detection, 2016.

[11] Joseph Redmon and Ali Farhadi. Yolov3: An
incremental improvement, 2018.

[12] Dillon Reis, Jordan Kupec, Jacqueline Hong, and
Ahmad Daoudi. Real-time flying object detection with
yolov8, 2023.



10 EE/UAB TFG DADES: Adversarial attack on a deep model of pedestrian detection in CARLA

[13] Shaoqing Ren, Kaiming He, Ross Girshick, and
Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems, volume 28. Curran Associates, Inc., 2015.

[14] Dey D. Lovett C. Kapoor A. Shah, S. Airsim: High-
fidelity visual and physical simulation for autonomous
vehicles. In: Field and Service Robotics (2017),
https://arxiv.org/abs/1705.05065.

[15] CARLA Simulator. Carla python api.
carla.readthedocs.io/en/0.9.3/, accessed on June
18, 2023.

[16] CARLA Simulator. Carla python api.
sensors reference: Collision detector.
carla.readthedocs.io/en/latest/ref sensors/#collision-
detector, accessed on June 18, 2023.

[17] Andrew N. Sloss and Steven Gustafson. 2019
evolutionary algorithms review, 2019.

[18] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural networks.
2014.

[19] Physics Forulas toppr. Linear acceleration formula.
www.toppr.com/guides/physics-formulas/linear-
acceleration-formula/, accessed on June 18, 2023.

[20] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik.
Exploration and exploitation in evolutionary
algorithms: A survey. ACM Comput. Surv., 45(3), jul
2013.

[21] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-
Yuan Mark Liao. Yolov7: Trainable bag-of-freebies
sets new state-of-the-art for real-time object detectors,
2022.

[22] Jianfeng Wang and Xiaolin Hu. Convolutional
neural networks with gated recurrent connections.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1–1, 2021.

[23] Espié E. Guionneau C. Dimitrakakis C. Coulom R.
Sumner A. Wymann, B. Torcs, the open racing car
simulator. https://torcs.sourceforge.net/, accessed on
June 26, 2023.


