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Prediction of Malignancy in Lung Cancer
using several strategies for the fusion of
Multi-Channel Pyradiomics Images

Jan Rodriguez Duenas

Resum- Aquest treball mostra el procés de generacié i el posterior estudi de I'espai de representacio
que obtenim extraient caracteristiques de textura GLCM de tomografies assistides per ordinador
(CT) dels noduls pulmonars (PN). El flux del treball se centra en I'extraccid de caracteristiques
mitjangant Pyradiomics i la xarxa neuronal convolucional (CNN) VGG16. Lestudi t& com a objectiu
valorar si les dades aconseguides impacten de manera positiva en el diagnostic de cancer pulmonar
(LC). Per dissenyar un metode d’entrenament de models d’aprenentatge automatic (ML) que permet
generalitzacio, entrenem models SMV amb diferents divisions de dades, valorant el rendiment de la
diagnosi mitjangant metriques definides a nivell de tall i de nodul. Per aquesta tasca, s’han utilitzat
dades de 92 pacients de I'Hospital Universitari Germans Trias i Pujol.

Paraules clau— Cancer pulmonar, diagnostic precog, cribratge, radiomica, espai de represen-
tacio, SVM, optimitzacié de models.

Abstract— This study presents the process of generation and subsequent study of the representation
space obtained by extracting GLCM texture features from computed tomography (CT) of pulmonary
nodules (PN). The workflow of the study focuses on feature extraction using Pyradiomics and the
VGG16 convolutional neural network (CNN). The objective of the study is to assess whether the
obtained data have a positive impact on the diagnosis of lung cancer (LC). To design a method
for training machine learning (ML) models that enables generalization, we train SVM models with
different data splits, evaluating the diagnostic performance using metrics defined at both the slice
and nodule levels. For this task, data from 92 patients from the Hospital Universitari Germans Trias i
Pujol have been used.

Keywords— Lung cancer, early diagnosis, screening, radiomics, representation space, SVM,
model optimization.

1 CONTEXT

related mortality worldwide. Its impact is profound,

with millions of lives affected and a significant bur-

den on healthcare systems. LC arises from the uncontrolled

growth of abnormal cells in the lung tissues, leading to the
formation of tumors.

Early detection plays a crucial role in improving treat-

ment outcomes and patient prognosis. Studies such as the

LUNG cancer (LC) is the leading cause of cancer-
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National Lung Screening Trial (NLST) [1] and NELSON
[2] have demonstrated that annual screening with low-dose
computed tomography (LDCT) can effectively reduce mor-
tality rates associated with LC [3].

However, LC screening presents challenges that include
the need for further imaging and follow-up procedures in
cases of positive findings. These additional investigations
can lead to patient anxiety due to the potential invasiveness
of the procedures and impose significant costs on healthcare
services.

Fortunately, advances in the field of radiomics [4] ha-
ve revolutionized lung cancer screening and management.
Radiomics involves the extraction of a large number of
quantitative features from medical images, such as compu-
ted tomography (CT) scans, magnetic resonance imaging
(MRI), or positron emission tomography (PET). These fea-
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tures capture the heterogeneity and characteristics of lung
tumors at a microscopic level, enabling more precise di-
agnosis and treatment planning.

In a pilot study [5], image features extracted from NLST
(National Lung Screening Trial) data using radiomic tech-
niques exhibited superior predictive value compared to vo-
lumetric measurements alone. This highlights the potential
of radiomics in enhancing lung cancer screening accuracy.
Additionally, Peikert [6] developed a radiomic classifier in-
corporating location variables, size, shape descriptors, and
texture analysis. This innovative approach further demons-
trates the power of radiomics in providing valuable insights
for accurate lung cancer detection and characterization.

The integration of radiomics with genomics, metabolo-
mics and clinical data holds promise in deciphering the
complex biology of lung cancer [7]. This multidimensio-
nal approach allows for a comprehensive understanding of
tumor behavior, treatment response, and patient prognosis.
By combining radiomic features with genomic profiles, re-
searchers can identify potential therapeutic targets and ex-
plore personalized treatment options.

The RADIOLUNG project is a multicentric initiative co-
ordinated by the Interactive Augmented Modeling (IAM)
group at the Computer Vision Center (CVC) in collaborati-
on with Hospital Universitari Germans Trias i Pujol (HUG-
TiP).

The primary objective of the RADIOLUNG project is to
develop a comprehensive multi-radiomic signature based on
chest CT and PET-scan images for distinguishing benign
and malignant pulmonary nodules (PNs). Additionally, the
project aims to evaluate the predictive capabilities of this
signature and assess whether it can reduce the false-positive
rate by more than 50

The specific objectives of the RADIOLUNG project are
as follows:

1. Correlate the pathological and molecular profiles with
each radiomic signature and investigate the presence
of clinically relevant mutations in tumors.

2. Determine the degree of aggressiveness and mutatio-
nal status of PNs, and explore the possibility of iden-
tifying an epigenetic profile associated with malig-
nancy using radiomic signatures.

3. Integrate imaging, genomics, and clinical data to de-
velop a predictive model for nodules detected through
low-dose computed tomography.

4. Design a training methodology that enables generali-
zation of the predictive model across multiple centers.

5. Optimize the architecture of the predictive model to
classify lung nodules into three diagnostic levels.

By achieving these objectives, the project aims to con-
tribute to the advancement of LC screening and pave the
way for more accurate and efficient early detection strategi-
es. The collaboration between the IAM group, the CVC and
HUGTIP provides a strong foundation for this research, en-
suring access to expertise and resources necessary for suc-
cessful completion, ultimately benefiting the field of lung
cancer screening and improving patient outcomes.

This TFG is closely aligned with the RADIOLUNG pro-
ject. While the RADIOLUNG project has its own compre-
hensive objectives, this TFG complements the project by
focusing on the reduction of the false positive rate by the
analysis of CT scans.

2 STATE OF THE ART

The effectiveness of lung cancer screening in reducing mor-
tality is hindered by a high rate of false positive results,
scarcity of data, and rare occurrence of benign cases. De-
ep learning methods, despite being state-of-the-art, can be
problematic due to bias, overfitting, and lack of reprodu-
cibility. In contrast, machine learning approaches [8, 9]
utilizing established techniques like Gabor, Local Binary
Patterns (LBP), and SIFT descriptor, combined with classi-
fiers such as Support Vector Machine (SVM) and Random
Forest, have shown improved diagnostic power with high
sensitivity and specificity, achieving an AUC of 0.97 and
sensitivity of 96% with 95% specificity for [8].

GLCM (Gray-Level Co-occurrence Matrix) texture fe-
atures, have demonstrated effectiveness in cancer diagno-
sis across various medical imaging modalities [10, 11, 12,
13, 14]. In a recent study [15], researchers proposed a hy-
brid approach that combined GLCM textural features with
a neural network for nodule characterization in CT scans.
To ensure reproducibility with limited training data, an em-
bedding technique based on the statistical significance of
radiomic features was used. This embedded representation
served as the input for a neural network, with its architec-
ture and hyperparameters optimized using custom-defined
metrics. The best performing model achieved a sensitivity
of 100% and specificity of 83% (with an AUC of 0.94)
for malignancy detection when evaluated on an indepen-
dent patient set. This innovative approach shows promi-
se in improving the accuracy and reliability of lung cancer
screening by integrating radiomic features and deep lear-
ning techniques, offering potential solutions to the challen-
ges posed by false positives in current screening methods.

3 TFG OBJECTIVES

The analysis of the current State of the Art methods indi-
cates that the visual embedding representation is a crucial
step for the correct diagnosis of the PN. This project analy-
zes the benefits of combining deep features with radiomic
texture features.

The specific objectives of this TFG are:

1. Generate a representation space based on deep fe-
atures (specifically Vgg16) extracted from GLCM
texture images. To study the benefits of combining
deep features with radiomic texture features, a repre-
sentation space based GLCM texture images is com-
puted.

2. Generate a representation space based on instensity
deep features using Vggl6. In order to study the be-
nefits of using texture images, a representation space
based on the intensity images has also been computed
to do a comparison between both methods.
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3. Optimize an SVM for the classification of malig-
nancy. To do the classification of the malignant nodu-
les and study the impact of every representation space,
diagnosis performance metrics will be computed with
the predictions made by an SVM model. Those are the
same metrics that we will check to decide which is the
most optimal model.

4. Compare the detection of malignancy of the 2 re-
presentations spaces at 3 different levels of genera-
lization. Additionally, this project explores three dif-
ferent levels of generalization: nodule k-fold, leave-1-
nodule-out, and slice k-fold. These levels provide furt-
her insights and enable us to evaluate the performance
and robustness of our methodology.

4 METHODOLOGY

In this Section, we explain the main steps of the proposed
strategy for malignancy detection based on deep textural fe-
atures extracted using texture images and VGG16 (Section
4.1), as well as, the validation protocol for the assessment
of its level of generalization (Section 4.2). The rest of this
section is dedicated to give more detailed explanations of
each stage.

4.1 Strategy for Diagnosis of Malignancy

Our workflow consists of multiple steps, which are illus-
trated in Figure 1. First, we extract the nodule region of
interest (ROI) from CT scans using a predefined ROI. Sub-
sequently, in the generation of the representation space de-
fining a visual embedding of the nodule, we have the option
to either pass the ROI without any modifications or extract
GLCM features from it. These features are then fed into a
pre-trained VGG16 network to obtain the final feature em-
beddings. We have explored three different strategies for fe-
ature fusion to combine these embeddings and train a model
for predicting the axial 2D images of the nodule ROI. The
final nodule diagnosis is determined using a max-voting cri-
teria.

4.1.1 Nodule Extraction

In our workflow, we begin receiving anonymized CT-chest
scans in DICOM format, which are then converted to the
NIFTI format. The NIFTI format is specifically designed
for neuroimaging data and proves to be highly suitable for
preprocessing tasks. Afterward, a radiologist defines 3D
bounding boxes in the CT scans that encompass the no-
dules. These bounding boxes serve as references for ex-
tracting the Regions of Interest (ROIs) from the CT scan,
which are subsequently utilized throughout the remainder
of our workflow. We refer to these extracted ROIs as nodu-
le ROIs, as they represent the outcome of this preprocessing
step. The manual annotation of these 3D bounding boxes is
the only instance of human intervention required.
Regarding the size of the ROI, there are two important as-
pects to consider. First, the nodule ROI always includes the
intranodule region (the nodule itself), but the extent of the
perinodular region (the area around the nodule) varies de-
pending on the shape of the nodule. Studies such as [16, 17]

have highlighted the importance of including the perinodu-
lar region in accurately classifying benign and malignant
nodules. Therefore, we increase the size of the ROIs to en-
compass this aspect. Second, in a subsequent step of our
workflow, we utilize a VGG16 network that requires a mi-
nimum input image size of 42x42 pixels (width and height).
If any of the extended nodule ROIs are below this minimum
size, we further expand them to meet the network’s require-
ment.It is worth noting that nodule ROIs may have different
widths and heights due to variations in ROI sizes.

4.1.2 Nodule Embedding

We employ two methods to generate the representation spa-
ce using the nodule ROIs that were extracted in section 4.1.1
as is depicted in Figure 1. The goal of this feature embed-
ding step is to derive meaningful and discriminative repre-
sentations of the nodules, which can be further analyzed and
used for classification tasks.

The GLCM textural features are calculated using the no-
dule ROI. Additionally, for each nodule, we generate a fic-
titious nodule mask where all voxel values are set to one.
This mask indicates that all voxels within the nodule ROI
should be considered when computing the GLCM features.
By employing this nodule mask, we can generate 21 GLCM
features (i.e., 21 volumes) for each nodule ROI, correspon-
ding to the textural features computed in [15].

Let us provide a more in-depth understanding of this ap-
proach. GLCM features are statistical descriptors computed
from a gray-level co-occurrence matrix. This matrix captu-
res the frequency of occurrence of pixel pairs with specific
gray-level values and spatial relationships within a defined
neighborhood.

To generate the GLCM features, we begin by discretizing
the intensity gray values using the histogram of the original
volume intensity. This process involves dividing the range
of gray values into discrete bins. The width of these histo-
gram bins determines the level of granularity at which the
GLCM features describe the textural patterns. Smaller bin
widths provide a finer level of detail, while larger bin widths
result in more generalized information.

Once the gray values are discretized, the GLCM is cons-
tructed by examining the spatial relationships between pi-
xels within the neighborhood. Specifically, for each pi-
xel, the occurrence of gray-level pairs and their spatial re-
lationships with neighboring pixels are recorded in the co-
occurrence matrix.

Based on the GLCM, a variety of statistical measures can
be calculated to extract textural information. These measu-
res include contrast, correlation, energy, homogeneity, and
many others. Each measure provides insights into different
aspects of texture, such as the variations in pixel intensities,
the degree of similarity between neighboring pixels, and the
overall uniformity of the texture.

In summary, the GLCM features offer a way to quantify
and characterize textural patterns within the nodule ROI. By
examining the statistical relationships between pixel pairs,
these features provide valuable information for cancer di-
agnosis and have been widely employed in various medical
imaging modalities.

To extract deep features, axial slices of both the original
intensity volume and the 21 GLCM texture volumes are the
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Fig. 1: Workflow of the strategy for diagnosis of malignancy.

input for a pre-trained VGG16 model that has been trained
on ImageNet [18].

The VGG16 architecture is composed of 13 convoluti-
onal layers, 5 max-pooling layers (2 x 2), and 2 fully-
connected layers. The linear output layer utilizes the soft-
max activation function. ReLU activation function is appli-
ed to all the convolutional layers, while dropout regulariza-
tion is employed in the fully connected layers. The deep
representation for both intensity and texture images is defi-
ned by the features extracted from the FC6 layer.

For each image, the deep feature vector from the FC6
layer has a dimensional size of 4096. In the case of inten-
sity images, this results in 4096 features. However, for the
GLCM features approach, which includes 21 GLCM volu-
mes per nodule, the resulting features have a dimension of
(21, 4096). These 21 channels need to be combined to cre-
ate an input vector for a classifier. There are three options
considered: concatenation, average, and none.

In the concatenation strategy, the features are flattened,
resulting in 86016 features. This means that the 21 channels
are concatenated to form a single long feature vector.

In the average strategy, the features are used to compu-
te an average. This results in a single feature vector with
the same dimension as each individual feature vector, i.e.,
(1, 4096).

Lastly, for the raw gray levels features, they result in fe-
atures with a dimension of (1, 4096), meaning that there is
only one channel in the feature vector.

Regardless of the chosen strategy for features fusion, we
proceed to apply a t-test to rank the features based on their

significance in correlating with nodule malignancy. This
step enables us to perform feature selection and identify
the most relevant features. For the VGG features, they are
ranked based on the p-value obtained from a t-test that mea-
sures the difference in averages between malignant and be-
nign slices. The top 500 features with the lowest p-values
are then selected as input for the SVM classifier.

4.1.3 Nodule Diagnosis

We employ the fused features (none, concatenation, and
average) obtained from Section 4.1.2 to train an SVM clas-
sifier for making slice-by-slice predictions.

To optimize the SVM parameters, we perform a grid se-
arch method where multiple combinations of the parame-
ters C, kernel, and gamma are tested. This process helps
identify the parameter settings that yield the most favorable
outcomes.

After training the SVM, the diagnosis of the nodule is de-
termined by aggregating the slice predictions using a max-
voting approach. This approach considers the most frequent
slice classification to determine the final diagnosis of the
nodule. For example, if more than half of the 2D slices are
classified as malignant, the overall diagnosis is considered
malignant. Otherwise, it is classified as benign. In the case
of a tie, we assign a malignant diagnosis.
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4.2 Levels of Generalization

We split the data into three levels of generalization to study
the impact of the new representation space. It is impor-
tant to note that the experimental unit differs between the
approaches. For nodule k-fold and leave-1-nodule-out, the
experimental unit is the nodule itself. This means that the
slices of a nodule can only be in either the training or the
test set, but not both. On the other hand, the experimen-
tal unit for the slice k-fold approach is the individual slice,
allowing slices from the same nodule to be present in both
sets. These approaches provide valuable insights into the
model’s performance and generalization capabilities, ensu-
ring a robust evaluation with a high degree of generalization
and reproducibility.

1. Nodule k-folds: in this approach, we employ k-fold
cross-validation to assess the performance of our mo-
del when predicting on unseen data. The unit of da-
ta splitting is the nodule, where the dataset is divided
into subsets of nodules. One subset is designated as
the test data, while the remaining subsets are used for
training. This process is repeated k times, with each
fold using different nodules for testing. After training
a model for each fold, the diagnosis score is computed
by averaging the performance across the k-folds. This
approach provides two levels of measures: individual
fold performance and an overall measure of the mo-
del’s performance using all folds. Thus, we can captu-
re statistical ranges at each fold and across all folds.

2. Leave-1-Nodule-Out: This approach represents a par-
ticular implementation of k-fold cross-validation, as
explained earlier, with k set to the maximum num-
ber of nodules in the dataset. The nodule serves as
the experimental unit for data splitting. Accordingly,
the subsets of nodules consist of one nodule assigned
to the test data, while the remaining nodules form the
training data. Since the test set contains only one nodu-
le, this approach yields a single level of measurement,
which is an overall evaluation of the model’s perfor-
mance using all folds. Consequently, statistical ranges
can be captured across all folds.

3. Slice k-folds: In this approach, we utilize k-fold cross-
validation, with the slice as the experimental unit. This
means that slices from the same nodule can be present
in both the training and test data. The process is re-
peated k times, with each fold incorporating different
slices for testing. The diagnosis score is calculated as
the average across the k-folds. Similar to the nodule k-
folds method, this approach captures statistical ranges
at each fold and across all folds.

5 EXPERIMENTAL SET-UP

This study utilizes our database, which comprises patients
recruited from the Germans Trias i Pujol University Hos-
pital (HUGTiP) in Barcelona, Spain. The database inclu-
des images and clinical/demographic data collected betwe-
en December 2019 and November 2022. A total of 92 pa-
tients were included in this study. All patients underwent
low-dose CT-chest scans and had pulmonary nodules (PN)

that required surgical intervention. The selection of patients
was based on specific inclusion and exclusion criteria. In-
clusion criteria required patients to have a single PN with
a diameter ranging from 8 to 30 mm and a confirmed di-
agnosis of either non-small cell lung carcinoma or a non-
malignant tumor. Exclusion criteria included a previous
diagnosis of lung cancer, the presence of incurable extra-
pulmonary cancer (excluding non-melanoma skin cancer),
pregnancy, recent chemotherapy or cytotoxic drug use wit-
hin the last 6 months, and refusal to provide informed con-
sent. Notably, each PN underwent a biopsy procedure to
accurately determine its pathological nature.

Table 1 provides detailed information about our database,
including demographic data, the range of slices for each no-
dule type and sex. Our database comprises a total of 92 lung
nodules, which were used for conducting our experiments.

The minimum size of a nodule region of interest (ROI)
is 42x42 pixels (width and height), as imposed by the pre-
trained VGG16 network described in section 4.1.1. For the
computation of the 21 GLCM features [19], we utilized Py-
Radiomics [20] (version 3.01). Since the GLCM features
are calculated using the nodule mask, which identifies the
specific voxels to be included in the computation, a fictiti-
ous mask was created for each nodule, containing all ones.
This ensures that the generated GLCM features match the
size of the nodule ROIs, and also preserve the perinodu-
lar region. Specifically, a (3 x 3 x 3) kernel was used to
determine the voxels involved in the calculation of GLCM
features, and the image was discretized into 128 bins.

The computation of GCLM features was a significant
bottleneck in the workflow, as it took more than 40 hours
to complete. To address this issue, we implemented a so-
lution to parallelize the calculation using Parfor [21] and
made use of a cluster with 60 CPUs. This optimization dra-
matically reduced the execution time to less than 2 hours.
To quantify the improvement achieved by the parallel exe-
cution compared to sequential execution, we measure the
speed-up performance as follow:

T
Speedup(n) = Tgn))
being n the number of CPUs used. Similarly, efficiency

measures the utilization of computational resources and is
computed as follow:

n nT'(n)

After extracting the features, we apply a t-test for each fe-
ature fusion method, such as concatenation, average, or no
fusion. The t-test allows us to obtain a rank of the most sig-
nificant features. From this ranking, we select the top 500
most important features to train an SVM classifier. This
selection process takes into account different levels of ge-
neralization, as discussed in Section 4.2, to study the gene-
ralization and reproducibility of our method as follow:

1. Nodule 5-folds: The nodules were split into folds
using the StratifiedGroupKFold function from the
scikit-learn Python package. The split was done in a
way that maintained the proportion of classes within
each fold. With a value of k set to 5, approximately
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TABLE 1: DEMOGRAPHIC INFORMATION OF OUR DATABASE

Description Male Female Total
Patients 63 29 92
. . Age avg +std 74 £7 69 £11.4 73 £9
Demographic Population Benign PNs 3 5 13
Malign PNs 55 24 79
Nodule characterization Benign Slices min/max/avg | 6/111/41.4 | 28/50/36.2 | 6/111/39.3
Malign Slices min/max/avg | 8/152/45.9 | 12/105/47.4 | 8/152/46.3

18 or 19 nodules were included in each fold. The di-
agnosis score is computed as the average performance
in each fold individually and across the 5 folds, provi-
ding a reliable estimation represented as a confidence
interval.

2. Leave-1-Nodule-Out: In this approach, k is set to 92,
which is the same number of nodules in our databa-
se. Each fold consists of leaving one nodule out as the
test set, while the remaining nodules are used for trai-
ning. The diagnosis score is then computed based on
the predictions made across the 92 folds (test folds),
providing a single global measure.

3. Slice 5-folds: For this method, k is set to 5. Each fold
consists of 277 slices used as the test data, while the
remaining slices are utilized for model training. It is
important to note that different slices from the same
nodule can be present in both the training and test sets.
This process is repeated five times, with different sli-
ces used for testing in each fold. The diagnosis score
is then calculated as the average in each fold individu-
ally fold and across the five folds and represented as a
confidence interval. For this experiment, 77 (= 73%)
nodules of the dataset were randomly selected for the
training of the models. In this way, the independent
set (Holdout) of test patients is conformed by a total
amount of 25 nodules with 7 benign and 18 malign.
This holdout acts as an independent set to test our mo-
dels and evaluate their performance. It provides an un-
biased estimate of how well the model would genera-
lize to unseen data

To compare the results obtained for each evaluation met-
hod, with malignant nodules considered as positive cases,
we computed the following metrics based on true positives
(TP), true negatives (TN), false negatives (FN), and false
positives (FP) at both the slice and nodule levels:

2 x Prec x Rec

F1-— =100
seore ¥ Prec+ Rec

or Rec, Prec denoting, respectively, the precision and re-
call at diagnosis level:

TP
Rec = 100 % TP L FN
Prec =100 % rp

TP+ FP

Precision is the fraction of relevant instances among the
retrieved instances, while recall is the fraction of relevant
instances that were successfully retrieved. These metrics
help us measure the performance of our classifier in terms
of false positives and false negatives. The F1-score com-
bines precision and recall into a single value, representing
the trade-off between the two metrics. A higher F1-score
indicates better overall performance.

6 RESULTS

The parallelization of the feature extraction process using
60 CPUs makes us calculate the GLCMs of the nodules in
1h and 36 minutes (1.6 hours). With a time of 40 hours for
1 CPU, that means that the speed-up achievied is

5(60) = 40/1.6 = 25

In consequence, the efficiency of our sistem, that is defi-
ned by the speed-up and the number of CPUs used, is

E(60) = 25/60 ~ 0.42

In regards to the experiments related to feature space and
diagnosis, they were conducted with the aim of comparing
the performance of classifiers depending on the data they
were trained on.

The obtained results from the optimal configurations are
presented in Table 2, illustrating the SVM classifier’s per-
formance in terms of precision, recall, and Fl-score at the
nodule level.

Regarding the Diagnosis score, it is observed that the
Intensity domain has the lowest score among all do-
mains. When using slice folds for splitting, both GLCM-
Concatenation and GLCM-Average domains exhibit high
recall for both benign and malignant nodules. The recall
range for GLCM-Concatenation is (1, 1) for malignant ca-
ses and (0.84, 1) for benign cases. However, when splitting
at the nodule level, the GLCM-Average domain experien-
ces a significant drop in benign recall, almost reaching 0.
On the other hand, for the GLCM-Concatenation domain,
while the malignancy recall score falls within the range of
(0.88, 1), the recall range for benign cases is (0.37, 1). It
is worth noting that the high standard deviation (around
30%) indicates considerable variability across folds for the
GLCM-Concatenation domain. This variability can be at-
tributed to the limited number of benign samples, with only
1,2, or 3 samples at most. As a result, a false positive result
can lead to a recall variation of 33%, 50%, or even 100%.
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TABLE 2: DIAGNOSIS SCORE AT NODULE LEVEL IN EXPERIMENTS WITH SVM

Data Domain Split Diagnosis | Precision Recall F1-score
Malign | 0.85 £ 0.04 | 1.00 £ 0.00 | 0.92 = 0.02
Nodule 5-folds | g ien | 0.00 +0.00 | 0.00 +0.00 | 0.00 + 0.00
L10 Malign 0.86 1.00 0.92
Intensit Benign 1.00 0.07 0.13
y Slice 5.foids | Malign | 0.95£001 | 1+000 | 0.98+0.01
Benign | 1£0.00 | 0.4940.09 | 0.65 =+ 0.08
Malign 0.69 1.00 0.82
Holdout Benign 0.00 0.00 0.00
Malign | 0.94 £ 0.05 | 0.94 £ 0.06 | 0.94 £ 0.04
Nodule 5-folds | g ion | 0.70 +0.27 | 0.67+0.30 | 0.63 = 0.22
1o Malign 0.90 0.95 0.93
. Benign 0.56 0.39 0.46
GLCM-Concatenat
oncateniation Slice 5.fords | Malign | 1000 | 0.99+001 | 0.9 £0.00
Benign | 0.91+£0.07 | 1£0.00 | 0.95+0.04
Malign 0.75 0.83 0.79
Holdout Benign 0.40 0.29 0.33
Malign | 0.87 £ 0.04 | 1.00£0.0 | 0.93 = 0.02
Nodule S-folds | g ion | 0.20 +0.40 | 0.10+0.20 | 0.13 +0.27
L10 Malign 0.86 1.00 0.92
Benign 0.00 0.00 0.00
GLCM-A
Verage Slice 5.foids | Malign | 0.99£001 | 1£0.0 1£0.00
Benign 1400 | 0.93+£0.09 | 0.96 4 0.05
Malign 0.72 1.00 0.84
Holdout Benign 1.00 0.14 0.25

7 CONCLUSIONS

While the evaluation of parallelization and its impact on
system efficiency was not initially a part of our original ob-
jectives, the results obtained highlight its significant effect
on speeding up the feature extraction process. By utilizing
60 CPUs, we were able to calculate the GLCMs of the no-
dules in just 1 hour and 36 minutes, achieving a remarkable
speed-up of 25 compared to a single CPU. The resulting ef-
ficiency of ~ 0.42 demonstrates the successful utilization of
parallel computing.

Although the enhancement of system performance
through parallelization was not a primary objective, it is
worth noting that the presence of a larger number of no-
dules would likely further improve efficiency. The current
bottleneck lies in processing larger-sized nodules, which are
more time-consuming. By increasing the quantity of nodu-
les and distributing the workload more evenly, the system’s
performance could be optimized even further.

As shown in Table 2, the domain that exhibits the lowest
performance is Intensity. This can be attributed to the fact
that VGG16, which was trained on ImageNet for object
classification in natural scenes, may not effectively captu-
re the texture details characteristic of cancer tumor lesions.
On the other hand, GLCM demonstrates higher discrimi-
nation power as it can represent the texture details of the
nodules.

Regardless of the representation space, the data split at
the slice level yields the least reproducible results. This
is because the intervals do not contain the metrics of the
hold-out independent test set. Additionally, they present
overly optimistic precision, recall, and F1-score values for
malignant nodules within the range of (0.98, 1), and (1, 1)
for benign nodules, when using the GLCM-Concatenation
domain. These numbers are comparable to, or even better
than, those achieved by state-of-the-art methods. However,
the metrics for the hold-out set drop to 0.83 for malignant
nodule recall and 0.29 for benign nodules. The interval pre-
dictions obtained by splitting the data at the nodule level are
less optimistic but more realistic as they include the hold-
out metric results.

These observations highlight the challenges and limitati-
ons in achieving consistent and reliable results in lung can-
cer screening. The findings underscore the need for further
research and development to address issues related to da-
taset size, imbalance and reproducibility, ultimately impro-
ving the accuracy and reliability of screening methods.
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