

PLANTA DE PRODUCCIÓN DE ETILBENCENO

GRADO DE INGENIERÍA QUÍMICA

Irene Benítez María Lozano Antonio Funes Arnau Maestre Judith Royo

Eduardo Larrousse Joel Méndez

Curso 2022/2023 Tutor: Josep A. Torá

PLANTA DE PRODUCCIÓN DE ETILBENCENO

CAPÍTULO XI: MANUAL DE CÁLCULOS

Irene Benítez María Lozano Antonio Funes Arnau Maestre Judith Royo Eduardo Larrousse Joel Méndez

Curso 2022/2023 Tutor: Josep A. Torá

ÍNDICE

11.1. Tanques de almacenamiento	5
11.1.1. Diseño a presión atmosférica	5
11.1.1.1 Diseño del cuerpo	5
11.1.1.2. Diseño del fondo inferior	6
11.1.1.3. Diseño del fondo superior	6
11.1.1.4. Peso del tanque	7
11.1.2. Tanques de almacenamiento de benceno	8
11.1.2.1 Diseño del tanque	9
11.1.2.1 Peso del tanque	10
11.1.3. Tanques de almacenamiento de etilbenceno	. 11
11.1.4. Implementación y cubetos	12
11.2. Reactor	. 14
11.2.1. Cinética	.14
11.2.2 Forma de operación	. 15
11.2.3. Tipo de reactor	.15
11.2.4. Cálculo del volumen del reactor	16
11.2.5. Selección del paquete termodinámico i introducción de la cinética.	.16
11.2.6. Datos de los reactores	. 18
11.2.7. Sistema de refrigeración	. 18
11.2.8. Tipo de circulación	19
11.2.9 Diseño mecánico	21
11.3. Intercambiadores de calor	. 27
11.3.1. Aspectos generales del diseño de los intercambiadores	.27
11.3.1.1. Elección del tipo de intercambiador de calor	.27
11.3.1.2. Elección del fluido térmico	.27
11.3.1.3. Circulación de los fluidos a través de tubos y carcasa	.28
11.3.1.4. Características de los tubos y de la carcasa	. 28
11.4.1.5. Velocidades típicas de circulación	.28
11.3.1.6. Coeficiente de ensuciamiento (Factor de Fouling)	. 29
11.3.1.7. Pantallas deflectoras	30
11.3.2. Procedimiento para el diseño	30
11.3.2.1. Definición de las condiciones de operación:	.30
11.3.2.1.1. Condiciones de operación de los intercambiadores de calo	ſ
del proceso	. 30
11.3.2.1.2. Condiciones de operación de los condensadores y reboiler	S
de las columnas de destilación	32
11.3.2.2. Resultados del diseño	34
11.4. Columnas de destilación	40

11.4.2. Diseño de las columnas.4511.4.2.1. Diseño mecánico.4511.5. Tanques pulmón.4811.5.1. Diseño del tanque.4811.6. Caldera.5011.7. Torres de refrigeración.5211.8. Chiller.5511.9. Bombas.5511.10. Necesidades de nitrógeno.6111.11. Necesidades de aire comprimido.62
11.4.2.1. Diseño mecánico.4511.5. Tanques pulmón.4811.5.1. Diseño del tanque.4811.6. Caldera.5011.7. Torres de refrigeración.5211.8. Chiller.5511.9. Bombas.5511.10. Necesidades de nitrógeno.6111 11. Necesidades de aire comprimido.62
11.5. Tanques pulmón
11.5.1. Diseño del tanque
11.6. Caldera
11.7. Torres de refrigeración
11.8. Chiller
11.9. Bombas
11.10. Necesidades de nitrógeno
11 11 Necesidades de aire comprimido 62
11.12. Cálculo de los compresores
11.13. Cálculo de los transformadores y el grupo electrógeno
11.14. Bibliografía

11.1. Tanques de almacenamiento

Los tanques de almacenamiento de este proceso y de todos estos son necesarios para poder alimentar el proceso de producción con una disponibilidad suficiente de reactivos y elementos. Para este proceso es esencial tener almacenado benceno con provisión y espacio suficiente para el producto resultante (Etilbenceno).

Para el diseño de los tanques de almacenamiento, tanto de reactivo como de producto, se ha seguido el código API 650 ya que se tratan de depósitos a presión atmosférica.

11.1.1. Diseño a presión atmosférica

Como ya se ha mencionado anteriormente, se ha seguido el código API 650 donde se especifican las características que debe tener el diseño del tanque según alguno de sus parámetros (diámetro, volumen, etc.).

A continuación, se detallan los pasos que se han seguido para su diseño:

11.1.1.1. Diseño del cuerpo

El espesor mínimo para las paredes del cuerpo debe ser superior a el espesor de diseño y el espesor en prueba hidráulica. Para su cálculo se han utilizado las siguientes ecuaciones:

$$td = \frac{4.9 \times D \times (h-0.3) \times G}{Sd \times E} + CA$$
(1)

$$tt = \frac{4.9 \times D \times (h-0.3) \times G}{St \times E} + CA$$
(2)

Donde:

- td es el espesor de diseño, en mm.
- tt es el espesor en prueba hidráulica, en mm.
- h es el nivel de líquido, en m.
- G es la gravedad específica de diseño para el líquido almacenado. Esta se calcula dividiendo la densidad del fluido entre la del agua.
- CA es la tolerancia para la corrosión, en mm
- Sd es la tensión admisible para condiciones de diseño y depende de las características del material utilizado, en MPa.
- St es la tensión admisible para condiciones en prueba hidráulica y también depende del material, en MPa.
- E es el factor de soldadura del material, adimensional.
- D es el diámetro nominal del tanque, en m.

Como se ha mencionado, el espesor del cuerpo deberá ser superior al cálculo resultante de las ecuaciones (1) y (2), pero también tendrá que cumplir los espesores mínimos del cuerpo en función del diámetro. Estos se especifican en la *tabla 1*.

Diámetro nominal del tanque (m)	Espesor mínimo del cuerpo (mm)
< 15	5
15 a 36	6
36 a 60	8
> 60	10

Tabla 1: Espesores	mínimos del	cuerno	cilíndrico
Tabla T. Espesores	mininos dei	cuerpo	CIIIIIUIICO

11.1.1.2. Diseño del fondo inferior

Para el diseño del fondo inferior se ha escogido un fondo plano, ya que este tipo de fondos se pueden utilizar cuando la resistencia permisible del suelo de la planta sea como mínimo 1,465 kg/cm² y en este caso el terreno tiene una resistencia de 2 kg/cm2, por lo tanto, se puede escoger este fondo. Se consideró un espesor del fondo de 6 mm según la norma API-650.

11.1.1.3. Diseño del fondo superior

Se ha escogido un fondo superior de tipo cónico ya que son los que se utilizan normalmente para este tipo de tanques. Este tipo de fondo consiste en un cono formado de placas soldadas donde su ángulo de inclinación debe ser entre 9 y 37 grados. En cualquier caso, estos se pueden calcular y diseñar siempre que el diámetro del tanque no sea superior a 18 metros.

A continuación, en la *tabla 2* se pueden observar el espesor mínimo y máximo para los techos según la normativa API-650.

Tabla	2:	Espesor	mínimo	y	máximo	para	techos
				-			

Espesor máximo (mm)	6.35 + CA (corrosión permisible)
Espesor mínimo (mm)	4.76

La ecuación (3) muestra cómo se ha calculado el espesor del fondo superior.

$$Tt = \frac{D}{4800 \times sin(\alpha)} + CA$$
 (3)

Donde:

- D es el diámetro del cuerpo del tanque, en mm.
- α es el ángulo respecto al eje horizontal, en radiantes.
- Tt es el espesor mínimo requerido, en mm.
- CA es la tolerancia a la corrosión, en mm.

11.1.1.4. Peso del tanque

Para saber el peso del tanque vacío, primero se debe calcular el peso de cada una de las partes.

M tanque vacío = M cuerpo + M cono + M base (4)

PESO CUERPO

En este caso el cuerpo es cilíndrico por lo tanto se aplica la fórmula del volumen del cilindro multiplicándose por la densidad del material.

$$M cuerpo = (Vext - Vint) \times \rho material$$
 (5)

$$V = \pi r^2 \times H$$

Donde:

- M cuerpo es el peso del cuerpo cilíndrico, en kg.
- Vext es el volumen externo del tanque sabiendo que el radio externo es el radio interno más su espesor, en m³.
- Vint es el volumen interno del tanque teniendo en cuenta solo el radio, en m3.
- ρ es la densidad del material de construcción, en kg/m³.
- r es el radio dependiendo de si se calcula el volumen exterior o el interior, en m.
- H es la altura del tanque, en m.

• PESO FONDO INFERIOR

 $M base = [\pi r^2 \times t] \times \rho material \qquad (6)$

Donde:

- M base es el peso de la base, en kg.
- t es el grosor de la base, en m.
- ρ es la densidad del material de construcción, en kg/m³.
- r es el radio de la base, en m.
- PESO FONDO SUPERIOR

$$M \ cono = (Vext - Vint) \times \rho \ material$$
 (7)

$$V = \frac{\pi r^2 \times He}{3} \tag{8}$$

Donde:

- M cono es el peso del cono, en kg.
- Vext es el volumen externo del tanque sabiendo que el radio externo es el radio interno más su espesor, en m³.
- Vint es el volumen interno del tanque teniendo en cuenta solo el radio, en m3.
- ρ es la densidad del material de construcción, en kg/m³.
- r es el radio dependiendo de si se calcula el volumen exterior o el interior, en m.
- He es la altura del cono, en m.
- PESO DEL TANQUE EN OPERACIÓN

 $M tanque lleno = M tanque vacío + [Vfluido \times \rho fluido]$ (9)

Donde:

- M tanque lleno es el peso del tanque con el producto lleno, en kg.
- M tanque vacío es el peso del tanque sin el producto, en kg.
- V fluido es el volumen del producto de cada tanque, en m³.
- ρ es la densidad del fluido que queremos almacenar, en kg/m³.

11.1.2. Tanques de almacenamiento de benceno

Los tanques de almacenamiento de benceno se han diseñado siguiendo las pautas mencionadas anteriormente.

El material utilizado ha sido ACERO INOXIDABLE 304L ya que es el más utilizado y es compatible con el benceno. En la *tabla 3* se muestran los parámetros característicos para este material.

Tabla 3: Parámetros del acero 304L

ρ material (kg/m3)	E material	Sd (MPa)	St (MPa)	CA (mm)	G benceno
7900	0.85	155	145	2.5	0.879

A partir del balance de materia, obtenemos que necesitamos 858,73 m3/día de benceno para realizar nuestro proceso, teniendo en cuenta que queremos tener stock para 3 días, calculamos el volumen total de benceno que necesitamos almacenar.

875, 73
$$\frac{m^3 benceno}{hora} \times \frac{24 horas}{1 dia} \times 3 dias = 2576, 21 m^3$$

Se han probado diferentes configuraciones y números de tanques decidiendo finalmente tener 8 tanques sobredimensionados un 10%, con tal de no tenerlos llenos al 100%.

$$\frac{2576.21 m^3}{8 tanques}$$
 ×1, 1 = 358, 23 m³ cada tanque

Utilizando una relación H/D de 1,5 y sabiendo el volumen del cilindro (aplicada ecuación (5) podemos encontrar en valor del radio interno del cuerpo, siendo su valor igual a 3,35 metros. De manera que el diámetro interior es 6,69 metros y la altura (H) 10,049 metros.

Como se ha sobredimensionado el tanque, el nivel de ocupación real del tanque es de 90.91%, por lo tanto, se ha calculado la altura real del líquido.

Nivel líquido = 10,049 m×
$$\frac{90,91}{100}$$
 = 9,14 metros

Una vez se han realizado estos cálculos previos, se han calculado los espesores aplicando las ecuaciones explicadas en el *apartado 11.1.1*.

11.1.2.1 Diseño del tanque

• DISEÑO DEL CUERPO

El espesor del cuerpo del tanque se ha calculado mediante las ecuaciones (1) y (2).

$$td = \frac{4.9 \times 6.7 \times (9.14 - 0.3) \times 0.878}{155 \times 0.85} + 2,5 = 1,935 \, mm$$

$$tt = \frac{4.9 \times 6.7 \times (9.14 - 0.3) \times 0.878}{145 \times 0.85} + 2,5 = 2,068 \, mm$$

Tal y como se ha mencionado anteriormente, para diámetros inferiores de 15 metros, según API-650 debe ser mínimo a 5mm. Por lo tanto, el valor escogido de espesor del cuerpo cilíndrico para los tanques de benceno es de 5 mm.

• DISEÑO FONDO INFERIOR

Para el espesor del fondo inferior plano se considera un espesor de 6 mm según la normativa API-650, ya que este valor debe ser superior o igual al del espesor del cuerpo.

Para el diámetro del fondo, se ha escogido que su valor sea 51mm superior al diámetro del cuerpo, por lo tanto, tiene un valor de 6,7 metros.

• DISEÑO FONDO SUPERIOR

Para el cálculo del espesor del fondo superior se ha utilizado la ecuación (4).

$$Tt = \frac{6699}{4800 \times \sin(25.5)} + 2,5 = 5,796 \, mm$$

Como ya se ha mencionado anteriormente, el valor obtenido se encuentra entre el rango de valores máximo y mínimo por lo tanto el espesor del fondo superior será de 5,796 mm.

Para saber la altura del techo, se ha aplicado la siguiente ecuación:

 $Hcono = radio \times tan tan (\propto) = 1.608 metros$ (10)

11.1.2.1 Peso del tanque

• PESO DEL TANQUE VACÍO

El peso total del tanque se ha calculado por partes, mediante las ecuaciones (4) a (7).

$$M \ cuerpo = \left(\pi \cdot (3,35 + 0,005)^2 \cdot 9,136 - \pi \cdot 3,35^2 \cdot 9,136\right) \times 7900$$

$$M \ cuerpo = 7600, 42 \ kg$$

$$M \ cono = \left(\frac{\pi (3.35 + 0.0058)^2 \cdot (1.608 + 0.0058)}{3} - \frac{\pi \cdot 3.35^2 \cdot 1.608}{3}\right) \cdot 7900$$

$$M \ cono = 1056, 81 \ kg$$

$$M \ base = \left[\pi(6, 69 + 0, 0051)^2 \times 0, 006\right] \times 7900$$

$$M \ base = 1673, 39 \ kg$$

Página 10 de 66

M tanque vacío = 10330, 62 kg

• PESO DEL TANQUE EN OPERACIÓN

El peso del tanque en operación se ha calculado a partir de la ecuación 9.

 $M \text{ tanque lleno} = 10330, 62 + [322, 026 \times 878, 9]$

M tanque lleno = 293359 kg

11.1.3. Tanques de almacenamiento de etilbenceno

Para el diseño de los tanques de etilbenceno, ya que sus precauciones de seguridad son similares para las del benceno, se han diseñado de la misma manera siguiendo los cálculos del *apartado 11.1.2*.

En balance de materia, obtenemos que necesitamos almacenar 1181,58 m3/día de EB, teniendo en cuenta que queremos tener espacio para 3 días, calculamos el volumen total de etilbenceno que necesitamos almacenar.

1181, 58
$$\frac{m^{3} EB}{hora} \times \frac{24 horas}{1 dia} \times 3 dias = 3544, 75 m^{3}$$

En este caso, como es un volumen un poco superior se han diseñado 10 tanques. A continuación, en la *tabla 4* se muestran tanto los parámetros utilizados como los obtenidos para el diseño de los tanques de etilbenceno.

PARÁMETROS TANQUES	EB
Material	AISI 304L
Densidad material (kg/m3)	7900
Número de tanques	10
Volumen tanque (m3)	354,475
Sobredimensión	10%
Volumen total tanque (m3)	389,923
Diámetro interior (m)	6,917
H/D	1,5
Altura cuerpo (m)	10,376
Espesor cuerpo (mm)	5
TIPO DE TECHO	CÓNICO
Ángulo cono (grados)	25,64
Altura techo (m)	1,660
Espesor fondo superior (mm)	5,467
Diámetro fondo plano (m)	6,922
Espesor fondo inferior (mm)	6
Altura total (m)	12,036
Peso cuerpo (kg)	8102,596
Peso techo (kg)	1062,421
Peso fondo plano (kg)	1783,911
Peso tanque vacío (kg)	10948,927
Peso tanque en operación (kg)	316719,103

Tabla 4: Parámetros del acero 304L

11.1.4. Implementación y cubetos

Para los tanques de almacenamiento de productos líquidos se deben implementar sistemas de retención como medida de seguridad. En este caso se han diseñado dos tipos de cubetos que respetan toda la normativa MIE APQ sobre almacenamiento de productos químicos.

En este caso, siguiendo la normativa, los tanques de almacenamiento no pueden estar colocados en más de dos filas, por lo tanto, para el benceno tendremos una configuración 4x2 y para el etilbenceno 5x2.

A continuación, se muestran las ecuaciones aplicadas para el dimensionamiento de los cubetos.

Longitud (m) = $2 \times d1 + (N - 1) \times d2 + d$ tanque (11)

Donde:

- d1: la distancia entre el cubeto y el recipiente, en metros.
- N: es el número de tanques
- d2: es la distancia entre los tanques, en metros.
- D: tanque es el diámetro de los tanques, en metros.

Anchura $(m) = 2 \times d1 + d \ tanque$ (12)

 $Volumen \ cube to \ (m^3) = Longitud \times Altura \times Anchura$ (13)

La *tabla 5* muestra tanto los parámetros utilizados como los obtenidos para el cálculo de los cubetos de benceno y etilbenceno.

	Benceno	Etilbenceno
Número de tanques	8	10
d tanques (m)	6,699	6,917
d1 (m)	1,5	1,75
d2 (m)	3,35	3,459
Longitud (m)	33,15	41,54
Altura (m)	1	1
Anchura (m)	9,699	10,42
Volumen cubeto (m3)	321,51	432,78
Volumen ocupado (m3)	281,99	375,79
Capacidad (%)	12,28%	13,17%

Tabla 5: Parámetros de los tanques de almacenamiento

Según la normativa APQ se ha escogido la distancia entre pared y recipiente (d1) teniendo en cuenta que se almacenan líquidos inflamables (clase B según la normativa), por lo tanto, estos valores están dentro del rango aceptado por el reglamento.

Para la distancia entre los tanques (d2), la distancia mínima es de 1,5 metros y se ha calculado como la mitad del diámetro de los tanques.

Finalmente, se debe comprobar que la capacidad del cubeto libre es mínimo un 10% del volumen que se puede derramar. En la *tabla 5*, se puede observar que el diseño de los dos cubetos cumple con la normativa.

11.2. Reactor

Para realizar la producción de etilbenceno, mediante el uso de etileno y benceno, se ha de tener en cuenta que se producen tres reacciones más que pueden generar más o menos etilbenceno, en donde la primera reacción es la producción de etilbenceno mediante etileno y benceno, la segunda se produce dietilbenceno mediante etilbenceno y etileno, la tercera reacción es la producción de nuevo de etilbenceno mediante dietilbenceno y benceno, en donde esta reacción es reversible, y finalmente la producción de etilbenceno y propileno mediante tolueno y etileno.

$$C_{6}H_{6} + C_{2}H_{4} \rightarrow C_{6}H_{5}C_{2}H_{5}$$
 (r1)

$$C_{6}H_{5}C_{2}H_{5} + C_{2}H_{4} \rightarrow C_{6}H_{4}(C_{2}H_{5})_{2}$$
 (r2)

$$C_{6}H_{4}(C_{2}H_{5})_{2} + C_{6}H_{6} \leftrightarrow 2C_{6}H_{5}C_{2}H_{5}$$
 (r3)

$$C_{6}H_{5}CH_{3} + 2C_{2}H_{4} \rightarrow C_{6}H_{5}C_{2}H_{5} + C_{3}H_{6}$$
 (r4)

Para que dichas reacciones se produzcan, se ha de tener en cuenta tanto la utilización de zeolitas como catalizador para disminuir la energía de activación y una temperatura de entrada cercana de entre 350-400°C.

11.2.1. Cinética

Después de haber descrito las reacciones que se dan a cabo dentro del reactor, se ha de comprobar la cinética de la reacción con la ecuación (19).

$$-ri = k_{o,i} e^{-E_i/RT} C^a_{Etileno} C^b_{EB} C^c_{Tolueno} C^d_{Benceno} C^e_{DEB}$$
(19)

Donde:

- r_{i:} Cinética de las reacciones que se producen dentro del reactor (Kmol/s*m³)
- k_i: Constante cinética que se producen dentro del reactor
- R : Constante de los gases ideales (Kcal/Kmol*K)
- T: Temperatura (K)
- E_i: Energía de activación (Kcal/Kmol)

Gracias a los datos aportados en el libro Análisis, síntesis y diseño de procesos químicos (19), se ha podido descubrir las condiciones de trabajo de los reactores para una óptima conversión y maximizar el proceso para obtener la cantidad de etilbenceno que ha sido establecida.

Gracias a los datos de la *tabla 6* se puede ver que dichas reacciones son factibles para poder trabajar en condiciones adiabáticas y a temperaturas de alrededor de 400°C y presión de 2000 KPa, reduciendo así la producción de subproductos y el trabajar a temperaturas superiores, reduciendo así la energía empleada para calentar el fluido antes de entrar al reactor.

Reacciones (i)	Ei (Kcal/Kmol)	ko,i	а	b	с	d	е
1	22500	1*10 ⁶	1	0	0	1	0
2	22500	6*10 ⁵	1	1	0	0	0
3	25000	7.8 [*] 10 ⁵	0	0	0	1	1
4	20000	3.8*10 ⁸	2	0	1	0	0

Tabla 6: Valores de las cinéticas de reacción mediante zeolitas

11.2.2 Forma de operación

En el diseño de la planta, se ha diseñado cuatro reactores, tres para el proceso de alquilación y uno para el de transalquilación, en donde estos entran a una temperatura de 380°C y salen a una temperatura aproximada de 445°C de los reactores de alquilación y 415°C del de transalquilación. con una conversión del 90% después de pasar por los tres reactores de Alquilación y una conversión del 99,98% del dietilbenceno a etilbenceno.

11.2.3. Tipo de reactor

El reactor que se ha empleado para realizar la reacción ha sido un reactor de lecho empacado con zeolitas como catalizador. Las reacciones que se producen son exotérmicas, pero es gracias a dicha capacidad que la reacción puede mejorar su producción, además, se tiene en cuenta esta capacidad de incrementar de temperatura introduciendo un intercambiador de calor entre reactores para reducir así la temperatura y poder controlarla.

Figura 1: Reactor de lecho empacado

Se ha elegido un reactor de lecho empacado (*figura 1*) debido a que el catalizador que se emplea está en estado sólido y nuestro compuesto en estado gas. El volumen que ocupará dicho catalizador es del 90% del reactor, donde el restante 10% es el espació que hay entre piezas de zeolitas y un poco de la zona de entrada de producto y de reactivo.

Se ha de tener en cuenta que circula un sistema de control de temperatura de emergencia para la situación en que el reactor se sobrecalienta, pero si no ocurre dicho problema, por lo general, se trabajará en condiciones adiabáticas.

11.2.4. Cálculo del volumen del reactor

Para calcular el volumen de los cuatro reactores, se ha empleado la herramienta de simulación Aspen HYSYS, eligiendo un reactor estándar y introduciendo las condiciones de trabajo, variando su tamaño según el máximo consumo de etileno dentro del reactor, en donde se introduce una nueva carga de etileno para el siguiente reactor.

11.2.5. Selección del paquete termodinámico i introducción de la cinética

Debido a que el libro Análisis, síntesis y diseño de procesos químicos^[1], menciona que paquete termodinámico han utilizado para la simulación del proceso, que es el UNIQUAC, por tanto, no se ha tenido que utilizar el método de asistencia que viene incluido en la herramienta Aspen HYSYS.

Posteriormente, se han añadido la lista de componentes en properties, component list, que se muestra en la *figura 2*.

Component Ruid Paste Lists Package Clipboard Na	Methods Assistant Map Components Map Components Map Components Map Components Components Components Components	Petroleum Assays Beforing & Hypothesicals Manager Hypothesicals	Convert to Refring Assay Other Stores * Not Eabler Other Stores * Other Stores *	natory sents ata	Search Exchange	
Properties <						
b Component Lists	List Name	Source	Associated Ruid Packages	Status		
Beroleum Assays Beroleum Assays Beroleum Assays Gomporent Maps Gomporent Maps User Properties						
	Add Copy	Delete				
Propertiles	Add • Copy	Delete				
Properties	Add • Copy import • Export.	Defete				
Properties □ ∰ Simulation \$a3 Sofety Analysis	Add • Copy import • Export. Messages	Delete				

Figura 2: Selección de la lista de componentes

Seguidamente se han introducido todos los componentes que afectan tanto a la reacción dentro de los reactores, como los componentes que se usarán para otros procesos dentro de la producción.

atabank: HYSYS				Select: Pure Componer	Filter:	All Families 🔹
omponent	Туре	Group		Search for:	Search by:	Full Name/Synonym
Benzene	Pure Component					
Ethylene	Pure Component			Simulation Name	Full Name / Synonym	Formula
Ethane	Pure Component		< Add	Propane	C3	C3H8
Toluene	Pure Component			i-Butane	i-C4	C4H10
E-Benzene	Pure Component			n-Butane	n-C4	C4H10
14-DiethylBZ	Pure Component		Replace	i-Pentane	i-C5	C5H12
Propene	Pure Component			n-Pentane	n-C5	C5H12
Methane	Pure Component			n-Hexane	C6	C6H14
Nitrogen	Pure Component		Remove	n-Heptane	C7	C7H16
Oxygen	Pure Component			n-Octane	C8	C8H18
H2O	Pure Component			n-Nonane	C9	C9H20
co	Pure Component			n-Decane	C10	C10H22
CO2	Pure Component			n-C11	C11	C11H24
				n-C12	C12	C12H26
				n-C13	C13	C13H28

Figura 3: Selección de los componentes del sistema

Después, se introducen todos las constantes cinéticas que son empleadas, como la energía de activación, el factor preexponencial, la estequiometría como el rango de temperaturas que se producen dentro de los cuatro reactores, plasmado en la *figura 4*, dando por finalizado la introducción de los datos cinéticos en la herramienta de simulación.

	te Info				Basis		
Component	Mole Wt.	Stoich Coeff	Fwd Order	Rev Order	Basis		Molar Concn
Benzene	78,110	-1,000	1,00	0,00	Base Component		Ethylene
Ethylene	28,054	-1,000	1,00	0,00	Rxn Phase		VapourPhase
E-Benzene	106,166	1,000	0,00	1,00	Min. Temperature		350,0 C
*Add Comp**					Max Temperature		450,0 C
					Rate Units	kgmole/m3-s	•
					Rate Units	kgmole/m3-s	Reaction
					Rate Units Forward Reaction A 1,0000e+0	kgmole/m3-s	Reaction <empty></empty>
					Rate Units Forward Reaction A 1,0000e+(E 94	kgmole/m3-s Reverse A' E'	Reaction <empty> <empty></empty></empty>
					Rate Units Forward Reaction A 1,0000e+(E 94 b 0,000	kgmole/m3-s	Reaction <pre> empty> empty> empty> empty> </pre>

Figura 4: Introducción de la cinética de los reactores

11.2.6. Datos de los reactores

Los parámetros que se han utilizado a la hora de diseñar los reactores son los que se encuentran en la *tabla 7*.

Reactores	R-201	R-202	R-203	R-20	m (Kg/h)
Tamaño partícula (mm)	1	1	1	1	953,05
Densidad del sólido (kg/m³)	2750	2750	2750	2750	872,82
Volumen lecho	127,2	95,43	144,8	28,27	753,12
Longitud (m)	20	15	20	10	115,5

Tabla 7: Datos de los reactores y del catalizador

Los tres primeros reactores trabajan en serie, dando una conversión, con la suma de los tres del 90%, mientras que el reactor 4 tiene una conversión del 99,8%, eliminando prácticamente el dietilbenceno que se recircula.

11.2.7. Sistema de refrigeración

El objetivo del sistema de refrigeración en los reactores es evitar que llegue a temperaturas superiores de 480°C, evitando así que se generen condiciones para que se produzca una explosión o una fuga de material, para eso, se pondrá un sistema en que detecte cuándo se debe activar el sistema de seguridad en el caso que llegue a una temperatura igual o superior de 480°C y procurar bajarlo a 420°C que sería la temperatura más adecuada para que se produzca la reacción de forma satisfactoria.

$$Q_{a} = \Delta Hr * Qv * \delta_{mezcla Benceno}$$
(20)

En donde:

- Qg: energía producida a la reacción [kJ/h].
- ΔHr Entalpía de la reacción [KJ/Kg de mezcla]
- Qv: Caudal volumétrico de la mezcla [m³/h]
- $\delta_{mezcla Benceno}$: Densidad de la mezcla [Kg/ m³]

Por tanto, el fluido refrigerante que se utilizará es el agua a 20°C y a 1 atm de presión y se debe utilizar los datos pertinentes para saber la energía que absorberá el sistema de refrigeración.

$$Q_{a} = m * C p_{l} \Delta T_{l} + m * \lambda + m C p_{v} \Delta T_{v}$$
(21)

Donde:

- Qg: energía producida a la reacción [kJ/h].
- m: caudal de refrigerante [kg/h].
- ΔTI y ΔTv: incremento de temperatura que se produce en el fluido refrigerante en estado líquido y gaseoso respectivamente [°C].
- Cpl: calor específico del fluido refrigerante en estado líquido [kj/kg°C].
- Cpv: calor específico del fluido refrigerante en estado gaseoso [kj/kg°C].
- λ: calor latente del fluido refrigerante [kj/kg]

Para calcular la energía producida en la reacción, se ha utilizado la ecuación (1), dando como resultado los valores de la *tabla 8*, además de determinar el requerimiento de caudal de agua que se necesitan para bajar 60°C de temperatura en caso de emergencia

Reactores	AH [KJ/Kg de mezcla]	Qv [m3/h]	Densidad mezcla [Kg/ m3]	Qg [kJ/h]	m (Kg/h)
R-201	1410	2700	24,3	92500000	953,05
R-202	1148	3280	22,5	84700000	872,82
R-203	905,9	3635	22,2	73100000	753,12
R-204	1315	251,5	33,9	11200000	115,5

Tabla 8: Cálculo del requerimiento de agua

11.2.8. Tipo de circulación

Una vez que se ha calculado los requerimientos para los cuatro reactores, se puede calcular cuál sería el área de contacto de la carcasa que envuelve al reactor, mediante la ecuación (22) para poder realizar el cálculo, se ha tenido en cuenta que el sistema se activará a una temperatura de 480°C, por tanto, se ha establecido que la temperatura del tanque seria 480°C.

$$\Delta T_{ml} = \frac{\left(\Delta T_r - \Delta T_e\right) - \left(\Delta T_r - \Delta T_s\right)}{ln\left(\frac{\left(\Delta T_r - \Delta T_s\right)}{\left(\Delta T_r - \Delta T_e\right)}\right)}$$
(22)

Donde:

- Δ Tml: temperatura media logarítmica [°C].
- Te: temperatura del líquido refrigerante de la entrada (20°C) [°C].
- Ts: temperatura del líquido refrigerante de la salida (80°C) [°C].
- Tr: temperatura del reactor [°C].

Para poder calcular el área de intercambio de todos los reactores, se ha usado la ecuación (23), en donde el coeficiente global de transferencia de calor es de $32 \text{ W/m2} \cdot \text{k}$.

$$A = \frac{Q_g}{U^* \Delta T_{ml}} \quad (23)$$

Donde:

- A: área total de intercambio [m²].
- Qg: energía producida a la reacción [kJ/h].
- U: coeficiente global de transferencia de calor [W/m² · k].

Finalmente, se ha conseguido el área de intercambio de todos los reactores y por tanto, se puede comenzar con el diseño del encamisado.

Si suponemos que el grosor de las tuberías no puede superar los 2 mm, que es el diámetro externo y que como máximo se puede tener 4100 tubos, entonces se puede determinar el área de tubo. Por tanto, se ha tomado la decisión que para los tanques de alquilación tendrán 1500 pasos por tubo y el de transalquilación de 1000 tubos.

$$D_{int} = \frac{2^* \sqrt{\frac{A_{tub}}{\pi}}}{n_{tub}}$$
(24)

$$D_{ext} = D_{int} - 2\alpha \tag{25}$$

Donde:

- Atub: área de los tubos (m²)
- Dext: diámetro externo del tubo (m)
- Ltub: longitud de los tubos (m)
- ntub: número de tubos

Por tanto, nos da como resultado el número de tubos que requiere para hacer funcionar el sistema de refrigeración de emergencia que se muestra en la *tabla 9.*

Reactores	Qv (m3/h)	A (m2)	Diámetro externo (m)	Diámetro interno (m)	Diámetro interno (inch)	Diámetro utilizado (inch)
R-201	0,953	6734,06	0,0617	0,0577	2,268	2 1/2'
R-202	0,8728	6167,17	0,059	0,055	2,164	2 1/2'
R-203	0,7531	5321,39	0,0548	0,0508	1,999	2'
R-204	0,1155	816,11	0,0322	0,0282	1,109	1 1/2'

Tabla 9: Valores del sistema de refrigeración

11.2.9 Diseño mecánico

El material empleado para la construcción de los reactores es acero inoxidable de AISI 316 debido a la salinidad y humedad que hay en el ambiente en Tarragona.

• PRESIÓN DE DISEÑO

Se debe calcular la presión de diseño del tanque mediante la ecuación (26) y se diseña teniendo en cuenta una sobrepresión del 20% con respecto al diseñado por posibles problemas que pueda haber.

$$P_{d} = (P_{0} + (\rho * H * g)) * 1,2$$
(26)
$$P_{d} = (2000000 + (24, 2 * 20 * 9, 8)) * 1,2 = 2405691 \text{ Pa} = 24 \text{ bar}$$

Donde:

- ρ: Densidad del corriente (kg/m³)
- g: Gravedad (m/s²)
- H: Altura del tanque (m)
- P_0 : Presión de operación (Pa)
- P_{d} : Presión de diseño (Pa)
- ESPESOR DEL CUERPO CILÍNDRICO Y CABEZAL

Para el diseño de los reactores se ha elegido el cabezal toriesférico. El factor de eficiencia de la soldadura es de 0,85 y la constante de resistencia a la corrosión del material AISI 316 es de 2,5 mm. Por otra parte, la conversión de KVI a atm es de 68.046 atm/KVI. En la *tabla 10* se muestran los valores de esfuerzo para diferentes tipos de acero.

Tabla 10: Valores del de esfuerzo diferentes tipos de acero)
---	---

	MAXIMUM ALLOWABLE STRESS VALUES IN TENSION FOR HIGH-ALLOY STEEL (CAUTION: See UW-12 for vessels constructed under part UW													
Specifi	Maximum Allowable Stress, ksi (Multiply by 1000 to Obtain psi), for Metal Temo. "F. Not Exceeding													
Number	Grade	-20 to 100	200	300	400	500	600	650	700	750	800	850	900	950
SA-240	304	18,8	17,8	16,6	16,2	15,9	15,9	15,9	15,9	15,5	15,2	14,9	14,7	14,4
SA-240 SA-240	316 316L	18,8 15,7	18,8 15,7	18,4 15,7	18,1 15,5	18,0 14,4	17,0 13,5	16,7 13,2	16,3 12,9	16,1 12,6	15,9 12,4	15,7 12,1	15,5	15,4

Para el diseño de los cabezales se necesita una relación entre la longitud y el radio interno del cabezal. En la *tabla 11* se muestran los diferentes valores del factor M para distintas relaciones, donde L corresponde al diámetro interno del cilindro y r al radio del cabezal.

Tabla	11: Va	lores del	factor M
-------	--------	-----------	----------

			(U	se Nearest	VALUES Value of <i>L</i>	OF FACTO /r; Interpo)R <i>M</i> lation Unne	ecessary)			
L/r	1.0	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50
M	1.00	1.03	1.06	1.08	1.10	1.13	1.15	1.17	1.18	1.20	1.22
L/r	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0
M	1.25	1.28	1.31	1.34	1.36	1.39	1.41	1.44	1.46	1.48	1.50
L/r	9.5	10.00	10.5	11.0	11.5	12.0	13.0	14.0	15.0	16.0	16 ² / ₃ 1
M	1.52	1.54	1.56	1.58	1.60	1.62	1.65	1.69	1.72	1.75	1.77

NOTE:

(1) Maximum ratio allowed by UG-32(j) when L equals the outside diameter of the skirt of the head.

Se ha elegido una relación de 10, por lo tanto, el valor de M será 1,54

Ya que los equipos se unen mediante soldadura, esta zona es considerada débil, por lo tanto, en el código ASME se introduce este factor para contrarrestar la tensión máxima disponible. El valor elegido es 0,85 al ser un radiografiado parcial.

$$\sigma_{Cil} = \frac{P_d^* R_{int,cil}}{S^* E - 0.6^* P_d} + C1$$
(27)
$$\sigma_{Cil} = \frac{24^* 1500}{1082,46^* 0.85 - 0.6^* 24} + 2,5 = 42,3 \text{ mm}$$

Donde:

- R_{int,cil}: Radio interno del cilindro (mm)
- S: Esfuerzo del material (bar)
- E: Factor de eficiencia
- C1: Constante de resistencia a la corrosión (mm)
- L: longitud del cilindro (mm)
- Pd: Presión de diseño (bar)

$$\sigma_{Cab} = \frac{P_d D^*M}{2^* S^* E - 0.2^* P_d} + C1 \quad (28)$$

$$\sigma_{Cab} = \frac{24^* 3000^* 1.54}{2^* 1082.5^* 0.85 - 0.2^* 24} + 2,5 = 63 mm$$

Donde:

- D: Diámetro (mm)
- M: Factor M

Con los espesores se calculan los diámetros exteriores del cilindro y los cabezales con las siguientes ecuaciones:

$$D_{ext,cil} = D_{int,cil} + \sigma_{cil} * 2$$
$$D_{ext,cil} = 3000 + 42,3*2 = 3084,7 \text{ mm}$$

$$D_{ext,cab} = D_{int,cil} + \sigma_{Cab} * 2$$
$$R_{ext,cab} = 30000 + 63 = 3063 \text{ mm}$$

• ALTURA DEL REACTOR

La altura del reactor será la longitud del cilindro más la altura de los cabezales. Para la longitud de los cabezales se utilizan las relaciones para un fondo toriesférico, donde "e" es el espesor del cabezal.

Figura 5: Cabezal toriesférico $h1 = 3, 5 * \sigma_{cab}$ (29) h1 = 3, 5 * 63 = 220, 7 mm $h2 = 0, 1935 * D_{ext,cil} - 0, 455 * \sigma_{cab}$ (30) h2 = 0, 1935 * 3084, 7 - 0, 455 * 63 = 568, 2 mm $H_{cab} = h1 + h2 + \sigma_{cab}$ (31) $H_{cab} = 220, 7 + 568, 2 + 63 = 851, 9 mm$

La altura total del reactor será:

$$H_{tot} = H_{cil} + 2 * H_{cab}$$
(32)
$$H_{tot} = 20000 + 2 * 851,9 = 21703,9 mm = 21,7 m$$

• PESO DEL REACTOR

Finalmente se calcula el peso vacío del reactor:

$$m_{cil} = \frac{\pi}{4} * \left(D_{ext}^2 - D_{int}^2 \right) * h_{cil} * \rho \qquad (33)$$
$$m_{cil} = \frac{\pi}{4} * \left(3,084^2 - 3^2 \right) * 20 * 7980 = 64.593 Kg$$
$$m_{cab} = 0,1 * \left(D_{ext}^3 - D_{int}^3 \right) * \rho \qquad (34)$$
$$m_{cab} = 0,1 * \left(3,063^3 - 3^2 \right) * 7980 = 1387,4 Kg$$

$$m_{vac} = m_{cil} + 2 * m_{cab}$$
 (35)
 $m_{vac} = 64593 + 2 * 1387, 4=67368 \text{ Kg}$

Donde:

- D_{ext} : Diámetro exterior (m)
- D_{int}: Diámetro interior (m)
- m_{cil} : Masa del cilindro (Kg)
- m_{vac} : Masa de la columna vacía (Kg)
- VOLUMEN DEL REACTOR

Longitud (m)

Presión de diseño (bar)

S (ksi)

Espesor cilindro (mm)

Espesor cabezal (mm)

Peso del cilindro de la columna vacía (Kg) Peso de los cabezas de la columna vacía (Kg) Peso total vacío (kg)

 $Vcil + 2 * Vcab = 155, 2 m^3$

 $Vcil = \frac{\pi}{4} * Dext^2 * H = 149, 5 m3$

$$Vcab = 0, 1 * Rcab^3 = 2, 87 m3$$

En la tabla 12 se muestran los resultados obtenidos para cada reactor

	R-201-1	R-202-1	R-203-1
Volumen cilindro (m ³)			
Volumen cabezales (m ³)			
Volumen (m ³)	155,2	117,8	176,9
Diámetro cilindro (m)	3	3	3,2

20

42,3

63

67368

15

42,1

62,7

50936,3

20

44,8

66,8

76192,7

Tabla 12: Dimensionamiento de los reactores

R-201-3

35 2

10

28,9

42,6

15529,4

• ESPESOR DE LOS REACTORES

Para calcular el grosor de los reactores se calcula el calor que deja pasar el aislante. Teóricamente el calor, al ser un sistema adiabático, debería ser cero. Pero para este caso el grosor se dispara demasiado. Por lo cual, se tiene en cuenta que como mucho se acepta que la pérdida de temperatura en el reactor sea de un grado. También se supone, para el cálculo del grosor, que, al estar en estado estacionario, la temperatura en el interior del reactor y al exterior de la camisa de Nitrógeno será la misma. Igualando las siguientes fórmulas se determina el diámetro exterior con el que se calcula el grosor.

$$Q = m C p \Delta T \qquad (36)$$

Donde:

- Q: calor [kJ/h].
- m: caudal de refrigerante [kg/h].
- ΔT incremento de temperatura [°C].

$$Q = \frac{\Delta T}{\frac{\Delta x}{\frac{\Delta x}{kA_{ml}}}} \qquad (37)$$

Donde:

- Qg: energía producida a la reacción [kJ/h].
- k: constante de la lana de roca [KJ/hm]
- A_{ml}: área media logarítmica [m]
- Δx : grosor [m]

$$A_{ml} = \frac{\pi L \left(D_1 - D_2 \right)}{ln(\frac{D_1}{D_2})}$$
(38)

Donde:

- A_{ml}: área media logarítmica [m]
- D₁: Diámetro interior [m]
- D₂: Diámetro exterior [m]

A continuación, se muestra en la tabla 13 el cálculo del grosor para un grado.

	Reactor 1	Reactor 2	Reactor 3	Reactor de transalquilación
ΔΤ	1.00	1.00	1.00	1.00
m (Kg/h)	65870	73910	80800	8419
cp (KJ/kgC)	1.88	2.50	2.55	2.35
Q	123901.47	184775	206040	19750.974
L (m)	21.70	16.70	21.80	11.10
D1 (m)	3.10	3.10	3.30	2.10
D2 (m)	3.21	3.15	3.37	2.34
Grosor (m)	0.11	0.05	0.07	0.24
Ln	-0.03	-0.02	-0.02	-0.11
k lana de roca KJ/hm K	0.13	0.13	0.13	0.13
Aml	214.91	164.05	228.30	77.30

Tabla 13: Valores para el cálculo del grosor

A continuación, se muestra en la *tabla 14* el grosor para una pérdida de uno y dos grados

Tabla 14: Grosor de los reactores para una pérdida uno y dos grados

	Reactor 1	Reactor 2	Reactor 3	Reactor de transalquilación
Grosor para 1 °C (cm)	10.54	5.40	6.73	23.78
Grosor sobredimensionado para 1 ºC (cm)	12.65	6.47	8.08	28.54
Grosor para 2 °C (cm)	4.88	2.51	3.13	11.57
Grosor sobredimensionado para 2 °C (cm)	5.86	3.01	3.76	13.89

Finalmente se escoge un grosor de 13 cm para el primer reactor, 7 cm para el segundo, 8 para el tercero y 14 cm para el reactor de transalquilación debido a que el caudal es el menor por lo cual globalmente no afectaría tanto al sistema.

11.3. Intercambiadores de calor

11.3.1. Aspectos generales del diseño de los intercambiadores

El objetivo de los intercambiadores de calor presentes en la zona de alquilación y transalquilación es el de enfriar el fluido que sale de los reactores para llevar a cabo un control de la temperatura y no alcanzar valores demasiado elevados de este parámetro.

Para el diseño de los intercambiadores se ha utilizado el programa *Aspen Exchanger Design and Rating* el cual permite realizar un dimensionamiento óptimo y económico.

Para el diseño del equipo hay que seguir una metodología descrita por el método de Kern, donde se tienen en cuenta distintos parámetros.

11.3.1.1. Elección del tipo de intercambiador de calor

En primer lugar, el tipo de intercambiador empleado es el de carcasa y tubos ya que posee una serie de ventajas en comparación a otros tipos de intercambiadores.

Por un lado, presenta una alta flexibilidad ya que se adapta a diferentes condiciones de operación, como variaciones en el caudal, temperatura y presión y también se adapta a varios tipos de fluidos, desde líquidos a gases. Además, es resistente a elevadas presiones y temperaturas.

Presenta una menor complejidad de diseño, es más económico y además su limpieza y mantenimiento son más sencillos.

11.3.1.2. Elección del fluido térmico

El fluido empleado para enfriar la corriente del proceso es agua que proviene de una torre de refrigeración a temperatura ambiente. Con el objetivo de reducir el caudal de agua necesario se implementa un sistema de aprovechamiento energético que consiste en utilizar las corrientes calientes del proceso para calentar corrientes de entrada a los reactores; el de benceno que se introduce en la alquilación y el de dietilbenceno que entra a la transalquilación.

11.3.1.3. Circulación de los fluidos a través de tubos y carcasa

Para determinar la distribución de cada fluido en un intercambiador hay varios aspectos que hay que tener en cuenta. Los fluidos que circulan a través de los tubos son los más corrosivos o los más limpios ya que existe un mayor riesgo de que se produzcan incrustaciones. Además, suelen tener una presión y temperatura más elevadas. Por otro lado, los fluidos que circulan a través de la carcasa suelen presentar una mayor viscosidad y un caudal mayor ya que hay más espacio disponible.

En este caso, el fluido del proceso circula a través de los tubos del intercambiador y el fluido refrigerante atraviesa la carcasa ya que el caudal volumétrico es superior.

11.3.1.4. Características de los tubos y de la carcasa

Entre las características de los tubos se incluye el diámetro interno y externo, espesor y longitud.

- El diámetro externo de los tubos suele tener un valor de entre 16 y 50 mm. Por un lado, un diámetro más pequeño implica un menor coste económico pero los tubos son más difíciles de limpiar y existe riesgo de producir incrustaciones.
- Las longitudes habituales suelen ser de 1.83 a 4.88 metros, pero hay que tener en cuenta que una mayor longitud reduce el diámetro de la carcasa, lo que supone un menor coste.

La distribución de los tubos es un factor relevante en el diseño ya que la distancia existente entre ellos condiciona la transferencia de calor. La disposición se clasifica en función del pitch, siendo la triangular la más utilizada ya que puede emplearse en cualquier régimen de circulación y presenta coeficientes de ensuciamiento más bajos.

Otro factor que se debe cumplir es la relación entre la longitud y el diámetro (L/D), la cual debe oscilar entre 4 y 6 para mantener una adecuada proporción del intercambiador.

11.4.1.5. Velocidades típicas de circulación

La velocidad de los fluidos típica depende de la fase en la que se encuentren y de su localización en el intercambiador y, además, las velocidades de los gases se clasifican en función de la presión.

Hay que tener en cuenta que hay cuatro intercambiadores en serie para enfriar el fluido de 400 a 80 °C de manera que el fluido del proceso experimenta un cambio de fase. Se debe tener en consideración este fenómeno en el diseño de los intercambiadores en la salida del último reactor, ya que el fluido que circula a través de los tubos, al cambiar de fase también se produce una variación de la velocidad.

Tipo de fluido	Velocidades típicas (m/s)
Líquido	
Tubos	1-2
Carcasa	0.3-1
Vapor	
Al vacío	50-70
Presión atmosférica	10-30
Alta presión	5-10

Tabla 15 [.]	Velocidades ti	ínicas de lo	os fluidos
			<i>Jo mana</i> 00

11.3.1.6. Coeficiente de ensuciamiento (Factor de Fouling)

Es un parámetro utilizado para describir las incrustaciones o depósitos en las superficies del equipo, los cuales tienen efectos negativos sobre la transferencia de calor, ya que estas acumulaciones actúan como aislante reduciendo la eficiencia. El coeficiente de Fouling depende de la naturaleza del fluido y está relacionado con el coste del intercambiador y la frecuencia de limpieza de este.

En la *tabla 16* se indican los coeficientes de ensuciamiento de los compuestos que atraviesan el intercambiador.

Tipo de fluido	Coeficiente Fouling (W/m3°C)
Tubos	
Fluido del proceso	5000
Carcasa	
Agua	4000
Fluido del proceso	5000
Etilenglicol	

Tabla 16: Coeficientes de ensuciamiento de los fluidos del proceso

11.3.1.7. Pantallas deflectoras

Las pantallas deflectoras mejoran la transferencia de calor al permitir un mayor contacto entre fluidos, reducen la formación de zonas muertas al asegurar una distribución uniforme del fluido lo que contribuye a una mayor eficiencia térmica en el intercambiador de calor. Además, previenen la formación de incrustaciones promoviendo la limpieza y circulación adecuada del fluido.

11.3.2. Procedimiento para el diseño

Se han diseñado un total de cinco intercambiadores de calor en los cuales se enfría la corriente del proceso principal. En dos de ellos se lleva a cabo un aprovechamiento energético en el que se utilizan las corrientes de salida de los reactores a alta temperatura para calentar, por un lado, la corriente de benceno que proviene de los tanques de almacenamiento y por otro, el dietilbenceno que se conduce desde la zona de separación hasta la transalquilación. En los tres restantes se enfría el fluido del proceso mediante agua que proviene de la torre de refrigeración. Además, en este apartado se incluyen los condensadores y reboilers de las tres columnas de rectificación.

El procedimiento para diseñar los intercambiadores de calor en *Aspen Exchanger* es el siguiente:

11.3.2.1. Definición de las condiciones de operación:

En primer lugar, dentro de la pestaña "*Input*", en la opción de "*Problem Definition*" donde se encuentra el apartado "*Process Data*" se introducen los valores del caudal, temperaturas de entrada y salida del fluido caliente y la fracción de vapor.

11.3.2.1.1. Condiciones de operación de los intercambiadores de calor del proceso

Hay tres intercambiadores que utilizan agua como fluido refrigerante: El que se utiliza en la salida del primer reactor para reducir la temperatura hasta 375°C antes de introducir el fluido al segundo reactor. El intercambiador empleado para enfriar el destilado de etilbenceno que se obtiene a 136°C de la segunda columna de rectificación hasta 60°C para poder almacenarlos en los tanques en condiciones adecuadas. Por último, el que se coloca a la salida de la zona de alquilación para reducir la temperatura de 210°C hasta 42°C antes de introducir el fluido en la zona de separación. En la *Figura 6* se muestran los datos de las condiciones de operación del intercambiador con agua de refrigeración E-202-1.

			Hotside	ColdSide
ulation mode		Desig	ın (Sizing)	•
ocess Conditions				
lass flow rate	kg/h	- 738	193	
lass flow rate multiplier		1		1
let pressure	kPa	• 199	9	202,6
utlet pressure	kPa	• 196	9,01	190,574
ressure at liquid surface in column	kPa	•		
ilet Temperature	°C	- 400		30
utlet Temperature	°C	• 375	,5	40
let vapor mass fraction		1		0
utlet vapor mass fraction		1		0
leat exchanged	kW	•		
leat exchanged multiplier		1		
ocess Input				
llowable pressure drop	bar	• 0,2	999	0,4
ouling resistance	m ² -K/W	- 0,0	002	0,00025

Figura 6: Datos de las corrientes del intercambiador con agua E-202-1

En el intercambiador con agua, se debe fijar una temperatura de entrada del agua de refrigeración y un salto térmico determinado, no muy elevado, de aproximadamente 10°C para evitar la generación en exceso de vapor en la torre de refrigeración cuando el agua caliente se recircule. De esta forma el valor que se obtiene es el caudal de agua de refrigeración necesario para enfriar el fluido.

En la corriente de benceno se ha colocado un intercambiador de calor en el cual circula a contracorriente el fluido caliente que sale de los reactores el cual utiliza para calentar el reactivo hasta 400°C. En la *Figura 7* se muestran los datos de las condiciones de operación del intercambiador con benceno descrito.

			11-1-14-	C-USH-	Rec	ent
			Hotside	ColdSide	Hotside	ColdSide
culation mode			Design (Sizing)	•		
rocess Conditions						
Mass flow rate	kg/h	•	89571	57811	89571	57811
Mass flow rate multiplier			1	1		
nlet pressure	kPa	•	1995	2000	1995	2000
Dutlet pressure	kPa	•	1965,05	1970	1967,67	1963,08
Pressure at liquid surface in column	kPa	•				
nlet Temperature	°C		441,4	51,22	441,4	51,22
Dutlet Temperature	°C			400	217,39	399,96
nlet vapor mass fraction			1	0	1	0
Dutlet vapor mass fraction				1	0,7249037	1
Heat exchanged	kW	•			14736,1	
Heat exchanged multiplier			1			
rocess Input						
Allowable pressure drop	bar	•	0,2995	0,49987	0,2995	0,4998
ouling resistance	m ² -K/W	•	0,00667	0,00067	0,00667	0,0006

Figura 7: Datos de las corrientes del intercambiador con benceno E-201-1

En la definición del problema se deben fijar ambos caudales, la temperatura de entrada del fluido caliente, además de la temperatura de entrada y salida del benceno. De esta manera se obtiene la temperatura a la que se sale del intercambiador el fluido que proviene de los reactores (210°C).

En la salida del segundo reactor se ha instalado un intercambiador de calor que enfría el fluido aprovechando el dietilbenceno que se obtiene de la tercera columna de rectificación, de manera que permite calentar el subproducto antes de entrar en el reactor de transalquilación. En la *Figura 8* se muestran los datos de las condiciones de operación del intercambiador con dietilbenceno.

			11-1-14-	6-14514-	Rec	ent
			Hotside	ColdSide	Hotside	ColdSide
culation mode		De	sign (Sizing)	•		
rocess Conditions						
Mass flow rate	kg/h	• 7	3893	8559	73893	855
Mass flow rate multiplier		1		1		
nlet pressure	kPa	• 1	997	2100	1997	210
Outlet pressure	kPa	• 1	967,03	2069	1976,285	2094,5
Pressure at liquid surface in column	kPa	•				
nlet Temperature	°C	- 4	48	118,7	448	118,
Outlet Temperature	°C	•		412	405,89	412,
nlet vapor mass fraction					1	0
Outlet vapor mass fraction					1	1
Heat exchanged	kW	•			2148,5	
Heat exchanged multiplier		1				
rocess input						
Allowable pressure drop	bar	• 0	,2997	0,49987	0,2997	0,499
Fouling resistance	m²-K/W	- 0	1,002	0,002	0,002	0,00
alculated Results						
Pressure dron	har	-			0.20715	0.054

Figura 8: Datos de las corrientes del intercambiador dietilbenceno

11.3.2.1.2. Condiciones de operación de los condensadores y reboilers de las columnas de destilación

Aparte de los intercambiadores de calor de la línea de proceso también es necesario dimensionar los condensadores y reboilers de las columnas de destilación. El condensador de la primera columna debe tener la capacidad de enfriar el fluido de salida hasta una temperatura de -24°C, de manera que el fluido refrigerante que se utiliza es el etilenglicol. En este caso se trata de un condensador parcial ya que los hidrocarburos se extraen por la parte superior en forma de vapor, en cambio, los componentes menos volátiles se devuelven a la columna en fase líquida. En la *figura 9* se muestran los datos del condensador con amoníaco.

✓ Geometry ✓ Process ✓ Errors & Wa	arnings					
Calculation mode		[Design (Sizing)	•		
Process Conditions						
Mass flow rate	kg/h	•	17200		17200	343469
Mass flow rate multiplier			1	1		
Inlet pressure	kPa	•	1013	101,3	1013	101,3
Outlet pressure	kPa	•	992,87	90,287	1000,625	83,764
Pressure at liquid surface in column	kPa	•				
Inlet Temperature	°C	•	83,28	-25	83,28	-25
Outlet Temperature	°C	•	-24	-19	-23,84	-19
Inlet vapor mass fraction					1	0
Outlet vapor mass fraction					0,8610139	0
Heat exchanged	kW	•			1235,2	
Heat exchanged multiplier			1			
Process Input						
Allowable pressure drop	bar	•	0,25855	0,20684	0,25855	0,20684
Fouling resistance	m ² -K/W	•	0,00025	0,00025	0,00025	0,00025

Figura 9: Datos de las corrientes del condensador C-201-1

En la segunda columna se extrae una corriente de benceno por la parte superior que atraviesa un condensador donde se reduce la temperatura hasta 55°C. En la tercera columna se extrae el etilbenceno condensado a una temperatura de 136°C, de manera que en ambos casos el fluido empleado para esta operación es agua de refrigeración que se introduce a 30°C. Para conocer el caudal necesario de agua se lleva a cabo el mismo procedimiento que con los otros intercambiadores con agua, fijando un salto térmico y las condiciones del fluido del proceso en *"Process Data"*.

		Manadala.	C-LIC:I-	Rece	ent
		Hotside	ColdSide	Hotside	ColdSide
		Design (Sizing)	•		
kg/h	•	57010		57010	56448
		1	1		
kPa	•	101,3	202,6	101,3	202,
kPa	•	90,287	190,574	99,81	171,1
kPa	•				
°C	•	78,43	30	79,46	30
°C	•	54,83	40	55,6	40
		1	0	1	0
		0	0	0,01119704	0
kW	•			6762,9	
		1			
bar	•	0,11013	0,41369	0,11013	0,413
m ² -K/W	•	0,0002	0,00025	0,0002	0,000
	kg/h kPa kPa °C °C kW bar m²-K/W	kg/h • kPa • kPa • kPa • °C • kW • kW •	Design (Sizing) kg/h 57010 7 kPa 101,3 kPa 90,287 kPa - *C 78,43 *C 54,83 1 0 kW - 7 - bar 0,11013 m²-K/W 0,0002	Design (Sizing) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0	Design (Sizing) • kg/h • 57010 57010 1 1 1 1 kPa 101,3 202,6 101,3 kPa 90,287 190,574 99,81 kPa • 101,3 202,6 101,3 kPa • 190,574 99,81 kPa • 0 79,46 *C • 54,83 40 55,6 1 0 0 0,01119704 kW • - 6762,9 1 0 0 0,01119704 bar • 0,17013 0,41369 0,11013 m*-K/W • 0,0002 0,00025 0,0002

Figura 10: Datos de las corrientes del condensador C-202-1

Por último, en los tres reboilers de las columnas de destilación se utiliza vapor como fluido térmico para evaporar el fluido líquido que se extrae de la columna. Una sola corriente de vapor con un caudal de 202 m³/h permite proporcionar la energía suficiente a los tres reboilers para realizar el cambio de fase. El vapor se introduce en el tercer reboiler a una temperatura de 370°C y sale de éste a una temperatura de 300°C el cual se introduce en el segundo reboiler. Después entra en el primero y sale finalmente a una temperatura de 156°C. El vapor se reconduce hacia la caldera para volver a calentarlo hasta 370°C, creando así un circuito cerrado de vapor.

			Unterlate	CaldSida	Rec	ent
			Hotside	Colaside	Hotside	ColdSide
alculation mode			Design (Sizing)	•		
Process Conditions						
Mass flow rate	kg/s	•		23,6194	56,1022	23,61
Mass flow rate multiplier			1	1		
Inlet pressure	kPa	۲	600	101,3	600	101,
Outlet pressure	kPa	۲	584	90,287	576,106	92,20
Pressure at liquid surface in column	kPa					
Inlet Temperature	°C	Ŧ	370	139	370	138,2
Outlet Temperature	°C	•	300	142,6	300	142,6
Inlet vapor mass fraction			1	0	1	0
Outlet vapor mass fraction			1	1	1	1
Heat exchanged	kW	•			8045	
Heat exchanged multiplier			1			
Process Input						
Allowable pressure drop	bar		0.26	0.2	0.26	0.2
Fouling resistance	m²-K/W	•	0,0002	0,0002	0,0002	0,000
Calculated Results	<u></u>					
Pressure drop	bar				0,23894	0,090

Figura 11: Datos de las corrientes del reboiler R-201-1

Una vez se han fijado las condiciones de ambos fluidos, a continuación, en la pestaña de "*Input*", dentro del apartado de "*Property Data*", se establecen, por un lado, las composiciones másicas del fluido caliente y del fluido frío en "*Composition*" y por otro lado, se asigna el *Fluid Package* Peng Robinson.

11.3.2.2. Resultados del diseño

A partir de los datos obtenidos en la ficha de especificaciones del intercambiador es posible comprobar que los valores se encuentren dentro del rango establecido. Por ejemplo, si la velocidad del fluido que pasa por tubos es inferior al rango, es necesario reducir el diámetro de los tubos para incrementar el valor. También hay que comprobar que la relación L/D se cumpla modificando la longitud o diámetro de los tubos si es preciso.

_									
1	Company:								
2	Location:								
3	Service of Unit:	Our Re	erence:						
4	Item No.:	Your Refe	rence:						
5	Date: Re	v No.: Job No	ut i						
6	Size: 305 - 1500	mm	Type: BEM	Horizo	ontal		Connecte	d in: 3 parallel	1 series
7	Surf/unit(eff.)	12 m²	She	lls/unit	3		Si	urf/shell(eff.)	4 m ²
8			PE	RFORMA	NCE (OF ONE U	NIT		
9	Fluid allocation					Shell S	Side		Tube Side
10	Fluid name					PROC	ESO		AGUA
11	Fluid guantity, Total		k	q/s		20,52	58		27,8057
12	Vapor (In/Out)		k	g/s	20,52	58	20,5258	0	0
13	Liquid		k	g/s	0		0	27,8057	27,8057
14	Noncondensable		k	a/s	0		0	0	0
15									
16	Temperature (In/Out)			°C	400		375.52	30	40
17	Bubble / Dew point	t		°C	1		1	1	1
18	Density Vapor	r/Liguid	kg/	m ^a 22,7	3 /		23,46 /	/ 995,	53 / 992,06
19	Viscosity		mP	a-s 0,019	99 /		0,0192 /	/ 0.79	/2 / 0,6514
20	Molecular wt. Vap				60.7	1	60.71		
21	Molecular wt, NC								
22	Specific heat		kJ/(ka	K) 2.42	2 /		2.369 /	/ 4.31	3 / 4.316
23	Thermal conductivity		W/(m	K) 0.05	36 /		0.0554 /	/ 0.61	34 / 0.6315
24	Latent heat		kJ	/kg					
25	Pressure (abs)			bar	19,9	9	19,74957	2.026	1,91541
26	Velocity (Mean/Max)		r	n/s		4.15 /	11.45	1	68 / 1.69
27	Pressure drop, allow./c	alc.		bar	0,299	9	0,24043	0,4	0,11059
28	Fouling resistance (min	n)	m²-K	/w	-	0,00	02	0,00025	0,00032 Ao based
29	Heat exchanged	1199,3	kW				MTD	(corrected) 35	2,58 °C
30	Transfer rate, Service	284,2		Dirt	у	547,8		Clean 763,4	W/(m²-K)
31		CONSTR	UCTION OF ON	IE SHELL					Sketch
32			She	ll Side		1	Tube Side		
33	Design/Vacuum/test pr	ressure ba	ar 22 /	1		3 /	1		
34	Design temperature / M	MDMT °	C 435	1		75	1		
35	Number passes per sh	nell		1			2		r⊤rV n ∩
36	Corrosion allowance	m	m 3	,18			3,18		<u>₽'₽</u> ₩₩
37	Connections	In m	m 1 203,	2 /	-	1 7	76,2 / ·	-	
38	Size/Rating	Out	1 203,	2 /	-	1 7	76,2 / ·	-	
39	Nominal	Intermediate		1	-		1 .	-	
40	Tube #: 36	OD: 25 Tks. Av	erage 2,6	mm	Len	gth: 150)0 mm	Pitch: 36 m	m Tube pattern:90
41	Tube type: Plain	Inse	rt:None			Fin#:	#	#/m Material:Ca	bon Steel
42	Shell Carbon Steel	ID 304,8	3 OD 3	23,85		mm	Shell cover	-	
43	Channel or bonnet	Carbon Steel					Channel cove	er -	
44	Tubesheet-stationary	Carbon Steel	-				Tubesheet-flo	oating -	
45	Floating head cover	-					Impingement	protection None	
46	Baffle-cross Carbon S	Steel Ty	pe Double s	egmental	C	Cut(%d)	26,38	HorizSpacing: c/c	300 mm
47	Baffle-long -		Seal Type					Inlet 4	05,48 mm
48	Supports-tube	U-bend	0				Туре)	
49	Bypass seal			Tube-to	ubeshe	et joint	Expanded	only (2 grooves)(Ap	p.A 'i')
50	Expansion joint	-			Тур	e None	9		
51	RhoV2-Inlet nozzle	1977	Bundle e	ntrance	987		Bundle	exit 956	kg/(m-s²)
52	Gaskets - Shell side	-		Tub	e side		Fla	at Metal Jacket Fibe	
53	Floating hea	d -							
EA.	O de la construction de la constru					THE A & A	D seferes		
94	Code requirements	ASME Code Sec	VIII Div 1			TEMA da	ass R - retiner	y service	

Figura 12: Ficha de especificaciones del intercambiador con agua E-202-1

Heat Exchanger Specification Sheet

1	Company:										
2	Location:										
3	Service of Unit:		Our Refer	ence:							
4	Item No.:	Ye	our Refere	nce:							
5	Date: Re	v No.:	Job No.:								
6	Size: 1372 - 6000	mm	Ty	pe:	BEM	Horizontal		Conne	acted in	: 1 parallel	3 series
7	Surf/unit(eff.)	2010.5	m ²		Shells/u	unit 3			Surf/s	hell(eff.)	670.2 m ²
8					PERFC	RMANCE	OF ONE	UNIT		()	
9	Fluid allocation						Shell	Side		Tub	e Side
10	Fluid name										
11	Fluid quantity Total				ka/s		24.8	807		16	0586
12	Vapor (In/Out)				ka/s	24.88	07	18.036	1	0	16.0586
13	Liquid				ka/s	0		6.8440	3	16.0586	0
14	Noncondensable				ka/s	0		0	-	0	0
15						-		-			
16	Temperature (In/Out)				°C	441	4	217.39	2	51.22	399.96
17	Bubble / Dew point	1			°C	-36,27 /	232,1	-37,18 / 23	1,37	177.35 / 177.42	176,73 / 176,81
18	Density Vapor	/Liquid			ko/m ^a	24.07 /		34.96 / 63	3.94	/ 875.6	27.52 /
19	Viscosity	in days			mPa-s	0.0205 /		0.0149 / 0.	1057	/ 0.4409	0.0168 /
20	Molecular wt. Vap					68.3	3	61.76		, ,,	78.12
21	Molecular wt. NC					50,0		0.,10			
22	Specific heat				kJ/(ka-K)	2.582 /		2 095 / 2	55	/ 1.639	2.186 /
23	Thermal conductivity				W/(m-K)	0.0634 /		0.0372 / 0.	0838	/ 0.1241	0.049 /
24	Latent beat				k.l/ka	239	5	250.9	0000	389.7	390.1
25	Pressure (abs)				bar	19.9	5	19.676	7	20	19.63089
26	Velocity (Mean/Max)				m/s		2.88	4.2		2.37	/4.6
27	Pressure drop, allow/c	alc.			bar	0,2995 0,2733			3	0.49987	0.36911
28	Fouling resistance (mi	n)			m²-K/W	0,200	0.00	667		0.00067 0	0008 Ao based
29	Heat exchanged	14736.1			kW		0,00	M	TD (cor	rected) 80.71	°C
											÷
30	Transfer rate, Service	90.8				Dirty	94.5		Cle	an 321.1	W/(m ² -K)
30 31	Transfer rate, Service	90,8 C	ONSTRU	CTION	OF ONE S	Dirty	94,5		Cle	an 321,1 Si	W/(m ^a -K)
30 31 32	Transfer rate, Service	90,8 C	ONSTRU	CTION	OF ONE S	Dirty HELL de	94,5	Tube Side	Cle	an 321,1 Si	W/(m²-K) setch
30 31 32 33	Design/Vacuum/test pr	90,8 C	ONSTRU	22,063	OF ONE S Shell Si 323/	Dirty HELL de /	94,5	Tube Side	Cle	an 321,1 Si	W/(m²-K) tetch
30 31 32 33 34	Design/Vacuum/test pr Design temperature / M	90,8 C ressure MDMT	ONSTRUC bar	22,063	OF ONE S Shell Si 323/ 6,67 /	Dirty HELL de /	94,5 22,06323 437,7	Tube Side 3/ / 78 /	Cle	an 321,1 Si	W/(m²-K)
30 31 32 33 34 35	Design/Vacuum/test pr Design temperature / N Number passes per sh	90,8 C ressure MDMT iell	DNSTRU bar °C	22,063 470	OF ONE S Shell Si 323/ 6,67 / 1	Dirty HELL de /	94,5 22,06323 437,7	Tube Side 3/ / 78 / 4	Cle	an <u>321,1</u> Si	W/(m²-K)
30 31 32 33 34 35 36	Transfer rate, Service Design/Vacuum/test pr Design temperature / I Number passes per sh Corrosion allowance	90,8 C ressure MDMT iell	bar °C	22,063 47	OF ONE S Shell Si 323/ 6,67 / 1 3,18	Dirty HELL de /	94,5 22,06323 437,7	Tube Side 3/ / 78 / 4 3,18	Cle	san 321,1 Si	W/(m ² -K)
30 31 32 33 34 35 36 37	Transter rate, Service Design/Vacuum/test pr Design temperature / I Number passes per sh Corrosion allowance Connections	90,8 C ressure MDMT ell In	bar °C mm mm	22,063 470	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 /	Dirty HELL de /	94,5 22,06323 437,7	Tube Side 3/ / 78 / 4 3,18 152,4 /	Cle	an 321,1 Si	W/(m²-K)
30 31 32 33 34 35 36 37 38	Transter rate, Service Design/Vacuum/test pr Design temperature / I Number passes per sh Corrosion allowance Connections Size/Rating	90,8 C MDMT ell In Out	bar °C mm mm	22,063 470 1	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 / 457,2 /	Dirty BHELL de /	94,5 22,06323 437,7 1	Tube Side 3/ / 78 / 4 3,18 152,4 / 254 /		an 321,1 ຣາ (ຼື້ ມູ ູ ູ ູ ູ ູ ູ ູ ູ ູ ູ	W/(m²-K)
30 31 32 33 34 35 36 37 38 39	Transter rate, Service Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating Nominal	90,8 C MDMT ell In Out Intermediate	bar °C mm mm	22,063 470 1 1	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 / 457,2 / 457,2 /	Dirty HELL de / -	94,5 22,06323 437,7 1 1 1	Tube Side 3/ / 78 / 4 3,18 152,4 / 254 / 152,4 /		an 321,1 Si	W/(m²-K)
30 31 32 33 34 35 36 37 38 39 40	Transter rate, Service Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 1485	90,8 C MDMT In Out Intermediate OD: 25	ONSTRUC bar °C mm mm Tks. Aver	22,063 470 1 1 22,063	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 / 457,2 / 457,2 / 1	Dirty iHELL de / - - mm Len	94,5 22,06323 437,7 1 1 1 1 1 9th: 60	Tube Side 3/ / 78 / 3.18 152,4 / 254 / 152,4 / 152,4 / 000 mm	Pitci	an 321,1 Si Current Si Current Si Si Si Si Si Si Si Si Si Si Si Si Si S	W/(m²-K)
30 31 32 33 34 35 36 37 38 39 40 41	Transter rate, Service Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 1485 Tube type: Plain	90,8 C MDMT well In Out Intermediate OD: 25	ONSTRUE bar °C mm mm Tks. Aven Insert:	22,063 470 1 1 1 age 2, None	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 / 457,2 / 457,2 / 1	Dirty iHELL de / - - mm Len	94,5 22,06323 437,7 1 1 1 1 g(th: 60 Fint#	Tube Side 3/ / 78 / 4 3,18 152,4 / 254 / 152,4 / 152,4 / 000 mm	- - Pitcl #/m	h: 31,25 mm Material:Carbo	W/(m²-K)
30 31 32 33 34 35 36 37 38 39 40 41 42	Transter rate, Service Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 1485 Tube type: Ptain Shell Carbon Steel	90,8 C MDMT tell In Out Intermediate OD: 25	ONSTRUC bar °C mm mm Tks. Aver Insert: 0 1371,6	22,063 470 1 1 3 age 2, None	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 / 457,2 / 457,2 / 1 0D 1454	Dirty HELL de / - - - mm Len ,15	94,5 22,0632: 437,7 1 1 1 1 1 1 1 1 mm	Tube Side 3/ / 78 / 4 3,18 152,4 / 254 / 152,4 / 152,4 / 000 mm 5 m Shell cove	Cle - - Pitcl #/m	h: 31,25 mm Material:Carbo	W/(m²-K)
30 31 32 33 34 35 36 37 38 39 40 41 42 43	Transter rate, Service Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 1485 Tube type: Plain Shell Carbon Steel Channel or bonnet	90,8 C MDMT ell In Out Intermediate OD: 25 ID Carbon 3	bar °C mm mm Tks. Aver Insert: 0 1371,6 Steel	22,063 470 1 1 1 3ge 2, None	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 / 457,2 / 457,2 / 1 OD 1454	Dirty iHELL de - - mm Len ,15	94,5 22,06323 437,7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tube Side 3/ / 78 / 3.18 152,4 / 254 / 152,4 / 000 mm m Shell cove Channel c	- - Pitcl #/m	an 321,1 Si fight fight	W/(m²-K) vetch
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	Transter rate, Service Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 1485 Tube type: Ptain Shell Carbon Steel Channel or bonnet Tubesheet-stationary	90,8 C essure MDMT ell Intermediate OD: 25 ID Carbon 3 Carbon 3	CONSTRUC bar °C mm mm Tks. Aver Insert: 0 1371,6 Steel Steel	22,063 470 1 1 3ge 2, None	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 / 457,2 / 1 OD 1454	Dirty HELL de - - mm Len ,15	94,5 22,06323 437,7 1 1 1 1 1 gth: 60 Fin# mi	Tube Side 3/ / 8 / 3.18 152,4 / 254 / 152,4 / 152,4 / 000 mm to	- Pitci #/m er :cover	an 321,1 Si function of the second se	W/(m²-K) vetch Tube pattern:30 n Steel
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	Transter rate, Service Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 1485 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover	90,8 C essure MDMT eell In Out Intermediate OD: 25 Carbon 3 Carbon 3	onstruct bar °C mm mm Tks. Aver Insert: 1371,6 Steel Steel	22,063 470 1 1 1 age 2, None	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 / 457,2 / 457,2 / 1 OD 1454	Dirty HELL de - - - mm Len ,15	94,5 22,06323 437,7 1 1 1 1 g(th: 60 Fin# mi	Tube Side 3/ / 78 / 4 3.18 152,4 / 152,4 / 254 / 152,4 / 000 mm topological channel Channel Channel Tubeshee Impingem	- Pitcl #/m er cover tt-floatin ent pro	h: 31,25 mm Material:Carbon - tection None	W/(m²-K)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	Transter rate, Service Design/Vacuum/test pr Design temperature / 1 Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 1485 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Filoating head cover Baffle-cross Carbon S	90,8 C C C C DMT cell In Out Intermediate OD: 25 ID Carbon 3 Carbon 3 - iteel	bar °C mm mm Tks. Aver 1 Tks. Aver 1 1371,6 Steel Steel	22,063 470 1 1 1 3 age 2, None	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 / 457,2 / 457,2 / 1 OD 1454 - -	Dirty HELL de - - mm Len ,15	94,5 22,06323 437,7 1 1 1 1 1 1 1 1 1 2 (th: 60 Fin# mi	Tube Side 3/ / 78 / 4 3.18 152,4 / 254 / 152,4 / 254 / 152,4 / 000 mm m Shell cove Channel cove Tubeshee Impingem 34,95	- Pitol #/m Mr sover et-floatin ent pro	an 321,1 Si and 321,1 Si and and a single statements h: 31,25 mm Material:Carboo - - - - - - - - - - - - -	W/(m²-K) tetch Tube pattern:30 n Steel 7,4 mm
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 47 47 47 47 47 47 47 47 47	Transter rate, Service Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 1485 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long -	90,8 C In MDMT Intermediate OUt Intermediate OD: 25 ID Carbon 3 Carbon 3 -	ONSTRUC bar °C mm mm Tks. Aver Insert) 1371,6 Steel Steel Type	22,063 470 1 1 1 3 age 2, None Seal Ty	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 / 457,2 / 457,2 / 1 0D 1454 - ingle segm ype	Dirty HELL de - - mm Len ,15 ental (94,5 22,06323 437,7 1 1 1 1 1 1 1 1 2 g(th: 60 Fin# mi	Tube Side 3/ / 78 / 4 3.18 152,4 / 254 / 152,4 / 152,4 / 000 mm m Shell cove Channel of Tubeshee Impingem 34,95	- Pitol #/m Mr sover et-floatin ent pro	an 321,1 Si Control Control Control Control h: 31,25 mm Material:Carboo - - - - tection None pril&pacing: c/c 78 Iniet 904,5	W/(m²-K)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 48 48 48 48 48 48 48 48 48	Transter rate, Service Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 1485 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube	90,8 C MDMT well In Out Intermediate OD: 25 ID Carbon 3 - teel U-bend	ONSTRUC bar °C mm mm Tks. Aver Insert) 1371,6 Steel Steel Steel Type	22,063 47(1 1 1 1 1 3ge 2, None Seal Ty	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 / 457,2 / 457,2 / 457,2 / 1 0D 1454 - - - -	Dirty HELL de - - mm Len ,15 ental C	94,5 22,06323 437,7 1 1 1 1 1 gth: 60 Fin// mi	Tube Side 3/ / 78 / 4 3.18 152,4 / 254 / 152,4 / 152,4 / 152,4 / 000 mm m Shell cove Channel of Tubeshee Impingem 34,95	- Pitcl #/m er cover tt-floatin ent pro	an 321,1 Si Control of the second sec	W/(m²-K)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	Transter rate, Service Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 1485 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-tong - Supports-tube Bypass seal	90,8 C MDMT tell Intermediate OU: 25 ID Carbon S Carbon S - teel	ONSTRUC bar °C mm mm Tks. Aver Insert: 1371,6 Steel Steel Type	22,063 47(1 1 1 1 3 age 2, None Seal Ty	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 / 457,2 / 457,2 / 1 1 OD 1454 - - - - - - - - - - - - - - - - - -	Dirty HELL de - - mm Len ,15 ental C	94,5 22,0632: 437,7 1 1 1 1 gth: 60 Fin// mi	Tube Side 3/ / 78 / 4 3,18 152,4 / 254 / 152,4 / 152,4 / 000 mm 5 m Shell cove Channel of Tubeshee Impingem 34,95 T Expand	Cle Cle Pitcle Pitcle trifleatin Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho	h: 31,25 mm Material:Carboo - - - - - - - - - - - - - - - - - -	W/(m²-K) tetch Tube pattern:30 n Steel 7,4 mm 5 mm
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	Transter rate, Service Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 1485 Tube type: Ptain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint	90,8 C In OMT Intermediate OU: 25 ID Carbon S Carbon S - teel U-bend	onstruct bar °C mm mm Tks. Aver Insert 0 1371,6 Steel Steel	22,063 47(1 1 1 1 3 age 2, None Seal Ty	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 / 457,2 / 457,2 / 1 0D 1454 - - - - - - - - - - - - - - - - - -	Dirty HELL de - - mm Len ,15 ental C ube-tubeshh	94,5 22,0632: 437,7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2gth: 60 Fin# mi Cut(%d) eet joint e Noi	Tube Side 3/ / 78 / 4 3,18 152,4 / 254 / 152,4 / 254 / 152,4 / 264 / 152,4 / 152,4 / 152,4 / 152,4 / 152,4 / 254 / 152,4 / 1000 mm 34,95	Cle Cle Pitcloatin er Pitcloatin Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho	an 321,1 Si All and a second	W/(m²-K) tetch Tube pattern:30 n Steel 7,4 mm 5 mm T)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 95 51	Transter rate, Service Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 1485 Tube type: Plain Shell Carbon Steel Channel or bonnet Channel or bonnet Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle	90,8 C essure MDMT eell In Out Intermediate OD: 25 Carbon S Carbon S Carbon S Carbon S - teel U-bend - 790	onstruct bar °C mm mm Tks. Aver Insert 0 1371,6 Steel Steel Type	22,063 47/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 / 457,2 / 457,2 / 1 0D 1454 0D 1454 - ingle segm ype 0 T undle entra	Dirty HELL de / - - - mm Len ,15 ental C ube-tubeshk Typ nce 833	94,5 22,06323 437,7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 0 (%d) Cut(%d) e Nor	Tube Side 3/ / 78 / 4 3.18 152,4 / 152,4 / 152,4 / 152,4 / 000 mm 5 m Shell cove Channel Tubeshee Impingem 34,95 T Expano ne Bun	Cle Cle Pitcl Wim er Pitcloatin ent pro- Ho bover Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho	An 321,1 Si An 31,25 mm Material:Carbon - - - - - - - - - - - - -	W/(m²-K) tetch Tube pattern:30 n Steel 7,4 mm 5 mm 'T) kg/(m-s²)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Transter rate, Service Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 1485 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side	90,8 C C C MDMT cell In Out Intermediate OD: 25 ID Carbon 3 Carbon 3 Carbon 4 Carbon	bar °C mm mm Tks. Aver Insert) 1371,6 Steel Steel Type	22,063 470 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 / 457,2 / 457,2 / 1 0D 1454 - - - - - - - - - - - - - - - - - -	Dirty HELL de / - - mm Len ,15 ental C ube-tubesht Typ nce 833 Tube side	94,5 22,06323 437,7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 0 (%d) 2 0 0 2 0 0 2 0 0 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 0 2 0 0 0 2 0 0 0 0	Tube Side 3/ / 78 / 152,4 / 254 / 152,4 / 254 / 152,4 / 000 mm 5 m Shell cove Channel cove Channel cove Tubeshee Impingem 34,95 T Expand ne Bun	Cle Cle Pitcl Wim er Frotein Footer Floatin Floatin Gle exit	An 321,1 Si An 31,25 mm Material:Carboo - - - - - - - - - - - - -	W/(m²-K) tetch Tube patiern:30 n Steel 7,4 mm 5 mm T) kg/(m-s²)
30 31 32 33 44 55 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	Transter rate, Service Design/Vacuum/test pr Design temperature / 1 Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 1485 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head	90,8 C C essure MDMT eell In Out Intermediate OD: 25 ID Carbon 3 Carbon 3 Carbon 4	DNSTRUG bar °C mm mm Tks. Aver Insert:) 1371,6 Steel Steel Type	22,063 470 1 1 1 1 3ge 2, None Sseal Ty B	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 / 457,2 / 457,2 / 1 0D 1454 - 0 0 T undle entra	Dirty HELL de - - - mm Len .15 ental C ube-tubeshe Typ noe 833 Tube side	94,5 22,06323 437,7 1 1 1 1 1 1 1 1 1 2 (%d) 2 Cut(%d) 2 Cut(%d) 2 Cut(%d)	Tube Side 3/ / 78 / 4 3.18 152,4 / 254 / 152,4 / 000 mm m Shell cove Channel of Tubeshee Impingem 34,95 T Expand ne Bun	Cle Cle Pitcl #/m Pitcl #/m Hoatim Ho	An 321,1 Si An 321,1 An 321,1 Si An 31,25 mm Material:Carboo - - - - - - - - - - - - -	W/(m²-K) tetch Tube pattern:30 n Steel 7,4 mm 5 mm 7) kg/(m-s²)
30 31 32 33 34 55 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 55	Transter rate, Service Design/Vacuum/test pr Design temperature / N umber passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 1485 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating heal Code requirements	90,8 C C essure MDMT ell In Out Intermediate OD: 25 ID Carbon 3 Carbon 3 Carbon 3 Carbon 4 ID OD: 25 ID Carbon 4 ID OD: 25 ID Carbon 5 ID	ONSTRUC bar °C mm mm Tks. Aver Insert:) 1371,6 Steel Steel Type	22,063 47(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 / 457,2 / 457,2 / 457,2 / 1 OD 1454 - - - - - - - - - - - - - - - - - -	Dirty HELL de - - mm Len 15 ental (ube-tubesh Typ noce 833 Tube side	94,5 22,06323 437,7 1 1 1 1 1 1 g(th: 60 Fin/# mi Cut(%d) eet joint e Noi TEMA c	Tube Side 3/ / 78 / 4 3.18 152,4 / 254 / 152,4 / 152,4 / 152,4 / 152,4 / 000 mm m Shell cove Channel of Tubeshee Impingem 34,95 T Expand ne Bun dass R - refi	Cle Cle Pitcl W/m Pitcl Pitcl W/m Pitcl Pitcl Pitcl Cle Pitcl Cle Pitcl Cle Pitcl Pi	an 321,1 Si All and a second	W/(m²-K) tetch Tube pattern:30 n Steel 7,4 mm 5 mm 'T) kg/(m-s²)
30 31 32 33 34 55 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	Transter rate, Service Design/Vacuum/test pr Design temperature / N umber passes per sh Cornosion allowance Connections Size/Rating Nominal Tube #: 1485 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell	90,8 C C MDMT well In Out Intermediate OD: 25 ID Carbon 3 Carbon 3	ONSTRUC bar °C mm mm Tks. Aver Insert:) 1371,6 Steel Steel Steel Type Code Sec V	22,063 47(1 1 1 1 age 2, Seal T) B B //III Div vith wa	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 / 457,2 / 457,2 / 1 0D 1454 - - - - - - - - - - - - - - - - - -	Dirty HELL de - - mm Len .15 ental C ube-tubeshe Typ nce 833 Tube side	94,5 22,06323 437,7 1 1 1 1 1 1 1 1 1 1 1 20,06323 437,7 1 1 1 1 1 1 1 1 1 1 1 1 1	Tube Side 3/ / 78 / 4 3.18 152,4 / 254 / 152,4 / 1000 mm 5 Tubeshee Expand ne Bun 5 13599,	Cle Cle Pitcl Wm r sover tt-floatin Ho ype Jed only die exit Flat Me nery se 4	an 321,1 Si All and a second	W/(m²-K) tetch Tube pattern:30 n Steel 7,4 mm 5 mm 1) kg/(m-s²)
30 31 32 33 34 55 56 37 38 39 40 41 42 42 44 45 46 47 48 49 50 51 52 43 54 55 56	Transter rate, Service Design/Vacuum/test pr Design temperature / N Umber passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 1485 Tube type: Ptain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell ide Floating head Code requirements Weight/Shell Remarks	90,8 C C MDMT tell Intermediate OD: 25 ID Carbon S Carbon	onstruct bar °C mm Tks. Aver Insert: Insert: Steel Steel Steel Steel Code Sec V Filled v	22,063 47(1 1 1 1 1 age 2, None Seal Ty B B //III Div vith wa	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 / 457,2 / 457,2 / 1 0D 1454 - 0 0 T 0 T undle entra 1 ter 36394	Dirty HELL de - - mm Len .15 ental C ube-tubeshe Typ nce 833 Tube side 3,9	94,5 22,0632: 437,7 1 1 1 1 1 1 Cut(%d) Cut(%d) Cut(%d) TEMA c Bundle	Tube Side 3/ / 78 / 4 3,18 152,4 / 152,4 / 254 / 152,4 / 254 / 152,4 / 000 mm m Shell cow Channel of Tubeshee Impingem 34,95 T Expano ne Bun dass R - refi 13599.	Cle Cle Pitcl W/m er sover t-floatin er prover Ho de exit Flat Me Flat	an 321,1 Si All and a second	W/(m²-K) tetch Tube pattern:30 n Steel 7,4 mm 5 mm T) kg/(m-s²)
30 31 32 33 34 55 56 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	Transter rate, Service Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating Nominal Tube #: 1485 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell Remarks	90,8 C essure MDMT eell In Out Intermediate OD: 25 Carbon S Carbon	ONSTRUC bar °C mm mm Tks. Aver Insert 0 1371,6 Steel Steel Steel Type	22,063 47/ 1 1 1 1 1 3 22,063 47/ 1 1 1 1 1 1 1 2 8 8 8 8 8 8 8 8 8 8 8 8	OF ONE S Shell Si 323/ 6,67 / 1 3,18 508 / 457,2 / 457,2 / 457,2 / 1 0D 1454 0D 1454 0D 1454 0 0 T undle entra 1 1 tter 36396	Dirty HELL de / - - mm Len ,15 ental C ube-tubeshd Typ nce 833 Tube side	94,5 22,06323 437,7 1 1 1 1 1 1 Cut(%d) Cut(%d) Cut(%d) TEMA c Bundle	Tube Side 3/ / 78 / 4 3.18 152,4 / 254 / 152,4 / 254 / 152,4 / 000 mm Channel Channel Channel Tubeshee Impingem 34,95 T Expanone Bun dass R - refi	Cle Cle Pitcl Wm er sover t-floatin Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho	An 321,1 Si An 321,1 Si An 31,25 mm Material:Carbo - - - - - - - - - - - - -	W/(m²-K) tetch Tube pattern:30 n Steel 7,4 mm 5 mm 'T) kg/(m-s²)

Figura 13: Ficha de especificaciones del intercambiador con benceno E-201-1

_									
1	Company:								
2	Location:								
3	Service of Unit:	Our Ref	erence:						
4	Item No.:	Your Refe	rence:						
5	Date: Re	ev No.: Job No	.:						
6	Size: 787 - 3800	mm .	Type: BEM	Horizontal		Connected i	n: 1 parallel	1 series	
7	Surf/unit(eff.)	160,5 m²	Shells/	unit 1		Surf	shell(eff.)	160,5 m ²	
8			PERF	ORMANCE	OF ONE U	JNIT			
9	Fluid allocation				Shell	Side	Tube	e Side	
10	Fluid name				EB	(2)	D	EB	
11	Fluid quantity, Total		kg/s		20,5	258	2,3	3775	
12	Vapor (In/Out)		kg/s	19,72	51	19,7251	0	2,3775	
13	Liquid		kg/s	0		0	2,3775	0	
14	Noncondensable		kg/s	0,80	07	0,8007	0	0	
15									
16	Temperature (In/Out)		°C	448	3	405,89	118,7	412,14	
17	Bubble / Dew point	t	°C	47,49 /	194,04	46,59 / 193,52	249,3 / 278,26	249,1 / 278,1	
18	Density Vapo	r/Liquid	kg/mª	20,03 /		21,24 /	/ 775,99	38,71 /	
19	Viscosity		mPa-s	0,0215 /		0,0203 /	/ 0,2583	0,0171 /	
20	Molecular wt, Vap			58,2	2	58,22		92,61	
21	Molecular wt, NC			16,0	4	16,04			
22	Specific heat		kJ/(kg-K)	2,533 /		2,445 /	/ 1,978	2,451 /	
23	Thermal conductivity		W/(m-K)	0,0665 /		0,0608 /	/ 0,1103	0,0504 /	
24	Latent heat		kJ/kg				223,9	195,3	
25	Pressure (abs)		bar	19,9	7	19,76285	21	20,94572	
26	Velocity (Mean/Max)		m/s		6,95 /	7,6	1	/ 1,9	
27	Pressure drop, allow./d	calc.	bar	0,29	97	0,20715	0,49987	0,05428	
28	Fouling resistance (mi	n)	m²-K/W		0,0	02	0,002 0,0	00257 Ao based	
29	Heat exchanged	2148,5	kW			MTD (co	prrected) 104,13	°C	
30	Transfer rate, Service	128,6		Dirty	132,2	С	lean 333,8	W/(m²-K)	
31		CONSTR	UCTION OF ONE	SHELL			Sk	etch	
32			Shell S	ide		Tube Side	4		
33	Design/Vacuum/test pr	ressure ba	ar 22,06323/	1	23,44219	9/ /	4		
34	Design temperature / I	MDMT *	C 487,78 /		448,8	19 /	f. C .		
35	Number passes per sh	hell	1			4			
36	Corrosion allowance	m	n 3,18	3		3,18	╎╶╎┰┉╤╫╌	┶╫┉┙	
37	Connections	In mi	n 1 406,4	/ -	1	38,1 / -	4		
38	Size/Rating	Out	1 355,6	-	1	88,9 / -	4		
39	Nominal	Intermediate		/ -		/ -	L 00.01	T. I	
40	Tube #: 741	OD: 19,05 TKs. Av	erage 2,11	mm Len	gth: 38	soo mm Pit	ch: 23,81 mm	Tube pattern:30	
41	Tube type: Plain		rt:None	F.F.	Fin#:	#/m	Material:Carbon	Steel	
42	Shell Carbon Steel	ID 787,4	OD 844,	55	mr	n Shell cover	-		
43	Channel or bonnet	Carbon Steel				Channel cover	-		
44	Flooting bood cover	Carbon Steel	-			Tubesneet-noat	ng -		
40	Ploating nead cover	- Neel To	no Cingle com	contol (2.4/0/ d)	an og	otection None	0	
40	Baffle long	steel Ty	Seal Tune	iental (Jut(%0)	39,92	Inlet 014.1	6 mm	
47	Supporte tube	Libend	Searrype			Time	iniet 314,1	0 11111	
40	Rypass seal	0-06110		Tube-tubech	et icint	Expanded on	ly (2 groovee)(App A	50	
50	Expansion joint			Ture		Expanded on	iy (2 glooves)(App.A	·)	
51	Rho//2-Inlet nozzle	1760	Bundle entr	- yp		Rundle ev	1371	ka//m.e?)	
52	Gaskets - Shell side	-	Dunue entr	Tube eide		Elot M	fetal Jacket Eibe	kg/(in-s*)	
53	Floating bea			Tube side		FidUN	Instal valuet FIDE		
54	Code requirements	ASME Code Ser	VIII Div 1		TEMA	lass R - refinery e	ervice		
55	Weight/Shell	6747 5 Filler	with water 8560		Bundle	3277 5	ka		
	Traigneonai	0141,0 Pillet	mill water 0000	,	Dunuid	0211,0	Ng		

Figura 14: Ficha de especificaciones del intercambiador con dietilbenceno E-203-1

_				near excitat	nger spec	meauon	oneet			
1	Company:									
2	Location:									
3	Service of Unit:		Our Refer	rence:						
4	Item No.:	Y	our Refere	ence:						
5	Date: Re	v No.:	Job No.:							
6	Size: 737 - 3657.6	mm	Ty	pe: BEM	Horizontal		Connect	ed in:	2 parallel	2 series
7	Surf/unit(eff.)	352.9	m²	Shells/	unit 4		5	Surf/shell	(eff.)	88.2 m ²
8				PERF	ORMANCE	OF ONE U	INIT		()	
9	Eluid allocation				1	Shell	Side		Tub	a Sida
10	Fluid name				<u> </u>			_		
11	Ekid guantity Total			kale	<u> </u>	95.40	081	-	4.7	7778
12	Vapor (In/Out)			kals	0		0		3,4806	2,8165
13	Liquid			kale	95.4	081	95.4081	-	0	0.664
14	Noncondensable			kals	0		0	-	1 2972	1,2972
15				-9-2			-	-	1,2372	1,2012
16	Temperature (In/Out)			10	-2	5	-19	-	83.28	-23.84
17	Bubble / Dev point				1		1	-13	8.48 / 44.04	-138.65 / 43.77
18	Deneity Vana	d inuid		kalm ³		837.84	/ 835	83 0	34 /	12.03 / 777.16
10	Vienneitu	reiquiu		mDale	1	110 107	/ 78.6	331 0.0	1125 /	0.0001 / 0.3071
20	Molecular wt Man			iiinara		115,107	776,0.	331 0,0	26.36	24.34
21	Molecular et NC				<u> </u>			-+	16.04	16.04
22	Specific heat			k lilka-k)		2147	/ 21	73 2	043 /	1853 / 1889
22	Thermal conductivity			W/mk		0.3182	/ 0.3	4 00	1992 /	0.0214 / 0.1203
2.0	Latent heat			k like		0,3102	7 0,3	14 0,0	393.3	304.3
25	Dragging (abe)			harng	10	12	0.83784	-+	10.13	10,00625
20	Velocity (Mean/Max)			- Dai	1,0	0.36 / 0.61		_	5.78	/672
20	Deserves drop, allow /r	ale		har	0.20	884	0.17538	-+	0.25955	0.12975
28	Fressure urop, allow/e Fouling resistance (mi	ndku. n)		m²-K/W	0,20	0.000	0,17030	-+	0.00025 0.0	0,12370
20	Heat exchanged	1235.2		PW/		0,001	MT) (correct	(ad) 18.72	10
30	Transfer rate Service	187			Dirty	191.2		Clean	213.3	W/(m²-K)
31			ONSTRU	CTION OF ONE	SHELL			_	Sk	etch
32				Shell S	ide	· · ·	Tube Side	-		
33	Design/Vacuum/test pr	essure	bar	3.44738/	1	11.72109	1 1	_		
34	Design temperature / I	NDMT	°C	37,78 /		121.1	1 /			
35	Number passes per sh	el		1		-	4		di ta	· •
36	Corrosion allowance		mm	3,18		<u> </u>	3.18	_	y la '	
37	Connections	In	mm	1 254	- 1	1 1	152.4 /	-	Ψ.	
38	Size/Rating	Out		1 304,8	- 1	1 1	152,4 /	-		
39	Nominal	Intermediate		1 254	- 1	1 1	152.4 /	-		
40	Tube #: 263	OD: 30	Tks. Aver	rage 2,11	mm Le	ngth: 3657	7,6 mm	Pitch:	37,5 mm	Tube pattern:30
41	Tube type: Plain		Insert	:None		Fin#:		#/m	Material:Carbon	Steel
42	Shell Carbon Steel	10	736,6	OD 755,	65	mm	h Shell cover		-	
43	Channel or bonnet	Carbon	Steel				Channel co	ver	-	
44	Tubesheet-stationary	Carbon	Steel	-			Tubesheet-f	loating	-	
45	Floating head cover	-					Impingemer	t protect	tion None	
46	Baffle-cross Carbon S	teel	Туре	 Single segr 	rental	Cut(%d)	38,93	Horizs	Spacing: c/c 844	,55 mm
47	Baffle-long -			Seal Type				In	let 1357,	31 mm
48	Supports-tube	U-bend		0			Тур	e		
49	Bypass seal			1	Tube-tubesh	eet joint	Expande	d only (2	grooves)(App.A	۱)
50	Expansion joint	-			Typ	e Non	e			
51	RhoV2-Inlet nozzle	1049		Bundle entra	ance 84		Bundle	e exit	85	kg/(m-s²)
52	Gaskets - Shell side	-			Tube side		F	at Metal	Jacket Fibe	
53	Floating hea	d -								
54	Code requirements	ASME C	ode Sec \	/III Div 1		TEMA d	ass R - refine	ry servic	æ	
55	Weight/Shell	3199,8	Filled	with water 4908	,1	Bundle	1738,6		kg	
00	0									

Figura 15: Ficha de especificaciones del condensador con etilenglicol C-201-2.

_											
1	Company:										
2	Location:										
3	Service of Unit:	(Our Refer	ence:							
4	Item No.:	Yo	our Refere	ence:							
5	Date: Re	v No.:	Job No.:								
6	Size: 762 - 4500	mm	Ту	pe: BEM	Horizonta	al		Conne	cted in	: 2 parallel	1 series
7	Surf/unit(eff.)	272,1	m²	Shells	/unit 2				Surf/s	hell(eff.)	136,1 m ²
8				PERF	ORMANC	E OF C	NE UN	IT			
9	Fluid allocation					5	Shell S	ide		Tube	e Side
10	Fluid name						AGU	4		PRO	CESO
11	Fluid quantity, Total			kg/s			156,80	25		15,	8361
12	Vapor (In/Out)			kg/s		0		0		15,8361	0,1773
13	Liquid			kg/s	156	3,8025		156,802	5	0	15,6588
14	Noncondensable			kg/s		0		0		0	0
15											
16	Temperature (In/Out)			°C		30		40		79,46	55,6
17	Bubble / Dew point			°C		/		1		36,95 / 79,46	36,24 / 78,98
18	Density Vapor	/Liquid		kg/m ^a		/ 995,5	53	/ 99	2,06	2,75 /	2 / 868,91
19	Viscosity			mPa-s		/ 0,797	72	/ 0,6	514	0,0084 /	0,0091 / 0,4134
20	Molecular wt, Vap									77,22	53,94
21	Molecular wt, NC										
22	Specific heat			kJ/(kg-K)		/ 4,31	3	/ 4,	315	1,281 /	1,391 / 1,664
23	Thermal conductivity			W/(m-K)		/ 0,618	34	/ 0,6	315	0,0142 /	0,0173 / 0,1223
24	Latent heat			kJ/kg						391,1	392,6
25	Pressure (abs)			bar	2	,026		1,71191		1,013	0,9981
26	Velocity (Mean/Max)			m/s		1,	06 / 1	,2		0,61	/ 16,83
27	Pressure drop, allow./c	alc.		bar	0,4	1369		0,31409)	0,11013	0,0149
28	Fouling resistance (min	ו)		m²-K/W			0,0002	25		0,0002 0,0	00023 Ao based
29	Heat exchanged	6762,9		kW				M	TD (cor	rected) 41,03	°C
30	Transfer rate, Service	605,7			Dirty	60	7,4		Cle	an 859,4	W/(m ² -K)
31		C	ONSTRU	CTION OF ONE	SHELL					Sk	etch
32				Shell S	Side		Т	ube Side			
33	Design/Vacuum/test pr	essure	bar	3,44738/	1	3,4	4738/	1			
34	Design temperature / M	IDMT	°C	76,67 /			115,56	1			
35	Number passes per sh	ell		1				1		│ ििित्त	
36	Corrosion allowance		mm	3,18	3			3,18			└──╢┙╝
37	Connections	In	mm	1 304,8	/ -	1	40	6,4 /	-		
38	Size/Rating	Out		1 254	/ -	1	15	52,4 /	-		
39	Nominal	Intermediate			/ -			1	-		
40	Tube #: 328	OD: 30	Tks. Aver	age 2,11	mm L	.ength:	450	0 mm	Pitc	h: 36 mm	Tube pattern:30
41	Tube type: Plain		Insert	None:			Fin#:	_	#/m	Material:Carbon	Steel
42	Shell Carbon Steel	ID	762	OD 784	,22		mm	Shell cove	r	-	
43	Channel or bonnet	Carbon S	Steel					Channel c	over	-	
44	Tubesheet-stationary	Carbon S	Steel	-				Tubesheet	t-floatin	ig -	
45	Floating head cover	-						Impingem	ent pro	tection None	
46	Baffle-cross Carbon S	teel	Туре	 Single segn 	nental	Cut(9	6d)	33,63	He	orizSpacing: c/c 476	3,25 mm
47	Baffle-long -			Seal Type						Inlet 533,9	1 mm
48	Supports-tube	U-bend		0				Т)	/pe		
49	Bypass seal				Tube-tube	sheet jo	pint	Expand	ed only	(2 grooves)(App.A	Ψ)
50	Expansion joint	-			1	Гуре	None				
					on on 17	00			lle evit	1261	ka/(m. c2)
51	RhoV2-Inlet nozzle	1160		Bundle entr	ance 17	60		Bund	le exit	1201	kg/(m-s-)
51 52	RhoV2-Inlet nozzle Gaskets - Shell side	1160		Bundle entr	Tube si	de		Bund	Flat Me	etal Jacket Fibe	Kg/(III-S-)
51 52 53	RhoV2-Inlet nozzle Gaskets - Shell side Floating hea	1160 - d -		Bundle entr	Tube si	de		Bund	Flat Me	etal Jacket Fibe	kg/(m-s-)
51 52 53 54	RhoV2-Inlet nozzle Gaskets - Shell side Floating hear Code requirements	1160 - d - ASME Co	ode Sec V	Bundle entr	Tube si	de TE	MA cla	Bund ss R - refi	Flat Me	etal Jacket Fibe	kg/(m-s-)

Figura 16: Ficha de especificaciones del condensador con agua C-202-2.

_									
1	Company:								
2	Location:								
3	Service of Unit:	(Our Refer	ence:					
4	Item No.:	Yo	ur Refere	nce:					
5	Date: Re	v No.:	Job No.:						
6	Size: 700 /1098	-3000 r	nm	Type: BKU	Horizontal		Connected in	1: 8 parallel	1 series
7	Surf/unit(eff.)	719	m²	Shells/u	unit 8		Surf/s	hell(eff.)	89,9 m²
8				PERFO	RMANCE (OF ONE U	NIT		
9	Fluid allocation					Shell S	Side	Tub	e Side
10	Fluid name								
11	Fluid quantity, Total			kg/s		23,61	194	56.	1022
12	Vapor (In/Out)			kg/s	0		23,6194	56,1022	56,1022
13	Liquid			kg/s	23,61	94	0	0	0
14	Noncondensable			kg/s	0		0	0	0
15									
16	Temperature (In/Out)			°C	138.3	27	142.69	370	300
17	Bubble / Dew point	1		°C	145,01 /		1	1	1
18	Density Vanor	/Liquid		ka/m ³	3.28 / 7	751.77	3.08 /	2.02 /	2.19 /
19	Viscosity	, Eligana		mPa-s	0.0081 / 0	2143	0.0081 /	0.0231 /	0.0203 /
20	Molecular wt. Vap				106	34	108.4	18.02	18.02
21	Molecular wt, NC						100,1	10,02	10,02
22	Specific heat			k.l/(ka-K)	1.665 /	2 109	1 684 /	2.059 /	2013 /
23	Thermal conductivity			W/(m-K)	0.019 / 0	1121	0.0193 /	0.0512 /	0.0436 /
24	Latent heat			k.l/kg	333	8	329.5	0,0012 /	0,0400 /
25	Pressure (abs)			har	1.01	3	0.94989	6	5 77788
26	Velocity (Mean/Max)			m/e	1,01	3.04 //	5.51	53.37	/ 55 54
27	Pressure drop, allow /c	alc		har	0.2	0,04 7	0.06311	0.26	0 22212
28	Fouling resistance (mit	alo.		m²_K/W	0,2	0.00	02	0,0002 0.0	0024 Ao based
20	Heat exchanged	8045		kW		0,00	MTD (co	rrected) 188.41	°C
30	Transfer rate Service	59.7		NV	Dirty	310.9	Ch	an 360.1	W/(m²-K)
31	Hansiel Tate, Gerrice	C(ONSTRUC		HELL	010,0	0.	San 500,1	etch
32				Shell Si	de		Tube Side		
32	Decign///acuum/tect.pr	00001100	bar	2 /	/	7			
34	Design temperature / M	ADMT	*C	180 /	'	405	, ,		
35	Number passes per sh	ell		100 /		403	2	÷.	<u>, ,)</u>
36	Corrosion allowance	1011	mm	3.18			3.18		L La V
37	Connections	In	mm	1 76.2		1 3	04.8 / -		8 4
38	Size/Rating	0.11		1 127	-	1 3	04.8 / -	1	
30	Nominal	Out - Vanor		1 203.2	-		/ -	1	
40	Tube #: 177 Ll's	OD: 25.4	Tks Aver	age 2.11	mm Len	ath: 30(00 mm Pite	h: 31.75 mm	Tube pattern:30
41	Tube type: Plain	20,4	Insert-	None		Fin#	#/m	Material:Carbor	Steel
42	Shell Carbon Steel	ID	700	OD 720		mm	Shell cover	Carbon S	teel
42	Channel or bonnet	Carbon S	teel	00 720			Channel cover	Carbon o	1001
43	Tubesheet-stationary	Carbon S	teel				Tubesheet-floatin	-	
45	Floating head cover	Carbon G	1001	-			Impingement pro	tection None	
46	Baffle cross Carbon S	teel	Type	Unhaffled		Su#(%(d))	Impingement pro	Spacing: c/c	mm
40	Baffle-long	1001	туре	Seal Type		201(700)		Inlet	mm
48	Supports-tube	U-hend		0			Type	mot	
40	Rynass seal	0-bend		т	ube-tubesh	et ioint	Expanded onl		7)
50	Expansion joint				Tun	e Nee	e apanded Uni	1 (= 9100100)(App.A	.,
51	Rhol/2-lolet pozzle	-		Bundle entre	197	e NON	e Bundle ouit	2303	kallm c2)
52	Gaekete - Shall eide	Elet	Metal lee	ket Eibe	Tube eide		Elat M	atal Jacket Eike	kg/(m-s*)
52	Election here	Hati	wetar Jac	Ket ribe	TUDE SIDE		Flat M	etal Jacket Fibe	
54	Code requirements	ASME C	vde Sec V	/III Div 1		TEMA of	ace R refinence	nvice	
55	Weight/Shell	3743.8	Filled	with water 7670	7	Bundle	1592	ka	
							1.1/1/	P.1.4	

so weight/s

Figura 17: Ficha de especificaciones del reboiler con agua RB-203-2.

11.4. Columnas de destilación

Las columnas de destilación son el equipo más utilizado para la separación de componentes dentro de la industria química. En el proceso hay un total de tres columnas operando a presión atmosférica situadas en la zona 200-2 diseñadas en estado estacionario debido a que la planta trabaja en continuo.

Figura 18: Esquema de una columna de destilación

La primera columna (CD-201-2) separa del resto del proceso por el destilado el etano y metano que contenía el etileno, la segunda (CD-202-2) recircula benceno al primer reactor de alquilación y al reactor de transalquilación y en la tercera columna (CD-203-2) se purifica el producto.

El primer paso para diseñar una columna es calcular el parámetro de diseño mediante el método Shortcut. El método consiste en simular los parámetros de operación con la que se obtendrá una aproximación para así configurar la columna y obtener las condiciones finales de operación. Para ello se utiliza el programa Aspen Hysys V.11.

Figura 19: Esquema del método Shortcut

Los datos obtenidos se muestran en las tablas 17, 18 y 19:

Propiedad	Alimento	Destilado	Residuo				
Fracción de vapor	0,3777	0	0				
Temperatura (°C)	25,58	-24	97,7				
Presión (kPa)	101,3	1013	101,3				
Caudal másico (kg/h)	89570,62	11932,56	77638,1				
Entalpía molar (kJ/kmol)	-14130	29140	29140				
Caudal energético (kJ/h)	-18519000	-35851000	24270000				
COMPO	COMPOSICIONES MÁSICAS						
Benceno	0,3537	0,001	0,4081				
Etileno	0,0105	0,0785	0				
Etilbenceno	0,4819	0	0,556				
Dietilbenceno	0,0311	0	0,0359				
Tolueno	0	0	0				
Metano	0,0313	0,2353	0				
Etano	0,0881	0,6615	0				
Propileno	0,0033	0,0247	0				

Tabla 17: Propiedades de CD-201-2

Propiedad	Alimento	Destilado	Residuo				
Fracción de vapor	0	0	0				
Temperatura (°C)	97,7	78,52	137,5				
Presión (kPa)	101,3	101,3	101,3				
Caudal másico (kg/h)	77638,1	31679,4	45958,6				
Entalpía molar (kJ/kmol)	29140	56950	8963				
Caudal energético (kJ/h)	24270000	23097000	3828500				
COMPO	COMPOSICIONES MÁSICAS						
Benceno	0,4081	0,9999	0,0001				
Etileno	0	0	0				
Etilbenceno	0,556	0	0,9392				
Dietilbenceno	0,0359	0	0,0607				
Tolueno	0	0	0				
Metano	0	0	0				
Etano	0	0	0				
Propileno	0	0,0001	0				

Tabla 18: Propiedades de CD-202-2

Propiedad	Alimento	Destilado	Residuo				
Fracción de vapor	0	0	0				
Temperatura (°C)	137,5	136,2	165,6				
Presión (kPa)	101,3	101,3	101,3				
Caudal másico (kg/h)	45958,6	42468,0	3490,6				
Entalpía molar (kJ/kmol)	8963	11090	-18610				
Caudal energético (kJ/h)		3828500					
COMPO	COMPOSICIONES MÁSICAS						
Benceno	0,0001	0,0002	0				
Etileno	0	0	0				
Etilbenceno	0,9392	0,9981	0,2221				
Dietilbenceno	0,0607	0,0017	0,7779				
Tolueno	0	0	0				
Metano	0	0	0				
Etano	0	0	0				
Propileno	0	0	0				

Tabla 19: Propiedades de CD-203-2

11.4.1. Tipo de columna

Para la planta se han elegido columnas de platos con tapas toriesféricas, debido a las siguientes características:

- Diámetros superiores a 0,6 m
- Coste económico inferior
- Mayor resistencia a diferencias de temperaturas

Además, se han elegido dos tipos distintos de platos:

1. Platos de burbuja (Bubble)

Son placas planas con perforaciones elevadas con tapas con un espacio para que el vapor pase a través de ellas y en contacto con el líquido del plato burbujea, mientras el líquido desciende por los platos. Se suelen utilizar para cargas de líquido bajas y deben haber fugas mínimas, además de tener una alta eficiencia.

Figura 20: Plato de burbuja

2. Platos perforados (Sieve)

Son placas planas perforadas sin partes móviles en las que el vapor asciende por las perforaciones mientras el líquido desciende a través del plato pasando sobre un vertedero hacia el plato inferior ya que la energía del vapor evita que el líquido descienda por las perforaciones. Las ventajas son el bajo coste de mantenimiento y la baja tendencia de ensuciamiento, además de ser los platos más fáciles de fabricar y su bajo precio.

11.4.2. Diseño de las columnas

11.4.2.1. Diseño mecánico

Para el diseño se ha elegido acero inoxidable AISI 316 debido al peligro de corrosión. Seguidamente se realiza el cálculo del espesor de tanto el cilindro como de las cabezas del tanque. El factor de eficiencia de la soldadura es de 0.85 y la constante de resistencia a la corrosión del material AISI 316 es de 2.5 mm. Por otra parte, la conversión de KVI a atm es de 68.046 atm/KVI. Posteriormente se determina el diámetro externo del cilindro y de las cabezas y por último el peso vacío y lleno de los tanques.

Los cálculos para el diseño se encuentran en el apartado 11.2.9.

	CD-201-2	CD-202-2	CD-203-2
Volumen cilindro (m3)	30,87	344,92	388,29
Volumen cabezales (m3)	1	5,47	5,47
Volumen (m3)	31,87	343,76	343,76
Diámetro cilindro (m)	1,7	3	2,505
Longitud (m)	14,11	47,5	29,26
Presión de diseño (bar)	2,24	3	3,26
S (ksi)	18,8	18,8	18,6
Espesor cilindro (mm)	5	7,1	7,63
Espesor cabezal (mm)	6	9,63	9,23
Peso del cilindro de la columna vacía (Kg)	2872,84	25413,25	14068,74
Peso de los cabezas de la columna vacía (Kg)	167,22	835,29	445,87
Peso total vacío (kg)	3040,06	26248,55	14514,61
Peso lleno (kg)	34533,32	26590,18	162181,77

Tabla 20: Especificaciones de las columnas

• ESPESOR DE LAS COLUMNAS

Para calcular el grosor de las columnas se calcula el calor que deja pasar el aislante. El grosor se calcula de la misma manera que para los reactores en el *apartado 11.2.9*.

A continuación, se muestran en la *tabla 21* el cálculo del grosor para un grado y en la *tabla 22* el grosor para una pérdida entre 1-2 grados.

	CD-201-2	CD-202-2	CD-203-2
ΔΤ	1,00	1,00	1,00
m (Kg/h)	89570,60	77638,1	45958,6
cp (KJ/kgC)	1,96	2,15	2,31
Q	175467,63	166551,93	106027,48
L (m)	14,10	48,70	30,30
D1 (m)	3,50	3,50	3,50
D2 (m)	3,51	3,55	3,56
Grosor (m)	0,01	0,05	0,06
Ln	0,00	-0,01	-0,02
k lana de roca KJ/hm K	0,13	0,13	0,13
Aml	155,24	539,36	336,10

Tabla 21: Espesor del aislante de la columna para 1 grado

Tabla 22: Diseño del espesor para 1 y 2 grados

	CD-201-2	CD-202-2	CD-203-2
Grosor para 1 °C (cm)	0,92	5,08	6,19
Grosor sobredimensionado para 1 °C (cm)	1,11	6,10	7,42
Grosor para 2 °C (cm)	0,46	2,53	3,08
Grosor sobredimensionado para 2 °C (cm)	0,55	3,04	3,69

Finalmente se escoge un grosor de 2 cm para la primera columna, 7 cm para la segunda, 8 cm para la tercera.

11.5. Tanques pulmón

El objetivo de un tanque pulmón es garantizar una producción continua en caso de interrupciones cortas durante el proceso. Los tanques pulmón que se utilizan en el proceso son para dosificar la cantidad de etileno de la recirculación con el corriente proveniente de la zona 100 y para los condensadores.

Por tanto, primero sería determinar el balance de materia que tiene el tanque pulmón, como se muestra en la *tabla 23*.

	Entrada (m3/h)	Salida (m3/h)
Tangue T-201-1	32.76	68,52
	<u> </u>	36,05
Tangue T-201-2	1630.33	974,71
	,	655,62
Tanque T-202-2	43.31	38,98
	,	4,33
Tangue T-203-2	62.09	55,88
	- ,	6,21

Tabla 23: Caudales de entrada y salida de los tanques pulmón

11.5.1. Diseño del tanque

Por tanto, con estos datos se puede realizar los cálculos del diseño del tanque. Primero debemos suponer un tiempo de residencia, en este caso se ha decidido que sea de 10 min.

$$V = Q * \tau \tag{39}$$

Donde:

- V: Volumen (m³)
- Q: Caudal volumétrico total de entrada (m³/h)
- τ: Tiempo de residencia (h)

El tanque pulmón serán tanques cilíndricos y verticales, con un cabezal toriesférico y con una relación de altura entre diámetro de 1,5 y que la altura del cabezal será de 0,2 veces el diámetro del cilindro.

$$D = \sqrt[3]{\frac{V}{\pi^*(\frac{\frac{H}{D}}{4} + \frac{1}{12})}}$$
(40)

Donde:

- D: diámetro del cilindro (m)
- H: Altura del cilindro (m)

Posteriormente se sobre dimensiona el tanque para que no haya problemas con la pérdida de fluido, este porcentaje es del 20% extra del volumen que ocuparía el tanque. Después, y según la normativa de los tanques pulmón de ASME, se ha de diseñar el tanque teniendo en cuenta las dos cabezas superiores e inferiores y el cilindro. El material empleado para la construcción de los tanques es acero inoxidable de AISI 316 debido a la salinidad y humedad que hay en el ambiente en Tarragona.

Seguidamente se realiza el cálculo del espesor de tanto el cilindro como de las cabezas del tanque. El factor de eficiencia de la soldadura es de 0,85 y la constante de resistencia a la corrosión del material AISI 316 es de 2.5 mm. Por otra parte, la conversión de KVI a atm es de 68,046 atm/KVI. Debido a que el grosor calculado es inferior a 5 mm, se ha decido establecer que los tanques tengan un grosor de 5 mm en el cilindro y 6 mm en las cabezas. Posteriormente se determina el diámetro externo del cilindro y de las cabezas y por último el peso vacío y lleno de los tanques.

Los cálculos para el diseño se encuentran en el apartado 11.2.9.

Después se calcula la masa total del tanque lleno y al final nos da los resultados que hay plasmados en la *tabla 24*.

	T-201-1	T-201-2	T-202-2	T-203-2
Volumen (m3)	11,42	11,42	7,22	10,35
Volumen sobredimensionado (m3)	13,704	13,704	8,662	12,42
Diámetro tanque (m)	2,27	2,27	1,94	2,19
Longitud (m)	3,40	3,40	2,92	3,29
Densidad promedio (Kg/m3)	882,10	882,10	882,00	870,10
Presión de diseño (atm)	1,55	1,55	1,50	1,53
S (80°C)	18,80	18,80	18,80	18,40
Espesor cilindro (mm)	5,00	5,00	5,00	5,00
Espesor cabezas (mm)	6,00	6,00	6,00	6,00
Diámetro externo cilindro (m)	2,28	2,28	1,95	2,20
Diámetro externo cabezal (m)	2,28	2,28	1,96	2,20
Peso del cilindro del tanque pulmón vacío (Kg)	969,85	969,85	714,58	908,24
Peso de los cabezas del tanque pulmón vacío (Kg)	1167,41	1167,41	860,58	1093,37
Peso total vacío (kg)	11,42	11,42	1575,16	2001,60
Peso lleno (kg)	13,704	13,704	7941,89	11005,53

Tabla 24: Especificaciones de los tanques pulmón

11.6. Caldera

Para la puesta en marcha y para posibles fallas del intercambiador de calor de la entrada, se ha decidido instalar una caldera para suministrar la energía calorífica necesaria para el proceso, se tendrá en cuenta dos situaciones. La primera situación es en la puesta en marcha, debido a que el intercambiador de calor no tendrá la suficiente energía para suministrar calor a la mezcla, y la segunda situación es para mantener la energía estable, variando la cantidad de combustible según las necesidades.

El salto térmico para la puesta en marcha es de 375°C, a causa de la ausencia del caudal recirculado que entra en el tanque pulmón T-200 por tanto, se debe diseñar la caldera teniendo en cuenta dicha temperatura y que su combustible seria gas natural, ya que no se almacena nada del subproducto.

En la segunda situación, que sería la mayoría del tiempo del proceso, este estaría apagado, pero si hay algún problema, este se activará en situaciones donde el salto térmico es de cómo mucho entre 10 a 50°C y consumiría parte del gas extraído de la primera columna de destilación, por tanto, la cantidad y el calor generado puede variar.

$$Q = m_{vap} * Cp * \Delta T \qquad (41)$$

Donde:

- Q: caudal de calor necesario para calentar. (J/s)
- m_{vap} : caudal másico de vapor necesario. (Kg/s)
- Cp: calor específico medio del vapor (J/kg*s*°C)
- ΔT : Diferencia de temperatura del vapor de la caldera (°C)

A continuación, se hace un sobredimensionamiento del combustible del 25% para tener más margen a la hora de la instalación. Después calculamos el caudal volumétrico de Gas natural licuado para la puesta en marcha y cuanto supondría el consumo de subproducto.

Seguidamente de comprobar cuál sería la eficiencia de nuestra caldera, que es del 60%, podemos determinar dicho consumo.

$$F_{Fuel} = \frac{P}{PCI_{Fuel}^*\eta} \qquad (42)$$

Donde:

- *F_{Fuel}* : Caudal másico de fuel (Kg/s)
- P: Caudal de calor sobredimensionado un 25% (J/s)
- *PCI*_{*Fuel*}: Poder calorífico inferior (KJ/Kg)
- η: Rendimiento de la caldera

Finalmente, en la *tabla 25* se muestran todos los cálculos y datos utilizados para el cálculo de fuel para la caldera.

	mvap (Kg/s)	Cp (J/Kg*s*ºC)	AT (°C)	Q (J/s)	P (J/s)	PCI	Qv fuel (Kg/s)
GNL	0,242	3770	450	409988	512484	46367	18,421
Mezcla (50ªC)	0,052	2333,4	600	72297	90371	45105	3,339
Mezcla (10ºC)	0,011	2333,4	600	14751	18439	45105	0,681

Tabla 25: Cálculo del consumo de fuel gas para la caldera

11.7. Torres de refrigeración

Una torre de refrigeración es una estructura que se encarga de disminuir la temperatura del agua. Se decidió implementar esta estructura para reducir el consumo de agua que se usa para enfriar en los intercambiadores de calor. Para comenzar con los cálculos, se ha decidido utilizar la herramienta ASPEN PLUS para simular los requerimientos de las torres de refrigeración.

A continuación, se explicará el procedimiento que se ha seguido para hacer los cálculos preliminares y luego, con dichos valores que se obtienen de la simulación, calcular de forma más exacta las torres para poder determinar cuál sería la más adecuada.

Primeramente, se eligen los componentes que llevarán la torre en el apartado de propiedades, en componentes, en este caso sería agua, oxígeno y nitrógeno.

Com	ponents × +				
0	Selection Petroleu	m Nonconventional Enterprise Database	Comments		
Solo	ct components				
Sele	ct components				
	Component ID	Туре	Component name	Alias	
•	N2	Conventional	NITROGEN	N2	
•	02	Conventional	OXYGEN	02	
•	WATER	Conventional	WATER	H2O	
•					
	Find Elec Wi	zard SFE Assistant User Defined	Reorder		

Figura 22: Selección de componentes

Después se seleccionan el oxígeno y el nitrógeno como componentes de Henry, como se puede ver en la *figura 22*, este proceso es para determinar, según la ley de Henry, que la cantidad de gas disuelto en el agua, en donde la cantidad de gas disuelto es proporcional a la presión parcial que ejerce el gas sobre el líquido.

Properties <	Henry Comps - HC-1 × +
All Items 🔹	Selection Comments
 Setup Setup Components Specifications Molecular Structure Assay/Blend Light End Properties Petro Characterization Pseudocomponents Component Attributes Henry Comps Henry Comps Henry Comps O HC-1 UNIFAC Groups Polymers 	Select Henry components Available components Selected components N2 O2

Figura 23: Propiedades de los gases mediante la ley de henry

Seguidamente, se introducen los sets de propiedades y se implementa el método de cálculo que la herramienta Aspen plus va a usar, en este caso el método de cálculo sería el UNIQUAC, como se puede ver en la *figura 24.*

roperty methods &	options	Method nar	ne		
ethod filter	CHEMICAL	UNIQUAC	-	Methods A	Assistant
ase method	UNIQUAC	-			
enry components	HC-1	 Modify 	/		
Petroleum calculati	on options	Vapor EOS	S ES	SIG	-
Free-water method	STEAM-TA	 Data set 			1 💌
Water solubility	3	 Liquid gar 	mma Gl	MUQUAC	-
		Data set			1
Electrolyte calculat	ion options	Liquid mo	lar enthalpy H	LMX88	-
Chemistry ID		 Liquid mo 	lar volume	.MX01	-
Use true compo	nents	🖌 Heat d	of mixing		
		Poyntin	ng correction		
		🗌 Use liq	uid reference st	ate enthalpy	

Figura 24: Delimitación del método de cálculo

Posteriormente, se decide qué tipo de torre se usará, en este caso sería como una columna de separación, pero sin condensador ni reboiler, seguidamente se le introducen los caudales de entrada y salida de agua, aire y vapor, como se muestra en la *figura 25*.

Figura 25: Diagrama de una torre de refrigeración

Finalmente, se determinan los valores de entrada, como la composición, el caudal y la temperatura y la presión de la columna, que será de 1 atm de presión. luego se modifican los internals según las características de las torres de refrigeración. Para que no haya ni inundación de los platos ni goteo.

Figura 26: Internals columna de refrigeración

A continuación, se explicará el método de cálculo que se ha usado a partir de los datos obtenidos del simulador ASPEN ONE.

Según los datos obtenidos del simulador, se puede determinar cuánta energía ha de soportar las torres para poder comprar una torre que cumpla las especificaciones con la ecuación (41).

$$Q = (40 - 30) * 4,18 * 2453885 = 102572393 \frac{K_I}{h} * \frac{1h}{3600s} = 28492 KW$$

Donde:

- ΔT : variación de temperatura
- Cp (KJ/Kg°C): Calor específica
- m: caudal másico para enfriar [kg/h]

Finalmente, se tiene en cuenta que energía se necesita para poder elegir qué torre de refrigeración requiere la instalación.

11.8. Chiller

Para alcanzar una temperatura de salida de -24°C en el primer condensador (C-201-2) se utilizará un chiller para refrigerar agua glicolada al 50%.

Se determina cuánta energía ha de soportar el chiller para poder comprar uno que cumpla las especificaciones, igual que la torre de refrigeración con la ecuación (41).

$$Q = (-19 - (-25)) * 2, 1 * 343440 = 4533408 \frac{KJ}{h} * \frac{1h}{3600s} = 1259, 28 KW$$

11.9. Bombas

Para comenzar el cálculo de las bombas, hay que utilizar la ecuación (43), que es el balance de energía mecánica para un fluido incompresible.

$$\Delta P/\rho + g * \Delta z + \Delta (v^2/2\alpha) = W/m - ev$$
(43)

Donde:

- ΔP: incremento de presión (Pa)
- Δz : incremento de altura (m)
- v: velocidad del fluido(m/s)
- W: Potencia teórica de la bomba. (J/s)
- m: caudal másico (Kg/s)
- ev: pérdidas de energía mecánica por fricción. (J/kg)
- ρ: densidad (Kg/m³)
- g: gravedad. (m/s²)
- *α*: constante

Seguidamente, se determina en qué condiciones se encuentra el fluido utilizando el número de Reynolds para comprobar si el fluido está en flujo laminar o turbulento.

$$Re = \frac{\rho v D}{\mu}$$
 (44)

Donde:

- ρ: densidad del fluido. (Kg/m³)
- v: velocidad del fluido. (m/s)
- D: diámetro de la tubería. (m)
- µ: viscosidad del fluido. (Kg/ms)

Después de confirmar el estado en que se encuentra el fluido, se procede al cálculo del área y a velocidad del fluido.

$$A = \frac{\pi}{4}D^2 \qquad (45)$$
$$v = \frac{Q}{A} \qquad (46)$$

Donde:

- A: área de paso de la tubería.
- D: diámetro de la tubería.
- Q: caudal que circula.
- v: velocidad del fluido.

Para poder calcular el factor de Fanning, se ha de saber cuál es la rugosidad del material de la tubería, en donde la *tabla 26*, se puede saber que, al ser de acero inoxidable, este se encuentra con una porosidad de 4.6*10-6 m.

Material	Rugosidad $arepsilon$ (m)
Vidrio o plástico	Tubo liso
Tuberías de cobre/latón/plomo	1,5*10-6
Hierro de fundición sin revestimiento	2,5*10-4
Hierro de fundición revestido de asfalto	1,2*10-4
Acero comercial/acero soldado	4,6*10-5
Hierro forjado	4,6*10-6
Acero remachado	1,8*10-3
Hierro galvanizado	1,6*10-4
Hormigón	1,2*10-3

Tabla 26: Tabla de rugosidad para los materiales

Finalmente se puede determinar el factor de Fanning para posteriormente utilizar la gráfica de Moody.

$$f = \frac{\varepsilon}{D} \tag{47}$$

Donde:

- f: Factor de Fanning
- ε: Rugosidad (m)
- D: diámetro de tubería (m)

Figura 27: Diagrama de Moody

Con estos datos, se puede comenzar con el cálculo de la potencia de las bombas, dichos datos se encuentran en la *tabla 27.*

	P-174/P-17 5	P-176/P- 177	P-201/P-20 2	P-209-2/P- 210-2	P-201-3/P- 22-3	P-384/P- 385	P-386/P-38 7
AP (Pa)	0	0	2000000	2000000	2000000	0	0
Eff	0,75	0,75	0,75	0,75	0,75	0,75	0,75
Av (m/s)	2	2	8	8	8	2	2
Av^2/2 alfa (m²/s²)	2	2	32	32	32	2	2
D (m)	0,0762	0,0762	0,108	0,08	0,042	0,0762	0,0762
densidad (kg/m³)	881,2	881,2	881,2	882,2	866,56	870,1	870,1
m (kg/s)	8,74	8,74	16,11	8,8	0,96	11,80	11,67
porosidad (m)	0,000046	0,000046	0,000046	0,000046	0,000046	0,000046	0,000046
f	0,00060	0,00060	0,00043	0,00058	0,0011	0,0006	0,0006

Tabla 27: Datos de las bombas

Finalmente, podemos calcular las pérdidas de carga de los accidentes, tanto los tramos rectos como de las válvulas u otros elementos. y así determinar la potencia teórica de la bomba.

$$ev_{tramo\ recto} = 4 * f * v^2 \frac{L}{D}$$
(48)

$$ev_{tramo\ accidentes} = \sum K \frac{v^2}{2}$$
 (49)

$$ev_{total} = ev_{tramo\ recto} + ev_{tramo\ accidente}$$
(50)

P-174/P-175	nº accidentes	к
válvula de bola automática	2	0,1
válvula mariposa	1	0,24
Codos	3	0,555
	Suma	0,895

Tabla 28: Constantes k de la bomba 1

Tabla 29: Constantes k de la bomba 2

P-176/P-177	nº accidentes	К
válvula de bola automática	4	0,2
válvula mariposa	4	0,24
Codos	3	0,555
	Suma	0,995

Tabla 30: Constantes k de la bomba 3

P-201/P-202	nº accidentes	К
válvula de bola automática	4	0,2
válvula mariposa	4	0,24
Codos	22	4,07
	Suma	4,51

P-209-2/P-210-2	nº accidentes	К
válvula de bola automática	3	0,15
válvula mariposa	1	0,24
Codos	6	1,11
	Suma	1,5

Tabla 31: Constantes k de la bomba 4

Tabla 32: Constantes k de la bomba 5

P-201-3/P-22-3	nº accidentes	6
válvula de bola automática	4	0,2
válvula mariposa	1	0,24
válvula de bola manual	1	0,05
Codos	6	1,11
	Suma	1,6

Tabla 33: Constantes k de la bomba 6

P-384/P-385	nº accidentes	K
válvula de bola automática	2	0,1
válvula mariposa	1	0,24
Codos	3	0,555
	Suma	0,895

Tabla 34: Constantes k de la bomba 7

P-386/P-387	nº accidentes	К
válvula de bola automática	4	0,2
válvula mariposa	1	0,24
Codos	3	0,555
	Suma	0,995

• POTENCIA REAL

$$W_{real} = \frac{W_{teórica}}{\eta}$$
(51)

Donde:

- W_{real} : Potencia real de la bomba (J/s)
- *W*_{teórica}: Potencia teórica de la bomba (J/s)
- H: Rendimiento de la bomba (75%)

	W teórica (KW)	W real (KW)
P-174/P-175	0,081	0,11
P-176/P-177	0,082	0,11
P-201/P-202	37,58	50,10
P-209-2/P-210-2	20,35	27,13
P-201-3/P-22-3	2,28	3,03
P-384/P-385	0,06	0,08
P-386/P-387	0,06	0,08

Tabla 35: Potencia real de las bombas

11.10. Necesidades de nitrógeno

Para el cálculo del Nitrógeno, se determina el volumen de los equipos que requieren inertización por hora. Este cálculo es para los equipos trabajando en estado estacionario, en la puesta en marcha el volumen de Nitrógeno requerido es mucho mayor a causa de que el volumen a inertizar es mayor debido a que los tanques de almacenamiento están vacíos.

El volumen de puesta en marcha de Nitrógeno es igual al volumen de los equipos a inertizar.

Por lo cual:

Ve,n= Vtanques de almacenamiento + Vtanques pulmón + Vreactores + Vcamisa de los reactores + Vcolumnas (52)

Ve,n=355*8+11,4+136+7,2+10,4+390*10+155,2+117,8+176,9+35+26,7+24,7+2 1,3+3,2+32+345+149=7991,8 m³ de N

El volumen de operación en continuo es el que se usa durante el llenado y vaciado de los tanques de almacenamiento y tanques pulmón,

Se calcula con el 1% del volumen del equipo más el caudal que requiere la bomba de nitrógeno para una semana. Para estos cálculos solo se utilizan los equipos que tendrán Nitrógeno en estado estacionario, es decir, los tanques pulmón y de almacenamiento.

Qn=Qmax*0,057 (m³/h) Qn=2669,8*0,057=152,18 (m³/h) Vn, semanal=152,18*7*24= 25566,4 m³ Vn, semanal=V_{e,n}*0,01= 552,4 m³ Vn, tot=552,4+25566,4= 26118,8 m³

Donde:

- Vn: es el caudal de Nitrógeno (m³)
- Ve,n: caudal de los equipos a inertizar (m³)
- Qmax: caudal máximo de la bomba (L/min)
- Qn: caudal de Nitrógeno (m³/h)

Para calcular el volumen para almacenar se utiliza la correlación del distribuidor Linde, donde 1 m³= 1,448 L/1 bar por lo que se obtienen 37,8 m³ a la semana, Se encarga un bloque de botellas de 114 m³, por lo cual el Nitrógeno de la planta se tiene que cambiar cada 3 semanas.

11.11. Necesidades de aire comprimido

El consumo de aire se calcularía a partir del número de válvulas neumáticas que requieren una instalación de aire comprimido según las necesidades de la planta. Para dicho cálculo, se debe saber que una válvula requiere de un aproximado de entre 1,4 m³/h como mínimo caudal de aire y como máximo 3 m³/h de aire. Por lo tanto, se requiere del caudal máximo para determinar cuánto requerimiento de aire comprimido se necesitaría en una situación de emergencia.

$$Q_{aire} = Q_{aire\,máx} * \eta_{v} \tag{52}$$

Donde:

- Q_{aire} : Caudal de aire consumido (m³/h)
- $Q_{aire máx}$: Caudal de aire máximo(m³/h)
- η.: Número de válvulas neumáticas

$$Q_{aire} = 3 \frac{m^3}{h} * 160 = 480 \frac{m^3}{h}$$

Con esta cantidad de aire comprimido se puede o construir un tanque pulmón para almacenar algo de aire comprimido o tener uno o varios compresores para dicho cometido.

11.12. Cálculo de los compresores

Para seleccionar el número de compresores que se necesitan en el sistema, se ha tenido en cuenta los dos compresores que van para las torres de refrigeración y uno para las necesidades de aire comprimido para las válvulas neumáticas.

Para comenzar el cálculo de los compresores es muy similar al cálculo de una bomba, por tanto, se puede reutilizar las ecuaciones (43), para el cálculo de la pérdida de carga se ha utilizado la ecuación (48) solo se ha tenido en cuenta que el compresor trabaje para un tramo de 1000 m de distancia, además de la ecuación (51) para el cálculo de la potencia real de los compresores con la misma eficiencia.

	K-1001	
ΔP (Pa)	300000	
Eff	0,75	
Δv (m/s)	8	
Av^2/2 alfa (m2/s2)	32	
Q aire (m3/h)	480	
D (m)	0,017	
densidad (kg/m3)	1	
m (kg/s)	0,133	
porosidad (m)	0,000046	
f	0,0028	
Ev (J/kg)	5299,20	

Tabla 37: Potencia real y teórica de los compresores

	W teórica (KW)	W real (KW)
K-1001/K-1002	40,71	54,28

11.13. Cálculo de los transformadores y el grupo electrógeno

Los transformadores están en la estación transformadora y su función principal es recibir energía eléctrica de una red de alta tensión y transformarla a una tensión más baja para su distribución a los usuarios finales.

Para el cálculo del transformador se requiere saber el número de KVA que requiere la instalación. Para eso se suma la demanda de los equipos y se multiplica por un factor de simultaneidad de 0,9. Debido a que la mayoría de la potencia viene dada por las torres de refrigeración que funcionan de manera continuada. A continuación, en la *tabla 38* se muestra la potencia requerida por cada equipo.

Para la potencia de las oficinas se estima una potencia medieval año de 52,5 kWh/m².

Poficinas = Pm * m/(350 * 24) = 52, 5 * 3079/(350 * 24) = 19, 2 kW (53)

Equipo	Potencia (kW)	Equipo	Potencia (kW)
TR-401	60	P-174	1
TR-402	60	P-175	1
TR-403	60	P-176	1
CH-501	249	P-177	1
CH-501	249	P-201	1,9
CH-501	249	P-202	1,9
CH-501	249	P-203	2,8
K-1004	55	P-204	2,8
K-501	37	P-208	4,1
P-RR	1	P-210-2	1,1
P-RR	1	P-206-3	26,7
P-207	4,1	P-385	1,6
P-209-2	1,1	P-387	1,6
P-202-3	26,7	P-RR	1
P-384	1,6	P-PP	1,6
P-386	1,6	P-PP	1,6
P-RR	1	P-PP	1,6
P-PP	1,6	Oficinas y edificios	50
Total (kW)		1412	

Tabla 38: Potencia consumida por equipo

$$1412 \ KW \ * \ 350d \ * \ 24h = \ 11860800 \ kWh$$

 $1412 \ KWe \ * \ 0,9 = \ 1270,8 \ KW$
 $KVA = \ KW/cos\Phi = \ KW/0,85 = \ 1495,06 \ KVA$

Para el grupo electrógeno también se requiere saber la potencia de los equipos, pero se usa como sistema de seguridad en caso de fallo de la electricidad de la fábrica. Por lo cual solo se tendrá en cuenta la potencia de los equipos críticos.

KW_{e,c}= 1271 kW

11.14. Bibliografía

- Tecnología en soldaduras, ¿QUÉ PORCENTAJE DE FACTOR DE SERVICIO REQUIEREN PARA SOLDAR?, Consultado (21/05/2023), <u>https://tecnologiasensoldadura,com,mx/que-porcentaje-de-factor-de-serv</u> <u>icio-requieren-para-soldar/</u>
- Kister, Henry Z, Distillation Design, [ed,] McGraw-Hill, 1992, p, 106-126, 136-140, 259- 362, Propiedades acero 316L, Consultado (23/05/2023): https://www.azom.com/article.aspx?ArticleID=2382
- 3. Ministerio de trabajo y asuntos sociales,NTP 430: Gases licuados: evaporación de fugas y derrames, Tabla de calor específico de los compuestos, (26/5/2023) <u>https://www.insst.es/documents/94886/326853/ntp_430,pdf/0b2983f6-0c</u> <u>9b-456b-9ea2-7fcbc3b6814e?version=1,0&t=1614698337254</u>
- 4. Algunas propiedades termodinámicas de sustancias químicas, Consultado (26/05/2023): https://campusvirtual.ull.es/ocw/pluginfile.php/1535/mod_folder/content/0 /404_Propiedades_Termodinamicas.pdf?forcedownload=1

