## APPLICATIONS OF CRISPR-CAS9 IN AGRICULTURE

**Universitat Autònoma** de Barcelona

Aram Arraiz Escardó – Final Degree Project – June 2023

### **OBJECTIVES**

- 1. Bibliographic revision of CRISPR-Cas literature.
- 2. Agricultural applications and product enhancement.
- 3. Examples of modifications.



CRISPR-Cas is a self defense system of bacterial cells that works by cutting the viral DNA when it enters the cell, because the cr-ARN-Cas9 complex can recognize the viral DNA [1].

# Target DNA sequence Homology-directed DNA repair Nonhomologous end joining Donor DNA 3', No donor DNA

When the sgRNA and Cas9 enter the cell, they scan the genome until sgARN finds a place where it can hybridize with DNA. Then, Cas9 cuts both DNA strands and induces the DBS [2].



other proteins: deaminase and uracil DNA [4]. glycosylase [3].



It allows the transition from C:G When the SI7-DR2 gene is silenced, nearly to T:A using the nCas9 and two all 7-DHC can be accumulated becoming cytidine vitamin D3 when exposed to UV radiation

### CONCLUSION

- CRISPR-Cas9 is a technique of genetic modification whereby genes can be silenced and/or edited. Thus, we can give desirable traits to plants, enhance the nutritional value of products and reduce the effects of climate change in agriculture.
- There is only one product in the market that has been modified using CRISRP, a GABA enriched tomato.

| Plant          | Gene               | Objective                         | Reference           |
|----------------|--------------------|-----------------------------------|---------------------|
| Rice           | OsNRAMP5           | Cadmium reduction in              | Yang et al. 2019    |
|                |                    | rice grain                        |                     |
| Rice           | OsLCT1             | Cadmium reduction in              | Chen et al. 2023    |
|                |                    | rice grain                        |                     |
| Rice           | OsNRAMP5 and       | Cadmium reduction in              | Chen et al. 2023    |
|                | OsLCT1             | rice grain                        |                     |
| Wheat          | 35 different genes | Gluten reduction                  | Sánchez-León et al. |
|                |                    |                                   | 2018                |
| Tomato         | SI7-DR2            | Tomato enhancement                | Li et al. 2022      |
|                |                    | with vitamin D                    |                     |
| Potato         | StSSR2             | $\alpha$ -solanine and $\alpha$ - | Zheng et al. 2021   |
| (S. tuberosum) |                    | chaconine reduction               |                     |

#### **BIBLIOGRAPHY**

- [1] Jiang F, Doudna JA. CRISPR-Cas9 Structures and Mechanisms. Annual Review of Biophysics. 2017;46(1):505-529. doi:10.1146/annurev-biophys-062215-010822
- [2] El-Mounadi K, Morales-Floriano ML, Garcia-Ruiz H. Principles, Applications, and Biosafety of Plant Genome Editing Using CRISPR-Cas9. Frontiers in Plant Science. 2020;11:56. doi:10.3389/fpls.2020.00056
- [3] Zhu H, Li C, Gao C. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology. 2020;21(11):661-677. doi:10.1038/s41580-020-00288-9
- [4] Van Der Straeten D, Strobbe S. Tomatoes supply the 'sunshine vitamin.' Nature Plants. 2022;8(6):604–606. doi:10.1038/s41477-022-01158-2