UrnB

»¥ Diposit digital
D &, de documents
Universitat Autdnoma 1) delaUAB

de Barcelona

This is the published version of the bachelor thesis:

Roca Serrano, Andreu; Moure, Juan C, dir. Enhancing data center performance
with GPU-accelerated dynamic programming algorithms. 2024. (Enginyeria
Informatica)

This version is available at https://ddd.uab.cat/record /290096
under the terms of the license


https://ddd.uab.cat/record/290096

TFG EN ENGINYERIA INFORMATICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTONOMA DE BARCELONA (UAB)

Enhancing Data Center Performance with
GPU-Accelerated Dynamic Programming

Algorithms

Andreu Roca Serrano
February 8, 2024

Abstract— Data generation rates for problems involving dynamic programming (DP) algorithms have
grown exponentially. The inability of classical CPU architectures to cope with the ever-increasing
amount of data has led Data Processing Centers (DPCs) to incorporate accelerators that can per-
form thousands of operations in parallel. Among the available options, GPUs have emerged as the
preferred choice due to their widespread availability, ease of programmability, and attractive price-to-
performance ratio.

In this TFG, we study the suitability of the new NVIDIA GPU Hopper architecture as an effective so-
lution for DPCs solving big-data problems that involve dynamic programming. These problems span
diverse domains, including personalized medicine, genomics, systems security, signal processing,
and artificial intelligence. As a case study, we use the state-of-the-art supercomputer Marenostrum 5
from the Barcelona Supercomputing Center (BSC).

As a result of this study, we evaluated the potential of the H100 GPU combined with the new DPXs

instructions and their suitability to aid in dynamic programming algorithms.

Keywords— Dynamic Programming, GPU, Data Processing, Performance Analysis

1 INTRODUCTION

ming (DP) algorithms has been growing exponen-

tially in recent years. Areas that make extensive
use of DP algorithms include computational biology (se-
quence alignment) [1]- [7], artificial intelligence (natural
language processing) [8], security (virus signature match-
ing, binary diffing, networks or spam filtering) [9] [10],
signal processing (speech recognition) [11], and software
development (source code diffing) [12] among others [13]-
[21].

All of these technologies that revolve around DP need
efficient ways to process the generated data which is being
massively produced, surpassing Moore’s law. The solution
that is being adopted by modern data centers is using accel-
erators (GPUs, FPGAs, ASICs) to cope with the increasing
data production rate.

There is a trend to add specialized hardware to general-
purpose devices to accelerate compute-intensive applica-
tions. For instance, the rise of artificial intelligence (AI)

DATA size of problems requiring dynamic program-
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generated such a computational need that NVIDIA intro-
duced specialized hardware for Al applications: the tensor
cores. Now, with the need that arose from the use of DP
algorithms, Nvidia introduced an extension of the GPU in-
struction set architecture (ISA) that performs basic opera-
tions of the DP algorithms: the DPX instructions.

This work presents a study of the effect that new GPU
architectures (i.e., the NVIDIA H100 GPU) have on data
processing centers (DPCs) and their ability to process big
data faster and more efficiently.

The present document is structured as follows. Firstly,
an analysis of the state of the art and the need for comput-
ing DP algorithms efficiently. Secondly, an analysis of two
DP algorithms. Thirdly, an overview of GPU programming,
the Hopper architecture, DPX and CUDA. Fourthly, an ex-
planation of the roofline models and some considerations
about performance. Fifthly, the experimental set-up and the
metrics used. Sixthly, the results obtained in the static anal-
ysis and the different benchmarks performed. Finally, the
conclusions drawn from the study and the consideration of
future lines.

2 STATE OF THE ART

Nowadays, CPUs are good for general-purpose low-latency
low-throughput computation but have proven not to scale
consistently enough to deal with massively parallel prob-
lems. That has led high-performance computing (HPC)
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data centers to rely on GPUs as accelerators for throughput-
oriented computation.

The usage of custom specialized hardware for solving
DP problems has also been considered, some examples are
GenDP [22], EXMA [23], and Genesis [24], which achieve
high efficiency at the cost of not being general purpose.
Nowadays, manufacturers are introducing specialized hard-
ware into general-purpose GPUs. Specifically, NVIDIA has
introduced the DPX instructions for the acceleration dy-
namic programming algorithms.

Due to the DPX instructions being so recent, only one
implementation uses them: CudaSW++4.0 [25], a protein
alignment program that accelerates the Smith-Waterman al-
gorithm.

3 BACKGROUND

3.1 Dynamic programming

Dynamic programming (DP) is an algorithmic optimization
technique that simplifies a complicated problem by break-
ing it down into simpler overlapped sub-problems and stor-
ing and reusing the partial results to avoid recomputation.
In this study, we analyze two DP algorithms: Needleman-
Wunsch (NW), which is used for sequence alignment, and
dynamic time warping (DTW), which is used for signal
analysis.

3.1.1 Needleman-Wunsch algorithm

Needleman-Wunsch is used to find the optimal alignment
between two sequences. It finds the minimum transforma-
tions needed to convert one sequence into the other. Con-
sider the sequences T (target), of length m, where T} is the
base j in the sequence 7. And sequence Q (query), of length
n, where (); is the base i in the sequence Q. It is possible
to store the score for each partial alignment in a matrix of
dimensions n x m.

Consider a set of penalties {C, X, I, D} that represents
the cost of a match, mismatch, insertion, and deletion
operation, respectively. We define a matrix M of size
(n+1) x (m+ 1), where M;_; represents the cell of row ¢
and column 5. Eq.1 shows the recurrences to fill the matrix
M.

JoT if i=0
i-D if j=0
M;; = Mi_y -1+ 06T, Q;)
min Mi—l,j + D Zf Z,] >0
Mi,j—l +1
(1a)
C i T, =Q;
W=y i 10 (1b)
X af T;#Q;

The first row and column do not contain information or
results, those values are used to initialize the matrix and
deal with border conditions.

To find the optimal alignment path (i.e., the minimum
number of operations that convert one sequence into the
other), we need to perform a traceback. The traceback pro-
cess traverses the matrix M starting from the bottom-right

cell (My+1,m+1) up to the top-left cell (Mo o), which re-
quires storing the whole matrix in memory. If we only want
to know the cost of aligning the sequences (without know-
ing the optimal alignment path), it is enough to just have
two rows, or two columns, residing in memory.

3.1.2 Dynamic Time Warping algorithm

Dynamic time warping is used to compare signals and de-
termine their similarity without depending on time. Again,
we define two signals T (target) of length m, and Q (query)
of length n, and define a matrix M of sizen + 1 x m + 1,
where M; ; representing the cell of row ¢ and column j. The
algorithm recurrences is shown in Equation 2.

0 if ii=0
0 if =04
P if j=0%#i
n M; 151
D(Tj, Q;) + min M ; if 4,7>0
M; i1
(2a)
D(T;, Qi) = |Tj — Qi (2b)

In Figure 1 an example of the matrix M for the DTW al-
gorithm is presented. The blue squares represent the target,
the green cells represent the query, dark grey cells are the
initial values and light grey cells are the computed values.
The arrows show the data dependencies. In this example,
the values of the orange cells are required to compute the
yellow cell, this stencil pattern is the same for all the com-
puted elements (light grey cells).

T | |1 |17 [T, T
2 3 4 5 6 7 3
O | Inf | Inf | Inf | Inf | Inf | Inf | ... | Inf
Q| 3 (Inf| 1 1 2 4 7 ||
| 4 [Inf| 3 2 1 2 4\ 7I
[ 5 | Inf| 6 4 2 1 2__‘_?'
Q. | 7 | Inf

Figure 1: DTW matrix example

In the DTW algorithm, the goal often is to know the sim-
ilarity of the signals without taking into account sample
shifts. That implies that we look for the score (or cost of
aligning), which is the minimum of the values on the last
row. With that consideration, traceback is not required, and
therefore, the partial results (besides the last row) only need
to be temporarily stored while they are required for compu-
tation.

3.2 Graphical Processing Units

GPUs are massively parallel devices with high computation
throughput and memory bandwidth, in contrast to CPUs
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which are fast sequential devices. That makes GPUs ideal
for dealing with highly parallel applications. Its maximum
potential, though, is obtained when the arithmetic inten-
sity of an algorithm (ratio between compute operations and
amount of data fetched from memory) is higher than the
machine’s balance point. That is due to the computational
throughput being much larger than the memory throughput.

In our study, we consider one CPU and one GPU. That
implies that our program’s sequential (or modestly paral-
lel) parts should run on the CPU and the parallel parts on
the GPU. Ideally, computation on both sides must be over-
lapped. Note that offloading part of the computation on the
GPU implies sending data from the CPU main memory to
the GPU memory, through a bus (usually PCle) with limited
bandwidth. That process generates a latency that should be
hidden.

Besides its many advantages, doing efficient computation
in GPUs is complex as several requirements have to be ful-
filled to leverage its full potential.

3.2.1 GPU programming model

The NVIDIA GPUs implement a single instruction multi-
ple threads (SIMT) paradigm, which extends the single in-
struction multiple data (SIMD) execution paradigm to mul-
tithreading, with multiple threads executing the same in-
struction.

GPUs contain multiple stream multiprocessors (SMs)
composed of SIMD cores. Each of those SMs schedules
and executes warps (groups of 32 threads that execute the
same instruction), which is the minimum scheduling unit.
That can generate a performance problem when different
threads on the same warp want to execute different instruc-
tions (e.g., this can happen when an if statement is present),
as threads in a warp are sequentialized. This problem is
called thread divergence.

Regarding the memory hierarchy, GPUs have several
memory levels. As usual, each level is smaller and faster
than its predecessor. We can categorize them into main
memory, L2 cache, and L1/shared cache. In the case of
main memory and L2 cache, they are shared among all the
SMs. Each SM has its own on-chip L1/shared cache. The
shared cache occupies the same physical space as L1 but is
software managed by the programmer. Additionally, each
thread has its registers.

3.2.2 The Hopper architecture

The recently introduced H100 GPU is part of the 9th gen-
eration GPU architecture, codenamed Hopper, and contains
144 SMs, has a 60 MB L2 cache, and 80 GB of main mem-
ory with up to 3 TB/s of bandwidth. Each SM contains
128 FP32 CUDA Cores, four Tensor Cores, and 256 KB of
L1/Shared memory.

3.2.3 CUDA

CUDA is the environment provided by NVIDIA that allows
programmers to use an extension of C/C++ or some other
languages to write GPU code. Through that language ex-
tension, CUDA provides abstractions for the hierarchy of
thread groups, shared memories, and barrier synchroniza-
tion.

CUDA allows the programmer to define kernels, which
are C++ functions that execute in parallel in the GPU by a
determined number of threads. When defining a kernel, two
parameters are required: the number of blocks and threads
per block. A block is a group of threads scheduled in the
same SM, and they can be grouped in a grid (collection
of blocks). Additionally, the Hopper architecture provides
thread block clusters, allowing the programmer to group
blocks so they are co-scheduled in a GPU processing clus-
ter. This hierarchy allows the programmer to control the
level of parallelism. CUDA also allows the programmer to
use synchronization primitives to control the program flow
and provides different functions so threads within a warp
can share data directly from registers.

324 DPX

DPX is an extension of the instruction set architecture
(ISA), introduced by NVIDIA to accelerate dynamic pro-
gramming algorithms on GPUs. The DPX instructions are
exposed to the programmer as low-level intrinsic functions
for version 12 of the CUDA compiling toolset. They per-
form 2-operand and 3-operand maximum and minimum op-
erations as well as addition and maximum fused into a sin-
gle instruction, in all cases, with optional clamping to zero
(relu variant). In addition, /6x2 variants of the instructions
operate in a vectorial manner, using two 16-bit packed val-
ues into a single 32-bit operand, which means that they do
the same operation in parallel. Instead of an operation us-
ing a 32-bit value two 16-bit operations are performed in a
single step. In all cases, the operands can be signed or un-
signed integers. Specific hardware support for those func-
tions is provided only for GPU architectures with a compute
capability equal to or greater than 9.0 (Hopper). If there is
no hardware support available, the compiler software emu-
lates them.

3.3 GPU Performance Engineering

3.3.1 Roofline models

Arithmetic intensity, which is the number of operations per-
formed by an algorithm per each byte it reads or writes
from memory, is an insightful metric used to explain per-
formance. The duality between the memory bandwidth of
the GPU and the arithmetic intensity of the algorithm de-
termines the theoretical performance bottleneck of our pro-
gram, which can be memory-bound (memory bandwidth
limits performance, with idle compute units since data is not
provided fast enough), compute-bound (maximum use of
computation resources is used) or latency-bound (the lack
of parallelism avoids the GPU scheduler to hide latencies of
instructions and memory requests). The best case is when
a program’s execution is compute-bound because compu-
tation throughput is not wasted. Compute-bound perfor-
mance is easier to achieve with high arithmetic intensity and
a large amount of parallelism, both at the thread level and
the instruction level. For each byte read or stored by the
program, enough operations are required to take advantage
of all the resources available at a given moment to lower the
total execution time.

Those limitations can be shown in a roofline model [31]
as the one in Figure 2, a plot showing the performance
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limitations that impose the different memory levels (anti-
diagonal lines), the maximum computational throughput
(horizontal lines), and the arithmetic intensity of the differ-
ent algorithms or implementations being analysed (which
would be vertical lines). The intersection of the band-
width (anti-diagonal lines) and the computational through-
put (horizontal lines) defines a point that if projected on the
X-axis will define two regions. The left one is the memory-
bound region, and the right one is the compute-bound re-
gion. That means that when representing the arithmetic in-
tensity it will be in one of those two regions and therefore
the problem is characterized.

In Figure 2 we can see an example of a roofline model.
As shown in the figure, the maximum arithmetical through-
put available is 5937 GigaCells per second (yellow hori-
zontal line), and the global memory bandwidth is 1631.23
GB per second (continuous blue anti-diagonal line). The in-
tersection of those lines defines de machine balance point,
where we are using the full potential of computing and
memory resources. In this case, de memory-bound re-
gion is coloured in blue while the compute-bound region
is coloured in yellow.

1054

1044

DTW max throughput: 5937 GCells/s

1034

102 4

Performance [GCells/s]

104 &

107! 10° 10! 102
Arithmetic intensity [Cells/byte]

102

Figure 2: Roofline model example

4 EXPERIMENTAL METHODOLOGY

4.1 Experimental set-up

We use a high-end computing node from the supercom-
puter Mare Nostrum 5 equipped with an Intel Xeon Plat-
inum 8460Y+ (Sapphire Rapids) processor and an Nvidia
H100 GPU (Hopper architecture). To compare with a pre-
vious GPU generation model, we additionally used a server-
grade compute node equipped with an Intel Xeon W-2155
processor (Skylake server) and an NVIDIA RTX 3080 GPU
(Ampere architecture). All the GPU applications have been
executed on both environments, and CPU applications have
been run in the Mare Nostrum 5 node.

Regarding the input datasets, we select 8 representative
datasets for our use cases (4 for the NW and 4 for the DTW).
Each dataset contains sequences of a fixed length of 100,
250, 1000, or 10000 elements. Elements are bases for NW
and positive integer values for DTW.

4.2 Metrics

The theoretical evaluation of the suitability of DPXs to
aid in dynamic programming computation is performed
through the use of roofline models. For that purpose, we
need to know (1) the memory bandwidth (both in global and
shared memory), (2) the maximum computational through-
put achieved when performing the operations in registers
(as it is the memory with the highest bandwidth and lowest
latencys; i.e., the best case possible), and (3) the arithmetic
intensity of the kernels we want to evaluate. Also, to eval-
uate the dynamic programming programs, we compare the
GPU and CPU execution time using different input datasets.
Additionally, we compare the throughput they achieved to
their theoretical maximum.

4.2.1 DPX instructions

The roofline model can use different units for the comput-
ing throughput. Traditionally, Floating Point Operations per
Second (FLOPS) are used in applications with intense float-
ing point arithmetic usage (like Al). In our case, we want to
explore how the new DPX instructions affect the compu-
tational throughput of the GPU. We chose our units to be
Tera DPX per second (TDPX/s); this way, the difference
between using a real hardware-implemented DPX with a
software-emulated one is shown. This study aims to eval-
uate DPXs and their suitability for DP algorithms. It does
not aim to select the best DPX for a specific algorithm, so
no comparisons are made between different DPXs.

To obtain the throughput we used microbenchmarking,
a technique that uses a very minimal benchmark to get in-
sightful information about a machine’s architecture. The
microbenchmark is performed with a program that mea-
sures the execution time of each specific DPX function for a
determined number of calls. To do this, we create a loop that
continuously executes a certain DPX instruction. For this
approach to work it is important to ensure that the overhead
included by the loop does not affect our measured times. In
our case, after analysing the generated assembly code, we
conclude that the overhead was approximately 9 instruc-
tions per iteration. Hence, we decided to introduce loop
unrolling with an unroll factor of 100 as higher values do
not significantly improve performance. Additionally, it is
important to work at the register level to ensure that we are
not memory-limited. We also need to verify that the com-
piler generates the necessary instructions and does not omit
them when optimizing. To know the memory bandwidth at
the different levels of the memory hierarchy, we used the
work published in [29].

4.2.2 Dynamic Programming kernels

To get the maximum arithmetical throughput of the GPU
when solving DP algorithms, we consider cells as our
smallest units. A cell is the inner part of the DP algorithm’s
loop, which involves the computation required to obtain the
result of one cell of the DP matrix. In the DP algorithms, ad-
ditional operations need to be performed besides the DPX.
Using the cells as a metric allows us to consider the theoret-
ical maximum throughput that can be achieved in each case
and simplifies the analysis of DP kernels’ performance.
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5 EXPERIMENTAL RESULTS

5.1 Static Analysis of DPX

As a first approach to the DPX instructions, a static analysis
of the code has been performed. The results can be shown
in Table 1. The first column indicates the operation that the
intrinsic function executes. The second column shows the
operands’ size (in bits). The third column indicates whether
it clamps the result to zero (relu variant) or not. The fourth,
sixth, and eighth columns show the number of SASS (GPU
machine code) instructions generated for architectures Am-
pere, which software emulates the instruction, and Hopper,
which can use the software-emulated version or the native
hardware support. It is important to mention that a reduc-
tion in the number of instructions may or may not result in
a reduction of the time needed to perform them as different
instructions may have different latencies which means they
require a different amount of time to be performed.

In Table 1 we can appreciate that the /6x2 DPXs (Which
perform 2 16-bit operations at a time) are the ones that im-
prove more in the new architecture. In the case of those
variants, if the software emulation takes place, bitwise op-
erations need to be performed. That fact results in a higher
instruction count for the emulated version. In the H100 na-
tive version, the fact that the /6x2 variants result in the same
number of instructions that their equivalent 32-bit version
leads us to think that if the size of the problem can fit in
a 16-bit representation, the computational throughput (con-
sidering alignments/second) can potentially double. Also,
that implies that the memory footprint of an alignment is
reduced.

In some cases, the number of instructions differs for
Ampere and Hopper architectures when generating emu-
lated code, this is because CUDA code is compiled in 2
steps. The first step generates PTX code which depends on
the compute capability and the second one depends on the
physical GPU microarchitecture. When the first step oc-
curs, and the emulation takes place, the code is translated
to PTX. After that, the second step translates the PTX code
to SASS, in this step the compiler may use DPXs” SASS
instructions (if the architecture can use them) if it considers
it is a better option.

Additionally, during the analysis it has been proven that
in some cases (specifically the max/min with two operators)
the compiler optimizes the code if it detects some opera-
tions can be compressed in a maximum with 3 operands.
Some of the cases convert 2 function calls to 1 SASS in-
struction, 3 function calls to 2 SASS instructions and 4
function calls to 3 SASS instructions.

It is important to mention that in the previous static
analysis using previous versions of CUDA 12, the use of
the DPX functions did not result in the generation of the
same SASS instructions. Specifically, the three-operand
SASS instructions were not used, resulting in the use of
two two-operand maximum instructions and, therefore, a
higher count. Therefore, it is highly recommended to use
CUDA version 12.3.1 or greater instead of previous ver-
sions of CUDA 12 if the hardware supports the new SASS
instructions.

5.2 Microbenchmarks

The results obtained throughout the microbenchmarks are
also presented in Table 1. It needs to be considered that
the results obtained in the H100 for the emulated version
of __vimax_s32_relu and __vimax3_s32_relu are not compa-
rable and therefore discarded, that is due to the compiler
optimizations which lead to a misleading result. In those
cases, and due to the nature of the operation (signed maxi-
mum with clamping to 0), the compiler optimized the code,
avoiding part of the computation.

A remarkable characteristic is that when considering the
native support for DPX in H100, all the DPX obtain a
throughput of around 16.4 TeraDPX/s. That fact means
that algorithms that can use 16-bit operands (and therefore
16x2 DPXs) will be able to perform alignment computation
around 2 times faster than their 32-bit equivalent, and at
between 6 to 10 times faster than software emulating their
functionality.

As an additional consideration, the relation between the
number of emulated and native instructions for the H100
coincides approximately with the throughput relation in the
cases of max/min instructions. On the other hand, for the
fused addmax/addmin instructions, the relation of the num-
ber of instructions with the throughput differs. Probably this
is due to some computation units, which are not used for the
native version, working in parallel to perform some of the
additional instructions generated in the emulated version.
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5.3 DP algorithms
5.3.1 GPU-CPU performance

This section presents a comparison between a single-
threaded CPU execution of the programs that perform the
sequence alignment (i.e., baseline) and two GPU execu-
tions of those same programs adapted to GPU. For both
algorithms, the comparison has been done using different
data sets containing sequences of length 100 (DS_100), 250
(DS_250), 1000 (DS_1K), and 10000 (DS_10K). The num-
ber of sequences contained in each input dataset has been
adjusted so that the amount of computed cells remains con-
stant for each experiment. The best results for each device
are shown in Table 2.

| Algorithm || CPU | GPU (3080) | GPU (H100) |
NW 0.2 5.7 30.6
DTW 0.1 54 29.2

Table 2: CPU-GPU THROUGHPUT (GCELLS/S) IN EACH
DEVICE FOR NW AND DTW

For both algorithms, the higher performance corresponds
to the H100 and the DS_1K. In those cases, the computation
corresponding to the alignment is mainly limited by global
memory as can be seen in Figure 3.

5.3.2 DPX impact on Dynamic Programming

Figure 3 compares the maximum throughput obtained when
performing alignments accessing only registers and a real
implementation that performs one alignment per thread on
global memory.

For reference, the maximum throughput that can be
achieved using __vimin3_s32 is 16300 GDPXs/s, as shown
in Table 1. As the algorithms (NW and DTW) perform one
min operation per cell. To serve as a baseline, we can con-
sider that a 32-bit DPX equals 1 cell to make the compar-
ison. Note that if we consider the use of 16x2 DPXs, the
equivalence would be that one /6x2 DPX equals two cells
resulting in double the computational throughput measured
in Cells/s. Therefore, theoretically, if we had implemented
the algorithms using the /6x2 variant of the DPX we could
consider the throughput would approximately double.

Figure 3 shows that both, NW and DTW, implementa-
tions are memory-bound. Operations must be performed at
the register level to exploit the full computation potential of
the H100; otherwise, memory will be the limiting perfor-
mance factor. Additionally, Figure 3 illustrates the impact
of other operations that need to be performed to compute a
cell, reducing the maximum achievable throughput.

6 CONCLUSIONS

In this study, we sought to evaluate the newly available
DPXs GPU instructions and their impact when accelerating
dynamic programming algorithms. Specifically, we mea-
sured the improvement introduced by DPXs, compared the
performance of an H100 with the use of CPUs and a GPU
of the previous architecture, and defined the potential of the
H100 for dynamic programming.

=
-- NW Arithmetic Intensity (1/18 Cells/byte)
s -- DTW Arithmetic intensity (1/24 Cells/byte)
1074 @® NW implementation (30.6 GCells/s)
@ DTW implementation (29.2 GCells/s)

10° 4
g vimin3_s32 max throughput: 16300 GCells/s
E 103 DTW max throughput; 5937 GCells/s
Q | ~
o NW max throughput: 3820 GCells/s
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Figure 3: Roofline model considering both algorithms and
the equivalence 1 DPX = 1 Cell for __vimin3_s32

In order to do so, we have presented a microbenchmark
suite for DPXs in architectures Ampere and Hopper, a dy-
namic programming GPU benchmark using DPX instruc-
tions and an experimental evaluation of programs that im-
plement NW and DTW algorithms in GPU.

As a result, we have demonstrated that the H100 has a
huge potential to aid in dynamic programming algorithms
computation when using DPXs, specifically the /6x2 vari-
ants. But to unlock their maximum potential it is required
to use a CUDA version greater or equal to 12.3, an archi-
tecture that supports DPXs (i.e. Hopper) and to compile
with a compute capability of 9.0 or greater. Nevertheless,
for that potential to be exploited, it is necessary to work at
the register level and efficiently use the read data exploiting
locality.

As future lines regarding dynamic programming, two key
obstacles should be addressed: data-sharing, due to the in-
tensive reuse of data, and irregular parallelism, as for each
time step, the size of the anti-diagonal that can be computed
grows. Both of these problems could be addressed using a
tiling strategy. A tiling strategy that divides the matrix into
long rectangular tiles would have a region with a fixed di-
agonal length; therefore, the greater the difference between
its height and width, the more stable the parallelism would
be. Moreover, considering the data dependencies, a well-
dimensioned tile would allow a higher locality. However,
squared tiles are not a good approach due to the nature of
the data dependencies. Some other approximations, such as
the one in [30], could be useful.
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