
This is the published version of the bachelor thesis:

Marcos Almansa, Arnau; Lumbreras Ruiz, Felipe, dir. Multispectral NeRF :
modeling real scenes and synthetic remote sensing imagery. 2024. (Enginyeria
Informàtica)

This version is available at https://ddd.uab.cat/record/290099

under the terms of the license

https://ddd.uab.cat/record/290099


TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

Multispectral NeRF: modeling real scenes
and synthetic remote sensing imagery

Arnau Marcos Almansa
February 8, 2024

Resum– Aquest projecte explora l’ús dels Neural Radiance Fields (NeRF) en el domini multiespec-
tral. Construı̈m un model NeRF que admet imatges amb diverses bandes a part de RGB. Utilitzem
una combinació d’imatges multiespectrals preses d’escenes reals i escenes sintètiques basades
en dades de Sentinel-2. Les imatges sintètiques proporcionen un entorn controlat per entrenar
i provar el model NeRF sense les particularitats de les imatges satèl·lit reals. El projecte també
construeix el seu propi pipeline de renderització volumètrica i implementa xarxes neuronals per a
la implementació de NeRF. Els resultats són comparables a la implementació original de NeRF.
L’extensió al cas multiespectral ha estat directa, i es pot treballar amb totes les bandes amb un error
baix. El projecte destaca el potencial que tenen aquestes tècniques en l’àmbit de la teledetecció.

Paraules clau– NeRF, imatge multispectral, imatge satelital, camps neuronals

Abstract– This project explores the use of Neural Radiance Fields (NeRF) in the multispectral
domain. We build a NeRF model that supports multi-band images other than RGB. We use a com-
bination of multispectral images taken from real scenes and synthetic scenes based on Sentinel-2
data. Synthetic imagery provides a controlled environment to train and test the NeRF model without
the particularities of real satellite imagery. The project also builds its own volumetric rendering
pipeline and implements neural networks for the NeRF implementation. The results are comparable
to the original NeRF implementation. The extension to the multispectral case has been direct, and it
is possible to work with all the bands with a low error. The project highlights the potential that these
techniques have in the remote sensing field.

Keywords– NeRF, multispectral image, satelite image, neural fields

✦

1 INTRODUCTION

GEospatial information is more relevant than ever
in today’s world. Modeling satellite and aerial
images has become an essential activity for a wide

set of applications, from predicting natural disasters to
managing natural resources. Nowadays, many techniques
exist for processing satellite and aerial images and being
able to model the captured terrain. For instance, to obtain
a Digital Surface Model (DSM) stereo products are often
made, where two images are taken simultaneously and then
processed to obtain the model.

• E-mail de contacte: arnaumarcosalmansa@gmail.com,
1354223@uab.cat

• Menció realitzada: Computació
• Treball tutoritzat per: Felipe Lumbreras Ruiz

(Dept. Ciències de la Computació)
• Curs 2023/24

Satellite images, in addition to being taken from points very
far away from the ground, are also characterized by the fact
that the satellites often carry special sensors, linear sensors
that take advantage of the movement of the satellite itself
and multispectral sensors that increase the information that
can be obtained from their images. In this project, I will
focus on this latter type of image, where multiple bands
provide extra information contained in spectral variability.
On another note, in recent years, one of the techniques
that has gained popularity when tasked with modeling a
complex 3D scene is Neural Radiance Fields (NeRF) [7].
This technique allows the synthesizing of novel views of a
scene and creates an implicit representation of said scene
from multiview images. This technique has already been
tested with satellite images, but it’s still not widespread.
Some limitations still exist because of the fact of working
with exclusively RGB images. For instance, when trying to
measure crop health or soil moisture, bands other than RGB
ones are more useful. Modeling the scene with images that

Febrer de 2024, Escola d’Enginyeria (UAB)



2 EE/UAB TFG INFORMÀTICA: Multispectral NeRF

contain more bands apart from the traditional RGB would
provide a richer comprehension of the modeled scene.
Also, the current work being done in this field focuses on
views with a high level of detail obtained from private
images, while low-resolution images have not been given
the same importance.
In this work, I will apply NeRF-type algorithms built from
scratch, applied to multispectral images and free satellite
images from Sentinel-2.

2 OBJECTIVES

The primary objective of this project is to develop a Neu-
ral Radiance Fields (NeRF) model with the capability to
learn, and model terrains based on synthetic images. The
objectives of this project encompass an exploration of the
current state of the art in NeRF models applied to satellite
images and applied to multispectral images. This explo-
ration allows me to learn about the most recent techniques
and practices in the field of NeRF.

This main objective of building a NeRF architecture for
multispectral images will be achieved via a series of sub-
objectives. A considerable part of the project is the creation
of the NeRF model. This creation is followed by valida-
tion and testing procedures using the original NeRF images.
This phase is crucial for ensuring the model works, is accu-
rate, and trains reliably. After this phase, the model must
work and give results comparable to the original NeRF.

Later, the project delves into generating and using syn-
thetic satellite and aerial images. Generating these images
is an explicit goal of the project. These images provide a
controlled environment to test the capabilities of the model.

Lastly, this project aims to expand the original NeRF
model to work with multispectral images. This gives a
richer comprehension of the modeled terrain.

3 PLANNING

From the objectives proposed in the previous section, I de-
veloped the plan for the project. The first part, and one of
the most important, of the project is the exploration of the
state of the art. This aims to provide me with a solid foun-
dation and understanding of the technology and techniques
I use in the rest of the project. Following this part, the plan
includes a phase of gathering data needed to perform the ba-
sic NeRF experiments. Then the project continues with the
largest phase, which is developing my own NeRF model.
This phase includes developing the model and also validat-
ing and testing it. Then the project continues with me gen-
erating the synthetic data needed to perform the rest of the
experiments. Finally, the project concludes with a phase
consisting of expanding the NeRF model to support images
with multiple bands. A version of this plan in a Gantt di-
agram was already handed over in a previous delivery and
can be found in the dossier.

4 METHODOLOGY

The methodology for this project is based on the Kanban
methodology. I create a list of all tasks needed for the com-

pletion of the project, store those tasks on a backlog, and
perform the tasks in the order they are on the list.

I use Git through GitHub to have versioning of the code
I develop. GitHub also allows me to work in parallel on
different tasks when needed and enables me to work from
different computers, e.g. from my given PC at CVC and
from home. The Git repository is public 1 and is the dossier
of this project.

Every week, from Monday to Thursday, I have a small
meeting with my tutor to revise the progress of the project,
solve doubts, and ask for help.

5 STATE OF THE ART

As I mentioned in the introduction, this work expands the
Neural Radiance Fields techniques to new modalities of im-
ages. First I begin with an overview of the original NeRF
model: how it’s structured, how it works, and some of its
optimizations. Then I explain some applications of NeRF in
two categories, the first one being NeRF applied to satellite
imagery, and the second being NeRF applied to multispec-
tral images.

5.1 NeRF
In recent years, a technique that has gained popularity to
solve the problem of novel view synthesis of a scene is
Neural Radiance Fields (NeRF). This technique consists
of training a multilayered perceptron (MLP) from different
images of the scene taken from known poses. From these
different views, the MLP is capable of constructing an im-
plicit 3D representation of the scene, and then we are able
to query for the color in each point of the representation.

To achieve this, NeRF casts a ray for each pixel on the
image. This ray has two near and far bounds, which define
the distance at which the ray starts to cast and the distance at
which the ray stops. This ray is sampled at different points
along its length. To choose the sample points, it splits the
ray into segments and chooses a random sampling point on
each segment. That is to avoid overfitting the neural net-
work to specific sampling points.

Each of these sample points is then passed to a multilay-
ered perceptron (MLP) along with the view direction of the
ray to which the point belongs. The inputs of the model
end up being (x, y, z, d1, d2, d3) where x, y, z represent the
3D point we want to query and d1, d2, d3 represent the view
direction. In Fig. 1 a simple representation of this can be
seen.

These inputs are then passed via a positional encoder,
which encodes them using sin and cos functions as in Eq.
(1). Both sample position and view direction are encoded
separately, the position with an L = 10 and the view direc-
tion with an L = 4. The reason for encoding both is that
neural networks tend to be biased via low frequencies, and
these encodings can help the network learn high-frequency
details.

p(x) = (sin(20πx), cos(20πx) . . . sin(2Lπx), cos(2Lπx)) (1)

Once the inputs have been encoded, they are passed to
the rest of the network to produce the output. This output,

1https://github.com/ArnauMarcosAlmansa/TFG



ARNAU MARCOS ALMANSA: Multispectral NeRF 3

Fig. 1: Scheme of how the volume is sampled. For each
pixel in the images, a ray is cast. For each ray, N sample
points are selected that are passed to the MLP, producing the
density and color of the point. (source: NeRF: Representing
Scenes as Neural Radiance Fields for View Synthesis).

for each sampling point i of the ray, consists of an RGB
color ci and a density σi. These outputs are then integrated
for each ray to obtain the final color of the pixel. The in-
tegration consists of the formulas on Eq.(2). This formula
refers to the obtaining of the final color, Î on the formula.
The next formula, on Eq. (3), dictates how to compute the
weight (aka importance) of the sampled point, that is, how
much impact the sample has on the final output. The sec-
ond formula allows computing the transmittance Ti of each
sample, that is, the probability a ray of light coming from
the sampling point would reach the camera without collid-
ing first with another object and thus not reaching the cam-
era. Finally, to obtain αi, which is used to compute both the
weight and the transmittance, it follows the last formula of
(3), where σ is the density and di is the distance between
sampling points.

Î =

Ns∑
i=1

wici, (2)

where:

wi = Tiαi, Ti =

i−1∏
j=0

(1− αi), αi = 1− e−σidi . (3)

5.2 NeRF applied to satellite images

NeRF techniques that began by being used on interior
scenes or individual objects have been extended to a variety
of situations, videos [9], outside scenes [6], a few training
images [10], etc. In this work, I focus on satellite and mul-
tispectral images, where NeRF has begun generating good
results.

Here I cite the main papers I have consulted and have
served as inspiration for our specific implementation.

S-NeRF Shadow Neural Radiance Fields or S-NeRF [1]
is an improvement over NeRF specifically designed to work
on satellite images. What this model does is add another in-
put that signifies the direction of the sun, and also adds two
outputs that predict the RGB color of the sky based on the
sun’s direction and a weight that indicates the visibility of
the sun at each sampling point. Thanks to these improve-
ments, it is capable of more accurately predicting the albedo
of the scene apart from the shadows cast by the sun and the
ambient light.

Sat-NeRF Satellite Neural Radiance Field or Sat-NeRF
[4] improves on previous attempts in two ways. First, it
replaces the original pinhole camera model used by NeRF
with a more sophisticated Rational Polynomial Camera
(RPC) model, which more realistically represents a real
satellite camera. Second, it adds extra inputs and an output
to the network that indicates the probability that a sample
point on the scene belongs to a transient object. This is be-
cause real satellite images often contain transient objects,
such as cars or people, that appear or do not on different
images. It borrows the latter improvement, to the transient
objects, from NeRF in the Wild [6]. The extra inputs con-
sist of a vector extracted from an embedding with a vector
for each training image. This helps the network learn the
changes in appearance that the scene displays for each dif-
ferent image. In the case of Sat-NeRF, these changes in
appearance are caused by the transient objects.

EO-NeRF Earth Observation NeRF (Eo-NeRF) [5] is the
most recent model. It integrates some of the steps that had
to be performed on the images before using them to train
inside the MLP, like correcting the camera model. But the
biggest improvement that the system incorporates is that it
is capable of generating the shadows from the geometry of
the scene, instead of predicting them from the inputs of the
network. It achieves this by casting rays from the points of
the surface of the scene that is being rendered towards the
sun. For each sun ray cast, it computes the transmittance of
the surface point to the sun and multiplies it by the color of
the surface point. That means that, if a surface point has a
transmittance of 0 the sunlight does not reach it, and thus it
is completely in the shadow.

5.3 Nerf applied to multispectral images
Originally, NeRF only works with RGB images, but it is
interesting to add more spectrums to the images to gain a
more complete understanding of the scene or of the total
spectrum the camera is capable of capturing.

X-NeRF Cross-Spectral Neural Radiance Fields (X-
NeRF) [8] is a system that manages to model a scene from
images taken in various spectral bands. The biggest chal-
lenge this model had to overcome is that the various spec-
trums are not recorded using the same camera, but from dif-
ferent cameras attached to the same rig. Each camera has
its own resolution and parameters. This makes it hard to
robustly estimate the relative camera poses between the dif-
ferent spectrums and thus difficults the task of reconstruct-
ing the scene. COLMAP can only be used to estimate the
relative positions of the same camera in different moments,
but not the relative positions of cameras in different spec-
trums [8]. The solution they propose makes the neural net-
work learn and estimate the relative poses of the cameras
mounted on the rig.

Spec-NeRF Multi-spectral Neural Radiance Fields
(Spec-NeRF) [3] is another model that allows working
with different spectrums. In this case, instead of taking
the images with different cameras, the images are taken
with the same camera applying different filters to the lens.
The camera poses can then be estimated using a single



4 EE/UAB TFG INFORMÀTICA: Multispectral NeRF

spectrum. This model not only learns the resulting RGB
color directly, but it also learns a representation of the
whole spectrum the camera is capable of capturing and
uses that information to be able to reconstruct the final
RGB values.

6 DEVELOPMENT

In this section, I talk about the entire development of the
project. The work done in this project consists of gathering
the data needed to train and test the NeRF model, develop-
ing the NeRF model, training and testing it, generating the
synthetic data for the experiments, and developing, training,
and testing the expanded model that supports extra spec-
trums on the images.

6.1 Tools used
Here is a recollection of the tools I have used during this
project. These have been essential and have helped me de-
velop the entire project.

Python The main programming language I have used is
Python. This is because it is a very commonly used lan-
guage in machine learning, thanks to the availability of li-
braries like TensorFlow or PyTorch.

PyTorch This is the library I have used for creating the
neural networks. The reason for using this library instead
of Tensorflow is because it is the most popular alternative
in the scientific community.

PyRender This library has allowed me to render the data
created from the scenes I have built. It offers a complete
Physical-Based Rendering (PBR) pipeline that allows ren-
dering realistic scenes.

PyCharm The main IDE I have used for developing this
project. As with all other IDEs, it allows me to view and
edit the code and also comes with an integrated debugger,
which has proved very useful during the development of the
project.

Git and GitHub For version control, I have used Git and
GitHub. This has allowed me to keep the code in sync while
working from different PCs and to keep track of the changes
I have made to the code.

LATEX and Overleaf Lastly, I have used LATEX and Over-
leaf to document the project and write the project monitor-
ing reports and this final report.

6.2 Data gathering
The data I have gathered consists essentially of two sources:

• The original NeRF dataset.

• BigEarthNet Extended with Geographical and Envi-
ronmental Data (BEN-GE).

Height and Resolution
Band Description width (px) (m/px) λ (nm)

B01 Ultra Blue 20 60 443
B02 Blue 120 10 490
B03 Green 120 10 560
B04 Red 120 10 665
B05 Vis&NIR 60 20 705
B06 Vis&NIR 60 20 740
B07 Vis&NIR 60 20 783
B08 Vis&NIR 120 10 842
B8A Vis&NIR 60 20 865
B09 SWIR 20 60 940
B11 SWIR 60 20 1610
B12 SWIR 60 20 2190

Table 1: Description of the Sentinel-2 image bands

The original NeRF dataset can be found on this
repository2. I specifically have downloaded the
nerf synthetic data. As for BEN-GE, I have
downloaded the Sentiel-2 patches that come with 12 bands
of different resolutions. I have also downloaded the Digital
Elevation Model (DEM) files that I will use as height maps
when generating the synthetic scenes. I have downloaded
the patches from the official website3. The DEM files come
from this site4.

As I have said, the downloaded Sentinel-2 patches consist
of 12 images, one for each band. Each patch represents an
area of 1.2 km². The color bands are bands B02, B03, and
B04 (B, G and R respectively). Each of these three with a
resolution of 10 m for each pixel. All bands, including B02,
B03, and B04, are as specified in [2] and are described in
Table 1.

The size of the DEM is also 120× 120 px, with a resolu-
tion of 10 m per pixel.

6.3 Synthetic data generation
Most of the data I have used to train the models is synthetic.
To generate the images, I have chosen a patch from BEN-
GE to work with. To render the images, I have used the
PyRender Python library. The images are rendered at a res-
olution of 800 × 800 pixels.

Obtaining the mesh To obtain the mesh, as in the geome-
try of the terrain, I have used the DEM as a height map. The
DEM is quantized at a very high level, with gaps between
neighboring pixels of 7 or 8. Because of that, to avoid very
visible jumps in height when rendering, the DEM (Fig. 2)
has to be preprocessed.

Originally, I upscaled the DEM to a size of 960×960 pix-
els, which is 8 times the original, and then applied a Gaus-
sian blur with a kernel of 17×17 to smooth out the upscaled
DEM. This reduced a little the visible jumps in height but
did not reduce them greatly.

Later in the project, I changed the strategy to one that
consists of progressively scaling the DEM and adding ran-
dom noise. A more detailed explanation can be found in the

2https://drive.google.com/drive/folders/
128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1

3https://bigearth.net/
4https://zenodo.org/records/8129350

https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1
https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1
https://bigearth.net/
https://zenodo.org/records/8129350


ARNAU MARCOS ALMANSA: Multispectral NeRF 5

(a) (b) (c)

Fig. 2: (a): the original DEM obtained from the BEN-
GE dataset, (b): a detail from the original DEM where the
quantization can be appreciated in the jumps in values be-
tween some neighboring pixels, (c): a detail from the post-
processed DEM, where the jumps between neighboring pix-
els can no longer be appreciated.

appendix. The result can be seen in Fig. 2(c). Once the
DEM has been preprocessed, the program generates a set
of 3D points, one for each pixel of the DEM. The x and y
coordinates are based on the coordinates of the pixel on the
DEM, they are normalized in the range -0.5 to 0.5. The z
coordinate is based on the value of the pixel. After this, the
program generates the triangles for the points and obtains
the mesh that I will then texture and render. To do this, it
iterates over the points in two passes: the first pass iterates
over the points’ rows and columns from the first one to the
penultimate one, and builds the triangle using its x+ 1 and
y+1 neighbors. then the second pass iterates over the rows
and columns from the second to the last, and for each point
generates the triangle using its x − 1 and y − 1 neighbors.
This can be seen in Fig. 3. To generate the UVs, when gen-
erating the vertices, for each triangle vertex, it assigns a UV
coordinate of the x coordinate divided by the width and the
y coordinate divided by the height of the DEM.

Fig. 3: The two passes the program makes to generate the
triangles of a square. The numbers on the vertices indicate
the order in which the point is considered for the triangle.

RGB texture To obtain an RGB texture, I fuse the three
color bands (B02, B03, and B04, see Table 1) to generate
the RGB texture in Fig. 4(a). I then apply the texture to
color it. Once applied, I render the mesh and get the RGB
images.

The result of the process is Fig. 4(b), where we can see
the mesh generated from the DEM with the texture applied.

12 band texture To obtain the data for the experiments
with more than the RGB bands, I change the strategy. In-
stead of combining the bands in RGB, I render the bands
individually. I do this by triplicating each band, generat-
ing an RGB texture for each band where R, G, and B are
the same, thus generating a grayscale texture. I then render

(a) (b)

Fig. 4: (a): color patch image obtained by combining the
B02 Blue, B03 Red and B04 Green bands from a Sentinel-2
patch. (b): generated 3D mesh resulting from combining
the DEM and the RGB bands.

the scene 12 times for each viewing position, one render for
each band, and store the resulting images as grayscale. Be-
ware that this is only to generate the data that will be used in
the experiments, and is not how the NeRF model operates.

Positioning the camera The camera is positioned at d
units of distance from the xy plane, along the z axis. I
have tested various distances and the best results are ob-
tained with the camera closer to the scene. Using greater
distances yields bad results when later training the model.
To obtain different views of the scene, the camera is moved
randomly across x and y, and then pointing the camera at
the origin of the world. An example of an image taken can
be seen in Fig. 5.

Fig. 5: Image rendered from the generated 3D mesh.

Generating shadows and specularities Later in the
project, I added shadows to the scene in order to test how the
model tries to fit a more complex lighting model. To achieve
this, I have used PyRender’s built-in shadow system, which
automatically renders shadows on a scene by configuring
the proper flags on the renderer. I use a directional light to
simulate the sun. Some images are taken with the sun in a
zenithal position, thus casting no shadows. Later, I would
move the sun to an angle of 45 degrees along the y-axis to
cast more pronounced shadows. I have also added cubes
texturized with a pattern texture and with different metallic
and rough factors to obtain objects with specular reflections
on the scene. An image of the scene containing both shad-
ows and cubes can be seen in Fig. 6.



6 EE/UAB TFG INFORMÀTICA: Multispectral NeRF

Fig. 6: Synthetic image of band B02 with shadows and
cubes for specular reflections.

6.4 Real data generation

We have generated multispectral images from a real scene.
For that, we placed a camera with a tripod and a wheel of
filters in front of the lens. We took images with 8 different
filters and 1 image with no filter. More of this data can be
seen in Fig. 20 and Fig. 21 in the appendix. To obtain the
camera poses, we reconstructed an RGB image from the
bands and applied a sparse reconstruction using COLMAP.

6.5 Own NeRF model

To begin the work, I have developed my own NeRF model.
I have done this to learn in-depth about this technology and
to familiarize myself with the techniques that I have had to
use in the rest of this project, like volume rendering and the
peculiarities of how these kinds of models are trained.

Volume rendering I have created a volume rendering
pipeline to be able to train the model. This pipeline consists
of a camera that casts rays for each pixel of the viewport,
taking into account the camera parameters both internal,
like the focal, and external, like the camera pose. For each
ray, the system selects N points to sample. The sampling
point selection strategy is the same as the original NeRF,
with random samples inside segments to avoid overfitting
the MLP to concrete sample points.

Once the sample points are selected, they are passed onto
a sampler (the MLP) which is a function that receives the
sample point and the view direction and emits an RGB color
and a density. These values are then integrated for each ray,
following the formulas in Eq. (2) and Eq. (3).

This volume rendering technique is implemented entirely
using PyTorch’s tensors and operations.

Positional encoding I have also implemented the posi-
tional encoding according to Eq. (1), which decomposes
each number in sines and cosines of frequencies of pow-
ers of 2 of the value. Originally, this was done by di-
rectly computing every value 2n · π · x for each n where
0 ≤ n < L, then computing the sine and cosine for each
value. This proved to be very slow and caused performance
problems for the training and testing code. Later I tried
to enhance the implementation by taking advantage of the
sin and cos functions for the double of an angle. This

proved to be faster, but not as fast as the original imple-
mentation. Finally, I replaced this implementation with the
original NeRF paper’s implementation, and that fixed the
performance problems.

Model architecture The model architecture is effectively
the same as the original NeRF. The network consists of
3 blocks and two positional encoders. The positional en-
coders encode the sample point and view direction using
L = 10 and L = 4 respectively. Then the encoded posi-
tion is passed as input to the first block. The first block is
composed of 5 linear layers of width w, all layers with an
activation on ReLU. The second block accepts the output of
the first block plus the original encoded position again, fol-
lowing the skip connection pattern. This block is composed
of 4 linear layers of width w, the last one being w + 1. The
first two with ReLU activation and the latter two without
activation between them. From the latter layer, we get the
density output and we forward the rest of the block output to
the third block. The third block receives the output from the
second block plus the encoded view direction. This block
consists of a w/2 width layer and a 3-width layer. The first
layer has a ReLU activation and the last layer has no activa-
tion. From this last layer, we get the raw RGB output. This
output needs to be post-processed before being used to ren-
der the final image. An overview of the network can be seen
in 7. One important thing to note is that, except when stated
the opposite, the width w of the network I have normally
used is 256.

Fig. 7: The original network architecture of the NeRF
model. The orange arrow indicates no activation.

6.6 Training with original NeRF images
I have trained and tested the model with the original NeRF
images to see if my model worked. I have created a Nerf-
Dataset class in Python that is capable of loading the origi-
nal NeRF Blender dataset. I have trained the original model
with this dataset and obtained good results. The training
takes 1 day on an RTX 4080, about 150.000 mini-batches
go through the network. I will discuss the results in more
depth in the results section of this document.

6.7 Training with own synthetic images
The image datasets I created consist of 20 training images,
20 validation images, and another 20 testing images. These
images have been generated from the DEM and the differ-
ent bands of the Sentinel-2 patch, as explained in section
6.3. For each image, I know the pose of the camera and
its parameters. Thanks to knowing this information, when
the images are loaded, some processing is done to obtain,



ARNAU MARCOS ALMANSA: Multispectral NeRF 7

for each pixel, the origin and direction of the ray that gen-
erates the pixel. Taking into account this, each entry in the
dataset consists of the final color of the pixel, the origin of
the camera, and the direction of the ray.

To train, I used a batch size of 4096 to avoid exceeding
the 16 GB memory limit of the graphics card I trained this
model on. I use the RAdam optimizer with a learning rate
of 0.0005 and betas of 0.9 and 0.999. I also use 128 sam-
ple points for each ray. The loss that the training tries to
minimize is a simple MSE loss.

Different camera distances I have done experiments,
trying out putting the camera at different distances from the
scene. This is to check if the distance affects the results of
the NeRF. For this, I have generated 7 different datasets that
place the camera at 5, 10, 20, 40, 80, 160, and 320 units of
distance from the scene, where a unit in this case represents
the length of a side of the original DEM, representing 1200
m of distance. A vital part of these experiments is to place
the near and far bounds of the rays correctly. If set incor-
rectly, this can negatively affect the results. For instance, if
the near and far bounds are set both too near or too far, the
bounds might miss the scene completely, making the model
learn an incorrect representation. Or, if the near and far
bounds are set too far from each other, most of the sampling
points might end up outside the volume, making most of the
sample points useless.

Another part I took into account is the view angle from
the camera to the z axis. If I had just put the camera further
without adjusting the view angle, as the cameras were fur-
ther, the disparity between images would have been lower,
thus presumably yielding worse results when training and
testing the NeRF model. To avoid this, I have made sure
that how far the camera moves along the x and y axis is
proportional to how far the camera is along the z axis. The
rule I have followed is that for each distance the camera is
afar along the z axis, the camera can move along x and y
20% of that distance. This gives a maximum view angle to
the z axis of 8.13 degrees at all distances or 16.26 degrees
between images in opposing corners. A greater angle would
risk that some images capture the white background outside
the mesh. It’s important to clarify that the camera moves
along the x and y axis independently, inside the area of a
square. This makes it so that the disparity for all distances
can be the same. Additionally to all this, the camera is al-
ways pointed to the origin of the scene. A schema exempli-
fying how this is done can be found in Fig. 8. The results
of these experiments will be shown in the results section.

6.8 Multispectral model
Once the regular NeRF model was working. I expanded it
so it could work with more bands than the traditional RGB.
The first thing I did was to develop a proof of concept and
test it. Later, once the model proved to work, I built the
complete model.

Model expansion The main changes to the model consist
of adapting the volume rendering pipeline so it is capable
of rendering an arbitrary amount of bands and changing the
network output to more than 3 channels, as can be seen in
Fig. 9.

Fig. 8: A schema of how the camera is positioned at any
distance from the origin along the z axis. The size of the
square that represents the area the camera can move in is
20% of distance D, the distance from the camera to the xy
plane at the origin.

Fig. 9: Network architecture for the expanded model. Note
that the only difference is the output of the color on the last
layer. This architecture can output N different components
for the color.

Data for proof of concept To test the model, as a proof of
concept I worked with the original NeRF’s blender dataset.
To have more than 3 channels I generated 4 channels from
the RGB as in Eq. (4).

C1 = R, C2 =
1

2
R+

1

2
G,

C3 =
1

2
B +

1

2
G, C4 = B. (4)

To test the proof of concept, I downscaled the images to
80× 80 to speed up the training.

Fig. 10: Original image downscaled to 80×80, and the four
generated channels C1, C2, C3 y C4.

Data for the complete model For the complete model, I
used my own synthetic and real multispectral data, which I
generated as I explained in the 6.3 subsection.

7 RESULTS

Here I explain the results I have obtained for the different
experiments I have made. First, I will explain the results



8 EE/UAB TFG INFORMÀTICA: Multispectral NeRF

I have obtained when trying the model with the original
Blender NeRF dataset. Then the experiments from differ-
ent distances using our own RGB images, and finally the
rest of the experiments I have done with the multispectral
model.

7.1 NeRF with blender dataset
I have trained the model using the Ficus and Lego image
collections from the original NeRF dataset.

(a) (b)

Fig. 11: (a): Ficus from the blender dataset rendered using
the NeRF model, (b): Lego excavator from the same dataset
renderer using the NeRF model.

For the Ficus dataset, the validation MSE is 0.0029 and
the PSNR is 25.38 dB. As for the Lego dataset, the valida-
tion MSE is 0.0018 and the PSNR is 27.45 dB. Rendered
images for both these experiments can be seen in Fig. 11.

These results are close to the original NeRF results. The
training took about 1 day, but I consider that more training
time could improve the model’s results.

From a trained MLP it is possible to obtain depth maps
using the Eq. (5). This formula obtains the depth of the
scene as viewed from the camera, where Ti is the transmit-
tance at a sample point i, αi is the transparency and ti is the
distance between the point and the origin of the camera. An
example of depth can be seen in Fig. 12.

d(r) =

N∑
i=1

Tiαiti. (5)

Fig. 12: Depth map extracted from the trained NeRF model.

7.2 NeRF with own synthetic data
I have trained the model using RGB images of the scene
from different distances. For each distance, I have trained

the model 3 times. The results are displayed in Table 2.

D Near-Far MSE Depth MSE

5 1-6 0.000013 ± 3.5·10−7 0.000252 ± 2.6·10−4

10 5-11 0.000018 ± 9.6·10−7 0.000083 ± 3.0·10−5

20 15-21 0.000018 ± 6.8·10−7 0.000113 ± 6.4·10−5

40 35-41 0.000020 ± 4.1·10−7 0.000116 ± 6.0·10−5

80 75-82 0.000023 ± 3.7·10−6 0.002301 ± 1.4·10−3

160 155-165 0.000030 ± 1.2·10−6 0.060041 ± 6.2·10−2

Table 2: Results for different distances (D). The MSE and
Depth MSE represent the average and the standard devia-
tion of 3 experiments for each distance.

The plot in Fig.13 shows the tendencies of both MSE and
depth MSE in a more clear way. The conclusion we can
take from it is that decreasing the distance yields better re-
sults, and increasing the distance of the camera to the scene
yields worse results. The results for the 320 distance are sig-
nificantly worse than the others, so they have been omitted
from the plots. These results are surprising to me because
I think I have set the right conditions so that this doesn’t
happen. The near and far are properly set and, when mov-
ing the camera further away, the view angles are kept the
same so that when viewed from any distance the disparity
between images can be the same. With this configuration,
the only possible explanation for these results is that the dis-
tance from the object is the cause of the degradation of the
results, especially when computing the depth.

Fig. 13: The MSE and Depth MSE against the distance a
which the images were taken.

7.3 Multispectral NeRF (MSNeRF)
This work featured in this section is focused on using NeRF
with multispectral images. This is training and testing the
model with images with more than the 3 RGB bands. First
I will explain the results of a proof of concept model I de-
veloped, and then I will explain the results of training with
synthetic data and real data.

7.3.1 MSNeRF proof of concept

I have trained a version of the model that supports 4 chan-
nels instead of 3 RGB. The test training and test images
were based on the Ship images from the original Blender
NeRF dataset. These images have been downscaled to 80
× 80, which is a very low resolution so that the training



ARNAU MARCOS ALMANSA: Multispectral NeRF 9

Fig. 14: Comparison of the original bands (TOP) against
the reconstructed bands (BOTTOM).

would be fast. The resulting MSE of the test images against
the predicted images is 0.0031, and the PSNR is 25.09 dB.
A visual example of the results can be seen in Fig. 14. This
has proved that a NeRF model with more than 3 channels is
possible to make, even though it is just s proof of concept.

7.3.2 MSNeRF real scene

As another experiment, I have trained the NeRF model us-
ing the real multispectral images we captured. For this ex-
periment, I selected 57 images for the training dataset and
2 for the test dataset. The results aren’t as good as with
the satellite images. When reconstructing the images, the
resulting image is blurrier than the original, as can be seen
in Fig. 15. The resulting test MSE for this experiment is
0.0325. I think this happens because real data is not as per-
fect as synthetic data, it contains noises and defects, and
my NeRF model or the dataloaders or the renderer might
not be completely prepared to deal with this data. Nonethe-
less, the results are acceptable and the different parts of the
scene can be recognized in the reconstructions.

(a) (b)

Fig. 15: (a): original image of the real scenario, composite
of the 3 first bands. (b): detail of the reconstruction of the
image using NeRF, also a composite of the 3 bands, it’s
possible to see the defects of the reconstruction.

7.3.3 MSNeRF synthetic and satellite

I have experimented with this model to determine the net-
work’s necessary width to represent the scene. The width of
the network refers to the amount of neurons each layer has,
except for the last layer, which has half the width. For the
base architecture, this width is 256. I have done these ex-
periments because the complexity of the model determines
how complex the scene can be. The results can be seen in 3.
The table, apart from containing the MSE and depth MSE,
also contains the reconstruction time for one image on a
GTX Titan X. It can be seen that the thinner the network,
the faster it reconstructs images.

Reconstruction time
Width MSE Depth MSE per image

16 0.000501 0.004041 4.2 s
32 0.000190 0.000240 5.6 s
64 0.000086 0.000302 8.0s
128 0.000031 0.000048 10.8 s
256 0.000017 0.000086 22.0 s
512 0.000016 0.000019 62.7 s

1024 0.000017 0.000018 250.2 s

Table 3: Results for the multispectral NeRF depending on
the width of the network.

In the plot Fig. 16 I show the tendencies of both MSEs
when the width changes.

Fig. 16: The MSE and Depth MSE against the width of the
network.

From the plot, we can understand that when the network
is sufficiently wide, it can accurately model the terrain. But
when it is too thin, it cannot model correctly the scene,
which we can see as a higher MSE and depth MSE. In Fig.
17(a), we can see the depth perceived by a 256-width net-
work. It’s visually similar to part of the original DEM in
Fig. 2. But if the network is too thin, it doesn’t learn the
depth properly, as in Fig. 17(b), which doesn’t resemble the
original DEM in any way.

(a) (b)

Fig. 17: (a): depth prediction using a 256-width network
resembling the original DEM, (b): depth prediction using
a 16-width network, which doesn’t resemble the original
DEM.

I have also experimented with a shorter network, which
is based on the original network with layers 2, 3, and 7 re-
moved for a more compact architecture while keeping the
width of 256. The model gives an MSE of 0.000044 and
a depth MSE of 0.000238, and needs 15.8 seconds to re-
construct an image. These results are close to the original



10 EE/UAB TFG INFORMÀTICA: Multispectral NeRF

net, proving that the net can be optimized in size without
affecting much of the results.

7.3.4 Experiments with more complex lighting

For the last experiments, I have used the multispectral
dataset generated with shadows and cubes.

Shadows Cubes MSE Depth MSE

No No 0.000010 0.000023
Yes No 0.000135 0.000083
No Yes 0.000109 0.000042
Yes Yes 0.000385 0.000246

Table 4: Results for the multispectral NeRF depending on
whether shadows and cubes are present or not.

From Table 4 it can be understood that both shadows and
the presence of cubes that generate specular reflections neg-
atively affect the performance of the model. It appears as if
the shadows affect more negatively than the cubes, but it’s
not entirely clear. Also, it seems that combining both yields
even worse results. Even when giving the worst results,
when qualitatively comparing the original images with the
reconstructed images, no apparent differences can be seen.
An example of this is in Fig. 18 in the appendix.

8 CONCLUSIONS

With the current work, I have achieved to develop a NeRF
model that gives similar results to the original NeRF. I have
also adapted this model to work with multispectral images,
which was one of our main objectives. This shows how
NeRF is promising when trying to model scenes from satel-
lite or aerial images with more bands than RGB.

The main challenges I have faced come from the com-
plexity of these types of models, the amount of parameters
they have, and the sensitivity of the results to the parame-
ters. I have had to learn a lot about NeRF before achieving
the first working version of the model. The adaptation of the
model to work on multispectral images was also an interest-
ing challenge. On the one hand, having had to generate the
necessary synthetic data, and on the other hand, having built
a multispectral dataset from a real scene. Finally, modifying
the network and the renderer to support multiple bands.

The specific conclusions of the experiments give us that it
is important to adjust the near and far bounds to the size
of the scene. The camera distances should not be too far
away from the scene, no more than 80 times the scene size.
This implies that it will adapt better to aerial than satellite
images. As expected, working with real data gives worse
results than synthesized data, although they are still accept-
able. We could improve the reconstruction time by reducing
the network (width and depth) while obtaining good results.
Finally, introducing light conditions, shadows, and specular
behavior reduces the performance.

In the future, I consider that it would be interesting to try
and use a model close to EO-NeRF with the synthetic data.
This would approach the work done to the latest techniques
in the field. I also consider that it would be interesting to
leave NeRF behind and try to explore the world of multi-
spectral Gaussian Splatting.

ACKNOWLEDGMENTS

Thanks to the CVC for providing me with the resources to
make this work possible, and especially thanks to Felipe
Lumbreras Ruiz for being my tutor and mentoring and guid-
ing me through this project.

REFERENCES

[1] Dawa Derksen and Dario Izzo. Shadow neural radi-
ance fields for multi-view satellite photogrammetry.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 1152–
1161, 2021.

[2] GISGeography. Sentinel 2 bands and combinations,
2023. Last accessed on January 12, 2023.

[3] Jiabao Li, Yuqi Li, Ciliang Sun, Chong Wang, and Jin-
hui Xiang. Spec-nerf: Multi-spectral neural radiance
fields. arXiv preprint arXiv:2310.12987, 2023.

[4] Roger Marı́, Gabriele Facciolo, and Thibaud Ehret.
Sat-nerf: Learning multi-view satellite photogramme-
try with transient objects and shadow modeling using
rpc cameras. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 1311–1321, 2022.

[5] Roger Marı́, Gabriele Facciolo, and Thibaud Ehret.
Multi-date earth observation nerf: The detail is in the
shadows. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 2034–2044, 2023.

[6] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM
Sajjadi, Jonathan T Barron, Alexey Dosovitskiy, and
Daniel Duckworth. Nerf in the wild: Neural radiance
fields for unconstrained photo collections. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7210–7219, 2021.

[7] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields
for view synthesis. Communications of the ACM,
65(1):99–106, 2021.

[8] Matteo Poggi, Pierluigi Zama Ramirez, Fabio Tosi,
Samuele Salti, Stefano Mattoccia, and Luigi Di Ste-
fano. Cross-spectral neural radiance fields. In 2022
International Conference on 3D Vision (3DV), pages
606–616. IEEE, 2022.

[9] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and
Changil Kim. Space-time neural irradiance fields
for free-viewpoint video. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 9421–9431, 2021.

[10] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo
Kanazawa. pixelnerf: Neural radiance fields from one
or few images. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 4578–4587, 2021.



ARNAU MARCOS ALMANSA: Multispectral NeRF 11

APPENDIX

A.1 Strategy for preprocessing the DEM
This is the process I have followed to reduce the quantization of the DEM. The strategy consists of applying uniform
noise from -1 to 1, then upscaling the original DEM ×2. Then applying noise from -0.25 to 0.25 and upscaling again.
Then applying noise from -0.0625 to 0.0625 and upscaling again. With this process, the visible jumps are not completely
eliminated but are greatly reduced.

A.2 Some visual results for an experiment with shadows and cubes

B01o B02o B03o B04o B05o B06o

B01r B02r B03r B04r B05r B06r

B07o B08o B8Ao B09o B11o B12o

B07r B08r B8Ar B09r B11r B12r

Fig. 18: In the upper part bands B01 to B06, BXXo means original band, while BXXr means reconstructed band. Bands
B07 to B12 in the lower part.

There are hardly any differences between the reconstructed bands and the original ones, as shown by the low recon-
struction error shown in Table 4.



12 EE/UAB TFG INFORMÀTICA: Multispectral NeRF

A.3 Observation about ship depth estimation
In the experiment for the proof of concept multispectral model, an interesting thing can be observed. Even though the
images are of a resolution of only 80 × 80, the model is capable of estimating depth, as can be seen in Fig. 19.

Fig. 19: The depth map of the ship model at 80 × 80.

A.4 Mutispectral NeRF with real data
In this part, we will show in more detail the data captured and used in this experiment. We have acquired a static scene
at the basement of the CVC. The scene consists of a set of figures and fruits with a MacBeth Colorchecker on top of a
table. The images are taken from around this scene from 10 different angles, 5 different heights, and 9 bands, in total
50 multispectral images. Then an extra set of nine different multispectral images. Total 59 images. The multispectral
information has been acquired with a 5MP mono camera (Basler ace acA2500-14gm) and a wheel of filters. These filters
are from MidOpt (https://midopt.com/ (BP324-27 (UV), BP470-27 (blue), BP505-27 (cyan), BP525-27 (light
green), BP590-27 (orange), BP635-27 (light red), BP850-27 (NIR), BP550-27 (visible)))

no-filter 324 nm (UV) 470 (blue)

505 nm 525 nm 590 nm

635 nm (dark red) 850 nm (NIR) visible band

RGB

Fig. 20: On the left, a set of images captured for the second camera height. The first one is a no-filter image that corre-
sponds to the panchromatic image, seven images are acquired in different bands pass filters (bp) with central wavelength
in the figures. The last image corresponds to a wide bandpass related to the visible spectrum. At the right part RGB
composite image form bands: blue 470 nm, light green 525 nm, light red 635 nm.

We can see the preliminary results of Gaussian Splatting in Fig. 22. Future work may try to extend this algorithm to
multispectral images.

https://midopt.com/


ARNAU MARCOS ALMANSA: Multispectral NeRF 13

he
ig

ht
0

he
ig

ht
1

he
ig

ht
2

he
ig

ht
3

he
ig

ht
4

extras

Fig. 21: The different views for the RGB composite. There are the same number of views for each monochromatic band
(not shown in the figure) that are the images involved in the NeRF reconstruction.

Fig. 22: Gaussian Splatting of the sequence of RGB images. Generated with LUMA (https:
//lumalabs.ai). Full link to the reconstruction: https://lumalabs.ai/capture/
ef40026c-97d9-4cbf-bc8f-472e51c071ad.

https://lumalabs.ai
https://lumalabs.ai
https://lumalabs.ai/capture/ef40026c-97d9-4cbf-bc8f-472e51c071ad
https://lumalabs.ai/capture/ef40026c-97d9-4cbf-bc8f-472e51c071ad

