
This is the published version of the bachelor thesis:

Rubert Sánchez, Ferran; Terés Terés, Lluís Antoni, dir. Implementation of a
PMP unit in a RISC-V commercial core. 2024. (Enginyeria Informàtica)

This version is available at https://ddd.uab.cat/record/290109

under the terms of the license

https://ddd.uab.cat/record/290109
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Abstract– Implementation, integration and verification of physical memory protection (PMP) unit in
Semidynamics commercial RISC-V core Atrevido423. PMP is an optional standard feature used
for memory isolation in security critical systems that provides per-hardware-thread machine mode
control registers that specify the access privileges for physical memory regions. An overview
of the company, state-of-art on RISC-V cores, description of RISC-V architecture and privilege
specification, is provided. An explanation of the implementation is given using the PMP unit of PULP
core cva6 as an example. Finally, the integration with the core and various methods of verification
used are described.
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Resum– Implementació, integració i verificació de la unitat de protecció de memòria fı́sica (PMP)
en el nucli comercial de Semidynamics RISC-V Atrevido423. PMP és una caracterı́stica estàndard
opcional utilitzada per a l’aı̈llament de memòria en sistemes crı́tics de seguretat. Proporciona
registres de control de mode màquina per maquinari que especifiquen els privilegis d’accés per a
les regions de memòria fı́sica. Es realitza una visió general sobre l’empresa, l’estat de l’art sobre
els nuclis RISC-V, la descripció de l’arquitectura RISC-V i l’especificació de privilegis, l’explicació
de les implementacions posant com a exemple la unitat PMP del nucli PULP cva6. Per finalitzar, la
integració amb el nucli i diversos mètodes de verificació que he fet servir.

Paraules clau– RISC-V, PMP

✦

1 INTRODUCTION

In the landscape of modern computing, the choice of
a processor architecture plays a key role in shaping
the technological advancements of diverse applications.
From the sprawling domain of edge computing, where
resource-efficient devices power the Internet of Things
(IoT) ecosystem, to the vast realm of data centers orches-
trating complex computations for artificial intelligence,
the selection of an architecture reverberates through the
entirety of the computing spectrum. The RISC-V architec-
ture, characterized by its simplicity, modularity, and open
standard, has gained significant traction in the industry.
In the fast-paced realm of RISC-V core development,
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safeguarding sensitive data is a top priority. The goal of
this project is to implement and verify a Physical Memory
Protection (PMP) unit within Semidynamics Atrevido 423,
a high-performance RISC-V core.

The RISC-V architecture is an open standard instruc-
tion set architecture (ISA) based on established reduced
instruction set computing principles. This means that
anyone can access the ISA specification and build their
own RISC-V processor without paying licenses or royal-
ties. For example, Atrevido 423 is a RISC-V commercial
processor. This means that the company has total control
over the configuration and is fully customizable. Due to
the proprietary nature of the core and the private work
undertaken by the company, this project will provide an
overview, focusing on the PMP implementation.

Protecting accesses to main memory is critically impor-
tant. Computer systems usually run more than one process
and are used by different users, each having different
privileges and distrusting the others. Thus, some form of
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memory protection is required to guarantee the integrity
and confidentiality of the program code and data. In
addition to assigning memory exclusively to just a single
process (or user), it may also be shared among a group of
processes or users. This can be used to make data available
to others or even allow others to manipulate the data to
create a communication channel.

As mentioned the PMP unit would be integrated on a
RISC-V commercial core Atrevido 423 from Semidynam-
ics. Semidynamics, a Barcelona-based company, is an Eu-
ropean supplier of RISC-V IP cores, specialising in high-
bandwidth high-performance cores with vector units tar-
geted at machine learning and artificial intelligence appli-
cations [1].

2 BACKGROUND

This section introduces some basic concepts required to un-
derstand the development of this project, such as a brief ex-
planation of the core Atrevido 423 and architecture used.

2.1 RISC-V Cores
RISC-V is an open standard ISA developed by the Parallel
Computing Laboratory at UC Berkeley. Unlike proprietary
ISAs, such as x86 by Intel and ARM by ARM Holdings,
RISC-V is open-source and freely available for anyone to
use, modify, and build their own core. In addition, RISC-V
can be customized with non-standard extensions. This
work draws its foundation from the RISC-V Instruction
Set Manual Privileged [2]. The focus will be on exploring
key elements such as Control Status Registers (CSRs),
Privilege modes, Physical Memory Attributes (PMA), and,
notably, of Physical Memory Protection (PMP).

First and foremost, let’s do a brief review on memory
management. Memory management is the process of
managing the physical memory resources of a machine
in order to share the physical memory among multiple
processes. Each process has its own virtual memory space,
which is managed by the Operating System (OS). A process
can access its own memory space using virtual addresses.
The OS maps virtual addresses to physical addresses,
reserving a certain amount of physical memory for one or
more specific processes. This mapping is used for virtual
address translation, which can be done through software
or hardware support. With this management, each process
has its own view of memory space, making memory
isolation even more granular. The OS controls memory
accesses from each process, so each process can only
access its reserved physical space. In addition, application
programming becomes easier as the programmer does not
have to deal with physical memory fragmentation, physical
memory hierarchy management, memory reallocation, and
other issues.

In the RISC-V architecture, CSRs are special-purpose
registers that control and monitor the processor’s behavior.
These registers are essential for system and application-
level control, providing a standardized interface for
privileged operations and status monitoring. CSRs are used

to configure processor behavior, handle exceptions, and
enable features like interrupts.

TABLE 1: CODIFICATION OF THE PRIVILEGES MODES

Nominal privilege code Privilege mode Abbreviation
00 User U-mode
01 Supervisor S-mode
11 Machine M-mode

As shown in Table 1, there are 3 privilege modes with
their own encoding. Nominal privilege code determines not
only the current privilege mode, but also the privilege ac-
cess required for each CSR. Each CSR is identified by an
address (@CSR). By convention [2], this address belongs
to a 12-bit encoding space that is divided into several parts.

• Access type: The bits @CSR[11:10] encode the ac-
cess type. With a value of 11 it is set as read only,
which means that the value of this register cannot be
modified by an access. Otherwise, the register is set as
read/write, which means that the value of the register
can be modified or not.

• Privilege: The bits @CSR[9:8] encode the lowest
privilege required to access the register, as shown in
Table 1.

• Address: The @CSR[7:0] bits identify the register. In
other words, these bits are the register address within
the CSR system. As noted in the RISC-V documen-
tation [2], there are reserved address spaces for either
standard or custom implementations.

Machine CSRs are controlled by M-mode, which has
access to all CSRs. M-mode is the highest privilege mode,
along with debug mode, which is used for testing and
verification purposes. M-mode is the first mode entered
when the core is started or reset. Machine CSRs are
already implemented in the core used. However, the Ma-
chine Memory Protection CSRs, pmpcfg0-pmpcfg15 and
pmpaddr0-pmpaddr63 should be added. While detailing
every CSR is beyond the paper’s scope, one holds partic-
ular significance, the Machine Status register (mstatus).
It tracks and controls the current operating state of the
hardware thread. Two important bits in the mstatus register
are MPP (Machine Previous Privilege) and MPRV
(Modify Privilege). MPP indicates the privilege mode that
was in effect before the current machine-mode interrupt or
exception was taken. MPRV controls how certain loads and
stores access virtual or physical memory.

Privilege modes are environments used to isolate differ-
ent executions. In this way, a security layer is added to pre-
vent unwanted applications from managing sensitive data or
taking control of the entire core or system. These privileges
are managed by hardware and software. Usually there is a
privileged mode that has full access to the system. For ex-
ample, in the RISC-V specification, there is a machine priv-
ilege mode that has full access to the entire state of the core,
even has access to other privileged modes. In other words,
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the machine mode manages the behavior of the processor
and the system. The other privilege modes are supervisor
and user. Typically, the operating system uses the supervi-
sor mode privilege to manage some functions of the system
and resources. The least privileged is the user mode, which
is used to run user applications.

The core used in this project is called Atrevido 423. It
is a RISC-V processor developed by Semidynamics. The
Atrevido 423 is a 64-bit customisable 4-way out-of-order
processor that supports multiple extensions like bit manip-
ulation, crypto and vector, complete MMU support, Linux-
ready. Atrevido supports multiprocessing environments and
can be configured as a coherent core with a CHI NoC or
as a simpler, incoherent core connected via an AXI in-
terface. Furthermore, with an improved TLB and MMU
and support for SV39 and SV48, the core is well suited
for running applications with large memory footprints us-
ing Linux. On the security side the accesses to physical
addresses are checked in parallel using the PMA and the
PMP. Customers can also optionally choose to protect the
Data cache with ECC and the Instruction cache with parity,
if required for their target markets. Furthermore, the Atre-
vido core is fully compliant with the latest RVA22 RISC-V
profile [3].

Fig. 1: Atrevido 423 block scheme.

The figure 1 shows the block scheme as a general
overview of the entire core. Later on, there will be a more
detailed block regarding the PMP integration to the core.

2.2 Memory Protection in RISC-V
Unlike some architectures, such as ARM with Trust-
Zone [4], traditional RISC-V processors operate without
dedicated isolation technologies. In reality, RISC-V
incorporates two security mechanisms in consonance with
the security layer that privilege modes add: the PMA and
the PMP.

The physical memory map for a complete system in-
cludes various address ranges, some corresponding to mem-
ory regions, some to memory-mapped control registers, and
come to vacant holes in the address space. Some memory
regions might not support reads, writes, or execution; some
might not support cache coherence or might have differ-

ent memory models. In RISC-V systems, these properties
and capabilities of each region of the machine’s physical
address space are termed physical memory attributes [2].
In short, PMA allows specifying attributes for different re-
gions of physical memory. These attributes include settings
such as readable, writable, executable, cacheable and other
memory-related properties. Unlike PMP values, which will
be described below, PMAs do not vary by execution con-
text. The PMAs of some memory regions are fixed during
the design of the chip. The specification also supports a
programmable PMA which can be configured at run time
to support different uses that imply different PMAs. Most
systems will require that at least some PMAs are dynam-
ically checked in hardware later in the execution pipeline
after the physical address is known, as some operations will
not be supported at all physical memory addresses. PMAs
are checked for any access to physical memory, including
accesses that have undergone virtual to physical memory
translation. To aid in system debugging, it is strongly rec-
ommend that, where possible, RISCV processors precisely
trap physical memory accesses that fail PMA checks. Pre-
cisely trapped PMA violations manifest as instruction, load,
or store access-fault exceptions, distinct from virtual mem-
ory page-fault exceptions [2].

To support secure processing and contain faults, it is de-
sirable to limit the physical addresses accessible by soft-
ware running on a hart. A hart in the context of RISC-V
architecture refers to a hardware thread. An optional PMP
unit provides per-hart machine-mode CSRs to allow phys-
ical memory access privileges (read, write, execute) to be
specified for each physical memory region, with the maxi-
mum allowance of 64 regions. Machine mode is the high-
est privilege level and by default has read, write, and exe-
cute permissions across the entire memory map of the de-
vice. However, privilege levels below machine mode do
not have read, write, or execute permissions to any region
of the device memory map unless it is specifically allowed
by the PMP. For the lower privilege levels, the PMP may
grant permissions to specific regions of the device’s mem-
ory map, but it can also revoke permissions when in ma-
chine mode. PMP checks are applied to all accesses whose
effective privilege level is supervisor (S) or user (U), includ-
ing instruction fetches in S and U mode when the MPRV
bit in the mstatus register is clear (mstatus.MPRV=0), and
data accesses in any mode when the MPRV bit in mstatus is
set (mstatus.MPRV=1) and MPP field in mstatus contains S
(mstatus.MPP=0x1) or U (mstatus.MPP=0x0).

Each PMP region consists of an 8-bit pmpXcfg field and a
64-bit pmpaddrX register, which specifies the base address
of the protected region. The extent of each region depends
on the Addressing (A) mode. These 8-bit pmpXcfg fields
are located within the 64-bit pmpcfgY CSRs. Each pmpX-
cfg field includes bits for read, write, and execute permis-
sions, a two-bit address-matching field (A), and a Lock bit
(L) shown in Figure 2. It is worth noting that overlapping
regions are allowed, but in cases of overlap, the region de-
fined by the lowest-numbered PMP entry takes precedence.
Address matching bits (A) referes to the way boundaries
of memory regions are calculated. The possible address
matching modes are:

• OFF: PMP Entry disabled. No PMP protection ap-
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plied for any privilege level.

• TOR: Top of the range. Two adjacent PMP address
registers are used. The upper limit of this region is set
by the value in pmpaddrX, and the lower limit (or base)
is defined by the value in pmpaddr(X-1). To check if a
specific address a is within this region, we verify that a
is greater than or equal to pmpaddr(X-1) and less than
pmpaddrX.

• NA4: Naturally aligned four-byte. Supports only a
four-byte region with four byte granularity.

• NAPOT: Naturally aligned power-of-2. When this
configuration is set, the lower bits of the pmpaddrX
register represent the size of the region, while the up-
per bits represent the base address right-shifted by two.
In between these bits, there’s a zero bit, often called the
”least significant zero bit” (LSZB).

PMP allows for region locking, which means once a re-
gion is locked, you cannot change its configuration or ad-
dress settings unless you perform a system reset. You lock a
PMP entry by setting the “L” bit in the pmpXcfg register. If
an entry is locked, writes to both its configuration (pmpicfg)
and its address (pmpaddri) registers are ignored. The ”L”
bit also influences whether R/W/X permissions are enforced
in M-mode (Machine mode). When “L” is set, these per-
missions are enforced for all privilege modes. When “L” is
cleared, permissions only apply to S and U modes.

For machine mode, PMP checks do not occur unless the
lock bit (L) is set in the pmpcfgY CSR for a particular re-
gion. For virtual address translation, PMP checks are also
applied to page table accesses in supervisor mode. PMP
violations are always trapped precisely at the processor. In
effect, PMP can grant permissions to S and U modes, which
by default have none, and can revoke permissions from M-
mode, which by default has full permissions [2].

Fig. 2: PMP configuration register format.

The PMP system is designed to work alongside page-
based virtual memory systems [2]. When virtual memory
paging is enabled, instructions that access virtual memory
may lead to multiple physical memory accesses, including
references to page tables. PMP checks are applied to all
of these accesses. The effective privilege mode for these
implicit page-table accesses is supervisor mode.

Implementations with virtual memory systems may
perform address translations speculatively and earlier
than necessary for explicit virtual-memory access. PMP
settings for the resulting physical address can be checked
at any point between address translation and the explicit
virtual-memory access. If there is a mis-predicted branch
to a non-executable address range, it doesn’t trigger an
exception. Therefore, when PMP settings are changed in

a way that affects either the physical memory containing
page tables or the physical memory to which the page tables
point, M-mode software must synchronize the PMP settings
with the virtual memory system. This synchronization is
achieved by executing an SFENCE.VMA instruction with
rs1=x0 and rs2=x0 after writing to the PMP CSRs. In cases
where a non-reserved section of the memory map doesn’t
have PMP permissions defined, supervisor or user mode
accesses will be denied by default. However, machine
mode access will be permitted. For access to reserved areas
within a device’s memory map, reading from these areas
will return 0x0, and write attempts will be disregarded.

The Atrevido423 PMP supports 16 regions and an imple-
mentation of 16 PMP CSRs. Access to each region is con-
trolled by an 8-bit configuration register pmpXcfg field and
one address register pmpaddrX. The PMP unit implements
the architecturally defined pmpcfgY CSRs pmpcfg0 and pm-
pcfg2, supporting the 16 regions and the other pmpcfgY up
to pmpcfg14 are implemented, but hardwired to zero. The
PMP values are checked in parallel with the PMA checks
[2]. Since the PMAs are static and non-configurable, the
PMP can only revoke read, write, or execute permissions to
the PMA regions if those permissions already apply stati-
cally.

2.3 Related Work

RISC-V processors equipped with PMP support are
already available in the market. The public SiFive E31
core complex manual provides insights into their PMP
unit [5]. Notably, during RISC-V Summits, companies
showcase projects and advancements related to their work
and some of them are related to security and PMP usage.
For instance, in 2018, Silicon Labs presented an embedded
Real-Time Operating System (RTOS) that utilized PMP
for achieving process separation and isolation [6]. Several
companies have bolstered the security of their cores
through the implementation of PMP.

In academic research, there is a notable paper on the veri-
fication of a PMP conducted by PhD students at the Univer-
sity of California, Berkeley [7]. The PULP organization’s
open-source research core, Ariane, incorporates PMP im-
plementation. Additionally, other cores such as Lagarto I
leverage PMP from the OpenPiton + Ariane core collabo-
ration [8]. This project involves working on the Register-
Transfer Level (RTL) implementation of PMP within the
open-source core from the PULP platform, namely cva6 [9].
While the overarching idea is shared, the implementation
has been adjusted to suit specific requirements of Atrev-
ido423 core. It is important to note that details of the imple-
mentation cannot be disclosed due to confidentiality, but the
discussion will touch upon common concepts. It is impor-
tant to emphasize that this project operates independently,
and there is no collaboration with or reliance on the imple-
mentation of the PULP platform.
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3 IMPLEMENTATION OF A PMP UNIT

3.1 RTL Development of PMP Unit

The Verilog module presented encapsulates the functional-
ity of a PMP unit, designed with flexibility through con-
figurable parameters. These parameters include PLEN for
the physical address length (defaulted to 34 bits for RV32),
PMP LEN representing the PMP configuration length (de-
faulted to 32 bits), and NR ENTRIES specifying the num-
ber of PMP entries (defaulted to 4). Inputs to the module
consist of the physical address to be examined (addr i),
the type of memory access (access type i), and the
privilege level (priv lvl i). Additionally, configura-
tion inputs (conf addr i and conf i) define PMP set-
tings. Within the module, a loop generates PMP en-
tries based on the specified number, utilizing a submod-
ule (pmp entry) for comparison with the input address.
The core logic for determining access permission is housed
in an always comb block, iterating through PMP entries
and checking for matches with the input address. Access is
granted based on configured security settings and privilege
levels, considering whether the privilege level is not in Ma-
chine mode or if the configuration is locked (which applies
in Machine mode as well). If no entry matches the address,
the module allows all accesses in Machine mode and disal-
lows accesses in other modes. Notably, if there are no PMP
entries (NR ENTRIES == 0), the module defaults to al-
lowing all accesses. This comprehensive design ensures ef-
fective PMP-based memory access control, accommodating
various configurations and providing security in accordance
with RISC-V privileged architecture specifications.

The Verilog module titled pmp entry constitutes a vital
component in the implementation of the PMP, contributing
to the assessment of whether a given physical address aligns
with the specifications defined for a particular PMP entry.
With configurable parameters, such as PLEN and PMP LEN,
the module takes inputs including the physical address
(addr i) and PMP configuration details (conf addr i,
conf addr prev i, conf addr mode i). Outputs are
provided through match o, signaling whether the input
address corresponds to the configured PMP settings. The
module intricately employs bitwise operations and logical
checks based on the specified address modes (e.g., TOR,
NA4, NAPOT, OFF). Additionally, the implementation in-
corporates assertions for runtime verification, ensuring the
accuracy of size extraction, overflow prevention, and other
conditions in adherence to the chosen PMP address mode.
This modular and versatile design plays a crucial role in
evaluating and enforcing PMP-based memory protection
within the broader context of RISC-V architecture.

In conjunction with the pmp entry module, the effec-
tive implementation of PMP within the cva6 architecture
relies on the utilization of the CSR file (csr regfile).
As detailed in the preceding sections, the csr regfile
serves as a central component, managing the various control
and status registers that dictate the behavior of the proces-
sor. These registers include configurations related to PMP,
among other critical functionalities.

Furthermore, it’s noteworthy that within the cva6 archi-
tecture, the logic governing exceptions, a crucial aspect
in memory protection and system stability, is centralized

in the Memory Management Unit (MMU) module. This
design choice consolidates exception handling within the
MMU, providing a coherent and centralized approach to
manage events such as page faults, access violations, and
other memory-related exceptions. In this architecture, the
MMU module plays a key role not only in memory trans-
lation but also in maintaining the integrity and reliability of
the system by handling exceptions seamlessly.

3.2 Integration of PMP Unit in a Modern
RISC-V Core

The integration with the core Atrevido takes place within
the Load Store Unit (LSU). In the figure 3, an approxima-
tion of the core-memory interface is depicted.

Fig. 3: Atrevido423 block scheme of the ”core-memory”
interface.

The Load Store Unit (LSU) is where all security checks
are performed in parallel with the PMA. The LSU is re-
sponsible for executing all memory related instructions, that
include scalar loads and stores, atomics instructions, CMO
instructions, and vector load and store operations for all fla-
vors. The Front-End is the part of Atrevido responsible for
providing instructions to the Execution Units. The main
blocks of the Front-End are the Branch Predictor, the In-
struction Memory System and the Decoder. As being said
Atrevido is a fully operative core and MMU, DTLB ready.
Both the PMA and PMP modules receive the physical ad-
dress, and subsequently, the signals are flopped to an ex-
ception logic. This exception logic is bifurcated into ex-
ception detection and exception reporting components. The
exception logic plays a key role in determining the presence
of an error and identifying the specific nature of the error.
Additionally, the PMP module relies on information from
the CSR file, as previously elucidated. This collaborative
design, depicted in the following picture 4, ensures that se-
curity checks, address validation, and exception handling
are seamlessly coordinated within the LSU, contributing to
the robustness and reliability of the overall system architec-
ture. This implies that modifications to the LSU and the
CSR have ripple effects on other interconnected modules
to maintain the core’s seamless operation without introduc-
ing disruptions. As illustrated in the figure 3, this requires
adjustments to the front-end as well. Specifically, the incor-
poration of the new PMP illegal signal prompts the need for
changes in the front-end to appropriately handle the PMP
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protection signal, which indicates the legality of memory
access. To look at how PMP generally operates, let us sup-
pose that a program is being executed by a RISC-V core
and the next instruction in line is an addition instruction –
ADD. For simplicity’s sake, we can also assume that all rel-
evant instructions and addresses are present in the instruc-
tion cache. In a conventional implementation, the core in-
crements the program counter and fetches the instruction
in a process of reading the content of a memory cell at the
PC address. Typically the instruction is passed to the de-
coder logic, which is capable of discerning between differ-
ent types of instructions, e.g. addition, subtraction, multi-
plication, etc. PMP however, when enabled, makes a check
before decoding the instruction, to ensure that its execution
is allowed.

Fig. 4: PMP block scheme on the LSU of Atrevido423
block scheme.

3.3 Verification of the PMP Unit
It is important to note that any modified part of the core
must be tested after design and before its implementation.
So new test programs were implemented to ensure that
these hardware modifications work as expected. The
testing phase is ongoing. Integrating the PMP in a modern
processor was a challenging task that took more time than
expected. Although the verification is in progress and the
PMP is working for many tests, a commercial processor
requires a more extensive verification. Considering the
intricate nature of the design and the fact that it involves
a commercial core, the verification process demands
meticulous attention. The emphasis is on achieving ex-
tensive coverage and ensuring a bug-free implementation.
Recognizing the complexity and criticality of the task at
hand, the testing efforts are geared towards meeting the
stringent standards required for a commercial-grade core.

The following languages were used to develop and verify
the PMP unit:

• SystemVerilog: based on Verilog, is a HDL that can
be used to design, test, implement and do verification
process for electronic systems such as processors or
embedded systems. For this project, this language was
used to design the PMP unit, as well as to modify and
implement all the changes in the RTL, also is used in a
propertary tool for functional verification.

• C/C++: Object oriented programming language
(C++) which can use high level and low level struc-
tures. It is used to modify and implement a unit level
testbench to test the new features.

• RISC-V Assembler: Low level language used to im-
plement programs to test the new core’s modifications.

• Python: A versatile programming language known for
its simplicity and readability. Primarily utilized for
general scripting.

After completing the RTL code, the next phase involves
meticulous testing of all changes at the block level. To val-
idate the new implementation of the CSRs, we design and
execute assembly tests, incorporating read and write oper-
ations on the new PMP registers. These tests are compiled
and subsequently simulated using Verilator, an open-source
Verilog simulator renowned for its rapid simulation capa-
bilities [10]. Additionally, we leverage licenses for Synop-
sys VCS, a proprietary Verilog simulator acclaimed for its
industry-standard performance and rich feature set [11]. To
ensure the accuracy of our implementation, we compare re-
sults with Spike, a RISC-V architecture simulator that in-
herently incorporates the PMP unit. While Spike serves
as a reliable ground truth, occasional discrepancies are ad-
dressed through careful scrutiny. The initial phase of craft-
ing RISC-V assembly tests proved challenging, demanding
considerable time for test generation, debugging, and error
resolution.

During the testing phase, the company acquired licenses
for a tool that facilitates functional testing using SystemVer-
ilog. This eliminates the need for manually generating
RISC-V assembly tests and simulating with Spike, as the
tool automates the verification process. Despite its time-
consuming nature, this approach streamlines testing proce-
dures and enhances efficiency.

The Universal Verification Methodology (UVM) serves
as an industry-wide standard for developing testbenches
for hardware modules implemented in Verilog. In our ap-
proach, we enhance an existing SystemC UVM testbench
for the LSU by incorporating the new pmp features. This
testbench includes an interpreter capable of reading pseu-
doinstructions and simulating the behavior of the RTL code
within the core.

The primary testing scenario involves configuring the
mode and address regions, followed by executing an ar-
bitrary number of memory accesses with different types.
Thorough validation of the PMP behavior requires consid-
ering various angles. One approach is to configure the sys-
tem to intentionally violate rules and observe the raised ex-
ceptions. Conversely, we can set up the system to expect
successful operations.

Certain features of the configuration space require to in-
dependent testing. For instance, a directed test can be de-
signed specifically to assess the lock mechanism. Addition-
ally, the execute permission’s relevance during instruction
fetches and the read and write permissions checked during
loads and stores allow for separate unit tests. Integration
tests then combine these features to ensure comprehensive
validation of the PMP functionality.

One of the first tasks in testbench design is to define stim-
ulus patterns, which will match a use case of the device as
closely as possible. While it is possible to manually craft
tests targeting certain features, our predominant approach
involves the generation of extensive tests, from which we
subsequently extract the relevant sections. To achieve this,
I employed two distinct methods:
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• Genetic algorithms: emulate natural selection pro-
cesses to evolve a population of potential test inputs
over multiple generations. These inputs are evaluated
based on predefined criteria, such as coverage, and un-
dergo processes like selection, crossover, and mutation
to refine the test set.

• Fuzzer: AFL (American Fuzzy Lop) instruments the
target program to monitor code coverage during execu-
tion and uses seed inputs to generate new test cases. It
prioritizes inputs leading to increased code coverage,
facilitating the discovery of vulnerabilities [12].

While genetic algorithms provide flexibility for diverse
testing objectives, AFL is particularly effective in secu-
rity testing, uncovering vulnerabilities through the explo-
ration of different code paths. The choice between these
approaches depends on specific testing goals and the nature
of the system under test. Genetic algorithms offer flexibil-
ity, whereas AFL excels in security-focused fuzz testing.
Both approaches have been employed, generating random
tests for PMP using both AFL and genetic algorithms.

In Figure 5, the test generation process is developed
through two methods. Subsequently, the generated tests
undergo simulation using Verilator, enabling the extraction
of toggle information and code coverage metrics. Further-
more, for a detailed analysis, functional coverage is pur-
sued through the creation of covergroups and coverpoints
in SystemVerilog. These covergroups and coverpoints are
meticulously crafted to capture specific scenarios of inter-
est, enabling a comprehensive assessment of the PMP logic.

Fig. 5: Test generation flow.

4 EVALUATION METHODOLOGY

4.1 Simulation Environment
The core has been simulated using the Semidynamics sim-
ulator, Spike but with a lot of changes. It needs specific ver-
sions of GCC compiler, Verilator and Linux to work prop-
erly.

The diagram in Figure 6 shows how the core is simulated
and tested. A RISC-V compiler compiles the test programs
using some linker files already provided by Semidynamics.
A compiled file, such as a binary file, contains the program
instructions that the simulated core will execute.

Fig. 6: Core simulation environment.

The register transfer language (RTL) code is compiled
using other RISC-V compiler. The result is a simulator that
emulates the behavior of the implemented core. Once the
simulator executes a program, it produces a waveform of
the multiple signals that the core has. This waveform shows
the values of the signals at each clock cycle until the exe-
cuted program ends. The analysis of these waveforms was
conducted using gtkwave, a program renowned for its wave-
form analysis capabilities [13].

4.2 FPGA Platform

Semidynamics is currently using Vivado 2020.2. The Xil-
inx VCU128 serves as the Field Programmable Gate Array
(FPGA) development board for our project. In our verifi-
cation process, we initiate Linux on this board and execute
a series of tests and benchmarks. To facilitate this verifica-
tion, we utilize a tracer designed to function with the FPGA.
This tracer operates by executing the same set of operations
on Spike, a RISC-V architecture simulator [14], enabling a
comparison to ensure that both the FPGA and Spike yield
consistent results. This dual verification approach, combin-
ing real hardware with simulation, enhances the reliability
and accuracy of our system evaluation on the FPGA.

5 CONCLUSIONS

This thesis presents a professional perspective on the se-
quential steps involved in integrating a new module into an
existing operational commercial core. Specifically, for se-
curity enhancements, the incorporation of the PMP mod-
ule is explored. The study delves into a notable open-
source repository, the cva6 core, a well-regarded resource
within the community. This open-source initiative serves
as a valuable starting point, offering insights and support to
individuals seeking experience in this domain. The initial
community-driven effort sets the foundation for integrating
the module into a commercial core, necessitating adaptabil-
ity to make the integration seamless. Subsequently, thor-
ough testing and verification become imperative, as reli-
ability and trust are paramount in the industry. Utilizing
advanced industry tools, tests are generated to achieve cov-
erage, a critical metric in establishing the core’s reliability
and trustworthiness.

Although the concepts were straightforward, the imple-
mentation was not as simple due to the abundance of corner
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cases that a complete implementation must deal with. Ma-
nipulating a commercial core of such complexity adds an
extra layer of challenge, turning seemingly straightforward
tasks into intricate endeavors, particularly for those without
extensive expertise in the field. Fortunately, the guidance
from the tutors and the assistance from Semidynamics col-
leagues proved indispensable during moments of confusion.

Two key points stand out: The first emphasizes the vast
RISC-V community, teeming with dedicated professionals
tirelessly working each day to craft an open-source ISA ac-
cessible to all. It is crucial to underscore that, as a private
company, our work remains proprietary, and we do not ac-
tively engage with the open-source projects like for exam-
ple the mentioned cva6. Nonetheless, emphasizing collab-
orative initiatives is crucial. The second point highlights
the significant disparity between an experimental core and a
commercial one, the latter necessitating clear, detailed steps
and placing immense importance on verification. Verifica-
tion, at times underrated, is a pivotal stage in commercial-
izing a processor, as confidence in flawless functionality is
paramount.

6 FUTURE WORK

Even though the PMP implementation is complete, there’s
perpetual room for enhancement. Moreover, the develop-
ment of new test programs is essential to verify diverse ex-
ecution behaviors. Future endeavors will involve refining
the testbench and continually testing and enhancing cover-
age, ensuring that new core features are seamlessly inte-
grated without introducing issues or PMP-related bugs. In
the dynamic landscape of a commercial core, where multi-
ple engineering teams contribute changes, the work is ongo-
ing. The continuous cycle of improvements and adaptations
to evolving requirements ensures that there’s always some-
thing to be addressed, particularly concerning features one
has previously worked on. Continuos updating-integration
is a key strategy for a continuous and seamelessly evolution.
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