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Resum- Este articulo investiga las perspectivas futuras de los modelos de prediccion de distribuci-
ones, centrandose en las distribuciones gaussiana, triangular, lognormal y binomial. Compara los
modelos de prediccién clasicos con sus homdlogos cuanticos, explorando los avances realizados
en los modelos de prediccién cuantica (QPM).Ademas, explora el potencial de la computacion
cuantica para mejorar la precisién y eficacia de la prediccién de estos modelos.Comenzando con
un analisis comparativo basico, el estudio avanza para evaluar modelos de prediccion puramente
cuanticos antes de proponer un enfoque integrado que combina metodologias clasicas y cuanticas
para perfeccionar las técnicas de prediccion de la distribucion.Esta investigacion ofrece valiosas
perspectivas sobre el cambiante panorama de la prediccion de la distribucién y el papel de la
computacién cuantica en la configuracion de su futuro.

Paraules clau—- Xarxes Neuronal, Xarxa Neuronal Generativa Adversarial, Computacié Quan-
tica, Models Generatius, Generacié d’'imatges

Abstract— This paper investigates the future perspectives in distribution prediction models, focusing
on Gaussian, triangular, lognormal, and binomial distributions. It compares classical prediction
models with their quantum counterparts, exploring the advancements made in Quantum Prediction
Models (QPMs). Furthermore, it explores the potential of quantum computing in enhancing the
prediction accuracy and efficiency of these models. Beginning with a basic comparative analysis,
the study progresses to evaluate purely quantum prediction models before proposing an integrated
approach that combines classical and quantum methodologies to refine distribution prediction tech-
niques. This research offers valuable insights into the evolving landscape of distribution prediction
and the role of quantum computing in shaping its future.

Keywords— Neural Networks, Generative Adversarial Neural Network, Quantum Computing,
Generative Models, Quantum Gain Adversarial Network
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1 INTRODUCTION

revolutionary transformation with the infusion of

Quantum Neural Networks (QNNs). In the wake of
quantum computing’s relentless march into uncharted com-
putational territories, the integration of quantum principles
into neural networks introduces a fascinating avenue for the
evolution of image generation methodologies. This explo-
ration seeks to unravel the vast potential that Quantum Neu-

THE landscape of image generation is undergoing a
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ral Networks hold in reshaping the dynamics of image synt-
hesis.

Quantum Neural Networks, guided by the principles of
quantum mechanics, particularly superposition and entan-
glement, offer a unique perspective for harnessing compu-
tational power beyond the limits of classical computing.
This study delves into the intricacies of Quantum Neural
Networks, investigating their capacity to redefine the very
fabric of image generation. The quantum states, with their
inherent ability to exist in multiple configurations simulta-
neously, present an alluring prospect for pushing the boun-
daries of creativity and efficiency in the realm of visual
synthesis.

This research endeavors to unlock novel methods and
unprecedented efficiencies in image generation by tapping
into the distinctive features of quantum mechanics. By
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translating complex image data into quantum states, Quan-
tum Neural Networks promise to revolutionize the speed,
precision, and creativity associated with image synthesis.
Through this exploration, we aspire to illuminate the path
toward a future where quantum-assisted image generation
[1]becomes an integral part of the evolving landscape of ar-
tificial intelligence.

2 STATE OF ART

The current state of the art of quantum neural networks for
image generation is very precarious, taking this into ac-
count, the problems solved by this type of models are cur-
rently not very developed, even so we have work for the
possible future in the field of quantum neural networks, that
can be very interesting and useful for the resolution of this
type of problems, at the moment we have work that allows
us to solve some type of specific problem like reproducing
gaucian distributions by means of Quantum Generative Ad-
versarial Network (QGAN’s), but for this, first we have to
understand the following concepts:

2.1 Generative Adversarial Network

GANSs consist of two main neural networks[2]]: the gene-
rator and the discriminator. These networks are trained si-
multaneously through a competitive process, making GANs
unique in their approach[3].

Generator

Noise Source Fake Data

Discriminator

________________________________________

Backpropagation

Fig. 1: GAN Schema

2.1.1 Generator

The generator takes random input, commonly referred to as
noise, and transforms it into generated data that should be
indistinguishable from real data. Mathematically, the gene-
rator seeks to learn the underlying distribution of the trai-
ning data to generate convincing samples.

2.1.2 Discriminator

On the other hand, the discriminator evaluates whether a
given sample is real or generated by the generator. Essen-
tially, it acts as a “detective”’trying to distinguish between
real and generated data. It is trained to improve its ability
to make this distinction over time.

2.1.3 Functioning of GANs

The training process of GANs occurs through an adversari-
al game between the generator and the discriminator. The
generator continually strives to enhance its ability to gene-
rate more realistic data, while the discriminator improves
its ability to differentiate between real and generated data.

This feedback loop continues until the generator can produ-
ce data that is indistinguishable from real data.

2.2 Quantum Computing

In the realm of quantum computing, a fundamental tool
that plays a pivotal role in our project is Qiskit. Develo-
ped by IBM, Qiskit stands out as a comprehensive quantum
computing software development framework. It serves as a
versatile platform for designing, simulating, and executing
quantum circuits on both real quantum devices and classical
simulators[4].

2.3 Quantum Machine Learning (QML)

In this section, we delve deeper into the intersection of
machine learning and quantum circuits, drawing a parallel
between classical machine learning models and their quan-
tum counterparts. Classical machine learning models tra-
ditionally consist of layers, inputs, and outputs, where the
inputs and outputs share namesakes, and layers are compo-
sed of neurons responsible for training the models.

In the quantum realm, a transformative shift occurs
when adapting classical machine learning to quantum neu-
ral networks. Not only does the paradigm shift involve a
change in the type of data from classical to quantum, but
the very structure of the models undergoes a metamorpho-
sis. Instead of training through layers of classical neurons,
quantum neural networks utilize layers of Anzats for their
training process. Anzats, in this context, serve as parame-
terized quantum circuits, offering a flexible and expressive
framework for quantum machine learning tasks[5]].

2.4 Generative Adversarial Network

Now, extending this discussion to the realm of generative
models, we introduce the concept of Generative Adversari-
al Networks (GANs). GAN:S, in classical machine learning,
are adept at generating new data instances that closely re-
semble a given dataset. They consist of a generator network
and a discriminator network engaged in an adversarial trai-
ning process, where the generator strives to create realistic
data, and the discriminator aims to distinguish between real
and generated data[6].

In the quantum landscape, Quantum Generative Adver-
sarial Networks (QGANs) emerge as a natural extension.
Here, the adversarial training process persists, but the un-
derlying mechanisms leverage the principles of quantum
computation. QGANSs harness the unique capabilities of
quantum circuits, offering potential advantages in genera-
ting quantum data distributions. The layers of Anzats play
a crucial role in the training of QGANS, providing a quan-
tum analogue to the classical GAN framework[6].

This nuanced connection between classical GANs and
QGANSs exemplifies the ongoing synergy between clas-
sical machine learning and quantum computing, opening
avenues for exploring generative models in the quantum
domain[6].
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2.5 Classical-Quantum Generative Diffusion
Model (CQGDM)

The proposal of a Classical-Quantum Generative Diffusi-
on Model (CQGDM)[7] marks a significant advancement
by combining elements of quantum physics with classical
machine learning techniques. In this innovative amalgama-
tion, the diffusion process remains classical, while the de-
noising phase is executed through quantum dynamics. This
hybrid approach represents an evolution in data generati-
on, as the training dataset remains classical, encompassing
images, videos, and time series. Formally, the model begins
with data sampled from an unknown distribution, subjecting
it to a classical stochastic diffusion process that progressi-
vely degrades the information to a fully noisy state. The
introduction of a computationally tractable quantum prior
is a key aspect, and the diffusion process can be implemen-
ted with both classical Markov chains [8, |9] and stochas-
tic differential equations. The distinctive innovation lies in
leveraging a Quantum Neural Network (QNN) for the de-
noising phase, harnessing quantum properties to expedite
the generation of highly dimensional data, such as images.
This fusion of classical and quantum approaches opens new
possibilities for efficient data processing and enhanced ge-
nerative model capabilities.

2.6 Quantum-Classical Generative Diffusion
Model (QCGDM)

The Quantum-Classical Generative Diffusion Model
(QCGDM)[7] proposes an innovative convergence of
quantum and classical elements to revolutionize generative
diffusion processes. By leveraging noisy quantum dyna-
mics, quantum noise is harnessed as a valuable resource.
This approach is applied to quantum datasets, blending
classical information into quantum initial states. Two
approaches are introduced for implementing the diffusion
process, emphasizing the versatility of quantum noise and
the ability to generate non-classical distributions. During
the noise removal stage, classical Neural Networks (NNs)
play a crucial role, serving as discriminators in the case
of quantum distributions. This model holds promising ap-
plications, particularly in cybersecurity, enabling quantum
attacks and defense.

2.7 Quantum-Quantum Generative Diffusi-
on Model (QQGDM)

The Quantum-Quantum Generative Diffusion Model
(QQGDM)[7]] represents an innovative approach that ex-
clusively leverages quantum elements throughout the entire
process. From the initial diffusion to the denoising phase,
noisy quantum dynamics are employed, utilizing both quan-
tum Markov chains and the Stochastic Schrodinger Equati-
on. This model distinguishes itself by operating entirely
within the quantum realm, with Parameterized Quantum
Circuits playing a central role in the denoising process.
The QQGDM aims not only to preserve but also to am-
plify quantum advantages, enabling the generation of pu-
rely quantum prior distributions and efficiently processing
them during the denoising phase. This could potentially
lead to exponential advantages in sample complexity and

processing time. With an exclusively quantum focus, the
QQGDM represents a significant contribution to the field of
quantum generative models.

3 METHODOLOGY

The methodology will aim to discover and outline a detai-
led roadmap for creating a quantum neural network capa-
ble of generating images using quantum algorithms. This
approach will meticulously consider crucial aspects, such
as quantum encoding of image data, efficient structuring
of quantum circuits, integration of reinforcement learning
techniques for parameter optimization, and comprehensive
performance evaluation compared to classical approaches.
To achieve these goals, we will specifically focus on the fo-
llowing aspects:

3.1 Development of Quantum Data Encoding

To train a Quantum Neural Network (QNN) model, the first
step involves encoding the data so that it can be used as
input[10]. This encoding process transforms classical infor-
mation into a quantum format understandable by the model,
enabling processing within the quantum environment. This
encoding phase is crucial to leverage the quantum capabili-
ties of the model during the training process[7].

3.2 Training Clasical & Quantum Models

In the realm of machine learning, the training of classical
and quantum models stands as a pivotal process shaping the
performance and efficacy of predictive algorithms. In clas-
sical models, the training phase typically involves the opti-
mization of parameters and the adjustment of weights wit-
hin neural networks or other algorithmic frameworks. Con-
versely, the training of quantum models introduces a uni-
que paradigm, necessitating the encoding of classical data
into quantum states for processing within a quantum envi-
ronment. The optimization of quantum circuit parameters
becomes a crucial aspect, often involving techniques such
as gradient-based optimization or reinforcement learning to
refine the model’s performance. Understanding the nuances
and distinctions in the training methodologies between clas-
sical and quantum models is fundamental for harnessing the
full potential of these diverse computational approaches.

3.3 Comparative Evaluation of models

Following the training process of classical and quantum
models, the subsequent step involves a critical evaluation by
comparing the performance of classical and quantum Gene-
rative Adversarial Networks (QGANSs)[3]]. This comparati-
ve analysis aims to discern the strengths and weaknesses
inherent in each approach, shedding light on the potenti-
al advantages offered by quantum algorithms over classical
counterparts in the context of generative models. By sys-
tematically assessing metrics such as accuracy, computatio-
nal efficiency, and scalability, researchers can gain valuable
insights into the comparative advantages of qGANs, paving
the way for informed decision-making and the advancement
of quantum-enhanced generative modeling techniques.
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4 DEVELOPMENT & PRELIMINARY RE-
SULTS

Given the current state of research in the field and the sta-
tus of quantum systems, the progress made for this report
primarily revolves around the following aspects. The main
approach has been to replicate Gaussian distributions and
then translate them into a quantum format, with the aim of
applying these concepts to image generation. Additionally,
both Gaussian and quantum GAN models will be imple-
mented to achieve a normal distribution, intending to con-
duct a comprehensive comparison between both approaches
with pytorch.

4.1 Generative Adversarial Network

The implemented code is a Generative Adversarial Network
(GAN)[2] designed to predict a Gaussian distribution. The
GAN comprises a generator and a discriminator. The gene-
rator is a neural network with three linear layers and leaky
ReLU activation functions, while the discriminator has a si-
milar architecture but includes a sigmoid activation function
in the final layer. The GAN itself orchestrates the training
process, which involves optimization and loss calculation.
The goal is to train the generator to produce data indistin-
guishable from real data sampled from a Gaussian distribu-
tion, while the discriminator aims to differentiate between
real and generated data. The training loop involves adjus-
ting the generator’s weights to deceive the discriminator and
updating the discriminator to better distinguish between re-
al and generated samples. The final output includes visuali-
zations of loss and distributions during training. Given the
configurations mentioned earlier, the result we obtain is as
follows{2

Fig. 2: GAN Results vl

However, it is important to note that, after this initial im-
plementation, a second iteration of the training was carried
out using a different model architecture. The results of this
second approach showed some improvement over the initial
version. It is worth noting that the model was trained in two
separate instances: the first consisted of a 1200-stef{3] trai-
ning, while the second involved a more extensive 30,000-
stepd] training.

In the first 1200-step phase, we sought to gain an initial
insight into the model’s ability to learn the Gaussian dis-
tribution. This initial training provided a basis on which
adjustments were made to the model architecture to address
possible limitations identified.

Subsequently, with the experience gained in the initial
phase, a second, more extensive training phase was under-
taken, carrying out 30,000 step§4] This prolonged approach
allowed the model to learn in a deeper and more refined
way, improving its ability to generate data that further re-
sembles the desired Gaussian distribution. Together, these
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Fig. 3: GAN Results v2 1.2 Steps

two iterations illustrate the iterative and evolutionary pro-
cess employed to optimise GAN’s capabilities in predicting
Gaussian distributions. The final results are presented in
Figure [3|and ]
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Fig. 4: GAN Results v2 30k Steps

Top Left (Metrics): The generator and discriminator
both use binary cross-entropy loss and accuracy. Although
generator loss doesn’t directly indicate GAN output quality,
it’s crucial for tracking convergence. If one significantly
outperforms the other, the GAN may fail to converge.

Top Right (Probability Density): Compares the obser-
ved probability density of the GAN to the real probability
density of the standard normal distribution. Ideally, they
should align at the end of training, but the GAN shows re-
petitive over-correction, leading to undulating behavior.

Bottom Left (Learned Mapping): Displays the real
mapping used and the mapping learned by the GAN. The
GAN tries to mimic a complex mapping with varying suc-
cess.

Bottom Right (Discriminator Confidence): Shows
the discriminator’s confidence in identifying real and
fake samples. The discriminator effectively recognizes
the relative frequency of real and fake samples, with
confidence fluctuations at the extremes of the sample
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space. Increased confidence in rare real samples prompts
undulating behavior in the probability density panel.

It’s crucial to recognize that the inherent complexity
of Generative Adversarial Networks (GANs) often makes
them overkill for modeling relatively straightforward dis-
tributions, such as the Gaussian distribution in this context.
GANSs excel in capturing intricate patterns and generating
high-dimensional, realistic data, making them particularly
valuable for complex tasks like image synthesis and style
transfer. However, for simpler distributions, the intricate
interplay between the generator and discriminator might
lead to suboptimal convergence and training instability[11]].

In response to the challenges faced by traditional GANs
in modeling simple distributions, researchers have explo-
red advanced variants, with the Maximum Mean Discre-
pancy GAN (MMDGAN[12]) being a noteworthy example.
MMDGAN]/12] introduces a novel approach by incorpora-
ting maximum mean discrepancy as a metric to guide the
generator towards minimizing the difference between the
generated and real data distributions. Such enhancements
aim to bolster the performance of GANSs in capturing the
nuances of simpler data structures, broadening their appli-
cability across a spectrum of machine learning tasks. As
the field evolves, ongoing research into novel GAN archi-
tectures and training methodologies continues to push the
boundaries of what these generative models can achieve,
ensuring their adaptability to a diverse range of distributio-
nal complexities.

4.2 Quantum Generative Adversarial

Network

4.2.1 QGAN for a Gaussian Distribution

The project presents a quantum implementation of a Gene-
rative Adversarial Network (GAN) using Qiskit. It begins
by defining a quantum system to represent and visualize a
1D Gaussian distribution[13[[5}

Distribucién Normal 1D
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Fig. 5: Gausian 1D

Then, it constructs a quantum circuit with Hadamard ga-
tes and an EfficientSU2 ansat6l

In this innovative approach, a quantum generator is meti-
culously crafted and trained in tandem with a discriminator
through an adversarial framework, utilizing a quantum sam-
pler to enhance precision. The continual recording of losses

Fig. 6: Ansatz Circuit

for both the generator and discriminator, coupled with vi-
sualizing the training progression, vividly underscores the
quantum essence of the implementation and its profound
influence on the generation of distributions. Ultimately, the
unveiling of cumulative distribution functions (CDF) [§|and
probability density functions (PDF) [9] not only showcases
commendable results but also serves as a conclusive testa-
ment to the triumph of the quantum implementation in craf-
ting precisely tailored distributiong7]

Fig. 7: Loss & Entropy
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Fig. 8: CDF Real vs GAN
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Fig. 9: PDF Real vs GAN

4.2.2 QGAN for a Log-Normal Distribution

The extension of the Quantum Generative Adversarial
Network (QGAN) to model a Log-Normal distribution in-
volves adapting the quantum implementation to capture the
unique characteristics of this distribution. The Log-Normal
distribution is characterized by a probability distribution
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of a random variable whose logarithm is normally distri-
buted. To achieve this, the quantum system is configured
to represent and visualize a Log-Normal distribution in a
manner analogous to the approach taken for the Gaussian
distribution[13]].

Similar to the Gaussian case, a quantum circuit is cons-
tructed using Hadamard gates and an EfficientSU2 ansatz.
The quantum generator is then intricately designed and trai-
ned alongside a discriminator through the adversarial fra-
mework. The quantum sampler is employed to enhance pre-
cision, and the training progress is monitored by recording
losses for both the generator and discriminator. Visualiza-
tion of the training progression, coupled with the unveiling
of cumulative distribution functions (CDF) and probability
density functions (PDF), demonstrates the efficacy of the
quantum implementation in generating Log-Normal distri-
butions.

It is noteworthy that the Log-Normal distribution lacks
values at or below zero. Consequently, the entropy of this
distribution diverges to infinity. This peculiarity, inherent
to distributions with non-negative support, underscores the
quantum nature’s challenge in representing certain types of
distributions.

Fig. 10: Log-Normal results

4.2.3 QGAN for a Binomial Distribution

In extending the Quantum Generative Adversarial Network
(QGAN) to model a Binomial distribution[[13]], the project
adapts the quantum implementation to accommodate the
discrete and bounded nature of this distribution. The Bi-
nomial distribution describes the number of successes in a
fixed number of independent Bernoulli trials, each with the
same probability of success.

The quantum system is configured to represent and visua-
lize a Binomial distribution, incorporating the necessary ad-
justments to capture the discrete nature of the distribution.
The quantum circuit is constructed using Hadamard gates
and an appropriate ansatz tailored to the characteristics of
the Binomial distribution. The quantum generator and dis-
criminator are trained in a manner similar to previous cases,
with a focus on the discrete nature of the distribution.

Monitoring the training progress and visualizing the re-
sulting cumulative distribution functions (CDF) and pro-
bability density functions (PDF) provide insights into the
quantum implementation’s ability to generate Binomial dis-
tributions accurately. Unlike continuous distributions, the
Binomial distribution has a finite support, and the quantum
model’s success in capturing this discrete nature is a testa-
ment to its versatility.

Fig. 11: Binomial results

4.2.4 QGAN for a Triangular Distribution

The Quantum Generative Adversarial Network (QGAN) is
further extended to model a Triangular distribution[13]], a
continuous probability distribution with a triangular shape.
The quantum implementation is adapted to accurately re-
present and visualize the characteristics of the Triangular
distribution.

Similar to the previous cases, a quantum circuit is cons-
tructed using Hadamard gates and an ansatz designed for
the features of the Triangular distribution. The quantum ge-
nerator and discriminator are trained in an adversarial man-
ner, with the quantum sampler enhancing precision throug-
hout the training process.

It is crucial to note that the Triangular distribution, like
the Log-Normal distribution, has values within a finite ran-
ge. However, distributions with zero values (e.g., at the
edges of the support) pose challenges in entropy calcula-
tion. In this case, the Triangular distribution does not have
a well-defined entropy due to the presence of values with
zero probability. This characteristic highlights a limitati-
on in representing distributions with certain features using
quantum models and emphasizes the need for careful con-
sideration of distribution-specific properties in quantum ge-
nerative modeling.

W relwesnoy

ol

Fig. 12: Triangular results

4.3 Final Tests

Finally, after testing all the models, with different configu-
rations, more epochs, we have achieved the improvement
results in the following models:

4.3.1 QGAN Gaussian Distribution

For this case, it has been possible to improve the model, op-
timising the number of repetitions of the Ansatz, in the tests
it has been seen that the optimal anzats is the efficientSU2
for almost all the models, being 3 the optimal number, for a
training of 200 epochs we obtain the result of the figurdI3]
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Fig. 13: Gaussian results

As can be seen, there is a difference in the probability
distribution between the figure[I3]and the figure[I3]

4.3.2 QGAN LogNormal Distribution

For this case, we have utilized the same metrics as discussed
in[#31] involving 3 repetitions of the efficientSU2 ansatz.
However, we have extended the training duration signifi-
cantly to observe the model’s enhancement. These are the
outcomes after training the model for nearly 7000 epochs:

Loss Relative entropy

Fig. 14: Q LogNorm results

As can be seen, unlike the [T0] figure, the[T4] figure has a
probability distribution more similar to the real one, even
overlapping at several points, whereas the previous one was
flawed in this aspect.

4.3.3 QGAN Triangular Distribution

For this case, we have taken the same metrics discussed in
@ 3 repetitions of the anzats efficientSU2, but we ha-
ve trained many more epochs, to see the improvement of
the model, these are the results of training the model 2000

epochs[I3}

Fig. 15: Q Triang results

As you can see, compared to the figure[I2] a change has
been made to the distribution to make it look like a Tri-
angular distribution, and in the figure [I5] you can see the
changes.

4.3.4 QGAN Normal with Zufal’s techniques

Finally, I made a model based on the model presented by
Zoufal in his thesis [14] and [13], pre-training the input da-
ta, finding the best rotations and then training the model
with an anzats, given by him, which is represented in the

figure[T6
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Fig. 16: Zoufal Circuit + Anzats

By pre-training the circuit, 200 epochs, the following re-
sult is achieved 7}
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Fig. 17: Zoufal Pretrain Results

Finally, training the model for a Normal Distribution,
2000 epochs, gives the following results [T8}

Retatve entrapy

i
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Fig. 18: Zoufal Results

Seeing the figure [T8] does not give the expected results,
but this is surely due to the bad configuration of the trai-
ning, or some human error, even so, following this path is
very promising given the results exposed by Zoufal, whom
I intend to contact, or continue with my tutors to improve
these results and achieve those of Zoufal [14].

5 CONCLUSIONS

In this paper, a comparison between classical and quantum
GAN models was carried out in order to evaluate their diffe-
rences and improvements. Both approaches have strengths
and weaknesses. For example, the conventional GAN mo-
del used in this study does not yield completely accurate
results, which is attributed to inherent limitations of GANSs
themselves. However, after extensive research, it was noted
that alternative GAN models, such as MMDGANSs, which
represent an evolution of classical GANs, are available to
improve accuracy. Although this particular problem was not
explored further in the context of the comparison between
GAN and QGAN, it could be considered as a line of future
research.
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On the other hand, a notable advantage of classical GANs
is that, although they do not generate completely accura-
te models, they produce results that more closely resemble
reality, almost continuously. In contrast, in the tests perfor-
med with QGAN, discrete models were obtained. In our ca-
se, we discretised at 8 points to minimise the computational
cost, since the higher the number of discretisation points,
i.e. the more continuous the function, the higher the com-
putational cost. Although this approach has an apparent
limitation, it demonstrates an effective and more efficient
performance than classical GANs.

6 NEXT STEPS

To conclude, I believe that, as I mentioned earlier, a more
effective comparison could be achieved by comparing more
advanced models. In the case of classical GANSs, it would
be interesting to contrast them with MMDGANSs. As for
QGANS, different ansatzs could be explored, such as the
one mentioned by Zoufal in his thesis [14]], or in his aca-
demic paper [13], as well as applying data pre-treatment to
improve training. However, as evidenced by the final tests,
the implementation of the latter strategy has proved unsuc-
cessful. Nevertheless, I am convinced that this could be a
promising avenue for future research. It is my intention to
pursue the path proposed by Zoufal and to further explore
these ideas once my dissertation is completed. And this is
just the beginning, because if these models can achieve go-
od results, who is to say that in the near future we will not be
able to generate images with QGAN, just as with classical
GAN? Although perhaps these expectations are too ambiti-
ous, great ideas often come from ambition.

7 CODE AVIABILITY

The full code used during all these first steps of the project
can be found on our Github public repository.
]
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