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Resum– Aquest treball pretén aprofundir en els principals models d’aprenentatge per reforç (RL)
i explorar el seu potencial en entorns de diversa complexitat. Com a punt de partida, es va
realitzar una revisió exhaustiva de l’estat de l’art, abastant tant mètodes tabulars (Q-Learning, Value
Iteration, MonteCarlo) com Deep RL (Deep Q-Learning, PPO). Posteriorment, es van implementar
els mètodes tabulars al joc FrozenLake amb l’objectiu de comparar el seu funcionament en un
entorn senzill i identificar el més eficaç, resultant Value Iteration com l’opció òptima en aquest
context. Finalment, es van entrenar models DRL per a jugar a Breakout a partir de captures de
pantalla, comparant Deep Q-Learning i PPO. En aquest cas, PPO va demostrar un rendiment supe-
rior, consolidant-se com una opció potent per a l’entrenament d’agents en entorns basats en imatges.

Paraules clau– Aprenentatge per Reforç, Mètodes Tabulars, Solucions Aproximades, Q-Learning,
Deep Q-Learning, Value Iteration, Mètodes Montecarlo, PPO, Breakout, Frozenlake, Gymnasium

Abstract– This work aims to delve into the main Reinforcement Learning (RL) models and explore
their potential in environments of varying complexity. As a starting point, an exhaustive review of the
state-of-the-art was conducted, covering both tabular methods (Q-Learning, Value Iteration, Monte
Carlo) and Deep RL (Deep Q-Learning, PPO). Afterwards, the tabular methods were implemented
in the FrozenLake game with the aim of comparing their performance in a simple environment and
identifying the most effective one, resulting in Value Iteration as the optimal option in this context.
Finally, DRL models were trained to play Breakout from screenshots, comparing Deep Q-Learning
and PPO. In this case, PPO showed superior performance, consolidating itself as a powerful option
for training agents in image-based environments.

Keywords– Reinforcement Learning, Tabular Methods, Approximate Solutions, Q-Learning,
Deep Q-Learning, Value Iteration, MonteCarlo, PPO, Breakout, Frozenlake, Gymnasium

✦

1 INTRODUCTION

Reinforcement learning (RL), inspired by behavioral psy-
chology and the idea of trial-and-error learning, introduced
a novel approach to Artificial Intelligence (AI). Unlike su-
pervised learning, where models are trained on labeled data,
and unsupervised learning, which focuses on discovering
patterns within data, Reinforcement Learning agents learn
by interacting with an environment and receiving feedback
in the form of rewards. This paradigm shift led to the cre-
ation of intelligent agents capable of making sequential de-
cisions and adapting to dynamic environments [1].

One of the early milestones in Reinforcement Learning
was the development of Q-learning by Watkins in 1989 [2],
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which laid the foundation for value-based methods. Sub-
sequent years saw the emergence of deep Reinforcement
Learning, with algorithms like Deep Q-Networks (DQNs)
and policy gradients, resulting in remarkable achievements
in gaming and robotics. The victory of AlphaGo [3] over
the world champion in the complex board game of Go in
2016 [4] marked a watershed moment, demonstrating Rein-
forcement Learning’s prowess in mastering intricate tasks.

Today, Reinforcement Learning is at the forefront of AI
research, with applications spanning from autonomous ve-
hicles and healthcare to finance and natural language pro-
cessing. Its key differentiator lies in its ability to learn from
experience, adapt to uncertainty, and optimize decisions in
dynamic and complex environments.

This project falls within the realm of Artificial Intelli-
gence and Reinforcement Learning, two areas of research
and development that have seen significant growth in recent
years. Reinforcement learning is one of three basic machine
learning paradigms. It is about learning the optimal behav-
ior in an environment to obtain maximum reward. In Rein-
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forcement Learning, the data is accumulated from machine
learning systems that use a trial-and-error method. Data is
not part of the input that we would find in supervised or
unsupervised machine learning.

Reinforcement learning is a machine learning technique
inspired by how humans and other organisms learn through
interaction with their environment. It is particularly rele-
vant in applications where an agent must make sequential
decisions to maximize cumulative reward, such as in robot
control, gaming, and recommendation systems [5].

Reinforcement learning uses algorithms that learn from
outcomes and decide which action to take next. After each
action, the algorithm receives feedback that helps it deter-
mine whether the choice it made was correct, neutral or in-
correct. It is a good technique to use for automated systems
that have to make a lot of small decisions without human
guidance.

2 OBJECTIVES

The primary goal of this project is to effectively deploy var-
ious Reinforcement Learning algorithms across a range of
video games, each increasing in complexity. Subsequently,
we aim to assess their performance and determine which
algorithm excels in achieving specific objectives.

To achieve this overarching objective and facilitate
a comprehensive algorithmic comparison, we have seg-
mented our approach into the following key components:

1. In-depth exploration of Reinforcement Learning the-
ory, encompassing a thorough examination of the mod-
els. This exploration will encompass an analysis of
their architectural aspects as well as the salient charac-
teristics that distinguish these models.

2. Implementation of the proposed models using the
Python programming language, leveraging the Gym-
nasium [6] library developed by The Farama Founda-
tion.

3. Development of a suite of functionalities designed to
visualize the outcomes generated by these models,
enabling us to make meaningful comparisons among
them.

4. Systematic experimentation with the hyperparameters
of the models, with the aim of gaining a deeper insight
into their workings and optimizing their performance
to achieve the best possible results.

3 METHODOLOGY AND PLANNING

For the execution of this project, we have opted for the uti-
lization of the Kanban methodology [7]. This choice is
rooted in its capacity to offer a straightforward and efficient
means of visualizing project progression. The employment
of Kanban boards provides clear insights into the status of
individual tasks and delineates the subsequent actions re-
quired to propel the project forward.

Furthermore, Kanban facilitates the prioritization of tasks
based on their significance and immediacy at any given
juncture. This enables a concentration of effort on the
most pivotal tasks pertinent to the project, while preventing

an undue burden on lower-priority endeavors. This strate-
gic approach aids in the optimization of both time and re-
sources, thereby enhancing the prospects of attaining the
most favorable outcomes.

To operationalize the Kanban methodology within this
project, we have elected to implement columns, including
Backlog, To Do, In Progress, Done, and Blocked.

The Backlog column serves as the initial repository for
all pending tasks. Subsequently, the To Do column accom-
modates the most critical tasks for the current project phase
and establishes those earmarked for completion during the
sprint.

Tasks underway within the ongoing sprint find their place
in the In Progress column and are subsequently moved to
the Done column upon completion. The presence of a
Blocked column allows for the identification of tasks im-
peded by various factors, such as resource constraints or
the need for additional information.

To enhance task and time management, we have divided
the project into two-week sprints. This approach affords
the opportunity to assess project progress periodically and
adapt planning as needed, guided by the objectives achieved
to date.

To implement this methodology, we will employ a Kan-
ban Board within the web-based Asana platform [8]. This
Kanban Board will be complemented by the utilization of a
Gantt chart to delineate the tasks for each sprint.

The project will be divided into two primary segments:

1. Development of Reinforcement Learning in the Frozen
Lake Environment (a simpler environment):

• 2 weeks: Comprehensive study and application
of the MonteCarlo algorithm

• 2 weeks: In-depth exploration and application of
Dynamic Programming

• 2 weeks: Mastery and application of the Q-
Learning algorithm

• 1 week: Comparative analysis and examination
of the benchmarks achieved

2. Development of Reinforcement Learning in the Break-
out Environment (a more complex environment):

• 3 weeks: Proficiency and application of Deep Q-
Networks

• 3 weeks: Competence and implementation of
Policy Gradients methods

• 2 weeks: Thorough assessment and scrutiny of
the benchmarks obtained

Additionally, one week is allocated for documentation pur-
poses, and an extra week remains unassigned to cater to any
unforeseen delays or tasks that may require more time than
initially anticipated. For a comprehensive view of the Gantt
chart and associated tasks, please refer to Section A.1.

4 REINFORCEMENT LEARNING BASICS

In this section, we will go through the basic concepts that
form the fundamentals of Reinforcement Learning, in order
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to understand the mechanisms making intelligent decision-
making in dynamic environments.

Unlike traditional programming, where specific instruc-
tions are provided, Reinforcement Learning algorithms
learn autonomously. They are not explicitly told what to
do. Instead, they discover optimal behavior through their
own exploration and feedback from the environment.

An agent initially lacks knowledge of the environment,
but it receives observations and takes actions randomly.
Following an action, the environment provides a new ob-
servation and a reward, indicating the value of that action.
Through repeated interactions and feedback, the agent de-
velops an optimal policy for playing the game.

Fig. 1: Reinforcement learning Scheme

4.1 Preliminaries
First, we will explain some key terms:

• State: Description of the situation the agent is in his
environment. In a game, it can be a screenshot of what
is happening on the screen.

• Action: A choice that the agent can make in a state. In
a game, can be a move, or any other input the player
can do.

• Value function: A function that assigns a value for
each state, in order to assign how good is to be in that
state.

• Bellman Equation [9]: An equation that relates the
value of a state to the value of the next states. It is a
fundamental equation in Reinforcement Learning.

• Policy: A function that assigns an action to each state.

4.2 Markov Decision Process (MDP)
In mathematics, a Markov decision process (MDP) [10] is a
discrete-time stochastic control process. It provides a math-
ematical framework for modeling decision-making in sit-
uations where outcomes are partly random and partly un-
der the control of a decision maker. MDPs are useful for
studying optimization problems solved via dynamic pro-
gramming. They are used in many disciplines, including
robotics, automatic control, economics and manufacturing.

The key defining feature is the Markov property, assert-
ing that the future state of the system depends solely on its
current state and the action taken, regardless of the path that
led to the current state. In Reinforcement Learning, MDPs

encapsulate the dynamics of the agent-environment interac-
tion, comprising states, actions, transition probabilities, and
rewards.

4.3 Tabular and Approximate Methods
Reinforcement Learning methods can be broadly catego-
rized into two main models:

Tabular Methods:

• These methods explicitly store and update a table to
represent the value function or policy.

• Tabular methods are effective in scenarios with a man-
ageable number of states and actions.

• Q-learning and MonteCarlo methods are examples of
tabular approaches.

Approximate Methods:

• Approximate methods generalize learning across a
continuous or large state and action space without ex-
plicitly enumerating all possibilities.

• These methods leverage function approximation tech-
niques, such as neural networks, to handle complex
and high-dimensional state spaces.

• Deep Q-Networks (DQN), Policy Gradients, and
Actor-Critic architectures are examples of approxi-
mate methods.

5 STATE OF THE ART

Before we start with the experiments and results, we will
explain what methods and environment we are going to use.

Our environments will be provided by Gymnasium [6].
Gymnasium is an open source Python library for develop-
ing and comparing Reinforcement Learning algorithms by
providing a standard API to communicate between learning
algorithms and environments, as well as a standard set of
environments compliant with that API.

Our agents (algorithms) will be coded by us, reimple-
menting some famous algorithms that have been created in
Reinforcement Learning history.

The environments provided by Gymnasium have a lot
of useful functions and classes to create and analyze Rein-
forcement Learning algorithms. We will focus on the most
important ones:

• Action Space: Every environment specifies the format
of valid actions and observations. This is helpful for
both knowing the expected input and output of the en-
vironment, as all valid actions and observation should
be contained with the respective space. If an environ-
ment only accepts the inputs for moving up, down, left
and right, the action space will be a range from 0 to 3,
in which every number indicates one action.

• Observation Space: It is what the agent will see, the
observation can be different things for different envi-
ronments. The most common form is a screenshot of
the game. There can be other forms of observations as
well, such as certain characteristics of the environment
described in vector form [11].



4 EE/UAB COMPUTER ENGINEERING THESIS: REINFORCEMENT LEARNING IN VIDEOGAMES

• Rewards: The reward that you can get from the envi-
ronment after executing the action that was given.

• Step(): It is the main function to make our environ-
ment work. Updates an environment with the given
action, returning the next agent observation, the reward
for taking that actions and if the environment has ter-
minated or truncated due to the latest action.

For this thesis, we will compare some basic Reinforce-
ment Learning algorithms and complex Reinforcement
Learning with neural networks. Simple ones won’t work
on a more complex (with more states, actions and observa-
tions) environment. So we will split the study in two envi-
ronments.

6 TABULAR METHODS

6.1 Models
In this section, we will explore in detail the algorithms that
have been instrumental in the execution of our project. Al-
gorithms are the pillar in Reinforcement Learning and serve
as the engines that power our agent’s ability to make intel-
ligent decisions in dynamic and challenging environments.

By comprehending the underlying mechanics of these al-
gorithms, we will be able to analyze and understand the
results of our work and comprehend how they have ap-
proached the challenges presented in the gaming environ-
ment. As we progress in the exposition of these algorithms,
we will appreciate their influence on intelligent decision-
making and their potential for applications beyond our cur-
rent project.

First one will be Q-Learning [2] algorithm. Q-Learning
is a Reinforcement Learning algorithm used to train an
agent to make optimal decisions in an environment it in-
teracts with. The goal is to learn a value function called
“Q” that estimates the expected value of taking a particular
action in a specific state and following an optimal policy.

Q-Learning doesn’t know anything about the environ-
ment, and learns with a trial and error method. The pseu-
docode is presented in Algorithm 1.

• The explorer policy in line 5 takes a random number
between 0 and 1, and compares it to epsilon. If the
random number is smaller we make a random action
(exploration), if not we take the action with highest Q-
Value for the actual state (exploitation).

• When we take an action in line 6. We use the method
step(), which receives our action and returns: new
state, reward and if the game has terminated or trun-
cated.

• In line 7, the elements of the equation are:

– α: Learning rate.

– Q(st, at): Current value.

– rt: Reward.

– γ: Discount factor.

– maxQ(st+1, a): Estimate of optimal future
value

Next one will be Value Iteration [12]. Value Iteration is a
dynamic programming algorithm used to solve Markov De-
cision Process (MDP) problems and find the optimal pol-
icy for an agent in that environment. It is simpler than Q-
Learning, but is more limited to stochastic environments.

The objective is to find an optimal policy, which is a strat-
egy that determines which action to take in each state to
maximize the cumulative reward over time. Value Iteration
is based on the concept of the value function. For each state,
the value function, denoted as V(s), represents the expected
cumulative reward that the agent can obtain if it starts in
that state and follows a specific policy. The pseudocode is
presented in Algorithm 2.

• In line 6, the elements of the equation are:

– P (s, a, s′): Probability of going to state s′ from
state s and action a.

– R(s′): Reward of going to state s′ from state s
and action a.

– γ: Reward corrector.

– V (s′): Estimated value of next state s′ with the
actual policy.

• ϵ is a very small positive threshold.

Last one is MonteCarlo Algorithm [13]. MonteCarlo
methods are ways to solve the Reinforcement Learning
problem using a very simple idea: the average is a good es-
timator of the expected value. Therefore, they are based on
estimating the value functions vπ(s) or qπ(s,a) from sample
averages of the return for each state (or state-action pair)

With Montercarlo, learning from real experience does not
require a priori knowledge of the dynamics of the environ-
ment to achieve optimal behaviors. And in simulated en-
vironments, although we need a model of the environment
to generate state transitions, it is not necessary to know the
exact expression of the probability distributions. The pseu-
docode is presented in Algorithm 3.

6.2 Environment

For tabular methods, we will use Frozenlake (Fig. 2).
Frozenlake involves crossing a frozen lake from start to goal
without falling into any holes by walking over the frozen
lake. The player may not always move in the intended di-
rection due to the slippery nature of the frozenlake.

The given action space will be a range from 0 to 3, which
will let the player move up, down, left and right. And every
time the player moves, it will get a reward based on his
performance:

• Ice: The reward will be 0

• Goal: The reward will be 1

• Hole: The reward will be 0

With this reward, the main objective is to complete the
game, but there won’t be any penalty for doing extra steps
or falling, due to don’t have any negative reward.
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Algorithm 1 Q-Learning

1: Initialize a Q-value table with arbitrary values for each pair (state, action).
2: for every episode do
3: Restart environment and obtain initial state s
4: while not done do
5: Choose an action a based on the explorer policy from Q-values
6: Take action a and observe the reward r and the new state s′

7: Update the Q-value of the state-action pair using the Q-value update equation:
8: Qnew(st, at) = (1− α) ·Q(st, at) + α · [rt + γ ·maxQ(st+1, a)]
9: Update the current state s← s′

10: end while
11: end for

Algorithm 2 Value Iteration

1: Initialize the value function V (s) arbitrarily for all states s
2: repeat
3: ∆← 0
4: for each state s do
5: v ← V (s)
6: V (s)← maxa

∑
s′ P (s, a, s′)[R(s, a, s′) + γ · V (s′)]

7: ∆← max(∆, |V (s)− v|)
8: end for
9: until ∆ < ϵ

Fig. 2: Frozenlake screenshot

6.3 Results
In this section, we will discuss the results of the algorithms,
and understand why they make this performance. The pa-
rameters we will use are:

• Total episodes = 2000 (QL) / 10 (Value Iteration) /
70000 (MonteCarlo): Number of times the environ-
ment is going to be played for every run.

• Total runs = 5: Number of times we will reproduce
the experiment to have more consistent results.

• Frozen probability = 0.9: Probability of a tile being
frozen and not a hole.

• Maximum number of steps = 250: After an algorithm
reaches the maximum, even if it hasn’t finished, the
environment stops.

• Map sizes = [4,7,9,11]: We will test the algorithms in
different map sizes of NxN, where N is the number in
the array.

• Gamma (QL) = 0.95: Discounting rate.

• Gamma (Value iteration) = 1: Reward corrector for
next state estimated value.

• Theta = 1 ·10-8 (Value iteration): Very small number
that is used to decide if the estimate has sufficiently
converged to the true value function.

• Epsilon = 0.1 (QL) / 0.01 (MonteCarlo): Exploration
probability

Before we analyze every algorithm, let’s take a look at
the summary Table 1.

We can see that Value Iteration is clearly better for this
task. This doesn’t necessarily mean that Value Iteration is
a better algorithm in general, just is a better algorithm for
playing Frozenlake. MonteCarlo gets the second position
by getting very good results, but with the highest time and
energy usage.

Fig. 3: Policy of Value Iteration
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Algorithm 3 MonteCarlo epsilon soft Policy

Initialize:
π ← Initialize ϵ-soft policy
Initialize action-value function Q(s, a) arbitrarily for all states and actions
Initialize visit count table N(s, a) for all states and actions to zero
while not finished (for each episode) do

Generate an episode following policy π: S0, A0, R1, . . . , ST−1, AT−1, RT

G← 0
for Every step for every episode t← T − 1 to 0 do

G← γG+Rt+1

if pair (St, At) is the first visit in the episode then
Update visit count: N(St, At)← N(St, At) + 1
Update action-value: Q(St, At)← Q(St, At) +

1
N(St,At)

(G−Q(St, At))

Update ϵ-soft policy π
end if

end for
end while
Return: π∗, the optimal ϵ-soft policy

TABLE 1: FROZENLAKE ALGORITHMS PERFORMANCE

Time (seconds) Winrate (%) Memory Usage (MiB) Energy Usage (CO2 µKg/m3)
Value Iteration 3.76 100% 195.20 17.02

Q Learning 78.27 53% 266.50 336.41
MonteCarlo 538.32 93% 137.50 1518.14

Fig. 4: Policy of Q-Learning

We see the policy learned by Value Iteration in Fig. 3.
We can see that the algorithm has developed what might be
the “perfect” policy for completing the game, independent
of how many steps does it need to do. Most of the actions
are just pointing to the goal, but let’s take a look at the tiles
near the holes. We can see that the pattern is to move in
the opposite direction of the hole, even if it means getting
further away of the goal. This is because there is a 66% of
chance to slip and don’t go to the desired direction, but you
can’t slip backwards. The map of 11x11 it is very interest-
ing, because we have some holes very close to each other,
and we can see some interesting cases like in the third row,
where there is a hole on each side horizontally. We can see
how the algorithm, decided that it is better to do an action
moving to one of the 2 holes, because there is more chance
of slipping and surviving, that to actually do the action de-

Fig. 5: Policy of MonteCarlo

sired.
In conclusion, Value Iteration has a magnificent perfor-

mance on frozenlake because all the information needed to
get the optimal policy is available since the beginning. Get-
ting a very fast time, and a perfect win rate.

Taking a look at Q-Learning performance, we might
think that it has problems to totally understands the chal-
lenge in Frozenlake. We have a 53% win rate, which would
appear that even though it understands how to complete the
game, it has problems dealing with holes.

But in reality, if we see the policy achieved in Fig. 4.
Seems that the policy achieved is very similar to Value It-
eration. Analyzing the process, we can see that we have
a lower win rate because this method needs to do a lot of
tries until it really understand the game. Even when we let
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it play for a large amount of games, it never has more than
60% win rate, that is because Q-Learning doesn’t always
follow the best action, and tries to explore random actions
in order to find new ways of achieving his purpose.

The last algorithm we will see is MonteCarlo, we can
observe in Fig. 5 how it is very similar to the others poli-
cies. One question we had when looking at it, is how it
has a better win rate than Q-Learning when they both work
with probabilities and a similar policy. Our answer is that
the probabilities of taking an action that isn’t the optimal in
MonteCarlo are smaller, which makes him win more games.

In summary, we have seen how our algorithms have made
different solutions to fronzenlake game, based on how they
calculate the optimal policy, but have points in common
when they are near a hole.

7 APPROXIMATE SOLUTIONS

7.1 Models
In this section, we delve into the foundational algorithms
shaping our Breakout environment. Consider these algo-
rithms as the sophisticated machinery powering our agent’s
strategic decisions in the intricate realm of Breakout.

Tabular methods are more accurate but computationally
expensive. They rely on discretizing the solution space,
which is ideal for simple problems, but on environments
like breakout, with a bigger load of states and information,
they are too expensive to use. That’s why we will use ap-
proximate solutions, which are less accurate but faster and
more efficient, making them ideal for complex problems.

Let’s start with the first one: Deep Q-Learning. DQL
is based on our previous algorithm Q-Learning, but now it
doesn’t save the Q-Values on a table, it uses a neural net-
work instead. The pseudocode is presented in Algorithm
4.

Where:

• γ = Discount factor

• ϵ = Exploration probability

• ϵdecay = Exploration decay rate

• ϵmin = Minimum exploration probability

• α = Learning rate

• B = Batch size

• C = Update frequency

For the second one, we will see Proximal Policy Opti-
mization. It is a more modern algorithm, developed in 2017
by John Schulman, and has very good results in games more
complicated like Dota 2, where OpenAi PPO algorithm beat
professional players [14]. We won’t be deepening much on
how it works, due to its complicated structure. We will use
it for comparing how good algorithms have been improving
these years.

Even though we won’t deepen on how it works, we will
do a brief pseudocode explication so we can have a basic
knowledge about it. The pseudocode is presented in Algo-
rithm 5.

Where:

• γ = Discount factor

• α = Value Updates

• ϵ = Clipping parameter

• K = Number of epochs for optimization

• T = Number of steps per epoch

• B = Batch size

• I = Maximum number of total steps

7.2 Environment
For approximate solutions, we will use Breakout (Fig. 6).
Breakout is an Atari game similar to the classical game
Pong [15], but is single-player. The main objective is to
destroy all bricks. Each time you hit a brick with the ball, it
bounces, and the brick is destroyed. If you let the ball fall,
you will lose one of the five lives the game gives you.

Fig. 6: Breakout screenshot

The challenging part of the game it is that depending on
how far from the center of the paddle you hit the ball, the
angle and speed of the bounce will be different.

The action space will be a range from 0 to 3. Which will
let the player:

0. Do nothing

1. Start the game

2. Move left

3. Move right

The agent gets a reward every time he destroys a block,
and the value depends on the color:

• Red - 7 points

• Orange - 7 points

• Yellow - 4 points

• Green - 4 points

• Aqua - 1 point

• Blue - 1 point
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Algorithm 4 Deep Q-Learning

1: Initialize replay memory D to capacity N
2: Initialize Q-network with weights θ
3: Initialize target Q-network with weights θ′ ← θ
4: for t = 1 to maximum time steps do
5: Reset environment and observe initial state s
6: while t = 1 != maximum time steps and not finished (for each episode) do
7: With probability ϵ select a random action a, otherwise select a = argmaxa′ Q(s, a′; θ)
8: Execute action a, observe reward r and new state s′

9: Store transition (s, a, r, s′) in D
10: Sample random mini-batch of transitions (sj , aj , rj , s′j) from D

11: Compute target values: yj =

{
rj if episode terminates at step j + 1

rj + γmaxa′ Q(s′j , a
′; θ′) otherwise

12: Perform a gradient descent step on (yj −Q(sj , aj ; θ))
2 with respect to the network parameters θ

13: Every C steps, update target Q-network weights: θ′ ← θ
14: ϵ← max(ϵmin, ϵdecay · ϵ)
15: end while
16: end for

Algorithm 5 Proximal Policy Optimization (PPO)

1: Initialize policy π with parameters θ
2: Initialize value function V with parameters ϕ
3: for step = 1 to I do
4: Collect trajectories using current policy: {(st, at, rt)}Tt=1

5: for k = 1 to K do
6: Compute advantages At =

∑T
t′=t

(
γt′−trt′ − V (st′)

)
7: Compute policy loss:

Lpolicy(θ) = − 1

T

T∑
t=1

min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)

8: Compute value loss: Lvalue(ϕ) = 1
T

∑T
t=1(V (st)− (rt + γV (st+1)))

2

9: Update policy parameters: θ ← θ − α∇θL
policy(θ)

10: Update value function parameters: ϕ← ϕ− α∇ϕL
value(ϕ)

11: end for
12: end for

The objective is easy, get as many points as you can, and
there is no time limit.

Unlike Frozenlake, where all the observation space could
be saved on a small structure, breakout complexity and di-
mensionality is a lot bigger, the ball could be in any pixel
of the screen, there are a lot of bricks and different com-
binations. That’s why the observation space in breakout
is an actual screenshot of the game, and we can’t use Re-
inforcement Learning algorithms like on last environment.
We need Deep Reinforcement Learning algorithms in order
to use the screenshots as input.

Before we start training our Deep Reinforcement Learn-
ing (DRL) algorithms, we need to optimize our environ-
ment. Because the original environment has an observation
space of 210 (length) x 160 (width) x 3 (RGB channel) x
uint8 (1 byte), which would take a lot of memory usage
if we need to do a good training. That’s why we need to
wrap our environment, and compress it to an 84 (length)
x 84 (width) x 1 (grayscale) x uint8 (1 byte), which is 14
times smaller than the original screenshot but doesn’t lose
any important information.

Compress the screenshot is not the only optimization we

will use in our algorithms, in order to make reproduce more
episodes in less time, we will stack 4 frames, which means
the agent will get their observation, and make a step every
4 frames of the game.

Related to this, but more than an optimization, something
necessary. It is that we will stack 4 frames for using as input
to our agents. The reason is simple, if we give our agents a
screenshot of the game, we lose some valuable information,
we can’t know where is the ball going, is it up? Down? We
can’t know at which speed is it going. That’s why we will
use 4 frames as input to our agent, in order to give him an
accurate representation of the movement.

7.3 Results
In this section, we will discuss the results of the algorithms,
and understand why they make this performance. The pa-
rameters we will use are:

• Total timesteps = 7000000 (DQL) / 5000000 (PPO):
We can’t limit the time the agent is training by
episodes, because it could be in an infinite loop on an
episode and never end. So for this environment, we
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Fig. 7: Screenshot of frame before losing game in DQL

will limit the time training by the maximum number
of steps.

• Buffer size = 900000 (DQL): Maximum capacity of
the buffer used as memory in DQL.

• Gradient steps = 50 (DQL): Number of steps the neu-
ral network will make to update their values in each
iteration.

• Learning rate = 0.00025: It is the rate at which the
model adjusts its weights based on the error.

• Batch size = 32 (DQL) / 256 (PPO): Represents the
batch size used for neural network optimization.

• Gamma = 0.99: Discount factor.

• Number of steps per epoch = 2048 (PPO): Repre-
sents the number of steps in the environment before
performing a policy update.

Our first algorithm to compare will be DQL, which had a
mean score of 177. We can see in Fig. 7 a screenshot of the
last frame of one of their games. We can see how almost
all the bricks have been destroyed with a four-hour training.
It’s interesting to see how the screenshot shows a score of
306, but the mean is way lower. Reproducing more games,
we can observe how it is difficult for DQL to react when
the game begins or a life is loss, because the ball is lower
and has less time to calculate where it is going to fall. For
this reason, most of the games have high scores like 300,
and low scores like 100, lowering his mean to the value
that we get at tensorboard [16]. The training time for our
best DQL algorithm has been 10 hours, with seven million
timesteps, even though the mean score doesn’t have signif-
icant improves in the mean score since the fourth million
time step, as we can see at section A.2.

Next one is PPO. One thing we observed in the early
stages of development, is that PPO is trying to play in a
smarter way than DQL. We can see how DQL with low
training time is just trying to don’t let the ball fall, while
we can see how PPO is trying to prioritize the red bricks,
which gives the maximum points. Once we got our best pa-
rameters, we can observe at table 2 how with less than half
the time of training than DQL, PPO has achieved a much
higher mean score doubling his opponent with a score of
414. PPO hardly lets the ball fall, but doesn’t still under-
stand how to aim for the remaining bricks, to the point that

Fig. 8: Screenshot of frame before losing game in PPO

most of the games ends on an infinite loop where the ball
never falls, but there are a few bricks that survives, and the
game finish after the designated time. We can see in Fig. 8
a screenshot of the last frame of one of their games. As we
can observe at section A.2. PPO still has been improving
all the training time, and we think that it still can improve
more with a bigger training time.

8 CONCLUSIONS

We have completed our objectives for this thesis. We
have achieved three functional Reinforcement Learning al-
gorithms capable of complete Frozenlake game, and two
Deep Reinforcement Learning algorithms capable of com-
plete Breakout game.

We have managed to analyze and understand the behav-
ior of the algorithms and how they have proposed solutions
to the challenges we have presented to them. We have en-
hanced the algorithms by parameterize them based on our
capabilities, as we lack sufficient resources to generate au-
tomation of optimal parameters. However, with visualiza-
tion and graphical data representation, we have been able to
improve performance.

Learning about Reinforcement Learning using video
games as an environment has been very useful to delve into
the topic. It has proven to be highly productive, given that
the use of these algorithms is valuable in many other areas
within the business sector and Artificial Intelligence.

9 FUTURE WORK

We could have better results with a bigger memory usage, in
order to multiprocess the agents and reduce execution time
needed. Our hardware and time available has been a big
limit in our results, leading to big number of directions for
future work:

• It would be worth exploring to analyze one more ap-
proximate solution, like REINFORCE algorithm.

• Add a new environment more complex than Breakout
would be interesting to see our approximate solutions
limits.

• Improve the hyperparameters with an automated tool
like Optuna library.

• Create a custom environment
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TABLE 2: BREAKOUT ALGORITHMS PERFORMANCE

Time (seconds) Mean Score Memory Usage (MiB) Energy Usage (CO2 Kg/m3)
DQL 37305.4 177 11053.53 0.269
PPO 11367.9 415 8713.11 0.065
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RAÚL VILLAR CASINO: REINFORCEMENT LEARNING IN VIDEOGAMES 11

APPENDIX

A.1 Planning

Fig. 9: Gantt Chart and tasks grouped by their status columns.

Fig. 9 shows the firsts months of the Gantt chart of the project, which is described in more detail in Section 3. This
diagram was developed using the objectives as reference for creating and analyzing the needed tasks, including time
estimates for each task and their dependencies. The Gantt chart has been an invaluable tool for the project, as it has
allowed us to visualize the project’s progress and make informed decisions.

A.2 Breakout Benchmarks

Fig. 10: Tensorboard graphic of PPO vs DQL.

Fig. 10 shows the tensorboard graphics of our algorithms PPO and DQL which in this figure has the name DQN (Deep-
Q Network). Rollout/ep len mean measures the average length of an episode, which is the number of steps taken before
the agent reaches a terminal state. Rollout/ep rew mean measures the average reward per episode. The graph on the left
shows the performance of the two algorithms on length mean. We can observe how the DQN algorithm stagnates at 1
million timesteps, while PPO continues to increase until the end of its execution at 5 million timesteps. Reviewing the
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videos of the games, we can observe that the PPO time increases so much because it starts to enter a loop in which it does
not drop the ball.

The graph on the right shows the performance of the two algorithms on reward mean. As in the previous graph, the DQN
algorithm stagnates at 2 million timesteps and its score stops improving, although it fluctuates in an unstable manner, with
great variation between each game. The PPO algorithm, on the other hand, continues to improve until 5 million timesteps,
where it achieves an average score of 400.

For a better comparison, with the state of the art, we have made a comparison versus the stable baselines 3 zoo library.
Stable Baselines 3 Zoo is an open-source Python library that facilitates Reinforcement Learning (RL) development and
implementation. It builds on top of Stable Baselines 3 and provides a collection of pre-trained RL agents, training scripts,
hyperparameter optimization tools, and other utilities.

Fig. 11: Tensorboard graphic of PPO vs DQL.

It is important to note that the analyzed zoo algorithms are incomplete. We have limited them to the same number of
timesteps as ours to make a better comparison. However, the zoo library algorithms have many more timesteps and can
reach a score of 500, making a perfect game. We can observe at Fig. 11 that our DQN algorithm has a similar behavior to
the DQN Zoo algorithm. In contrast, it can be seen that our PPO algorithm has achieved a much greater advantage in the
short training time, almost doubling the average score.

In conclusion, our results are very good for the objective we had, which was to achieve the maximum possible score
with a shorter training time. However, we cannot assure if any of our parameter adjustments are better than the current
ones in the zoo library, since we do not have enough execution time to see if our algorithms can reach the maximum score.


