
This is the published version of the bachelor thesis:

Rubio Castro, Laia; Erill Sagales, Ivan, dir. Accelerated pattern search in DNA
sequences. 2024. (Grau en Enginyeria Informàtica)

This version is available at https://ddd.uab.cat/record/298953

under the terms of the license

https://ddd.uab.cat/record/298953


TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

Accelerated pattern search in DNA
sequences

Laia Rubio Castro
July 1, 2024

Resum– La bioinformàtica utilitza mètodes informàtics per operar amb moltes dades biològiques.
Ens ajuda a entendre com funciona el DNA per crear i mantenir vius els éssers vius. Una tasca
important és trobar patrons en seqüències de DNA que controlen els gens. Aquest mètode consisteix
a analitzar grans conjunts de dades genòmiques i trobar posicions amb patrons. Aquest projecte
vol accelerar el procés de recerca d’aquestes seqüències de genòmica mitjançant un enfocament
look-ahead. Les millores s’afegiran a BioPython, un conjunt d’eines gratuı̈tes que ajuden a estudiar
la computació biològica. El projecte contribueix a estudiar els programes genètics dins de les
cèl·lules i accelerar el procés de recontrucció de xarxes de regulació amb presència genètica.

Paraules clau– Bioinformàtica, binding de proteı̈nes, ADN, motiu seqüències d’ADN, BioPy-
thon, xarxes de regulació

Abstract– Bioinformatics uses computer methods to handle large amounts of biological data. It
helps us understand how DNA works to create and keep living beings alive. One important task is
find instances of patterns in DNA sequences that control genes expression. This method consists
on looking through large genomics datasets and identifying likely pattern positions. This project
seeks to accelerate the process of finding these genomics sequences using heuristic approaches.
The improvements will be added to BioPython, a set of free tools which helps studying biological
sequence analysis. The project contributes to the inference of genetic programs within cells and to
accelerate the process of reconstructing transcriptional regulatory networks.

Keywords– Bioinformatics, protein binding, DNA, patterns, DNA sequences motifs, biological
computation, BioPython, regulatory networks

✦

1 INTRODUCTION

BIOINFORMATICS is a scientific discipline that uses
computer technology to gather, store, analyze, and
distribute biological data and information, such as

DNA sequences, as well as annotations related to these
sequences. Scientists and medical professionals rely on
databases to organize and index this biological information,
increasing our understanding of health and disease and, in
some cases, integrating them into medical practices. Nowa-
days, the challenge is no longer obtaining this information

• Contact e-mail: 1600830@uab.cat
• Specialization: Computació
• Work tutored by: Ivan Erill Sagales (Department of Information and

Communications Engineering)
• Course 2023/24

but knowing how to understand and interpret it, as bioinfor-
matics works with large genomic datasets seeking practical
insights into their complexity.

A gene is a segment of DNA that provides instructions
for creating a specific protein. While the majority of hu-
mans share the same genes in a similar sequence, with over
99.9% of DNA being identical across individuals, variations
exist. On average, there are 1-3 letter discrepancies per
gene among individuals. These differences can alter pro-
tein structure and function, as well as affect its production
timing, quantity, and location [14].

Transcription is the process by which a DNA sequence
is converted into RNA, which can then be translated into a
protein. It plays a crucial role in regulating genes and re-
sponding to changes in the cellular environment. This pro-
cess is tightly regulated to ensure that the right genes are
expressed at the right time and in the right amounts. Pro-
teins, in turn, respond to changes in the cellular environ-

Març de 2024, Escola d’Enginyeria (UAB)



2 EE/UAB TFG INFORMÀTICA: ACCELERATED PATTERN SEARCH IN DNA SEQUENCES

ment by interacting with other molecules, modifying gene
expression, and carrying out specific functions within the
cell.

As related to gene analysis, sequence motifs are becom-
ing increasingly significant in determining genetic regu-
latory networks and understanding the regulatory mecha-
nisms of individual genes. DNA sequence motifs are short,
repetitive patterns found in DNA, believed to serve a bio-
logical purpose. They frequently indicate specific binding
sites, where proteins such as transcription factors attach to
regulate transcription [9][10].

Consensus sequences are used to describe the typical
binding sequence for DNA-binding proteins and are impor-
tant in understanding gene regulation and protein-DNA in-
teractions. Creating a consensus sequence is one way of
representing the most common base at each position within
the motif. It is derived from aligning multiple instances
of the motif and determining the most frequently occurring
base at each position.

However there’s a more informative depiction of the mo-
tif, sequence logos. Unlike consensus sequences, they dis-
play the frequency of each base at each position within the
motif, as well as the degree of conservation at each position.
This leads to a more detailed understanding of the motif, in-
cluding the variability and importance of different bases at
specific positions, offering a more comprehensive and vi-
sually informative representation of DNA sequence motifs
[9][21].

Fig. 1: [1]Consensus sequence [2]PSFM [3]Sequence logo

In order to generate sequence logos we can use as basis a
Position-Specific-Frequency Matrix (PSFM) by converting
the frequency information in a PSFM into graphical repre-
sentations [Fig.1]. A PSFM is derived from a list of binding
sites for a specific protein, where the relative frequencies
of each nucleotide at each position within the binding mo-
tif are measured. These frequencies denote the conditional
probabilities of observing a particular base at a specific po-
sition in the motif given the protein’s binding. Mutual in-
formation, calculated from PSFM and background genome
frequencies, represents the reduction in uncertainty about
base occupancy in a sequence upon observing protein bind-
ing as shown in sequence logos [Fig.1] [8][18].

As each cell of the PSFM is the frequency P(ji) of the
nucleotide j at position i, if we assume all nucleotides are
equiprobable, therefor, the background frequency P(j) is

0.25. We can compute the log-likelihood as

log2(
P (ji)

P (j)
)

for each cell of the PSFM, obtaining the Position Specific-
Scoring Matrix (PSSM), which we’ll use for the motif site
search methods.

2 OBJECTIVES

DNA sequence motifs enable biomedical researchers to re-
construct transcriptional regulatory networks by scanning
genome sequences and predicting putative binding sites for
transcription factors, inferring which genes are regulated by
each transcription factor in a given genome. However, the
analysis of large volumes of genome data is predicated on
the availability of methods that enable fast scanning to pre-
dict instances of a particular DNA sequence motif. Here’s a
structured approach of the main objectives:

• Understanding DNA sequence motifs: Identifying and
characterizing DNA sequence motifs is fundamental
for understanding gene regulation, evolutionary rela-
tionships, and functional genomics.

• Exploring different site search methods: Various meth-
ods are available for identifying instances DNA se-
quence motifs, each employing distinct strategies
and algorithms. Naı̈ve methods involve straightfor-
ward approaches like Position-Specific Scoring Matrix
(PSSM) sliding windows, systematically scanning the
genome sequence for potential motifs instances. Look-
ahead methods enhance efficiency by stopping the
search if a window cannot yield a score above a spec-
ified threshold, optimizing the search process. Per-
muted look-ahead techniques prioritize positions by
importance before initiating the look-ahead process,
further optimizing motif search. Enumerative meth-
ods enumerate and score all N-mers above a threshold,
followed by string searches on the genome sequence
to identify motifs instances.

• Implementing an accelerated algorithm: Developing
an algorithm with a lookahead perspective involves
considering future steps or potential outcomes during
the search process. Prioritize optimizing critical com-
ponents of the algorithm, such as motif scoring and
alignment, to accelerate the overall search process to
validate the efficiency and effectiveness of the acceler-
ated approach against existing algorithms

• Integration with BioPython: The new algorithm or
method developed for motif searching should align
with Biopython’s modular architecture and coding
standards in order to integrate it into the project, en-
suring compatibility and usability.

3 STATE OF THE ART

3.1 Motif site search
The identification of motif instances is a crucial aspect
of genomics analysis, aiming to identify motif instances



LAIA RUBIO CASTRO : ACCELERATED PATTERN SEARCH IN DNA SEQUENCES 3

within DNA sequences that are indicative of functional el-
ements such as transcription factor binding sites or regula-
tory regions [17][11]. Here’s a more detailed explanation of
some of the existing methods:

• Naı̈ve PSSM sliding window: This method involves
scanning the genome sequence using a Position-
Specific Scoring Matrix (PSSM) within a sliding win-
dow. The PSSM is a scoring matrix representing the
binding affinity of a protein for DNA. The sliding win-
dow technique involves moving a fixed-size window
along the genome sequence and scoring each position
based on its similarity to the motif represented by the
PSSM [17].

• Look-ahead enhanced PSSM sliding: Similar to the
naı̈ve approach but with an added optimization. The
search stops if the window being scanned cannot sub-
mit a score above a certain threshold. This optimiza-
tion reduces unnecessary computations by avoiding
scoring windows that are unlikely to contain signifi-
cant matches [24][17].

• Permuted look-ahead: Before performing the look-
ahead search, positions within the genome sequence
are sorted by importance. This sorting allows prior-
itizing more relevant regions, potentially improving
search efficiency [17].

• Enumerative: This method involves enumerating and
scoring all N-mers (sequences of length N) above a
certain threshold. After scoring, a string search for
selected N-mers is performed on the genome to iden-
tify matches. This approach is exhaustive but may be
computationally expensive, especially for larger mo-
tifs [15].

• Look-ahead enumerative: Similar to the enumerative
approach but with a look-ahead optimization. Only
valid N-mers are enumerated using the look-ahead
technique. The Aho-Corasick search algorithm may
be utilized for efficient string searching [12].

• Suffix tree/array: This method involves constructing
a suffix tree or array from the sequence. Suffix trees
are data structures that allow fast substring search and
motif identification [17].

• Super-alphabet search: Increases the alphabet size to
include k-mers (sequences of length k). This approach
decreases computation with increasing alphabet size
[17] [16].

• Fourier transform: Transforms the sequence-motif
alignment problem into the frequency domain us-
ing Fourier transform techniques. This approach can
provide insights into periodic patterns within the se-
quences [17].

• Compression-based: Uses classical run-length com-
pression techniques to compress the sequence. Motifs
are identified based on the compressed sequence and
scoring is performed accordingly [17].

3.2 BioPython
Biopython is an open-source set of Python tools for com-
putational biology and bioinformatics, created by a global
team of developers. Offering a range of classes for repre-
senting biological sequences and annotations, it offers ver-
satility in reading and writing different file formats. It also
helps with programmatic access to online repositories of bi-
ological data.

When BioPython was first launched in 2000, its primary
focus was accessing, indexing, and processing biological
sequence files. Although this remains a central aspect, over
the following years the integration of additional modules,
extended its functionality over other domains within biol-
ogy [23][7].

We can access its development tools, tutorials and the
repository in the official web page [4].

4 METHODOLOGY AND PLANNING

To carry out this project, we’ll use the Scrum methodology
[19], which is an Agile project management framework that
focus on iterative progress, collaboration and flexibility to
overcome possible changes. It divides the project into iter-
ations called sprints.

To develop this project, we identified a sequence of tasks
to outline the most crucial steps to be taken, represented
into three primary phases:

• Initial Phase: In this initial stage, we will analyse and
explore the subject matter to establish objectives, plan-
ning, and the methodology to be followed.

• Development Phase: During the development phase,
we will implement the proposed models, improve-
ments and additional functionalities to get the final re-
sults.

• Final Phase: Once we obtain the results, we will
present and complete the project documentation.

We will carry out the events in 2-week Sprints, in which
each Sprint will have defined objectives with fixed tasks to
be performed.

5 DEVELOPMENT

5.1 Setup
This phase was important to understand BioPython and
identify necessary packages and the procedures to imple-
ment changes and publish updates.

We followed the BioPython tutorial [15], using their
github page [5], to get practical knowledge.

To get a better knowledge base, we practiced using self-
generated data and real-world datasets extracted from the
JASPAR database, a repository of transcription factor bind-
ing profiles [20], as well as datasets from CollecTF, a
database of transcription factor binding sites in the Bacteria
domain implement more topic-oriented examples [6].

BioPython provides simplicity and accessibility, but
some bioinformatics applications require high-speed exe-
cution. Tasks like large-scale pattern search often require



4 EE/UAB TFG INFORMÀTICA: ACCELERATED PATTERN SEARCH IN DNA SEQUENCES

optimizations and can only be achieved by low-level lan-
guages like C.

C, as a compiled language, tends to be faster because it’s
translated directly into machine code by the compiler, while
Python as an interpreted language is executed line by line
by the interpreter. In tasks where performance is essential,
such as pattern search in large DNA sequences, the speed
advantage can make a difference.

In addition, C provides direct control over memory man-
agement, enabling efficient memory allocation and deallo-
cation. This level of control can be important when work-
ing with large data sets, as it enables more accurate mem-
ory optimization compared to Python’s automatic memory
management system.

A C wrapper is a piece of C code that provides an inter-
face to C library, so it can be called from other program-
ming languages. It acts as a bridge between C code and
higher-level languages, allowing to easily integrate C func-
tions into Python scripts [13][22].

As Python and C have complementary strengths, by com-
bining them and integrating C functions into Python work-
flows via a C wrapper we enable access to their functional-
ities without sacrificing performance.

5.2 Background

Our main goal is accelerate pattern search in DNA se-
quences. To obtain it, we took as a starting point the pre-
viously reported advantages of the Look-ahead, Permuted
look-ahead and Super-alphabet algorithms [17][16]:

• Look-ahead algorithm: At each step of the score com-
putation, there is a maximum score that can be added
based on the matrix entries. For a segment s to be con-
sidered as a match, its final score Sc(s) must meet or
exceed the given threshold T. This implies that if the
partial score reached at the (m-1)th step is less than T-
Vmax[m], where Vmax[m] is the maximum value in
the m-th row, then there is no need to perform the final
comparison because the segment will never reach the
threshold. This is the same for all intermediate posi-
tions between 1 and m, and it involves computing the
minimum threshold score Ti that must be reached at
the i-th comparison step.

• Permuted look-ahead algorithm: As the purpose of
lookahead is to eliminate a non-matching segment as
soon as possible and there is no technical limitation on
computing the score in a different order, by arranging
the matrix rows differently it may result in higher inter-
mediate thresholds during the initial comparison steps.
This can lead to an earlier drop of a segment.

• Super-alphabet algorithm: This technique is used to
accelerate algorithms which are often slow in bioinfor-
matics applications due to the small size of the original
alphabet. To create the superalphabet, we fix an inte-
ger width q for the alphabet and define each q-tuple of
the original alphabet as a superalphabet symbol. The
search time is O(nm/q), which provides a theoretical
speedup by a factor of q independent of the threshold.

5.3 First Steps
Following the planned schedule we focused on the opera-
tion of the previous algorithms for their subsequent imple-
mentation:

• Look-ahead algorithm:

1. Max score estimation: Maximal score computa-
tion for the maximal value that can be added in
every scoring step, which is based on the cells of
the scoring matrix. This maximal score is deter-
mined by finding the largest number from each
column of the matrix.

2. Calculation of threshold: A minimum threshold
score should be determined at every iteration of
comparison and this may be done by calculat-
ing the maximum possible scores that can be ob-
tained starting from any given position up to the
last cell.

3. Threshold comparison: To be considered as a
match, a segment of this sequence must have a
final score greater than or equal to the threshold
value. At each similarity check stage, we have to
establish several intermediary thresholds.

4. Segment assessment: It calculates partial scores
for each segment at every step. Wherever there
exists a part-score less than an intermediate
threshold, it allows cutting off such segments
without completing the full comparison.

Fig. 2: Look-ahead example from C.Pizzi, DEI -Univ. Of
Padova (Italy)

• Permuted look-ahead algorithm:

1. Permutation matrix: To optimise the perfor-
mance in scoring segments the order of matrix
columns is permuted based on a specific criteria.

2. Calculation of scores: The algorithm calculates
the maximal and the expected score based on
background frequencies and the matrix entries
for each step of the scoring process.

3. Permutation criteria: The rows of the scoring ma-
trix are sorted based on the difference between
the maximal and expected scores to prioritise
rows that have a higher impact on the score cal-
culation.

4. Segment scoring: It evaluates the partial score
of each segment using the permuted matrix. If
the partial score is under a certain threshold, the
algorithm can discard the segment early without
completing the full comparison.



LAIA RUBIO CASTRO : ACCELERATED PATTERN SEARCH IN DNA SEQUENCES 5

Fig. 3: Permuted look-ahead example from C.Pizzi, DEI -
Univ. Of Padova (Italy)

• Super-alphabet algorithm:

1. Super-alphabet creation: It groups multiple sym-
bols from the original alphabet to create a new al-
phabet that represents multiple symbols as a sin-
gle one in order to reduce the search space com-
plexity.

2. Preprocessing: The algorithm uses the super-
alphabet and the original matrix to obtain an
equivalent scoring matrix for the super-alphabet
symbols.

3. Searching process: It searches for patterns or
matches using the symbol sequences and scoring
matrices.

4. Matching pattern: It applies pattern matching
techniques to identify specific patterns within the
sequences.

Fig. 4: Super-alphabet example from C.Pizzi, DEI -Univ.
Of Padova (Italy)

5.4 IDE Configuration
As this project requires the ability of working with two dif-
ferent programming languages we looked for an environ-
ment that could support that.

Our first option was to use PyCharm or CLion with the
proper extensions as we were familiar with the environ-
ments. However, despite it seemed intuitive we couldn’t
find the proper official extensions for each language and
therefore we couldn’t confirm its effectiveness and use.

Our final choice was the IDE Visual Studio Code [2] as
we had already worked with it, it had the Microsoft official
extensions and it seemed intuitive and easy to configure.
Once the program was correctly installed we had to install

the extensions that fulfilled our requirements from the ex-
tensions tab.

On one side we had C programming, for which we
needed C/C++, C/C++ extension pack and CMake Tools to
get a useful workflow.

On the other side, we had Python programming, for
which we needed Python and Python debugger extensions.
All of them from Microsoft as a verified publisher.

Despite the functions we implemented were in C, we
needed to make sure we had Python installed in our com-
puter as we used a Python interpreter to execute the pro-
gram. Moreover, we had to modify from the .vscode folder
the c cpp properties.json file to include the path where the
python libraries were located to use the header Python.h in
the C source file to be able to execute it with Python. A
guided tutorial of the process is presented in the readme file
of the repository [3].

We faced several challenges while setting up our project
on a Mac with M1 SoC. The primary issues were detecting
the paths for Python libraries and handling autogenerated
files from the modules with incompatible extensions for the
GCC compiler. Our objective was to execute the program
by addressing the path detection problem and ensuring com-
patibility of the generated files with the compiler.

We suspected that the incompatibility issues were caused
by the differences between Clang, which was the com-
piler used by the computer, and the GCC compiler that the
project expected. To test this hypothesis, we adopted a try-
and-test approach. We analyzed the build process, identi-
fied the specific areas where Clang’s behavior differed from
GCC and experimented with various configuration adjust-
ments.

Upon reconfiguring the environment from scratch on a
Windows computer and following the same steps, we ob-
served a smooth setup process and successfully executed
the program. This confirmed our initial hypothesis that
the incompatibility issues were indeed caused by the dif-
ferences between Clang and GCC compilers on the Mac.

Once we had everything configured and knew the steps
we had to follow we started with the implementation of
each algorithm. As we mentioned before, our project con-
tained code in C from each searching algorithm therefore,
we created 3 C files. To incorporate this files to python, we
created a setup.py file which was called from Pyhton to use
the algorithms and finally a main.py file to test the proper
execution and performance of each function.

The full implementation with comments for a better un-
derstanding can be found in the repository [3].

5.5 Setup file
This file is essential for creating Python modules that wrap
around C functions, enabling the efficient execution of al-
gorithms in Python.

This script uses Setuptools, a popular library for packag-
ing Python projects, to build and distribute these extensions.
Its primary purpose is to configure and automate the process
of compiling and installing C extensions for Python, which
allows the execution of C-implemented algorithms within a
Python environment, making it easier for developers to dis-
tribute their algorithms as Python packages. Additionally,
it ensures that the C extensions can be easily installed and



6 EE/UAB TFG INFORMÀTICA: ACCELERATED PATTERN SEARCH IN DNA SEQUENCES

used by others, following Python’s packaging and distribu-
tion conventions.

It starts by importing the Setup and Extension functions
from Setuptools. The Setup function is used to specify the
configuration for the package, and Extension is used to de-
fine the C extensions.

The script begins by creating an Extension object named
look ahead with the source file lookAhead.c to define the
look ahead module. The setup function then configures the
package with metadata such as the name: look ahead, ver-
sion: 1.0, and a description of the package.

Similarly, it defines the permuted look ahead and su-
per alphabet modules, each with their respective Extension
objects and source files, and configures the package with
appropriate metadata.

5.6 Look-ahead implementation
The planned design was successfully implemented, with the
algorithm being coded, tested, and integrated into a Python
module.

The primary tasks involved designing the algorithm, im-
plementing it in C, wrapping the C implementation into a
Python module, and testing and validating the module with
sample data.

It begins by defining the function and parsing its argu-
ments. The function look ahead takes a DNA sequence (s),
a scoring matrix (scoring matrix obj), the width of the ma-
trix (m), and a threshold (t) as inputs, which are parsed us-
ing PyArg ParseTuple. Dynamic memory allocation is then
performed for the scoring matrix, which is a 2D array where
each row represents a position in the motif, and each col-
umn represents one of the four nucleotides (A, C, G, T).

The algorithm calculates the maximum possible score at
each position of the scoring matrix and stores these values
in an array (max scores).

It then creates an array (Z) to hold the cumulative max-
imum possible scores from each position to the end of the
scoring matrix, which helps in determining the intermediate
thresholds (T intermediate) used to decide the early drop off
of sequence evaluation.

The algorithm processes each segment of the DNA se-
quence, calculating the total score for each position in the
segment. If the cumulative score doesn’t reach the interme-
diate threshold at any point, the evaluation for that segment
stops early, providing a speedup over the basic scoring ap-
proach. Segments that meet or exceed the score threshold
are added to the result list, which is returned at the end.

5.7 Permuted look-ahead implementation
As both algorithms use the same basis, once we checked
the look-ahead algorithm was working properly we imple-
mented the additional functions to get the permuted look-
ahead.

The main tasks involved creating the remaining parts that
differ from the look-ahead, implementing them in C, con-
verting them into a Python module, and testing the module
with sample data. The algorithm’s permuted look ahead
function takes a DNA sequence (s), a scoring matrix (scor-
ing matrix obj), the matrix width (m), and a threshold (t) as
inputs, which are parsed using PyArg ParseTuple.

Dynamic memory allocation followed the same process.
The permute scoring matrix function is used to permute the
scoring matrix, calculating maximum scores for each col-
umn. Columns are sorted based on these scores to optimize
the scoring process.

The algorithm computes the maximum possible score at
each position of the permuted scoring matrix and stores
these values in an array (max scores). Another array (Z)
is created to store the cumulative maximum possible scores
from each position to the end of the scoring matrix to de-
termine intermediate thresholds (T intermediate) to decide
early termination of sequence evaluation.

The algorithm processes each segment and return a list
following the same methodology previously explained.

Testing with various DNA sequences and scoring matri-
ces confirmed that the algorithm correctly identifies mo-
tifs exceeding the score threshold. The permuted look-
ahead approach significantly reduces computational load by
dropping evaluations early when further calculations cannot
meet the threshold.

5.8 Super-alphabet implementation
The previous task of setting up the project IDE took sig-
nificantly longer than expected due to multiple errors and
challenges.

We needed to not only resolve these setup issues but
also ensure the accurate implementation of our algorithms.
However, the complexities involved in the setup made our
focus goes towards error fixing rather than algorithm devel-
opment and testing.

During this process, we encountered some errors that
required time and effort to resolve. Additionally, the im-
plementation of the algorithms had to be reviewed several
times because some internal components were not well de-
fined. This process was necessary to make sure the algo-
rithms were correctly implemented but added to the delays.

These delays affected the overall timeline of the project.
Although we implemented the super-alphabet algorithm,
we were unable to fully test it due to the unexpected time
spent on setup and redefining. As a result, we cannot con-
firm its correct performance and, therefore, it won’t be pre-
sented in this version of the project. This approach ensure
that only tested and verified components are included in the
project.

5.9 Results and Discussion
First, we ensured that the results we obtained were accurate
by verifying that the scores and positions matched those cal-
culated using the BioPython method [??].

We then evaluated the performance of our implemented
algorithms Look-ahead (LA) and Permuted look-ahead
(PLA) by measuring their execution times across various
real test cases. These test cases use the motifs defined by
the binding sites of LexA, CRP, H-NS, ArcA, and RutR and
the E.coli genome as the sequence to search, downloaded in
FASTA from NCBI [1].

The execution times for each algorithm are presented in
this graph. It illustrates the execution times for the BIO
PSSM, which is the method provided by BioPython that
also uses a PSSM matrix to search matches, the LA and



LAIA RUBIO CASTRO : ACCELERATED PATTERN SEARCH IN DNA SEQUENCES 7

the PLA algorithms across the five test cases, with each al-
gorithm represented by a distinct color.

Fig. 5: Comparative analysis of execution times across dif-
ferent cases

The BIO PSSM algorithm consistently showed the high-
est execution time across all test cases, ranging from 1.58
seconds (H-NS) to 2.09 seconds (CRP), indicating that it is
less time efficient compared to the other algorithms.

The LA algorithm showed a significant reduction in exe-
cution time compared to BIO PSSM, with execution times
ranging from 0.18 seconds (RutR) to 0.39 seconds (CRP).

The PLA algorithm achieved the lowest execution times
in most cases, ranging from 0.15 seconds (LexA, H-NS,
RutR) to 0.22 seconds (ArcA).

The average execution times of each algorithm across all
test cases are 1.836 seconds for BIO PSSM, 0.25 seconds
for LA and 0.166 seconds for PLA. We used these averages
to calculate the improvement percentages.

We first calculated the improvement percentage of the
LA compared to the existing searching method BIO PSSM,
which is approximately 86.41%. This proves that our im-
plementation indeed accelerated the pattern search process.

As the LA method shares the same basis as the PLA
and the additional steps made on the latter are theoreti-
cally made to speed up the performance, we then compared
the improvement percentage of the PLA compared to the
LA, which is approximately 33.6%. This confirms that our
implementation meets the expectations with an overall im-
provement percentage compared to BIO PSSM of approxi-
mately 90.95%.

A more comprehensible way to understand the results is
by calculating the speed up, which is a measure of how
much faster an improved algorithm performs compared to
a reference algorithm. It’s calculated by the following for-
mula:

SpeedUp =
ExecutionT imeOfReferenceAlgorithm

ExecutionT imeOfImprovedAlgorithm

We obtained that the LA is approximately 7.344 times faster
than the BIO PSSM algorithm. And that the PLA algorithm
is approximately 11.06 times faster than the BIO PSSM al-
gorithm and 1.506 times faster than the LA algorithm.

Additionally, we evaluated the performance of these al-
gorithms on datasets with longer and shorter self-generated
motifs to further validate the theoretical independence be-
tween motif length and execution speed. This is represented
in the following graphic.

Fig. 6: Comparative analysis of execution times across dif-
ferent self-generated cases

For longer motifs, the BIO PSSM algorithm again shows
the highest execution times. In contrast, LA and PLA
algorithms maintain significantly lower execution times,
demonstrating their efficiency.

For shorter motifs, both LA and PLA algorithms show
even lower execution times, with minimal variation, fur-
ther supporting the theoretical independence between motif
length and execution speed.

In conclusion, the comparative analysis shows that the
LA and PLA algorithms are more efficient than the BIO
PSSM method. This validates that our implementations
not only match but exceed the efficiency of existing so-
lutions, ensuring faster and more effective DNA sequence
motif analysis.

5.10 Future Work
We have fully accomplished the first two objectives, allow-
ing us to implement and validate the motif search algo-
rithms (LA and PLA).

Due to the delays we encountered, we prioritized ensur-
ing the fully correct performance of these two algorithms
and comparing them to the existing method in BioPython
to evaluate the results. As a result, we have declared the de-
velopment and testing of the super-alphabet (SA) algorithm
out of our scope for the moment, and it can be considered
for future work.

Despite the challenges and delays, these experiences pro-
vided us with valuable learning opportunities in unexpected
areas. We will focus on integrating the LA and PLA algo-
rithms into BioPython, thereby expanding the toolset avail-
able for DNA sequence motif analysis and achieving our
primary objective.

ACKNOWLEDGMENTS

I am very thankful to my tutor, Ivan Erill, for providing
assistance and guidance during this project. His insights,
encouragement, and support were crucial to the successful
completion of this project.

REFERENCES

[1] Ncbi: National center for biotechnology information,
Accessed: 10th of may of 2024.



8 EE/UAB TFG INFORMÀTICA: ACCELERATED PATTERN SEARCH IN DNA SEQUENCES

[2] Visual studio code, Accessed: 21th of april of 2024.

[3] Github repository, Accessed: 26th of may of 2024.

[4] Biopython, Accessed: 5th of march of 2024.

[5] Biopython github, Accessed: 6th of abril of 2024.

[6] Collectf, Accessed: 9th of abril of 2024.

[7] B. Chapman and J. Chang. Biopython: Python tools
for computational biology. ACM Sigbio Newsletter,
20(2):15–19, 2000.

[8] DataVersity. Motifs and mutations: The logic of se-
quence logos, Accessed: 5th of march of 2024.

[9] P. D’haeseleer. What are dna sequence motifs? Nature
biotechnology, 24(4):423–425, 2006.

[10] I. Erill. A gentle introduction to. . . information con-
tent in transcription factor binding sites. 2010.

[11] L. Gao, W. Bao, H. Zhang, C.-A. Yuan, and D.-S.
Huang. Fast sequence analysis based on diamond
sampling. Plos one, 13(6):e0198922, 2018.

[12] S. Hasib, M. Motwani, and A. Saxena. Importance of
aho-corasick string matching algorithm in real world
applications. Journal Of Computer Science And Infor-
mation Technologies, 4:467–469, 2013.

[13] G. K. Kloss. Automatic c library wrapping ctypes
from the trenches. 2009.

[14] National Human Genome Research Institute. National
human genome research institute, Accessed: 5th of
march of 2024.

[15] C. G. Nevill-Manning, K. S. Sethi, T. D. Wu, and D. L.
Brutlag. Enumerating and ranking discrete motifs. In
ISMB, volume 5, pages 202–209, 1997.

[16] C. Pizzi, P. Rastas, and E. Ukkonen. Fast search algo-
rithms for position specific scoring matrices. In Inter-
national Conference on Bioinformatics Research and
Development, pages 239–250. Springer, 2007.

[17] C. Pizzi and E. Ukkonen. Fast profile matching al-
gorithms—a survey. Theoretical Computer Science,
395(2-3):137–157, 2008.

[18] RCSB PDB. Sequence motif search, Accessed: 5th of
march of 2024.

[19] S. Sachdeva. Scrum methodology. Int. J. Eng. Com-
put. Sci, 5(16792):16792–16800, 2016.

[20] A. Sandelin, W. Alkema, P. Engström, W. W. Wasser-
man, and B. Lenhard. Jaspar: an open-access database
for eukaryotic transcription factor binding profiles.
Nucleic acids research, 32(suppl 1):D91–D94, 2004.

[21] T. D. Schneider and R. M. Stephens. Sequence logos:
a new way to display consensus sequences. Nucleic
acids research, 18(20):6097–6100, 1990.

[22] K. W. Smith. Cython: A Guide for Python Program-
mers. ” O’Reilly Media, Inc.”, 2015.

[23] Wikipedia contributors. Biopython, Accessed: 5th of
march of 2024.

[24] T. D. Wu, C. G. Nevill-Manning, and D. L. Brutlag.
Fast probabilistic analysis of sequence function us-
ing scoring matrices. Bioinformatics, 16(3):233–244,
2000.


