
This is the published version of the bachelor thesis:

Torrents Vila, Valentí; Casas Roma, Jordi, dir. Reinforcement learning in video
games. 2024. (Enginyeria Informàtica)

This version is available at https://ddd.uab.cat/record/298980

under the terms of the license

https://ddd.uab.cat/record/298980

TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

Reinforcement Learning in Video Games

Valentı́ Torrents Vila
July 2, 2024

Resum– Aquest projecte explora l’aprenentatge reforçat (RL) en videojocs, una tècnica de machine
learning que entrena un agent per aprendre a jugar a videojocs pel seu compte. Aquest projecte
combina recerca teòrica amb implementacions pràctiques des de mètodes tabulars fins a mètodes
basats en aprenentatge profund. Comença amb una introducció als fonaments de RL, aplicant
solucions tabulars com Q-learning a l’entorn de Frozen Lake. A continuació, es dedica a resoldre
el repte CartPole utilitzant approximate solution methods, i a millorar els resultats implementant
una feedforward Deep Q-Network (DQN). El projecte culmina amb el desenvolupament d’una
xarxa neuronal convolucional (CNN) DQN per abordar el joc Pong d’Atari. Els resultats emfatitzen
l’adaptabilitat i el potencial de RL en videojocs, destacant millores significatives en la consistència
d’aprenentatge i el rendiment a través d’arquitectures neuronals avançades.

Paraules clau– Aprenentatge Reforçat, Mètodes Tabulars, Programació Dinàmica, Mètodes
Monte Carlo, Q-learning, Deep Q-Network, Convolutional Neural Networks, Function Approximation.

Abstract– This project explores reinforcement learning (RL) applications in video games, a machine
learning technique that trains an agent to learn how to play video games on its own. Ranging
from tabular methods to more advanced deep learning-based approaches, this project combines
theoretical research with multiple practical implementations. It begins with an introduction to RL
fundamentals, applying tabular solutions like Q-learning to the Frozen Lake environment. Then goes
into solving the CartPole challenge using approximate solution methods, and improving those results
implementing a feedforward Deep Q-Network (DQN). The project culminates with the development
of a convolutional neural network (CNN) DQN to tackle the Atari Pong game. Results emphasize the
adaptability and potential of RL in video gaming, highlighting significant improvements in learning
consistency and performance through advanced neural architectures.

Keywords– Reinforcement Learning, Tabular Methods, Dynamic Programming, Monte Carlo
Methods, Q-learning, Deep Q-Network, Convolutional Neural Networks, Function Approximation.

✦

1 INTRODUCTION

1.1 Context

REINFORCEMENT learning is a type of machine
learning centered around how an intelligent agent
should behave in an environment in order to

achieve an specific goal. [3] Unlike other machine learning
methods, like supervised learning or unsupervised learning,
reinforcement learning’s (RL) goal is to generate an intelli-
gent agent that learns on its own while interacting with a dy-

• E-mail: valentovi55@gmail.com
• Specialisation: Computation
• Work tutored by: Jordi Casas Roma
• Year 2023/2024

namic environment. Through trial and error, the agent must
chose which of the possible actions yield the most reward
(both immediate and long-term), until achieving the neces-
sary “knowledge” to go through the environment without
any problems and solving it.

1.2 Objectives and expected results

The goal of this project is to dive into the world of Rein-
forcement Learning while using the Gymnasium library [2]
effectively. Going from the fundamentals of RL, the project
aims to understand and implement different RL algorithms.
Starting with a quick introduction, and going through the
basics with different tabular methods, our final objective is
to go deep into the most complex methods applicable to
video games. The following objectives mark the trajectory
of this project:

Juliol de 2024, Escola d’Enginyeria (UAB)

2 EE/UAB TFG INFORMÀTICA: RL IN VIDEO GAMES

1. Develop foundational understanding of Reinforcement
Learning and proper use of the Gymnasium library.

2. Study and implement tabular methods such as Dy-
namic Programming, Monte Carlo, or Q-learning to
create an agent capable of solving simple environ-
ments.

3. Study and comprehend some non-tabular methods,
like policy-based methods and Deep Q-Networks
(DQN) [7].

4. Apply the acquired knowledge to solve more complex
and sophisticated environments, enhancing the agents’
capabilities.

5. Generate a series of agents, each more complex, ca-
pable of achieving desired results in various games,
while documenting findings and utilizing visualization
tools to ensure a thorough exploration of Reinforce-
ment Learning in video games.

1.3 Metodology
We have chosen to work using the Agile methodology for
this project, working in iterative sprints each lasting two
weeks. Using this methodology allows continual reassess-
ment and adjustment if necessary since reinforcement learn-
ing is a dynamic field and it will need some adaptability.
Through the regular review sessions with the tutor, we will
check the gradual progression of the project, and provide
checkpoints for evaluation, adaptation, and resolution of
new obstacles as they appear.

1.4 Planning
The project planning is visualized through a Gantt Diagram
in figure 9. This will be a dynamic tool to help the devel-
opment of the project. At first it shows the main objectives
and milestones necessary and, over time, using the Agile
methodology, the Gantt diagram will show more, depend-
ing on the obstacles faced and the necessary changes that
appear in the process.

2 STATE OF THE ART

Having gone through the basics of this project, we can now
get into a more detailed explanation of what is the State of
the art like, and how our first implementations of reinforce-
ment learning methods has been like.

2.1 Introduction to RL
As we have just explained in the introduction, RL stands at
an in-between point of artificial intelligence and decision-
making. Thanks to that, it offers a powerful structure for
creating and teaching agents to navigate through sequen-
tial decisions in dynamic environments. Simply put, RL
revolves around the interaction between an agent and a spe-
cific environment. Through observations, this agent can
perceive its environment and, based on its current state, se-
lects one action or another. Furthermore, and depending
on the specifics of the environment, the agent receives feed-
back in the form of rewards. Depending on the actions taken

by the agent in each situation, these rewards can vary, indi-
cating the desirability of said actions. Through these re-
wards, the agent is guided towards learning optimal strate-
gies. To further understand how Reinforcement Learning
works, we have to talk about its components:

• The environment is the problem space with which the
agent interacts. All the states, possible actions, re-
wards and rules that the agent has to abide come from
the environment. Its dynamics dictate how the agent’s
actions modify future states and rewards, and even
though we usually see dynamic environments in RL,
there can also be static ones.

• The agent is the principal entity in RL, and the one
that takes the decisions, earns the rewards, and goes
through the environment. By navigating through the
environment, and recieving different inputs from it, the
agent learns to make better decisions. Its goal is to fol-
low a behaviour (policy) which maximizes the rewards
over time, solving then the task at hand.

• Actions are the choices available to the agent at each
step within the environment. Depending on which ac-
tion the agent takes, its surroundings will be influenced
one way or another. Actions can be discrete (finite op-
tions) or continuous.

• The states represent the current position or configura-
tion of the environment. Depending on the moment
and the position of the agent, the state changes and,
with it, all the relevant information used by the agent
to make decisions.

• Rewards are provided by the environment to the agent,
and are signals that evaluate its actions. They can
present inmediate or delayed feedback, and are the re-
sposibles for the changes in the agent’s behaviour over
time, since its objective is to maximize these rewards
in order to solve the environment.

• Policies define the agent’s behavior by relating all
states to actions. They mark the strategy followed by
the agent to achieve its objectives. These policies can
be deterministic, where each state has a specific ac-
tion, or stochastic, where all actions have a probabil-
ity of happening depending on the state and policy pa-
rameters. The objective of all Reinforcement Learn-
ing algorithms is to achieve the optimal policy vπ that
maximizes long-term rewards, and leads the agent to
solving the environment.

By interacting iteratively with its environment, and learn-
ing from its experience, RL algorithms generates agents
that learn autonomously how to behave, solving different
tasks, from video games to controlling robots. By learning
through trial and error, and without supervision, RL ends
up being perfectly adequate to solving scenarios where the
agent must adapt to dynamic and complex environments.

AUTHOR: VALENTÍ TORRENTS VILA 3

Fig. 1: RL General Framework
[1]

2.2 Gymnasium
Gymnasium [2] serves as a versatile platform for the de-
velopment and evaluation of reinforcement learning algo-
rithms. Offering a diverse array of environments spanning
from classic control problems to complex simulated scenar-
ios, Gymnasium provides a standardized interface for inter-
acting with different tasks. Each environment in Gymna-
sium is encapsulated as a Markov decision process (MDP)
[3], allowing agents to interact with states, take actions, re-
ceive rewards and transition between states based on proba-
bilistic dynamics. With its user-friendly API and extensive
documentation, Gymnasium [2] empowers researchers and
practitioners to prototype, benchmark, and iterate on var-
ious reinforcement learning techniques with ease. More-
over, Gymnasium’s compatibility with popular RL libraries
and frameworks fosters collaboration and accelerates the
advancement of RL research and applications.

2.3 RL Methods
In the current state of reinforcement learning (RL), re-
searchers employ tabular and non-tabular methods. Tabu-
lar methods, like dynamic programming and Monte Carlo,
excel in small-scale tasks with discrete state and action
spaces. They offer theoretical guarantees but struggle with
larger, continuous spaces. Non-tabular methods, including
deep reinforcement learning (DRL), leverage function ap-
proximation, particularly neural networks, to handle com-
plex, high-dimensional environments. DRL algorithms like
deep Q-networks (DQN) and policy gradients have demon-
strated success in diverse applications, from robotics to
gaming. Both approaches complement each other, with
tabular methods providing theoretical foundations and non-
tabular methods offering scalability and adaptability to real-
world problems.

3 TABULAR METHODS

To get to understand the basics of RL we first have to talk
about the tabular methods. These are the simplest ones in

RL, since they store a specific action for each state in a
table-like structure. The tabular methods we will talk about
are Dynamic Programming, Monte Carlo methods, and Q-
learning. To do so, we will work with finite Markov Decis-
sion Processes (MDP), trying to estimate value functions,
which are functions of states that tell use how positive is for
the agent to be in a specific state. [3]

3.1 Markov Decission Processes
A Markov Decission Process (MDP) is a mathematical
model used in RL to make sequential decisions in a stochas-
tic environment. Basically, an MDP describes a system (or
environment) where an agent makes decisions which results
are subject to uncertainty. Just like the parts of a RL envi-
ronment, a MDP contains states, actions and rewards. How-
ever, a MDP also contains a Transition Model, which de-
scribes the transition probabilities from one state to another
after taking a certain action. In order to solve a finite MDP,
we can use different tabular methods, which we are going
to talk about now.

3.2 Dynamic Programming
Dynamic Programming (DP) [3] is used to find the optimal
policies to follow in order to solve a finite MDP. In a
finite MDP, states, actions, and rewards are finite, and their
dynamics are represented by transition probabilities. In
order to achieve a good policy in RL in general, we use
value functions. With DP we can compute these value
functions by satisfying the Bellman optimality equations.
The Bellman Optimality Equations express the principle of
optimality, that an optimal policy can be decomposed into
smaller subproblems, each of which is solved optimally. In
the field of MDPs, the Bellman Optimality Equations [3]
are:

v∗(s) = max
a

∑
s′,r

p(s′, r | s, a) [r + γv∗(s
′)] (1)

q∗(s, a) =
∑
s′,r

p(s′, r | s, a)
[
r + γmax

a′
q∗(s

′, a′)
]

(2)

In our project, we employed policy iteration to find this
optimal value function. First, we initialized a policy, and
then evaluated and improved it iteratively until it converged.
To keep evaluating the policy we had, we estimated the
value function with the current policy using the Bellman
Equations. Afterwards, we selected the actions that max-
imized the expected returns in order to update the policy.
After repeating this 2 steps several times and observing no
further improvements, we had the optimized value function
and policy that let us guide the decision-making through the
MDP.

3.3 Monte Carlo Methods
Even though Monte Carlo and DP are both tabular meth-
ods, Monte Carlo methods do not require a model of the
environment to operate. Instead, they rely on trial and error,
sampling trajectories by interacting with the environment.
In our Monte Carlo policy evaluation process, we began by

4 EE/UAB TFG INFORMÀTICA: RL IN VIDEO GAMES

executing episodes according to the current policy, collect-
ing state-action-reward trajectories. After each episode, we
calculated returns for each visited state, providing estimates
of their values. These returns were then averaged over mul-
tiple episodes to update the value function incrementally.
Optionally, we improved the policy based on the estimated
values, possibly selecting actions greedily to maximize re-
turns. This iterative refinement continued over multiple
episodes until convergence, where the estimated value func-
tion approached the optimal one as the number of episodes
increased.

3.4 Q-learning
Now that we have talked about both Monte Carlo and
DP methods, we can get to understand temporal-difference
(TD) learning [3], one of the most important methods of
RL. TD is a mix of DP and Monte Carlo ideas, since it can
learn directly from experience like Monte Carlo, and also
update estimates from past estimates without having to wait
for the final outcome, like DP.
From all the different TD methods, we just have worked
with Off-Policy Q-learning [3], because it presents a dif-
ferent logic from the rest of the tabular methods. In Q-
learning, the agent maintains an estimate of the value of
each state-action pair represented by the action-value func-
tion Q(s, a). This function quantifies the expected cumu-
lative reward that the agent will receive by taking action a
in state s, and then following the optimal policy. With Q-
learning, we aim to iteratively improve this estimate until
it converges to the optimal action-value function. However,
in off-policy Q-learning, we find that the agent learns from
experiences generated by following a different policy than
the one being learned.
Off-policy Q-learning allows agents to learn from past
experiences generated under different policies, leading to
faster learning. It effectively balances exploration (trying
new actions) and exploitation (leveraging known informa-
tion) in complex environments. This approach is versatile,
enabling both policy evaluation and improvement, and ben-
efits from experience replay to stabilize learning. Addition-
ally, it’s suitable for batch learning settings, where agents
learn from fixed datasets, making it practical in scenarios
where online exploration is challenging or costly.

3.5 Tabular Methods testing and results
To further understand the algorithms behind all three tabu-
lar methods we have talked about, we applied them to the
Frozen Lake environment from the Gymnasium library [4].
This environment, as shown in figure 2, consists on helping
an elf go from the initial state (top left) to the end state
(bottom right). With the is slippery parametter on True,
this environment becomes slightly more complicated than
it appears to be, making it non-deterministic. Without be-
ing slippery, the character would move where you tell it
to. However, with the slippery on, the agent has a 33.3%
chance of moving to the given direction, and 33.3% chance
of moving to any of the two contiguous directions (e.g. if
you choose right it can go right, up or down). The move-
ments are: 0: LEFT, 1: DOWN, 2: RIGHT, 3: UP.

Fig. 2: Gymnasium Frozen Lake 4x4

With DP, we followed the pseudocode in algorithm 1 to
achieve the optimal policy. The policy generated was π =
[0, 3, 3, 3, 0, 0, 0, 0, 3, 1, 0, 0, 0, 2, 1, 0], with a success rate
of 82%. If we used the 8x8 Frozen Lake environment, this
percentage went to a 100%, since there was a possible route
with no chances of failing.
The algorithm used to implement Monte Carlo is the one
shown in algorithm 2. The policy generated with MC was
π = [0, 3, 0, 3, 0, 0, 0, 0, 3, 1, 0, 0, 0, 2, 1, 0], which led the
agent to solve the environment 78% of the time.
For Q-learning, the pseudocode was the algorithm 3. The
policy generated was the same as in DP, making them
equally efficient at solving the 4x4 Frozen Lake environ-
ment.

Algorithm 1: Policy Evaluation
Data: π, the policy to be evaluated,
A threshold θ > 0 accuracy of estimation,
V (s) initialized arbitrarily.
while ∆ > θ do

∆← 0
foreach s ∈ S do

v ← V (s)
V (s)←∑

a π(a|s)
∑′

s, rp(s
′, r|s, a)[r + γV (s′)]

∆← max(∆, |v − V (s)|

Algorithm 2: First-visit MC prediction
Data: π, the policy to be evaluated,
V (s) initialized arbitrarily,
Returns(s)← an empty list.
while forever do

Generate an episode following π:
S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT

G← 0
for t = T − 1 to 0 do

G← γG+Rt+1

if St not in S0, S1, . . . , St−1 then
Append G to Returns(St)
V (St)← average(Returns(St))

AUTHOR: VALENTÍ TORRENTS VILA 5

Algorithm 3: Q-learning Off-policy
Data: Step size α ∈ (0, 1],
ϵ > 0
Q(s, a) for all s ∈ S+, a ∈ A(s) initialized arbitrarily.
foreach episode do

Initialize S
foreach step of episode do

Choose A from S using policy derived from
Q(ϵ-greedy)

Take action A, observe R,S′

Q(S,A)←
Q(S,A) + α[R+ γmaxaQ(S′, a)−Q(S,A)]

S ← S′

until S is terminal

4 APPROXIMATE SOLUTION METHODS

Now that we have understood the basics of RL, we can dig
into a more complex field. Unlike when we were work-
ing with tabular methods, most of the state spaces we will
be working with RL will be extremely complex and large.
That is why we cannot aim to find an optimal policy vπ ,
but instead to find an approximate solution. To do so, the
main tool we will be using is Generalization. Through gen-
eralizing the problems we face, we treat them like similar
problems we have already faced, thus achieving proper re-
sults without the need of dedicating enormous quantities of
time and data. In this second section of the project, we will
be talking about different Approximate Solution Methods
[3] and how to implement them in different environments.

4.1 On-Policy Prediction
We begin this chapter by focusing on the utility of function
approximation to estimate the state-value function from on-
policy data. Here, instead of representing vπ as a table,
we use a parametrized functional form with a weight vector
w ∈ Rd. In practice, v̂(s, w) approximates vπ(s), and this
functional form might be realized within a neural network
or as the criteria for split points in a decision tree.
It’s important to remember that the dimensionality of w is
generally much lower than the number of states. This means
that updating the value of one state affects the values of oth-
ers due to generalization, which offers more potent learning
potential but also complicates management and understand-
ing.
This chapter sets the foundation for understanding on-
policy approximations in reinforcement learning, highlight-
ing their theoretical underpinnings and practical implica-
tions in both fully and partially observable environments.

4.2 Value-function Approximation
Up until now, when we updated a specific state, we only
shifted a tiny bit the overall behaviour of our agent to-
wards the desirable policy, by modifying only the esti-
mated value of the state we updated. Each of these up-
dates is represented by s 7→ u, where s is the state
updated and u is the update target where s is shift-
ing towards. Now, with generalization, the updates
at s also change the estimated values of many other
states. Machine learning methods that do this are called

supervisedlearningmethods, and when the outputs are
numbers, we call them functionapproximation. To gen-
erate an estimated value function using these methods, we
take the s 7→ u of each update as training examples. By
doing this, we enable these methods to be treated like any
other learning method, and can now apply some of their
algorithms. However, due to the necessity of having inter-
actions and live updates, we need methods able to handle
non stationary target functions.

4.3 PREDICTION OBJECTIVE
Through all this chapter, we have talked about the weight
vector w but, how can we choose a proper w?
In tabular methods, the learned value function could end
up being the true value function. However, here it cannot.
Changing one state affects others, so we will never reach
the correct value for all of them at the same time. That is
why we need to give more importance to some of the states,
specifying a distribution µ(s) ≥ 0,

∑
s µ(s) = 1, which

represents how much we care about the error in each state.
The error here is calculated with the difference between the
approximate value v̂(s, w) and the true value vπ(s). Know-
ing all of this, we can now create an objective function,
V E(w), which we will want to minimize in order to obtain
the best w.

V E(w)
.
=

∑
s∈S

µ(s) [vπ(s)− v̂(s,w)]
2 (3)

At first, this formula seems too complicated to apply, since
we are summing through an exponentially big space (µ),
and we are working with the true value vπ which we don’t
know. However, there are some algorithms with which we
can approximately optimize it.

4.4 Stochastic Gradient Descent
In order to approximately optimize what we just talked
about, we can use Stochastic Gradient Descent, also known
as SGD. To work with SGD, we need to make several as-
sumptions. Since we will be updating w as we bounce
through the state space according to the on-policy distribu-
tion, all states must be visited in proportion to µ, which is
what we have chosen from the on-policy distribution. Fur-
thermore, our value function v̂(s, w) has to be differentiable
with respect to w, necessary to calculate the gradient. And,
as we said before, there needs to be a surrogate for vπ(St),
which is Ut.
With all this, SGD provides us with an update rule to apply
to w for each visit to a state.

wt+1 = wt + α [vπ(St)− v̂(St,wt)]∇v̂(St,wt) (4)

Where α is the step-size parameter, and ∇v̂(St, w) is the
gradient. Following this rule, SGD methods adjust w by a
small ammount in the direction that would reduce most the
error in that specific visit to that state.
Even though it may not seem obvious at first, it is necessary
to carefully select which is the value of α. If the step on a
certain direction was too big, we could end up with a value
function with zero error in a certain state, but an abysmal

6 EE/UAB TFG INFORMÀTICA: RL IN VIDEO GAMES

error in others. Taking small steps, and gradually adjusting
w, will let SGD methods converge to a local optimum.
We now focus on the target Ut. If the expected value of Ut

in a state St equals the true value vπ(s), we call Ut unbi-
ased, and w will undeniably converge into a local optimum
of V E.

4.4.1 Examples of Gradient Descend methods

Monte Carlo methods involve generating states by interact-
ing with the environment using a policy π and updating the
weights using the return Gt, an unbiased estimate of vπ(St).
The weight update using Monte Carlo is shown below:

w← w + α [Gt − v̂(St,w)]∇v̂(St,w) (5)

However, Monte Carlo’s reliance on complete episodes for
updates slows down the learning process. An alternative
is bootstrapping, which uses current estimates of future re-
turns for more frequent updates. This approach introduces
bias since Ut now depends on wt, making it a semi-gradient
step:

w← w + α [R+ γv̂(S′,w)− v̂(S,w)]∇v̂(S,w) (6)

Despite potential complications, semi-gradient methods,
like semi-gradient TD(0), can offer faster convergence com-
pared to Monte Carlo, similar to advantages observed with
TD methods such as Q-learning.

4.5 Linear Methods
In function approximation, linear methods are crucial for
the simplicity and effectiveness they bring. With these
methods we approximate the state-value function as a lin-
ear combination of weights (w) and feature vectors (x(s)),
represented by:

v̂(s,w) = w⊤x(s) (7)

Following the algorithm used in the previous chapter, we
can now see how this linear structure simplifies the update
rule in Monte Carlo and temporal difference methods.
In Monte Carlo methods, the weight update formula is:

w← w + α(Gt − v̂(St,w))x(St) (8)

For gradient TD methods, the semi-gradient TD(0) up-
date becomes:

w← w + α[R+ γv̂(S′,w)− v̂(S,w)]x(S) (9)

These rules adjust the weights based on the temporal dif-
ference error, making the updates directly proportional to
the prediction error, which enhances efficiency and makes
it easier to interpret.
Feature construction also plays a crucial role in the applica-
tion of linear methods. Utilizing polynomial features allows
the model to capture complex interactions among state vari-
ables. For example, with two variables s1 and s2, the poly-
nomial features are represented as:

x(s) = (1, s1, s2, s
2
1, s1s2, s

2
2)

⊤ (10)

These features allow the model to approximate more com-
plex value functions.

4.6 Approximate solution methods testing
and results

In this section, we present our experiments using the Cart-
Pole environment [5] from the Gymnasium library to eval-
uate the performance of Gradient Monte Carlo (GMC) and
Gradient Temporal Difference (GTD) methods. The goal
was to analyze the efficacy of these methods in reinforce-
ment learning tasks, specifically in terms of their ability to
balance the pole and maintain the cart within bounds.

4.6.1 Introduction to the CartPole Environment

The CartPole environment is a classic reinforcement learn-
ing problem where a cart, which can move horizontally
along a track, has a pole attached to it. The state space
consists of four continuous variables: cart position, cart ve-
locity, pole angle θ, and pole angular velocity θ̂. The action
space is discrete with two possible actions: pushing the cart
left or right. We can see a representation of it in figure 3

Fig. 3: Illustration of the CartPole environment
[6]

The primary goal is to keep the pole balanced for as long as
possible. The environment terminates when the pole falls
past a certain angle or the cart moves too far from the cen-
ter. The agent receives a reward for each time step the pole
remains upright, encouraging strategies that maintain bal-
ance. Balancing the pole requires continuous and precise
adjustments to the cart’s position and velocity, making the
CartPole environment an excellent testbed for evaluating re-
inforcement learning algorithms.

4.6.2 Results and Discussion

At first, we measured both methods in terms of their ability
to maximize the total reward over a series of episodes. The
results were surprisingly poor, leaving us questioning what
was wrong. We tried implementing the algorithms using
regular gradient descend, as well as applying lineal meth-
ods. By using polynomial features, we went from having
the 4 main features to having 15, including the bias. After
applying these changes, we got to see some improvement,
but it was not enough.
In the GMC implementation, with a learning rate of 0.001,
a discount factor of 0.95, a exploration rate ϵ of 0.01 and
training for 100,000 episodes, the final weights of the fea-
tures looked like this (see figure 4): As we can see, most of
the feature weights converged to reasonable values. How-
ever, the bias weight always went to a number close to 8.
This made the whole model shift to a higher value when
deciding which action to take, rendering the model as a

AUTHOR: VALENTÍ TORRENTS VILA 7

Fig. 4: Evolution of feature weights over time

failiure. However, by testing manually different values, we
found that if we changed the bias’ weight to a number close
to 0.02 the model worked much better, going from an av-
erage reward per episode of 10 to an average of 150 steps
until termination.
The Gradient Temporal Difference method, specifically us-
ing TD(0), updates the value function incrementally based
on the temporal difference error. In the implementation of
this method we tried different values for the parameters, and
after seeing no kind of improvement, we decided to stick
with the same we used in GMC. Although GTD was sup-
posed to be faster at converging than GMC, the bias weight,
as well as the others, remained a persistent issue, leading to
less stable policy updates (see figure 5).

Fig. 5: Evolution of feature weights over time

After having trained the agent for 100,000 episodes, and
not seeing a proper convergence, the average reward per
episode was 15. Having reviewed the whole code, and find-
ing no way of improving from the actual state, we decided
to focus on the next section of the project in hopes of ob-
taining better results.
The implementations of SGD methods highlighted the chal-
lenges associated with the bias weight in both Gradient
Monte Carlo and Gradient Temporal Difference. Even
though both methods showed potential, addressing the bias
weight issue is crucial if we want to achieve more proper
and stable results.

5 DEEP REINFORCEMENT LEARNING

Deep Reinforcement Learning (DRL) combines reinforce-
ment learning (RL) with deep learning [9]. In RL, an agent
learns by interacting with an environment to maximize re-
wards. DRL uses deep neural networks to handle complex,
high-dimensional environments wit which traditional RL
would struggle.

5.1 About DRL
DRL excels in solving problems in large state spaces and
complex environments, making it really useful for advanced
applications. DRL can learn from raw data, enabling more
sophisticated decision-making.
The main field where DRL is implemented are:

• Video Games: Achieving superhuman performance in
complex games like Go, Chess, and Atari games.

• Robotics: Tasks like manipulation, locomotion, and
navigation using sensory inputs.

• Natural Language Processing: Dialogue generation,
machine translation, and text-based games.

5.2 Deep Q-Networks
Deep Q-Networks (DQNs) integrate Q-learning with deep
neural networks to address high-dimensional state spaces.
DQN employs a neural network to approximate the Q-
function, predicting the maximum expected future reward
for an action in a specific state.
The key components of the DQN architecture include:

• Function Approximation with Neural Networks:
DQN uses a neural network to approximate Q-values,
processing complex environments and potentially han-
dling image inputs.

• Experience Replay: This mechanism breaks corre-
lation between experiences by storing and randomly
sampling them from a buffer, enhancing the training
stability.

• Fixed Target Network: A stable copy of the Q-
network, Q(s, a; θ−), updates less frequently to avoid
divergence in training, using:

y = r + γmax
a′

Q(s′, a′; θ−) (11)

• Loss Function and Optimization: DQN minimizes
the mean squared error between predicted and tar-
get Q-values, updating network parameters θ via op-
timization methods:

L(θ) = E(s,a,r,s′)∼D

[
(y −Q(s, a; θ))

2
]

(12)

• Exploration-Exploitation Trade-off: DQN employs
an ϵ-greedy policy, which decreases ϵ over time to tran-
sition from exploration to exploitation.

• Handling High-Dimensional Inputs: DQN utilizes
convolutional neural networks (CNNs) for processing
inputs like images, extracting relevant spatial features.

8 EE/UAB TFG INFORMÀTICA: RL IN VIDEO GAMES

This configuration facilitates stable and efficient learn-
ing in DQNs by addressing key challenges of reinforcement
learning in complex environments.

5.2.1 Types of DQNs

Having talked about DQNs, we now need to know how dif-
ferent deep neural networks can help create our DQN:

• Feedforward Neural Network (FNN) DQNs: They
use a fully interconnected naural network to approx-
imate the Q-value function. The network contains
one input layer, multiple hidden layers with activation
functions (like ReLu) and one output layer. The input
is the state representation, and the output layer pro-
vides Q-values for each action. The network is trained
using the Bellman equation to update Q-values based
on rewards and future estimates. This type is simple to
implement but struggles with high-dimensional inputs.

• Convolutional Neural Network (CNN) DQNs:
These are ideal for processing high-dimensional state
spaces like images. The architecture includes convo-
lutional layers to detect spatial features, followed by
fully connected layers. The input is typically an im-
age or a stack of images, and the output layer provides
Q-values for each action. Training involves updating
Q-values based on rewards and future estimates using
the Bellman equation.

As we just mentioned, Rectified Linear Units (ReLU) are an
activation function used in both Feedforward Neural Net-
works (FNNs) and Convolutional Neural Networks (CNNs)
to introduce non-linearity and help the networks learn more
complex patterns. It outputs the input directly if it’s posi-
tive, and zero otherwise. In FNNs, ReLU is applied after
each hidden layer to improve training efficiency and model
performance. In CNNs, it is used after each convolutional
layer to activate features detected by filters, helping in the
learning of intricate patterns.

6 DQN TESTING AND RESULTS

In this project, we implemented two different DQN to test.
The first one is a DQN using feedforward neural networks
to solve the cartpole environment (same one used in sec-
tion 4.6). It is a more simple approach that allows us to
understand the basics of a DQN, and lets us compare its re-
sults with the stochastic gradient implementations. The sec-
ond one was a DQN using convulational neural networks to
solve the pong environment from Gymnasium, a more com-
plex environment that required a DQN capable of having
image inputs. In both implementations we used the tensor-
flow library to generate the neural networks that will ap-
proximate the Q-functions in both DQNs.

6.1 Cartpole Environment using FNN DQN
The development process involves creating a Deep Q-
Learning Network (DQN) to train an agent to balance a pole
on a cart. The key steps include initializing the environ-
ment, designing the neural network, implementing the train-
ing loop, and managing the exploration-exploitation trade-

off. The process is iterative, involving frequent evaluation
and adjustment of key parameters. [8]

6.1.1 Initialization

First, we initialized the CartPole environment, providing
state and reward information for the agent. Key parame-
ters are defined for the DQN: the discount factor (gamma)
which determines the importance of future rewards, typi-
cally set to 0.99; the exploration rate (epsilon) that con-
trols the exploration-exploitation trade-off, initially set to 1,
which decays over time; and the total number of episodes
for training.

6.1.2 Neural Network Design

The DQN uses a feedforward neural network architecture.
The input layer receives the state representation from the
environment, which for CartPole is a vector representing
position, velocity, angle, and angular velocity. The network
is generated with two hidden layers with ReLU activation
functions. The first hidden layer consists of 128 neurons,
while the second hidden layer has 56 neurons. These neu-
rons serve as the main computational units that process the
inputs from previous layers and pass the output to the next.
The output layer provides the Q-values for each possible ac-
tion (move left or move right) and has two neurons with a
linear activation function. The design also includes main-
taining two networks: the main network and the target net-
work. The main network is used to predict the Q-values
for the current state, while the target network predicts the
Q-values for the next state. The target network is updated
periodically to stabilize the training process.

6.1.3 Replay Buffer

The replay buffer is initialized at the beginning of the code,
and stores the experiences of the agent throughout train-
ing to allow it to learn from past interactions. Then, we
randomly sample a batch of experiences from the replay
buffer to train the neural network. By implementing a re-
play buffer and using batch sampling, the DQN is able to
learn more efficiently and effectively, making better deci-
sions over time as it is exposed to a wide variety of experi-
ences.

6.1.4 Training Loop

For each episode, we reset the environment and initialized
the variables to track rewards.
We then ran the episode until it terminated, or it got to 400
steps (to stop it from being too slow). In order to take a
step, we first used the epsilon-gredy policy to select either a
random action (exploration) or the one with the highest pre-
dicted Q-value (exploitation). After performing the action,
we observed the next state, reward, and if it terminated. Fi-
nally, after storing the experience in the replay buffer, if it
had enough experiences we sampled a batch and trained the
main network, adjusting the target network periodically.

6.1.5 Results analysis

After training the agent for over 500 episodes, it got to a
point where he got to the maximum possible number of

AUTHOR: VALENTÍ TORRENTS VILA 9

steps before terminating, thus balancing the cartpole prop-
erly.
We can see in figure 6 that there is a steady increase in the
Q-value. This indicates that, as training goes on, the agent is
learning to predict higher rewards, showing how the policy
is improving the performance. Fluctuations may indicate
exploration phases or instability in learning.

Fig. 6: Average Q-value over Time

In figure 10 we can observe that as training progresses ϵ de-
cays, and the agent explores less and exploits more, relying
on learned knowledge to make decisions.
We observe in figure 7 that, even though the agent kept get-
ting better, there were still some fluctuations on the total
rewards until the very end. This happened because even if
the policy followed was already good, some possible initial
states led the agent to fail. After more training, though, the
agent corrected this and achieved a perfected policy.

Fig. 7: Sum of Rewards per Episode

Overall, the results were really good. We tested different
values for the discount factor, the exploration rate, and the
total number of episodes to train for, and decided to work
with the ones in the code.
For more information about the results, see cartpole DQN’s
stored videos on the github [see appendix]

6.2 Pong Environment Using CNN DQN
The development of this part involved creating a DQN us-
ing convulational neural networks [9] to solve the Pong en-
vironment from Gymnasium [10]. Even though the basis of
this implementation was the same as in the first one, hav-
ing to use CNN to compute the image inputs made a huge
difference.

6.2.1 Environment Description

The Pong environment from Gymnasium emulates a sim-
plified table tennis game with one paddle at each horizontal

end of the screen. The agent controls the right paddle, and
competes against the left paddle controlled by the computer.
Each one tries to keep bouncing the ball away from their
goal and into their opponent’s goal. The observable space
for the agent is a matrix of pixel values and can choose from
six discrete actions, these being to move the paddle up (both
2 and 4), down (3 and 5), or keeping it stationary (0 and 1).
The objective is to maximize the score difference against
the opponent, with the agent receiving a reward for each
point scored and a penalty for points lost.

6.2.2 CNN Architecture

To effectively process the visual input from the Pong en-
vironment, a CNN is utilized. The CNN is created by 3
convulational layers, followed by a flatten layer, 2 fully
connected layers and ending in the output layer. The in-
put layer initiates the feature extraction by capturing basic
spatial features such as edges and general shapes from the
input images. Then, the intermediate CNN layers extract
complex spatial features and provide detailed and localized
analysis useful for decision-making. The flattening layer
converts the 3D output from the convolutional layers into
a 1D vector to make the fully connected processing eas-
ier. The dense layers then process the flattened vector, in-
tegrating and interpreting the extracted features, beginning
the decision-making process. And finally, the output layer
outputs the Q-values for each possible action based on the
current state.
A more visual description of our CNN can be seen with
keras’ model.summary [11] as shown in figure 11.

6.2.3 Deep Q-Learning Framework

The different functions used on this implementation doesn’t
differ much from the previous one. We have the experience
replay, which now samples batches of 32 experiences to use
for training. We also have the epsilon-greedy policy, which
works the same way as in the FNN DQN, having ϵ decay
from 1 to 0.01 over time. We use functions like make env,
play one step and training step, which allow a more struc-
tured functionallity of the code, simplifying actions like cre-
ating and modifying the pong environment, deciding which
action to take, storing the experiences in the replay buffer,
and other necessary steps for the proper implementation of
the neural network.
Lastly, we used a training loop, which put everything to-
gether to train the agent, storing all the relevant data to al-
low data visualization.

6.2.4 Training and Evaluation

We trained the agent for 700 episodes. After having ϵ de-
cay to 0.01, and seeing how the learned policy guided the
agent to play pong, we decided to stop the training pro-
cess. What we observed, unfortunately, was that the pol-
icy learned didn’t lead the agent to behave properly on the
environment, ending up with the worst total reward possi-
ble every single time. In figure 8 we can observe how, af-
ter relaying almost entirely on the Q-values, and not doing
many random actions, the rewards flatlined. We consider
that this implementation was well constructed and orga-
nized and, even though it concluded without proper results,

10 EE/UAB TFG INFORMÀTICA: RL IN VIDEO GAMES

Fig. 8: Total sum of rewards per episode

it has been useful to get to understand more how a DQN us-
ing CNN works. With a different approach and more time,
we hopefully would have obtained better results. Unfortu-
nately, it was not possible due to the extension limitations
of the project.

7 CONCLUSIONS

This project has demonstrated the adaptability and robust
potential of RL techniques across different video game
environments, through the application of tabular methods
in simpler environments like Frozen Lake and the use of
DQNs and Approximate Solution Methods to solve more
complex environments like CartPole and Atari Pong.
RL has been demonstrated to consistently improve the effi-
ciency and effectiveness of game playing agents. The im-
plementation of a feedforward DQN in the CartPole en-
vironment, for example, showed the capacity of DRL to
achieve a stable performance through refining the agent’s
responses even after already having proper results. More-
over, the CNN DQN developed for the Pong environment
ended up being even more useful, being able to handle high-
dimensional state spaces with a degree of sophistication that
traditional methods could not achieve.
However, we cannot say the journey has been without dif-
ficulties. Even after understanding how different RL algo-
rithms work, and beginning to implement them to solve dif-
ferent environments, there were many challenges to over-
come. Both algorithm selection and parameter tuning were
crucial to the proper developement of the algorithms, since
a careless approach would mean inaccurate results. Each
method, from dynamic programming to Monte Carlo and
temporal-difference learning, to Function Approximation
and DQns, presented unique benefits and limitations, re-
flecting the complexity present in RL applications.
Looking ahead, this project presents a solid basis for future
investigations and implementations surrounding the poten-
tial scalability of RL methods, both in gaming, and in other
areas. Next steps could revolve around searching for more
optimal implementations to the ones we had trouble with,
as well as integrating some of the already working RL im-
plementations to environments not shown on this project.
The remarkable adaptability shown by RL methods to en-
gage in a wide variety of challenges in video gaming not
only emphasizes their potential within this area, but also il-
lustrates the fact that a broader implementation of RL meth-
ods in technology and AI research would be prosperous.
The insights and knowledge gained from this project can’t
help but encourage more thorough and deeper exploration
in this continually evolving field.

SPECIAL THANKS

I want to thank my tutor Jordi Casas for letting me work in
a project as interesting as RL, and helping me throughout
the process. I also want thank my friends who listened to
me ramble on and on about how was the project going. And
thanks to my family that helped me get where I am now,
and have been by my side since the beginning.

REFERENCES

[1] The General Framework of Reinforcement
Learning. (2023). [Online]. Available: https:
//www.scribbr.com/wp-content/uploads/2023/08/the-
general-framework-of-reinforcement-learning.webp
(Accessed: February 14, 2024)

[2] Gymnasium Documentation. [Online]. Available:
https://gymnasium.farama.org/ (Accessed: February
17, 2024)

[3] R. S. Sutton and A. G. Barto. Reinforcement Learning:
An Introduction. Cambridge, MA: MIT Press, 2020.

[4] Gymnasium Frozen Lake Documentation. [On-
line]. Available: https://gymnasium.farama.org/
environments/atari/pong/ (Accessed: February 28,
2024)

[5] Gymnasium Cartpole Documentation. [On-
line]. Available: https://gymnasium.farama.org/
environments/atari/pong/ (Accessed: May 1, 2024)

[6] A. Haber. Cart Pole Control Environ-
ment in OpenAI Gym. [Online]. Available:
https://aleksandarhaber.com/cart-pole-control-
environment-in-openai-gym-gymnasium-
introduction-to-openai-gym/ (Accessed: May
15, 2024)

[7] Jesse Farebrother, Marlos C. Machado, and
Michael Bowling. Generalization and Reg-
ularization in DQN. [Online]. Available:
https://doi.org/10.48550/arXiv.1810.00123 (Ac-
cessed: June 1, 2024)

[8] A. Haber. Deep Q-Networks (DQN) in Python from
Scratch by Using OpenAI Gym and TensorFlow:
Reinforcement Learning Tutorial. [Online]. Avail-
able: https://aleksandarhaber.com/deep-q-networks-
dqn-in-python-from-scratch-by-using-openai-gym-
and-tensorflow-reinforcement-learning-tutorial/
(Accessed: June 10, 2024)

[9] Yuxi Li. Deep Reinforcement Learning: An Overview.
[Online]. Available: https://arxiv.org/abs/1701.07274
(Accessed: May 22, 2024)

[10] Gymnasium Pong Documentation. [Online]. Avail-
able: https://gymnasium.farama.org/environments/
atari/pong/ (Accessed: June 10, 2024)

[11] TensorFlow Keras Library Documentation. [On-
line]. Available: https://www.tensorflow.org/guide/
keras (Accessed: June 10, 2024)

https://www.scribbr.com/wp-content/uploads/2023/08/the-general-framework-of-reinforcement-learning.webp
https://www.scribbr.com/wp-content/uploads/2023/08/the-general-framework-of-reinforcement-learning.webp
https://www.scribbr.com/wp-content/uploads/2023/08/the-general-framework-of-reinforcement-learning.webp
https://gymnasium.farama.org/
https://gymnasium.farama.org/environments/atari/pong/
https://gymnasium.farama.org/environments/atari/pong/
https://gymnasium.farama.org/environments/atari/pong/
https://gymnasium.farama.org/environments/atari/pong/
https://aleksandarhaber.com/cart-pole-control-environment-in-openai-gym-gymnasium-introduction-to-openai-gym/
https://aleksandarhaber.com/cart-pole-control-environment-in-openai-gym-gymnasium-introduction-to-openai-gym/
https://aleksandarhaber.com/cart-pole-control-environment-in-openai-gym-gymnasium-introduction-to-openai-gym/
https://doi.org/10.48550/arXiv.1810.00123
https://aleksandarhaber.com/deep-q-networks-dqn-in-python-from-scratch-by-using-openai-gym-and-tensorflow-reinforcement-learning-tutorial/
https://aleksandarhaber.com/deep-q-networks-dqn-in-python-from-scratch-by-using-openai-gym-and-tensorflow-reinforcement-learning-tutorial/
https://aleksandarhaber.com/deep-q-networks-dqn-in-python-from-scratch-by-using-openai-gym-and-tensorflow-reinforcement-learning-tutorial/
https://arxiv.org/abs/1701.07274
https://gymnasium.farama.org/environments/atari/pong/
https://gymnasium.farama.org/environments/atari/pong/
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/guide/keras

AUTHOR: VALENTÍ TORRENTS VILA 11

APPENDIX

Fig. 9: Gantt Diagram

Fig. 10: Epsilon Decay over Episodes

Fig. 11: CNN model summary using Tensorflow Keras

Here is the link to the GitHub repository where all
the code developed during this project is stored. URL
to the repository: https://github.com/ValentiTorrents/TFG
Reinforcement Learning

https://github.com/ValentiTorrents/TFG_Reinforcement_Learning
https://github.com/ValentiTorrents/TFG_Reinforcement_Learning

