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Abstract– There are many historical ciphered documents that are still preserved in libraries world-
wide, their content still unknown to researchers even after all this time. Since manual decryption is
not viable, many researchers have resorted to machine learning practices. The usual techniques
use a pipeline approach (first transcription, then decryption), causing a high level of dependance
between tasks. The objective of this work is to propose a deep-learning model to transcribe and
directly decipher these document images. First, we formed different versions of the same data set
with real handwritten images and synthetic replicas. After the image generation, we performed a total
of 18 experiments across tasks, data sets, and configurations. Among other findings, we concluded
that our model obtains different results depending on the task at hand, despite working with the same
data sets and parameters.

Keywords– Decipherment, Historical manuscripts, Image generation, Sequence-to-sequence
model, Transcription

Resum– Hi ha molts documents històrics xifrats conservats a biblioteques arreu del món amb
continguts encara desconeguts pels investigadors. Com el desxifrat manual no és una opció viable,
molts investigadors han acudit a mètodes d’aprenentatge automàtic. Les tècniques habituals utilitzen
un enfocament de pipeline (primer transcripció, després desxifrat), provocant una alta dependència
entre les tasques. L’objectiu d’aquest treball és proposar un model d’aprenentatge profund per
transcriure i desxifrar directament imatges d’aquests documents. Primer es van formar diferents ver-
sions del mateix conjunt de dades, imatges de documents reals i rèpliques sintètiques. Després de
la generació d’imatges, es va realitzar un total de 18 experiments entre tasques, conjunts de dades
i configuracions. Entre altres descobriments, es va concloure que el nostre model obté resultats
depenent de les tasques, malgrat treballar amb els mateixos conjunts de dades i paràmetres.

Paraules clau– Desencriptació, Manuscrits històrics, Generació d’imatges, Models sequence-
to-sequence, Transcripció

✦

1 INTRODUCTION

THROUGHOUT the history of humanity, there has al-
ways been the need to hide sensitive information.
Many encrypted manuscripts have been collected

and preserved in different libraries and archives, their con-
tent still unknown to researchers even after all this time.
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From diplomatic correspondence and intelligence reports
to private diaries and secret societies, the details of these
manuscripts could aid in historical investigations. Man-
ual methods to decipher classical cryptographic algorithms
have been inefficient and time-consuming, which is why the
automation or semi-automation of these processes has been
the objective of computer scientists interested in historical
cryptography. There have been a couple of initiatives to de-
velop techniques to ease the large-scale deciphering process
for some ciphers. For instance, the DECRYPT project [1]
has developed resources and tools to analyse and decode
encrypted manuscripts.
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The main topic of this bachelor’s thesis will be the di-
rect decipherment of historical documents by proposing a
joint end-to-end approach. Most of the proposed decipher-
ing methods rely on pipeline structures where the image is
transcribed, analysed and deciphered. This approach causes
a high degree of dependance between all the stages; the mis-
takes from the previous phases concatenate into the next
one. However, there are not many studies on the possibility
of directly deciphering these images. We will explore their
direct decipherment by first examining the transcription of
historical documents with the intention of comparing their
performances.

2 OBJECTIVES

The main objective of this bachelor’s thesis is to study the
direct decryption and transcription of images containing ci-
phered documents from historical contexts. Before tackling
these tasks, a study of the current state of the art will be
conducted, and a suitable data set will be assembled. The
data set will be formed with real handwritten images of
lines from historical manuscripts alongside artificial images
meant to mimic the real ones. We will develop methods and
functions to generate these synthetic images. Once the main
architecture is developed, the model’s performance will be
tested and evaluated accordingly.

In conclusion, the objectives of this bachelor’s thesis can
be summarised into five different ambitions:

1. The study of the current methods and techniques in the
state of the art.

2. The generation of images containing synthetic cipher-
text.

3. The transcription of images containing ciphered text.

4. The direct decipherment of images containing ci-
phered text.

5. The evaluation and assessment of the implemented
models.

3 STATE OF THE ART

The decipherment of historical manuscripts usually starts
with a transcription of the document image, i.e. from the
real-life cipher text contained in a scanned document image
to a computer-readable format. In other words, the task is
to save the encrypted text in a format that can be used in the
following steps. These handwritten ciphers are often writ-
ten in an unknown alphabet, which also needs to be identi-
fied. Other common challenges in the transcription process
include handwritten styles, irregularities, alignment imper-
fections, and deteriorations in the paper. There are many
methods that have been successfully applied for automatic
transcription, like Recurrent Neural Networks with manual
post-correction [2], Siamese Neural Networks with a Gaus-
sian mixture model [3], and other unsupervised models [4-
6], among others.

When the transcription has been completed, the cipher-
text needs to be deciphered into plaintext. The typical ci-
phers used in historical documents are either substitution

ciphers, transposition ciphers, or a combination of those.
The first one substitutes each character for another one ac-
cording to a key, a substitution table. They can do the re-
placements one letter per one letter or one letter per multiple
ones: monoalphabetic ciphers and homophonic ciphers, re-
spectively. The second kind rearranges the characters of the
plaintext.

Since the decryption of ciphers is a complex matter, re-
searchers have found multiple methods to decode them.
The chosen strategy may vary depending on each case,
too. For instance, there are some cases where some clear-
text could be found along the encrypted text. Other times,
there are decoded sections within the text that could help
crack the cipher. These cases are commonly referred to
as known-plaintext attacks. By contrast, ciphertext-only at-
tacks only have access to the ciphertext. The cryptanalysts
usually have to detect the cipher type and the language be-
hind the ciphertext, before attempting to find the key. Our
case would fall under the ciphertext-only attack, but directly
from scanned images. In other words, we aim to directly de-
cipher the images without knowing the plaintext language,
the key or the method of encryption.

Some studies view the automatic decipherment of en-
crypted texts as a natural language processing problem.
NLP is a subfield of artificial intelligence that utilises ma-
chine learning techniques to manipulate, understand and
manage human language. Consequently, these methods are
used in a variety of language-related tasks, such as machine
translation, text summarization or speech recognition. Al-
though they do not specialise in the decipherment of his-
torical manuscripts, the problem can be framed as a trans-
lation task from an encoded language into a decoded one.
In particular, studies such as [8-9] consider decipherment
as a sequence-to-sequence translation task. Thus, she used
a sequence-to-sequence model due to its resistance to noise
and its ability to be trained with multilingual data. However,
researchers tend to apply a frequency encoding of the ci-
phertext [7-9] instead of the images. Earlier methods relied
on frequency analysis as well, measuring the occurrences of
specific letters in the ciphertext in order to discern the cipher
type and its properties. Other studies have proposed deci-
pherment through different models and pipelines, including
[3] with a three-stage decipherment pipeline using scanned
images and a two-step decipherment model with the inte-
gration of transcription and decipherment. One-stage deci-
pherment is suggested for future work.

4 METHODOLOGY AND PLANNING

The completion of the set objectives depends on the execu-
tion of three key phases: The image generation, the experi-
ments on transcription tasks and deciphering tasks. The first
step is the collection of a complete data set through image
generation for both tasks. There are precisely three differ-
ent versions for the same data set: One with the synthetic
images, one with the handwritten equivalents, and another
with a combination of both synthetic and real data. From
there, we can begin with the execution of experiments on a
transcription task with the synthetic images. Once we en-
sure that the model can recognise them, we proceed with the
direct decipherment tasks and the other data sets. We have
determined from the state of the art that the most suitable
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Fig. 1: Gantt Diagram with the tasks completed per week

technique to make the predictions would be a sequence-to-
sequence one. Lastly, we assess the different configurations
and parameters per task and gather the corresponding con-
clusions from the outcomes.

The planning initially followed the deliveries and the
completion of these key steps. All the tasks were mainly
distributed in two blocks of work: The first one included
the image generation and the implementation of the model,
while the second block included the different experiments
and evaluations. The time dedicated to each task can be
found on Fig. 1.During the early experiments on the tran-
scription task, it was noted that the model had the tendency
to predict values that did not exist within the set vocabu-
lary. For instance, if the vocabulary covered glyphs from 0
to 132, the sequence-to-sequence model would sometimes
predict values above 132. At the time, there were three dif-
ferent options to handle this issue: Ignore the indices out-
side the vocabulary file, substitute them for an error charac-
ter, or reduce the output units of the model. All the exper-
iments were able to eventually reach adequate scores, and
the losses indicated that the model could adjust appropri-
ately to the sets. However, that implementation was unre-
liable, time-consuming and highly dependent on our labels
for the glyphs. When the calculations were modified to use
the indices directly, the model could no longer learn. Hence,
we had to change the model’s implementation entirely.

5 THE IMAGE GENERATION

The first step in order to achieve all our objectives is to pre-
pare the data set of images for the models. The real and
synthetic images can be separated into two groups: The im-
ages of single lines and the images of manuscripts, meaning
multiple lines within one image. Regardless of the group,
multiple examples will be created with six different cipher
alphabets. Two of them are the masonic cipher and the pig-
pen cipher, two variations of the same substitution cipher
that was used to deliver correspondence during the 18th
century. The next cipher is a version of the dancing stick
man cipher, a fabricated substitution cipher featured in one
of the stories of Sherlock Holmes from December 1903.
The fourth one is the keil font cipher, another substitution
cipher, and the fifth cipher is modern runic, taking advan-

Fig. 2: Synthetic images containing lines from different ci-
pher fonts. From top to bottom: Masonic cipher, Pig pen
cipher, Stickman cipher, Keil font cipher, Modern runic and
Copiale cipher.

tage of runic alphabets to substitute Latin letters. The last
one is the Copiale cipher [11], a homophonic substitution
cipher found in a fully encrypted manuscript. Its original
text describes the initiation process for a secret society in
German. Compared to the rest of ciphers, plaintext charac-
ters may map multiple glyphs. In other words, one glyph
can decode one plaintext character the same way multiple
glyphs may decode it as well. Examples from all six differ-
ent cipher alphabets can be inspected in Fig. 2, without any
applied encryption of any kind. All the synthetic images
were generated from either randomly generated strings or
files with extracts from books, short stories and quotes

The image generation derives from three Python files that
were previously designed to output different images con-
taining texts with specific alphabets. First, the content of
the image is either generated or read from a file. Then, its
size within the image is calculated with the desired font and
size. From there, a blank image is created according to the
prior measurements and the text is copied into it. The last
step is to add an extra white border before saving the re-
sults. When there are multiple lines of text, two extra steps
are added to justify the text and filter out missing characters
from the cipher fonts.

The cipher alphabets are saved as fonts within files with
ttf extensions, also known as True Type Format. These ex-
tensions assign a glyph to every character input. In the case
of ciphers such as masonic, pigpen or stickman, all the un-
accented Latin letters plus some punctuation signs are au-
tomatically assigned to their corresponding characters. In
addition, the keil font cipher also admits numerical values.
Regarding the modern runic cipher, not all the characters
have a glyph assigned to them. For instance, there is no
translation for the uppercase letters of X and Z, and for the
lowercase letters of c, x and z. The reason behind the miss-
ing letters originates from the fact that some of the older
Germanic languages were already using variations of the
runic alphabet before adopting the Latin alphabet. In other
words, some letters from the Latin alphabet do not exist in
runic alphabets, the same way letters like ñ in Spanish or
ç in Catalan do not exist in English. Finally, the Copiale
cipher [11] uses a mix of unaccented Roman letters with
some alternative variants, some Greek letters and some ab-
stract symbols. All these glyphs are assigned randomly to
characters within the font file. After further analysing it
with the original Copiale alphabet, there were five missing
symbols that needed to be drawn and added manually to the
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Fig. 3: Synthetic image containing a Copiale line (bottom),
resembling a real handwritten image (top).

Fig. 4: Three randomised augmentations over the synthetic
image from Fig. 3.

existing font file: The star, the smiling faces facing left and
right, the cloud, and the gate.

Aside from the previously generated images, another set
of synthetic images will be produced with the goal of re-
sembling real handwritten images containing Copiale lines.
We already had access to a database consisting of individ-
ual lines from the original book, which was initially used
for a Handwritten Recognition task in a competition. The
transcriptions had to be adapted to the correct input charac-
ters from the font file in order to properly show the correct
glyphs. This was achieved through Python dictionaries be-
tween the transcriptions and the set inputs. The end results
can be examined in Fig. 3.

Among all of the presented ciphers, the Copiale cipher
will be the centre of our experiments due to the availability
of handwritten transcriptions. However, the deciphered data
had to be found among the 105 pages of the original book.
In other words, we only had our own transcriptions of some
lines and the entire transcribed and deciphered book. The
original ground truths from the book were divided by lines
and each transcription could easily be matched with its cor-
responding plaintext. Nonetheless, our version of the tran-
scriptions used different terminologies. For instance, the
book refers to the star symbol as star, while our transcrip-
tions refer to it as Pentagram. Thus, we first had to adapt
the transcriptions from the book to our own transcriptions,
so as to properly match them to their deciphered equiva-
lents. Although not all the translations were perfect due
to some exceptions, the majority of lines perfectly matched
and the deciphered lines could be assigned accordingly. The
remaining cases could also be assigned by only matching
the beginning or end of each sample.

Since using the exact same figures would be consider-
ably straightforward for any model, we had to apply an
augmentation to the synthetic images. A Python class has
been adapted to randomly morph any image. The aug-
mentations include erosions, dilatations, additions of noise,
gamma corrections, shearings, rotations and scalings. The
entire process is controlled by a list of parameters to ensure
that the content will still be readable. Some of the results
can be found in Fig. 4.

6 THE SEQUENCE-TO-SEQUENCE MODEL

A sequence-to-sequence model is an approach with an
encoder-decoder structure typically used to solve sequence

Fig. 5: Simplified Encoder-Decoder Architecture from a
sequence-to-sequence model.

modelling problems, where both the input and output are se-
quences. The encoder-decoder architecture consists of two
components: The encoder processes each token within the
input into a context vector that is received by the decoder,
which makes predictions token by token. A summary of the
entire architecture can be found in Fig. 5. The inputs and
outputs need a word embedding before being processed.

Both structures are composed of multiple long short-term
memory networks, a type of recurrent neural network de-
signed to retain information for longer periods of time.
Each network within the encoder reads a token from the
original sequence and sends their insights into the next one.
The final state receives all the internal data from past cells
and a special token that conveys the ending of the sequence,
usually represented as <EOS> or <END>. Its output is
known as the context vector, which encodes all the informa-
tion from the source. The initial cell from the decoder re-
ceives this vector and makes the first prediction, along with
another special token that indicates the start of the output
sequence. They often appear in documentation as <BOS>
or <GO>. The subsequent predictions will use the last out-
put and the internal information from the previous network.

The predictions within the model are usually evaluated
through a cross-entropy loss function. Commonly used in
classification problems, they are able to measure the dif-
ferences between an estimated probability and the desired
outcome. During the learning process, the decoder obtains
a probability distribution for the predictions of the next to-
ken. Then, the loss function compares the token with the
highest probability to the correct output. The corresponding
loss is then evaluated with the intention of properly updat-
ing the probabilities. The probability for the correct output
is maximised, while the others are minimised.

Although they are very effective models for tasks like
translation, text generation and language modelling, they
may face difficulties handling long sequences. The encoder
may not be capable of properly encapsulating all the rele-
vant information, while the decoder may need different key
insights at different stages. However, an attention mecha-
nism can be introduced to enable the decoder to select the
most important insights. Before every prediction, the de-
coder needs to pass its internal state to an attention func-
tion. Its task is to measure the relevancy of each encoder
state through scalar values. Then, a softmax function trans-
forms all these results into a probability distribution. At
the end, these probabilities and internal states are combined
into a weighted sum for the decoder to use as a new context
vector. The next tokens are predicted as usual, but using the
most important parts from the encoders. An example of the
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Fig. 6: The Encoder-Decoder Architecture applying an At-
tention mechanism to the decoder’s last internal state.

encoder-decoder structure with an attention mechanism can
be found in Fig. 6.

There are many types of attention mechanisms, depend-
ing on how they measure the relevance of the encoder states.
Each method has its advantages, disadvantages and com-
mon use cases. For instance, content-based attention mea-
sures attention scores by computing the cosine similarity
between the internal states of the encoder and decoders. As
the name indicates, the content of a section is what indicates
its relevance in this approach. They are widely adopted in
a myriad of applications, including natural language pro-
cessing, computer vision and speech recognition. However,
content-based attention does not explicitly consider posi-
tional information in its calculations. Since it could be ben-
eficial when working with visual data, we will use a similar
mechanism known as location-based attention. In this case,
relevance is also placed in the locations within the image.

Depending on the task at hand, the inputs and outputs will
vary in type and length. In other words, the data does not
necessarily have to be formed only by sequences, regardless
of the name of the model. For instance, an image captioning
task takes one input in the form of an image and many out-
puts in the form of a sequence of words. Our transcription
and decipherment tasks also have a one-to-many approach,
with one image as the input and a sentence as the output,
either the corresponding transcription or the decoded mes-
sage.

6.1 Specifications for Transcription
The idea of the transcription task is to accurately transcribe
all the glyphs from the images. The inputs are the images
containing the Copiale lines, while the outputs are their re-
spective transcriptions. Each visual glyph directly corre-
sponds to a single label in the records. There is an exam-
ple in Fig. 7 of an image with its transcription. Further-
more, the predictions will need a vocabulary of terms for
the probability distributions. In this instance, the vocabu-
lary is formed by a list of all the labels used in the ground
truths. Hence, the predictions will be completed symbol by
symbol.

The code implementation of our model employs Json
files to configure its inner variables and structures, includ-
ing the process of loading the data. Consequently, all the

Fig. 7: Examples of the possible outputs. The first row
is a real handwritten image. The following paragraph is
the equivalent transcription, while the last row is its corre-
sponding plaintext.

text files need to be converted into separate Json files to
form the training, testing and validation sets. The vocab-
ulary file will store and index unique values within the
ground truths. Thus, each line of text can be embedded into
a list of indices for the model to predict.

6.2 Specifications for Decipherment
During the deciphering tasks, the goal is to decipher the
images into their original contents. The inputs are still the
same, but now the outputs are plaintext. Since the Copiale
cipher is a homophonic cipher, each glyph may or may not
correspond to a specific letter. The sequence-to-sequence
models already accommodate length disparities between in-
puts and outputs, especially when we view a deciphering
task as a translation from an encoded language into a de-
coded one. It is common in machine translation to have
equivalent sentences with different lengths. An example of
this situation can be inspected in Fig. 7. As can be seen in
the last line, the deciphered text is much shorter than the
glyphs in the image. Unlike other papers, our approach
skips the transcriptions and predicts the plaintext directly.
The predictions will still need a vocabulary of terms, which
will be formed by all the letters within the German alpha-
bet. Aside from the outputs and lexicon, there are no other
technical differences between tasks.

6.3 Evaluation
The Character Error Rate (CER) metric measures the per-
centage of character-level mistakes in a prediction com-
pared to its ground truth. Consequently, it is considered
a minimising metric; the best results are the ones closer
to zero percent. It is calculated by dividing the sum of
substitutions (S), deletions (D), and insertions (I) by the
total number of characters (N) in the ground truth sam-
ple. A substitution occurs when a character seems to have
been replaced, while deletions and insertions are recognised
through characters that appear to be either missing or added.
The lower the scores, the better the performance. The scores
of our implementation range from 0 to 1.

CER =
S + I +D

N

The performance of the evaluations will also include the
losses of each set for each epoch, a metric that assesses how
well the model fits the validation set. Altogether, the evalu-
ations will include the CER scores and losses from the train,
test and validation partitions.
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TABLE 1: Parameter Configurations

Layers Batch size Label Smoothing Learning Rate

Configuration 0 2 16 0.4 0.0003

Configuration 1 4 16 0.4 0.00003

Configuration 2 4 12 0.2 0.00003

7 EXPERIMENTAL RESULTS

The experiments can be divided by the task at hand and the
type of data used. We will explore the performance of the
model in a transcription and decipherment task with syn-
thetic data, real data, and a combination of them. Both the
synthetic and real datasets consist of 1502 images plus three
augmentations per sample. In total, each data set has 6008
images from Copiale. The 80% of those samples will form
the training set, while the rest will be divided equally for
the testing and validation sets. Alternatively, the combined
dataset will use 6008 synthetic images for training and 1502
real images for testing and validation.

In addition to various tasks and data sets, we will also ex-
plore three different configurations. The first set of param-
eters is going to be based on paper [12], which presents a
sequence-to-sequence model for handwritten word recogni-
tion. The initial configuration will have 2 layers for both the
encoder and decoder, 512 hidden layers, and 50% dropout
with a 15% teacher rate. Their findings also suggest that
label smoothing is helpful, so we will employ it as well.
Taking into account the size of their data set compared to
ours, we will reduce the batches from 32 to 16 samples. We
will use a higher learning rate of 3 · 10−4, too. For the sec-
ond configuration, we will increase the number of layers to
4 while decreasing the learning rate to 3 · 10−5. The last set
of parameters will explore the model’s performance when
the batch size and label smoothing are further diminished.
The summary of all these configurations can be found in
Table 1.

The combination of data sets, tasks and configurations
amounts to 18 different experiments to be executed. We
will start with synthetic transcription in order to guarantee
that the model can distinguish the synthetic images. Fur-
thermore, each experiment will be repeated at least once so
as to ensure the accuracy of the results. The rest of the ex-
periments will be conducted. All the final results for each
permutation can be found in Table 2. The first letter of the
experiment’s names indicates the applied task: ’T’ for tran-
scription and ’D’ for decipherment. The following num-
ber determines which configuration of parameters was used.
After the task and configuration, the words ’MIX’, ’REAL’,
and ’SINT’ denote which data set version was employed:
The combined, the real, or the synthetic one, respectively.

7.1 Synthetic results

From all the synthetic transcriptions, the third configuration
was the only one that managed to obtain suitable results.
It was able to obtain a final test CER of 19% alongside a
test loss of 2.38, while the other two configurations were
only able to secure CER scores of 83% and 93% with some-
what higher losses. Although the results have room for im-
provement, they are enough to confirm that our sequence-

TABLE 2: Experimental Results

Duration Last epoch Train CER Train Loss Test CER Test Loss

T0 MIX 2h 13m 61 93% 3.19 118% 4.15

T0 REAL 4h 56m 53 154% 3.75 129% 4.06

T0 SINT 16h 32m 188 81% 2.66 83% 2.74

T1 MIX 2h 17m 61 88% 3.66 147% 3.97

T1 REAL 9h 54m 104 156% 3.93 124% 4.10

T1 SINT 10h 48m 115 92% 3.72 93% 3.84

T2 MIX 2h 33m 58 87% 3.21 146 % 3.83

T2 REAL 9h 52m 90 166% 3.51 129% 3.56

T2 SINT 10h 25m 103 21% 2.22 19% 2.38

D0 MIX 2h 40m 59 104% 3.46 122% 3.53

D0 REAL 4h 8m 180 33% 2.83 30% 2.98

D0 SINT 12h 50m 156 0.3% 2.35 1% 2.39

D1 MIX 2h 19m 63 64% 3.21 121% 3.61

D1 REAL 3h 15m 138 74% 3.31 81% 3.40

D1 SINT 13h 25m 153 14% 2.69 13% 2.96

D2 MIX 2h 33m 59 61% 2.67 114% 3.65

D2 REAL 1h 58m 68 74% 2.97 80% 3.09

D2 SINT 18h 49m 182 15% 1.18 14% 2.17

Fig. 8: CER Scores from the synthetic transcription task.

to-sequence model can recognise the synthetic images. The
CER scores overtime can be seen in Fig. 8.

The following experiments were centred around deci-
phering the synthetic data set. All the configurations had
improvements compared to their transcription counterparts.
However, the first one got the best overall metrics, with
CER scores of 1% on the testing set and a test loss of 2.39.
The other sets of parameters also had a drastic improve-
ment, massively reducing their CER test scores to 13% and
14%, respectively. It seems that our model, for the same pa-
rameters, has better performance in decipherment tasks than
in transcription. The scores across epochs can be inspected
in Fig. 9.

The decipherment results are quite surprising, especially
considering that Copiale is a homophonic substitution ci-
pher. In homophonic ciphers, each ciphertext character
stands for a particular plaintext character, but several ci-
phertext characters may encode the same plaintext char-

Fig. 9: CER scores from the syntethic deciphering task.
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Fig. 10: Qualitative results from the synthetic transcription
task using the last configuration (2).

Fig. 11: Qualitative results from the synthetic decipherment
task using the last configuration (2).

acter. Hence, we can infer that our sequence-to-sequence
model uses the context of the sentence to predict the next
values. In other words, the predictions are not character by
character.

Some qualitative results can be found in Figs. 10 and 11.
Both of them include a prediction from the best synthetic
tasks during the last epochs. The bold sections indicate
the differences between the ground truth and the prediction.
There are only a few disparities, but the beginnings of all
the experiments usually start with randomly selected tokens
repeated multiple times. The plots show these peaks during
the first epochs, until the results stabilise themselves. Most
experiments follow this pattern, one way or another.

7.2 Real results
Unlike the latter results for transcription, no set of parame-
ters was able to reach CER scores below 120%. The best
results for the decipherment task originate from the first
configuration, with CER scores around 30%. The other
two are only capable of securing CER scores of 80% on
the testing set. Once again, the experiments from the de-
cipherment task greatly outperform the ones corresponding
to the transcription task. This difference in results can be
further inspected in Fig. 12, where both tasks with the ini-
tial configuration are displayed. All experiments were set
to conclude their run when there had been no improvement
for 50 consecutive epochs. We can see that our model has
difficulties with the real handwritten transcriptions.

7.3 Mixed results
The hope for the combined data set was to train the model
with the synthetic data so it could generalise the handwrit-
ten data. However, all permutations appear to have signs
of overfitting due to the disparities in metrics between the
training and testing sets. These differences usually range
around 55%; the smallest ones derive from the first config-
uration. It is clear that our model cannot extrapolate the
synthetic training to real testing, at least with the current
arrangements. An example of the overfitting tendencies in

Fig. 12: Example of differences between real transcription
and real decipherment tasks.

Fig. 13: Overfitting example from the experiments using
the combined data set.

these experiments can be found in Fig. 13, with the losses
from both tasks in the second configuration. We can still ob-
serve the trend of transcription results having higher metrics
than the decipherment ones.

7.4 Final Discussions
After studying all the experiments, we can conclude that
our model achieves better results in deciphering tasks. The
first configuration generally obtains the best metrics, de-
spite stemming from a handwritten word recognition pa-
per. In relation to the transcription tasks, the leading re-
sults occur between the first and third sets of parameters.
Nonetheless, it seems that the tasks and datasets at play are
the biggest predictors of our model’s outcomes. In other
words, the same model with the same parameters does not
yield the same results for different tasks. Although it was
expected, we can corroborate that synthetic images are al-
ways easier to predict than real handwritten ones.

8 CONCLUSIONS AND FUTURE WORK

In this work, we have trained a sequence-to-sequence model
in order to directly decrypt and transcribe images of histor-
ical handwritten ciphered documents. The first step was to
study the various approaches in the state of the art. Then,
we formed three different versions of the same data set us-
ing real handwritten images from the Copiale cipher and
synthetically generated replicas. Our approach to transcribe
and decipher these images relies on a sequence-to-sequence
model, based on our perspective of the problem as a transla-
tion task. We planned for a total of 18 experiments with dif-
ferent combinations of parameters, tasks and datasets. Our
findings indicate that the deciphering tasks often outper-
form the transcription tasks, even with the exact same con-
figurations. The same model behaves differently depending
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on the task. Since we are working with a substitution ho-
mophonic cipher, we can also deduce that our model is able
to make the predictions using the context of the sentence
rather than the following token. The synthetic data set al-
ways reaches the best results, while the real and combined
data sets have some more difficulties. Only one decipher-
ment experiment with the real data set is able to obtain good
metrics; the experiments with the combined data set con-
clude in training processes with overfitting. Even with these
issues, this exploratory study already secures promising re-
sults. The future avenues of joint end-to-end approaches
to decipherment and transcription tasks are definitely worth
investigating.

We have successfully transcribed and deciphered histori-
cal handwritten ciphered documents with synthetic images
and partially with real handwritten images. However, there
are many more actions that can be taken to build upon our
findings. For instance, other experiments can be set up
with other data sets and configurations. It is possible that
our results could be improved with an increased dataset or
more suitable parameters. The experiments on the com-
bined data set may benefit the most from these changes.
In addition, other NLP models could potentially bring bet-
ter metrics, such as transformers. With further work, the
next experiments may be able to be focused on images with
manuscripts instead of lines.

9 ACKNOWLEDGEMENTS

The completion of this bachelor’s thesis could not have been
possible without the help and support of Alicia Fornés Bis-
querra and Pau Torras Coloma. On one hand, Alicia did
an excellent job as a tutor, guiding this bachelor’s thesis
in the right direction while helping me solve any problems
along the way. On the other hand, Pau consistently pro-
vided invaluable technical support and insights every time I
had doubts. The success of this project would not have been
possible without them. Lastly, a final appreciation to all my
friends and family for being there for me.

REFERENCES
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& Beáta Megyesi. 2020. A Web-Based Interactive
Transcription Tool for Encrypted Manuscripts. In His-
toCrypt 2020, pages 52–59.

[7] Jialuo Chen, Mohamed Ali Souibgui, Alicia Fornés &
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