OPTICAL TECHNOLOGIES FOR THE CONTROL OF THE PROCESSING OF FISH AND DERIVATIVES

1. INTRODUCTION

identify problems in fish processing that can **Objective** be optimized or eliminated with optical technologies applied online

Bibliographic search and classification of **Methodology** technologies and applications

Applications

Majority component contents Specific components Internal temperature of the product Surface alteration of the product Microbial spoilage prediction

2. TYPES OF TECHNOLOGIES

Spectroscopy MIR

Specific compounds

Multivariable analysis from **2500 to 16666 nm wavelength**

- Provide data very quickly
- Cheap
- Generally non-destructive
- Applicable to a process control

Synchronous fluorescence spectrophotometry front-face

Microbial spoilage prediction

Excitation wavelength from 210 to 450 nm. \triangle λ 75 nm

3. APPLICATIONS

Determination of histamine

Spectroscopy MIR Fluorescence

spectrophotometry

Determination:

 Histamine **Prediction**

Adjust expiration of microbial contamination

Salt control in desalted cod loins

Spectroscopy salt during desalting **VIS - NIR**

Stop the process at the optimum salt point

Surimi gelling

Determination internal temperature during treatment

Stop the process when has product already received the appropriate treatment

Yield of semi-preserved cephalopod

Spectroscopy VIS - NIR

4.CONCLUSIONS

They prove to be applicable for a production process in order to implement a process control and for a quality characterization

Allow to obtaining analytical results in a fast and low-cost way

> **Albert Cubota Ortega Febrer**, 2023

