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Abstract

This project introduces a comprehensive framework using LiDAR data

and machine learning techniques for predicting a range of biophysi-

cal variables. The framework is specifically tested on Canopy Cover.

This research involves extensive data processing, including preprocess-

ing and feature selection, to efficiently utilize LiDAR and additional

geographical data. The study demonstrates the efficacy of the model

in predicting Canopy Cover with high accuracy, reaching a R
2 score of

0.88 and a MAE of 6.47 on the whole terrain of Catalonia, highlight-

ing its potential application in forest management and environmental

monitoring. Further work suggests improvements in model accuracy

and the exploration of multi-modal neural network architectures for

enhanced prediction capabilities.
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Chapter 1

Introduction

1.1 Problem Contextualization

Biophysical variables are fundamental indicators that quantify various aspects

of the natural environment, ranging from atmospheric conditions to vegetation

characteristics. They encompass a wide array of parameters that characterize the

physical and biological properties of ecosystems. These variables include but are

not limited to vegetation indices, soil moisture content, land surface temperature,

and canopy structure [55]. They serve as key metrics for monitoring ecosystem

health, biodiversity, and climate change impacts.

The accurate prediction of biophysical variables holds significant implications

for various societal and environmental concerns. Understanding vegetation dy-

namics, for instance, is crucial for assessing carbon sequestration rates, identifying

areas susceptible to wildfires, and managing natural resources sustainably.

In this study, we focus specifically on the prediction of Canopy Cover (CC).

The Canopy Cover is defined by the ICGC (Institut Cartogràfic i Geològic de

Catalunya) as a percentage corresponding to the sum of the areas that the

canopies occupy, for a certain region. The canopies are only those of the liv-

ing and normal-sized trees (≥ 7.5 cm in diameter) [24]. This is the definition

that we use throughout this study and, in essence, it is a measure of tree density.

1



1. INTRODUCTION

Knowing this value is readily applicable to a broad range of problems, such as

forest management, air pollution mitigation, carbon storage or wildfire simula-

tions [13], the latter being our main motivation.

There are many ways of estimating those biophysical variables, which I will

get into in the next section, but every of them has its own flaws. One of the most

common ones is the processing time that the estimation takes, making them not

a good fit for cases where an immediate prediction is needed such as wildfire

simulations. Another big flaw is that there is no unified way of calculating all

biophysical variables. Each one has its own different procedures. My study in-

tends to provide a solution for those two flaws, developing a methodology for

processing LiDAR data in a generalized manner to extract features that can be

used to train machine learning models for predicting various biophysical variables

and yielding in-real-time predictions.

I have been working on this subject since January of 2023, being a collabora-

tor in the GFIRE project of the CAOS department in Universitat Autònoma de

Barcelona. The main goal of this project is to predict wildfire spread evolution

in time using a software called FARSITE. This tool can be used by firefighters to

rapidly control and mitigate the fire, reducing the risks and minimizing the dam-

ages. However, FARSITE requires many inputs, including topography, weather,

Fire Behavior Fuel Models, fuel moisture, and canopy characteristics [40].

Some institutions have already generated maps estimating this canopy char-

acteristics, which get updated each 5-6 years due to the high amount of resources

it takes. This results in low reliable information, as the terrain is constantly

changing (consider for instance seasonality changes). To ensure the best FAR-

SITE predictions, the variables must be up to date with the current environment.

For accomplishing that, the firefighters are given an helicopter with a LiDAR sys-

tem to take measurements of the area which, after being processed, can lead to

in-real-time estimations of that region’s variables which will then be fed into the

FARSITE program. My work then is to develop an optimized software that is

able to process that data in a fast way in order to extract useful information and

use it for accurately predicting the given variable (in this case Canopy Cover,

2



1. INTRODUCTION

but works as a framework and thus can be extended to multiple other variables).

After achieving a good performance and deciding to write a scientific article on

the subject, I chose to use also the topic for this thesis.

1.2 Objectives

The main goal of this project is to develop a methodology for processing Li-

DAR data in a generalized manner to extract features that can be used to train

machine learning models for predicting various biophysical variables, providing

a rapid but accurate prediction for cases where urgent estimations are required

such as predicting fire spreads. Furthermore, I also aim to develop a software

that implements a pipeline which is able to yield the predictions given LiDAR

data as input, with parallelization capabilities and output format flexibility.

FARSITE is used to predict where will the wildfire spread the most and choos-

ing where to invest the firefighter’s human and material available resources. The

wildfire spreads very fast, on average at 23km/hour [56] and thus calculating the

next fire state becomes a time challenge. FARSITE itself has its own costly pro-

cessing time, and thus for ensuring a useful prediction of the spreads the software

must have the required inputs as soon as possible. This establishes two funda-

mental goals to this project: the model should be as accurate as possible, while

having a significantly low processing time.

There also are specific objectives aimed at facilitating the development of a

robust methodology and software solution:

Firstly, the research endeavors to establish the foundational capability to in-

gest and interpret LiDAR data effectively. This involves implementing algorithms

and techniques to read and parse LiDAR data formats, enabling seamless inte-

gration into subsequent processing stages.

Secondly, the research aims to advance the processing capabilities of LiDAR

data by devising methodologies to extract pertinent features. These features are

essential for capturing meaningful information about the vegetation structure

and landscape characteristics, which are crucial inputs for subsequent modeling

3



1. INTRODUCTION

efforts.

The primary focus of the research lies in constructing and training a predic-

tive model capable of leveraging LiDAR-derived features to rapidly and accurately

predict canopy cover. The model development process entails the exploration of

various machine learning algorithms and techniques, with an emphasis on opti-

mizing predictive performance while ensuring computational efficiency.

Furthermore, the research endeavors to conduct comprehensive evaluations

and comparisons between the predictions generated by the developed model and

the estimations provided by authoritative sources such as the Institut Cartogràfic

i Geològic de Catalunya (ICGC). This comparative analysis serves to validate the

efficacy and reliability of the predictive model in real-world scenarios.

Lastly, the research aims to provide insights into the computational require-

ments and time estimations associated with the prediction process. By analyzing

the computational complexity and performance characteristics of the predictive

model, the research seeks to offer valuable guidance on resource allocation and

optimization strategies for efficient prediction workflows.

1.3 Work structure

This section details how each section will be approached.

The project commences with an Introduction section, which explores the con-

textualization of the problem, defines the objectives, and outlines the overall

structure of the work. It emphasizes the importance of the research topic and

explains the rationale behind its selection.

Following the Introduction, the Literature Review section examines previous

research on similar topics, highlighting the differences and innovations proposed

by this project.

Next, the Experimental Data section describes the types of data available,

data collection techniques, feature engineering processes, and data preprocessing

4



1. INTRODUCTION

requirements essential for model development.

The Methodology section follows, detailing the models used, optimization

methods, evaluation metrics, and feature selection process. Additionally, the

workflow pipeline is outlined in this phase, as well as the Execution phase, where

practical aspects of model implementation are discussed, including cluster usage,

memory management, parallelization strategies, and considerations related to

execution time.

Results are then presented, outlining the findings from the models, evalua-

tions of simple models, outcomes of feature selection, and comprehensive training

results, along with interpretations.

The subsequent Discussion section explores insights on the implications and

limitations of the results, encouraging a discussion on the progress made and

recognizing the model’s constraints.

Finally, conclusions are drawn, summarizing the key research findings, empha-

sizing their significance and potential implications, while also setting the stage

for future work and enhancements.

5



Chapter 2

Literature Review

Performing a literature review before starting research is crucial for several rea-

sons: it helps identify existing knowledge and gaps in the field, preventing du-

plication of effort; it provides context and background, aiding in the formulation

of research questions and hypotheses; it informs methodological approaches by

highlighting best practices and potential pitfalls; and it establishes the research’s

significance, demonstrating how it contributes to the broader academic conversa-

tion.

In this chapter I will first introduce the most repeated and common approach

on how to estimate Canopy Cover from LiDAR data along with its limitations.

Then I will review a less known and promising variation of the first approach

that seems to improve the results. Following that, I will write about the state

of the art on adding image data to supplement the LiDAR input data and thus

enchancing the predictions. Additionally, I will introduce the newest approaches

that present solutions based on using machine learning and artificial intelligence.

After that, I will present how was the groundtruth that we will be working with

calculated, followed by some software that implements interesting algorithms and

ending up with the conclusion of this literature review.

6



2. LITERATURE REVIEW

2.1 Height based approach

The methodology for estimating canopy cover from LiDAR point clouds generally

follows a well-established sequence of steps.

Initially, a Digital Elevation Model (DEM) is created. A DEM represents the

bare ground topographic surface of the Earth, excluding trees, buildings, and

other surface objects [53]. This foundational step is crucial as it sets the stage

for further analysis by providing a reference surface.

Following the creation of the DEM, the next step involves calculating the nor-

malized heights of each point in the dataset, which means finding an estimation

of the real heights of the points above the ground. This process is straightforward

once the data has been georeferenced. The normalization is essential for distin-

guishing between ground and non-ground points based on their height above the

DEM.

At this point, it becomes necessary to focus on the first returns from the Li-

DAR sensor. These first returns are critical because they typically represent the

canopy, while subsequent returns penetrate deeper into the vegetation and do not

provide additional useful information for canopy estimation. This filtering helps

in isolating the relevant data for canopy cover analysis.

The subsequent step involves discriminating points that belong to the canopy.

This is typically done by setting a height threshold above which points are clas-

sified as canopy. However, this approach presents several challenges.

One significant issue is the need to manually tune the height threshold, which

can vary widely depending on tree species, age, and geographical zone. For

instance, different studies have used many threshold values such as 2 meters[30],

7 meters[45] , 1.5 meters [38] , and 66% of local tree height[14]. Some researchers

opt for a multi-layer approach, defining different canopy layers with upper and

lower thresholds, such as ranges from 0.6096 meters to 3.048 meters, 3.048 meters

to 6.096 meters, and so on [36]. This variability highlights the complexity of

7



2. LITERATURE REVIEW

accurately defining canopy thresholds across different environments.

Moreover, this method is primarily effective in forested and non-urban areas

where the landscape consists mainly of trees. In urban areas, buildings and other

structures can be mistakenly classified as canopy. To address this, some studies

combine techniques like Principal Component Analysis (PCA) to differentiate be-

tween planar surfaces (buildings) and non-planar surfaces (trees). Additionally,

multispectral satellite imagery can be used to calculate the Normalized Differ-

ence Vegetation Index (NDVI) for each LiDAR point. NDVI helps distinguish

vegetation from non-vegetation, allowing for the reclassification of points initially

misidentified as buildings if they exhibit high NDVI values [34].

Another limitation of this method is the assumption that all trees within the

study area are of the same species and age. Variations in tree morphology due to

species diversity and age differences can lead to discrepancies in canopy height,

complicating the classification process.

Once the canopy points have been accurately discriminated, the final step

is to calculate canopy cover. This is done by determining the proportion of

filtered points within a given tile that belong to the canopy. This step provides

a quantitative measure of canopy cover, which is essential for various ecological

and environmental assessments.

2.2 Vegetation based approach

Instead of focusing on the height of the points, some other studies focus on the

classification of the points, specifically leveraging ICESat GLAS data. The au-

thors focus on understanding spatial patterns of canopy cover across different

forest types globally. They analyze the canopy cover distribution by biome and

forest type, revealing distinct patterns such as the bimodal distribution in ev-

ergreen broadleaf forests and the trimodal distribution in deciduous broadleaf

forests. The footprint-level canopy cover fraction is calculated as the ratio of veg-

etation return to total waveform energy, adjusted by a global average reflectance

ratio of 1.5. This process includes recursive analysis to refine initial estimates,

accounting for slope effects and rejecting outliers. Methodologically, the authors

8



2. LITERATURE REVIEW

utilize ICESat GLAS-derived canopy cover estimates, which they compare with

MODIS VCF estimates to validate their findings. This approach highlights the

variations in canopy cover across different biomes and emphasizes the importance

of ICESat GLAS data in capturing detailed forest canopy structures globally. [51]

2.3 Supplementing the prediction using imagery

data

Some studies, in order to support LiDAR data and get more accurate predictions,

choose to add imagery data.

To improve classification quality, a study conducted in a suburb of Melbourne,

Australia, proposed a method that fuses LiDAR point cloud data with multispec-

tral satellite imagery. This approach begins by associating each LiDAR point with

spectral information from co-registered satellite imagery, calculating the normal-

ized difference vegetation index (NDVI) for each point to correct tree points

misclassified as buildings. Region growing of tree points, incorporating NDVI

values, refines the classification, and the identified tree points are then used to

generate a canopy cover map. Experimental evaluation using airborne LiDAR

and WorldView 2 imagery demonstrated that integrating multispectral imagery

significantly enhances the accuracy of tree canopy cover mapping in urban envi-

ronments. [34]

Another study aimed to develop a canopy cover estimation model using Land-

sat 8 OLI imagery alongside LiDAR data. Landsat 8 OLI imagery was pre-

processed with geometric and topographic corrections to eliminate distortions and

effects of illumination. The study utilized vegetation indices derived from Land-

sat 8 OLI, including NDVI (Normalized Difference Vegetation Index), GNDVI

(Green Normalized Difference Vegetation Index), and SRVI (Simple Ratio Vege-

tation Index), which provided essential information on vegetation health and den-

sity. These indices were critical in integrating with LiDAR-derived canopy cover

estimations. The combined data facilitated the creation of a regression model

9



2. LITERATURE REVIEW

that related Landsat-derived vegetation indices to LiDAR’s First Return Canopy

Index (FRCI). This integration enhanced the accuracy of large-scale canopy cover

estimation by leveraging the extensive spatial coverage of Landsat imagery and

the detailed three-dimensional information from LiDAR. The model’s effective-

ness was demonstrated with an equation FRCI = 2.22 + 5.63Ln(NDVI), achieving

an R² of 0.663, highlighting the significant role of multispectral imagery in sup-

plementing LiDAR data for canopy cover mapping. [45]

Coupland et al. utilized both historical aerial photographs and recent LiDAR

data to monitor tree canopy cover (TCC) changes at the University of British

Columbia’s Vancouver campus. Historical aerial photos from 1949 were obtained

from UBC’s Geographic Information Centre and manually scanned at high res-

olution. These images were georeferenced and rectified in ArcMap using ground

control points and then stitched together to cover the study area. For recent

data, LiDAR was collected in 2015 with high point density, allowing for detailed

canopy height models after removing buildings. TCC was assessed by comparing

these datasets within a grid of 0.05 ha analysis polygons, and the methods were

validated using modern aerial photos from 2015. This combination of historical

imagery and high-resolution LiDAR allowed the researchers to effectively track

changes in urban canopy cover over a period exceeding 50 years, demonstrating

the method’s suitability for long-term environmental monitoring despite the dis-

parity in data types. [6]

Researchers have also used Digital Hemispherical Photography (DHP) was to

validate canopy cover estimates derived from LiDAR data. DHP involves tak-

ing photographs from a hemispherical camera oriented upwards, capturing the

projection of tree parts like leaves, branches, and trunks. These images are pro-

cessed to estimate canopy cover by analyzing the proportion of sky obscured by

vegetation. This ground-based method is widely used for calibrating and vali-

dating remote sensing data, as it provides a detailed and direct measurement of

canopy cover from beneath the canopy. In this study, the researchers compared

the canopy cover estimates obtained from DHP with those derived from LiDAR

point clouds, which included metrics accounting for the distribution and over-

10



2. LITERATURE REVIEW

lap of vegetation points within the data. The comparison showed a significant

correlation, indicating that DHP is an effective tool for validating LiDAR-based

canopy cover models in tropical forest plantations. [38]

2.4 Machine Learning Models

Instead of using the height to identify the canopy, many studies use it to generate

aggregate features which will be used to train a model that will have the canopy

cover value as output. Models of different complexity are used.

The most simple machine learning model employed is linear regression by

Narine et al. in 2019. The features used as inputs for the linear regression mod-

els were derived from a set of ICESat-2 photon-counting lidar (PCL) metrics

that represent canopy structure and density, which were generated using existing

airborne lidar data from the Sam Houston National Forest in Texas. The fea-

tures included canopy height metrics, such as the 90th percentile height (P90);

canopy cover metrics, calculated as the fraction of PCL returns above a certain

height threshold; vertical distribution metrics, like the height of median energy

(HOME); and gap fraction, representing the proportion of gaps within the canopy.

These features were extracted from 100-meter segments along simulated ICESat-

2 tracks by replicating PCL data from existing airborne lidar data in the Sam

Houston National Forest, Texas, and adding photon noise to mimic real ICESat-2

conditions. The derived features were then used to train and validate the linear

regression models, which demonstrated strong predictive performance with R
2

values up to 0.93 for canopy cover in noise-free scenarios, highlighting the effec-

tiveness of these lidar-derived metrics in capturing forest canopy structure and

density. [29]

Other studies add complexity to the predictiors of the linear regression using

height percentiles and non-cumulative bin coefficients as input features, extracted

through a detailed process. Initially, raw LiDAR ground and vegetation points

were normalized to ensure ground points had zero elevation, while vegetation

points represented relative heights above the ground, excluding those below 1.5

11



2. LITERATURE REVIEW

meters to match digital hemispherical photograph (DHP) measurements. The

remaining vegetation points were divided into ten non-overlapping height bins at

10% intervals of the maximum vegetation height, quantifying the relative area

covered by each layer. For each DHP setup point, a ten-meter circular radius

buffer was created to clip the layered vegetation points, and height percentiles

were generated. These percentiles and bin coefficients were derived using a "what-

if" analysis tool, allowing for the construction and testing of the regression model

by comparing DHP and LiDAR-based canopy cover estimates. This method

demonstrated that LiDAR-derived metrics, when applied in a regression model,

could reliably estimate canopy cover, emphasizing the importance of parameter

selection and model calibration for different forest classifications. [38]

Not only linear regresors are used for this kind of task but also more complex

models like Random Forest (RF) models were developed using both custom-

processed ICESat-2 data and ATL08 parameters to estimate canopy cover. The

input features for these models included a variety of canopy cover metrics such

as the percentage of photons above specific height thresholds (e.g., 2 m and 4.6

m), maximum height, and various percentile height metrics. These features were

extracted from the LiDAR data by processing the photon count and categorizing

them into different canopy and ground return classes. The study demonstrated

that RF models slightly outperformed traditional linear regression models in some

instances, achieving lower RMSE values. For instance, the RF model for pre-

dicting canopy cover above 4.6 m in the Southern US forests exhibited a lower

RMSE compared to linear regression, highlighting its effectiveness in capturing

non-linear relationships within the data. [28]

2.5 ICGC’s method

Our groundtruth was provided by ICGC and thus it is key to understand the

process of how did they estimate the Canopy Cover.

In this case, the process of calculating canopy cover integrates field measure-

ments, LiDAR data, and biophysical modeling. Initially, values are obtained by

12



2. LITERATURE REVIEW

applying allometric equations to each measured tree within the sampling plot,

relating crown diameter to the diameter at breast height (DBH) specific to each

species, with the calculated canopy cover potentially exceeding 100% due to crown

overlap. To generate 20-meter resolution maps of biophysical tree variables, Li-

DAR data is processed to classify vegetation and terrain points accurately and

to calculate structural metrics of forested areas. These allometric equations are

applied to individual trees using forest inventory data to estimate biophysical

variables. Land cover maps are processed to assign corresponding tree cover to

each 20x20 meter cell. Statistical models that best fit the forest inventory are

then calculated based on LiDAR metrics, and the cartography is generated by

applying these models to the LiDAR metrics according to the species and tree

categories indicated in the land cover map. Finally, confidence intervals are cal-

culated to ensure the accuracy of the estimates. This comprehensive approach

allows for detailed and accurate mapping of canopy cover, accounting for species-

specific growth patterns and the structural complexity of forested landscapes. [24]

This methodology, while detailed and comprehensive, has several downsides

that can contribute to extended timeframes for estimating canopy cover. The

process involves multiple complex steps, including the initial classification and

processing of LiDAR data to accurately distinguish between vegetation and ter-

rain points, which is computationally intensive. The application of species-specific

allometric equations to individual trees using forest inventory data is also labor-

intensive, requiring precise data collection and extensive fieldwork. The inte-

gration of various data sources, such as forest inventories and land cover maps,

necessitates careful alignment and calibration to ensure accuracy, adding to the

time required. Additionally, developing and validating statistical models to fit

the forest inventory data involves significant analytical effort, and generating

cartographic outputs from these models is both time-consuming and resource-

intensive. Furthermore, calculating confidence intervals to ensure the accuracy

of the estimates adds another layer of complexity and time. Overall, the meticu-

lous nature of each step, combined with the necessity for high precision and the

integration of diverse data sets, contributes to the lengthy duration required to

produce reliable canopy cover estimations.
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2.6 Built in software

There exist some already built software that help on the task of processing Li-

DAR data to obtain different metrics, such as he Forest Tools R package [37],

which offers functions to analyze remotely sensed forest data. It is useful for de-

tecting tree tops or building a canopy height model. Can also detect tree crowns,

which can be used to calculate the canopy cover. However, the algorithm used

for finding the tree crowns is still defining a threshold for the height at which the

canopy begins.

Another well known software is Tiffs: Toolbox for Lidar Data Filtering and

Forest Studies [4], which is used to process lidar data, generate digital elevation

models, digital surface models, and canopy height models, and extract individual

tree structural information, including tree height, crown area, and biomass. It

includes functions for data tiling, point cloud filtering, and simulating waveforms

for validation purposes, offering a user-friendly interface with efficient visualiza-

tion capabilities.

2.7 Literature conclusion

Although all the studies mentioned above reach decent performance with a variety

of different models (more on that in the Discussion section), each one has its own

flaws: either some parameter has to be tuned such as the height from which

we start considering a point to belong to the canopy, or the method only works

on forest and non-urban areas as the model does not distinguish between trees

and buildings, or rather the model requires extra information such as satellite

imagery, or even the model is excessively complex and takes a long time to extract

precise estimations. Moreover, all of them meet the same issue: they are only

built for detecting Canopy Cover. In this project we propose an automated

framework based on Machine Learning and Artificial intelligence that not only

depends on LiDAR and static data, but also does not need parameter tuning

and is able to adapt and predict many biophysical variables regardless of the
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environment, reaching an outstanding performance while yielding fast predictions.

Furthermore, we will compare the performance of our model with the performance

of some of the models previously described, such as the vegetation based models

or the height based models.
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Chapter 3

Experimental Data

In this chapter I will be focusing on the data that was used throughout this thesis.

First, I will lay the theoretical groundwork essential for understanding the

methodologies and concepts underpinning the data that I will be working with,

mainly explaining what is the LiDAR data, how is it collected, the attributes that

it contains, how is it structured and stored, along with its specifications. I will

dedicate an entire section for this purpose as LiDAR data was our main source of

information which consolidated the bulk of the processed dataset and it is impor-

tant to fully understand every aspect of it. Then I will provide a comprehensive

overview of all the other data sources that were used, their purpose, source, res-

olution, visualization, alternatives that were considered and structure. Following

that section, I will write about the software tools utilized for data manipulation

in my research. Additionally, I will describe the various software applications

employed to process, analyze, and manage the LiDAR and supplementary geo-

graphical data, ensuring the accuracy and efficiency of our predictive modeling

efforts. Afterwards, I will enumerate all the datasets used during the project,

built and extracted from the available data. Finally, it is important to remark

the features that were extracted from the data, how were they calculated and

what do they represent.
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3.1 Theoretical framework

First, it is important to properly define what LiDAR is, as I am extracting data

from that source. LiDAR, which stands for Light Detection and Ranging, is

a remote sensing method that uses light in the form of a pulsed laser to mea-

sure ranges (variable distances) to the Earth. This method generates precise,

three-dimensional point cloud about the region measured and its surface charac-

teristics. A LiDAR instrument consists of a laser, a scanner, and a specialized

GPS receiver. The data collected by LiDAR systems are used for various applica-

tions, including mapping both natural and manmade environments, supporting

activities such as inundation and storm surge modeling, hydrodynamic model-

ing, shoreline mapping, emergency response, hydrographic surveying, and coastal

vulnerability analysis [32].

LiDAR is widely used in many engineering fields and it is becoming increas-

ingly available, being free in many cases. Apart from its availability, LiDAR data

is a good choice to predict the Canopy Cover for other reasons. Firstly, it can

be easily treated using Data Analysis tools and can be fed to Machine Learning

algorithms. Second, if it comes with some preprocessing done, attributes such as

intensity or classes are also available, which are extremely useful. Third, it can

be collected fast. This is especially useful for real-time emergencies if the data is

being used for wildfire simulations. Finally, the LiDAR technology is improving,

and we expect to have higher density point clouds in the future, which will very

likely improve the performance of models like the one presented here.

In order to collect LiDAR data, the first step is to plan the flight: the area

to be scanned is decided, the altitude (which determines the number of LiDAR

returns per pulse), and the velocity. The flight lines for the pilot to follow are

also planned, ensuring that parallel lines are sufficiently close together to provide

overlap between the .las files. Once the flight is completed, the trajectory is pro-

cessed, and the points are georeferenced. Some corrections are made to improve

georeferencing accuracy, and noise (such as birds) is removed. Once this is done,

the points are classified.
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Figure 3.1: Lidar data gathering representation.

Once the LiDAR data is collected, it contains the following attributes (in our

context): [23]

• X: Denotes the spatial coordinate in the east-west direction.

• Y: Denotes the spatial coordinate in the north-south direction.

• Z: Contains the height of the point. However, it does not correspond to the

distance between the ground and the measurement but between the geoid

EGM08D595 and the measurement in the gravity direction (orthometric

heights).

• Intensity: The integer representation of the pulse return magnitude. This

value is optional and system specific. Takes values from 0 to 255. When

compared with the Canopy Cover, Figure 3.2 shows that Intensity is some-

how correlated to Canopy Cover.
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Figure 3.2: Intensity (left) and Canopy Cover (right) colormaps of the same area.

• Return Number: The Return Number is the pulse return number for a

given output pulse. A given output laser pulse can have many returns, and

they must be marked in sequence of return. The first return will have a

Return Number of one, the second a Return Number of two, and so on up

to five returns. When visualizing the return number, Figure 3.3 shows that

this feature provides important information to the terrain irregularities,

which might mark the spot of trees.

Figure 3.3: Return number plotted: red = 3, blue = 2, yellow = 1.

• Number of Returns: The Number of Returns is the total number of

returns for a given pulse. For example, a laser data point may be return

19



3. EXPERIMENTAL DATA

two (Return Number) within a total number of five returns. Figure 3.4

shows a representation of the different pulses registered by LiDAR from a

same stream.

Figure 3.4: Representation of the different pulses registered by LiDAR from a

same stream.

• Scan Direction Flag: The Scan Direction Flag denotes the direction at

which the scanner mirror was traveling at the time of the output pulse. A

bit value of 1 is a positive scan direction, and a bit value of 0 is a negative

scan direction.

• Edge of Flight Line: The Edge of Flight Line data bit has a value of 1

only when the point is at the end of a scan. It is the last point on a given

scan line before it changes direction.

• Classification: Defines the type of the point. The following table describes

the different classifications assigned to the LiDAR data that we worked with,

although it can change depending on the data’s source.
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Classification Description

1 Default

2 Ground

3 Low Vegetation

4 Medium Vegetation

5 High Vegetation

6 Building

7 Low Point

8 Model Keypoints

11 Air points

13 Other ground

14 Wires

15 Transmission Tower

18 Other towers

135 Noise

• Scan Angle Rank: The Scan Angle Rank is a number with a valid range

from -90 to +90. The Scan Angle Rank is the angle at which the laser point

was output from the laser system including the roll of the aircraft.

• gps time: The GPS Time is the time tag value at which the point was

acquired.

Figure 3.5 shows how LiDAR cloud point is able to represent an area using

single points, distributed in different classes. If the same area is visualized using

a satellite, the similarities between bare eye and LiDAR data visualization are

very clear.
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(a) Google Earth visualization of a

2km × 2km area.

(b) LiDAR visualization of a

2km × 2km area.

(c) Legend of LiDAR points.

Figure 3.5: Satellite and LiDAR visualization of the same area.

If we include the z coordinate in the visualization, the landscape is even clearer

as shown in Figure 3.6. Note that the points in the sky belong to class 135 with

is labeled as Noise i.e. outliers and will be eliminated.

Figure 3.6: 3D LiDAR data visualization.

This LiDAR data will be used to predict Canopy Cover.
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3.2 Data Gathering

For this project we required to gather as much information as possible with a re-

quirement: it had to be static data, which means that is not drastically changing

over time. This way we could always use the same map regardless of the time in

which our software was used, without the need to finding an update.

The different types of data that we gathered for this project are:

1. Canopy Cover: Defined as a percentage corresponding to the sum of the

areas that the canopies occupy, for a certain region. These are the values

we want the model to be able to predict also refered to as groundtruth.

• Source: Institut Cartogràfic i Geològic de Catalunya (ICGC). [24]

• Image: Figure 3.7.

Figure 3.7: Catalonia’s Canopy Cover map.

• Resolution: 20 × 20 m. This implies that we have to adapt the infor-

mation available to this resolution.
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• Refference system: ETRS89 UTM 31 North, in the order Easting(X),Northing(Y),

with code EPSG:25831.

• Date collected: between 2016 and 2017.

• Range of values: from 0 to 199.635. This is well over 100%, with

the reason being that the definition accounts for canopy overlapping,

although high values are rare. However, we limit this value to 100 as

FARSITE input accepts values from 0 to 100, thus all values over 100

are set to 100.

2. LiDAR: It is used to calculate aggregate metrics for each 20 × 20 m section

of the surface. These metrics encapsulate essential information about that

area. The point cloud had been captured with LiDAR sensor, calibrated and

adjusted with topographic control areas, obtaining an altimetric accuracy

with a mean square error of about 6 cm in flat areas with little vegetation.

Subsequently, the cloud had been classified automatically. The downloaded

files are in format LAS 1.2 compressed. It can be decompressed using tools

such as LASzip.

• Source: Institut Cartogràfic i Geològic de Catalunya [23].

• Image: Figure 3.8.

Figure 3.8: Google Earth and LiDAR comparison of the same area.

• Resolution: It has been ensured that 95% of the blocks have a min-

imum density of 0.5 points/m2. The remaining 5% are blocks that
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cover areas of water or that are located on the border with Aragon

and France or on the coast. This means that in a typical 20 × 20 m

region there are between 100 to 600 LiDAR points. However, there

are some areas that contain very low density such as the observed in

the figure 3.9.

(a) LiDAR point cloud. (b) Google Maps visualization.

Figure 3.9: Different views of a low density area.

• Refference system: Coordinates in UTM projection zone 31 and geode-

tic reference system ETRS89. Orthometric altitudes and referenced to

the EGM08D595 geoid.

• Attributes: the LiDAR data from the ICGC comes with some prepro-

cessing done, which means every LiDAR point is not only associated

with the x, y and z coordinates, but also with other features. The

features we use are: Classification, Intensity, Scan angle, Number of

returns, Return number and GPS time.

• Date collected: between 2016 and 2017.

• Structure: The LiDAR data from the ICGC is organized in discrete

.laz (a compressed version of .las) chunks that measure 2 × 2 km.

These often weight, without decompressing, approximately 50 MB. In

this project I will often refer to these chunks as “blocks”. The Spanish

region of Catalonia consists of 8434 blocks, adding up to a total size

of around 3TB. However, not all blocks have the same size, as denser

regions such as forest will result in higher file size than for example

25



3. EXPERIMENTAL DATA

a flat area. The figure 2 shows an histogram and a boxplot of the

distribution of blocks, along with a distribution of the different sizes

along Catalonia.

(a) Block Size Histogram. (b) Block Size Boxplot.

(c) Block Size Map Distribution.

Figure 3.10: Histogram, Boxplot and distribution of LAZ filesize.

3. LandUse: Displays a global map of land use/land cover (LULC) derived

from ESA Sentinel-2 imagery. Each year is generated with Impact Obser-

vatory’s deep learning AI land classification model, trained using billions

of human-labeled image pixels from the National Geographic Society. The

global maps are produced by applying this model to the Sentinel-2 Level-
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2A image collection on Microsoft’s Planetary Computer, processing over

400,000 Earth observations per year. LULC Provides information about

the type of ground. There are 11 different categories and every region is

classified as one of them. This classification includes categories such as

crops, rangeland, built area or water. We strongly believed that the Lan-

dUse would give further information to the model about the zero valued

canopy cover areas due to features such as "build area".

• Source: Impact Observatory, Microsoft, and Esri[10].

• Image: Figure 3.11

Figure 3.11: ESRI LandUse/LandCover

• Resolution: 10 × 10 m. This means that there are 4 different types

of LandUse per every 20 × 20 m region. We simply choose the upper

left type, given that the LandUse is fairly homogeneous. LandUse will

be later one hot encoded in the following way: one column will have

a number according to the amount of landuse tiles that correspond to

that feature. This is, if 20×20 Canopy Cover tile contains 2 10×10

tiles of type 1 LandUse, 1 type 3 and 1 type 5, the encoding will have

a 2 on the type 1 column, a 1 on the type 3 and a 1 on the type 5, the

others will be set at 0. However, this encoding did not show to improve

the results to we decided to keep it simple as this encoding required
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further processing time. Having such a high resolution resulted in

large memory usage and thus we had to implement optimizations as

Catalonia had 700.000.000 tiles.

• Refference system: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)

• Date collected: 2017.

4. Slope: Has information about the slope of the ground.

• Source: it is obtained using the Digital Terrain Model from the ICGC

[22]. The raster is processed using geospatial processing tools, in par-

ticular, GDAL. [11]

• Image: Figure 3.12.

Figure 3.12: Catalonia slope’s map.

• Resolution: 20 × 20 m, so there is a direct correspondence with the

Groundtruth data. It takes values from 0 to 447.

• Refference system: ETRS89 UTM 31 North, in the order Easting(X),Northing(Y),

with code EPSG:25831.

• Date collected: 2020.

5. Aspect: Information about the orientation of the ground.
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• Source: in a similar way to the Slope, it is obtained using the Digital

Terrain Model from the ICGC [22]. The raster is processed using

geospatial processing tools, in particular, GDAL. [11]

• Image: Figure 3.13.

Figure 3.13: Catalonia aspect’s map.

• Resolution: 20 × 20 m, so there is a direct correspondence with the

Groundtruth data. It takes values from 0 to 360 with outliers at -9999.

• Refference system: ETRS89 UTM 31 North, in the order Easting(X),Northing(Y),

with code EPSG:25831.

• Date collected: 2020.

At the beginning we considered using fuel maps such as Burgan’s [47] or

Anderson’s [1], as they showed to significantly increase the accuracy of our model

(see Figure 3.14) due to their indicators for zero valued canopy cover as seen

in Figure 3.2, but we discarded that idea as fuel maps are not often updated

and thus we would not have that information when using the framework in the

future. On the other hand, ERIS LandUse is updated each year and has similar

information so an updated version is always available.
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Figure 3.14: Initial model results comparison of a full block of 2×2km without

including the fuel information (left) and including the fuel information (right).

(a) Burgan fuels model. (b) Anderson fuels model.

(c) Canopy Cover.

Figure 3.15: Fuels model comparison with canopy cover.

We also considered other LandUse models such as GISAT [19], but discarded it

as due to the low resolution (100mx100m) we could not extract much information

from it as seen in Figure 3.2.
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(a) GISAT LandUse. (b) Canopy Cover.

Figure 3.16: Fuels model comparison with canopy cover.

In terms of Canopy Cover, we also investigated many data sources, like Burgan

Canopy Cover maps [39] provided by Previncat. The resolution was also 20 ×

20m but it was not aligned with the ICGC’s one as shown in Figure 3.17 so we

could not one-to-one compare them.

Figure 3.17: 20×20m tile situation comparison between Burgan (blue) and ICGC

(orange). Note that they are not aligned.

However, we could compare the Canopy Cover distribution over a same area.

Figure 3.18 shows the histogram of both Canopy Cover models over the same

area.
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Figure 3.18: Canopy Cover (x-axis) histogram comparison between ICGC (left)

and Burgan (right)

While the number of zero valued entries is very simmilar, we can see that

ICGC’s distribution is more centered with a lot of values close to 100, while

Burgan’s distribution is more right-shifted with few values close to 100.

If we compare the same area on a map in Figure 3.19, we can deeply see that

phenomenon, as the ICGC’s map has more area covered in cold colours with some

spikes at intense red while the Burgan’s model contain more hot colors.

Figure 3.19: Canopy Cover map comparison between ICGC (left) and Burgan

(right).

Given that the ICGC’s map had more realistic values when checked it with

tools such as google earth and was also aligned with other data maps such as

slope and aspect, we chose to keep ICGC’s one as the groundtruth.

Figure 3.20 shows all the maps that we ended up using for this project, each

one of them showing a different propperty of the same area.
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(a) Canopy Cover Map. (b) LiDAR Map.

(c) LandUse Map. (d) Slope Map. (e) Aspect Map.

Figure 3.20: Different input data compared with the Groundtruth for the same
region.

3.3 Software used

During this project we required a deep understanding of the datasets we were

working with and thus special visualization and processing tools were necessary.

The used software mainly focuses on geospatial data, as it is the kind of informa-

tion that we were working with.

For visualization purposes we used the QGIS software [41]. QGIS is a ge-

ographic information system (GIS) software that is free and open-source. It

supports viewing, editing, printing, and analysis of geospatial data in a range of

data formats.

We also used GDAL [15] in combination with QGIS for preprocessing the

maps and reducing their size. GDAL is a translator library for raster and vector

geospatial data formats that is released under an MIT style Open Source License

by the Open Source Geospatial Foundation. It also comes with a variety of useful
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command line utilities for data translation and processing.

Another important software was LAStools [42], which is a collection of 52

highly efficient, batch-scriptable, multicore command-line tools for processing

point clouds. The software combines robust algorithms with efficient I/O, mak-

ing LAStools the fastest and most memory-efficient solution for batch-scripted

multicore LiDAR processing. It can turn billions of points into valuable products

at blazing speed and with low memory requirements [43].

Google earth was also used for visualizing different areas of Catalonia from a

satellite point of view, such as in Figures 3.8, 3.5. Google Earth is a computer

program that renders a 3D representation of Earth based primarily on satellite

imagery. The program maps the Earth by superimposing satellite images, aerial

photography, and GIS data onto a 3D globe, allowing users to see cities and

landscapes from various angles [58].

3.4 Datasets used

During this project we have build many datasets, each one with a different pur-

pose and characteristics. On the beginning we build very simple datasets for

visualization purposes and for understanding the data we would have to work

with. A small dataset would also help us monitoring how the simple models

worked and the flows they had, as well as comparing the input data with the

groundtruth to gain information on which features better explained the response

variable. Then, as the models got more complex we needed more data to train

them so we had the urge to build bigger datasets.

All datasets are subsets of the whole Catalonia’s region.

The datasets used are:

1. Tiny dataset.

• Purpose: First approach to the data. Minimal representation of the
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data. Understanding how the LiDAR points are distributed and do-

ing a close up visualization to our data. Useful also for debugging.

Comparing the dataset with the groundtruth and seeing which classes

populate the zones with higher Canopy Cover.

• Resolution: 100 × 100 m. Represents a very small area of an entire

block as seen in Figure 3.21, with only 25 tiles of 20×20 inside.

Figure 3.21: Tiny dataset size comparison with a full block of 2km × 2km.

The green areas represent the Canopy Cover as shown in Figure 3.22.

Figure 3.22: Tiny dataset visualization and Canopy Cover comparison.

2. Toy dataset

• Purpose: A dataset slightly larger, for testing how the simplest mod-

els perform on more data. Testing how does the algorithm adapt to

irregular shaped datasets.
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• Resolution: 680 × 560m. Represents around 1

10
of a full block as shown

in Figure 3.23.

Figure 3.23: Toy dataset size comparison with a full block of 2km × 2km.

The green areas clearly represent the Canopy Cover as shown in Figure

3.24

Figure 3.24: Toy dataset visualization and Canopy Cover comparison.

3. Full block dataset

• Purpose: An entire LiDAR block. Working with such blocks had sig-

nificant relevance as it represented the minimum information according

to how we had stored the data. Having insights on the processing time

for this dataset would give us estimations of the processing times for

the full dataset of Catalonia and subsets of it.

• Resolution: 2km × 2km. The Canopy Cover on that area surrounds

ground areas. The block also has a lot of outlayers (probably birds
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flying), buildings, cables and all the types of vegetation as shown in

Figure 3.25, so it was a good candidate to start working with full blocks

and checking Machine Learning Model (MLM)’s performance.

Figure 3.25: Full block visualization and Canopy Cover comparison.

4. Nonzerogt dataset

• Purpose: A region without zero valued canopy cover as shown in Figure

3.27. At the point it was created we were having trouble with a lot

of zero valued canopy cover registers that got classified at high levels

of canopy cover. To test the performance of our model in case this

issue was sorted, we created this dataset that did not contain the

problematic value.

• Resolution: 600m × 600m. Represents around 1

10
of a full block as

shown in Figure 3.26.

Figure 3.26: Nonzerogt dataset size comparison with a full block of 2km × 2km.
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Figure 3.27: Nonzerogt block visualization and Canopy Cover comparison.

5. Diverse10 dataset

• Purpose: A set of 10 different blocks from all around Catalonia. The

main purpose of this dataset was to chose each block from a different

geography and vegetation type of Catalonia as seen in Figure 3.28.

This dataset would contain geographies with buildings, rural zones,

sparsely vegetated esplanades, mountains with few vegetation and ar-

eas with rivers and lakes. By training a model with that data we would

theoretically be able to yield good results on anywhere in Catalonia.

Figure 3.28: Catalonia’s vegetation landscapes (left) and block distribution of the

Diverse 10 dataset (right).

• Resolution: 10 blocks of 2km × 2km each.

38



3. EXPERIMENTAL DATA

6. NextToBlock dataset

• Purpose: A block next to one belonging to the Diverse10 dataset.

When we trained our model with the Diverse10 dataset and tested

it on a random block from Catalonia, we noticed that the accuracy

was extremely low. We concluded that it was because the diverse10

dataset did not have enough geographical information so the model

could not extrapolate the information extracted from Diverse10 to the

rest of Catalonia. For testing that hypothesis we gathered a block next

to one of the Diverse10 as shown in Figure 3.29, as it would have a

similar geography as the ones used for training the model. This block

was then only used for testing purposes.

• Resolution: 2km × 2km.

Figure 3.29: Block belonging to Diverse10 (left) and NextToBlock dataset (right).

3.5 Feature Engineering

Feature engineering is the process of selecting, manipulating and transforming

raw data into features that can be used in supervised learning [35]. In this case

most of the feature engineering involved taking aggregates of all the LiDAR pulses

inside the same 20×20 m area that would characterize the zone and thus be the

predictors of the model.

On this section I will explain the process behind the creation of the new

features.
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3.5.1 Height

Each LiDAR point is spatially located using three coordinates: x, y and z, the

later reffering to the heigh of the point. However, it does not correspond to

the distance between the ground and the measurement but between the geoid

EGM08D595 and the measurement in the gravity direction (orthometric heights)

[23]. As a consequence, the z value contains the height information but coded.

This problem is often solved in the literature by creating a Digital Elevation

Model (DEM) which is a representation of the bare ground (bare earth) topo-

graphic surface of the Earth excluding trees, buildings, and any other surface

objects [53]. Knowing the height of the ground is then easy to calculate the

height of each point.

There is not an established, unified and best way of calculating the DEM.

Some algorithms determine the elevation of each grid cell by calculating the aver-

age of all LiDAR points classified as terrain within the cell [44]. Another method

is Inverse Distance Weighting (IDW) interpolation method. Interpolation is the

estimation of an unknown points using known points. The unknown points can be

estimated through a radius or using a fixed number of known points surrounding

the unknown point. The IDW is just a mathematical function for giving higher

weights to known points closer to the unknown point than those far away. The

closest points to the unknown point will have a greater say as to what value will

be assigned to it. [46]. An additional method is through Triangular Irregular

Network (TIN) gridding method. Gridding is the process of assigning a value to

every pixel where there is a point. This value may be a min, max, mean or a

mathematical function of all the points. The TINs are created by connecting the

derived points (vertices) through a network of edges to form a network of triangles.

ICGC provides a DEM for all the Catalonia region with a resolution of 5×5m

[25]. However, if we used that information it would make the pipeline very de-

pendent on external data, as applying the pipeline to another area outside of

Catalonia would require to have a DEM of the same resolution of the zone. An-

other downside of this approach is that the DEM is not usually updated and,
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although the terrain does not usually change that much, a small change can be

significative as estimating heights as accurate as possible is mandatory for having

a good precision in canopy cover prediction.

In our case, we came up with a method for estimating the DEM directly from

LiDAR data that consists on establishing the ground’s height of a square region

as the lowest registered LiDAR pulse. This method is based on the assumption

that the LiDAR pulses hit the ground and thus the lowest registered pulse will

be the one hitting the ground. It has the advantage that it only depends on

LiDAR data, which will always be available. The downside is that there is a

parameter that needs to be tuned, which is the resolution of the square region: if

the resolution is too high, the DEM will have a large error on sloped areas, while

if the resolution is too low, there might not be enough LiDAR pulses to estimate

correctly the ground. Luckily, the LiDAR given on the real world case will have

a much higer resolution (180 times more), and thus we will be able to estimate

the height much more precisely.

For finding the optimal value in our case we used a grid and compared the estima-

tions with the groundtruth (DEM from ICGC), and found out that establishing

a square of 6×6 m yielded the best results. Figure 3.30 shows the predicted

against the true values for the height of different tiles on a block, with a R-score

of 0.97788.

Figure 3.30: Real against prediction of height on the DEM with a R-score of

0.97788.
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On a further analysis, Figure 3.31 shows the classification of the points that

the algorithm used for establishing the height of a (different) tile.

Figure 3.31: Classification of the points that the algorithm used for establishing

the height of a tile. Blue: ground, Red: low point (> 1m lower than neighbouring

points), Purple: high vegetation, Black: not classified but suspicious of being

ground.

The blue points do a great job at estimating the ground, as they are classified

as ground itself. However, some tiles do not contain points classified as ground

and other types of points are used. Low points (red) seem to highly underes-

timate the real height of the surface and thus including a lot of error into the

model. High vegetation points on the other hand tend to slightly overestimate

the real height and thus again include error into the model. This analysis can

provide insights on how to base our height estimation in the future, keeping out

the points classified as "low points" and trying to use only the ground ones.

We are aware that this method has some flaws and is based on some assump-

tions that are often not met, but when we designed it we were not aware of the

literature on this topic and thus we are leaving this point as a possible significant

improvement of the project.
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3.5.2 Seasons

The LiDAR sensor will register different inputs on a same zone depending on the

season when the measures were taken. On spring, trees will be populated with

leafs which will result in a higher area where the lase can impact and thus more

returns. On the other side, on autumn trees are less populated and then the

canopy will have less area to be impacted on. This is the main reason behind

monitoring in which season were the LiDAR data measured, as we considered

relevant information that the model would want to take into consideration when

predicting some atributes from LiDAR data. Although the perfect scenario would

be to have the measurements all in the same season, it is not a realistic scenario

as Catalonia’s area of more than 32.000 km2 can not be flight on reasonable time

by an helicopter. As a result, the measurements were taken in different month

between 2016 and 2017 as shown in Figure 3.32.

Figure 3.32: LiDAR flying dates of Catalonia per areas.

For calculating the season, each LiDAR point contains a feature called gps

time that contains the time at which the pulse was registered and thus the season

of the date can be inferred from that value.
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3.5.3 Tree Tops

Tree tops is a simple and quick algorithm that estimates the amount of tree tops

inside a 20×20 tile. The main motivation behind this number is that it should be

proportional to the canopy cover (more tree tops would mean more canopy cover).

This feature depends on a parameter called “radius". By changing this parameter

multiple versions of this feature can be added to the model. The algorithm chooses

the highest point on the tile classified as high or medium vegetation that is not

marked as belonging to a tree top and sets it as a tree top. Afterwards, it considers

from the same tree top all the neighbouring points inside the circle with radius

set as parameter. Then, the algorithm repeats the same iteration until it cannot

build another tree top and counts the number of them as shown in Figure 3.33.

Figure 3.33: Tree tops found by the algorithm inside a 20×20m tile.

On a first instance, we planed to use a KMeans algorithm to build clusters

of points and classifying them into either belonging to the canopy or the ground

using the height of the cluster’s centroid under the assumption that the tree log

would help separating the canopy from the ground and thus creating clusters.

Then, having the LiDAR point classified as canopy or ground, we could calculate

the number of tree tops that each tile has as the number of centroids above a

certain height.

Another advantage of this method is that we could also consider the LiDAR
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points inside a same canopy cover cluster as a tree’s canopy and calculate the

area of the tile that they represent, obtaining an estimation of the canopy cover.

However, this method had a big disadvantage, as we had to find the optimal

number of clusters, which involved trying multiple parameter values in real time

and resulting in a high computational complexity that would drastically increase

with more point density and directly interfered with one of the main goals of the

project: to keep a minimum processing time.

Figure 3.34 shows the LiDAR points in a 20×20 area classified into three

different clusters: high height canopy, medium height canopy and ground. In the

end we opted to use a less-costly algorithm, which is the described above.

Figure 3.34: LiDAR data in a 20×20 tile classified into three different clusters.

3.5.4 LiDAR aggregates

We define as LiDAR aggregates simple features calculated only using LiDAR

data that give information of a 20×20m tile by applying a function to the points

inside that tile. Some of this features can translate into multiple columns in

the DataFrame. For some features, we can even generate an unlimited amount

of columns by varying a parameter. In this case, in order to keep a reasonable
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computational cost, we only generated a few of them. The main idea is to build

a large feature space consisting of a combination of simple features that together

would add an important amount of information, and let the model decide which

features are the most important for yielding a good prediction. Those features

will then be the ones used to feed the final model with all the training data, and

add up to form the bulk of the model, since we can generate a high amount of

them at a low cost.

The aggregate features are:

1. Number of points features. For every type of LiDAR class (along with

“not classified”), we generate a feature (a column) that calculates the per-

centage of LiDAR points inside the tile that belong to that class. All the

different classes can be found in table 3.1.

2. Mean features. The mean of every numeric LiDAR attribute, such as

intensity or scan angle. Attributes such as the x and y coordinates are

not included. It can inform the model about the general behavior of the

variables.

3. Percentile features. Explains the distribution of the data using 10%

percentiles from 0 to 90%. Proved to be one of the most important features.

It uses the same LiDAR attributes as the mean features.

4. Standard deviation features. Similar to the mean feature, the stan-

dard deviation is calculated. Explaining how sparse is the data can help

understand its future behavior.

5. Max difference features. For every numerical LiDAR attribute (except

x and y), the difference between the maximum and minimum value is cal-

culated to help the model gaining a better understanding of the ranges of

our data.

6. Threshold percentage features. Returns the relative amount of data

points above a certain threshold. Only used on height, return number and

intensity, each one with its custom thresholds according to its magnitude.
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Chapter 4

Methodology

In this section I will outline the procedures and techniques used to conduct the

research. First, I will introduce the different models that we worked with, detail-

ing their strengths and complexity. Afterwards I will enumerate the metrics used

for evaluating the performance of the different models and to rigorously compar-

ing them. Following that step, I will write about the process of imputation and

normalization used during the project as an important part of the preprocessing

steps. Then I will showcase the training workflow that was followed in order to

reach a final product, which will include a feature selection step and the hyperpa-

rameter tuning. Afterwards, I will introduce the use of the cluster along with the

reasons why it was required, specifications, the limitations that we found, how

we tried to solve them and the different tests that we performed on the cluster

to study the scalability of our dataset. Finally, I will present the programmed

software that will serve as the final product for the client, which will implement

the prediction pipeline.

4.1 Models

As canopy cover can be estimated from LiDAR data in different ways, we built

a variety of models which were getting more complex as the amount of available

data became bigger. On this section I will outline those models, their strengths,

weaknesses and where we used them.
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1. Height based model: This model consists on estimating the canopy cover

as the percentage of LiDAR points that are above a certain height threshold.

This threshold is set as a parameter and can be optimized using a grid and

comparing the results to a groundtruth. For this model a DEM is needed

in order to find the real heights of the points. This first model was used

in the smallest datasets (tiny, toy, nonzerogt and fullblock) to assess the

viability of this kind of techniques and was crucial for understanding which

information we should feed the Machine Learning model with.

2. Vegetation based model: This model consists on estimating the canopy

cover as the percentage of LiDAR points that are classified as high veg-

etation (we also considered using high and medium vegetation but using

only high yielded better results) under the assumption that high vegetation

belongs to the tree’s canopy. This second model was used in the smallest

datasets (tiny, toy, nonzerogt and fullblock) to assess the viability of this

kind of techniques and was crucial for understanding which information

we should feed the Machine Learning model with. As a more advanced

approach, instead of calculating the percentage of points that belonged to

vegetation from the raw data, we performed some preprocessing, approxi-

mating each point inside the tile to the nearest integer x and y coordinate,

and then only keeping the point that had the highest z on each pair of co-

ordinates. Finally, we calculated the percentage of those remaining points

that belonged to vegetation and it showed to increase the accuracy with

respect to the baseline model.

3. Machine Learning based model: This approach consists on gathering as

much information as possible about a 20×20m tile from many sources (not

only LiDAR data) and using this information to train a Machine Learning

model that will learn the underlying patterns of the data and how to use

them to predict the canopy cover.

Although it is the most capable model, it has some downsides. First, it re-

quires the data to be preprocessed (data reading, data preprocessing, feature

extraction, normalization, imputation, data merging, ...), which adds more

execution time to the software and demands modelling decisions. Luckily,
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we can drastically reduce this execution time by reducing the number of

features using a feature selection step. Another weakness is that it requires

hyperparameter search in order to optimize the model’s performance. Fur-

thermore, the model is prone to overfit or underfit if the training process

is not done properly, so a correct assessment of the this phase is manda-

tory. Finally, this model requires a previous training phase to learn all the

hidden patterns of the data and being able to extrapolate those to the new

incoming data.

We assessed the performance of different Machine Learning Models (MLM)

such as but not restricted to Random Forest, Suport Vector Machine or

LightGBM over many datasets of this project. After comparing them and

researching over different scientific articles that compared their performance

and speed, we decided to use XGBoost. For instance, in Figure 4.1 the per-

formance of random forest is assessed against XGBoost, the later showing

a superiority. Furthermore, XGBoost took 5 seconds to train the model,

while Random Forest took 87 seconds.

Figure 4.1: Random Forest versus XGBoost model comparison on the Nonzerogt

dataset. The Random Forest’s metrics (R2 of 0.543 and MAE of 18.6) are beaten

by XGBoost metrics (R2 of 0.816 and MAE of 10.97).

XGBoost [5] is a gradient boosting algorithm designed for speed and perfor-

mance. It has recently been dominating the applied machine learning and

Kaggle competitions for structured or tabular data. It is based on the gradi-

ent boosting principles with some additions. As a scalable machine learning
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system for tree boosting, it incorporates multiple improvements in terms of

computation speed and performance. These innovations include: a novel

tree learning algorithm for handling sparse data, a theoretically justified

weighted quantile sketch procedure to handle instance weights in approx-

imate tree learning, parallel and distributed computing to make learning

faster which enables quicker model exploration and out-of-core computa-

tion. Most of these have never been explored on other parallel tree boosting

algorithms, which gives XGBoost the upper hand. [8]

Although the first two models had a reasonable performance, the third model

had a much bigger predictive power, so all our efforts were dedicate on training

and improving that model. As a consequence, during this report, the mentioned

techniques are dedicated to the Machine Learning based model unless mentioned.

4.2 Metrics

Metrics are an important aspect of the training and evaluation process, as they

will be used to guide several key aspects of model development and assessment.

Firstly, they facilitate the model’s learning by minimizing the loss function. Ad-

ditionally, they help in preventing overfitting and underfitting by comparing the

metrics of the training set against those of the validation set. Metrics are also

crucial in feature selection, enabling the comparison of models trained with dif-

ferent subsets of features to identify the most effective ones. Furthermore, they

aid in selecting the best hyperparameters by retaining the subset that optimizes

the metrics. Finally, metrics serve as the primary means of evaluating the overall

performance of the model, providing a clear indication of its effectiveness.

In our case we have a regression problem, where we want to predict a numer-

ical feature (Canopy Cover) that ranges from 0 to 100(%). Then, we will use R2

score (coefficient of determination) as the main performance monitoring metric,

as it shows how well a regression model (independent variable) predicts the out-

come of observed data (dependent variable), and also because it is the most used

one in the literature. R-Squared is a statistical measure used to determine the
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proportion of variance in a dependent variable that can be predicted or explained

by an independent variable. R-Squared values range from 0 to 1. An R-Squared

value of 0 means that the model explains or predicts 0% of the relationship be-

tween the dependent and independent variables. A value of 1 indicates that the

model predicts 100% of the relationship, and a value of 0.5 indicates that the

model predicts 50%, and so on [12].

R2 is calculated using the following formula:

R2 = 1−
RSS

TSS

RSS =
n

∑

i=0

(yi − ŷi)
2

TSS =
n

∑

i=0

(yi − y)2

Where n is the number of features, yi is the expected output for the sample

i, ŷi is the predicted output for the sample i and y is the mean value of all the

expected outputs.

Although R2 is a good measure of how well is our model doing, it does not

contain any real information on which error is our model expected to do. Thus,

additionally to the R2 metric, we also have decided to keep a record of the Mean

Absolute Error (MAE) of the model. The MAE is defined as the average variance

between the expected values in the dataset and the predicted values in the same

dataset [2]. It can be interpreted as the expected error that the model will have

on its predictions and thus gives important information on which errors to expect

while using the model in production.

The MAE is calculated using the following formula:

MAE =
1

n

n
∑

i=0

|yi − ŷi|
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While training the model, the loss function to be optimized will be the Root

Mean Squared Error (RMSE). RMSE squares the errors, which gives more weight

to larger mistakes. In our context, larger errors are more costly and thus it is

important to minimize them, which is the main reason why we used RMSE instead

of MAE [2]. RMSE can be calculated using the following formula:

RMSE =

√

√

√

√

n
∑

i=0

(yi − ŷi)2

n

4.3 Imputation

Data imputation is a method for retaining the majority of the dataset’s data and

information by substituting missing data with a different value. These methods

are employed because it would be impractical to remove data from a dataset each

time. Additionally, doing so would substantially reduce the dataset’s size, raising

questions about bias and impairing analysis [48]. In out case, although we did not

find any NaN values on the dataframes, we still added a SimpleImputer [49] to

our script in case in a future use case was needed. In our case, the SimpleImputer

replaces the missing values of a column with a mean of the existing values for

that column.

4.4 Normalization

Normalization is an essential step in the preprocessing of data for machine learn-

ing models, and it is a feature scaling technique. Normalization is especially

crucial for data manipulation, scaling down, or up the range of data before it is

utilized for subsequent stages in the fields of soft computing, cloud computing,

etc [17].

For this project we chose to use StandardScaler[50] normalization to transform

features into a similar scale by ensuring each column has mean 0 and standard

deviation of 1, as it has shown to improve the performance and training stability

of the model [20].
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4.5 Training Workflow

In this section I will explain the workflow followed for predicting a biophysical

variable (such as Canopy Cover), detailing the different scripts at each step of

the process along with their purpose and functioning.

4.5.1 Feature Selection

Feature selection is the process of isolating the most consistent, non-redundant,

and relevant features to use in model construction [21].

Performing feature selection is important for many reasons. In computational

terms, with less features the code is naturally faster. This, in turn, allows us

to train with more data, which is mandatory in our case, as we wanted to train

our model using all of Catalonia data. On the other hand, with less features we

can interpret and explain what the model is doing better, as well as avoiding

overfitting easier.

The process for performing feature selection was done choosing a small portion

of all the data (around 5% of Catalonia) as we had to calculate a significant

amount of features.

4.5.1.1 Script’s explanation

A visualization of the data processing methodology before proceeding with the

feature selection is shown in Figure 4.2.

First, all the necessary libraries are imported and the constants such as num-

ber of cpu used or the number of blocks to be used are defined. Then the specified

number of blocks are randomly subsampled from the Catalonia’s database and

then readed in parallel to ensure fast results. For each block, the reading function

inputs LiDAR data from the .laz files using laspy library [52] and encodes the

seasons to convert the gps time into a meaningful feature. Then, each block is

preprocessed, removing outliers (provided that they do not add any important
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Figure 4.2: Methodology overview.
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information as Figure 3.6 shows), adding a feature to each point that labels which

tile does it belong to, calculating the DEM and grouping the points from each

tile to create the aggregate features (and the Tree Tops feature) in a parallelized

manner.

Once that preprocessing is done, now each block is not characterized by a set

of LiDAR points but by the set of tiles that forms it and the aggregates that de-

fine the information from each tile. At this point each tile has around 140 features.

After that, the groundtruth data is read from a .tiff file using the rasterio

library [26] and, in case of canopy Cover, the values are limited to a maximum

value of 100. Following that step, the groundtruth information is merged in a

parallelized manner into each LiDAR dataframe, establishing the value to be esti-

mated from each tile. The same exact process is applied to slope and aspect tiffs,

adding the aspect and slope values to each tile of each block. Then, all outliers

from the aspect and slope data (with value of -9999) are replaced by NaN as they

will be imputed in the future.

At this point, we have an array of dataframes, each representing a different

block. Each row of each dataframe represents a different tile of 20×20m inside a

block. Then, it is important to randomly split the data in train and test, as we

will be using 80% of our dataset to train a set of models with a different number

of features and the rest for comparing their performance. The blocks at each

split are concatenated into a combined dataframe so it is easier to manipulate

the data. The target variable (Canopy Cover) is stored and removed from the

dataframes.

Then, data is imputed and normalized according to the specifications made

on the previous section. Normalization and Imputation are trained on the train-

ing split and then used as well for the testing split. Following normalization, the

script reads and processes the land use in order to establish the x and y coordi-

nates to match the 20 × 20 m resolution (as the initial resolution is of 10×10m).

Landuse and season features are added to the model using a One Hot Encoding
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[3], as it contains categorical data. The reason behind doing it after splitting the

data is due to the fact that we wanted to avoid the encoded features from being

normalized.

Finally, the feature selection process begins. A simple model is trained with

all the features and the importance of each feature is calculated. Given a certain

importance threshold, all the features that are below that threshold are discarded

and a new model is trained with only the kept features. This process is repeated

lowering the threshold value at each step until only one feature is remaining.

Then the performance of all the trained models on unseen data is tested plotting

R2 score to decide the best features to be used.

4.5.2 Hyperparameter Tuning

Hyperparameter tuning is the process of selecting the optimal values for a ma-

chine learning model’s hyperparameters. By training a model with existing data,

we can fit the model parameters. However, there is another kind of parame-

ter, known as Hyperparameters, that cannot be directly learned from the regular

training process. They are usually fixed before the actual training process begins.

These parameters express important properties of the model such as its complex-

ity or how fast it should learn [18]. The importance of hyperparameter tuning

lies in its ability to improve the model’s performance and generalizability. By

fine-tuning these parameters, the model can be adjusted to better fit the specific

dataset and problem, potentially leading to more accurate predictions.

It is highly advised to use at this point a large subset of the total available

blocks as speed should not be a problem due to the filtering done in the previous

step. Then the model is trained with the best hyperparameters found and using

80% of Catalonia and tested using the remaining 20%. The trained model and

other necessary instances will be saved to be used “a posteriori”.

XGBoost hyperparameters can be divided in 3 categories: general parameters,

booster parameters and learning task parameters (there is an extra category for
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xgboost’s implementation in command line, but it is not relevant for this study).

The focus will be placed on the booster and learning task parameters, as changing

general parameters can lead to a paradigm shift. The general parameters will be

kept at their default values, except for nthreads, which is recommended to be

adjusted based on the number of CPUs available on the machine [8].

1. Booster parameters. Although 2 types of boosters exist, the attention

will only be directed towards the tree booster because of its overall better

performance. Those parameters control the construction and complexity of

the decision trees. The list of hyperparameters that are being tuned is:

(a) min_child_weight: Determines the minimum sum of instance weight

needed in a child node. Higher values prevent a model from learning

relations which might be highly specific to the particular sample se-

lected for a tree. Too high values can lead to under-fitting. Searching

space: [1, 20, 50, 100]

(b) max_depth: Controls the maximum depth of a tree. Deeper trees can

model more complex patterns, but they can also overfit and become

less interpretable. Searching space: [0, 5, 25, 50, 100]

(c) subsample: Controls the fraction of observations to be randomly sam-

pled for each tree. Lower values make the algorithm more conservative

and prevents overfitting but too high values might lead to under-fitting.

Searching space: [0.1, 0.5, 0.75, 1]

(d) colsample_bytree: Controls the subsample ratio of columns when

constructing each tree. Subsampling occurs once for every tree con-

structed. Searching space: [0.1, 0.5, 0.75, 1]

2. Learning task parameters. Those will control the overall behavior of

the model and the learning process. Those include:

(a) learning_rate: It shrinks the feature weights to reach the optimum

faster. After each boosting step, it can be interpreted as the probability

of a correct classification. Too small values can slow down the training

process. Searching space: [0.01, 0.1, 0.5, 1]
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(b) gamma: This is a regularization parameter. The larger gamma is,

the more conservative the algorithm will be. Higher values reduce the

complexity of the model and help prevent overfitting. Searching space:

[0, 0.5, 2, 5]

(c) reg_lambda: L2 regularization term on weights (xgboost implemen-

tation calls this lambda). Searching space: [0, 0.5, 2, 5, 10, 50, 100]

(d) reg_alpha: L1 regularization term on weights. This can help control

overfitting by adding a penalty equivalent to the absolute value of the

magnitude of coefficients. Searching space: [0, 0.5, 2, 5, 10, 50, 100]

(e) n_estimators: Number of gradient boosted trees. Searching space:

[500, 1000, 2500, 5000, 10000]

4.5.2.1 Script’s explanation

The baseline of the script is the same as the one used for Feature Selection. Data

is readed and processed the same way using the same functions. However, when

extracting the features of each tile, only the ones chosen from the Feature Se-

lection process are calculated. After the imputation and normalization of the

different sets, the hyperparameter tuning phase begins.

For iterating through the search space a Cross Validated Random Search is

used, which is a technique used for hyperparameter optimization in machine learn-

ing models. It works by randomly selecting a combination of hyperparameters

from a predefined distribution to train a model. The performance of the model

is evaluated using 6-fold cross-validation, which it involves dividing the available

data into multiple folds or subsets, using one of these folds as a validation set,

and training the model on the remaining folds. This process is repeated multiple

times, each time using a different fold as the validation set. Finally, the results

from each validation step are averaged to produce a more robust estimate of the

model’s performance [16].

This process is repeated a certain number of times. The best performing com-

bination of hyperparameters is chosen as the optimal solution.
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After finding the best hyperparameters, they are used to fit a model with 80%

of Catalonia, and the same model is tested with the remaining 20% to evaluate

its performance with the previously mentioned metrics. The trained model is

then saved along with the Scaler and the Imputer and ready to use on the final

product.

4.6 Execution

4.6.1 The cluster

Although working with a large amount of data provides the model with robust-

ness and precision, it also requires large amounts of memory and execution time.

For instance, Catalonia’s LiDAR data weighted around 3TB, more than three

times the amount of total space of our computers, and each tiff weighted some

more gigabytes, which could not fit into a regular RAM device. All this limita-

tions made mandatory to use a powerful computer.

Autonomous University of Barcelona’s (UAB) Computer Architecture and

Operative Systems (CAOS) department provided us with one of their clusters,

the HPCA4SE. We were given access to a node with Intel Xeon E5-2620 archi-

tecture, 2 sockets, 6 cores and 24 CPUs.

With access to that cluster we were ready to take our executions and tests to

another level. However, it also involved learning the basics of cloud computing

and building scripts (as we were using python notebooks since then).

We managed to upload all 8434 Catalonia’s compressed LiDAR files in 5 hours

and unzipped them in 30 minutes. The total amount of compressed data weighted

213 GB.
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4.6.2 Script limitations

4.6.2.1 Execution Time Issues

The main barrier we found on this project was the execution time. Having that

many features and blocks to be processed added a lot of complexity to the model,

resulting in large execution times that depended not only on the amount of fea-

tures and blocks but also on the sizes of each block. Figure 4.3 shows that the

processing time seems to have a linear relationship with block size, which is in

fact good news.

Figure 4.3: Processing time evolution depending on the size of the LiDAR block.

The largest blocks will take around 41 minutes to be processed, while the

smallest ones can take less than one minute. However, those are only outliers.

We have calculated that the mean processing time among blocks is of 7-9 min-

utes (in sequential). This means that processing the 8434 blocks of Catalonia

would take between 41 and 53 days. This is both unsustainable and unneces-

sary, as there are many irrelevant features that are being calculated. If we want

to offer a fast product we cannot afford to use 8 minutes on processing each block.

Four main optimizations have been done in order to reduce the processing

time:
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• Reducing the number of features: At this point the model was working

with 152 features, most of which were highly correlated. Although the

features were simple to calculate, for each block we had to calculate the 152

features for each one of the 10.000 20×20m tiles. If we managed to reduce

that number we would significantly lower the processing time. More on this

in the Feature Selection section.

• Parallelization: In order to take full advantage of the cluster’s computa-

tional power and the device that will be used by the firefighters, we paral-

lelized the software to make sure that it used all the available CPUs. The

main part that we parallelized (as it was the most computational expensive)

was the aggregation of LiDAR points inside each 20×20m tile, as each block

is independent from the others and thus could be calculated in an isolated

manner.

We tried many python parallelization libraries before getting to the optimal

one.

First, we tried Parallel-Pandas, a library that parallelized the panda’s apply

function [33]. This library is very useful when having few very costly apply

functions. However, our case is the opposite one, we have a lot of simple

built-in functions which were indeed faster than paralleling the apply.

Another library we tried was Dask [7]. Dask is an open-source Python li-

brary for parallel computing which scales Python code from multi-core local

machines to large distributed clusters in the cloud [57]. However, when we

tried it we found that it did not optimize that much small operations, as for

applying 100.000 means the execution time increased from 4.3 seconds (se-

quential) to 44.7 seconds (“parallel”). When tried on 1.000.000.000 means,

the execution time was reduced from 80 seconds (sequential) to 57 seconds

(parallel). Given the small optimization that supposed, we decided that the

library would not be the best fit for our case.

Finally, we found the multiprocessing library. Multiprocessing is a package

that supports spawning processes using an API similar to the threading

module. The multiprocessing package offers both local and remote concur-

rency, effectively side-stepping the Global Interpreter Lock by using sub-
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processes instead of threads [9].

The parallelization design used also evolved through different stages. First,

all CPUs were invested in one block in order to process it as fast as possible.

Although this approach had a low memory usage, as only one block is loaded

in memory at the time, the time that the data took to transfer to each

CPU’s memory was even higher than the time the CPU spent processing

their chunk of the data, leading to very poor results (even when comparing

them with sequential approach). As Figure 4.4 shows, we improved the

parallelization by processing one block at each CPU.

(a) First approach: All CPUs focus on just one block. When the processing is finished, they

move to the following block.

(b) Second approach: Each CPU focuses on one block.

When the processing is finished, they move to the next

set of blocks.

Figure 4.4: First parallelization improvement.

This way we highly increased the memory usage but gained a substantial

amount of speed. However, this design had a flaw: each CPU had to wait

at each round until all others finished processing their block before starting

a new one. This was a problem, as for each round the execution time of
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all blocks would be equal to the block that took the most to execute. In a

mathematical form, for each given round i:

ET =
m−1
∑

i=0

max
j=0..n−1

{Bi
j}

Where ET is the total processing time, Bi
j is the execution time of the block

processed by CPU j on the round i, n is the number of CPUs and m is the

number of blocks per CPU (note that the total number of blocks can be

calculated using mṅ and note as well that we are considering a number of

blocks multiple of CPUs to simplify the explanations). If all blocks on the

same round had a similar size, this would not be a big problem. However,

as shown in Figure 2, the sizes of blocks vary significantly.

On the one hand, in the rounds where there is an unusually large block

there would be a delay in all the other block’s processing, as all others

CPUs would have to wait until the large block is finished processing, even

though they would have finished their processing, wasting computational

power. On the other hand, in the rounds where there is an unusually small

block, the CPU that was processing that block would have to wait a long

time until all other blocks from that round are finished processing, wasting

computational power.

In order to reduce that side effect, as Figure 4.5 shows, we decided to assign

all the blocks that will be processed by each CPU from the start, as that

would prevent each CPU from waiting to all others at each round.
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(a) Second approach: Each CPU fo-

cuses on one block. When the pro-

cessing is finished, they move to the

next set of blocks.

(b) Third approach: Each CPU

focuses on a set of blocks such

that all the blocks are assigned to

a CPU from the begining.

Figure 4.5: Second parallelization improvement.

Although with this design CPU still have to wait when they end up all their

blocks, the number of waiting times is reduced from m (each round) to 1

(only in the end). Following the same nomenclature as previously, now the

total processing time is:

ET = max
j=0..n−1

{
m−1
∑

i=0

Bi
j}

Note that this time is at least lower than the previous one:

max
j=0..n−1

{
m−1
∑

i=0

Bi
j} ≤

m−1
∑

i=0

max
j=0..n−1

{Bi
j}

This can be proven using the triangular inequality [62], which states that

||x + y|| ≤ ||x|| + ||y|| for every norm. This expression can be gener-

alized to ||
∑

i
fi|| ≤

∑

i
||fi|| where fi is a any value so we can define

Bi
j := fi. Now notice that in our case, Bi

j ≥ 0, which lets us use the infinity

norm which is in fact, the maximum function [59], leading to the expression

max{
∑

i
Bi

j} ≤
∑

i
max{Bi

j} QED.

To further optimize the code, we also parallelized the tiff merging process.

When we have the dataframes where each row represents a 20×20m tile
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with the LiDAR aggregates, we want to add the tiff information (slope,

aspect, groundtruth and landuse). However, each of those maps represent

the whole Catalonia and need to be merged into each dataframe, which

involves a large amount of comparisons. To avoid investing too much time

on that, we also parallelized this part using the same design strategy as in

the previous paragraph.

The last part we parallelized was the XGBoost model, as it has an argument

that allows us to train the model much faster by using multiple CPUs.

• Vectorized operations: NumPy is a Python library, adding support for

large, multi-dimensional arrays and matrices, along with a large collection

of high-level mathematical functions to operate on these arrays[31]. NumPy

implements vector operations that are backened with C and Fortran lan-

guages [60], which makes them extremely fast and efficient compared to

regular Python operations, from 5 to 100 times faster [54]. Some of the

operations of our code could actually be written as numpy vectorized oper-

ations. For example, setting all values greater than 100 on the groundtruth

to 100 can be done easily with Python using a while loop and a condi-

tional. However, using NumPy this operation can be done in a faster, more

efficient and elegant way. More examples of operations are labeling each

LiDAR point to its belonging 20×20m tile for calculating aggregates or

grouping LiDAR points to its belonging 6×6m area for calculating heights.

• Preprocessing before pandas merging function: At one point we had

one dataframe for each block containing tile aggregate information on each

row and we wanted to add the information from tiffs maps. This tiff maps

contain data about the whole Catalonian map, but we only needed the area

where the block was processed, as directly merging the tiff with the block’s

dataframe would involve a large number of unnecessary comparisons. As a

solution, we decided to first cut the tiff to the square area that represented

the block, as we had that information from the minimum and maximum

values of the dataframe’s columns that contained the coordinates. This way

when merging the number of comparisons were drastically reduced.
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4.6.2.2 Memory Issues

The main issue with memory that we confronted was with the parallelization of

the code, as having a big amount of data on each CPU drove the cluster out of

RAM memory, creating a bottleneck on the script that would slow up the whole

execution. To address this problem, we added some optimizations to the code as

shown below:

• Block reading: Most of the tests did not use all the blocks but a subset

of them. Instead of reading all LiDAR blocks and then randomly choosing

which ones to process, we first choose which blocks will be processed as-

signing an index to each block and then only read those blocks chosen to

be processed.

• Data types: When we readed the data, most datatypes were extremely

precise. However, we did not need that much precision. Due to the limita-

tions of the coordinates of the tiffs for example we knew that the coordi-

nates would always fit into a int32 datatype instead of a int64, reducing the

memory usage to half. Furthermore, all datatypes for LiDAR points and

aggregates were reviewed and changed according to a more suitable type.

Another example of changing the types is in landuse, as the classes can only

be from 1 to 10, which allows us to use only a byte to represent them.

• Merging Tiffs: One of the worst bottlenecks was while merging the tiff

data to LiDAR data in parallel for each block. At this point we had one

dataframe for each block containing tile aggregate information on each row

and we wanted to add the information from tiffs maps. The issue comes

when it has to be done in parallel, as this would involve creating as many

copies of the full tiff (which weighted some gigabytes) as CPU used. A

solution was to cut the tiff before sending it to process each block, as we

did not need the full map, only the same square as where the block was.

However, this operation would then not be parallelized so we decided not

to implement this solution.
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4.6.3 Tests done

Having the cluster allowed us to drastically scale the number of blocks used. In

local we only managed to process 10 training blocks (diverse10 dataset) and use

1 for testing purposes (NextToBlock dataset).

To study how the execution time increased in relation to the number of blocks

processed, we started incrementing our data to a total of 24, 48, 72, 96, 120

and 144 by using the cluster. Note that those were multiples of the number

of CPU (24) to use all the computational power. Even though those numbers

are large in comparison of the tests done on local, they still represented a small

percentage of Catalonia (144 represents 1.7% of Catalonia), but would give us

enough information to estimate how much would it take to process all the blocks.

Then we performed Feature Selection using 5% of Catalonia (around 400 blocks).

Afterwards, we reduced enough the number of features that we could process all

Catalonia in a reasonable time, so we performed Hyperparameter Tunning with

the 80% of Catalonia and then trained the final model on the same dataset, using

the rest 20% for testing its performance.

4.7 Final Product

As this is a model that is supposed to be used on real cases, we decided to farther

develop an automatized software that would allow the client to get the predic-

tions from any desired block by reading the blocks, processing them, normalizing

and imputing the data, reading the previously saved model and using it for the

prediction.

The script not only is fully optimized but also allows the user to use multiple

cores for parallelization.

The final product will be ran from the terminal, accepting the following pa-

rameters:

• input_blocks_path: path where the input block / s are stored.

• output_blocks_path: path where the output prediction will be stored.
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• –output_type, -o: to select the format of the CC block prediction. The

type outputs allowed are: .csv (default), .tiff and .asc.

• –n_cpu, -n: Number of CPU that will be used (default: -1 -> max cpu

available).

Given the input path and the output type, the script will provide the CC

prediction for each block which will be stored in the specified directory.
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Chapter 5

Results

This chapter collects the results on all the different steps of the process, outlining

the findings from the different models, evaluations of simple models, outcomes of

feature selection and hyperparameter tuning, and comprehensive training results

for the diverse datasets, along with interpretations.

For valorating the model’s performance and results we will use the previously

mentioned R2 and MAE metrics, along with a scatter plot of predicted vs. actual

values and in some cases the map with the predicted values next to the map with

the expected values of the same area. The scatter plot of predicted vs. actual

values is a graph that shows on the x-axis the actual values and on the y-axis

the predicted ones, so the perfect accuracy would be for the points to fall on

the diagonal line, which would be that all the predicted values matched the real

values.

5.1 Simple Models

Simple models include all those models that do not use artificial intelligence for

predicting Canopy Cover. Those models were just built for checking the pre-

dictive power of designs proposed by the current literature, so we decided not

to invest all our efforts on that and thus the models were only used on smaller

datasets provided that the MLM performed significantly better. The simple mod-

els included the height based model and the advanced approach on the vegetation
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based model.

For the height based method, we did a grid and compared a list of thresholds

on a full block as shown in Figure 5.1, with the best one being 8.

Figure 5.1: Threshold value optimization for the height based method.

The results of all the tests done are collected on the following table:

Vegetation Model Height based Model

Datasets R2 MAE R2 MAE

Tiny 0.534 10.523 0.118 14.772

Toy 0.554 17.843 0.563 16.466

Fullblock 0.230 24.181 -1.50 42.18

NonzeroGt 0.346 15.652 0.144 17.872

As most of this datasets did not suppose a significant area and thus the results

would not be rigorous, we decided not to include deeper analysis on those such

as plotting the predictions or scatter plotting with the real values.

Across the evaluated datasets, the Vegetation Model consistently outperforms

the Height-based Model in both R2 and MAE metrics. This suggests that the

classification of LiDAR points as high vegetation provides a more reliable basis

for canopy cover estimation compared to a simple height threshold.
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The Tiny Dataset results indicate that both models handle simpler, smaller

datasets better, though the Vegetation Model is superior.

The Toy Dataset results suggest that both models can handle moderately

sized datasets, with the Height-based Model slightly outperforming the Vegeta-

tion Model.

The Fullblock Dataset results highlight significant challenges for the Height-

based Model, suggesting it may not be suitable for large and complex areas.

The NonzeroGt Dataset results show moderate performance for the Vegetation

Model and poor performance for the Height-based Model, reflecting difficulties

with more diverse canopy structures.

While the simple models provide a baseline, their moderate to weak perfor-

mance specially on larger datasets highlights the need for more sophisticated

approaches, such as machine learning models that can capture complex patterns

and interactions in the data.

The variation in performance across datasets underscores the importance of

dataset characteristics in model evaluation and the necessity for models that gen-

eralize well across different types of data.

In conclusion, the simple Vegetation-based model shows better performance

than the Height-based model, but both have limitations, especially on more com-

plex or varied datasets. This initial analysis corroborates that moving towards

more advanced machine learning models is a promising direction and serve as an

introduction to the more complex datasets and models.

5.2 Complex models

This approach consists on gathering as much information as possible about a

20×20m tile from many sources (not only LiDAR data) and using this information
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to train a Machine Learning model that will learn the underlying patterns of the

data and how to use them to predict the canopy cover. On this section we will be

going through some datasets that we used to train and test our machine learning

model, increasing their size and thus our model’s performance.

5.2.1 Diverse 10 Dataset

The first dataset where we tried our machine learning model was the Diverse10,

training it with 70% of the tiles and testing it with the remaining 30%. The

model achieved significantly good results as shown in Figure 5.2, with a R2 score

of 0.951 and a MAE of 4.47.

Figure 5.2: Scatter plot real values vs. predicted values of the Diverse10 dataset

having tiles randomly sampled from diverse blocks as testing partition. The red

line indicates optimal values.

The main idea behind Diverse10 dataset is that it contained distinct types of

geography and thus training a model would hopefully mean that it could gener-

alize to the rest of Catalonia. However, this was not the case, as when we tested

the model on a random full block of Catalonia it reported a very low performance

as shown in Figure 5.3 with a R2 score of -1.87 and a MAE of 41.34.
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Figure 5.3: Scatter plot real values vs. predicted values of the Diverse10 dataset

having a full block as the testing partition. The red line indicates optimal values.

Our hypothesis relied on the fact that Catalonia’s geography was too complex

to be modeled using only 10 blocks and thus we needed far more data to train our

model. Although our model would not be able to accurately predict a random

full block of Catalonia due to its differences with the geography of the ones used

while training, we were confident that it could predict a block with a similar

geography, and thus tested the model on a full block situated next to one of the

samples belonging to Diverse10 dataset (the NextToBlock dataset).

The tests reported a R2 score of 0.82 and a MAE of 10.79, and a scatter plot that

contained a peculiar pattern as shown in Figure 5.4.
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Figure 5.4: Scatter plot of real vs. predicted values using the Diverse10 dataset

for training and NextToBlock dataset for testing.

We will dig deeper into this pattern in the discussion section, but the model

yielded the desired results. Figure 5.5 shows the NextToBlock’s real Canopy

Cover compared with the prediction made by our model.

Figure 5.5: Canopy Cover map comparison between the real values (left) and

predicted values (right).

Overall, the prediction achieves a good result on forecasting similar shapes

as the real values, but fails on the more detailed parts, as when comparing both

maps those seem o be blurred. However, our goal with this test was not to achieve
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the best performance but to prove that with similar geography our model could

yield good predictions, which we achieved.

5.2.2 Cluster Execution Results

In this subsection I will be presenting the different results obtained from training

our model with a larger set of data, how the problem scaled and how paralleliza-

tion impacted the execution time and memory usage.

The main problem of scaling our dataset to all Catalonia was the long pro-

cessing time as shown in Figure 4.3, with an average processing time of around 8

minutes, which would result in 46.8 days.

After parallelizing our code with 24 CPUs, we recorded the growth in execu-

tion time in terms of the number of blocks processed, from 24 to 144. As Figure

5.6 shows, the improvement is impressive, saving up up to almost 15 hours on

the last stage.

Figure 5.6: Script execution time comparison between an estimation of the se-

quential approach and the measured parallel results.

By parallelizing our code, we achieved to process each block in almost 2 min-

utes when we use 24 cores, which is a good optimization when compared to the

8 minutes that it takes in sequential. Another way of comparing how well is our
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parallelization doing is by using Speedup and efficiency. In computer architec-

ture, speedup is a number that measures the relative performance of two systems

processing the same problem. More technically, it is the improvement in speed of

execution of a task executed on two similar architectures with different resources

[61]. Efficiency is defined to be the ratio of the speedup to the number of pro-

cessing elements [27]. The Speedup can be calculated by dividing the time that

a task takes to execute in sequential by the time that the same task takes to

execute in parallel. In our case, from our data we have calculated a Speedup of

4.5 and an efficiency of 19%, which is a good achievement, as our program is 4.5

times faster using 24 CPUs.

By breaking down the total execution time in the different tasks inside the

script we can check in which part to focus our optimization efforts. Figure 5.7

shows a break down of all the tasks and their execution time.

Figure 5.7: Script execution time breakdown for a different amount of blocks.

The process of preprocessing the blocks is the most costly one and also scales

with the amount of blocks used, so we focused all the optimization efforts on

it. Most of the other tasks on the other hand hardly scale with respect to the

number of blocks used. Although grouping features slightly scales with respect

to the number of processed blocks, we did not consider it significant enough to

spend time optimizing that task.

Figure 5.8 shows that, as the block preprocessing’s task scales with the number
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of blocks while the other tasks take a relatively constant time, the percentage of

the execution time dedicated to preprocessing the blocks will also increase until

reaching almost 100%.

Figure 5.8: Piecharts showing the percentage of the script’s execution time that

each task takes.

However, when we tested how our model performed as the number of blocks

increased, we found out that it was very inconsistent as shown in Figure 5.9.

Figure 5.9: R2 and MAE score comparison as the number of used blocks increases.

If we look only at the testing scores, we can see that the model is very incon-

sistent, fluctuating between good scores and bad scores regardless of the number

of blocks used. On the other hand, the training scores are rather good and con-

sistent, although they do not improve as the number of blocks used increases.

Checking at the training and testing splits together, we can conclude that the
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model is clearly overfitting to the training data and thus memorizing instead of

learning from our data, resulting in poor performances on the testing partitions.

We will work on solving that problem on next sections, mainly by reducing the

number of features of the model and adding a regularization parameter to our

model. The fact that even the training metrics do not increase according to the

number of blocks used leads us to think that this subsample of Catalonia is not

large enough to see an important improvement on the accuracy (note that still it

is only a 1.7% of Catalonia).

We also performed another test to see if our problem was memory bound.

The test involved processing blocks using the same number of blocks as CPUs

in two different ways: first using the same block on each CPU, and then using

different blocks on each CPU. When using the same block, the CPUs do not need

to compete for resources as a block can fit on memory, but when using different

blocks, if there is not enough memory CPUs will have to compete for memory

and thus the execution time will increase. Note that in order to ensure a rigorous

test, we had to find blocks of a similar size and thus used small sized blocks.

Figure 5.10 shows the results of the test. Until 6 CPUs, both methods perform

the same, with the execution times being very similar. However, From 12 CPUs

on, the execution time when processing different blocks is higher, which means

that the CPUs do not have enough memory to fit all the blocks and thus the

program is not going as fast as it could.
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Figure 5.10: Bar chart showing the different execution times on cases where the

same block is processed and where different blocks are processed.

When we optimized the memory usage, we managed to get a 5% reduction

for each 24 blocks, which is not high enough but helped us slightly optimizing

the execution time.

5.2.3 Feature Selection

The results of the process can be seen in Figure 5.11:

Figure 5.11: Results of Feature Selection on Canopy Cover prediction.

79



5. RESULTS

As the number of features decrease, the coefficient of determination for the

testing set also decreases. For the first 132 rejected features there is only a R2

decrease of 0.01, which we have considered to be acceptable taking into consider-

ation that the model was almost 8 times simpler. For a lower number of features

we saw that the model still performed reasonably good, specially with one fea-

ture, as it managed to reach a 0.79 R2 score.

Note that the “height_threshold_x_True” feature keeps track of the relative

amount of datapoints above x meters considering only the vegetation points. On

the other hand, the feature “n_q_0.7” keeps track of what is the 70% percentile

for the “number of returns” feature.

In order to keep the performance as high as possible while reducing the number

of features, we decided to keep 20 features, which are:

'height_q_0.2', 'height_q_0.3', height_threshold_3.0_True', 'height_threshold_4.0_True',

'height_threshold_5.0_True', 'height_threshold_6.0_True', 'height_threshold_7.0_True',

'n_q_0.3', 'n_q_0.4', 'n_q_0.5', 'n_q_0.6', 'n_q_0.7', 'n_sd',

'i_threshold_10_True', 'i_threshold_130_False', 'i_threshold_70_False',

'num_points_5', 'num_points_2', 'r_threshold_1_False', ‘slope'

The first two features show the percentile 30 of the height feature, while the

others are related with the relative amount of points above a certain threshold.

For the number of returns feature, the model have decided to keep track of the

30, 40, 50, 60 and 70 percentiles as well as the standard deviation of it. Looking

at the intensity, a high threshold value (130) and a small one (10) along with a

medium value (70) have been kept. Also the amount of points that belong to

class 2 and 5 seem to be important, as those classes are the ones corresponding

to Ground and High Vegetation.

Related to the number of returns, we also have the return number, which is also

used as a feature, measuring the amount that surpasses a threshold of 1. Finally,

the slope seems to be also important, as a terrain with steeper slope might indi-

cate mountains, which usually have higher Canopy Cover.

From the feature selection we can see that the most important feature has

been the height, with a total of 7 features, followed by the number of returns
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with a total of 6. Intensity seems to also be important, as 3 of the features

are calculated from it. Finally, the percentage of “high vegetation” points and

“ground” points also bring information to the model, along with slope and the

return number.

In conclusion, the first model contained 152 features, which provided a high

execution time, high memory usage, high redundancy, high overfitting and less

explainability, while the feature selection allowed us to keep only 20 features (less

than 15% of the initial features), providing low execution time, no redundancy,

no overfitting and high explainability.

This step allowed us to process the whole Catalonia in a reasonable time, as

processing 24 blocks before the Feature Selection took around 1 hour, which was

reduced to 2 minutes (3.33% of the total time) after keeping only 20 features. This

meant that in the time we processed 24 blocks before, now we were processing 30

times more, 720 blocks.

5.2.4 Hyperparameter Tuning

After spending many days performing hyperparameter tuning using Random

Search with Cross Validation, we found out that the combination that showed a

better performance was:

colsample_bytree=0.75

gamma=0

learning_rate=0.1

max_depth=25

min_child_weight=25

n_estimators=1000

reg_alpha = 100

reg_lambda = 2

subsample = 0.1

This hyperparameters chosen for the XGBoost model indicate a tailored and

thoughtful approach to balancing model complexity, learning capacity, and reg-

ularization. With 1000 estimators, the model is given substantial opportunity to

learn from the data, allowing for nuanced and detailed decision-making.
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The max_depth of 25 suggests that each tree in the ensemble can be very deep,

allowing the model to capture intricate patterns and interactions in the data. Such

depth is beneficial in scenarios where the underlying relationships are complex

and multi-faceted. However, deep trees can also lead to overfitting, capturing

noise rather than signal. This necessitates robust regularization strategies to

ensure generalization.

In this setup, the regularization is achieved through a combination of reg_alpha

and reg_lambda. The reg_alpha parameter is set to a high value of 100, intro-

ducing substantial L1 regularization. This helps in shrinking the coefficients of

less important features to zero, thereby simplifying the model and preventing

overfitting. Meanwhile, reg_lambda, set to 2, applies L2 regularization, further

stabilizing the learning process by penalizing large weights.

The learning_rate of 0.1 indicates a cautious and incremental approach to

model updates, ensuring that each step towards the optimal solution is measured

and less prone to drastic fluctuations. This slower learning rate helps in making

the training process more robust and less likely to overshoot local minima.

Additionally, the model employs a min_child_weight of 25, which ensures

that the nodes in the tree are not split unless they contain at least 25 instances.

This prevents the model from learning from small, potentially noisy samples (such

as low LiDAR density areas), thus contributing to its overall robustness.

The colsample_bytree parameter is set to 0.75, indicating that each tree is

built using 75% of the features. This randomness in feature selection helps in re-

ducing the correlation among trees, thereby enhancing the model’s generalization

ability.

Lastly, the subsample parameter is set to a low value of 0.1, meaning that

each tree is trained on only 10% of the data. This aggressive subsampling signif-

icantly boosts regularization, further combating overfitting. Such a strategy can

be particularly useful in high variance data scenarios, ensuring that the model

does not become too tailored to the training data.

In summary, the chosen hyperparameters reflect a sophisticated balancing act

between leveraging the powerful learning capabilities of XGBoost while employing

strong regularization to maintain generalization. The high number of estimators,

deep trees, and incremental learning rate, combined with significant regularization
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and subsampling, make this setup well-suited for capturing complex patterns

without succumbing to overfitting, which was mandatory for our canopy cover

prediction.

5.2.5 Final model

The full model was trained after all the mentioned optimizations, feature selection

and hyperparameter tuning. The processing time of all Catalonia (8424 blocks)

was of 4 hour and 30 minutes, but only the 80% of it (6739) was used for training

the model. This training took 46 minutes, and the final model weights around 200

Mb. Afterwards, we assessed the performance of the model using the remaining

20% of the blocks (1685).

The following table summarizes the metrics for the final model:

R2 MAE

Training Set 0.89 6.30

Testing Set 0.88 6.47

Our model has achieved a high performance, reaching a 0.88 score on the coef-

ficient of determination, and a mean absolute error of only 6.47, while keeping the

training and testing metrics close, which indicates that the model was properly

fitted and we managed to significantly reduce overfitting.

We chose 3 blocks from the Diverse10 dataset (that were not used in any of the

training of the models) to visualize the predictions made by the different models

we trained. Figures 7.4, 7.4 and 7.4 in the appendix show the real Canopy Cover

compared with the prediction made with a model trained with 80% of Catalonia

(Full model) along with the prediction made using a model trained with only 115

random blocks (Partial model), which represent approximately 1.3% of Catalonia.

Notably, the predictions generated by the full model exhibit a remarkable level

of accuracy, closely aligning with the actual values.
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In contrast, the predictions derived from the partial model depict a notice-

able divergence from the real values, indicating a comparatively inferior predictive

capability. The higher Mean Absolute Error observed in the partial model pre-

dictions corroborates this observation, suggesting that the model’s performance

degrades when trained on a substantially reduced dataset.

While the shapes of the predicted values by the partial model may appear

satisfactory, the discernible discrepancy in the actual numerical values further

emphasizes the limitations introduced by the smaller training dataset. This dis-

crepancy between predicted and actual values underscores the importance of data

volume in training robust and accurate machine learning models.

Figure 5.12 shows a broader view of our model’s performance along Catalonia,

as it shows the real and predicted Canopy Cover map for all Catalonia, along with

the difference between the predicted value and the real value, showing the areas

where the model underestimated and overestimated, which can give important

insights about how the model treats different landscapes.

If we check the difference, we can see that the model has an excellent perfor-

mance in the middle west of Catalonia, while in the north it is where it fails the

most, probably due to the mountains and their irregular landscape. The coast

has a small and consistent error, mostly overestimating the canopy cover value.

After having trained the final model, we used it along the built software to

predict the whole Catalonia’s Canopy Cover, as showed in Figure 5.12, with a

processing time of 4.5 hours and a prediction time of less than 1 hour.
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(a) Catalonia’s real and predicted Canopy Cover

(b) Catalonia’s Predicted-Real
Canopy Cover

Figure 5.12: Catalonia’s Canopy Cover comparison after predicting with the full
model.
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Chapter 6

Discussion

6.1 Error analysis

In order to get a broader understanding of the model’s performance, we will

be analyzing the errors that our model has been doing when predicting Canopy

Cover in the whole dataset.

Figure 6.1 shows the error distribution (real values - predicted values) in a

frequency histogram binned in groups of 2%.

Figure 6.1: Error distribution histogram.
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The errors seem to be close to normally distributed, with a high peak around

the zero error. Taking a closer look, the graph shows that more than 50% of the

predictions made have an error very close to zero, specifically into the (-2,2) error

range. As the error moves farther from zero, the number of times the model did

that error gets asymptotically smaller. In fact, the amount of times our model

has made an error higher than |25| is very close to zero.

Figure 6.2 shows a confusion matrix where the predictions and real values

have been grouped into bins of 10 units, showing how the model performs on

different ranges of values.

Figure 6.2: Discreted Prediction confusion matrix.

Note that the first cell has been artificially painted as its large scale made all

other cells be of the same color.

Around 60% of Catalonia seems to have less than 10% Canopy Cover, most

of it has been correctly predicted. Many of the other cells are close to zero, with

the highest numbers of each row usually being on and around the diagonal. This

fact indicates that our model is mostly predicting the correct value or at least

near it, as the matrix is close to sparse.
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Note as well that our model seems to have a tendency to underestimate. This

behavior results in the confusion matrix having large values on the lower diagonal.

We have the hypothesis that the provided groundtruth had been overestimated

provided that we manually checked some of the 20×20 tiles and the real per-

centage of canopy cover was in many occasions lower than the described by the

groundtruth. Then, our model making a slight underestimation might actually

help reaching a closer to reality value than the actual groundtruth.

Some of the highest errors might be due to low density areas, as there are

some areas that contain very low density such as the observed in the figure 3.9.

6.2 Extrapolating to higher densities

Our LiDAR data ensured a 0.5 points / m
2 density on 95% of the blocks, but

more modern LiDAR censors are increasing this parameter to much higher den-

sities. In fact, the LiDAR that will be used by firefighters have a density of 90

points/m2, which is 180 times greater than the LiDAR used to train the model.

However, our model is able to make a canopy cover prediction of the blocks

regardless of the point densities due to the fact that the aggregates are based on

“which percentage of points meet a criteria” instead of “how many points meet

a criteria”. Moreover, with higher densities our model should be able to yield

better predictions as the data is more accurate and there is more information.

The aim of this section is to measure how does the processing time increase

as the LiDAR input data is denser.

Figure 6.3 shows how does the execution time increase for different tasks given

the input size in MegaBytes.
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Figure 6.3: Execution time variation when increasing the block density.

The lower sizes correspond to a density of 0.5 points/m2 (Catalonia), while

sizes in the middle correspond to densities of 6 points/m2 (Canada) and largest

sizes correspond to densities of 10 points/m2 (Navarra).

The graph shows that the execution time increases from less than 1 minute to

almost 20 minutes when the block size increases. The high impact of executing

the program in parallel is another important feature, as only by using 5 CPU,

the execution time is lowered by three times, which remarks the parallelization

capabilities of the model.

6.3 Problems faced during the project

Although I am very happy with the results of the project, we have encountered

many problems during the development that required many hours to be solved

and even some of them could not be completely worked out.

6.3.1 Zero Canopy Cover

As shown in figures such as 5.5 or 5.2, our models tended to misclassify many

points that were labeled as 0% Canopy Cover, assigning them a suspiciously high
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value. However, this effect was not seen the other way around (i.e. there were

hardly no points classified as 0 that were not 0). This fact made us think that

there was some kind of irregularity on the groundtruth map.

Figure 6.4 shows a satellite view of a specific Catalonian zone, along with the

Canopy Cover map overlapped. Surprisingly, there are some 20×20m tiles that

seem to contain tree canopy and thus the canopy cover should be higher than 0.

However, the groundtruth has defined it as 0% Canopy Cover.

Figure 6.4: Satellite view of an area along the canopy cover assigned by the

groundtruth. Note that in the first picture, all the tiles that do not have a color

assigned have been labeled with 0% canopy cover.

For mitigating this effect we tried to build a model that would first classify a

tile between 0-valued or non-zero valued, and then the non-zero valued tiles would

go through the main model to assign them a value higher than zero. However,

this approach did not work as good as expected, mainly because the errors were

on the groundtruth and thus LiDAR did not contain any pattern for detecting

the 0 values.

This errors then propagate to the model, as when the training labels are mis-

taken, the model is learning from wrong targets and thus will transmit those

errors to the predictions.

In the future, the model could be improved with a more rigorous groundtruth.
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Another possible solution would be to detect those mistaken zero valued tiles

using outlier detection and leaving them out of the training process, which could

be a future implementation.

6.3.2 Converting LiDAR data to tabular data

One of the main problems that we encountered in the beginning was that for

each 20×20m tile we had an irregular number of points and thus the dataset

had an inconsistent shape. For training a machine learning model, we needed

a tabulated dataset where each row was assigned a target label. As we could

not directly feed the model with the singular LiDAR points (inconsistent shape,

too many columns, ...) we decided to design our dataframe such that we would

use aggregates of the points inside each tile to gather up information that would

give a solid representation of the area which the model could then use to make

predictions.

6.3.3 Tendencies

As shown in Figure 5.5, when we trained a model with many blocks, we started

seeing two tendencies on the scatter plots. The points that belonged to one ten-

dency used to be overestimated, while the points that belonged to the other one

used to be underestimated.

Figure 6.5 shows the two tendencies coloured in a scatter plot of the NextTo-

Block dataset.
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Figure 6.5: Scatter plot with the tendencies manually colored.

These two tendencies did not only show up on the results of the model, but

also while comparing the the first component of the PCA with the Canopy Cover

or when comparing a height attribute with the Canopy Cover as shown in Figure

6.6.

Figure 6.6: Visualization of the tendencies when comparing the first component

of the PCA (left) and a height aggregate (right) with the Canopy Cover.

At first we thought that it might be only a random phenomena, but when

we coloured each point from the block according to the tendency it belonged, we

clearly saw that there was some kind of pattern as shown in Figure 6.7.
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Figure 6.7: Google earth (left), Canopy Cover (middle) and tendencies (right)

visualization of the NextToBlock dataset.

We figured out that the tendencies gathered around the points that had a

low canopy cover value, but still there were some areas that contained a purple

tendency that also had a high canopy cover value (between 20% and 60%). Figure

6.8 shows the same block, this time the canopy cover that had a value close to 0

was painted in blue.

Figure 6.8: NextToBlock tendencies with the zero valued canopy cover painted

in blue.

We can see that still some areas contain a high canopy cover and are labeled
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as the purple tendency.

However, this tendencies issue did not only show up on that dataset, as all

other datasets also had a similar problem. For instance, check the fullblock

dataset when comparing the first component of the PCA with the Canopy Cover

in Figure 6.9 and the map visualization of the Canopy Cover and the tendencies

in Figure 6.10.

Figure 6.9: Tendencies visualized for the fullblock dataset when comparing the

first component of the PCA with the Canopy Cover.

Figure 6.10: Google earth (left), Canopy Cover (middle) and tendencies (right)

visualization of the Fullblock dataset.
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We made some hypothesis of where could both tendencies come from, for

example different types of vegetation that we cannot see (deciduous and ever-

green), or the time when the LiDAR data was recorded (maybe some areas were

recorded in Autumn and thus the trees did not have leafs then). However, we

quickly discarted that hypothesis when we compared the different flying times

that the NextToBlock datased had as shown in Figure 6.11.

Figure 6.11: Scatter plot differentiating the points by the time they were mea-

sured.

As the tendencies showed in all three LiDAR measuring moments we rejected

the hypothesis.

Finally, our most accepted hypothesis was that the model was wrongly learn-

ing from the incorrect zero valued Canopy Cover of the groundtruth and thus it

had a confusion when predicting low valued canopy cover, leading up to having

two tendencies show up, specially on lower values. In fact, for higher values of the

canopy cover (>60%) the model shows a good performance and does not hesitate

between multiple tendencies.

6.3.4 Memory and Execution Time issues

Another of the major problems that we encountered occurred when scaling the

data, as even using the cluster we still had memory problems and a high execution

time. We dedicated most of our efforts on solving those problems as shown in the

“Cluster” section, but each time we wanted to test our optimizations we had to

wait a significant amount of time due to the costly executions, making the whole

process very tedious and slow.
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6.3.5 Block overfitting

At one point we had to make a design decision on how to divide our data for

training an testing. One option was to mix all the tiles from all the blocks and

randomly splitting them into training and test. However, when we tried that

option we saw that there was a large overfitting as the model was memorizing

the 20×20m tiles and was not generalizing. As a solution, we chose to group the

tiles in their original blocks and split those blocks into train and testing. Then,

we would use all the tiles inside the training blocks to train the model and all the

tiles into the testing block to evaluate the performance.
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Chapter 7

Conclusions

7.1 Comparison with literature

While all reviewed studies focus on predicting Canopy Cover from LiDAR data,

direct performance comparisons are challenging due to variations in geographical

modeling difficulties and methodological differences. Nevertheless, their metric

values provide useful benchmarks to assess whether our model’s performance is

within a normal range or significantly deviates.

Narine et al. achieved R
2 scores of 0.50, 0.61, 0.93, 0.75, 0.63, 0.72, 0.84,

0.77, 0.70, and 0.79 using ICESat-2 LiDAR data across multiple studies [30] [29]

[28]. These scores highlight the variability in predictive accuracy depending on

the specific geographic and environmental conditions of the study areas. Saleh

et al. reported an R
2 score of 0.663 by integrating LiDAR data with Landsat 8

OLI imagery, demonstrating the potential benefits of combining different types

of remote sensing data to enhance model performance [45]. Similarly, Tang et

al. obtained R
2 scores of 0.27, 0.57, 0.45, and 0.30 by evaluating different models

in various global regions [51]. These relatively lower scores may reflect the in-

creased complexity and variability inherent in a broader, more diverse range of

study sites. Posilero et al. achieved an R
2 score of 0.562 using linear regression

techniques [38], indicating that simpler models can still yield reasonable predic-

tions but may lack the precision of more sophisticated approaches.
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Most models appear to achieve R
2 scores around 0.60 to 0.70 with LiDAR

point densities of 5 points/m2. In contrast, our model achieved an R
2 of 0.88

using point densities of 0.5 points/m2. This significant improvement suggests a

higher prediction power while utilizing fewer resources, highlighting the efficiency

and effectiveness of our approach. Our model’s performance indicates that it can

produce highly accurate canopy cover predictions even with lower LiDAR data

densities, which can be particularly advantageous in terms of cost and computa-

tional efficiency.

Overall, our findings suggest that while geographic and methodological differ-

ences must be considered, our model demonstrates a robust capability for canopy

cover prediction, outperforming many existing models in the literature. This

performance underscores the potential for further refining and optimizing remote

sensing models to achieve even greater accuracy and resource efficiency.

7.2 Summary and conclusions

In conclusion, this research successfully accomplished its primary goals, signifi-

cantly advancing the prediction of CC for Catalonia through the application of

machine learning and artificial intelligence. The implementation of these tech-

nologies resulted in a mean absolute error (MAE) of 6.47, achieved in less than an

hour, which is remarkably efficient compared to the longer time frames required

by traditional methods employed by the ICGC. This efficiency underscores the

practicality and effectiveness of our approach.

The project addressed the critical need for timely and accurate CC predic-

tions, which are essential for predicting forest spread and managing forest re-

sources. The developed model not only provided updated CC values but did so

with a speed and precision that make it an valuable tool for forest management

strategies.

One of the key objectives was to create a versatile framework capable of ex-
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tending beyond CC to other biophysical variables. The model’s successful use of

LiDAR data to generate maps swiftly paves the way for broader applications in

resource management and environmental monitoring. This adaptability marks a

significant contribution to the fields of remote sensing and geospatial analysis.

The study also aimed to ensure that the solution was accessible and practical

for various computing environments. With a software size of less than 300MB

and parallelization capabilities, the developed framework is highly portable and

efficient, making it feasible for diverse computational platforms from standard

machines to resource-constrained systems.

In essence, our research not only addresses the specific challenge of Canopy

Cover prediction for Catalonia but also lays the foundation for a versatile and

efficient framework applicable to a spectrum of biophysical variables. The amal-

gamation of speed, accuracy, and accessibility positions our approach as a valu-

able asset in advancing the capabilities of geospatial analysis and environmental

monitoring.

7.3 Further Work

One of the most important parameter of our model, the height, which takes up to

7 out of the 20 total features has been estimated in a very simple way. It would

suppose a large improvement if we could manage to making a better approxima-

tion of the heights of our points, either by using outside data or applying complex

DEM algorithms.

The performance achieved can be enhanced by adding extra information to

our model. An approach would be to add ortophotos to our model’s input, and

changing the architecture to a multi-modal neural network composed of tabular

data (MLP) and images (CNN), or even building a multi modal transformer.

Otherwise, LiDAR data can be converted into images by coloring the pixels

by class, as done when visualizing the data in QGIS. This way the LiDAR data
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could be used not only as tabular but also as image data, keeping the software

with as few inputs as possible.

Furthermore, for the sake of following the main goal of the project, it would

be interesting to build only a model based on LiDAR data (in our case we have

also used slope data).

Moreover, on this article we have only presented a model that was able to pre-

dict Canopy Cover. Instead, many other biophysical variables can be predicted,

such as fuel types, tree heights or leaf biomass, using a multiple output model

that could calculate all the necessary biophysical variables that the FARSITE

software requires.

7.4 Personal Reflections

This has been a very rewarding experience. Firstly, I think that it has been a

good contact within the research field, which has always emerged some interest

on me. Also, I have had the chance to broaden my knowledge thanks to the

problems that had to be solved and to apply the knowledge learned at college in

a more practical way, as in the majority of cases at the university are worked in

a more theoretical manner o making assumptions that move away the problem

from reality. Working on the research environment requires you to get deeply

informed about the methods that will be used to ensure that they do not have

any restrictions for obtaining rigorous and valid results.

It has been a nice experience to share department with some of the best minds

of the college, and I have learned a lot on the meetings, not only from the feed-

back but also on how to better expose the results, discussing the problems and

presenting the updates.

I am very satisfied on the outcomes of the project, not only on the model’s

performance but also on the acquired aptitudes.
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Furthermore, I am happy to write a scientific article and leave my footprint

on the research community. Moreover, I hope the work done can impact the

resolution of fire spreads, hopefully reducing the damage done.
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Appendix: Block prediction

visualization

(a) Real CC. (b) Predicted with Full model (6

MAE).

(c) Predicted with Partial model

(15 MAE).

102



. APPENDIX: BLOCK PREDICTION VISUALIZATION

(d) Real CC. (e) Predicted with Full model

(8.8 MAE).

(f) Predicted with Partial model

(12.5 MAE).
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. APPENDIX: BLOCK PREDICTION VISUALIZATION

(g) Real CC. (h) Predicted with Full model (7

MAE).

(i) Predicted with Partial model

(10.5 MAE).
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