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Resum– Els ISFET (Ion-Sensitive Field-Effect Transistors) són capaços de mesurar de forma com-
pacta i eficient concentracions iòniques com el pH, d’interès en la monitorització de la qualitat d’aigua.
Per aconseguir-ho, s’han de tenir en compte les interferències d’altres ions i condicions ambientals,
ja que alteren el comportament dels ISFETS. Aquest projecte es centra en construir un sistema de
monitorització que permeti als usuaris veure i analitzar les lectures ISFET en temps real.
El projecte també proporciona diferents models predictius per obtenir el pH a partir de les lectures
ISFET basades en la regressió lineal i una implementació de Model-Agnostic Meta-Learning (MAML)
amb un Multi-Layer Pereptron (MLP)

Paraules clau– MQTT, ISFET, MAML, ML, DL, MLP, Deep Learning, Django, React, Daphne,
I2C,

Abstract–
ISFETs (Ion-Sensitive Field-Effect Transistors) are capable of compactly and efficiently measuring
ionic concentrations such as pH, of interest in water quality monitoring. To achieve this, interference
from other ions and environmental conditions must be taken into account, as they alter the behavior of
ISFETS. This project focuses on building a monitoring system that allows users to view and analyze
ISFET readings in real time.
The project also provides distinct predictive models to obtain the pH from the ISFET readings based
on Linear Regression and an implementation of Model-Agnostic Meta-Learning (MAML) with a Multi-
Layer Pereptron (MLP).
Keywords– MQTT, ISFET, MAML, ML, DL, MLP, Deep Learning, Django, React, Daphne, I2C,

✦

1 INTRODUCTION

ISFETs (Ion-Sensitive Field-Effect Transistors) are transis-
tors that change their gate voltage depending on the concen-
tration of specific ions in a solution [1]. Ideally, an ISFET
designed to detect H+ ions vary their response depending
on the concentration of such ions and, if configured as a
voltage follower, should output a source voltage that is di-
rectly related to the pH of the substance being measured.
However, in practice, the relationship between the pH and
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the ISFET’s output voltage is influenced by multiple fac-
tors, making it a non-linear function. The main factors af-
fecting this behavior are the temporal drift of the ISFET in-
terference from the activity of other ions in the solution. In
this project, we focus on the interferences caused by sodium
(Na+) and potassium (K+) ions.

Additionally, significant inconsistencies are observed in
the offset, sensitivity and selectivity of different sets of IS-
FETs, further complicating the application of traditional
predictive methods to address these non-linearities effec-
tively.

1.1 Objectives

To address these challenges, the aim of this project is to
develop a monitoring system capable of tracking target val-
ues (such as pH), ion interferences, and real-time reference
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pH values. The project also aims to use machine learning
(ML)-based algorithms as a reliable method for predicting
pH from ISFET measurements. Thus, the project is divided
into two main components:

1. Design, training, and evaluation of predictive mod-
els based on machine learning to correct for non-
linearities and interferences in ISFET measurements
for accurate pH predictions.

2. Development of the IoT monitoring system. The trans-
mission of electrochemical sensor readings on an Eth-
ernet network by using MQTT protocols to track both
pH and ion concentrations.

2 WORKFLOW PLAN

This project was divided according to the established objec-
tives into:

• Pre-processing of the data: The goal of this phase is to
prepare the collected data for the ML algorithms. This
involves normalizing the data and transforming it into
an appropriate format. This process is a prerequisite
for developing the Machine Learning models.

• Definition and training of the ML models: This phase
involves both constructing and training the ML mod-
els to achieve satisfactory performance. If adequate
performance is reached, the ML models will be imple-
mented for neuromorphic sensors.

• Neuromorphic Implementation: This phase focuses on
translating the ML model into a form compatible with
neuromorphic hardware.

• Development of the IoT system: Implementation of
networked smart electrochemical sensors intercon-
nected through IoT protocols such as MQTT.

• Development of a web interface: A platform to visual-
ize real-time data and predict pH values. This interface
will allow users to remotely monitor sensors, view pre-
diction results, and assess the effectiveness of model
adaptation.

Respect the initial plan, two major deviations were made:

• Due to the initial low performance of the ML mod-
els, several iterations of data pre-processing and model
training were performed. Consequently, the time allo-
cated to data processing increased significantly.

• Since the final evaluation of the ML models did not
support a neuromorphic implementation, a decision
was made to exclude it.

3 MATERIALS AND METHODS

3.1 Predictive models

3.1.1 Brief Theoretical Introduction

In simple terms, a MOSFET (Metal-Oxide-Semiconductor
Field-Effect Transistor) is a three-terminal device where

one of the terminals (the gate) controls the channel through
which electrical current flows between the other two termi-
nals (the source and drain) [2]. CMOS (Complementary
Metal-Oxide-Semiconductor) technology is the most com-
mon implementation of MOSFETs, where both n-channel
and p-channel MOSFETs are combined to create efficient
digital circuits. In MOSFETs, the current can be controlled
by applying different voltage levels to the gate, which mod-
ulates the conductivity of the channel between the source
and drain.

Figure 1: ISFET model used in the project

ISFET (Ion-Sensitive Field-Effect Transistor) devices, on
the other hand, are a specialized type of transistor designed
for chemical sensing. In ISFETs, the gate electrode is re-
placed during fabrication with an ion-sensitive membrane.
This membrane is configured to respond to a specific type
of ion, such as hydrogen ions (H+) for pH sensing. The ion
concentration near the membrane alters the surface poten-
tial, which in turn controls the channel allowing current to
flow between the source and drain. Thus, the electrical re-
sponse of the ISFETs is modulated by the concentration of
the specific ion that the membrane is designed to detect [1].

3.1.2 Related Work

Many methods have been proposed to compensate the non-
linearities of the pH ISFET sensors. These methods can be
divided into:

• On-chip methods: In general, these techniques work
in the hardware level, by compensating on the readout
electronics. For instance, on a 2007 paper, the out-
put of two ISFETS was correlated eliminate the drift
[3]. Other research focused on resetting the gate of the
ISFETs [4] or correcting the effect of temperature the
devices by regulating it [5].

• Off-chip methods: These are software-oriented solu-
tions, that process the signals analytically or with Ma-
chine Learning based techniques. The thermal and
drift effect compensation were done individually by
differentiating the drift and biasing dynamically at the
thermal point in a 2008 study [6]. Machine Learn-
ing techniques also proved to be useful by the simul-
taneous compensation of thermal and drift effect using
non-linear autoregressive neural networks (NARX) [7]
or by using both simple and complex ML algorithms
[8]

In a research by Margarit et al. [9] different ML models
were trained with a subset of the data described in Section
3.1.3. The predictive models developed and evaluated in
this project can be considered an extension of this research,
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with the use of a larger and more varied dataset and the
subsequent use of a more polyvalent ML algorithm.

3.1.3 Experimental setup for data collection

Between the 20th of February of 2018 and the 16th of
March 2020, a continuous reading of ISFET and pH values
was made in a monitoring station. This station was located
in the drinking water treatment plant (DWTP) of Sant Joan
Despı́, Spain. A probe was installed collecting water from
the Llobregat’s river. The probe included sensors with IS-
FETs designed to measure hydrogen (H+), sodium (Na+),
and potassium (K+) ions, alongside a reference electrode.
The ISFETs were fabricated using microelectronic technol-
ogy, with modifications to make them selective to Na+ and
K+ using specialized polymeric membranes [9]. These sen-
sors were included given that Na+ and K+ were demon-
strated to be the main interferences for pH measurements
[10] [11].

During the whole data collection process, six different
combinations of ISFET sensors were utilized, meaning that
in five different occasions, the ISFET sensors were replaced
by other sets. This leads to six different data distributions
partitioned in six different time intervals (Table 1).

As can be seen in Figure 2, there are clear changes in
the distributions of the ISFET readings between different
tasks. These changes can even be appreciated inside the
same tasks. With the sudden changes that were explain ear-
lier in this section. Note that some periods have no data and
are plotted as a straight line between the last value before
the break and the first after. Examples of these periods are
the one contained between 2018-10-15 and 2018-12-04 or
between 2019-08-06 and 2020-02-19.

Task Initial date Final date
1 2018-02-20 2018-04-13
2 2018-04-13 2018-06-13
3 2018-06-13 2018-12-04
4 2018-12-04 2019-07-16
5 2019-07-16 2020-02-19
6 2020-02-19 2020-03-16

Table 1: Intervals for the different tasks

3.1.4 Data curation

To maximize the effectiveness of predictive algorithms, it is
essential to curate the collected data and apply the necessary
changes to assert consistency on the datasets.

As an initial step, a decision regarding the inputs of the
predictive algorithms must be made. Since the ISFETS
show a time-varying behaviour, it is decided that entering
values corresponding to single timesteps would not be suf-
ficient, and that a context window should be used as input.
Subsequently, the predictive models will work with an in-
put that will consist of 128 samples of each of the variables,
thus, each input will consist of 128 · 3 = 384 values, corre-
sponding to the previous 127 samples plus the current sam-
ple of all channels: H+, Na+ and K+.

To compromise between redundancy and information,
we choose an interval between samples of 5 minutes, given
that the change rate of the pH and ISFETs is relatively

slow, and in a gap of 5 minutes, we don’t expect signifi-
cant changes in the level of either variables. Since generally
the dataset presented a higher sampling rate, the dataset is
down-sampled to match the chosen period of 5 minutes av-
eraging the readings. This means that the context window
will be of 640 minutes (hours and 40 minutes).

Since, during the data collection process, many unwanted
periods were recorded—such as instances where the sensors
were cleaned or recalibrated—it is necessary to identify and
condition these occurrences. These periods are character-
ized by sudden changes in the sensor readings. To detect
such occurrences, the dataset is time-differentiated to iden-
tify elevated peaks, which correspond to abrupt jumps in the
readings. Each abnormality is then evaluated individually to
determine whether it corresponds to cleaning or recalibra-
tion.

For cleaning events, intervals of inconsistent data are
identified. Since predictions based on inconsistent data are
not of interest, these intervals are removed from the dataset.
For recalibration events, an offset is applied to the readings
recorded prior to the recalibration to ensure consistency.

In some cases, it was suspected that the water that was
being measured flowed with a delay in the ISFET sensors
with respect to the reference pH sensor due to residues be-
ing accumulated in the probes. This could be appreciated
in the dataset as progressive temporal delays of the ISFET
measurements. To solve this, we used the differentiation
from the previous step and searched for relative maximums
and minimums in pH and H+ ISFET readings. Since we
expect the minimums and maximums to match, the data
was compressed / expanded in different intervals to align
the minimums and maximums.

ISFET sensors accumulate charge during their lifespan,
which contributes to a gradual increase in the magnitude
of the readings. This gradual increase hinders the predic-
tive capability of the models, since these accumulations can
be interpretated as actual pH level rises. Additionally, as
previously mentioned, ISFETS are characterized by having
offsets that are not directly related to the ionic concentration
the measure but instead they are the result of a base voltage
from the fabrication and initial configuration. This offset
and gradual increase don’t have a meaningful value for our
intended objective of pH prediction and instead represent
unwanted characteristics of the data.

Since both characteristics present very low frequency
components, a digital high-pass filter is designed to block
these unwanted signal features. After experimenting
with different filter configurations, it is determined that
a Butterworth filter of order 2 and a cutoff frequency of
2µHz (corresponding to roughly 6 days) implemented with
scipy.signal from the SciPy library of Python.

The data contains many outliers that alter the distribu-
tions of the data, hence for each task and variable we filter
all values that fall 4 standard deviations higher or lower than
the mean. Finally, we standardize each task and variable to
assert a mean of 0 and standard deviation of 1.

3.1.5 Linear Regression model

One of the simplest predictive algorithms is a linear re-
gression model, which lies at the intersection of statistical
methods and machine learning (ML) [12]. The simplicity
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Figure 2: Raw data collected from Sant Joan Despı́ DWTP between the 20th of February 2018 and the 16th of March
2020

of linear regression makes it highly interpretable and com-
putationally efficient, as it avoids the complexity and re-
source requirements characteristic of most advanced ML al-
gorithms[13]. Although linear regression cannot model the
non-linear behaviors of ISFETs, it enables fast and straight-
forward predictions, reducing the risk of overfitting caused
by overly complex models and mappings.

The linear regression model was implemented using
the numpy.linalg module from the Python library NumPy.
Mathematically, the model can be expressed as:

ŷ = b+

3∑
c=1

128∑
i=1

wc(i)xc(i) (1)

Figure 3: Structure of the Linear Regression model

3.1.6 MLP model

In contrast to linear regression, a multi-layer perceptron
(MLP) incorporates multiple layers of neurons (nodes) be-

tween the input and output layers, which can vary in both
depth (number of layers) and width (number of neurons
per layer) [14]. Conceptually, an MLP can be considered
as a stack of layers of linear regression models (multiply-
accumulation nodes) including a posterior non-linear acti-
vation function, where the output of each layer serves as in-
put to the next layer. This architecture enables MLPs to cap-
ture more complex, non-linear input-output relationships,
making them better suited for modelling the intricate be-
haviours of ISFETs and other systems with non-linear char-
acteristics.
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Figure 4: Structure of the MLP neural network

3.1.7 MAML Algorithm

In standard machine learning techniques, a model (such as
a multi-layer perceptron, or MLP) is trained to predict out-
puts based on inputs under the assumption that the training
and test data follow the same distribution. This assumption
works well when the input-output relationships remain con-
sistent across tasks or domains. However, when data comes
from multiple distributions (e.g., tasks with different under-
lying patterns), a model trained on one distribution often
struggles to generalize to unseen distributions. This is be-
cause the model has not been explicitly trained to adapt to
new distributions, and thus it fails to correctly map inputs
to the corresponding outputs when encountering unfamiliar
data.

Model-Agnostic Meta-Learning (MAML) addresses this
challenge by training models in a way that prepares them
to quickly adapt to new distributions or tasks with mini-
mal additional training. Instead of learning a single fixed
set of parameters, MAML trains the model’s parameters to
be highly adaptable, enabling the model to efficiently learn
new tasks from only a small amount of data [15].

MAML works in the following way:

• Objective: MAML aims to train a model with a set of
initialization parameters that enable it to quickly adapt
to new tasks using only a few gradient updates.

• Training Process: MAML assumes a set of tasks, each
with its own data distribution but with some underlying
relation. The training process involves two main steps,
repeated iteratively

– Inner Loop: A specific task is sampled, and the
model’s parameters are updated using a few gra-
dient steps on the training data of that task. This
step simulates task-specific learning.

– Outer Loop: After the inner loop, the updated
model is evaluated on the test data of the same
task. The gradients from this evaluation are used
to update the original parameters (before the in-
ner loop) to optimize the model’s initialization
for adaptability across tasks.

• Outcome: Through repeated iterations of the inner and
outer loops across many tasks, MAML learns a model
that is not highly specialized for any single task but is
primed to adapt quickly and effectively to new tasks
with minimal additional training.

For our MAML implementation we divide the 6 tasks in
4 training tasks, a validation task and a test task. Addition-
ally, each task is further divided in an “inner-loop” set and
a “outer-loop” set. The training will consist of a number of
epochs where an inner and outer loop is performed for each
training task on each epoch.

• On each inner loop of each individual training task, the
model is cloned, and the cloned model is trained with
the task inner loop data. The data is divided into ran-
domized batches to avoid the batches being temporally
ordered. The model is trained through a number of in-
ner steps, where on each step a batch is trained.

• After the inner step training, the cloned model predicts
the data from the outer loop and corresponding gradi-
ents are generated, which are then applied to update
the original model.

These two steps are repeated for every training task on
each epoch, updating the model on each step towards a gen-
eralized model. To validate and test the model, only the in-
ner loop is performed, while the loss from the outer loop
prediction is taken as the validation or test loss.

After defining the MLP and the MAML algorithm, a hy-
perparameter search is performed to find an optimal config-
uration of the model. After the search, the MLP is set to
have seven hidden layers with 211 nodes per layer, which
translates into 394k learnable parameters. The model is
trained with AdamW with a learning rate of 2.5e-5,

3.2 Monitoring setup
As a starting point, our setup has an array of chips con-
taining either single or multiple ISFET sensors. In contrast
the previous setup contained only a single ISFET sensor for
each measured ion concentration. The chips receive the dif-
ferent readings of the ISFETs as voltages which are digital-
ized and sent to a Field-Programmable Gate Array (FPGA).

The communication between the chips and the FPGA is
done via a bus controlled by Inter-Integrated Circuit (I2C)
communication. I2C is a synchronous, serial communica-
tion protocol which allows us to communicate the different
chips by assigning them addresses. It operates in a master-
slave configuration, where the FPGA takes the master role
handling the timing and signals and the chips act as slaves
sending data to the FPGA [16].

From this setup, this project aims to provide an IoT in-
frastructure that is able to provide the data received by the
FPGA to any user with access to a website where this data
will be displayed.

Working on this framework, the FPGA, equipped with
processing capabilities and an Ethernet connection, was
programmed to save the data to a MicroSD card while pub-
lishing the data over Ethernet using the Message Queue
Telemetry Transport (MQTT) protocol. MQTT enables
communication between devices within the same network
by employing a publish-subscribe architecture.
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Figure 5: Diagram of MAML training

In this setup, the FPGA acts as a publisher, sending data
to an MQTT broker (running on a PC connected to the same
network). The broker is responsible for identifying and de-
livering messages to all devices subscribed to the topic as-
sociated with the message.

To ensure secure communication, the MQTT broker re-
quires authentication, meaning both the publisher (FPGA)
and subscribers must provide valid credentials (username
and password) to send or receive messages. On the pub-
lisher side, the FPGA uses the Mosquitto libraries to imple-
ment MQTT communication.

Each message contains the following information:

• Timestep: Elapsed time (in nanoseconds) from the
start of the readings to the time of the current reading

• Board Type: The boards can either be iAqua(which
supports multiple ISFETs) or IMB (which supports
single a ISFET) or pH

• Chip: Unique integer identifying the chip

• Sensor: Identifies the ISFET or pH

• Unit: Specifies the unit of the value

• Value: Magnitude of the reading recorded by the sen-
sor

The MQTT messages are then received by a PC which
will act as our server to handle both the data received from
the sensors and the requests from the website. The server
collects all the messages and saves them in a local database
managed with MariaDB.

Figure 6: Setup of the monitoring scheme

The server backend is developed with Django. The
choice of Django as the framework was made because it
is based on Python and offers a wide range of built-in fea-
tures, such as an ORM, authentication, and admin panel,
which align well with the intended server functionalities.
However, Django by itself only supports HTTP requests and
is primarily synchronous when running with WSGI (Web
Server Gateway Interface).

To enable asynchronous capabilities required for features
like live monitoring via WebSockets, Django is run through
Daphne, which is an ASGI (Asynchronous Server Gateway
Interface) server. ASGI allows Django to support asyn-
chronous features, such as WebSockets, alongside tradi-
tional HTTP handling. This setup is crucial for handling
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real-time communication, making Daphne a key compo-
nent in enabling WebSocket-based live updates in the sys-
tem [17].

The server’s frontend is developed using React, a robust
JavaScript library chosen for its flexibility, efficiency, and
ability to create dynamic, responsive user interfaces. Re-
act’s component-based architecture allows for modular and
scalable development, while its extensive ecosystem sup-
ports the integration of tools for real-time WebSocket com-
munication, advanced data visualization, and interactive de-
sign.

To enhance the website’s presentation and usability, the
UI library Bootstrap is employed, offering pre-styled com-
ponents and responsive layouts. The combination of React
with Bootstrap provides a user-friendly interface which is
at the same time able to handle live data visualization and
interactive features.

The website will be structured the following way:

• Main page where the different views are introduced
(Appendix A.1)

• Monitoring page where readings are shown in real time
(Appendix A.2)

• Prediction page where the predictions of the different
algorithms are shown (Appendix A.3)

• Analytics page where different a simple analysis of the
data is shown

The monitoring page is the most important and criti-
cal component because it must receive and plot real-time
data while determining when to send stored data from the
database. The server collects data from multiple ISFET
sensors, but for efficiency, only one reading per ion type
(H+, Na+, K+) is selected to be sent to the monitoring
page. Thus, the server sends the following four values to
the clients:

The server collects data from multiple ISFET sensors,
but for efficiency, only one reading per ion type (H+, Na+,
K+) is selected to be sent to the monitoring page. Thus, the
server sends the following four values to the clients:

1. One ISFET reading each for H+, Na+, and K+.

2. The reference pH value.

To maintain synchronization, only complete data sets
(i.e., readings that include all required values for a specific
timestamp) are sent to the client. As the server receives sen-
sor data and stores it in the database, it checks whether all
required values for a given timestamp are available. If so,
the server immediately sends the complete set to the client.

This communication is implemented using WebSockets,
which allow a persistent, bidirectional connection between
the server and the client. Unlike AJAX polling, where re-
peated HTTP connections are established and terminated,
WebSockets keep a continuous connection open. This de-
sign significantly reduces latency, which is crucial for real-
time updates. The ISFET sensors have a sampling rate of
2 ms, meaning the server receives a constant stream of new
data. However, this does not mean that the server transmits
data to clients at the same high frequency. Instead, the im-
plementation throttles the data transmission to 1 Hz (one

reading per second), providing a more manageable update
rate for the client while maintaining efficiency and usability.

Since the website’s frontend and backend operate inde-
pendently, the backend is responsible for processing the
WebSocket messages. To facilitate communication, the
frontend proxies WebSocket connections to the backend,
which is possible because they run on different ports. Ad-
ditionally, WebSocket connections are secured using TLS
(Transport Layer Security), making the system more robust
against potential security threats.

4 RESULTS

4.1 Evaluation Metrics
The predictive models will be evaluated in terms of RMSE
and R2. Evaluating with these two metrics allows us to
quantify the quality of the fittings in terms of the absolute
differences (RMSE) as well as the proportion of variance
explained by the model (R2).

RMSE =

√∑N
i=1 (yi − ŷi)

2

N
(2)

R2 = 1−
∑N

i=1 (yi − ŷi)
2∑N

i=1 (yi − ȳi)
2

(3)

Where N is the number of samples, y are the true values
ŷ are the predictions and ȳ is the mean value of the true
values y.

Its important to highlight that, as can be deduced from
the Equations 2 and 3, RMSE indicates higher fitting with
lower values, with a perfect fitting of RMSE=0, while R2
indicates higher fitting with higher values, with a perfect
fitting of R2=1. An R2 of 0 would also indicate a fitting
equivalent to just predicting the average of the true values,
meaning a negative R2 show a considerably bad fitting.

4.2 Task considerations
Tasks one and two were discarded for the training since the
pH was rounded to the first decimal, which reduced signifi-
cantly the information and hindered gravely the predictabil-
ity of the tasks. As can be seen, there many periods inside
tasks 3 and 5 were also discarded because the data lacked
consistency, and the predictability of the data was well be-
low the optimal. The ISFET readings in Task 5 showed
a great temporal delay respect the pH signal, and despite
attempts of correcting it, the quality of the data was still in-
adequate to be able to predict the pH. For this reason Tasks
3,4 and 6 were used as training tasks and Task 5 was used
as validation / test task, despite of the suboptimal quality.

4.3 Hyperparameter search
To find adequate parameters for the MAML model, a hy-
perparameter search was performed using 50 different com-
binations of hyperparameters. With each combination of
hyperparameters, the MAML model was trained for 200
epochs to maximize the R2 loss. The following hyperpa-
rameters resulted in the best R2:

• Learning rate of the inner loop 1 · 10−4
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Figure 7: MLP predictions predictions for all dataset trained with MAML

• Learning rate of the outer loop 5 · 10−3

• Batch size: 128

• Inner steps: 10

• Adam Betas: 0.9 and 0.999

• Dropout: 0.0735

• Weight Decay: 0.0172

• Batch normalization: Yes

4.4 Model Evaluations
The following tables present the results of the RMSE and
R2 metrics for the tasks considered (3-6)

Task RMSE
(IL)

RMSE
(OL)

R2
(IL)

R2
(OL)

3 0.14 0.33 0.63 0.07
4 0.09 1.54 0.51 -9.06
5 0.12 0.59 -0.81 -4.81
6 0.14 1.53 0.64 0.41

Table 2: RMSE and R2 for the different tasks predicted by
the Linear Regression model

As can be appreciated in Table 2, Task 5 has notably
worse fittings than the rest of tasks, even having a nega-
tive R2. We can also see in both RMSE and R2 that the
inner-loop (IL) predictions are considerably better than the
outer-loop (OL) data. This is because as explained because
the IL data was used as training while the OL was used as
test. Based on this, we can conclude that the Linear Regres-
sion model has an important overfitting factor, highlighting
the need to use more complex models such as MLP which
are able to make a better generalization. Despite of this,
the results of tasks 3, 4 and 6 indicate that the Linear Re-
gression model has a relatively good predictive capability
despite its simplicity.

Task RMSE
(IL)

RMSE
(OL)

R2
(IL)

R2
(OL)

3 0.24 0.39 0.88 0.69
4 0.42 1.55 0.75 0.25
5 1.62 0.99 -0.88 -2.85
6 0.3 0.37 0.9 0.47

Table 3: RMSE and R2 for the different tasks predicted by
MLP trained with MAML

Table 3 shows better overall results than the ones ob-
tained with the Linear Regression model. Task 5 on the
other hand has worse RMSE and R2 values. This fact indi-
cates that the generalized model that MAML trains is dis-
advantageous for the given task, but since the results in
the Linear Regression model were considerably poor this
is probably a sign of the unpredictability of the Task 5 data.

We now focus on one of the tasks (Task 3) to compare
the results of the two considered predictive models. Ana-
lyzing the results of the linear regression model, we see for
the most part, the oscillations of the pH are captured ade-
quately. Still, the magnitude of the pH is not correct, given
that the amplitude of the pH oscillations are slightly worse
on the predicted pH. We can also observe little difference
between the inner-loop (data before the red dashed line) and
outer-loop predictions (after the red dashed line)

Figure 8: Linear Regression predictions for task 3

When looking at the predictions of the MLP trained with
MAML we see similar results, but with a more accurate pre-
diction of the amplitude of the pH oscillations. Still, both
models fail to capture some of the features of the signal,
which can also be seen on Figure 7 in the rest of tasks.

Figure 9: MLP predictions predictions for task 3 trained
with MAML
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5 CONCLUSIONS

In this project we have proven that the MAML algorithm
generally overperforms simple Linear Regression models,
with the exception of Tasks where data lacks the optimal
quality. The under performance of the Linear Regression
highlights the non-linearity of the ISFETs respect the pH
references and is proof of the complexity of the ISFETs as
well as the interferences the pH ISFET readings suffer due
to other ionic concentrations.

The MAML performance has shown positive results but
still leaves great margin for improvement. The low quality
of some of the tasks’ data and the little amount of available
tasks are also factors that have hindered the results of the
MAML evaluations.

Simultaneously, the proposed system effectively demon-
strates a robust and efficient architecture for real-time mon-
itoring and data analysis using ISFET-based sensors. By
leveraging WebSocket technology, the system achieves
low-latency, bi-directional communication between the
server and the client, ensuring real-time updates and seam-
less data visualization.

The system design is also able to handle challenges as
dealing with multiple ion sensors, the selectivity of relevant
data and synchronization of the readings. The setup is also
designed in a layered way, ensuring independence between
the different communication protocols involved and adapt-
ability to changes in the different nodes.

6 FUTURE WORK

Despite having obtained solid result on the MAML train-
ing, the margin of improvement in the evaluation metrics
still calls for further investigation to improve the results. As
previously mentioned, the MAML algorithm training would
benefit from further training with a larger variety of tasks,
expanding the six used for this project. Moreover, a more
extensive hyperparameter search could be done to further
optimize the hyperparameters of the MAML implementa-
tion.

Additionally, the experimentation of MAML implemen-
tation with other Deep Neural Network (DNN) architec-
tures would ensure the MAML capabilities are maximized
to obtain a more robust predictive model. Some of these ar-
chitectures include Convolutional Neural Networks (CNN)
or Recursive Neural Networks (RNN).

In terms of the monitoring setup, the WebSocket and
MQTT communication scheme can also allow bidirectional
communication, meaning that a client connected to a page,
could send instructions to the FPGA to change configura-
tions on the way the data is processed in the board. This
would allow a more effective and efficient monitoring as
it would allow for the possibility of remotely adjusting the
board, instead of having to do it manually, as it is the case
currently, since the ArtyZ7 board can only be configured by
connecting through it with a PC.

6.1 Neuromorphic sensing and computing
Neuromorphic sensors and processors are devices that
mimic the way biological systems process sensory infor-
mation [18]. While they enable real-time operation and op-

timize data acquisition and AI computation since the very
point of transduction, they also come with certain limita-
tions. Neuromorphic sensors are used together with Spik-
ing Neural Networks (SNNs), to extend the system effi-
cency and energy autonomy, but compared to traditional
deep learning (DL) models like typical Multi-Layer Percep-
trons (MLPs), they generally exhibit lower accuracy [19].

Despite initially setting the neuromorphic implementa-
tion of DL algorithms as an objective for this project, the
lower-than-expected model performance, combined with
the additional accuracy degradation associated with an SNN
implementation, led to the decision that further accuracy
improvements are needed before proceeding to optimize en-
ergy autonomy through neuromorphic implementations of
the neural network.
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APENDIX

A.1 Home Page

Figure 10: Home Page

A.2 Monitoring page

Figure 11: Monitoring Page

A.3 Predictions Page

Figure 12: Predictions Page


