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Abstract

This work introduces a benchmark dataset derived from the VIRAT Ground surveillance videos for

evaluating Multimodal Large Language Models (M

LLMs). From 12h of video footage, a vehicle-centred

subset is isolated, keeping such events and creating image—question pairs about motion direction,
turning and U-turns, a total of 1,568 prompts. Multiple visual configurations add or remove temporal
context, cropping, blur and trajectory overlays. Two open-source 2B parameter MLLMs (Qwen2-VL-2B,
InternVL-2B) are evaluated on the full set. Humans solve all tasks easily, while models had trouble,
this analysis shows the deficiencies in basic orientation and temporal sequencing tasks, crutial char-

acteristic of video surveillance models.

Keywords: Visual-Language Models, Video-Su

rveillance, Vehicle-Activity Recognition, Multimodal

Language Model, Spatio-Temporal Reasoning, Benchmark Dataset, VIRAT

1 INTRODUCTION

Surveillance systems are components of modern infrastruc-
ture that significantly improve public safety, law enforce-
ment, and urban traffic management. As urban environ-
ments increasingly deploy large camera networks, they con-
tinuously generate large amounts of video data. Manually
analyzing this massive volume of data is labor intensive,
costly, and prone to human errors, potentially leading to
delayed or inaccurate responses. Consequently, there is a
growing need for automated solutions capable of rapidly
and reliably interpreting video content.

Traditional Video Analytics (VA) solutions have made
significant progress in efficiently processing large datasets
by effectively detecting and tracking objects such as vehi-
cles and pedestrians and annotating relevant attributes, in-
cluding object location and trajectories. However, these
systems heavily rely on predefined categories and rules,
limiting their ability to understand complex contextual in-
formation inherent in real-world surveillance scenarios.

Large Language Models (LLMs), on the other hand, have
recently revolutionized natural language processing due to
their capability to generate coherent human-like text, sum-
marize extensive textual information, and perform logical
reasoning. However, the high-dimensional and voluminous

e Contact E-mail: 1631736 @uab.cat
o Supervised by: Jordi Gonzalez (Computer Science)
e Academic Year 2024/25
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nature of surveillance data poses significant computational
and memory challenges for standard LLMs.

Multimodal Large Language Models (MLLMs) over-
come these limitations by integrating computer vision and
natural language understanding, enabling simultaneous in-
terpretation of visual and textual data. In this report, we
specifically focus on models that jointly handle images and
text. The project is about a benchmakr dataset to evaluate
MLLM performance and capabilities, emphasizing their ef-
fectiveness in extracting spatial and temporal information
from surveillance video data, specifically using the VIRAT
Video Analytics dataset.

1.1 Objectives

1. Develop a specialized benchmark dataset, derived
from VIRAT, to assess the ability of MLLMs to in-
terpret surveillance scenarios.

. Design straightforward image—question pairs that test
a model’s ability to reason about direction, turning and
basic action order.

. Evaluate the capabilities of of state-of-the-art MLLMs
(Qwen2-VL and InternVL) in surveillance tasks, par-
ticularly their spatial and temporal reasoning abilities.

1.2 State Of The Art

Multimodal Large Language Models (MLLMs) are Al sys-
tems that jointly process visual data and natural language,
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integrating information from both images and textual de-
scriptions. Recent MLLMs such as Qwen2-VL [1], LLaVA
[2], InternVL [3] and MiniCPM [4] have shown able ca-
pabilities, including complex image description and multi-
modal reasoning.

These models have enabled new applications such as im-
age captioning, visual question answering, multimodal rea-
soning, and interactive assistants. However, despite signifi-
cant achievements, several critical limitations persist:

* Visual Hallucinations. MLLMs frequently produce
incorrect perceptions, seeing things that are not present
in the image, this phenomenon is known as hallucina-
tion and is a serious issue for reliability and trustwor-
thiness of such models [5, 6, ?].

* Reliability. MLLMs often struggle with specific vi-
sual reasoning tasks, such orientation perception and
temporal order perception.

Orientation perception refers to an MLLM’s capabil-
ity to identify objects based on their spatial positioning
or alignment. Despite their advanced multimodal rea-
soning capabilities, recent evaluations like the BLINK
benchmark [7] show that MLLMs often fail at tasks
as simple as distinguishing between similar objects
that differ only in orientation, for instance, identify-
ing which arrow points differently among several vi-
sually similar arrows. Such errors show a gap in the
spatial reasoning capabilities of these models, which
are crucial to correctly interpret visual contexts in the
real world, such as differentiating the direction of ve-
hicle movement.

Temporal order perception, another critical reliabil-
ity aspect, involves correctly interpreting sequences of
events. MLLMs often struggle to accurately under-
stand the chronological sequence in scenarios involv-
ing multiple temporal steps. Evaluations reveal fre-
quent errors when answering simple temporal queries,
such as identifying which event occurred first from a
series of temporarily ordered events [7]. This limita-
tion poses a substantial risk, especially in surveillance
contexts, where accurate reconstruction of event time-
lines is crutial for chronicle reconstruction.

 Evaluation Difficulties. Assessing multimodal mod-
els is less straightforward than evaluating text-only
models, as multiple correct interpretations may ex-
ist. Having multiple valid answers makes traditional
metrics like BLEU [8] only partial indicators of per-
formance. To address this issue, in the recent years,
Al and Computer Vision researchers have published
multiple specialized benchmarks such as BLINK [7],
LLaVA-Bench [9], POPE [5], and COCO [10], aiming
to comprehensively evaluate multimodal performance.

1.3 Methodology

All the work is written in Python and most of it is stored
on GitHub '. The code is split into three simple folders.
The first folder reads the raw VIRAT videos and turns them

Thttps://github.com/nora826/Vehicle-Centric-Surveillance-
Benchmark-VIRAT

into images, with all the data processing steps. The sec-
ond folder builds the final benchmark: completes the textual
and visual prompt configurations, and saves the ready-to-
test dataset. The third folder runs the tests. It calls Qwen-2
VL or InternVL through PyTorch, and computes the evalu-
ation of results.

The project was coded in VS Code with a Python 3.11
virtual environment. Main libraries are pandas and NumPy
for data, OpenCV and Pillow for images, Streamlit for the
small web tool, PyTorch and Transformers for the models,
and scikit-learn and Matplotlib for metrics and plots.

1.4 Planning
The work is organised as seven successive phases:

1. Literature Review & Project Setup. Read about ex-
isting state of the art benchmarks and models and anal-
yse existing gaps in surveillance tasks requiring orien-
tation perception and temporal understanding.
Approximately 1-2 Weeks.

2. Data Preparation. Collect the relevant VIRAT re-
leases, standardise annotations, and extract a clean,
vehicle-focused subset.

Approximately 4-5 Weeks.

3. Question Generation. Produce representative images
from existing data and pair them with multiple-choice
questions focused on movement and orientation.
Approximately 2 Weeks.

4. Dataset Configurations. With existing cleaned and
prepared image-question pairs. Prepare multiple im-
age configurations for same input text, combining dif-
ferent visual cues that might help the model.
Approximately 2-3 Weeks.

5. Model Evaluation. Select two state of the art and
open source multimodal language models, that can
work with such input and that may give good overall
performance, and test them on the dataset.
Approximately 3—5 Weeks.

6. Result Analysis. Test with different visual prompt
configurations and evaluate the performance depend-
ing on the introduced image configuration.
Approximately 2—3 Weeks.

7. Writing. Compile results and finalize the documen-
tation, incorporating feedback and ensuring all docu-
ments meet the requirements.

Approximately 1-2 Weeks.
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Aerial Videos

Fig. 2: Sample of Images extracted from Videos belonging to Ground and Aerial Sets.

2 DATASET OVERVIEW

2.1 Introduction

The Video Image Retrieval and Analysis Tool (VIRAT)
dataset is a large-scale video collection that contains two
broad categories of activities, single-object and two-objects
which involve both human and vehicles. VIRAT provides
extensive real-world video footage annotated with detailed
descriptions. The dataset aims to facilitate research in activ-
ity detection, object tracking, event recognition, and scene
understanding for surveillance purposes. It contains two
distinct sets captured from different perspectives [11]:

» Aerial Videos: Approximately 4 hours of footage
recorded from aerial vehicles. These provide broad-
area coverage from elevated viewpoints, useful for
tracking large-scale movements and activities.

* Ground Videos: 12.5 hours of publicly available
videos recorded from stationary cameras positioned on
top of buildings. Ground videos offer fixed perspec-
tives, beneficial for detailed observations of human be-
haviours and vehicle interactions at street level. This
project only uses Ground videos. See Figure 8 to see
all the scenes included in ground dataset.

2.2 Versions and Evolution

2.2.1 Release 1.0 (2011)

The original release featured annotations focused on basic
interactions involving people and vehicles, categorized into
6 distinct event types. Events primarily include vehicle-
human interactions, see Table 1.

2.2.2 Release 2.0 (2012)

In its subsequent release, the dataset is expanded to include
a wider range of activities, increasing to a total of 12 distinct

event types. Annotations become more comprehensive, de-
tailing activities such as running, entering or exiting build-
ings and carrying objects, see Table 1. Each event includes
bounding boxes precisely labelling the spatial locations of
involved objects and people while the event occurs. This
release contains around 8.5 hours of video annotations for
11 of the 12 videos of different scene recordings, see Table
6.

2.2.3 Extended Release (2020)

The most recent and comprehensive version, is based on the
previous release, without any new video recordings but with
different annotation types and format. This release is part
of the IARPA? DIVA? program.

This last release becomes more extensive in the vari-
ety and complexity of annotated events, now covering 46
distinct event types. This dataset includes advanced vehi-
cle manoeuvrers together with granular human activities,
see Table 1. However, the total annotated hours decreases
significantly, from around 8.5 hours of the first release to
around 4.5 hours in this one, since we have annotations only
for 5 of the 12 different scene recordings, see Table 6.

V-1.0 (6) Opening/Closing Vehicle Trunk;
Loading/Unloading Object into Ve-
hicle; Getting into/out from Vehicle
V-1.0; Digging, Carrying an Ob-
ject, Running, Entering/Exiting Fa-
cility, Gesturing

V-2.0; Interacting, Standing, Talk-
ing, Vehicle Turning Right/Left, U-
Turn, Walking, Vehicle Stopping,
Phone Texting, etc.

V-2.0 (12)

Extended (46)

TABLE 1: Activity Types included in each VIRAT Release

’Intelligence Advanced Research Projects Activity
3Deep Intermodal Video Analytic
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Advantages

Realistic Scenarios. Captured in natural outdoor en-
vironments with background clutter and varied light-
ing conditions. Supports multi-object, multi-activity
recordings within single frames, reflecting real-world
complexity.

Detailed Annotations. Each version provides bound-
ing boxes and precise temporal information for activi-
ties, enabling tracking and activity recognition tasks.

High-Resolution Videos. Footage is typically avail-
able in 1080p or 720p, offering detailed visual infor-
mation. Down-sampled versions facilitate experimen-
tation on devices with limited computational resources
[12].

Low-Resolution Action Coverage. Even in high-
quality footage, actions at a distance appear in low res-
olution, mirroring real surveillance conditions. This
contrasts VIRAT with many actor-centric datasets that
focus on clearly visible, high-resolution actions [12].
See 3.

mAVA mJHMDB UCF-101 VIRAT
0.35

0.3
0.25
0.2
0.15
0.1
0.05

video spatial size

Fig. 3: Average Actor Size.

Limitations

Lack of Indoor Scenarios. The dataset is limited to
outdoor areas, limiting variety.

Limited Scene Variety. Consists of 329 videos span-
ning 11 distinct scenes, primarily parking lots.

Smaller Scale Compared to Other Datasets. VIRAT
is smaller relative to newer large-scale datasets.

Real-World Challenges
— Occlusions: Frequent overlapping and partial
visibility of objects.

— Scale Variations: Objects can appear at different
sizes.

— Lighting Variations: Outdoor conditions
change throughout the day.

— Crowded Scenes: Multiple agents moving in
different directions.

3 BENCHMARK DATASET GENERATION

3.1 Dataset Creation Process

I. Source Datasets The VIRAT dataset was initially col-
lected to reflect realistic surveillance scenarios. The ground
videos were captured by stationary RGB cameras placed at
fixed outdoor locations (such as building rooftops) across
multiple sites. These cameras have elevated points, cap-
turing everyday scenes like parking lots. All footage was
recorded during daylight under natural lighting conditions,
containing complex and uncontrolled backgrounds with fre-
quent incidental activities.

Scene VIRAT 2.0 Extended Release
VIRAT_S_0000 64 1394
VIRAT_S_0001 104 0
VIRAT_S_0002 107 2437
VIRAT_S_0100 365 0
VIRAT_S_0101 59 0
VIRAT_S_0102 425 0
VIRAT_S_0400 90 1011
VIRAT_S_0401 109 2150
VIRAT_S_0500 108 712
VIRAT_S_0501 0 0
VIRAT_S_0502 70 0
VIRAT_S_0503 54 0

TABLE 2: Number of activities per scene from two differ-
ent dataset versions

To enhance the diversity of activities and scenes, this
project utilizes both VIRAT 2.0 release and Extended Re-
lease. Although VIRAT 2.0 contains fewer annotations per
video compared to the Extended release, it provides a wider
variety of scenes as indicated in 2.

¢ VIRAT Release 2.0 (2012) This dataset consists of
ground camera footage totaling approximately 8.5
hours of video (in HD resolution: primarily 1080p or
720p) from 11 outdoor scenes. In practice, the footage
is segmented into over 500 individual video clips. The
frame rate of these videos ranges from 25 to 30 frames
per second (FPS).

Annotations: The annotation format consists of three
separate text files per video:

1. objects.txt: Contains bounding-box coor-
dinates for annotated objects.

2. events.txt: Lists events with timestamps
(start and end times).

3. mapping.txt: Connects objects to their cor-
responding event annotations.

Annotations are encoded numerically and require
mapping to predefined dictionaries containing 12 ac-
tivity classes and 5 object classes. Additionally,
bounding boxes appear exclusively within the tempo-
ral duration of annotated events. Consequently, actors
that do not participate in any of the 12 specified activ-
ities remain entirely unlabeled.

Total annotated events: 1,555 instances across 12
distinct activity types.
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» Extended Release (2020) The Extended Release re-
annotates the original VIRAT ground videos com-
prehensively, providing detailed multi-object tracking
and significantly expanded annotations. This version
tracks every moving actor continuously, from their en-
try into the scene to their exit, annotating all relevant
activities across the entire clip. This annotation strat-
egy results in richer, more informative data with 46
granular activity types.

Annotations: Provided in YAML file format, struc-
tured into three files per video:

1. regions.yml: Contains object and bounding-
box details for specific timestamps.

. activities.yml: Details each activity in-
stance, specifying the activity type, duration
(start and end timestamps), and participating ac-
tors.

. types.yml: Maps object IDs to their semantic
categories (e.g., person, car, etc.).

This reorganization facilitates easier data interpreta-
tion and enables detailed, temporal event analysis at
the frame-by-frame level.

Total annotated events: 7,704 instances across 46
distinct activity types.

II. Unification (V0) To unify the dataset versions, two
separate JSON files were generated, one for each source
datasets explained before. These JSON files were struc-
tured identically, in order to later merge into a single uni-
fied dataset, referred to as Version 0 (V0). The unification
process involved three main steps:

* Bounding Box Conversion: The Release 2.0 dataset
already provides bounding boxes as simple rectangu-
lar coordinates (x, y, w, h) for each frame, so
only the midpoints need to be calculated. The Ex-
tended Release initially represents bounding areas us-
ing polygons (lists of corner points). To standardize,
each polygon was converted into its bounding box for-
mat, adding six explicit fields:

— bbox_lefttop-x, bbox_lefttop.y

— bbox_width, bbox_height

- mid-x, mid.y

After this conversion step, bounding box representa-
tions from both datasets became fully consistent.

¢ Vocabulary Alignment: For Release 2.0, numeric
codes representing activity classes and object types,
were translated into textual labels. The Extended Re-
lease annotations already contained readable labels di-
rectly in the YAML files, which were used without al-
teration.
Both datasets store these labels uniformly in two
common fields: activity (for activity type) and
actor_type (for object classification). Eliminating
the need for lookup tables.

¢ Dictionary Key Unification: Events are stored using
unique string keys. Each version employs a distinct
key pattern, preventing conflicts:

— Release 2.0:
videoID + eventID
g.,7000001_34”

— Extended Release:
fileNumber + activityID
e.g., ’11.81”

Since key formats differ, both datasets could be safely
merged. After merging, the unified VO dataset was repre-
sented as a single event-centric JSON file.

III. Cleaning (V1) The raw VO set was pruned taking out
trajectories that do not contain information for at least 10
frames®.

4Three frames correspond to ~0.5 s
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Fig. 4: Activity distribution (V2)
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IV. Filtering (V2) Activities that were not interesting for
the project such as ’phone texting” were discarded and only
a subset of 23 activities was kept. The complete list of ac-
tivity labels present in each version appears in Appendix B.
This version 2 (V2) contains 4 876 events. Figure 4 shows
the per-class distribution. These labels form the basis for
all subsequent relabelling and question-generation steps de-
scribed later.

V. Manual Relabelling of vehicle moving Events (V3)
As illustrated in Figure 4, activities like vehicle moving or
person walking are much more present than others. The
reason for this is that both are general descriptions, that en-
compass multiple activities within them. After analysing
the activities labelled as vehicle moving, it became clear that
this was a general label encompassing multiple vehicle ma-
noeuvres.

Therefore, I decided to perform a manual relabelling pro-
cess. This effort aimed not only to generate more instances
for some of the existing labels, but also to introduce two
entirely new labels. The outcome was a richer dataset, in-
creasing occurrences of existing labels such as turning left,
turning right, and U-turn, as well as two new labels: vehi-
cle moving forward and vehicle moving backward. These
additional labels represent fundamental vehicle movements
that surveillance models should be able to distinguish.

To facilitate this relabelling process, I developed a web
application making use of the streamlit library. The process
followed these steps:

1. The initial file (V2. json) was duplicated and re-
named as V3. json, serving as the input for the
Streamlit interface.

2. The Streamlit application loaded the V3. json file
and selected only the events labeled as vehicle moving.

3. For each event, the web interface displayed a snap-
shot of the first frame for that activity, overlaying the
vehicle’s complete trajectory. Additional visual cues,
such as arrowheads indicating movement direction and
bounding boxes highlighting the vehicle position, were
optionally provided to facilitate accurate relabelling.

4. Underneath each image, six interactive buttons al-
lowed quick reassignment of each event to one of five
predefined labels. Every action taken through the in-
terface immediately updated the data.

Through this manual relabelling process: The number of
vehicle manoeuvres significantly increased. The outcome
of this relabelling process, is summarized in Figure 5.

VI. Creation of Vehicle-Centric Subset and Final Ver-
sion (V4) Given that this project targets surveillance tasks
involving vehicles, I generated a vehicle-centric subset of
the V3 dataset. This subset retains only vehicle-related
events, containing nine distinct activity labels, as detailed
in Appendix B.

To finalize the dataset (producing version V4), a final
label was added. In order to test the model’s ability to
recognize non-vehicle activities (negative examples), 150
randomly selected instances of the activity person walking

were added. These samples serve as negative cases provid-
ing "None of the above” responses, as explained in further
sections.

The final version (V4) of the dataset contains eight labels,
coming from VIRAT 2.0, Extended Release or as a conse-
quence of the relabelling process. Figure 5 shows the dis-
tribution of events per label, and the source of these events.

Scene Activity Count
VIRAT_-S_0000 113
VIRAT_S_0001 10
VIRAT_S_0002 866
VIRAT_S_0101 30
VIRAT_S_0102 3
VIRAT_S_0400 171
VIRAT_S_0401 117
VIRAT_S_0500 208
VIRAT_S_0502 31
VIRAT_S_0503 14

TABLE 3: Activities per scene in final version.

3.2 Question Generation

With the final dataset version (V4) completed, a subset
of vehicle-related activities, the next step was generating
structured questions for each of the instances.

Each instance has an image that belongs to the frame
where the activity happened, with the overlaying trajectory
line, etc. (All these details are explained later in Section
3.3). Each of these images is associated with at least one
question. The questions are designed either as three-option
multiple-choice questions or as binary (yes/no) queries.
The four question templates are the following:

1. What turn is the vehicle making?
A) Left B)Right C) None of the above

2. In which direction is the vehicle moving?
A) Forward B) Backward C) None of the above

3. What is the person doing?
A) Entering the vehicle B) Exiting the vehicle C)
None of the above

4. Is the vehicle making a U-turn?
A)Yes B)No

Initially, only one question was assigned to each event.
However, to increase the number of “None of the above”
cases, I used existing activity instances, assigning multiple
questions to some events.

When selecting true negative samples, I need to take into
account that even if an instance was labelled with a sin-
gle activity, there might be other activities happening at the
same time, even if they are not annotated (e.g. vehicle mov-
ing forwards and turning right). As an example there are
the images shown in Figure 6, that show multiple activities
happening simultaneously. Taking such information into
account, the following criteria were followed to generate
more questions.
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The trajectory is labelled as making U-turn but the vehicle is
also moving forward and turning left.

The trajectory is labelled as moving backwards but the vehicle
is also turning right.

Fig. 6: Multiple activities within a single Trajectory.

Turn questions. Clips that show a vehicle moving
straight forward are used, so the correct answers are
C) None of the above for question 1 and B) No for
question 4.

Direction question. Clips of a person entering or exit-
ing a stationary vehicle are paired with question 2 be-
cause the car is not moving.

Person-action question. 150 randomly selected per-
son_walking trajectories are paired with Q3, where the
correct answer is C) None of the above.

This strategy ensured that each question template was
well-supported with representative negative cases, improv-
ing the overall quality and discriminative power of the
benchmark dataset. Figure 10 shows the question answer
distribution of the final dataset.

After generating these image-question-answer combina-
tions, a final manual review and data-cleaning step was es-
sential. During this stage, I identified three primary issues:

1. Some of the events that were automatically assigned
multiple questions were not suitable or irrelevant for
certain scenarios. For instance, a stationary vehi-
cle scenario incorrectly assigned a question related to
turning. Such inappropriate questions were carefully
identified and removed, while suitable ones were re-
tained.

2. Certain annotated events involved background activi-
ties or distant occurrences that were barely visible or
identifiable, making them invalid as useful samples.

3. Additionally, during the earlier stages of dataset cre-
ation, I merged four original activity labels (two from
VIRAT Release 2.0 and two from the Extended Re-
lease) into two unified labels (entering and exiting).
However, these labels include not only vehicle en-
try and exit events but also cases related to buildings,
which were beyond the scope of this project. There-
fore, events depicting people entering or exiting build-
ings were also removed.

This manual cleaning involved reviewing each image-
question pair individually, eliminating inappropriate sam-
ples. Through this review process, the total number of ques-
tions was reduced from 2297 to 1568 clear and valid image-
question pairs. Examples of cases that were removed during
the cleaning process are shown in Appendix C.

3.3 Final Dataset

To create a versatile dataset, an interactive web interface
was designed, allowing users to personalize various as-
pects of the dataset, including image configurations, types
of questions, and exported data fields.
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This interface was implemented using the Streamlit li-
brary. When running the web application, users can cus-
tomize their dataset by selecting from several configuration
options, detailed as follows:

* Question Options:

— Select which of four predefined questions to in-
clude.

— Decide whether to include instances labeled as
”None of the above”. If excluded, instances with
this as the correct answer are removed, and this
choice is also omitted from the question text.

» Image Options:

— Frame Mode:

* 1x1 mode: Generates a single representative
frame for each event.

x 3x1 mode: Creates a mosaic of three frames,
capturing the start, middle and end frame of
the event.

— Visual Overlays:

% Option to overlay the main actor’s bounding
box individually onto each seleced frame.

% Option to overlay the main actor’s complete
trajectory line onto each frame. There is also
the possibility of adding arrowheads indicat-
ing the direction of movement. The trajec-
tory remains the same across all frames be-
longing to an event.

— Region of Interest (ROI): To emphasize the ac-
tivity region, the bounding box based on the tra-
jectory and bounding boxes of all involved ac-
tors (e.g., person and vehicle) is calculated. Then
there are three optional selections to enhance the
ROL

* Blur non-relevant regions, highlighting
only the key event area.

% Crop the frame, keeping only the defined
ROL

+ Overlay the calculated trajectory bound-
ing box, marking the area of interest without
cropping or blurring.

» Export Options: Apart from the data fields that are
always stored (such as event key, image path or ques-
tion), the user can opt to include additional informa-
tion:

— Bounding box of the main actor for each corre-
sponding frame.

— Complete trajectory line.

— The trajectory enclosing bounding box.

Detailed instructions and descriptions of the web appli-
cation’s functionalities are provided in Appendix F. Af-
ter configuration selection, users can download their cus-
tomized dataset. The structure and contents of the exported
files are further explained in Appendix G.

4 MODEL TESTING

4.1 Models Evaluated

Once the dataset was complete, I looked for vi-
sion—language models that could run on the small edge de-
vices often used in surveillance.

That led me to two open-source options: Qwen-2 VL
and InternVL, each with about 2 billion parameters. Mod-
els of this size fit comfortably on edge devices, where stor-
age, energy and latency are tight constraints. Larger mod-
els (e.g Qwen2VL-7B) might give higher performance, but
they would slow real-time processing, not valid for realistic
surveillance scenarios.

Each model handles the images differently, Qwen-2 VL
treats the entire image as one, while InternVL first slices it
into multiple patches. By testing both approaches on the
same benchmark we can see which architecture works bet-
ter with details and gives faster, more reliable answers.

4.2 Initialization

The system prompt used is identical for both models:

“You are a helpful assistant that answers multiple-choice
questions about surveillance images. Your answer must be
exactly one of the option letters.”.

4.3 Experimental Setup

Each question was evaluated under eleven visual configura-
tions that combine spatial cues (bounding boxes, trajecto-
ries), temporal context (single frame vs. 3 x 1 mosaic) and
visibility help (blur, crop).

Table 4 lists the 11 configurations, images are shown in
Figure 7.

Letter Configuration setting

1x1, bbox, trajectory (arrowhead)

1x1, bbox, trajectory (plain line)

1x 1, bbox, trajectory (arrowhead) + blur
1x1, bbox, trajectory (arrowhead) + crop
3x1, bbox only

3x1, bbox + blur

3x1, bbox, trajectory (arrowhead)

3x1, bbox, trajectory (arrowhead) + crop
31, bbox, trajectory (arrowhead) + blur
3x 1, bbox, trajectory (plain line) + blur
3x1, bbox, trajectory (plain line) + crop

A== D0 0 A0 O

TABLE 4: Dataset configurations used in model testing.

4.4 Metrics

Each model was presented with the same textual query
eleven times, but each time it was paired with one of the
distinct image configurations listed in Table 4. Because the
linguistic prompt remains constant, any change in perfor-
mance is attributed to the visual information not to textual
part.

To quantify performance across these configurations, two
complementary metrics were computed together with class-
wise confusion matrices:
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Fig. 7: Same event with different configurations
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* Accuracy. Accuracy measures the overall proportion
of predictions the model gets correct, indicating how
often it chooses the right class from all possibilities:

TP+ TN
TP+TN+FP+FN’

Accuracy =

* F1-Score. The F1-score balances precision P (the pro-
portion of correct positive predictions) and recall R
(the proportion of actual positives correctly identified).
It is calculated individually for each class, then aver-
aged across all classes:

2x PxR
Fl= ——-.
P+R

Unlike accuracy, the F1-Score treats each class
equally, making sure that rare actions (e.g. U-turn) are
just as important as frequent ones (e.g. Moving for-
ward).

Confusion Matrix. In addition to these two met-
rics, confusion matrices per question were generated to
clearly identify the classes the models struggled with
and to visualize common misclassification patterns.

4.5 Results

After analysing the impact of different configurations ac-
cording to the confusion matrices and the accuracy and F1-
Score metrics in Table 5, these are the conclusions:

¢ Temporal sequence (3 x 1) vs. single frame (1 x 1):
Using three frames instead of just one usually doesn’t
help. When comparing similar setups (like a—g, c—i,
d-h), the single-frame option (1 x 1) typically per-
forms better or at least the same. The sequence usually
reduces performance, especially for Qwen2-VL.

¢ Trajectory with arrowhead vs. plain line: Arrow-
heads help Qwen2-VL understand the trajectory bet-
ter. Removing arrowheads (as in pairs a-b, h-k, i—j)
greatly lowers Qwen2’s performance. InternVL, how-
ever, is almost unaffected, meaning it uses other visual
clues.

* Blurring non-relevant areas: The effect of blurring
depends on the model. Blurring hurts Qwen2-VL’s
performance consistently. For InternVL, blur has lit-
tle effect or can even slightly improve results.

* Cropping the region of interest: Cropping helps
Qwen2-VL perform better and doesn’t harm Intern VL.

What-Turn U-Turn Direction Enter/Exit

Acc. F1 Acc.

F1 Acc. F1 Acc. F1

Qwen2 0.268 0.141  0.239

0.215 0.679 0.340 0.331 0.240

2 IntemVL 0266 0.183 0969 0492 0581 0367 0331 0.232
b Qwen2 0.268 0.141 0.090 0.089 0.681 0.270 0.346 0.211
InternVL  0.237 0.178 0969 0.492 0461 0.264 0331 0.188
c Qwen2 0.263 0.105 0.071 0.048 0.678 0.209 0309 0.129
InternVL 0217 0.198 0.969 0.492 0575 0296 0397 0.368
d Qwen2 0.266 0.140 0325 0274 0.681 0349 0346 0.266
InternVL  0.268 0.186 0969 0492 0.569 0362 0331 0.232
e Qwen2 0.268 0.141 0.225 0204 0.678 0324 0301 0.237
InternVL  0.248 0.192 0969 0492 0443 0243 0309 0.167
£ Qwen2 0.263 0.105 0.139 0.089 0476 0.189 0316 0.172

InternVL  0.235 0.177 0.969

0492 0460 0.268 0.308 0.177

Qwen2 0.179  0.076  0.055
€ IntemVL 0.176 0.177 0.969

0.037 0270 0.209 0.192 0.140
0492 0270 0.176 0.176 0.177

Qwen2 0.268 0.141 0.144
InternVL 0.241 0.172 0.969

0.138 0.681 0.270 0.331 0.187
0492 0467 0268 0309 0.177

Qwen2 0.268 0.141 0.190
InternVL 0.266 0.190 0.969

0.177 0.681 0.270 0316 0.190
0492 0587 0354 0331 0.222

. Qwen2 0263 0.105 0.055
' IntemVL 0233 0212 0.969

0.037 0.669 0209 0316 0.139
0492 0.590 0.301 0.397 0.368

Qwen2 0.268 0.141  0.088
InternVL  0.245 0.189  0.969

0.087 0.681 0.270 0.346 0.211
0492 0473 0.269 0331 0.187

TABLE 5: Accuracy and macro-F1 by question, configuration and model.
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When testing single frames (1 x 1), cropping greatly
improved Qwen2’s performance (configuration d). In
sequences (3 x 1), cropping also helps both models
slightly by removing unnecessary background details.

These results might come due to model’s image handling
strategy. Qwen-2 VL turns the whole 3 x 1 into one large
patch, so fine details such as small cars, arrowheads, pedes-
trians might be lost into a single token and become harder
to recognise. That is why it benefits from anything that
shrinks the scene (cropping), sharpens cues (arrowheads),
or removes noise (single-frame mode), and why extra blur
or extra panels usually hurt.

InternVL, in contrast, first splits the mosaic into several
patches and then reduces tokens with a pixel, without shuf-
fling. For this reason, fine details are not lost and that is
probably the reason for having a better performance.

In future work, Qwen-2 VL might improve it’s perfor-
mance by receiving the three frames as separate images or
by adding a brief system prompt that says “the left, centre,
and right parts of the picture are start, middle and end-time
frames.”

5 CONCLUSIONS

This project focused on the development and testing of
a benchmark dataset designed to evaluate how effectively
Multimodal Large Language Models (MLLMs) handle ap-
parently simple surveillance tasks. Specifically, the dataset
examines orientation perception and temporal sequencing
capabilities, two essential aspects for reliable surveillance
analysis.

The dataset has proven to be challenging for current
MLLMs despite being intuitive and easy for human inter-
pretation. This performance gap highlights significant lim-
itations in existing models, which shows the need for im-
provements in spatial and temporal reasoning.

Given that humans can accurately and effortlessly per-
form these tasks, the expectation is that artificial intelli-
gence should similarly achieve human-level understanding.
Therefore, this dataset can be used as a valuable bench-
mark for future research and development for improving
robustness and reliability of multimodal language models
in surveillance applications.
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A VIDEO ANNOTATION HOURS PER SCENE AND RELEASE

VIRAT_S_0000 VIRAT_S_0001 VIRAT_S_0002 VIRAT_S_0100

3

&

0 hr 27 min 46 sec

1hr 23 min 55 sec 2 hr 2 min 24 sec 0 hr 51 min 50 sec

1920x1080 1920x1080 1280x720 1280x720
30 FPS 30 FPS 30 FPS 24 FPS
VIRAT_S_0101 VIRAT_S_0102 VIRAT_S_0400 VIRAT_S_0401

1hr 40 min 51 sec 0 hr 59 min 60 sec 1hr 17 min 29 sec 1 hr 40 min 15 sec

1280x720 1280x720 1920x1080 1920x1080
24 FPS 24 FPS 30 FPS 30 FPS
VIRAT_S_0500 VIRAT_S_0501 VIRAT_S_0502 VIRAT_S_0503

0 hr 23 min 55 sec

1hr 1 min 18 sec

0 hr 14 min 20 sec 0 hr 36 min 47 sec

1920x1080 1920x1080 1920x1080 1920x1080
30 FPS 30 FPS 30 FPS 30 FPS
Fig. 8: Vidoes of VIRAT initial Release 1.0, also used for Release 2.0 and Extended Release.

Camera # videos 2020 Video durations 2020 # videos V2 Video durations V2 Total video duration
VIRAT_S_0000 6 0 hr 52 min 33 sec 5 0 hr 47 min 53 sec 1 hr 23 min 55 sec
VIRAT_S_0001 0 0 2 0 hr 27 min 46 sec 0 hr 27 min 46 sec
VIRAT_S_0002 47 1 hr 11 min 14 sec 31 1 hr 15 min 23 sec 2 hr 2 min 24 sec
VIRAT_S_0100 0 0 58 0 hr 51 min 50 sec 0 hr 51 min 50 sec
VIRAT_S_0101 0 0 46 0 hr 44 min 7 sec 1 hr 40 min 51 sec
VIRAT_S_0102 0 0 76 0 hr 59 min 60 sec 0 hr 59 min 60 sec
VIRAT_S_0400 22 0 hr 56 min 39 sec 28 1 hr 17 min 29 sec 1 hr 17 min 29 sec
VIRAT_S_0401 34 1 hr 12 min 9 sec 17 0 hr 32 min 26 sec 1 hr 40 min 15 sec
VIRAT_S_0500 10 0 hr 10 min 38 sec 14 0 hr 14 min 20 sec 0 hr 14 min 20 sec
VIRAT_S_0501 0 0 0 0 0 hr 36 min 47 sec
VIRAT_S_0502 0 0 24 0 hr 45 min 2 sec 1 hr 1 min 18 sec
VIRAT_S_0503 0 0 14 0 hr 23 min 55 sec 0 hr 23 min 55 sec
Total 119 4 hr 23 min 12 sec 315 8 hr 20 min 10 sec 12 hr 40 min 49 sec

TABLE 6: Camera-wise Video Statistics for VIRAT Dataset
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B ACTIVITIES INCLUDED IN EACH VERSION

Dataset

Scope

Activities

Vo

Vi

V2

V3

V3.2

V4

Activtiies in VIRAT 2.0 and
Extended Release

All from VO (after cleaning
out the non-valid instances)

Only the activities
might be relevant

that

Previous activities without
vehicle moving and two new
labels generated during rela-
belling

Vehicle-Centric Subset

Vehicle-Centric with Nega-
tive Instances for Questions

Closing, Closing Trunk, Drop, DropOff Person Vehi-
cle, Entering, Exiting, Interacts, Loading, Misc, Object
Transfer, Open Trunk, Opening, Person Closing a Vehi-
cle/Car Trunk, Person Opening a Vehicle/Car Trunk, Per-
son Unloading an Object from a Car/Vehicle, Person car-
rying an object, Person entering a facility, Person exiting
a facility, Person gesturing, Person getting into a Vehicle,
Person getting out of a Vehicle, Person loading an Object
to a Vehicle, Person running, Person Person Interaction,
PickUp, PickUp Person Vehicle, Pull, Push, Riding, Set-
Down, Talking, Transport HeavyCarry, Unloading, activ-
ity carrying, activity crouching, activity gesturing, ac-
tivity running, activity sitting, activity standing, activ-
ity walking, specialized miscellaneous, specialized talk-
ing phone, specialized texting phone, specialized throw-
ing, specialized umbrella, specialized using tool, vehicle
moving, vehicle starting, vehicle stopping, vehicle turn-
ing left, vehicle turning right, vehicle u turn.

9399

Person loading object to vehicle; Person getting into vehi-
cle; Person unloading object from vehicle; Person getting
out of vehicle; Person entering facility; Person exiting fa-
cility; Person running; Exiting; Opening; Closing; activ-
ity standing; vehicle stopping; activity walking; vehicle
turning right; vehicle moving; activity carrying; vehicle
starting; vehicle turning left; activity running; Unloading;
Loading; Entering; vehicle u turn

(same as V2) plus: vehicle moving forward; vehicle mov-
ing backward

Person getting into a vehicle; Person getting out of a ve-
hicle; Exiting; vehicle turning right; vehicle moving for-
ward; vehicle turning left; vehicle moving backward; En-
tering; vehicle u turn

Exiting; vehicle turning right; vehicle moving forward,;
vehicle turning left; vehicle moving backward; Entering;
vehicle u turn; activity walking

TABLE 7: Activities kept in each dataset version
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C CLEANING PROCESS

Question

What turn is the vehicle making? A Left Turn. B Right Turn. C None of the above. Answer with the option
letter only

Answer: C

Question

Whatturn is the vehicle making? A Left Turn. B Right Turn. € None of the above. Answer with the option
letter anly

Answer: A

Question

Is the vehicle making a U-Turn? A Yes. B No. Answer with the option letter only

Answer: B

Question

In which direction is the vehicle moving? A Forward. 8 Backward. C None of the above. Answer with the
option letter only

Answer: A

Question

What is the person doing? A Getting into the vehicle. B Getting out of the vehicle. C None of the above
Answer with the option letter only

Question

Whatis the person doing? A Getting into the vehicle. B Getting out of the vehicle. € None of the above.
Answer with the option letter anly

Answer: C

Fig. 9: Example of removed activities during cleaning process.

D TECHNICAL DETAILS ON FINAL DATASET

Activity Instances Avg Duration (s) Avg Actor Area (px) >
backward 16 9.2896 38911.3125
entering vehicle 65 3.3974 11102.1385
exiting vehicle 61 2.5607 12577.1311
forward 225 6.6221 17173.2222
left turn 172 4.2647 24397.5233
none 982 5.5012 19348.8147
right turn 191 5.0574 22561.2775
u turn 13 19.0359 16636.0769
walking 149 19.5667 4880.2953

TABLE 8: Activity Metrics for Final Version

5Calculated using the bounding box corresponding to the best frame for each event.
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Fig. 10: Distribution of Answers per Question

E ANNOTATION FORMAT

Attribute Description

Event Key Unique identifier for each event, combining dataset and event specifics.

Question Natural language question associated with the event, including the cor-
rect answer on the second line.

Image File path to the image showing the event.

Source Indicates the original dataset source (e.g., VIRAT).

Frame Number List of one or three frame indices used for rendering (depending on the
layout).

Object Bounding Box (optional) For save bbox=True, a JSON-formatted list of bounding
boxes per frame (one box for single-frame mode, or three boxes for 3x1
mode).

Trajectory Bounding Box (optional) For save_traj_bbox=True, the single bounding box that
encloses the entire trajectory of the primary actor.

Trajectory (optional) For save_traj=True, alist of (frame, X, y) centre coordi-
nates per frame.

TABLE 9: Annotation Attributes for Each Dataset Event
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F DATASET GENERATION WITH DESIRED CONFIGURATION

The dataset is generated using a Streamlit-based interactive app that takes as input a raw dataset explained in Appendix
H. The webapp is initialized running this command:

streamlit run configurations_dataset.py

This opens the interface where the user can specify which questions to include and select visual/rendering options.

F.0.1 Sidebar Controls

* Include “None of the above”: Checkbox (include_none) to mantain or remove questions/entries whose correct
answer is “C”. In case of not including it, the multiple-choice questions will also not include the choice C, just A
and B.

* Question Selection: One checkbox per question. Only events with selected questions will be included.

F.0.2 Display Options
* Mode:

— IxI: Extracts the single best frame (img_best).

— 3x1: Extracts start, middle, and end frames generating a single horizontal mosaic image (img_start,
img_mid, img_end).

» Show main-actor bbox: Draws the bounding box around the actor at the chosen frame(s).

» Show trajectory: Overlays the trajectory line in red, extracted from actors bounding boxes across frames.
* Arrow head (show_arrow): Adds an arrow at the end of the trajectory.

* Blur non-relevant area: Applies a Gaussian blur outside the trajectory bounding box.

* Crop to trajectory bbox: Crops the image to the tight trajectory bounding box.

» Trajectory enclosing bbox: Draws a box around the full trajectory (used to compute blur or crop)

F.0.3 Export Options

 Save trajectory: Includes the raw trajectory centres (frame, X, y) in the TSV.

» Save bbox: Includes the list of object bounding boxes per frame (one or three frames) in the TSV column (depending
on the selected mode).

* Save trajectory bbox: Includes the trajectory-enclosing bounding box in the TSV.

F.0.4 Preview and Navigation

* Generate Preview: Generates the current row event with the chosen options.
* Next: Goes to the next event.

* Generate dataset with this configuration: Applies the current filters and image generation options to all events and
generates images together with data.tsv and configuration_info.txt.
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G @ localhost8501 a A %)= 8 - O

Which questions do you want to include? Deploy
What turn is the vehicle making? A Left Turn. B Right Turn. C

None of the above. Answer with the option letter only
Is the vehicle making a U-Turn? A Yes. B No. Answer with the

option letter only

In which direction is the vehicle moving? A Forward. B
Backward. C None of the above. Answer with the option letter
only

What is the person doing? A Entering the vehicle. B Exiting the
vehicle. € None of the above. Answer with the option letter
only

Display options
Mode

O 1

) 3x1

Show main-actor bbox

Show trajectory

Arrow head

VIRAT Vehicle Event Explorer

Event: 0_57

Blur non-relevant area

What turn is the vehicle making? A Left Turn. B Right Turn. C None of the above. Answer with the option

. letter only
Export options

Row5 /187

(] save trajectory
(] Save bbox

(] Save trajectory bbox

Fig. 11: Streamlit interface for custom dataset generation.

G FINAL DATASET STRUCTURE

After the dataset generation, the directory configuration_1/ contains:

configuration_1/
images/
data.tsv
configuration_info.txt

G.0.1 configuration_info.txt

Shows the configuration that was chose.

mode : 1x1

bbox: False
trajectory: True
arrow: True
traj_bbox: False
blur_area: False
crop_image: True
save_traj: False
save_bbox: False
save_traj_bbox: False
include_none: True

questions_included: [’What turn is the vehicle making? A Left Turn. etc.]

G.0.2 data.tsv

It contains one row per exported image. The columns are the following:
* event_key: Unique activity identifier.
* question: Question text (with “\nCorrect Answer” at the end).
* img: Path to the generated JPG.
* source: Original dataset origin (e.g., VIRAT).
e frame_number: Comma-separated list of 1 or 3 frame indices used for final image generation.

* object_bbox (optional): Contains the list of bounding boxes (1 or 3) in JSON format.
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* trajectory-bbox (optional): Single JSON list [x0, y0, w, h].

* trajectory (optional): List of (frame, x, y) centres in JSON format.

H RAw DATASET

The Streamlit configurations_dataset.py file takes as input a raw dataset. This raw dataset is generated by the
script generate_raw_dataset .py, which processes the last version of the generated dataset 3.json (explained in
dataset generation section).

* Four plain JPEG frames per event (start, middle, end, and best),
* Full trajectory information (list of (frame, x, vy) centres)in JSON format,

* Object bounding boxes per frame (smallest actor bbox) when available,

A TSV file (data.tsv) that consolidates Q&A prompts, frame paths, bounding boxes, trajectory-bbox and raw
trajectory data.

H.0.1 Individual Processing

For each event in the input JSON:

1. The script reads the start and end frame of the activity. According to that it extracts the corresponding frames from
the source video.
e Start frame: first_frame + 1
* End frame: last_frame — 1
* Middle frame: (first_frame + last_frame)/2
* Best frame: the frame whose actor bounding box has the largest area and lies completely inside the image (i.e.,

not touching the edges). If no such frame exists, the start frame is chosen.

2. For each of the four selected frames, the actor bounding box is extracted. In case of multiple actors, such as person
entering the vehicle, the smallest actor person” is selected.

3. Independently, the information of the trajectory is extracted, based on the actor’s bounding box across the frames. It
creates a sorted list of (frame, mid_x, mid_y).

4. With all the information already created and stored, it finally generates the questions as explained in the Dataset
Generation section. In case one event has more than one questions, in the output tsv file, the row corresponding to
that event is duplicated, having the exact same information for image paths, trajectory, bounding box, etc. except for
the question.

This data.tsv and its images create the “raw dataset” that is then used by configurations_dataset.py.



