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Abstract

The study of Multiple Sclerosis (MS) using graph-based representations of the brain presents a promising opportunity for
advancing its diagnosis, treatment, and prevention. In this paper, we propose a graph analysis approach for classifying people

with MS (pwMS) and healthy volunteers(HV) based on brain imaging data, results with the potential of diagnosing and preventing
MS in its early stages. Our method uses an integration of three different brain imaging modalities: Diffusion Tensor Imaging
(DTI),Resting State Functional Magnetic Resonance Imaging (rs-fMRI), and Gray Matter (GM) data. To address challenges such as

class imbalance and limited data availability, we employ advanced data augmentation strategies including graph mixing and SMOTE.
We evaluate traditional machine learning baselines alongside GCN and GAT architectures, demonstrating that the multi-modal GCN
significantly outperforms other models, particularly in binary classification between MS patients and healthy controls. Additionally,

we provide interpretability analyses to identify key brain regions and topological features relevant to disease progression. Our
findings highlight the potential of GNN-based multi-modal approaches for improving MS diagnosis, contributing to the development

of explainable Al in clinical neuroscience.
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1 INTRODUCTION

The brain is an intricate and highly interconnected system,
making its study and interpretation a challenging task. This
complexity has led to the development of multiple brain
imaging techniques. The three most commonly used meth-
ods, which also serve as the data sources for this study, are
Diffusion Tensor Imaging (DTI), Resting State Functional
Magnetic Resonance Imaging (rs-fMRI), and Gray Matter
(GM) analysis.

Each imaging technique is associated with a specific at-
las that segments the brain into Regions of Interest (ROIs),
facilitating its interpretation. In our study the brain atlas
used divides the brain data into 76 ROIs [1] . A widely used
technique, also used in this study, is to preprocess the data
to leverage these ROIs, treating them as nodes in a graph
representation of the brain. The connections between dif-
ferent regions are represented by weighted edges, where
the weights correspond to the correlation between ROIs, re-
flecting their functional or structural connectivity, getting as
aresult a dense fully connected weighted graph, represented
as a 76x76 matrix, as in [2].
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o Academic Year 2024/25

To enhance the effectiveness of graph processing, we ap-
ply edge pruning, removing weak connections that con-
tribute minimal information. This step reduces noise, im-
proves computational efficiency, and ensures that signifi-
cant local connections are preserved, rather than being van-
ished by an average over all values. By refining the graph
representation in this way, we aim to improve the accuracy
and interpretability of brain connectivity.

Medical data is often protected due to privacy regula-
tions, making it challenging to compile large datasets that
combine individuals from multiple institutions. Our study
is no exception, relying on a dataset that includes 71 healthy
volunteers as controls and 270 subjects with MS, these last
group divided into different stages of the disease. A rela-
tively large dataset in the medical world, but limited when
it comes to develop deep learning techniques.

To overcome the problem of a small dataset, data aug-
mentation helps to generate synthetic samples, inspired in
the method proposed in [3], together with a graph mixing
approach explained in detail in further sections of this work.

We apply graph metrics computation to have a richer and
purely numerical representation with statistical values of
every graph [2] [4]. So, every datapoint can be represented
with its raw graph representation, graph metrics, or a com-
bination of both.

This study aims to classify brain graphs into healthy vol-
unteers (HV) and people with MS (pwMS) and further cate-
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gorize this last group according to 3 different disease stages.

Our approach employs various machine learning ap-
proaches, including Support Vector Machines (SVM), and
Decision Trees. These models use graph adjacency matrices
as input and serve as relatively simple yet well-established
baselines for comparison against more advanced deep learn-
ing techniques. Although previous studies could serve as
references, many do not provide open datasets, making di-
rect evaluation of our data a more reliable approach.

Our primary focus is the development of a Graph Con-
volutional Network(GCN)[5] for classification. This model
processes raw brain graphs, or brain graphs together with its
metrics as input and generates graph embeddings, which are
then used for classification. The main advantage of GCNs
is that they leverage message passing, where information is
propagated across connected nodes at each layer, capturing
both local and global graph structures. This process results
in dense graph embeddings, which can be utilized in multi-
ple ways.

The most straightforward approach and the one imple-
mented in this work is to pass these embeddings through a
final MLP layer for classification.

2 OBJECTIVES

1. Integrate DTI, rs-fMRI and GM into a unique
Graph Representation: Find an efficient, and con-
venient way to merge the three representations of the
brain into a single graph in order to make an efficient
training of the neural networks.

2. Develop a GNN for classification: Perform multiple
experiments with GNN’s with end to end classification
to test their effectiveness in this task.

3. Improve classification of the patient disease stage:
Achieve good performance in the multiple-class clas-
sification task, distinguishing different stages of MS,
not only focusing on the binary classification to detect
whether or not a patient has MS.

4. Document all the process in a scientific paper:
Provide a complete and reproducible account of the
methodology and findings in the form of a scientific

paper.
3 METHODOLOGY AND WORK PLAN

3.1 Methodology

The methodology for this study follows the CRISP-DM
(Cross Industry Standard Process for Data Mining) frame-
work described in [6], a structured approach for data analy-
sis and machine learning projects. The pipeline consists of
the following stages:

1. Problem Definition

* Read state of the art literature: Read the main
literature of this topic in order to know the hot
topics and the research gaps to possibly fill.

* Define problem and objectives: Clearly define
aproblem, and all the objectives required to solve
it.

2. Data exploration: Explore the data, mainly by com-
puting metrics, in order to know which type of research
and techniques can be more useful.

3. Data pre-processing

* Graph preprocessing: Generate graphs with the
given data. Also compute the corresponding fea-
tures of each node of the graphs in order to train
GNNs.

* Data augmentation: As the dataset is unbal-
anced and has few datapoints a data augmenta-
tion approach will be followed. It will generate
new data using generative techniques and data
mixing.

4. Modeling

* Machine learning baselines: Train SVM and
decision tree models in order to have a baseline
of metrics with which we can compare poste-
rior results with more advanced techniques like
GNN’’s.

* Graph Neural Network construction: Build
the GNN models, by trying multiple configura-
tions and methods. The main ones will be GCN
and GAT.

5. Model Evaluation

* Metrics Extraction: Compute the metrics for all
the models and perform an ablation study.

* Interpretability analysis: Interpret the results
and find patterns in the classification that can lead
to explainable results.

6. Documentation of the research: Provide a complete
and reproducible account of the methodology and find-
ings in the form of a scientific paper.

3.2 Work Plan

The work plan proposed for the project is summarized in
the following graph, containing all the tasks and the time
frames dedicated to each of them in the form of a gantt chart
in figure 1.

4 STATE OF THE ART

The study of neurological disorders, particularly Multi-
ple Sclerosis (MS), is a widely explored topic in the field
of data science and medicine, driven by advancements in
neuroimaging techniques and sophisticated computational
methods [7][8][9]. Magnetic Resonance Imaging (MRI)
[10], together with data analysis [11][12], has emerged as
a fundamental clinical tool for the diagnosis of MS.

A central aspect of neuroimaging data analysis is the
construction of brain networks based on graph theory [13],
which has seen significant advancements in recent years.
This approach has proven to be a powerful framework for
understanding the complex organization of the brain and
its alterations in neurological conditions [14][12]. In this
approach, brain regions are represented as nodes and the
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Fig. 1: Gantt chart describing the work plan.

connections between them as edges. These networks can
be derived from different modalities like functional MRI
(rs-fMRI), diffusion MRI (DTI), and structural MRI (GM),
capturing different aspects of brain connectivity.

The integration of computational methods, graph pro-
cessing techniques and deep learning models [15][7] al-
lowed the development of graph neural networks (GNNs)
[5]. These models greatly improved the analysis of neu-
roimaging data in the context of MS and other brain disor-
ders. Additionally, widely known deep learning models like
Convolutional Neural Networks (CNNs) have demonstrated
superiority over traditional artificial intelligence methods
for MS classification based on MRI data, particularly when
combined with techniques like batch normalization and
dropout to overcome issues like overfitting [8].

As deep learning models complexity grow, data augmen-
tation techniques have become essential for addressing the
limited data availability of clinical datasets. These tech-
niques help enhance model robustness by generating addi-
tional training samples from existing data. Common strate-
gies are to sample subsets of a subject data to get multiple
datapoints from the same subject, or applying transforma-
tions to a datapoint, such as noise injection, rotations, and
cropping [8][15].

In recent years, the field has been shifting towards multi-
modal and multilayer network analysis [2][13], which inte-
grates information from different neuroimaging modalities
to provide a more comprehensive understanding of brain
changes due to MS. This approach has shown potential
in identifying brain regions with synchronized connectivity
deterioration in MS [12].

There is a growing focus on interpreting deep learn-
ing results in neuroimaging, particularly in identifying
brain regions that contribute to specific predictive outcomes
[2][12]. This is especially relevant in multiple sclerosis
(MS), where deep learning techniques can help in highlight-
ing the areas most affected by the disease. The goal is to en-

hance diagnostic accuracy by identifying reliable biomark-
ers that indicate disease progression, facilitating a deeper
understanding of MS through network analysis [11].

5 DATASET

The dataset used in this paper is obtained by merging data from
the Hospital Clinic de Barcelona and an italian hospital. The
dataset comprises a total of 270 subjects: 165 subjects from the
Hospital Clinic (dataset1) and 105 subjects from the italian hospi-
tal (dataset2). The dataset contains healthy volunteers (HV) and
people with multiple sclerosis (pwMS). The pwMS group is fur-
ther categorized into three clinical subtypes, describing different
stages of the disease. The first subset of samples is composed
of people with Relapsing-Remitting Multiple Sclerosis (RRMS),
characterized by clearly defined attacks of worsening neurologi-
cal function followed by periods of partial or complete recovery.
The second subset includes people with Secondary Progressive
Multiple Sclerosis (SPMS), which initially begins as RRMS and
later transitions into a phase of steady disease progression. The
third subset contains subjects with Primary Progressive Multiple
Sclerosis (PPMS), marked by a gradual worsening of symptoms
without early relapses or remissions. The dataset source and the
amount of samples of each group is depicted in 1

Category | datasetl | dataset2 | TOTAL
HV 18 53 71
RRMS 125 30 155
SPMS 16 15 31
PPMS 6 7 13
pwMS 147 52 199
TOTAL 165 105 270

TABLE 1: Distribution of subjects by source and MS pheno-
type. HV: Healthy Volunteers; RRMS: Relapsing-Remitting MS;
SPMS: Secondary Progressive MS; PPMS: Primary Progressive
MS; pwMS: People with MS (RRMS + SPMS + PPMS).
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Fig. 2: t-testing is performed to compare the data distributions of the different datasets. Blue lines represent dataset 1 and red lines
represent dataset 2. The first row of the figure shows the distributions of the raw (unnormalized) data, while the second row displays
the same distributions after normalization and thresholding. For visualization purposes, each data matrix was reduced to a single scalar
value by summing all its elements. These scalar values are then used to construct the distributions shown in the plots and perform

t-testing.

For each subject in the dataset, three different brain scans
are provided. This 3 scans are the Diffusion Tensor Imaging
(DTI) of the brain, a resting state functional magnetic resonance
imaging(rs-fMRI) sample, and a gray matter(GM) sample. Each
of the 3 different scans are already processed as regions of the
brain, following the atlas described in [1] . The atlas divide the
brain in 76 different regions, which are then processed to find an
adjacency matrix of dimension 76x76, which represent the con-
nection between regions in the brain by showing correlation of
those regions [2]. Additional to the adjacency matrices, we have
the volume of each region of the brain for each subject in the
dataset, which is the same through the 3 different scans.

5.1 Dataset t-test

A statistical t-test was conducted to compare the distributions of
dataset 1 and dataset 2, as illustrated in Figure 2. The results
clearly indicate that the two datasets originate from significantly
different distributions. This conclusion is supported by the dom-
inance of low p-values < 0.05, confirming that the observed dif-
ferences are statistically significant. The statistical difference can
also be assessed by visually looking at the displacement between
distributions. Notably, this distinction remains even after normal-
ization and thresholding, indicating a fundamental divergence in
the underlying data distributions. Such distributional differences
pose a significant challenge for the design and implementation of a
classification model, as the model is likely to perform well on data
from one distribution while generalizing poorly to the other. This
difference in data distribution indicates that models trained on data
from a specific source may not generalize well to data from other
sources, even when representing the same type of brain scans, due
to substantial variations in underlying distributions.

6 PIPELINE

The source code implementing the proposed methodology in this
paper is publicly available on GitHub '. However, data used in the
study is not publicly available due to sensitivity concerns, thought
could be available from the corresponding author upon reasonable
request.

Figure 3 provides an step by step overview of the entire pro-
cessing pipeline employed to carry out the experiments described
in this study.

Pipeline:

1. Load brain graph matrices derived from the three types of
neuroimaging data: DTI, rs-fMRI and GM.

2. Graph matrices are normalized and pruned to remove
noise and redundant connections.

3. Data augmentation using either SMOTE or graph mixing.

4. The upper branch of the pipeline outlines the procedure for
training the baseline models. First, a joint multi-matrix
representation is constructed by combining the individual
connectivity matrices from the three modalities. This joint
representation is then flattened into a feature vector, which
serves as input for the baseline models.

5. The lower branch details the pipeline for training GNN mod-
els. Initially, each adjacency matrix is converted into a
graph.

6. Graphs are interconnected using DTI and rs-fMRI data to
define the inter-graph links.

7. Features are extracted for single-graph data and for multi-
graph data. This generated data is used separately to train
different models.

lhttps://github.com/Kerasam12/TFG_MS_classifica
tion

-~ dataseti Mean: 1124325
-~ dalaset? Mean: 1003620
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Fig. 3: Schematic illustration of the pipeline used to train the Baseline and GCN models.

7 DATA PREPROCESSING

7.1 Graph Pruning

In our dataset the adjacency matrices are densely connected, so
each region of the brain is connected with all the others, disre-
garding it’s physical distance. This creates a problem when graphs
are processed by GNN models, because adjacent node features are
combined. As a result, all the node features across the graph tend
to be very similar, not getting specific information of each node.
This is specially critical in our case, as the brain is almost the same
for all subjects, but we are searching not general patterns on it, but
individual or local affectations in some parts of the brain created
by the Multiple Sclerosis. The solution is to prune the connec-
tion between regions with low connection values, setting them to
0. In this way when generating the graphs, those regions won’t be
connected and the aggregation of features will be performed in a
more local way that allows the GNN to model more specific and
local features of the graph. The effect of pruning on a brain scan
is depicted in figure 4.

All the following experiments presented in the paper were con-
ducted with a pruning threshold of 0.7, meaning that the 70% of
edges are deleted from every graph. The threshold value is chosen
because it demonstrated the best results in cross validation using
SVMs and different thresholds. All the experiments and results re-
garding threshold the threshold value are in the the appendix A.1

7.2 Data Augmentation

One of the main problems in the fields of medical data analysis is
the lack of data and our case is no exception. Multiple data aug-
mentation techniques are used to address the problem, and com-
pared against the same techniques without the augmentation to
see the real effect of data augmentation in the results. This paper
uses the Synthetic Minority Over-sampling Technique (SMOTE)
[3] data augmentation for the Baseline models. A graph mixing
approach, explained below in section 7.2.2, is applied to both base-
line and GNN models.

All experiments involving data augmentation were conducted
using the number of data points specified in table 2. To ensure
a balanced dataset across all classes, we standardized the num-
ber of samples per class to 113. This value was chosen to avoid
excessive oversampling, particularly for classes with fewer origi-
nal data points, while also preserving all available data. Notably,
the largest class in the original dataset contains 109 samples for
training. By selecting 113 as the target count minimizes the need
for augmentation in that class while ensuring that no original data
points are discarded.

Category NDA DA

Train | Test | Val | Train | Test | Val
PRMS 109 33 14 113 6 4
SPMS 21 7 3 113 7 3
PPMS 9 3 1 113 3 1
pwMS 49 15 7 113 15 7
Total 188 58 25 452 58 25

TABLE 2: Table showing the number of datapoints before and
after applying data augmentation. Notice that in the case of Test
and Validation(Val), the number of samples is the same as the data
augmentation is not applied to that part of the dataset to have a fair
evaluation. Abbreviations: NDA = No data augmentation applied
; DA = Data augmentation applied.

7.21 SMOTE

To address class imbalance and limited data availability, we
employed the Synthetic Minority Over-sampling Technique
(SMOTE) [3] for data augmentation. SMOTE generates synthetic
samples for the minority class by interpolating between existing
samples and their nearest neighbors in feature space. This method
enhances the representation of under-represented classes without
simply replicating existing data, thereby reducing the risk of over-
fitting.
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Fig. 4: Original Graph: figure showing the connections of the graphs without any pruning. Pruned Graph: figure showing the adjacency

matrix with 70% of pruned edges.

7.2.2 Graph Mixing

Graph Mixing is a data augmentation technique that involves com-
bining information from multiple graphs of the same type. Specif-
ically, this is achieved by replacing half of the columns in the
adjacency matrix of one graph with the corresponding half from
another graph of the same class. This operation preserves the
original values while altering their spatial configuration, thereby
creating a new sample that remains within the original data dis-
tribution. Since the process is combinatorial, it enables the gen-
eration of a large number of diverse samples without introducing
artificial noise. The key intuition behind this approach is that the
augmented graphs retain the inherent characteristics of the origi-
nal class, as no new values are introduced, only their arrangement
is modified. With this technique we can combine the same graphs
multiple times by selecting a subset of different columns to com-
bine.

8 BASELINE MODELS

Given the nature of the dataset and the integration of different data
modalities, direct benchmarking against standard techniques be-
comes challenging. To address this, we employ a series of baseline
models, to have some reference values for simpler model perfor-
mance on the dataset. At the same time these models are aimed
at exploring the effects of various data configurations, hyperpa-
rameter settings, and data augmentation strategies. Baseline ex-
periments serve as an initial step, providing empirical insights that
inform the design and optimization of more complex and compu-
tationally intensive models. Extensive testing of baseline models
is presented in appendix A.1 and A.2.

While there is no strict guarantee that the optimal hyper-
parameters identified in simpler models will transfer directly to
more advanced architectures, the baselines nonetheless offer valu-
able guidance. They help delineate promising directions for model
refinement and act as reference points to quantify the performance
gains attributable to increased model complexity.

The baseline models investigated in this study include Support
Vector Machines (SVMs) and Decision Trees. For each model
type, we perform cross-validation across multiple data configura-
tions to systematically evaluate their robustness and generalization
capabilities. Results of cross validation are presented in appendix
Al

8.1 Baseline Models Data

In these experiments, we directly utilized the values of the adja-
cency matrices as input features by flattening them to fit the model
requirements, with this flattened adjacency matrices the different
data configurations described below are tested.

1. Voting classifiers: Three classifiers are trained, each one
with a different brain scan type. On evaluation each clas-
sifier assign a class to each sample and the final classifica-
tion type is assigned to the class that have more votes. If
3 different classes are assigned by the 3 classifiers, as a tie
breaking rule we aggregate the probabilities of the 3 classi-
fiers for each class, and select the class with higher value in
the sum of the probabilities of all the classifiers.

2. Separate classifiers: 3 classifiers for the 3 different types of
brain scans are trained separately .

3. Joint adjacency matrix: A matrix combining the 3 brain
scans is created following the paper [2].

8.2 Baseline SVM Results

The SVM baseline models in table 3 demonstrate satisfactory per-
formance in distinguishing between healthy volunteers (HV) and
people with MS (pwMS). However, they exhibit considerable limi-
tations in accurately classifying the different MS subtypes. Specif-
ically, the SVM models perform poorly in differentiating among
MS types, with minor improvements observed only when mod-
els are trained on individual scan modalities. Nevertheless, these
improvements in MS subtype classification come at the expense of
reduced performance in distinguishing pwMS from HV. For exam-
ple, the SVM model trained on gray matter (GM) scans achieves
a 20% increase in overall accuracy for MS subtype classification.
However, this is accompanied by a 36.4% decrease in HV clas-
sification accuracy and a 14.9% decrease in relapsing-remitting
MS (RR-MS) classification accuracy compared to the SVM Vot-
ing classifier. A similar trade-off is observed in terms of precision,
with a 33.3% improvement in MS subtype classification precision,
offset by a 25.6% reduction in HV precision and a 7.2% reduction
in RR-MS precision. This pattern is also evident in recall metrics,
with a 27.3% decline in HV recall and a 14.9% decline in RR-MS
recall. These results highlight a critical trade-off between improv-
ing MS subtype classification and maintaining robust differentia-
tion between pwMS and HV. This phenomenon is mostly because
of the few data-points of the SP-MS and PP-MS class, showing
that the data augmentation applied is not having the desired effect
on the data. Finally, better general results are achieved by using
graph mixing, rather than using SMOTE approach.
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8.3 Baseline Decision Tree Results

For the Decision Tree baseline models in table 3, the best per-
formance is observed with the Voting classifier, which achieves
reasonable accuracy in distinguishing between healthy volunteers
(HV) and people with MS (pwMS). However, similar to the SVM
models, it fails to effectively differentiate among the MS sub-
types. Notably, the Decision Tree model trained with rs-fMRI
data demonstrates some ability to identify primary progressive
MS (PP-MS) cases, which is particularly challenging due to the
limited number of samples in this class. Other configurations ex-
hibit lower overall classification performance. These findings also
highlight a trade-off between accurately distinguishing HV from
pwMS and distinguishing among MS subtypes. Specifically, im-
provements in MS subtype classification are consistently accom-
panied by a decline in classification performance for HV across all
evaluated metrics. In the decision trees approach we can also gen-
erally observe better results using graph mixing than the SMOTE
data augmentation approach.

9 GRAPH NEURAL NETWORKS

9.1 Graph creation

The creation of the graphs and it’s configuration is crucial in the
performance of the GNN models. The data is configured in such
a way that a single graph joining the three different types of scans
of the brain is created. In a first step the adjacency matrices repre-
senting the brain graphs are created, so returning a graph with 76
nodes representing the 76 brain regions of the used brain atlas. We
also add a weighted connection between brain regions based on
the value of the adjacency matrix, connecting those regions if the
value connecting them is bigger than 0. In a second step, the DTI
matrix nodes are joint with the Gray Matter matrix nodes using
the values of the rs-fMRI adjacency matrix between those brain
regions. In a third step the rs-fMRI nodes and the Gray Matter
nodes are joint together using the DTI connection values between
those brain regions. This process is schematically depicted in steps
5 and 6 of figure 3.

Node features: Node features are generated from the graph
using normalized graph metrics, together with the volume of each
node normalized. The metrics computed to create the features are:

1. Degree: The number of edges connected to a node. It quan-
tifies the direct connectivity of a node.

ki = Zai]-
J

where a;; is 1 if there is an edge between node ¢ and node 7,
and O otherwise.

2. Strength: In a weighted graph, the strength is the sum of the
weights of the edges connected to a node.

S; — E Wij
J

where w;; is the weight of the edge between node ¢ and node
J-

3. Triangles: The number of triangles (i.e., sets of three mutu-
ally connected nodes) that include a given node.

1
T; = 3 E QijQjk Qi
gk

4. Closeness Centrality: Measures how close a node is to all
other nodes in the graph. It is the reciprocal of the sum of
the shortest path distances from node i to all other nodes.

N -1

Ci==—7r
Zj;ﬁz‘ dij

where d;; is the shortest path distance from node ¢ to node 7,
and N is the total number of nodes.

5. Betweenness Centrality: Measures the extent to which a
node lies on paths between other nodes.

o
sHEiAt St

B; =

where o is the number of shortest paths from node s to
node ¢, and o (7) is the number of those paths that pass
through node <.

6. Clustering Coefficient: Measures the tendency of a node’s
neighbors to also be connected to each other.

2T
Ci=———
ki(k; — 1)
where 7T is the number of triangles through node 4, and &; is
its degree.

7. local efficiency: Measures how efficiently information is ex-
changed in its immediate neighborhood when the node itself
is removed.

1 1

Elocal (l) = m

3, kEN (3) dix
i#k

where k; is the degree of node 4, N(i) is the set of neigh-
bors of node 7, and d;, is the shortest path length between
neighbors j and k within the subgraph induced by N (7).

8. pagerank: Measures node influence using the probability of
arriving at a given node by following random paths through
the network.

. PR(j) 1
PR(i) =« Z o +(1- a)ﬁ
JEN(GE)

where PR(i) is the PageRank score of node ¢, N (i) repre-
sents the set of nodes linking to 4, k5" is the out-degree of
node j, N is the total number of nodes, and o € [0,1] is a
damping factor.

9.2 GNN Models

This study evaluates multiple Graph Neural Network (GNN) ar-
chitectures and conducts ablation studies to determine which mod-
els best adapt to the characteristics of the data. The models con-
sidered include Graph Attention Networks(GAT), and Graph Con-
volutional Networks(GCN).

1. Graph Attention Networks (GATSs)
Graph Attention Networks [16] introduce a mechanism of
self-attention at the graph level, allowing the model to assign
different levels of importance to neighboring nodes during
message passing. This architecture enhances the model’s ca-
pacity to learn more nuanced relationships in the graph struc-
ture.

2. Graph Convolutional Networks (GCNs)
Graph Convolutional Networks [5] generalize the concept of
convolution from grid-structured data to graphs. GCNs ag-
gregate information from a node’s neighbors to update its
representation, enabling the extraction of informative pat-
terns from the graph topology.
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HV RR-MS SP-MS PP-MS

Arch Mod | Aug Acc | Prec | Rec Acc | Prec | Rec Acc | Prec | Rec Acc | Prec | Rec

vC DT GrM | 0.682 | 0.517 | 0.682 | 0.745 | 0.745 | 0.745 | 0.200 | 0.500 | 0.200 | 0.000 | 0.000 | 0.000
VC DT SMT | 0.658 | 0.488 | 0.658 | 0.712 | 0.712 | 0.712 | 0.150 | 0.400 | 0.150 | 0.000 | 0.000 | 0.000
SM-DTI | DT GrM | 0.273 | 0.462 | 0.273 | 0.745 | 0.593 | 0.745 | 0.100 | 0.111 | 0.100 | 0.000 | 0.000 | 0.000
SM-DTI | DT SMT | 0.250 | 0.420 | 0.250 | 0.712 | 0.562 | 0.712 | 0.050 | 0.090 | 0.050 | 0.000 | 0.000 | 0.000
SM-fMRI | DT GrM | 0.409 | 0.450 | 0.409 | 0.766 | 0.706 | 0.766 | 0.200 | 0.286 | 0.200 | 0.250 | 0.200 | 0.250
SM-fMRI | DT SMT | 0.386 | 0.430 | 0.386 | 0.733 | 0.670 | 0.733 | 0.150 | 0.250 | 0.150 | 0.200 | 0.150 | 0.200
SM-GM | DT GrM | 0.091 | 0.105 | 0.091 | 0.532 | 0.521 | 0.532 | 0.100 | 0.091 | 0.100 | 0.000 | 0.000 | 0.000
SM-GM | DT SMT | 0.073 | 0.090 | 0.073 | 0.500 | 0.490 | 0.500 | 0.050 | 0.080 | 0.050 | 0.000 | 0.000 | 0.000
vC SVM | GrM | 0.636 | 0.700 | 0.636 | 0.914 | 0.682 | 0.914 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
VC SVM | SMT | 0.605 | 0.670 | 0.605 | 0.880 | 0.645 | 0.880 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
MM SVM | GrM | 0.636 | 0.700 | 0.636 | 0.893 | 0.688 | 0.893 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
MM SVM | SMT | 0.614 | 0.668 | 0.614 | 0.860 | 0.660 | 0.860 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
SM-DTI | SVM | GrM | 0.727 | 0.761 | 0.727 | 0.914 | 0.704 | 0.914 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
SM-DTI | SVM | SMT | 0.693 | 0.730 | 0.693 | 0.882 | 0.670 | 0.882 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
SM-fMRI | SVM | GrM | 0.681 | 0.535 | 0.681 | 0.808 | 0.717 | 0.808 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
SM-fMRI | SVM | SMT | 0.652 | 0.500 | 0.652 | 0.778 | 0.685 | 0.778 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
SM-GM | SVM | GtM | 0.363 | 0.444 | 0.363 | 0.766 | 0.610 | 0.766 | 0.200 | 0.333 | 0.200 | 0.000 | 0.000 | 0.000
SM-GM | SVM | SMT | 0.330 | 0.400 | 0.330 | 0.733 | 0.575 | 0.733 | 0.150 | 0.280 | 0.150 | 0.000 | 0.000 | 0.000

TABLE 3: The table show the computed metrics for the presented machine learning models. Here different architechtures for De-
cison Tree and SVM models are shown. All this models have been trained with data augmentation, using Graph Mixing(GrM) and
SMOTE(SMT) approaches. Models of DT and SVM with best overall performance are marked in bold. Abbreviations: Arch = Ar-
chitecture of the model, SVM = Support Vector Machines, DT = Decision Trees, VC = Voting Classifier, MM = Multi-Matrix, SM =
SingleMatrix, Aug= Data augmentation, GrM = Graph Mixing, SMT= SMOTE.

9.3 Model Configuration

All the models use an Adam optimizer with a learning rate of 1e ~*
and a weight decay of 1e~3. The shceduler used is CosineAnneal-
ingWarmRestart with Ty = 10, Tyuie = 2 and etamin = le™ 5.
The models are trained for 1000 epochs using crossentropy loss
for multy class classification. In the following section the specific
model configurations are shown.

1. GCN: The model consists of two stacked GCNConv layers,
with hidden dimension of 128 and 64 respectively. Graph-
Norm and layer dropout of 0.5 is applied after each GCN
layer to normalize node embeddings. On top of that, edge
dropout of 0.2 and node dropout of 0.2 is applied to every
graph before training to add regularization. The output from
the final GCN layer is flattened, resulting in a feature vec-
tor of size 4,864, which is passed through a fully connected
layer with 128 units and batch normalization. A final lin-
ear layer maps the 128-dimensional representation to the 4
output classes. All activations use the ELU function.

GAT: The model consists of two stacked GATConv layers,
with hidden dimension of 32 and 8 respectively, with 4 heads
in each layer. GraphNorm and dropout of 0.5 is applied af-
ter each GAT layer to normalize node embeddings. On top
of that, edge dropout of 0.2 and node dropout of 0.2 is ap-
plied to every graph before training to add regularization.
The output from the final GAT layer is flattened, resulting
in a feature vector of size 4,864, which is passed through a
fully connected layer with 32 units and batch normalization.
A final linear layer maps the 32-dimensional representation
to the 4 output classes. All activations use the ELU function.

9.4 Results

As shown in table 4, both multi-modal GCN and GAT has been
trained with data augmentation and without it. Notice that only
precision, recall and F1 scores are provided because the accuracy
metric in a context of unbalanced dataset is a misleading metric
that does not present relevant information.

In table 4, for the baseline GAT model, best performance was
achieved for the RR-MS class, with an F1 score of 67.6%, fol-
lowed by the HV class with an F1 score of 58.1%. The model
performed poorly in identifying SP-MS with an F1 of 18.2% and
completely failed to classify any PP-MS samples with an F1 of
0%. After applying data augmentation, the GAT model improved
in distinguishing RR-MS achieving an F1 of 72.9% and slightly
improved HV performance with an F1 of 59.3%, but showed no
improvement in SP-MS or PP-MS classification, which remained
at 0%.

In table 4, the GCN model showed better general performance.
Without data augmentation, it achieved high performance for RR-
MS with an F1 of 79.5% and HV with F1 of 64.5%, with limited
success in identifying PP-MS with an F1 of 40.0%, and failed en-
tirely on SP-MS with an F1 of 0.00%. With data augmentation,
the GCN model further improved on both RR-MS with an F1 of
80.6% and HV with F1 of 66.7%. Notably, performance on PP-
MS improved significantly to an F1 score of 57.1%, although SP-
MS remained unclassified with F1 of 0%.

Results in table 4 highlight that data augmentation moderately
improves the classification performance, especially in the domi-
nant classes of HV and RR-MS. Also GCN models outperform
GAT models across all configurations. However, the challenge of
classitying SP-MS and PP-MS remains, likely due to class imbal-
ance and limited sample availability.

9.4.1 Individual Matrices

The following models are trained by each types of analysis indi-
vidually, not following a multi-matrix approach. This analysis is
performed in order to asses the difference in prediction by follow-
ing a multi-matrix approach against a single-matrix one.

As shown in 4, the GCN models trained on different brain scan
modalities exhibit varying classification performance across the
healthy volunteers (HV) and multiple sclerosis (MS) subtypes.
The GCN-DTI model performs best overall, particularly in iden-
tifying RR-MS subjects, achieving a precision of 71.0%, recall of
81.8%, and an F1 score of 76.1%, indicating reliable sensitivity
and specificity for this class.
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HV RR-MS SP-MS PP-MS

Model | Data | DA Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

GCN DTI DA 0.588 | 0.666 | 0.625 | 0.711 | 0.818 | 0.761 | 0.000 | 0.000 | 0.000 | 0.333 | 0.333 | 0.333
GCN fMRI | DA 0.500 | 0.533 | 0.516 | 0.724 | 0.636 | 0.677 | 0.400 | 0.286 | 0.333 | 0.000 | 0.000 | 0.000
GCN GM DA 0.289 | 0.733 | 0.415 | 0.579 | 0.333 | 0.423 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
GCN* | MM | DA 0.692 | 0.600 | 0.645 | 0.707 | 0.879 | 0.784 | 0.500 | 0.143 | 0.222 | 0.500 | 0.333 | 0.400
GCN MM | NDA | 0.625 | 0.666 | 0.645 | 0.725 | 0.878 | 0.794 | 0.000 | 0.000 | 0.000 | 0.500 | 0.333 | 0.400
GAT MM | DA 0.667 | 0.533 | 0.593 | 0.658 | 0.818 | 0.729 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
GAT MM | NDA | 0.562 | 0.600 | 0.581 | 0.631 | 0.727 | 0.676 | 0.250 | 0.143 | 0.182 | 0.000 | 0.000 | 0.000

TABLE 4: Table showing the results of the metrics computed for both GCN and GAT models evaluated with different datasets. The
GCN* present the best model in most of the metrics. Best results for each metric per class are highlighted in bold. Abbreviations: DA

= Data augmentation, NDA = No data augmentation applied, MM =

Performance on the HV class with GCN-DTI is moderate, with
an F1 score of 62.5%, driven by a precision of 58.82% and recall
of 66.6%. However, classification performance degrades signifi-
cantly for SP-MS and PP-MS, both showing 0.00% precision, re-
call, and F1 score, suggesting that the model fails to identify any
cases of these subtypes.

The GCN rs-fMRI model yields slightly more balanced, but
generally lower score results, with RR-MS classification achiev-
ing an F1 score of 67.7%, but with reduced recall 63.6% compared
to GCN trained with DTI. The model identifies some SP-MS cases
with F1 of 33.3% but fails entirely on PP-MS with a 0.00% across
all metrics.

GCN-GM demonstrates the weakest overall performance.
While it shows relatively high recall for the HV class with a
73.3%, its precision is poor with a 28.9%, resulting in an F1 score
of only 41.5%. The model also fails to identify any SP-MS or
PP-MS cases, with all metrics at 0.00%, and shows limited perfor-
mance on RR-MS with an F1 of 42.3%.

Non of the individual models presented in table 4 overcome the
best multi-modal approach, experimentally showing that joining
multiple representations of the brain is beneficial for classification,
rather than individually train for each brain scan type.

9.4.2 Binary classification

In the following section we analyze the binary results, obtained
by keeping the HV as an untouched class, but merging all the MS
types in a single class called MS. All the binary results are com-
puted with the structure and data augmentation of the best GCN
model in the last section, but changing the number of output neu-
rons, from four to two.

Model | Class Acc Prec Rec F1
GCN HV - 0.727 | 0.533 | 0.615
GCN MS - 0.851 | 0.930 | 0.889
GCN | Overall | 0.828 | 0.819 | 0.827 | 0.818

TABLE 5: ceN binary classification results between HV and MS patients

As shown in table 5, the GCN model achieved an overall ac-
curacy of 82.8%, with a balanced F1 score of 81.8%, indicating
strong general performance in distinguishing between HV and MS
patient groups. When analyzed by class, the model demonstrates a
clear performance asymmetry. The classification of pwMS yielded
high precision of 85.1%, recall of 93.0%, and F1 score of 88.9%,
suggesting that the model is highly effective at correctly identify-
ing MS cases with minimal false positives and false negatives. In
contrast, the performance on the HV class was notably lower, with
an F1 score of 61.5%, driven by modest precision of 72.7% and
particularly low recall of 53.3%. This indicates a tendency of the
model to misclassify HV subjects as MS, due to the imbalance of
subjects in the dataset.

multi-modal (combination of the 3 matrices).

10 INTERPRETABILITY

In order to better interpret the results we can get the feature rele-
vance for explaining the results of each fitted model following the
approach presented in [17]. All the models presented in this sec-
tion have been trained using the best GCN configuration in table
4.

10.1 Multi-Matrix

10.1.1 Multi-class classification

The attribution matrix corresponding to the multi-class classifi-
cation task in figure 5 show how node degree and node strength
exhibit consistently high attribution scores across a broad range of
brain regions. This pattern reflects the biological reality that MS
leads to progressive degradation of brain connections and lower
interaction intensity between affected regions. As the disease pro-
gresses, the extent of these disruptions varies across MS subtypes,
leading to measurable differences in nodal degree and strength.
These variations provide a discriminative signal that enables the
model to differentiate between disease stages and from healthy
controls. A result in line with other scientific studies [2][11].

Betweenness Centrality feature also displays consistently high
importance across nodes, suggesting that long-range information
transfer within the brain network is significantly altered in MS.
As demyelination disrupts critical communication pathways, the
brain may attempt to reroute information through alternative paths,
thereby changing centrality roles to different nodes. This reconfig-
uration is effectively captured by the GCN model and highlights
the global impact of MS on network topology.

In addition, brain density feature gain prominence in later
stages of the disease. This is consistent with clinical observations
of regional atrophy and tissue loss, particularly in gray matter,
which results in reduced nodal density in affected regions. The
model sensitivity to these changes show the utility of density-
based features in identifying more severe stages of MS, such as
SP-MS and PP-MS.

Together, these attribution patterns offer biologically plausible
interpretation for how MS pathology manifests in brain network
structure. The presented results go in line with state of the art in-
vestigation [13][11][2], reinforcing the explainablility and clinical
relevance of the proposed GCN-based approach.

10.1.2 Binary classification

The attribution matrix for binary classification shown in figure
5 reveal how some features in some regions of the brain have a
heightened importance, suggesting regionally localized network
alterations associated with MS. Betweenness Centrality and Local
Efficiency consistently show high attribution values across multi-
ple nodes. These metrics reflect global and local integration prop-
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Binary classification feature importance

cC

Features

BC

Clust

LE

PR

Vol

Nodes

0.7

0.6

05

0.4

03

0.2
100 0 20 40 60 80 100

Multiclass classification feature importance

Feature Importance

Nodes

Fig. 5: Figure showing the importance of each feature of the GCN models trained for binary classification and multi-class classification
using the multi-modal approach. In the figure the vertical axis represents the features associated to each node. On the horizontal axis
we find the enumeration of only the first 100 nodes of the graph for the sake of easier interpretability. Abbreviations: Deg = Degree,
Str = Strength, Tri = Triangles, CC = Closeness centrality, 5- BC = Betweenness centrality, Clust = Clustering coefficient, LE = Local

efficiency, PR = Pagerank, Vol = Graph Volumes

erties respectively, indicating that MS pathology may affect both
long-range communication pathways and local circuit efficiency.

The prominence of betweenness centrality in discriminative
features underscores the role of topological disconnection in MS.
As betweenness centrality reflects control over information flow,
its high importance implies disrupted hub function of certain
nodes for pwMS. This reflect how the degradation of brain con-
nections makes the brain find different paths than in a usual brain
for the information to flow, changing the betweenness centrality of
many nodes. These results go in line with state of the art investi-
gation [13][11].

Similar to multi-class classification, node strength and degree
also play a crucial role in detecting MS brains because the degra-
dation of brain connections due to MS reduce the degree and
strength of some nodes, in line with the results presented in re-
cent scientific research [2].

10.2 Single-Matrix

Figure 6 show 3 matrices, each one for a different model trained
with one type of data, DTI, rs-fMRI or GM. Each matrix quantifies
the relative importance of each graph-theoretical feature across
all 76 brain regions (nodes), providing insight into how structural
characteristics influence each different type of data on classifica-
tion.

10.2.1 DTI

The explainer for the GCN trained with DTI samples in table 6, re-
veals broad and high attribution for node degree and node strength,
consistent across a wide distribution of brain regions. These fea-
tures quantify direct connectivity and the cumulative strength of
edges, directly tied to white matter clusters integrity, which is of-
ten compromised in MS due to demyelination and axonal loss. The
prominence of betweenness centrality and local efficiency further
supports the notion of global network disruption in MS patients,
particularly in SP-MS and PP-MS, where compensatory re-routing
of information flow becomes necessary. Notably, triangle count
and clustering coefficient also exhibit focal importance, reflecting
disrupted local circuit integrity. Overall, DTI features emphasize
both global disintegration and regional structural loss, aligning
with white matter degradation in progressive MS subtypes [11].

10.2.2 rs-fMRI

In the attribution map for GCN model trained with rs-fMRI sam-
ples in table 6, node strength emerges as the most discriminative
feature, with high attribution scores across multiple regions. This
suggests that the model heavily relies on the strength of func-
tional connectivity between brain regions to differentiate among
MS types and HV. This result go in line with MS literature,
where in early stages like RR-MS, functional reorganization or
hyper-connectivity may temporarily compensate for structural loss
[11][9]. Related to node strength, clustering coefficient is also dis-
criminative, indicating that some brain clusters are disrupted due
to MS degradation. The distributed importance of betweenness
centrality and PageRank can be indicative of altered global com-
munication efficiency, suggesting reconfiguration of brain hubs.

10.2.3 Gray Matter

Figure 6 presents the feature attribution matrix obtained from the
GCN model trained exclusively on Gray Matter (GM) data.

Node Degree and Node Strength exhibit the highest and most
consistent attribution across nodes. These features capture local
connectivity and edge weight accumulation respectively, and their
dominance aligns with known MS-related structural degradation
[13]. MS is characterized by demyelination and cortical atro-
phy, particularly in later stages, which leads to a reduction in both
the number and intensity of inter-regional connections [11]. The
model leverages these alterations to effectively differentiate be-
tween healthy controls and various MS types. The heterogeneity
in the attribution distribution across nodes suggests region-specific
vulnerability, possibly reflecting specific atrophy patterns in GM.

Pagerank and node density also show moderate to high attri-
bution values, particularly in localized clusters of nodes. Pager-
ank, which quantifies a node’s influence in the network, becomes
increasingly important as MS progression alters the brain’s hier-
archical connectivity structure. Reduced PageRank in key hub re-
gions may signify a loss of nodal importance due to neurodegener-
ation. Meanwhile, the elevated importance of density-related fea-
tures points to global reductions in nodal compactness and tissue
volume, clear marks of GM atrophy in progressive MS subtypes.

In contrast, features related to high-order topology, such as tri-
angles and closeness centrality contribute minimally. This indi-
cates that the GM model captures degradation in nodal properties
rather than complex topological structures.
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11 CONCLUSIONS

This work presents a multilayer, machine learning and graph
neural network based approach for the classification of Multiple
Sclerosis (MS), integrating three different neuroimaging modal-
ities: Diffusion Tensor Imaging (DTI), Resting State Functional
Magnetic Resonance Imaging (rs-fMRI), and Gray Matter (GM)
volumes. The proposed multi-modal method demonstrates con-
sistent improvements over single brain type approaches across all
the performance metrics presented. This results comply with the
objective 3 of the project.

The key contribution of this study lies in the multi-modal ap-
proach, which allows the aggregation of complementary informa-
tion from distinct brain scans into a unified graph representation.
This fusion leads to a more robust modeling of brain connec-
tivity, ultimately improving the generalization capability of the
GNN models. The main idea behind the multi-modal approach
is to reduce the bias of the samples by incorporating more infor-
mation in each datapoint, a positive thing in the scenario in hand
where the given data samples are very limited. On top of that,
due to the intrinsic complexity of the brain, by combining differ-
ent data modalities in a unique representation allow the models
to capture more complex relationships between brain regions and
discover patterns to characterize MS.

The GNN multi-modal models outperform all single brain
type models, validating the hypothesis that joint analysis of multi-
modal brain data mitigates bias and overfitting, a critical advantage
given the relatively limited sample size. The robustness achieved
through this integration is particularly important in medical appli-
cations where high sensitivity and specificity are vital. The multi-
modal approach presented comply with objective 1 of combining
the tree different types of data for classification.

While data augmentation graph mixing technique show a
positive impact on performance, particularly in underrepresented
MS subtypes, the observed improvements are moderate, and in
some evaluations the gain in performance is not clear. These re-
sults suggest that while augmentation helps in predicting under
represented classes, it cannot fully compensate for the lack of di-
verse clinical samples, especially in rare MS phenotypes such as
SP-MS and PP-MS. This reinforces the need for future studies
to explore more effective augmentation techniques or to prioritize
data collection efforts in underrepresented clinical subgroups.

The GCN model consistently outperforms GAT architec-
tures, leading to the conclusion that message-passing mechanisms
based on convolutional operators are particularly well-suited for
integrating spatial and topological information in brain graphs. In
the case of GAT, the lack of data might have specially affected

the model performance. However, both models consistently fail
in correctly predicting under represented classes in the original
dataset. By the design, training and evaluation of these modes we
comply with objective 2

Furthermore, interpretability analysis using graph feature at-
tribution maps reveals that topological features such as between-
ness centrality and local efficiency are particularly influential in
the classification task, together with node strength and degree.
These metrics are specially relevant because they reflect how brain
regions lose local connectivity while compensating these lose with
relocation of these paths due to MS. These findings align with
clinical and scientific state of the art results [13][11] showing that
MS disproportionately affects brain network hubs and disrupts ef-
ficient communication pathways.

Despite the models presented in this work are trained for MS
classification, due to their capability of modeling complex graph
structures they have the potential to be applied for the classifica-
tion of other brain related diseases. This opens the window for
a broader study with scans from multiple diseases, giving insight
and further interpretation to them.

Finally, the proper documentation and analysis of the results
using a written report following the proposed methodology and
work plan makes us to comply with objective 4
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APPENDIX

A.1 SVM cross validation

In this appendix section a more extensive cross validation
of the SVMs is presented. We evaluated different kernel
types, pruning thresholds, and mixing levels to determine
the optimal configuration.

A.1.1 Per-Class Performance (RBF Kernel)

The detailed accuracy metrics for each class are provided in
Table 7.

Tables 8 and 9 show the precision and recall per class,
respectively.

A.1.2 Linear Kernel Results

Best results depicting the accuracy,precision and recall of
linear kernel SVMs are in tables 11 12 13. The main results
can be found in table 10.

A.1.3 Per-Class Performance (Linear Kernel)

The detailed accuracy metrics for each class are provided in
Table 11.

Tables 12 and 13 show the precision and recall per class,
respectively.

A.2 Decision Trees cross validation

In this appendix section a more extensive cross validation
for the Decision Trees models is presented. We evaluate
different data mixing levels and pruning thresholds.

A.2.1 Results Overview

The classification performance was measured using accu-
racy, precision, recall, and F1-score.

Figure 11 shows how accuracy varies with different
threshold and mixing level combinations.

The detailed accuracy metrics for each class are provided
in Table 15.

Tables 16 and 17 show the precision and recall per class,
respectively.
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TABLE 6: Main Results for SVM with RBF kernel

Threshold | Mixing Level | Mean Accuracy | Mean Precision | Mean Recall | Mean F1 Score

0.500000 0 0.5904 0.4388 0.5904 0.4700
0.500000 1 0.5904 0.4388 0.5904 0.4700
0.500000 2 0.5904 0.4388 0.5904 0.4700
0.500000 3 0.5904 0.4388 0.5904 0.4700
0.500000 4 0.5904 0.4388 0.5904 0.4700
0.700000 0 0.6022 0.4653 0.6022 0.4789
0.700000 1 0.6022 0.4653 0.6022 0.4789
0.700000 2 0.6022 0.4653 0.6022 0.4789
0.700000 3 0.6022 0.4653 0.6022 0.4789
0.700000 4 0.6022 0.4653 0.6022 0.4789
0.800000 0 0.5904 0.4310 0.5904 0.4585
0.800000 1 0.5904 0.4310 0.5904 0.4585
0.800000 2 0.5904 0.4310 0.5904 0.4585
0.800000 3 0.5904 0.4310 0.5904 0.4585
0.800000 4 0.5904 0.4310 0.5904 0.4585
0.900000 0 0.5662 0.3210 0.5662 0.4096
0.900000 1 0.5662 0.3210 0.5662 0.4096
0.900000 2 0.5662 0.3210 0.5662 0.4096
0.900000 3 0.5662 0.3210 0.5662 0.4096
0.900000 4 0.5662 0.3210 0.5662 0.4096

SVM with RBF kernel: Accuracy by Threshold and Mixing Level
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Fig. 7: Heatmap of Mean Accuracy for SVM with RBF kernel
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Best Model Performance by Class (SVM RBF)
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Fig. 8: Performance by Class for Best SVM Model with RBF kernel (Threshold: 0.7, Mixing Level: 0.0)

TABLE 7: Per-Class Accuracy for SVM with RBF kernel

Threshold | Mixing Level | No MS Accuracy | RRMS Accuracy | SPMS Accuracy | PPMS Accuracy |

0.500000 0 0.5882 0.6471 0.5294 0.6250
0.500000 1 0.5882 0.6471 0.5294 0.6250
0.500000 2 0.5882 0.6471 0.5294 0.6250
0.500000 3 0.5882 0.6471 0.5294 0.6250
0.500000 4 0.5882 0.6471 0.5294 0.6250
0.700000 0 0.6471 0.6471 0.5294 0.6250
0.700000 1 0.6471 0.6471 0.5294 0.6250
0.700000 2 0.6471 0.6471 0.5294 0.6250
0.700000 3 0.6471 0.6471 0.5294 0.6250
0.700000 4 0.6471 0.6471 0.5294 0.6250
0.800000 0 0.6471 0.5882 0.5294 0.6250
0.800000 1 0.6471 0.5882 0.5294 0.6250
0.800000 2 0.6471 0.5882 0.5294 0.6250
0.800000 3 0.6471 0.5882 0.5294 0.6250
0.800000 4 0.6471 0.5882 0.5294 0.6250
0.900000 0 0.5882 0.5882 0.5294 0.5625
0.900000 1 0.5882 0.5882 0.5294 0.5625
0.900000 2 0.5882 0.5882 0.5294 0.5625
0.900000 3 0.5882 0.5882 0.5294 0.5625
0.900000 4 0.5882 0.5882 0.5294 0.5625

15
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TABLE 8: Per-Class Precision for SVM with RBF kernel

Threshold | Mixing Level | No MS Precision | RRMS Precision | SPMS Precision | PPMS Precision

0.500000 0 0.4706 0.5392 0.2803 0.5875
0.500000 1 0.4706 0.5392 0.2803 0.5875
0.500000 2 0.4706 0.5392 0.2803 0.5875
0.500000 3 0.4706 0.5392 0.2803 0.5875
0.500000 4 0.4706 0.5392 0.2803 0.5875
0.700000 0 0.6029 0.5392 0.2803 0.5875
0.700000 1 0.6029 0.5392 0.2803 0.5875
0.700000 2 0.6029 0.5392 0.2803 0.5875
0.700000 3 0.6029 0.5392 0.2803 0.5875
0.700000 4 0.6029 0.5392 0.2803 0.5875
0.800000 0 0.6029 0.3676 0.2803 0.5875
0.800000 1 0.6029 0.3676 0.2803 0.5875
0.800000 2 0.6029 0.3676 0.2803 0.5875
0.800000 3 0.6029 0.3676 0.2803 0.5875
0.800000 4 0.6029 0.3676 0.2803 0.5875
0.900000 0 0.3460 0.3460 0.2803 0.3164
0.900000 1 0.3460 0.3460 0.2803 0.3164
0.900000 2 0.3460 0.3460 0.2803 0.3164
0.900000 3 0.3460 0.3460 0.2803 0.3164
0.900000 4 0.3460 0.3460 0.2803 0.3164

TABLE 9: Per-Class Recall for SVM with RBF kernel

Threshold | Mixing Level | No MS Recall | RRMS Recall | SPMS Recall | PPMS Recall |

0.500000 0 0.5882 0.6471 0.5294 0.6250
0.500000 1 0.5882 0.6471 0.5294 0.6250
0.500000 2 0.5882 0.6471 0.5294 0.6250
0.500000 3 0.5882 0.6471 0.5294 0.6250
0.500000 4 0.5882 0.6471 0.5294 0.6250
0.700000 0 0.6471 0.6471 0.5294 0.6250
0.700000 1 0.6471 0.6471 0.5294 0.6250
0.700000 2 0.6471 0.6471 0.5294 0.6250
0.700000 3 0.6471 0.6471 0.5294 0.6250
0.700000 4 0.6471 0.6471 0.5294 0.6250
0.800000 0 0.6471 0.5882 0.5294 0.6250
0.800000 1 0.6471 0.5882 0.5294 0.6250
0.800000 2 0.6471 0.5882 0.5294 0.6250
0.800000 3 0.6471 0.5882 0.5294 0.6250
0.800000 4 0.6471 0.5882 0.5294 0.6250
0.900000 0 0.5882 0.5882 0.5294 0.5625
0.900000 1 0.5882 0.5882 0.5294 0.5625
0.900000 2 0.5882 0.5882 0.5294 0.5625
0.900000 3 0.5882 0.5882 0.5294 0.5625
0.900000 4 0.5882 0.5882 0.5294 0.5625
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TABLE 10: Main Results for SVM with LINEAR kernel

Threshold | Mixing Level | Mean Accuracy | Mean Precision | Mean Recall | Mean F1 Score |

0.500000 0 0.7235 0.5981 0.7235 0.6509
0.500000 1 0.7235 0.5981 0.7235 0.6509
0.500000 2 0.7235 0.5981 0.7235 0.6509
0.500000 3 0.7235 0.5981 0.7235 0.6509
0.500000 4 0.7235 0.5981 0.7235 0.6509
0.700000 0 0.7235 0.5981 0.7235 0.6509
0.700000 1 0.7235 0.5981 0.7235 0.6509
0.700000 2 0.7235 0.5981 0.7235 0.6509
0.700000 3 0.7235 0.5981 0.7235 0.6509
0.700000 4 0.7235 0.5981 0.7235 0.6509
0.800000 0 0.7235 0.5981 0.7235 0.6509
0.800000 1 0.7235 0.5981 0.7235 0.6509
0.800000 2 0.7235 0.5981 0.7235 0.6509
0.800000 3 0.7235 0.5981 0.7235 0.6509
0.800000 4 0.7235 0.5981 0.7235 0.6509
0.900000 0 0.7235 0.5981 0.7235 0.6509
0.900000 1 0.7235 0.5981 0.7235 0.6509
0.900000 2 0.7235 0.5981 0.7235 0.6509
0.900000 3 0.7235 0.5981 0.7235 0.6509
0.900000 4 0.7235 0.5981 0.7235 0.6509

SVM with LINEAR kernel: Accuracy by Threshold and Mixing Level
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Fig. 9: Heatmap of Mean Accuracy for SVM with LINEAR kernel
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TABLE 11: Per-Class Accuracy for SVM with LINEAR kernel

Threshold | Mixing Level | No MS Accuracy | RRMS Accuracy | SPMS Accuracy | PPMS Accuracy

0.500000 0 0.6471 0.7059 0.7647 0.7500
0.500000 1 0.6471 0.7059 0.7647 0.7500
0.500000 2 0.6471 0.7059 0.7647 0.7500
0.500000 3 0.6471 0.7059 0.7647 0.7500
0.500000 4 0.6471 0.7059 0.7647 0.7500
0.700000 0 0.6471 0.7059 0.7647 0.7500
0.700000 1 0.6471 0.7059 0.7647 0.7500
0.700000 2 0.6471 0.7059 0.7647 0.7500
0.700000 3 0.6471 0.7059 0.7647 0.7500
0.700000 4 0.6471 0.7059 0.7647 0.7500
0.800000 0 0.6471 0.7059 0.7647 0.7500
0.800000 1 0.6471 0.7059 0.7647 0.7500
0.800000 2 0.6471 0.7059 0.7647 0.7500
0.800000 3 0.6471 0.7059 0.7647 0.7500
0.800000 4 0.6471 0.7059 0.7647 0.7500
0.900000 0 0.6471 0.7059 0.7647 0.7500
0.900000 1 0.6471 0.7059 0.7647 0.7500
0.900000 2 0.6471 0.7059 0.7647 0.7500
0.900000 3 0.6471 0.7059 0.7647 0.7500
0.900000 4 0.6471 0.7059 0.7647 0.7500

TABLE 12: Per-Class Precision for SVM with LINEAR kernel

Threshold | Mixing Level ‘ No MS Precision ‘ RRMS Precision ‘ SPMS Precision ‘ PPMS Precision

0.500000 0 0.5350 0.5995 0.6301 0.6167
0.500000 1 0.5350 0.5995 0.6301 0.6167
0.500000 2 0.5350 0.5995 0.6301 0.6167
0.500000 3 0.5350 0.5995 0.6301 0.6167
0.500000 4 0.5350 0.5995 0.6301 0.6167
0.700000 0 0.5350 0.5995 0.6301 0.6167
0.700000 1 0.5350 0.5995 0.6301 0.6167
0.700000 2 0.5350 0.5995 0.6301 0.6167
0.700000 3 0.5350 0.5995 0.6301 0.6167
0.700000 4 0.5350 0.5995 0.6301 0.6167
0.800000 0 0.5350 0.5995 0.6301 0.6167
0.800000 1 0.5350 0.5995 0.6301 0.6167
0.800000 2 0.5350 0.5995 0.6301 0.6167
0.800000 3 0.5350 0.5995 0.6301 0.6167
0.800000 4 0.5350 0.5995 0.6301 0.6167
0.900000 0 0.5350 0.5995 0.6301 0.6167
0.900000 1 0.5350 0.5995 0.6301 0.6167
0.900000 2 0.5350 0.5995 0.6301 0.6167
0.900000 3 0.5350 0.5995 0.6301 0.6167
0.900000 4 0.5350 0.5995 0.6301 0.6167
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TABLE 13: Per-Class Recall for SVM with LINEAR kernel

Threshold | Mixing Level | No MS Recall | RRMS Recall | SPMS Recall | PPMS Recall
0.500000 0 0.6471 0.7059 0.7647 0.7500
0.500000 1 0.6471 0.7059 0.7647 0.7500
0.500000 2 0.6471 0.7059 0.7647 0.7500
0.500000 3 0.6471 0.7059 0.7647 0.7500
0.500000 4 0.6471 0.7059 0.7647 0.7500
0.700000 0 0.6471 0.7059 0.7647 0.7500
0.700000 1 0.6471 0.7059 0.7647 0.7500
0.700000 2 0.6471 0.7059 0.7647 0.7500
0.700000 3 0.6471 0.7059 0.7647 0.7500
0.700000 4 0.6471 0.7059 0.7647 0.7500
0.800000 0 0.6471 0.7059 0.7647 0.7500
0.800000 1 0.6471 0.7059 0.7647 0.7500
0.800000 2 0.6471 0.7059 0.7647 0.7500
0.800000 3 0.6471 0.7059 0.7647 0.7500
0.800000 4 0.6471 0.7059 0.7647 0.7500
0.900000 0 0.6471 0.7059 0.7647 0.7500
0.900000 1 0.6471 0.7059 0.7647 0.7500
0.900000 2 0.6471 0.7059 0.7647 0.7500
0.900000 3 0.6471 0.7059 0.7647 0.7500
0.900000 4 0.6471 0.7059 0.7647 0.7500
TABLE 14: Main Results for Trees
Threshold | Mixing Level | Mean Accuracy | Mean Precision | Mean Recall | Mean F1 Score
0.500000 0 0.5426 0.5366 0.5426 0.5344
0.500000 1 0.5647 0.5982 0.5647 0.5688
0.500000 2 0.4949 0.5117 0.4949 0.4969
0.500000 3 0.5191 0.5133 0.5191 0.5099
0.500000 4 0.5426 0.5355 0.5426 0.5337
0.700000 0 0.4471 0.4329 0.4471 0.4362
0.700000 1 0.4699 0.4254 0.4699 0.4409
0.700000 2 0.4838 0.4822 0.4838 0.4744
0.700000 3 0.4588 0.4448 0.4588 0.4477
0.700000 4 0.4713 0.4662 0.4713 0.4620
0.800000 0 0.5162 0.5040 0.5162 0.5036
0.800000 1 0.4213 0.4682 0.4213 0.4299
0.800000 2 0.4581 0.4619 0.4581 0.4456
0.800000 3 0.4691 0.5116 0.4691 0.4714
0.800000 4 0.4809 0.4775 0.4809 0.4737
0.900000 0 0.5441 0.5280 0.5441 0.5286
0.900000 1 0.5441 0.5427 0.5441 0.5382
0.900000 2 0.5566 0.5251 0.5566 0.5347
0.900000 3 0.6051 0.5801 0.6051 0.5853
0.900000 4 0.5551 0.5444 0.5551 0.5450
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TABLE 15: Per-Class Accuracy for Trees with

Threshold | Mixing Level | No MS Accuracy | RRMS Accuracy | SPMS Accuracy | PPMS Accuracy

0.500000 0 0.5882 0.6471 0.3529 0.6875
0.500000 1 0.6471 0.6471 0.5294 0.6250
0.500000 2 0.5294 0.4706 0.4118 0.6250
0.500000 3 0.5882 0.6471 0.2353 0.6250
0.500000 4 0.6471 0.5882 0.3529 0.6250
0.700000 0 0.3529 0.4706 0.4118 0.4375
0.700000 1 0.4706 0.5294 0.4118 0.3750
0.700000 2 0.4118 0.4706 0.4118 0.5000
0.700000 3 04118 0.4706 0.4118 0.4375
0.700000 4 0.5294 0.4706 0.2941 0.5000
0.800000 0 0.4706 0.7059 0.5294 0.3750
0.800000 1 0.4706 04118 0.4118 0.3750
0.800000 2 0.5294 04118 0.4118 0.4375
0.800000 3 0.5294 04118 0.5294 0.3750
0.800000 4 0.5882 0.5294 0.4118 0.4375
0.900000 0 0.3529 0.5294 0.5882 0.6250
0.900000 1 0.3529 0.5294 0.5882 0.6250
0.900000 2 0.3529 0.5294 0.5882 0.6250
0.900000 3 0.4118 0.5294 0.6471 0.6875
0.900000 4 0.5294 0.4706 0.5882 0.5625

TABLE 16: Per-Class Precision for Tress with

Threshold | Mixing Level ‘ No MS Precision | RRMS Precision | SPMS Precision | PPMS Precision

0.500000 0 0.5098 0.6912 0.3863 0.6375
0.500000 1 0.5641 0.7108 0.6392 0.6250
0.500000 2 0.6216 0.5588 0.3908 0.5625
0.500000 3 0.5490 0.6043 0.2958 0.6172
0.500000 4 0.5980 0.6340 0.3908 0.5341
0.700000 0 0.3209 0.5392 0.4412 0.3381
0.700000 1 0.3620 0.5556 0.3627 0.3646
0.700000 2 04118 0.5574 0.4496 0.4735
0.700000 3 0.3431 0.5147 0.4779 0.3693
0.700000 4 0.4626 0.5147 0.3249 0.5286
0.800000 0 0.4332 0.7353 0.4652 0.3527
0.800000 1 0.4588 0.5686 0.4367 0.4048
0.800000 2 0.5059 0.4804 0.3627 0.4241
0.800000 3 0.4902 0.6373 0.4811 0.4152
0.800000 4 0.5098 0.6471 0.3627 0.3958
0.900000 0 0.4538 0.5294 0.5000 0.5758
0.900000 1 0.4538 0.5784 0.5000 0.6000
0.900000 2 0.4303 0.5098 0.5000 0.6250
0.900000 3 0.4930 0.5098 0.6387 0.6500
0.900000 4 0.5882 0.4902 0.5000 0.5625
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TABLE 17: Per-Class Recall for trees with

| Threshold | Mixing Level | No MS Recall | RRMS Recall | SPMS Recall | PPMS Recall |

0.500000 0 0.5882 0.6471 0.3529 0.6875
0.500000 1 0.6471 0.6471 0.5294 0.6250
0.500000 2 0.5294 0.4706 0.4118 0.6250
0.500000 3 0.5882 0.6471 0.2353 0.6250
0.500000 4 0.6471 0.5882 0.3529 0.6250
0.700000 0 0.3529 0.4706 0.4118 0.4375
0.700000 1 0.4706 0.5294 04118 0.3750
0.700000 2 0.4118 0.4706 04118 0.5000
0.700000 3 0.4118 0.4706 0.4118 0.4375
0.700000 4 0.5294 0.4706 0.2941 0.5000
0.800000 0 0.4706 0.7059 0.5294 0.3750
0.800000 1 0.4706 04118 04118 0.3750
0.800000 2 0.5294 04118 0.4118 0.4375
0.800000 3 0.5294 0.4118 0.5294 0.3750
0.800000 4 0.5882 0.5294 0.4118 0.4375
0.900000 0 0.3529 0.5294 0.5882 0.6250
0.900000 1 0.3529 0.5294 0.5882 0.6250
0.900000 2 0.3529 0.5294 0.5882 0.6250
0.900000 3 0.4118 0.5294 0.6471 0.6875
0.900000 4 0.5294 0.4706 0.5882 0.5625

Best Model Performance by Class (SVM LINEAR)
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Fig. 10: Performance by Class for Best SVM Model with
LINEAR kernel (Threshold: 0.5, Mixing Level: 0.0).
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Trees: Accuracy by Threshold and Mixing Level
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Fig. 11: Heatmap of Mean Accuracy for Trees with

Best Model Performance by Class (Trees )
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Fig. 12: Performance by Class for Best tree Model (Threshold: 0.9, Mixing Level: 3.0)



