From gene to gummy: Engineering Pichia pastoris for highyield production of food-grade hydroxylated gelatin

Universitat Autonoma de Barcelona

UAB

Doctoral thesis proposal integrating genetic engineering and bioprocess optimization for enhanced recombinant gelatin production yield through precision fermentation

Júlia Esteso González Bachelor's degree in Biotechnology

BACKGROUND

Traditional animal-derived gelatin associated challenges¹:

- **Batch variability**
- Pathogen risks (ex. BSE)
- Ethical concerns (vegan, vegetarian, halal and kosher diets)
- **Environmental harm**

Despite these issues, the global gelatin market is expected to grow to **\$13 billion** by 2030

Pichia pastoris (Komagataella phaffii) offers an animal-free, sustainable, scalable and safe **SOLUTION** (GRAS & QPS) platform for recombinant gelatin production —

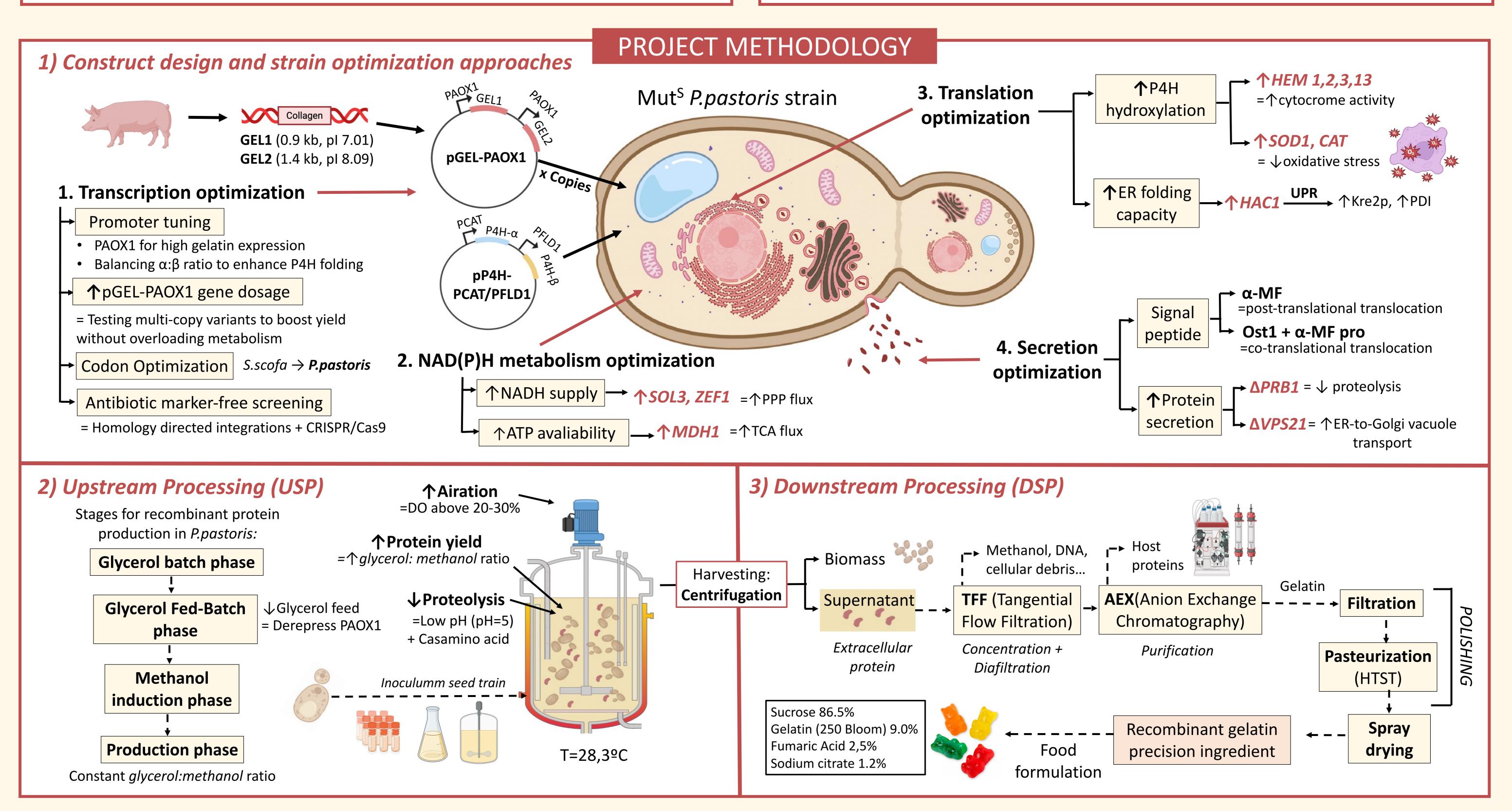
> Well stablished for type I and III collagen expression²

Gly-Pro-Hyp Prolyl 4-hydroxylase (P4H) co-expression Gelling and → Hydroxylated rheological However... properties **L**→ Non-Hydroxylated → Lacks gelling properties = not suitable for food applications

Functional hydroxylated gelatin is hard to express at high yields (reported levels up to $0.6 \text{ g/L})^3$ and industialscale gelatin production requires 3-14 g/L accumulation⁴

marker-free, methanol-free

= **70 Deep 24 well plate** screening LCA + = **30 Shake flask** cultivations Patent application Build pGEL-PAOX1 and = 25 (1L) fermentation runs pP4H-PCAT/PFLD1 **= 2 (50L) PPP** runs Final assesment Select top Scale up and validation performers Bioprocess optimization Quality validation Strain optimization approaches Test fermentation conditions 50L fermentations+ DSP Base strain and construct engineering DSP testing at (1L) scale 3RD YEAR 2ND YEAR 4TH YEAR 1ST YEAR


Main goal: To develop an optimized *P.pastoris* platform for scalable production of 10 g/L hydroxylated food-grade gelatin at **50 L scale**. GMO-free, DNA-free, antibiotic

Key objectives:

- To engineer high expression strains via target genetic blocks.
- To optimize the fermentation process to maximize yield and scale-up.
- To design an EFSA-compliant bioprocess for confectionery applications.

HYPOTHESIS

This study hypothesizes that engineering *P.pastoris*, optimizing fermentation conditions and carfully designing DSP units will boost extracelular yield and functionality of recombinant hydroxylated gelatin.

EXPECTED RESULTS

- High gelatin extracellular expression levels (10 g/L) through scale up.
- Reduced metabolic burden.
- Enhanced secretion.

frontiers

in Microbiology D D

- Compliance with EFSA regulations on food-grade additives.
- = Baseline process for scaling up protein production to industrial levels.

Table 1. Expected gelatin propierties. **Gelatin properties Expected values Proline hydroxylation levels (%)** 40-60 **Circular dichroism results** Triple helical structure **Bloom strength** 200-250 7-9 **Isoelectric point** Viscosity (mP) 15-755 Moisture (%) 8-13 Density (kg/L) 1,3-1,4

Universitat Autònoma

de Barcelona

ESTIMATED ECONOMIC DIMENSION The overall estimated cost associated to this PhD project is **207.790 €** Personnel remunerations Materials and consumables 1%_ DIRECT Scientific-technical external services 40% COSTS Attendance at conferences and seminars 14% Publication and dissemination costs Overheads corresponing to 27% **INDIRECT COSTS** 21% PhD project

DISSEMINATION PLAN Technology Industrial Attendance at Academic transfer networking conferences dissemination **Proofs of Concept Microbial Cell Factories UAB**

GELTOR

MAIN REFERENCES

- 1. Song, X., Chu, T., Shi, W., & He, J. (2024). Expression, characterization, and application of human-like recombinant gelatin. Bioresources and Bioprocessing, 11(1), 69.
- 2. de Moura Campos, S., dos Santos Costa, G., Karp, S. G., Thomaz-Soccol, V., & Soccol, C. R. (2025). Innovations and challenges in collagen and gelatin production through precision fermentation. World Journal of Microbiology and Biotechnology, 41(2), 63.
- 3. Myllyharju, J., Nokelainen, M., Vuorela, A., & Kivirikko, K. I. (2000). Expression of recombinant human type I-III collagens in the yeast Pichia pastoris. Biochemical Society Transactions, 28(4), 353-357.
- 4. Báez, J., Olsen, D., & Polarek, J. W. (2005). Recombinant microbial systems for the production of human collagen and gelatin. Applied microbiology and biotechnology, 69, 245-252.