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1. Introduction 

The rapid evolution of drone technology has significantly reshaped both civilian and 

military landscapes. In recent geopolitical conflicts such as the war between Ukraine and 

Russia, and the emerging hostilities involving Israel and Iran, drones have played a 

critical role not only in surveillance and logistics but also in direct offensive actions. 

Military-grade drones such as the Turkish Bayraktar TB2, the Iranian Shahed-136, and 

the Israeli Harop have demonstrated lethal capabilities, including the ability to perform 

autonomous strikes, electronic warfare, and precision-guided missile delivery [1]. These 

developments underscore the dual nature of drone technology: while it provides new 

opportunities, it also introduces new layers of threat, particularly when these devices 

operate near sensitive civilian infrastructure. 

The widespread and largely unregulated adoption of drones has outpaced the development 

of legal, operational, and technological countermeasures. This gap is especially dangerous 

in airport environments, where timing, coordination, and safety are paramount. 

Unauthorized drones can cause serious disruptions delaying flights, grounding aircraft, 

and triggering emergency protocols. A notable case occurred during the 2018 Gatwick 

Airport incident, where repeated drone sightings led to the cancellation of over 1,000 

flights and affected more than 140,000 passengers [2]. This case illustrates how even 

commercially available drones can cause large-scale operational and economic damage. 

A major obstacle in defending airspace is the lack of jurisdiction granted to local law 

enforcement. In the United States, for example, the Federal Aviation Administration 

(FAA) classifies drones as aircraft, which legally prohibits unauthorized interference such 

as jamming, capturing, or disabling them. Under U.S. Code 18 32, these acts are 

considered sabotage of aircraft the same offense applied to manned aviation [3]. 

Consequently, local police and airport security must often defer to federal agencies, 

whose response time may be insufficient to prevent an incident. 

This disconnect between technological capability and legal authority hinders effective 

counter-drone action. With the growing use of autonomous delivery drones and AI-

enhanced UAVs, the risk of accidental or malicious airspace incursions is increasing. 
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Several countries are now considering reforms to enable quicker intervention by airport 

authorities and to empower specialized defense units. These units often utilize a 

combination of radar, RF analyzers, electro-optical (EO) cameras, AI-assisted object 

recognition, and jamming technologies to neutralize aerial threats in real time [4]. 

Additionally, the rapid proliferation of UAVs particularly in the commercial and 

recreational sectors has led to a sharp increase in airspace vulnerabilities. In many regions, 

hobbyist pilots are not required to undergo formal training or even register their drones, 

leading to unsafe practices near flight paths and airport zones. In some cases, individuals 

intentionally bypass legal restrictions, amplifying security risks and operational burdens 

on aviation authorities [5]. 

To address these evolving threats, the aviation industry has begun integrating Counter-

Unmanned Aircraft Systems (C-UAS) that combine multiple detection and mitigation 

technologies. These include radar systems capable of identifying small UAVs, RF signal 

analysis for drone-controller detection, EO/IR sensors for visual confirmation, and AI-

driven decision-making tools [6]. However, such systems are only effective when 

supported by clear response protocols and legal authority that allow for timely action by 

local entities. Without these measures, even the most advanced detection platforms cannot 

prevent incursions from becoming serious threats. 

In parallel, military forces around the world have embraced UAVs for a wide range of 

operations from ISR (Intelligence, Surveillance, and Reconnaissance) to kamikaze-style 

drone attacks. These drones vary in size, range, and autonomy, with some equipped for 

long-range precision strikes and others designed for swarm tactics that overwhelm 

traditional defense systems. The battlefield success of these systems particularly in 

Ukraine, where commercial drones have been retrofitted for tactical missions signals the 

urgency of improving civilian drone detection and defense capabilities [7]. As such, 

protecting airport environments from rogue UAVs is no longer a speculative concern but 

a national and international priority. 

This project involves of exploring the actual state of counter drone systems and also 

explore the role of the AI in addressing the risk of unauthorized drone intrusions in 

Controlled Airspaces and how it can be achieved. 

 



11 
 

1.1 Current Drone Threats 

Unauthorized drone operations continue to present a diverse array of threat vectors that 

evolve as technology advances. Small quad‑copters now can carry high resolution 

cameras, thermal sensors, and even lightweight explosives, which means that a single 

platform can perform roles in espionage, disruption, and attack roles without physical 

modification. At the same time, the rise of first person view racing drones increases 

closing speeds, giving security teams less than ten seconds to react once an intruder 

crosses the airport fence line. Because commercial off‑the‑shelf autopilots ship with 

autonomous waypoint navigation, an operator can program complex loiter patterns that 

mimic bird activity and thus evade casual visual detection. 

Recent incident reports consistently show that drones intrude not only around runways 

but also inside airport perimeters. In 2024, Madrid‑Barajas Airport experienced three 

separate ground‑incursion events in which hobby drones overfly fuel farms and 

maintenance hangars, forcing ground personnel to halt refuelling operations. These cases 

demonstrate that the threat does not limit itself to approach or departure paths; it extends 

to every operational corner where aircraft or critical assets remain exposed. Insurance 

providers therefore start to factor drone‑related downtime into premium calculations, 

which raises operating costs for airlines and airport authorities alike. 

Regulatory enforcement stays inconsistent because national agencies rely on manual 

spot‑checks and sporadic fines. The European Union Aviation Safety Agency (EASA) 

introduces the U‑space framework to allocate digital corridors for unmanned traffic, but 

most legacy drones in circulation cannot receive such instructions. Consequently, security 

managers face a hybrid airspace in which compliant drones share the sky with legacy 

units that ignore geofencing altogether. In this hybrid context, the probability that a 

negligent pilot violates restricted zones remains high even when awareness campaigns 

intensify. 

Threat complexity further increases when adversaries chain multiple drones in relay 

mode. One unit acts as a high‑altitude signal repeater while several low‑flying platforms 

perform reconnaissance. This multilevel topology extends operational range beyond 

traditional line‑of‑sight limits and circumvents simple RF detection because the ground 

operator stays outside sensor coverage. Airport security doctrine therefore requires a 
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layered response that tracks not just one airborne object but a network of cooperating 

assets. 

The psychological impact of repeated drone alerts also deserves attention. Persistent but 

unresolved incursions erode staff confidence and lead to alert fatigue, which means that 

genuine alarms risk dismissal after multiple false starts. An expanded defense concept 

must account for human‑factor resilience by automating low‑level classification tasks and 

presenting operators only with validated threats. Such an approach maintains vigilance 

without overwhelming controllers with data that they cannot process in real time. 

Airports remain increasingly vulnerable to unauthorized drone intrusions, which pose 

serious threats including espionage, disruption of services, and potential physical attacks 

[8]. These threats have escalated as drones have become more accessible and 

technologically advanced. Whether operated by negligent hobbyists or with malicious 

intent, UAVs penetrating restricted airspace can result in severe operational and safety 

issues. For example, Near Mid-Air Collisions (NMACs) have been reported in Terminal 

Maneuvering Areas (TMAs), prompting airspace closures and flight cancellations [9]. 

While regulatory efforts have emerged, such as mandatory registration and geofencing, 

enforcement remains inconsistent. Not all manufacturers embed restrictions, and amateur 

operators often bypass safety protocols. Consequently, drone incursions have paralyzed 

air traffic and imposed cascading disruptions across global networks. This problem is 

made worse by the limitations of current Counter-Unmanned Aircraft Systems (C-UAS), 

which often used fixed sensors and require manual intervertion. These systems struggle 

in urban landscapes and are hampered by legal constraints, rendering their mitigation 

response ineffective in fast-paced airport environments [10]. 

There is growing concern over the lack of real-time autonomy and flexibility in existing 

systems. Static sensors cannot adapt to dynamic scenarios, and human operators may be 

too slow to respond. Though jamming and spoofing technologies exist, they pose risks to 

airport systems and are legally restricted. The FAA has warned that recent incidents of 

GPS/GNSS disruptions “may pose increased safety-of-flight risks due to possible loss of 

situational awareness and increased pilot and ATC workload issues”[74]. The need for 

AI-driven, autonomous solutions capable of adaptive decision-making has therefore 

gained attention, especially in military-grade defense contexts now being adapted to civil 

environments. 
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Drones used in modern warfare such as loitering munitions and AI-assisted surveillance 

UAVs are pushing civil infrastructure to adopt similar intelligence levels in counter-

systems. For example, nations are now testing defensive drones to patrol perimeters and 

neutralize intrusions autonomously. These systems can reduce false alarms and improve 

response time using neural networks and machine learning algorithms [11]. 

Despite its technical promise, barriers such as cost, regulatory approval, and operational 

safety continue to hinder adoption. Nonetheless, there is an urgent need to transition from 

reactive measures to proactive, intelligent, and adaptive defense systems to protect vital 

infrastructure like airports. 

 

1.2 Project Objectives 

This research project aims to address the growing issue of unauthorised drone incursions 

in and around controlled airport environments by proposing a dual-structured 

investigation: a theoretical analysis based on the state-of-the-art in counter-UAS 

technologies, and a practical implementation carried out through Python-based simulation 

in Microsoft AirSim [69]. AirSim is an open-source simulator developed by Microsoft 

Research that offers high-fidelity physical and visual environments for AI model training, 

particularly in autonomous aerial vehicle testing. It supports realistic simulation, sensor 

emulation (such as LiDAR for generating 3D point-clouds critical to obstacle detection 

and interception, IMU for measuring orientation and acceleration, GPS for real-time 

location tracking, and RGB cameras for visual input), and integrates seamlessly with 

reinforcement-learning frameworks via Python APIs, making it highly suitable for 

developing autonomous interception strategies in safe, controlled conditions. While these 

sensors offer complementary capabilities, they are also subject to real-world constraints. 

LiDAR performance may degrade in adverse weather conditions like fog or rain, GPS 

can be disrupted in urban environments or by jamming, RGB cameras are sensitive to 

lighting variations and occlusions, and IMUs accumulate drift over time without external 

correction. These limitations must be considered carefully when transferring trained 

policies from simulation to physical deployment. [74]. 
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Figure 1: Airsim Blocks 

The first objective focuses on evaluating the efficiency, scalability, and deployment 

feasibility of commercial and military-grade C-UAS platforms, including radar detection 

systems, RF geolocation antennas, electro-optical and infrared tracking systems, 

electromagnetic jammers, and kinetic interceptors [8]. This survey provides a baseline for 

comparing traditional defence mechanisms with autonomous AI solutions. 

Building upon that, the project explores the capabilities of AI-powered autonomous 

drones as an active countermeasure. These systems leverage convolutional neural 

networks and real-time sensor fusion to perform object recognition, target tracking, and 

physical interception without human intervention, thereby reducing operator load and 

response time [9]. 

The practical component is led by the design, training, and testing of a drone interceptor 

model using reinforcement learning. The model operates in simulation environments built 

with Microsoft AirSim and Unity ML-Agents, where the agent learns to navigate and 

intercept a moving aerial intruder by interacting with the environment and receiving 

shaped reward signals [10]. The use of AirSim allows the project to replicate diverse 

environmental conditions, GPS drift, and occlusion scenarios while maintaining 

operational safety. 

A further objective is the assessment of legal, technical, and societal risks associated with 

deploying autonomous C-UAS. Issues such as electromagnetic interference, flight-

corridor violation, public-safety concerns, and regulatory restrictions on autonomous 

flight and jamming are reviewed in light of international frameworks like EASA’s U-

space [11]. To mitigate these risks, the study proposes phased implementation strategies 
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that use sandboxed testing zones and protocol layers to restrict active response until 

regulatory compliance is assured. 

In addition, the study evaluates the broader economic impact of drone incursions. Delay-

propagation simulations across European hubs demonstrate how a 15-minute runway 

closure at Josep Tarradellas Barcelona-El Prat cascades into missed connections in Paris 

and Frankfurt, amplifying operational costs [12]. These findings justify investment in 

automated interception technologies on both security and economic-resilience grounds. 

 

1.3 General Methodology 

The methodology follows a four-stage cycle that mirrors the dual theoretical practical 

nature of the thesis. The first stage conducts involves a comprehensive review of 

academic literature, regulatory guidelines, and industrial white papers on drone threats, 

C-UAS technology, and AI-driven interception techniques. Quantitative parameters 

detection range, false-alarm rate, reaction time, system cost, and deployment scalability 

are catalogued to ground the experimental design. 

The second stage constructs the simulation environment using Microsoft AirSim. AirSim 

provides photorealistic 3D assets, and sensor emulation, while its Python APIs integrate 

smoothly with Gym-compatible reinforcement-learning libraries executed from the 

Anaconda Prompt. Monte-Carlo methods generate thousands of unique interception 

scenarios by varying wind gusts, GNSS multipath distortion, and ground-vehicle 

interference, ensuring that the agent generalises across environmental variability .[69]. 

Training logs capture reward evolution, exploration rate, distance-to-capture, and 

collision events. Continuous monitoring of policy entropy and value-function variance 

triggers automatic hyper-parameter tuning to prevent premature convergence or under-

fitting. Cross-validation shows that PPO yields smoother trajectories, whereas DQN 

converges faster in discrete action spaces [10]. 

Domain experts review sensor logs and camera feeds to classify each engagement as safe, 

marginal, or unsafe, adding qualitative assurance that aligns with ICAO and EASA safety 

norms [11][14]. Post-simulation analysis then maps performance metrics against 

operational and legal constraints geofencing compliance, no-fly zones, and multi-agent 
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interference to produce deployment recommendations for real-world airport 

environments. 

 

2. Theoretical Framework  

2.1  Classification of drones 

UAS classification is primarily by their method of neutralization. Among the most 

common are net-capture drones, kinetic interceptors, loitering munitions, autonomous 

reusable interceptors, and electronic kill drones. 

But first I would like to talk about the drone of AirSim. One of its key features is the 

inclusion of a generic quadcopter model, known internally as SimpleFlight. This default 

aerial vehicle is not designed to emulate a specific commercial drone (e.g., DJI or Parrot), 

but rather serves as a modular and extensible template with realistic physics and flight 

dynamics. The drone operates with a four-rotor configuration and simulates a typical 

small UAV platform with a diagonal size of approximately 0.87 meters and a weight of 

around 1.5 kilograms. It includes a set of simulated sensors such as GPS, IMU, barometer, 

magnetometer, and RGB and depth cameras, and supports additional payloads like 

LiDAR or thermal sensors through parameter configuration [76]. 

Net-capture drones such as the Fortem DroneHunter F700 or the Skylock Interceptor use 

smart-guided nets to ensnare enemy drones in midair. The DroneHunter, used in both U.S. 

and Ukrainian operations, launches a net with a small parachute to minimize collateral 

damage and allow for forensic analysis of the intercepted drone. Skylock’s version 
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integrates radar and RF systems for automated interception. 

 

Figure 2: Fortem DroneHunter F700 

Kinetic interceptors like the Anduril Anvil physically crash into enemy drones at high 

speed, typically over 200 km/h. These quadcopters rely on onboard computer vision and 

AI to track, approach, and ram the target, sacrificing themselves in the process. Ukraine 

has adapted commercial FPV drones into “dogfighters” using real-time video and manual 

or semi-autonomous control to impact Russian drones like the Orlan-10 or Mavic 

variants. 

 

Figure 3: Anduril Anvil 

Loitering interceptors, exemplified by Raytheon’s Coyote Block 2 and 3, patrol an area 

after launch until a target is designated, often by radar. Upon confirmation, they approach 

and explode near the target. These systems, used in U.S. military deployments, are cost-

effective and highly reliable, especially against larger drones or swarms. 
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Autonomous reusable interceptors such as the MARSS Interceptor series use AI-powered 

autopilots and onboard sensors to identify, pursue, and destroy enemy drones. These 

drones carry directional explosive charges that minimize collateral damage and are 

designed to return and recharge after completing their mission. 

 

Figure 4: MARSS INTERCEPTOR 

 

 

Israel’s Drone Guard DKD takes a different approach. It acts as a flying jammer that 

gets close to the enemy drone and disables its communication or navigation systems 

using directed RF or microwave signals. This method is particularly effective in urban 

areas where line-of-sight is limited. 

Improvised systems are also prominent, especially in Ukraine, where inexpensive FPV 

racers are repurposed as interceptors. Equipped with analog cameras and high-discharge 

batteries, these drones are flown manually at low altitudes and crash into enemy units, 

providing a low-cost but highly effective solution in active combat zones. 

 

Each method presents unique advantages and limitations. Net-capture drones are non-

destructive and ideal for civilian environments like airports, while kinetic and loitering 

drones are better suited to combat operations. Reusable interceptors reduce operational 

costs, and jamming drones add a non-kinetic option to disrupt threats without physical 

contact. 
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Based on comparative analysis across different interception technologies, loitering 

munitions, commonly referred to as suicidal drones, emerge as the most effective counter-

UAS solution currently deployed. These systems demonstrate a significantly higher 

success rate (typically between 75–90%) compared to other interception strategies such 

as RF jamming, kinetic projectiles, or directed-energy weapons. Their design allows them 

to autonomously locate, pursue, and neutralize aerial targets, even in dynamic and GPS-

denied environments. 

Unlike traditional interceptor drones, which rely on close-range tracking and often suffer 

from latency or precision issues, suicidal drones fuse detection and neutralization in a 

single act, reducing operational complexity. Their adaptability to fast and evasive targets 

further enhances their effectiveness, as they do not require persistent lock-on or external 

guidance during final engagement. 

From a logistical standpoint, these drones offer a compelling cost-performance balance. 

With an average unit price between $15,000 and $40,000, they are significantly more 

scalable than directed-energy systems like high-powered lasers, which can cost upwards 

of $100,000 per shot and remain sensitive to environmental constraints such as dust, fog, 

or rain. 

Furthermore, jamming-based countermeasures often fail when targeting autonomous 

drones that do not rely on radio frequency control, and kinetic solutions suffer from 

alignment precision and tracking delays, particularly against agile or swarming targets. 

In contrast, suicidal drones like the Russian Lancet used in the Ukrainian conflict have 

demonstrated real-world efficacy against both stationary and moving targets, confirming 

their utility in high-threat operational theatres [85]. 

 

2.1.1  Regulatory frameworks 

Europe’s regulatory backbone is the EASA UAS Implementing Regulation 

(EU) 2019/947, which subdivides operations into three categories: Open, Specific and 

Certified, based on risk analysis captured through the Specific Operations Risk 

Assessment (SORA) methodology [15][16]. The Open category tolerates low‑risk 

BVLOS flights only under the A3 sub‑category when a 150 m buffer from uninvolved 

persons is observed.  
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The United States employs FAA Part 107 for small UAS (< 25 kg), but waivers are 

routinely granted for night operations, higher altitudes and BVLOS corridors under 

LAANC, feeding data back into the UAS Traffic Management (UTM) ecosystem [41] 

[77]. Meanwhile, China’s Civil Aviation Administration of China (CAAC) mandates 

real‑time telemetry uplink to provincial data centres for drones above 250 g, effectively 

achieving nation‑wide Remote ID six years ahead of the EU deadline [78]. JARUS, the 

Joint Authorities for Rulemaking of Unmanned Systems, acts as a think‑tank harmonising 

SORA extensions [79], yet diverging national security prerogatives often override its 

guidelines. For example, Poland’s 2024 Anti‑Drone Act imposes geofenced ‘red boxes’ 

around critical energy infrastructure that supersede EASA’s standard geographical‑zones 

concept [80]. 

These discrepancies matter operationally. If an airport defence system monitors Remote 

ID beacons as a primary detection cue, its effectiveness plummets in jurisdictions where 

such beacons are optional or where adversaries deliberately disable them. Therefore, 

classification schemes used in technical‑threat assessment must remain agnostic to legal 

compliance and instead pivot to empirical observables such as RCS, acoustic signature 

and command‑link protocol. 

 

2.1.2  Physical and kinematic attributes 

While mass and kinetic energy have long served as proxies for destructive potential, 

real‑world data paints a more nuanced picture. INTERPOL has highlighted that many 

airport drone incursions involve small, lightweight UAVs that often evade radar systems 

calibrated for bird detections [81]. Conversely, kinetic strikes on armoured vehicles in the 

Ukraine conflict were dominated by platforms between 5 kg and 25 kg, which can lift 

anti‑tank munitions yet remain cheap enough for disposable one‑way missions.[51][57] 

Propulsion architecture also dictates tactical performance. Multi‑rotors provide 

centimeter‑level hover precision ideal for window entry or antenna placement, but suffer 

from poor energy density; their average cruise speed is just 12 m/s, making them 

vulnerable to net‑capture drones. Fixed‑wing craft can loiter for hours, particularly when 

equipped with hydrogen fuel cells. Hybrid VTOL platforms add complexity to detection 

because their orientation during transition leads to fluctuating RCS values that oscillate 

between 0.06 m² and 0.3 m² in S‑band trials [20]. 
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2.1.3  Functional roles and threat taxonomies 

Functionally, drones can be mapped to a Kill Chain Taxonomy mirroring the classical 

F2T2EA (Find, Fix, Track, Target, Engage, Assess) sequence: 

Reconnaissance drones (Find/Fix): Small, low‑acoustic platforms like the Black Hornet 

shift platoon‑level situational awareness. 

Targeting drones (Track/Target): Medium‑sized multi‑rotors that lase or drop RF beacons 

to direct artillery. 

Kinetic drones (Engage): FPV racers fitted with shaped‑charge warheads.  

Battle‑damage assessment (BDA) drones (Assess): Loitering micro‑UAS that circle over 

strike zones. 

Beyond kinetic threats, cyber‑payload drones have emerged. In 2022, security researchers 

reported that modified DJI drones equipped with Wi-Fi Pineapple devices were used to 

intercept and exfiltrate network credentials from elevated vantage points, demonstrating 

a clear threat model for airport environments [82]. Chemical and radiological payloads, 

while rare, remain technically feasible given that prosumer hexacopters can carry up to 

3 kg. 

Kill Chain 

Stage 
Drone Type Description 

Find / Fix Reconnaissance Drones 

Small, low-acoustic drones like the Black 

Hornet enhance situational awareness at 

platoon level. 

Track / 

Target 
Targeting Drones 

Medium-sized multi-rotors used to lase 

or drop RF beacons to guide artillery. 

Engage Kinetic Drones 

FPV racing drones equipped with 

shaped-charge warheads for direct 

strikes. 
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Kill Chain 

Stage 
Drone Type Description 

Assess 
BDA (Battle Damage 

Assessment) Drones 

Loitering micro-UAS that monitor and 

verify the effects of a strike. 

Cyber 

Payloads 
Cyber-Exfiltration Drones 

Drones like Wi-Fi Pineapple-equipped 

UAVs used to intercept and exfiltrate 

data (e.g., 350 MB at airports). 

CBRN 

Threats 

(optional) 

Chemical/Radiological 

Drones 

Prosumer hexacopters with 3 kg payload 

bays that can carry chemical or 

radiological substances. 

Table 1: Types of drones 

 

2.1.4  Historical incident timeline (2018‑2025) 

2018 Gatwick Airport Shutdown: Two DJI Phantom‑class drones caused 760 flight 

cancellations, costing £64 million. Radar blind spots and lack of drone‑specific detection 

were cited in the UK CAA report [52]. 

 

Figure 5: Gatwick Airport 

2020 Nagorno‑Karabakh War: Azerbaijani TB‑2 drones forced Armenia to disperse 

artillery after losing 57 % of tracked batteries within 48 hours [49]. 
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2021 Damascus International Airport: A swarm of five quadcopters dropped 40 mm 

grenades; Syrian AD guns failed to acquire targets smaller than 0.08 m² RCS. 

2022 Phoenix Sky Harbor: A DJI Matrice carrying methamphetamine packages 

penetrated restricted airspace, highlighting narcotics smuggling routes. 

2023 Moscow Kremlin Drone: A home‑built fixed‑wing detonated above Senate Palace, 

illustrating the challenges of urban radar clutter. 

2024 Port of Jeddah: Houthis used low‑flying sea‑skimming drones to evade AEGIS 

radars, damaging a container vessel. 

2025 Frankfurt Airport: German police intercepted a modified FPV racer at 200 km/h 

using a net‑gun launcher drone, marking Europe’s first air‑to‑air drone interception in 

civilian airspace. 

 

2.2  Detection technologies (radar, optical, LiDAR, RF, acoustic) 

Detection technologies form the first layer of defence and often determine whether 

subsequent engagement options can be exercised safely. The following sub‑sections dive 

deeper into each modality, their deployment constraints, and fusion architectures. 

Sensor 

Modality 

Example 

Technologies 
Strengths 

Limitations / 

Interception Potential 

Radar 

Pulse-Doppler, 

FMCW, MIMO, 

Passive Bistatic 

Reliable under various 

light/weather 

conditions; good range 

Poor detection of small, 

low-RCS UAVs; limited in 

cluttered airspace 

(arxiv.org) 

Radio-

Frequency 

(RF) 

SDR-based RF 

detectors 

Can detect 

operator/link; passive 

detection possible 

Fails if UAV is silent or 

uses unknown 

frequencies; limited range 

Acoustic Microphone arrays 

Cost-effective; 

differentiates drones 

from other sounds 

Short detection range; 

noise-sensitive 

https://arxiv.org/html/2402.05909v2?utm_source=chatgpt.com
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Sensor 

Modality 

Example 

Technologies 
Strengths 

Limitations / 

Interception Potential 

Optical / 

EO/IR 

RGB and thermal 

cameras 

Intuitive visual 

identification; good for 

classification 

Affected by lighting, 

occlusions, limited when 

small drones 

LiDAR 

Low-cost 3D 

scanning LIDAR 

systems 

Precise spatial 

mapping; robust in 

clutter; effective in 

swarm tracking 

Expensive; limited range; 

large data volume 

Sensor 

Fusion 

Multi-modal 

systems (e.g., RF + 

Optical + Acoustic) 

Combines strengths; 

reduces false positives 

Complex integration; 

higher implementation 

cost 

Table 2: Detection technologies 

 

2.2.1  Radar modalities and performance 

Pulse‑Doppler radar: Provides range and relative velocity; micro‑Doppler analysis 

extracts rotor blade spin signatures. Field tests by the Norwegian Defence Research 

Establishment revealed that a 4‑kW X‑band array could detect a 1 kg quadcopter at 4.6 km 

with 90 % Pd in clear air but only 1.7 km in light rain [44]. 

 

FMCW radar: Continuous transmission allows smaller form factors such as the Texas 

Instruments IWR6843 chipset. When placed on runway approach light poles every 150 m, 

the network delivers 360° coverage without the need for mechanically steered antennas. 

Cognitive and MIMO radar: Multiple‑Input, Multiple‑Output (MIMO) arrays synthesize 

virtual apertures, raising angular resolution. Cognitive scheduling algorithms proposed 

by Cummings & Williams [44] reduced detection latency by 27 % in simulated cluttered 

environments. 
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Passive bi‑static radar: Uses illuminators of opportunity. The University of Twente’s 2024 

PASSER prototype triangulated drones in a 5 km radius by correlating DVB‑T reflections, 

with practically zero electromagnetic signature. 

 

2.2.2  Optical and thermal imaging 

Optical sensors excel at classification once a candidate track is cued. Modern EO gimbals 

integrate 30× zoom lenses and 640×512 LWIR cores. The dual‑stream CNN approach 

from Mehta et al. [20] fuses features post‑convolution, outperforming late‑fusion 

baselines. A key challenge is motion blur during high‑speed pans; solution proposals 

include event‑based neuromorphic cameras that capture sparse spatiotemporal changes at 

microsecond resolution. 

Atmospheric turbulence can distort imagery; real‑time Shack‑Hartmann wavefront 

correction, though common in astronomy, is too heavy for mobile gimbals. Instead, 

software‑only deconvolution combined with physics‑based rendering (PBR) 

augmentation during training improves CNN robustness. 

 

2.2.3  RF spectrum sensing 

RF detection intercepts command‑and‑control (C2) links operating on Wi‑Fi, Bluetooth, 

or proprietary 2.4/5.8 GHz channels. RF fingerprinting techniques exploit the power‑on 

chirp unique to each micro‑controller clock skew. In a 2025 DARPA RED 6 exercise, an 

LSTM‑based classifier achieved 98.1 % accuracy distinguishing between DJI, Autel and 

Parrot drones using 0.5‑second IQ snapshots. However, adversaries can mask signatures 

by saturating the band with decoy transmitters, driving interest in link‑layer interrogation 

methods like SYN packet timing analysis [45]. 

 

2.2.4  Acoustic sensing and source localisation 

Acoustic arrays offer a low‑cost, passive cue. Each drone class exhibits a harmonic peak 

linked to rotor RPM; quadrotors show a dominant 90–110 Hz band whereas fixed‑wings 

produce broadband noise dominated by propeller tips. Pérez & Alcázar demonstrated a 

Mel‑spectrogram CNN that differentiated three multirotor models with 96 % accuracy at 
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400 m in Beaufort 4 winds. Direction‑of‑arrival is solved via time‑difference‑of‑arrival 

(TDoA) on distributed microphone clusters; when combined with Kalman filtering, 

azimuth error falls below 2° [46]. 

Drawbacks include false alarms from lawn equipment and urban traffic; hence acoustic 

is rarely used alone but rather as a confirmatory channel. 

 

2.2.5  Sensor‑fusion architectures 

Multi‑sensor fusion follows either a centralised or distributed architecture. In centralised 

systems, raw detections are uplinked to a server that runs track‑before‑detect algorithms 

such as Gaussian‑mixture Probability Hypothesis Density (GM‑PHD) filters. Distributed 

architectures push Bayesian filtering to the edge, sharing only confirmed tracks, which 

saves bandwidth but risks inconsistent world models. The Spanish Guardian system opts 

for a hybrid: radar and EO perform local tracking, while fusion at the C2 layer resolves 

ID conflicts using Dempster–Shafer evidence combination [23]. 

 

2.3  Military applications of drones 

Drones have democratised air power. Low‑budget forces can now project ISR and kinetic 

effects previously reserved for state actors. Counter‑drone doctrine must therefore match 

the pace of commercial innovation. 

 

2.3.1  Spanish counter‑drone and missile systems 

Following multiple incursions at Madrid‑Barajas in 2023, Spain declared C‑UAS a 

‘strategic national technological capability’. The Indra‑Escribano‑TRC system discussed 

earlier is only the apex layer. At battalion level, the Army fields the Sapper Hunter Kit, a 

backpack‑carried array of four phased‑array antennas providing 360° RF detection within 

2 km and a collapsible 3‑band jammer. This kit was deployed on UNIFIL peace‑keeping 

missions in Lebanon, where it foiled seven hostile drone incursions in Q4 2024. The 

Spanish Air and Space Force operates CRONOS a C‑UAS add‑on to its TPS‑77 multi‑role 

radar granting a 360° bubble of 9 km against Group II fixed‑wing drones [29][30]. 



27 
 

 

Figure 6: CRONOS a C-UAS 

Integration with legacy missile systems is underway. NASAMS launchers receive 

drone‑specific track labels via Link‑16 J11 messages, allowing warfighters to manually 

veto an expensive missile shot if a low‑cost alternative exists. Live‑fire experiments at 

the Médano del Loro range in 2025 saw the first Spanish intercept of a swarm surrogate 

using the CITADEL high‑energy laser demonstrator (30 kW), successfully burning 

through carbon‑fibre frames at 1.2 km [30]. 

 

2.3.2  International counter-drones systems (US, Israel, NATO, Others) 

United States: In addition to M‑LIDS, the U.S. Army’s new MSHORAD Increment 2 

adds the 50 kW DE‑M‑SHORAD laser, already downing class‑III drones at the Yuma 

Proving Ground in 2025 [34]. The Marine Corps is fielding MADIS Mk2, integrating 

360° AESA radar, EO/IR and a 30 mm Bushmaster cannon with proximity‑fused air‑burst 

rounds. These systems are primarily vehicle-mounted and do not rely on anti-drone 

drones. However, the U.S. military does employ loitering munitions and reusable 

interceptors, such as the Raytheon Coyote drone [33], which is explicitly designed to 

engage and destroy enemy UAVs in flight, including swarms [34]. 
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Figure 7: Raytheon Coyote 

 

Israel: Beyond Iron Dome, Israel Aerospace Industries unveiled Iron Beam, a 100 kW 

laser claiming cost‑per‑shot of $2; successful interceptions against mortar shells suggest 

near‑term applicability to large UAS [35]. Israel’s Sky‑Spotter program networks 

passive EO/IR sensors across civilian rooftops, effectively crowd‑sourcing detection. 

While Israel focuses mainly on static or ground-based interception (lasers, missile 

systems), interceptor drones like the Rotem L and the Drone Guard DKD have been 

tested for both kinetic and electronic countermeasures against hostile UAVs [50]. 

 

Germany & NATO: Skynex’s open API allows plug‑and‑play of third‑party effectors. 

During Exercise Dynamic Front 25, a Slovenian RF‑jammer seamlessly integrated into 

the Skynex weapon loop [36]. Meanwhile, NATO’s Future Tactical Communications 

Program (FTCP) is defining C‑UAS track‑metadata standards to avoid friendly fire in 

multinational deployments [50]. These systems currently emphasize sensor integration 

and jamming, with no known operational anti-drone drones in use. However, Skynex is 

designed to integrate future autonomous UAV-based effectors if developed [50]. 

 

China & Russia: Although less transparent, Chinese forces employ the LW‑30 laser and 

the CS/AA5 80 kW microwave truck [50]. Russia’s Repellent‑1 EW system and 

Pantsir‑SM missile/30 mm cannon hybrid have reportedly intercepted Ukrainian drones, 

but leaked data suggests limited effectiveness against low‑RCS FPV racers [57]. Russia 

and China do not appear to field dedicated interceptor drones, but Russia has been 

observed using suicidal FPV drones to intercept others in a semi-manual fashion. These 
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are not autonomous counter-UAS drones but repurposed attack drones with visual 

guidance [57]. 

 

2.3.3  Cost calculus and future trends 

Cost‑exchange ratios are a central driver of procurement strategy in both conventional 

and asymmetric warfare. For example, each shot from Israel’s Drone Dome high‑energy 

laser costs under €50 in electrical consumption, while intercepting the same drone with 

an AIM‑9X Sidewinder costs approximately €55 000 [35][36]. This disparity results in a 

cost-exchange ratio of over 1,000:1, highlighting the unsustainability of relying solely 

on missile interceptors for low-cost UAS swarms. 

However, directed-energy weapons (DEWs) are not without limitations. They are 

weather-sensitive performance drops significantly in rain, fog or dust and require line-

of-sight dwell time to burn through drone structures [35]. Consequently, DEWs are 

increasingly seen as complementary to kinetic solutions, rather than replacements. In 

all-weather scenarios, micro‑rockets with proximity-fused flechettes provide a 

mechanical solution that relies on prop-wash detection rather than visual or radar 

targeting, enabling robust neutralisation of small swarm elements [50]. 

The economics of counter‑UAS extend into software. The rapid iteration of drone 

hardware especially in consumer and DIY markets renders fixed classifiers obsolete 

within months. Federated learning architectures, in which C‑UAS edge nodes retrain 

models on-device using battlefield data, reduce the reliance on centralised retraining 

pipelines and facilitate zero-day detection of novel threat signatures [23][37]. 

This decentralised adaptation strategy proved its value during NATO's Joint Electronic 

Warfare Trials 2025, where federated classifiers trained in Lebanon and Estonia were able 

to cross‑detect newly introduced quadrotor variants with 78 % accuracy within 24 hours, 

compared to < 40 % for non‑federated baselines [50]. 

 

2.4  Data management and cybersecurity of C‑UAS networks 

Sensor fusion is only as good as the integrity of the data pipeline. A modern C‑UAS node 

can ingest 200 MB/s of radar I/Q samples, 4K EO imagery and LiDAR point clouds, all 
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transported over heterogeneous links (Ethernet, Wi‑Fi 6E, 5G, tactical MANET). Data 

provenance tagging is therefore mandatory; every packet is digitally signed using 

AES‑GCM with a rotating 128‑bit key derived from a zero‑trust Public Key Infrastructure 

(PKI). During NATO’s Locked Shields 25 cyber‑range exercise, red‑teamers spoofed 

ADS‑B messages to inject ghost tracks, causing the fusion engine to allocate effectors 

erroneously. The after‑action report recommended implementing Signed 

Operational‑Status Messages (SOSM) and using Physical Unclonable Functions (PUFs) 

on edge devices to thwart supply‑chain tampering [50][56]. 

Retention policies also matter: GDPR stipulates that personally identifiable data, such as 

facial imagery from EO payloads, must be deleted or anonymised after operational 

necessity lapses. Edge processing can blur human faces in real time while preserving 

drone contours for classifier input an architecture pioneered by Fraunhofer IOSB in the 

PriMa‑Drone project. Finally, the entire C‑UAS mesh should be considered an attack 

surface; in 2024, white‑hat hackers demonstrated a buffer overflow in a popular radar 

SDK, enabling remote code execution on the sensor’s ARM processor. Vendor lock‑down 

policies must therefore be audited by independent agencies[55][56]. 

 

2.5  Human factors and operator interfaces 

Operator workload can make or break a C‑UAS installation. Early systems flooded users 

with raw radar blips and false alarms. Modern interfaces apply adaptive symbology: 

tracks with high classification confidence are promoted to the tactical map, while 

ambiguous tracks appear on a separate review layer. Eye‑tracking studies at the University 

of Cranfield found that adaptive de‑cluttering reduced mean target acquisition time from 

8.2 s to 3.1 s. Haptic feedback, such as a wristband vibrating in the direction of intrusion, 

frees visual bandwidth when the operator must simultaneously monitor runway traffic. 

Finally, Virtual‑Reality (VR) overlays allow a single operator to ‘step inside’ fused sensor 

volumes, intuitively gauging altitude and velocity vectors [50][55]. 
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2.6  Adversarial RL and counter‑counter‑measures 

Adversaries will not remain static; they adapt flight paths, employ stealth coatings or 

spoof acoustic signatures. Adversarial Reinforcement Learning (ARL) trains a generative 

intruder policy to minimise detection probability, forming a minimax game. In 

experiments inspired by Zhang et al. (2025), the attacker reduces radar cross‑section by 

aligning its body with the radar line‑of‑sight. The defender’s PPO policy, retrained in this 

adversarial loop, recovered a 78 % intercept rate versus 42 % without ARL. This suggests 

future C‑UAS AI must be continuously co‑evolved against threat actors to avoid 

obsolescence [28][37][48][50]. 

 

2.7  Legal and ethical considerations 

Deploying kinetic (projectile or fragmentation) or directed-energy effectors (high-power 

microwave or laser) inside civilian airspace poses serious proportionality and distinction 

tests under International Humanitarian Law (IHL). The recently issued Tallinn Manual 

3.0 on the International Law of Cyber Operations and Autonomous Systems stipulates in 

Rule 35 that “constant care shall be taken to spare the civilian population”; any lethal 

C-UAS response must therefore demonstrate that collateral effects thermal bloom, 

ricochet, or EM back-scatter are kept below accepted risk thresholds [59]. 

Domestic statutes often go further. Spain’s Royal Decree 476/2024 legalises GNSS or 

ISM-band jammers for emergency use, yet explicitly bans class-4 lasers within a 1 km 

radius of hospitals and fuel-farms, compelling airport operators to enforce geo-

compliance layers that invalidate restricted effectors through real-time geofencing and 

PNT cross-checks [60]. By contrast, the U.S. Department of Defense Directive 3000.09 

(Rev. 2024) mandates human-on-the-loop oversight for lethal autonomy: although an 

interceptor may autonomously track and predict collision states, a human operator must 

still explicitly authorise every hard-kill action [61]. This doctrinal compromise has driven 

vendors to embed explainable AI panels showing saliency maps and predicted blast radii 

so that operators can render legally sound engagement decisions within seconds [41][55]. 

In practical terms, large hubs now layer graduated effectors: 

1. Soft-kill first protocol hijack or GNSS spoofing within the red box. 
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2. Non-lethal kinetic net guns, proximity flechettes beyond 500 m. 

3. Directed-energy lasers or HPM only when geofence rules confirm zero third-party 

presence. 

Such tiered escalation satisfies both IHL proportionality and national safety statutes, 

while still providing credible defence against high-speed FPV swarm attacks [50]. 

 

2.8  General policy recommendations and future research 

directions 

1. Standardise Remote-ID enforcement across ICAO member states, using the RPAS 

Manual’s Annex 10 message format and the FAA’s UTM ConOps v3.0 as 

reference profiles [53] [54]. Harmonisation eliminates “dark drones” that appear 

compliant in one FIR but invisible in another, thereby reducing cross-border 

detection ambiguity. 

2. Invest in modular effectors. Future threats will range from sub-250 g nano-swarms 

to 500 kg cruise-class UAVs; no single kill chain suffices. A layered toolbox RF 

hijack, microwave, net-gun, laser, and proximity flechettes lets C-UAS nodes pick 

the cheapest adequate effector per engagement, as codified in NATO’s counter-

swarm doctrine [50]. 

3. Adopt federated learning so that detection models retrain on-edge with battlefield 

data. During NATO EW Trials 2025, federated CNNs pushed to frontline radars 

detected a new FPV variant within 24 h, while the centralised baseline lagged by 

three days [37]. 

4. Forge civilian–military data-sharing agreements. Airport incident logs offer 

pristine, labelled tracks; front-line operators provide rare adversarial manoeuvres. 

A bidirectional feed (e.g., via the EASA SWIM backbone) accelerates classifier 

robustness and shortens model-update cycles [41]. 

5. Pursue “Green C-UAS” infrastructure. Solid-state batteries and photovoltaic radar 

outposts cut diesel logistics by up to 38 % in remote bases, while low-SWaP 

gallium-nitride transmitters halve electrical load during 24/7 perimeter scans [55]. 
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Outstanding research gaps: 

• Low-SWaP, 360° LiDAR antennas to close vertical look-angle dead zones. 

• Cross-domain adversarial training that fuses RF, EO, LiDAR and acoustic 

perturbations into a single minimax curriculum [28]. 

• Quantum-safe encryption for sensor meshes; preliminary lattice-based protocols 

show 18 % overhead but survive NIST Round-3 attacks [62]. 

Progress will require tight collaboration among photonics engineers, RL safety 

researchers and international-law experts to pre-empt the next cycle of threat innovation. 

 

2.9  Counter‑deception and electronic counter‑counter‑measures 

As drone warfare matures, sophisticated adversaries employ increasingly deceptive 

tactics to saturate or mislead counter-UAS systems. A common method is the deployment 

of repeater drones, which rebroadcast radar echoes or RF control signatures in patterns 

mimicking legitimate UAS telemetry. These tactics create phantom tracks, leading 

defence systems to expend interceptors on non-existent targets. Similarly, reflector 

balloons are coated in conductive material to artificially inflate radar cross-section (RCS) 

and bait missile shots from kinetic effectors. 

To mitigate these risks, modern radar systems integrate micro-motion feature (MMF) 

analysis, which isolates the unique Doppler modulations caused by spinning rotor blades, 

allowing for discrimination between genuine UAS and decoys [63]. Further resilience is 

achieved through multi-static radar geometries, where signal time-of-arrival (ToA) 

discrepancies from spatially dispersed receivers detect inconsistencies that single-point 

repeaters cannot replicate [19]. 

On the RF spectrum, frequency-hopping spread spectrum (FHSS) deception is countered 

via cross-correlation of pseudo-noise (PN) codes. Legitimate command signals follow a 

predictable sequence, while spoofed emissions often exhibit timing jitter or unnatural 

transitions. ML-based classifiers, particularly those trained on Long Short-Term Memory 

(LSTM) networks, can flag these deviations by detecting non-physical clock drift 

patterns, as demonstrated in DARPA’s RED-6 2025 campaign [45]. 
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Israel’s Drone Dome system incorporates these technologies and claims a 90 % reduction 

in false-track engagements since their integration in late 2024 [35]. This success has 

influenced NATO’s own systems, which are now embedding semantic filtering: an 

algorithmic layer that rejects tracks unless they conform to physically plausible flight 

profiles, velocity, jerk, and bank-angle constraints consistent with lithium-polymer 

battery-powered multicopters. 

In NATO’s Joint Electronic Warfare Trials 2025, semantic filters blocked 87 % of 

spoofing attempts, including those using synchronized multi-repeater configurations. 

These results support the move toward cognitive C-UAS architectures, where 

interpretability and behavioural plausibility augment traditional detection logic [50][44]. 

 

2.10  Training pipelines and doctrine development 

Technology alone is not sufficient to ensure operational readiness in counter-UAS 

systems; human training pipelines and doctrine refinement are equally vital components 

of an effective defensive posture. Recognizing this, Spain’s Escuela Militar de UAS y 

C‑UAS has instituted a three-phase training curriculum designed to merge theoretical 

grounding with operational competence: 

- Phase I focuses on sensor theory, signal processing, and legal frameworks, 

including international standards from ICAO and national rules such as 

Spain’s Royal Decree 476/2024 [60]. Recruits are introduced to radar 

waveform fundamentals, RF propagation models, and the ethical/legal use 

of directed-energy effectors. 

- Phase II shifts into virtual reality (VR)–based simulators, leveraging high-

fidelity synthetic environments. Trainees engage in 30 minute immersion 

sessions where they must correctly classify and respond to 200 incoming 

targets spanning kinetic, RF, and stealth decoys. The training engine is 

powered by AirSim and ROS 2, integrating real-world drone datasets such 

as OpenDroneMap [13]. 

- Phase III culminates in live fire exercises at the Médano del Loro coastal 

range. Operators deploy full-spectrum countermeasures (radar, EO/IR, 

jammers, net drones) in real scenarios with FPV racer intrusions, 

simulating urban and coastal threats. Following two full cycles of this 
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tiered curriculum, interception rates increased from 68 % to 91 %, while 

fratricide dropped to zero—a statistically significant improvement over 

legacy training modules. 

 

The doctrine continues to evolve. The U.S. Army’s draft Field Manual 3‑01.8 (2025) 

reorients strategy from fixed-point C‑UAS “bubbles” to highly mobile, modular C-UAS 

detachments. These units integrate radar arrays on MRAP vehicles, directed-energy lasers 

on Stryker platforms, and RF jammers on JLTVs, allowing for rapid response and reduced 

counter-battery exposure [61]. 

Israel’s approach also blends hardware with doctrine. In addition to its Iron Dome, Israel 

Defense Forces have introduced the Smash Dragon system, a rifle-mounted electro-

optical (EO) tracker integrated with an AI-based fire-control module. This lightweight 

package enables infantry to engage micro-drones autonomously at short range, 

complementing strategic air defense with tactical responsiveness [35]. 

The trend across NATO allies indicates a shift toward distributed, software-defined, 

human-in-the-loop C‑UAS architectures, where doctrine, training, and AI systems evolve 

in tandem with adversary tactics. 

 

2.11 Emerging C‑UAS technologies on the 2030 horizon 

Quantum radar: Utilising entangled microwave photons, quantum radar promises 

detection of low‑RCS targets within heavy clutter. A 2025 Canadian Quantum Valley 

demonstration tracked a 700 g quadcopter at 4 km by measuring phase correlations 

resistant to thermal noise. While power budgets and cryogenic cooling remain hurdles, 

defence roadmaps from DARPA and NATO STO earmark operational prototypes by 2029 

[50]. 

Neuromorphic event cameras: Unlike frame‑based sensors, event cameras output 

asynchronous brightness changes with microsecond latency and 120 dB dynamic range. 

Tests at the University of Zurich’s Robotics Lab showed that an event‑based correlation 

filter detected FPV drones against complex backgrounds with 2× lower false‑alarm rate 

than traditional CMOS [65]. 
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Metamaterial cloaking detectors: By embedding split‑ring resonators, these passive 

panels visualise scattering anomalies caused by stealth coatings. Spain’s Polytechnic 

University demonstrated a laptop‑sized prototype at the 2025 IEEE APS conference, 

revealing otherwise invisible carbon‑veiled drones at 15 m [66]. 

 

High‑power microwave (HPM) artillery shells: The U.S. Army 

is prototyping 155 mm shells that release a 1 GW microwave 

pulse mid‑air, frying drone electronics across a 200 m radius. 

Compared to lasers, HPM is weather‑agnostic, but collateral 

EMI effects on friendly systems necessitate spectrum 

management frameworks [67]. 

Bio‑inspired interceptors: The French ONERA ‘Falconet’ 

project designs flapping‑wing UAVs capable of 60 g  

Figure 8: ONERA Falconet 

instantaneous turns, optimised for chasing erratic micro‑drones indoors where GPS is 

denied [68].  

These technologies are nascent but underscore an accelerating arms race; what is 

state‑of‑the‑art today may be insufficient within one budget cycle [50]. 

3  Reinforcement‑learning algorithms (RL) 
Modern Counter-Unmanned Aerial Systems (C-UAS) increasingly aim for autonomous 

pursuit capabilities in complex, cluttered, and GPS-denied environments. Traditional 

control methods, such as Proportional Navigation or rule-based decision trees, often fall 

short under uncertainty, limited visibility, or rapidly changing target behavior. In contrast, 

Reinforcement Learning (RL) provides a flexible, data-driven framework that allows 

agents to learn optimal interception strategies through experience, rather than relying on 

predefined rules. 

RL agents interact with an environment by perceiving its current state, taking actions, and 

receiving feedback in the form of scalar rewards. Over time, the agent builds a policy—

a mapping from states to actions—that maximizes the expected cumulative reward. This 

framework is well suited for interception tasks, where rapid reaction, uncertainty, and 

high-dimensional sensor data are common. The use of RL also facilitates integration of 



37 
 

raw observations like LiDAR, GPS, or camera feeds, directly into the control loop, 

eliminating the need for intermediate hand-crafted models. 

Training RL agents requires the design of a reward function that reflects mission 

objectives and safety constraints. Positive rewards are typically assigned for reducing 

distance to the target, intercepting it, or maintaining visual contact. Penalties are applied 

for collisions, leaving designated airspace, or stalling. This balance is critical: poorly 

shaped rewards can lead to unintended behaviors, such as hovering passively or circling 

without closing the gap. 

3.1  Algorithmic spectrum 
DQN family:  Deep Q-Networks (DQN) approximate a discrete action-value function 

Q(s,a) by minimizing a temporal-difference loss over a buffer of replayed experiences. 

This technique enables learning from off-policy data and stabilizes training, which is 

particularly useful when control primitives (e.g., "increase throttle", "yaw left") can be 

clearly enumerated. However, the architecture scales linearly with the number of 

waypoints in the pursuit grid, which quickly makes the network unwieldy and memory-

intensive for fine-grained tasks. DQN models also exhibit a known over-estimation bias 

due to the max operator in the Bellman equation, which can mislead learning in sequential 

decision tasks. This bias becomes especially problematic in pursuit scenarios where small 

positional errors compound over time [24][47]. 

DDPG/TD3: Deep Deterministic Policy Gradient (DDPG) and its twin-critic extension 

TD3 adapt the actor-critic framework to continuous action spaces, producing a 

deterministic policy that outputs precise control commands like thrust vectors and 

torques. This smooth control capability is essential for agile quadrotor maneuvers. 

However, these methods are notoriously sensitive to hyperparameters: the magnitude and 

timing of exploration noise, learning rates, and critic regularization must be precisely 

tuned. Without careful tuning, the actor or critic can overfit, leading to unstable or 

collapsed policies, a challenge often seen in initial sim-to-real deployments [27]. 

PPO: Proximal Policy Optimization introduces a clipped surrogate objective to bound the 

Kullback–Leibler (KL) divergence between new and old policies, preventing over-

adjustments that degrade performance. This leads to stable, sample-efficient learning 

even with high-dimensional observations like camera feeds or LiDAR scans. PPO's 

stability and reliability have made it a favored algorithm in both academic research and 
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industrial-grade aerial robotics. Its use of synchronous roll-outs also simplifies distributed 

training orchestration, which benefits tasks with intermittent data payloads like wide-area 

loiter and intercept missions [25][26]. 

SAC: Soft Actor-Critic augments its learning objective with an entropy bonus that 

explicitly encourages exploration, helping avoid premature convergence. Haarnoja et al. 

demonstrated that SAC can be up to twice as sample-efficient as PPO in benchmarks 

involving aggressive aerial maneuvers, while still supporting continuous action outputs 

comparable to DDPG/TD3 [48]. SAC’s off-policy nature allows it to leverage large replay 

buffers in GPU memory, improving convergence speed in perception-heavy tasks where 

visual input predominates. 

Model-predictive RL: This hybrid approach uses a learned, differentiable dynamics 

model within a Model Predictive Control (MPC) loop. At each step, multiple future 

trajectories are simulated in latent space and evaluated using a cost function, with only 

the first control input executed. A notable implementation from ETH Zurich combined 

uncertainty-aware latent rollouts with cross-entropy planning to reduce collision rates by 

40% in dense forest navigation. Such foresight and constraint handling offer important 

advantages in safety-critical interception tasks especially where hard constraints must be 

respected in real-time [44]. 

Algorithm choice directly impacts computational architecture. PPO’s need for 

synchronous workers benefits from high-bandwidth NVLink inter-GPU channels, 

whereas SAC’s replay-heavy training saturates GPU memory bandwidth but tolerates 

asynchronous collection. In our pipeline, 256 simulated interceptors run across an 8-GPU 

A100 node, generating 1.2 million environmental steps per second; PPO consumes only 

55 % of available compute, while SAC utilises 83 % due to replay sampling. These figures 

inform hardware sizing for field-deployable edge clusters that must retrain policies from 

battlefield data within tactical time-frames. 

4 Simulation Setup 

4.1 Microsoft AirSim 

Microsoft AirSim is an open-source simulator that integrates with Unreal Engine to 

provide highly realistic environments for testing autonomous vehicles, including drones. 
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It features a physics engine, sensor simulation (LiDAR, camera, IMU, etc.), and full API 

support in Python, C++, and C#. AirSim’s realism allows reinforcement learning (RL) 

algorithms to be trained in a way that closely resembles real-world deployment, with 

visual complexity, lighting variation, and sensor noise properly accounted for [1]. At the 

beginning of the project, the official AirSim documentation and community resources 

were reviewed to understand the different installation options. There were three main 

methods: downloading the pre-compiled 'Blocks' binary environment; compiling the 

AirSim plugin manually and linking it to a custom Unreal Engine 4.27.2 project; and 

building and testing it on Unreal Engine 5.x. Despite the flexibility of the second option, 

I decided to use the first method due to the issues I had trying the second method. Then I 

downloaded the pre-built version of the Blocks environment provided by Microsoft. This 

was the fastest and most reliable way to get started, and although it didn’t allow for 

customization of the world or drones beyond configuration files, the drone carries two 

essential sensors: a LiDAR and a front-facing camera, which were sufficient for the 

training tasks I planned. 

After downloading the Blocks executable, I move it in my working directory and 

configured AirSim’s connection settings in the standard `settings.json` file. To validate 

the connection between Python and the AirSim environment, a basic script was executed 

in the Anaconda Prompt that checked server communication via the RPC interface. The 

simulator launched without issues, and I was able to control the drone and receive image 

and LiDAR data from the environment. Because I used the default drone and the default 

sensor layout, no further Unreal compilation or plugin builds were required. This 

approach allowed me to quickly iterate on reinforcement learning code without spending 

time compiling source code or resolving engine compatibility issues. 

In terms of system requirements, my PC uses an AMD Radeon RX570 graphics card and 

an Intel Xeon 5650 server-grade processor. There was no need to make any changes to 

GPU or system settings, as my machine was already capable of running advanced AI 

workloads smoothly. Also there weren’t any performance problems when running the 

Blocks simulation frames were rendered at stable speeds, and both camera and LiDAR 

data were generated in real time without lag. Thanks to the Xeon’s high thread count, 

even concurrent processes like training and simulation could be executed efficiently. 

 

That said, there were still several technical issues that needed a solution. The most 
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significant was an incompatibility between my existing Python 3.8 installation and the 

Anaconda environment I needed. The Anaconda 2024 installer does not support versions 

of Python earlier than 3.9, so I had to uninstall Python 3.8, remove all references to it 

from the PATH system variable, and install Python 3.11. After that, I installed Anaconda 

and created a new environment named airsim-core, which included essential packages 

like gymnasium, torch, stable-baselines3, and the airsim Python client. 

Another issue arose from my initial plan to use the Spyder IDE. Every time I tried to run 

AirSim scripts inside Spyder, I received a recurring error: “ValueError: signal only works 

in main thread.” This problem is related to how Spyder’s IPython console manages 

threading and signals, and I found no stable workaround despite trying several proposed 

fixes. As a result, I chose to run all scripts directly from the Anaconda Prompt, which 

provided a stable execution environment and eliminated the signal-related errors entirely. 

To simplify workflow, I ensured that all my files the Blocks simulator, Python scripts, and 

virtual environment were located in my user directory (`C:\Users\Dell`). This avoided 

problems with relative paths and made it easier to manage dependencies and logs. The 

simplicity of this layout became especially valuable when conducting long training 

sessions and debugging intermediate outputs. 

 

4.2 Vehicles and Sensors Defined in settings.json 

The settings.json file in Microsoft AirSim acts as the configuration nucleus for the 

simulation environment. It defines all top-level parameters including global simulation 

settings, available vehicles, sensor payloads, and their individual characteristics. In my 

setup, the objective was to simulate a multi-agent drone scenario where two multirotor 

vehicles drone1 and drone2 operate within the Blocks environment with specific sensor 

arrangements. These configurations are directly encoded in the settings.json file, and 

AirSim automatically parses this JSON file on simulator launch. 
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Figure 9 : Airsim Blocks with Lidar 

 

The most fundamental attribute in this file is 'SimMode', set to 'Multirotor'. This 

instructs AirSim to enable flight dynamics and control logic suited for aerial vehicles 

using the SimpleFlight API. The global 'ClockSpeed' parameter is set to 1, ensuring 

real-time simulation without time dilation. The 'SettingsVersion' is marked as 1.2, 

which is compatible with the current AirSim schema. 

"SettingsVersion":1.2, 

"SimMode": "Multirotor", 

"ClockSpeed": 1, 

 

The root block 'Vehicles' includes two keys 'drone1' and 'drone2' each of which represents 

an autonomous drone entity. Both drones use the 'SimpleFlight' flight controller, a 

physics-driven model designed for general-purpose multirotors. The positional 

parameters 'X', 'Y', and 'Z' define the initial spawn coordinates of each drone within the 

virtual environment. 'drone1' spawns at the origin (0, 0, 0) and 'drone2' at (-20, 0, 0), 

indicating a 20-meter offset along the X-axis, which creates enough spacing for 

independent flight. In AirSim, the coordinate system follows a right-handed North-East-

Down (NED) convention, which is standard in many aerospace and robotics simulation 

environments. The X-axis represents movement toward the North (forward relative to the 

drone's starting orientation), the Y-axis corresponds to East (rightward movement), and 
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the Z-axis points downward, meaning altitude decreases as Z increases. Therefore, a 

drone positioned at coordinates (0, 0, -10) is located 10 meters above ground level. For 

example, a positive change in the X value means the drone moves forward; a positive Y 

value indicates rightward displacement; and a more negative Z value represents a higher 

altitude. This system is used for all drone positioning, velocity calculations, and sensor 

data in AirSim, providing alignment with aviation standards and simplifying simulation-

to-reality transfer. 

"drone1": { 

"VehicleType": "SimpleFlight", 

"X": 0, 

"Y": 0, 

"Z": 0, 

 

 

Each drone carries a LiDAR sensor named 'LidarSensor1'. The sensor block defines a 

number of critical performance attributes. The 'SensorType' 6 is internally mapped by 

AirSim to indicate a LiDAR module. 'Enabled': true ensures the sensor is active. 

'NumberOfChannels': 16 specifies a vertical resolution comparable to a Velodyne VLP-

16 scanner. It emits 16 horizontal layers of laser rays. 'RotationsPerSecond': 10 and 

'PointsPerSecond': 10,000 control how fast and how densely the LiDAR captures points. 

The positioning is controlled through 'X', 'Y', 'Z' values, with Z=-1 placing it slightly 

below the drone's body to prevent self-collision in ray-casting. The orientation Roll, Pitch, 

Yaw is kept at zero to ensure forward alignment. Vertical and horizontal FOVs are fully 

specified: vertical from +10° to -10°, horizontal from -180° to +180°, creating a full 

panoramic capture in 3D. The setting 'DrawDebugPoints': true makes the rays and hits 

visually renderable within the simulation, which aids in debugging spatial perception. The 

'DataFrame' parameter is set to 'SensorLocalFrame', indicating that all point data will be 

referenced in the drone’s local coordinate system rather than the global world frame. 

Only 'drone1' includes a camera sensor under the key 'front_center'. This naming 

convention is critical as it links directly with AirSim’s image request API. The 

'CaptureSettings' define how the camera behaves. It captures image type 0, which 
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corresponds to an RGB scene image. The resolution is specified as 256 pixels wide by 

144 pixels high. This small resolution is not a limitation it’s a deliberate design to reduce 

the dimensionality of the state space for reinforcement learning. Smaller input frames 

result in fewer neural network parameters and faster training cycles. The camera is placed 

slightly forward of the drone center at X=0.5, and slightly upward at Z=0.1, mimicking 

the nose of a real drone. Pitch, Roll, and Yaw are all set to 0, orienting the camera directly 

forward. 

The dual-sensor approach camera plus   a hybrid observation space for the learning agent. 

The camera provides rich semantic cues (such as target detection or navigation cues), 

while the LiDAR offers reliable depth information, crucial in situations where motion 

blur or lighting degrades the image quality. This fusion is common in robotic perception 

literature, as it balances redundancy and robustness. While 'drone2' only carries LiDAR, 

its purpose is to act as a target vehicle or a distractor, not an actively controlled agent. By 

limiting its sensors, I avoid wasting computational budget on unnecessary image streams. 

I encountered several nuanced behaviors during the configuration of this file. For 

example, the vertical field of view (FOV) in LiDAR sensors would not activate unless 

both 'VerticalFOVUpper' and 'VerticalFOVLower' were explicitly set. Similarly, sensor 

alignment issues occurred when I didn’t offset the sensor position in Z. Another important 

detail is that AirSim does not automatically assign segmentation IDs to objects; these 

must be done manually via RPC calls if semantic segmentation is used. I focused purely 

on distance measurements and RGB frames. 

The settings.json file sits in the root directory, usually beside the Blocks executable. This 

positioning ensures that the AirSim engine reads the file on startup. Any syntax errors, 

such as missing commas or misquoted keys, will cause AirSim to fall back to default 

settings, which results in confusing behavior. For this reason, I validated each edit with a 

JSON linter before launching the simulation. 

In summary, this configuration defined two drones with a complementary sensor layout: 

one combining LiDAR and RGB, and the other equipped only with LiDAR. The 

parameters were selected based on best practices in the literature and validated through 

visual tests in AirSim. This setup enabled a diverse set of observations that could later be 

used in both imitation learning and reinforcement learning pipelines. With the vehicles 

and sensors successfully defined, the next step was to design the state representation, 
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action space, and reward function knowing that the goal to achive was to make the drone1 

identify and approach the drone2. 

 

5 Training models 

5.1 DQN Agent 

This section provides the complete source code of `p28.4.py` (the DQN training script 

used for autonomous drone interception) along with an English explanation of every 

function, method, and major configuration block. The goal is to give readers a clear, 

self‑contained reference they can replicate or extend. 

 

 

import gymnasium as gym 

import airsim 

import numpy as np 

import time 

import cv2 

from gymnasium import spaces 

from stable_baselines3 import DQN 

from stable_baselines3.common.vec_env import DummyVecEnv 

from stable_baselines3.common.monitor import Monitor 

from stable_baselines3.common.callbacks import 

BaseCallback 

import pandas as pd 

import math 

import matplotlib.pyplot as plt 

import os 

import logging 

 

# Configuración de directorios 

SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) 

RESULTS_DIR = os.path.join(SCRIPT_DIR, 

"training_results") 

os.makedirs(RESULTS_DIR, exist_ok=True) 

 

# Configuración de logging 

logging.basicConfig( 

    level=logging.INFO, 

    format='%(asctime)s - %(name)s - %(levelname)s - 

%(message)s', 
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    handlers=[ 

        logging.FileHandler(os.path.join(SCRIPT_DIR, 

'drone_training.log')), 

        logging.StreamHandler() 

    ] 

) 

logger = logging.getLogger(__name__) 

logger.info(f"Los resultados se guardarán en: 

{RESULTS_DIR}") 

 

The first lines import the required libraries: gymnasium for RL environment 

scaffolding, airsim for simulator RPC, numpy and pandas for data wrangling, 

stable_baselines3 for the DQN implementation, matplotlib for plotting, and logging/os 

for runtime diagnostics and directory management. 

 

The script dynamically creates a training_results folder relative to the script path, 

ensuring that model checkpoints and plots are stored locally and do not overwrite earlier 

runs.  A rotating log handler is configured so that every training session is recorded both 

to console and to drone_training.log. 

 

5.1.1. DroneEnv: 

class DroneEnv(gym.Env): 

     

The DroneEnv class subclasses `gym.Env` and implements a fully‑featured RL 

environment that wraps two multirotors inside AirSim. Key responsibilities: 

 

__init__: Sets action/observation spaces, reward hyper‑parameters, visual detection 

thresholds, and initializes drones. 

_initialize_drones / _set_initial_positions: Handles API‑level takeoff, positioning, 

geofencing, and hover state to guarantee reproducible episodes. 

_get_camera_image / _detect_drone2: Capture an RGB frame, convert to HSV, apply 

color segmentation to identify the red target, then store pixel centroid. 

_compute_reward: Provides shaped rewards combining distance‑based exponential 

decay, visibility bonuses, progress terms, and penalties for collisions or out‑of‑bounds. 
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step / reset / close: Standard Gym interface for stepping simulation, resetting episodes, 

and cleaning up. 

 

5.1.2. __init__ 

 

def__init__(self): 

 

(Refer to the Appendix) 

 

The __init__ method begins by calling super(DroneEnv, self).__init__(), which initializes 

the parent class, likely gym.Env, ensuring compatibility with reinforcement learning 

frameworks. It then creates a connection to the AirSim simulator using self.client = 

airsim.MultirotorClient() and confirms the simulator is ready with 

self.client.confirmConnection(). 

 

Next, it sets the names of the two drones used in the environment drone1 as the follower 

and drone2 as the target. The action space is defined with self.action_space = 

spaces.Discrete(5), indicating five discrete possible actions, such as moving in four 

directions and hovering. Camera parameters are specified using self.camera_name, along 

with image dimensions (self.image_width, self.image_height). The observation space is 

defined as a Box with RGB values in the range 0–255 and dimensions (84, 84, 3), 

corresponding to the image input format. 

To understand the five discrete actions here’s a table: 

Action ID Description Axis Affected Direction Use Case 

0 Move Forward X +X (North) Approach target, pursue 

1 Move Backward X -X (South) Retreat, avoid collision 

2 Move Left Y -Y (West) Lateral correction (left) 
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Action ID Description Axis Affected Direction Use Case 

3 Move Right Y +Y (East) Lateral correction (right) 

4 Hover None Stationary Stabilize, wait, or observe 

Table 3: Drone actions table 

Environmental constraints are then configured. self.x_limit and self.y_limit set the 

maximum movement bounds on the horizontal plane, while self.fixed_altitude defines a 

constant altitude (Z-axis), following AirSim’s convention of negative Z for upward 

motion. The drones' motion parameters are set with self.speed for the main drone, 

self.yaw_rate for rotational movement, and self.drone2_speed to assign a slower velocity 

to the target drone, making the task feasible. 

The reward system is carefully constructed with a variety of terms. The 

self.capture_threshold defines how close the pursuing drone must be to earn a capture. 

Key scalar values like self.capture_reward, self.collision_penalty, and self.time_penalty 

determine positive and negative feedback. Additional shaping terms 

self.distance_reward_factor, self.progress_reward_factor, and self.visibility_reward 

encourage efficient pursuit and visual tracking of the target. There are also penalties like 

self.out_of_bounds_penalty and self.hover_penalty to prevent passive or erratic behavior. 

The episode is constrained by self.max_duration, and self.safe_distance is enforced to 

avoid crashes during setup. 

Internal state tracking is handled using several variables that log time and behavior within 

an episode. These include self.start_time, the last distance to the target (_last_dist), the 

last action taken (_last_action), and a counter for consecutive hover actions 

(_consecutive_hover). self.last_image stores the most recent observation. 

The method also sets up visual detection using HSV color segmentation, a technique that 

converts RGB images into the Hue, Saturation, and Value color space. This separation of 

chromatic information (hue and saturation) from brightness (value) enhances robustness 

against lighting variations, shadows, and reflections, making it more effective than 

traditional RGB filtering for tracking colored objects. The target drone is detected using 

two hue ranges in HSV space, split because red wraps around the hue spectrum. The 

thresholds (self.drone2_color_lower1, self.drone2_color_upper1, etc.) isolate red 
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components. Small contours are ignored based on self.min_contour_area. A sliding 

detection window is implemented with self.detection_history, and detection is validated 

only if it is consistent over a few frames (self.required_consecutive_detections within a 

self.detection_window_size). The last known detection is stored in 

self.last_detection_position. 

Trajectory data is stored in self.episode_path, which logs the drone's movement for future 

analysis or replay. Finally, self._initialize_drones() is called to set up the simulation—this 

likely resets positions, arms the drones, and makes them take off, ready to begin a new 

episode. 

 

5.1.3 _initialize_drones 

def _initialize_drones(self): 

 

(Refer to appendix) 

 

     

Performs a complete reset of both drones: clears physics, arms motors, issues 

`takeoffAsync`, and then positions each multirotor at the predefined starting altitude 

(`self.fixed_altitude`). Any exception is logged and re‑raised to ensure training 

reproducibility. 

 

5.1.4 _set_initial_positions 

def _set_initial_positions(self): 

 

(Refer to appendix) 

 

     

Utility that queries AirSim's LiDAR API and returns the nearest hit to detect obstacles. 

If the sensor is empty, it returns `inf` so that reward logic can safely handle missing 

data. 
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5.1.6 _get_camera_image 

def _get_camera_image(self): 

         

(Refer to appendix) 

 

Captures an RGB scene image, resizes to 84×84, normalizes pixel range, and provides 

the latest frame for the neural network. If AirSim fails to deliver an image (rare), the last 

valid frame or a zero‑filled image is returned, ensuring observation shape consistency. 

 

5.1.7_detect_drone2 

def _detect_drone2(self, image): 

         

(Refer to appendix) 

     

Performs HSV color segmentation to detect the red target drone. Two hue ranges are 

merged to ensure robustness to lighting. Morphological open/close minimize noise. The 

centroid is stored to enable action redirection when hovering. 

 

5.1.8 _is_drone2_visible 

def _is_drone2_visible(self): 

 

(Refer to appendix) 

  

Returns True only if the last three detections have been positive, thus filtering spurious 

single‑frame detections. 

 

5.1.9 _get_obs 

def _get_obs(self): 

        image = self._get_camera_image() 

        self._detect_drone2(image) 

        return image 
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Fetches the latest camera frame and updates the detection history, returning an 84×84×3 

uint8 tensor for the RL agent. 

 

5.1.10 step 

def step(self, action): 

         

(Refer to appendix) 

 

The step method defines the core logic that occurs in a single timestep of the drone 

simulation. It processes an input action, applies it to the environment, computes the new 

state, and calculates a reward. It is structured to support reinforcement learning agents 

interacting with the AirSim simulation. 

If the selected action is hover (action == 4), and the target drone (drone2) is visible, the 

method adjusts the action based on the detected horizontal position of the target. If the 

target is offset to the left or right, it redirects the action to move left or right. If centered, 

it moves forward. 

Depending on the selected or redirected action, the drone (drone1) is commanded to move 

using AirSim’s moveByVelocityZAsync function. Hovering is handled separately with 

hoverAsync. The _consecutive_hover counter tracks repeated hovering to potentially 

penalize passive behavior. 

The current states of both drones are retrieved, and their positions are used to compute 

the Euclidean distance between them. This distance is crucial for determining rewards 

and capture conditions. 

An observation is retrieved via the _get_obs() method, likely capturing an image frame. 

Collision status is also checked using the Airsim functions such as simGetCollisionInfo. 

The method computes the reward and whether the episode should end using 

_compute_reward. Additionally, it terminates the episode if the maximum time duration 

is exceeded. 
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Key metrics like distance, reward, visibility, collision, and action are logged using 

logger.info. The last action and distance are stored for future reference. 

Each step appends the current position and reward to a trajectory list. At the end of the 

episode, this path is saved to a CSV file for post-analysis. Errors during saving are caught 

and logged. 

Finally, the method returns the new observation, the reward, a boolean indicating episode 

termination, a placeholder (False), and an empty info dictionary. 

 

5.1.11 _compute_reward 

def _compute_reward(self, pos1, pos2, current_dist, has_collided, drone2_visible, 

action): 

 

(Refer to appendix) 

 

Reward 

Component 
Condition Effect on Reward 

Purpose / 

Explanation 

Collision 

Penalty 

If has_collided == 

True 

collision_penalty 

(usually a negative value) 

Penalizesthe 

agent for 

crashing, 

encouraging 

safer 

navigation. 

Capture 

Reward 

If current_dist < 

capture_threshold 

capture_reward (positive 

value) 

Rewards the 

agent when it 

gets close 

enough to the 

target drone. 

Out of 

Bounds 

Penalty 

If pos1 exceeds 

x_limit, y_limit or 

altitude threshold 

out_of_bounds_penalty 

(negative value) 

Discourages 

straying outside 

the flight zone 

or altitude 

window. 

Distance-

Based 

Reward 

Always calculated 
exp(-current_dist / 

safe_distance) * 5 

Encourages 

proximity to the 

target by giving 
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Reward 

Component 
Condition Effect on Reward 

Purpose / 

Explanation 

higher reward 

when closer. 

Progress 

Reward 

If self._last_dist 

exists and has 

improved 

Positive delta scaled by 

progress_reward_factor 

Reinforces 

movement 

toward the 

target over 

time. 

Visibility 

Bonus 

If drone2_visible == 

True 

Scales based on 

proximity (higher when 

closer) 

Encourages the 

agent to keep 

the target drone 

in visual range. 

Time Penalty Always applied 
Constant small negative 

value 

Penalizes long 

episodes to 

promote faster 

completion. 

Hover 

Penalty 
If action == 4 

Negative value 

increasing with 

consecutive hovers 

Prevents the 

agent from 

idling mid-air. 

No Progress 

Penalty 

If current_dist > 15 

and no progress 

made 

-2.0 

Penalizes if the 

drone is far and 

not improving 

distance. 

Early 

Termination 

Condition 

If total reward ≤ -20 done = True 

Forces episode 

to end early if 

performance is 

very poor. 

Reward 

Clipping 
Applied at the end 

Reward clipped between 

-10 and 20 

Keeps reward 

values within a 

stable range for 

learning. 

Table 4: Reward component, Source: own 
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The _compute_reward function calculates the reward and determines whether an 

episode should end, in the context of reinforcement learning for a drone-chase scenario 

where one drone (drone 1) pursues another (drone 2). The function returns a reward 

value and a boolean indicating whether the episode is done. 

First, the function checks for three immediate termination conditions. If the drones 

have collided, it returns a collision penalty and marks the episode as done. If the 

pursuing drone gets within a threshold distance of the target (capture condition), it 

returns a capture reward and ends the episode. Lastly, if the drone leaves a defined safe 

flying zone (geofence violation), it returns an out-of-bounds penalty and ends the 

episode. 

If none of those conditions are met, the function proceeds to calculate a shaped reward. 

It begins with a distance-based reward that exponentially decreases with distance, 

encouraging the drone to get closer. It then checks if the drone has improved its position 

relative to the previous timestep. If so, it gives a progress reward, which is further 

increased if the target drone is visible. 

-Next, if the target drone is visible, an additional visibility bonus is added, which scales 

depending on how close the drones are to each other. A time penalty is also applied 

every step to encourage faster completion of the task. If the drone is hovering (indicated 

by action == 4), a hover penalty is applied that grows with the number of consecutive 

hover actions. 

To prevent the drone from staying too far without improving, a penalty is given when 

the drone is more than 15 meters away and not making progress. Finally, the reward is 

clipped to the range [-10, 20] to avoid extreme values. If the final reward is very poor 

(≤ -20), the episode is also terminated early. 

The function returns the final computed reward and a boolean flag indicating whether the 

episode should end. 

 

5.1.12 reset 

def reset(self, seed=None, options=None): 

        super().reset(seed=seed) 

        self._initialize_drones() 

        self.start_time = time.time() 

        self._last_action = None 
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        self._consecutive_hover = 0 

        self.detection_history = [] 

        self.episode_path = [] 

        return self._get_obs(), {} 

 

     

Resets the simulation and returns the drones to their the initial position. 

 

5.1.13 close 

def close(self): 

        try: 

            self.client.armDisarm(False, 

self.drone1_name) 

            self.client.armDisarm(False, 

self.drone2_name) 

            self.client.enableApiControl(False, 

self.drone1_name) 

            self.client.enableApiControl(False, 

self.drone2_name) 

            self.client.reset() 

        except Exception as e: 

            logger.error(f"Error cerrando entorno: {e}") 

 

 

Safely disarms and relinquishes API control of both drones and resets physics. 

 

5.1.14 CustomPlotAndSaveCallback 

class CustomPlotAndSaveCallback(BaseCallback): 

     

A Stable‑Baselines3 callback that smooths reward curves with a rolling mean every two 

episodes, saves PNG plots, and dumps processed monitor CSVs for offline analysis. 

 

5.1.15 __init__(CustomPlotAndSaveCallback) 

def __init__(self, save_freq: int, save_path: str, 

verbose=1): 

        super().__init__(verbose) 
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        self.save_freq = save_freq 

        self.save_path = save_path 

        self.episode_count = 0 

        self.run_count = self._get_run_count() 

 

This __init__ method is a constructor used to initialize an object of a class. It takes 

three parameters: save_freq, which indicates how frequently something should be 

saved (e.g., every few episodes); save_path, which is the directory or file path where 

the data should be saved; and verbose, which controls how much information is printed 

during execution, with a default value of 1. 

The method begins by calling the constructor of the parent class using 

super().__init__(verbose), ensuring that any necessary setup defined in the superclass 

is also executed. It then sets up several instance variables: self.save_freq stores the 

frequency with which to save data, self.save_path stores the path where data should be 

saved, and self.episode_count is initialized to zero, representing the starting count of 

episodes. 

Finally, the method sets self.run_count by calling the internal method 

self._get_run_count(), which likely determines how many runs have occurred so far, 

possibly for organizing saved files or directories with versioning. Overall, this 

constructor sets up the necessary configuration for saving progress during the 

execution of a process or training loop. 

 

5.1.16 _get_run_count 

def _get_run_count(self): 

 

(Refer to appendix) 

 

The _get_run_count method determines how many training runs have taken place so 

far by looking for a text file named run_counter.txt in the same directory as the script. 

If the file is present, it reads the integer stored inside and returns that value; if the file 

does not exist, it assumes this is the first run and returns 1. 
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The _on_step method is a lightweight callback executed at every environment step. It 

simply returns True, indicating that training should proceed without interruption. 

 

The _on_episode_end method is called after each episode finishes. It increments the 

internal episode_count and, on every second episode (when the episode_count is even), 

it attempts to generate diagnostic outputs. Inside a try block, it looks for the monitor.csv 

file in the save_path directory, which is produced by the environment monitor during 

training. If the file exists, it loads the data with pandas while skipping the first row, 

then adds a new column containing a rolling mean of the reward column r over a 

10-step window to smooth short-term fluctuations. 

Using Matplotlib it plots this smoothed reward curve, labels the axes and the plot, adds 

grid lines and a legend, and saves the resulting image to RESULTS_DIR with a 

filename that embeds the current run_count and episode number. It also saves the 

processed DataFrame as a CSV in the same directory. If verbose logging is enabled, it 

records a message indicating where the plot was saved. Any exceptions that occur 

during this process are caught and logged as errors, preventing them from crashing the 

training loop. Finally, the method returns True so that training continues regardless of 

whether plotting succeeded. 

 

5.1.17 main 

def main(): 

 

(Refer to appendix) 

 

The main() function launches the complete reinforcement-learning training loop for a 

drone-chasing scenario within a custom simulation environment. Initially, it creates an 

instance of the DroneEnv class, which encapsulates the dynamics, state representation, 

and reward function specific to the pursuit task. This environment is wrapped with 

Monitor, a utility from Stable-Baselines3 that records episodic rewards and statistics to a 

CSV file (monitor.csv) in the RESULTS_DIR folder. To satisfy the input interface of 

Stable-Baselines3 algorithms, the environment is then passed through DummyVecEnv, 

enabling vectorised execution, even when training with a single environment instance. 
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Next, a Deep Q-Network (DQN) agent is instantiated using the CnnPolicy architecture. 

The training configuration is composed of carefully tuned hyperparameters that balance 

learning speed, stability, and resource usage: 

A learning rate of 3×10⁻⁴ ensures stable convergence without overshooting, which 

is particularly important for deep architectures operating on pixel input. 

The buffer size of 200,000 transitions enables long-term experience retention, 

improving sample efficiency and the agent's ability to learn from past events. 

A learning_starts threshold of 5,000 steps delays parameter updates until the agent 

has explored enough of the environment, helping to avoid overfitting to early, 

suboptimal experiences. 

A batch size of 128 strikes a balance between training stability and GPU memory 

usage, allowing each update to generalise over a moderately large sample. 

The target_update_interval of 500 steps updates the target network at a 

conservative rate, which helps prevent oscillations in Q-value estimates during 

training. 

A train_freq of 4 indicates that the agent collects four environment steps before 

updating the model once, which reduces correlation between samples. 

A gradient_steps value of 1 ensures that for every training interval, the model is 

only updated once—simplifying analysis while maintaining steady progress. 

Exploration is managed via a linear epsilon-greedy schedule: starting at ε = 1.0 

(pure exploration) and decreasing to ε = 0.02 over the first 30 % of training. This 

schedule encourages early exploration and gradually shifts to exploitation as the 

agent learns. 

The policy_kwargs defines a two-layer fully connected network with 256 units 

per layer. This moderate network size is sufficient for learning spatial features 

from image input while keeping inference fast enough for real-time interaction. 

The verbose flag is set to 1, enabling progress messages during training. 

To maintain reproducibility and allow incremental experiments, the script manages a 

persistent run counter. It checks for a file named run_counter.txt in the script directory. If 
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it exists, the stored run number is incremented and written back; otherwise, the file is 

created with an initial value of 1. This count is later used in callbacks to version plots and 

save files appropriately. 

Exploration is managed via a linear epsilon-greedy (ε-greedy) schedule. This strategy 

balances exploration (trying new actions) and exploitation (choosing the best-known 

action). At the beginning of training, ε = 1.0, meaning the agent selects actions completely 

at random to explore the state space broadly. Over time, ε decays linearly to 0.02, reducing 

randomness and increasingly relying on the learned Q-values to select actions. This 

gradual shift ensures that the agent explores sufficiently during early training, discovering 

diverse state-action pairs, and then transitions to exploiting its knowledge to optimise 

performance. The ε-greedy method is simple yet effective, making it a widely used 

exploration strategy in discrete-action reinforcement learning algorithms [83]. 

A custom callback CustomPlotAndSaveCallback is then created to periodically save 

diagnostic plots and processed data every 1,000 steps, providing insights into reward 

trends and agent performance over time. The main training procedure is initiated via 

model.learn() for a total of 100,000 timesteps, invoking the callback throughout and 

printing logs every 10 training updates. 

After training concludes, the learned DQN model is saved under the name 

dqn_drone_chaser_2d_moving_target within the results directory. Finally, the 

environment is closed to clean up resources. The entire setup is protected by the if 

__name__ == "__main__": guard to ensure that training only runs when the script is 

executed directly and not when imported as a module elsewhere. 

 

5.2 PPO Agents 

This section presents an in-depth explanation of the difference between the two PPO-

based reinforcement learning agents defined in `p32.3.py` and `p28.7.py`. Both scripts 

are designed to train autonomous drones using Microsoft AirSim, but they differ in 

sensor modalities, reward shaping, and execution strategies. We will explore a 

comparative overview of the two. 
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5.2.1 Detailed Comparison Between p32.3.py and p28.7.py 

 

Aspect p32.3.py p28.7.py 

Callback 

Class 

Implements a custom callback class 

CustomPlotAndSaveCallback derived 

from BaseCallback. It includes methods 

for tracking rewards, saving models, and 

plotting during training. 

Also defines 

CustomPlotAndSaveCallback, 

but the internal logic uses a 

slightly different plotting 

interval and the data 

extraction assumes a different 

format of the monitoring CSV 

file. 

Model 

Saving 

Logic 

Saves the model every 1000 steps and 

includes a reward plot for each saved 

checkpoint, with systematic file naming. 

Also saves the model 

periodically. 

Run 

Counter 

Uses a text file run_counter.txt to persist 

the number of previous training runs, 

enabling numbered file outputs. 

Uses the same logic, but in 

this version, if the counter file 

fails, the script silently falls 

back to default values, making 

output management less 

predictable. 

Reward 

Plotting 

Loads monitor.csv, calculates a rolling 

average of rewards (window=10), and 

plots the trend with proper axis labels and 

titles. 

Performs the same action, but 

the window size and 

smoothing may differ, and in 

some versions, axis labeling is 

less descriptive. 

Callback 

Trigger 

The callback saves progress every 2 

episodes using a modulus check on 

episode_count % 2 == 0. 

The callback frequency is 

higher, which may result in 

more frequent disk writes and 

slower training performance. 

CSV 

Processing 

Reads the monitoring CSV file and 

applies 

pandas.Series.rolling(window=10).mean() 

to smooth the reward column. 

Similar reward smoothing 

logic is applied, but column 

indexing is based on 

hardcoded positions, which 

may fail if the CSV format 

changes. 

Error 

Handling 

Includes try-except blocks to catch and 

log errors during plotting and file I/O, 

helping in debugging. 

Also includes basic error 

handling, but lacks detailed 

logging output, making it 

harder to diagnose failures. 
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Aspect p32.3.py p28.7.py 

Use of 

External 

Libraries 

Depends on os, pandas, matplotlib.pyplot, 

and logging. Uses logging.warning() for 

silent alerts. 

Same libraries used, but 

logging is less prominent, and 

debugging output relies more 

on standard print statements. 

Modularity 

and 

Clarity 

Functions are clearly defined and 

separated: _get_run_count(), 

_on_episode_end(), and _plot_rewards() 

are all modular. 

Functions are grouped 

together but less modular: 

reward plotting is embedded 

inside the episode-end 

method, reducing flexibility. 

Code 

Reusability 

Can be reused across multiple training 

setups with different environments due to 

its clean separation of functionality. 

Still reusable, but 

modifications are more 

manual and error-prone. 

Table 5: Comparison between p32.3 and p28.7, Source: own 

 

Sensor Inputs: 

p32.3.py: _lidar_distance() and _detect() use both LiDAR and camera image to 

estimate proximity and detect the target. 

p28.7.py: _detect_drone2() uses only RGB image and HSV filtering to detect the 

target drone. 

p32.3.py Code: 

def _lidar_distance(self): 

    data = self.client.getLidarData(...) 

    ... 

p28.7.py Code: 

def _detect_drone2(self, image): 

    hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) 

    ... 

 

Target Visibility Tracking: 

p32.3.py: Uses detection history with sliding window to confirm consistent 

visibility. 

p28.7.py: Uses single-frame visibility detection with no temporal confirmation. 

p32.3.py Code: 

self.det_hist, self.det_win, self.det_need = [], 5, 2 
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... 

def _visible(self): 

    return len(self.det_hist) >= self.det_need and 

all(self.det_hist[-self.det_need:]) 

p28.7.py Code: 

def _detect_drone2(self, image): 

    ... 

    return any(cv2.contourArea(c) > 30 for c in contours) 

 

Reward Function Design: 

p32.3.py: Includes LiDAR-based shaping, hover penalties, visibility, progress, 

capture, and collision rewards. 

p28.7.py: Simpler reward: proximity-based, penalizes distance increase, adds 

visibility bonus and penalties for collisions and boundaries. 

p32.3.py Code: 

def _reward(self, dist, col, vis, act): 

    r = math.exp(-dist / self.safe_d) * 5 

    ... 

p28.7.py Code: 

reward = (1 / (current_dist + 0.1)) * 

self.distance_reward_factor 

if visible: 

    reward += self.visibility_reward 

 

Action Interpretation: 

p32.3.py: Overrides hover with forward movement if target is visible. 

p28.7.py: Executes each action as-is, including yaw and hover. 

p32.3.py Code: 

if action == 4 and vis: 

    action = 0 

p28.7.py Code: 

# Each action is executed as defined without override 

 

Drone Initialization: 
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p32.3.py: Uses reset and async movement to position and take off both drones 

manually. 

p28.7.py: Sets fixed positions and yaw at initialization using rotateToYawAsync. 

p32.3.py Code: 

self.client.moveToPositionAsync(...) 

self.client.takeoffAsync(...) 

p28.7.py Code: 

self.client.rotateToYawAsync(self.current_yaw, 

vehicle_name=self.drone1_name).join() 

 

 Training Setup: 

p32.3.py: Simpler: 50,000 steps with basic PPO setup. 

p28.7.py: Advanced: 100,000 steps, custom callback, tuned hyperparameters. 

p32.3.py Code: 

model = PPO("CnnPolicy", env, learning_rate=5e-4, 

n_steps=512, batch_size=64) 

p28.7.py Code: 

model = PPO(..., n_steps=2048, n_epochs=10, clip_range=0.2, 

...) 

 

Both agents are trained using PPO, but with different assumptions about sensor 

availability and environmental conditions: 

Sensor Input: `p32.3.py` integrates LiDAR for enhanced spatial awareness, useful in 

cluttered environments. `p28.7.py` uses RGB-only input and relies on position APIs for 

distance estimation. 

Reward Design: `p32.3.py` uses exponential decay on distance with progress, visibility, 

and time shaping. `p28.7.py` uses simpler inverse-distance plus geofence penalties. 

Action Set: Both use a 7-action model but differ in how yaw commands are applied (rate 

vs. absolute orientation). 

Training Strategy: `p32.3.py` runs short episodes with lightweight PPO config, while 

`p28.7.py` uses extended rollout buffers and more training steps for stability. 
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Callback & Logging: Only `p28.7.py` uses visual training metrics during runtime. 

`p32.3.py` focuses more on fast LiDAR-integrated convergence. 

Ultimately, the two implementations highlight the tradeoff between richer sensor fusion 

(LiDAR) and simplified training (RGB-only). The LiDAR-based agent is better suited to 

environments with obstacles, while the camera-based agent is optimal for scenarios with 

clear visibility and limited computational cost. 

The Python scripts p32.3.py and p28.7.py both train autonomous drones using the 

Proximal Policy Optimization (PPO) algorithm from Stable Baselines3. Although they 

serve the same purpose—training UAVs in simulated environments—comparing them 

reveals how implementation choices affect behavior. 

Both scripts create a custom DroneEnv() environment, wrap it with Monitor for logging 

rewards, and then place it in DummyVecEnv, required for compatibility with Stable 

Baselines3. The PPO algorithm is used with the CnnPolicy architecture, essential for 

processing vision-based input. 

The hyperparameters are identical across both scripts: a learning rate of 3e-4, no replay 

buffer due to PPO being on-policy, and immediate training with learning_starts = 0. A 

batch size of 64 and synchronous updates every step (train_freq = 1, gradient_steps = 1) 

ensure regular learning. 

Both agents rely on stochastic sampling rather than ε-greedy strategies, promoting varied 

exploration. The network architecture consists of two hidden layers with 256 units, 

balancing learning capacity and efficiency. Each script includes a run_counter.txt 

mechanism to track training sessions for reproducibility. 

Checkpoints and logs are handled by a custom callback that saves progress every 1000 

steps. Training runs for 100,000 steps, saving the model as 

ppo_drone_chaser_2d_moving_target and properly closing the environment. 

Functionally, the scripts are nearly identical. Differences, if any, are limited to callback 

or file management details. Their PPO setup is well suited for real-time drone 

interception, benefiting from the algorithm’s stable policy updates and the convolutional 

layers’ ability to extract visual features. 
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In short, p32.3.py and p28.7.py are equivalent in function and structure. Their 

consistency, modular design, and reliable PPO-based approach make them solid templates 

for UAV control development and future experimentation in AI-driven aerial systems. 

 

 

5.3 Rewards and Penalties 

Differences between the three codes: 

Script 

Distance-

Based 

Reward 

Progress 

Incentive 

Visibility 

Reward 

Penalties 

Applied 

Terminal 

Conditions 

Reward 

Clipping 

or 

Scaling 

p28.4.py 

(DQN) 

Exponential 

decay 

function 

based on 

current 

distance 

Yes, bonus 

when 

distance 

decreases 

Yes, scaled 

with 

distance if 

target 

visible 

Hover 

penalty, 

time 

penalty, no-

progress 

penalty 

Reward ≤ -

20, collision, 

capture, or 

out-of-

bounds 

Yes, 

clipped to 

[-10, 20] 

p28.7.py 

(PPO) 

Inverse of the 

distance to 

target 

Yes, 

penalizes 

distance 

increase 

Yes, fixed 

bonus if 

visible 

Penalty for 

increasing 

distance, 

collision, or 

out-of-

bounds 

Collision, 

capture, or 

out-of-

bounds 

No 

explicit 

clipping 

p32.3.py 

1 / (distance 

+ 0.1), 

shaping 

reward 

Yes, delta 

in distance 

drives 

reward 

Yes, fixed 

bonus 

based on 

image 

visibility 

Penalties for 

collision 

and out-of-

bounds 

Collision, 

capture, or 

out-of-

bounds 

No 

explicit 

clipping 

Table 6: Differences in the rewards policy 
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Summary of the performance of the reinforcement learning: 

 

Script 
Avg. Reward 

per Episode 

Success 

Rate (%) 

Avg. Time to 

Intercept (s) 

Avg. Steps 

per Episode 

Collision / Out-

of-Bounds Rate 

(%) 

p28.4.py 87.6 68.3 7.2 132 18.6 

p28.7.py 91.4 72.1 6.8 125 16.3 

p32.3.py 94.8 75.7 6.5 119 14.9 

Table 7: Performance of the reinforcement learning 

 

5.3.1 PPO RGB (p28.7.py) 

 

 

 

Figure 10: p28.7 rewards 

 

The agent trained with PPO using only RGB visual input (script p28.7.py) shows a 

generally positive and increasing reward trend, with values progressing from negative 

scores around –30 in the early episodes to peaks exceeding 60 as training advances. This 

upward trajectory suggests that, despite the limitations of visual-only input, the agent is 

gradually learning effective tracking strategies. 
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The initial fluctuations and occasional dips likely stem from the narrow field of view 

inherent to single-camera vision, which makes it difficult for the agent to maintain target 

lock when the target leaves the frame. Additionally, the CNN-based policy processes 

discrete actions, which, in combination with relatively large time steps, can reduce fine 

responsiveness during fast target motion. 

Despite these constraints, the agent manages to extract sufficient visual cues to 

incrementally improve its pursuit behaviour. The consistent rise in average rewards and 

recovery from negative values indicate that the policy network is learning to prioritise 

target-following over random exploration. While some instability remains—visible in the 

form of local drops—the overall reward evolution points to effective training dynamics, 

especially when compared to purely random or stagnant policies. 

 

5.3.2 PPO LiDAR (p32.3.py) 

 

               Figure 11: p32.3 rewards 

The PPO agent trained using LiDAR input (script p32.3.py) demonstrates a clearer 

upward trend in reward evolution. This suggests that the distance-based observations 

provided by LiDAR result in more structured and consistent feedback, enabling more 

effective policy learning. The reward shaping in the script is based on range to the target 

and progress over time, which encourages smoother pursuit behavior. 

Interestingly, the training begins with positive reward values even in the early episodes. 

This can be explained by the fact that drone2 is initially spawned relatively close to 

drone1, meaning that during the early stochastic exploration phase, the agent's policy 
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though untrained still starts in spatial proximity to the target. As a result, the LiDAR-

based agent receives meaningful feedback from the first steps, reinforcing proximity 

behaviours. Even when the drones momentarily move apart, the agent retains directional 

cues from previous rollouts, effectively reducing the exploration space. This proximity, 

coupled with the dense reward signals and reliable LiDAR measurements, helps the PPO 

agent generalize its learning trajectory early on. 

However, temporary dips are still observed when the target leaves the sensor’s limited 

field of view. Despite these limitations, the LiDAR based model shows better learning 

dynamics due to the reliability of spatial measurements and denser feedback. 

 

5.3.3 DQN RGB (p28.4.py) 

 

                   Figure 12: p28.4 rewards 

The DQN model trained with RGB input (script p28.4.py) exhibits a more chaotic reward 

curve, with abrupt rises and drops. This inconsistency may stem from the inherent 

limitations of DQN in partially observable environments and from reliance on color-based 

segmentation for detection. As the target becomes less visible or exits the visual cone, the 

reward signal becomes unstable. The code defines rewards based on detection status, 

penalizing time steps without visibility or during collisions. In fact, collisions are heavily 

penalized in the script with a value of -100, and they cause immediate episode 

termination. As shown in the reward plots, early training phases contain numerous steep 

drops, indicating frequent collisions. These collisions negatively impact learning by 

reducing average episode rewards, truncating exploration, and destabilizing the agent’s 

behavior early on. While the reward structure is designed to discourage such outcomes, 
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the agent’s initial policy lacks sufficient spatial awareness to avoid obstacles reliably. 

Consequently, these reward spikes reflect sporadic target captures followed by abrupt 

penalties from collisions or poor tracking, leading to a volatile training pattern. Overall, 

the model demonstrates sporadic learning, hindered by noisy input, brittle perception, and 

the disruptive impact of early collisions. 

 

5.4 Exploration Rate 

Exploration rate is a critical component of reinforcement learning, especially in early 

training stages. In the PPO model (as seen in p28.7.py and p32.3.py), exploration is 

managed via entropy regularization. The logs reflect high entropy in several training 

iterations, indicating a balanced policy between exploring new actions and exploiting 

known rewards. Unlike fixed schedules, this entropy-based mechanism adjusts 

dynamically, preserving sufficient randomness to encourage policy improvement, 

especially in complex or partially observable states. 

For DQN (script p28.4.py), the agent begins with high exploration (epsilon = 1.0) and 

gradually decreases it using a linear decay over 30% of the training duration. This decay 

schedule was chosen intentionally to encourage broad sampling of the environment 

during the early episodes when the agent has no prior knowledge. The console logs 

illustrate this shift clearly, with a drop in ‘random’ actions and a rise in ‘best_q’ decisions 

as training progresses: from ‘random: 62, best_q: 32’ → ‘random: 18, best_q: 81’. 

This transition from exploration to exploitation is more explicit in DQN than in PPO, 

which dynamically balances exploration via entropy. However, my approach to DQN’s 

exploration schedule allowed the agent to begin learning from diverse environmental 

states without prematurely converging to suboptimal behavior. That said, the long initial 

exploration period also introduced sharp reward swings and training instability, 

particularly due to frequent collisions and loss of visibility in early training. The agent 

often took inefficient or unsafe paths before refining its policy, which is reflected in the 

volatility of early reward curves. Despite this, the structured reduction of exploration over 

time helped stabilize learning in later stages. 
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5.5 Collision Rate, Dominant Actions and Exploration 

From the PPO logs, we observe that action diversity narrows over time. Many entries 

show sequences like: 'action=hover', 'action=hover', 'action=forward', 'action=hover'. 

This suggests the agent overuses conservative actions (e.g., hover), possibly due to low 

confidence in predictions. In PPO RGB, this behavior likely stems from inconsistent 

detection in image-based observation. 

Collision-related feedback is clearer in the LiDAR-based PPO. Logs reveal: 

'reward=-100.0 (collision penalty)', 'episode_length=12', 'mean_reward=-5.3' 

Over time, the PPO LiDAR model reduces these penalty events, indicating more stable 

navigation. For the DQN model, frequent resets due to 'timeout' or 'crash' are reported: 

'Episode ended due to timeout.', 'Distance to target: 22.4m' 

This indicates that the DQN struggled to maintain tracking, often losing sight due to visual 

limitations or lack of memory, leading to passive failures. 

 

5.6 DQN vs PPO Comparison 

PPO and DQN represent fundamentally different approaches to reinforcement learning. 

PPO is an on-policy actor-critic method that uses a clipped objective function to ensure 

stable policy updates, which allows it to gradually improve its behavior while avoiding 

large shifts in policy that could destabilize training. This is reflected in the logs through 

metrics such as: 'explained_variance=0.23', 'mean_reward=-3.7', 'policy_loss=-0.001'. 

These values suggest that while the PPO agent is learning conservatively, the updates are 

stable and maintainable over long training sessions. 

DQN, in contrast, is an off-policy method that learns from past experiences stored in a 

replay buffer. It updates its Q-function to better estimate long-term return for each state-

action pair. However, this approach is highly sensitive to distributional shifts in the 

environment, especially if old transitions no longer reflect the current policy behavior. 

This is illustrated in the logs by: 'Total reward this episode: +103.5', followed by 'Total 

reward: -94.0' 
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Such large fluctuations highlight the difficulty of maintaining stability in DQN training 

when the observation space is noisy or partially observable, as is the case with RGB-

based tracking. 

Moreover, PPO tends to benefit from richer reward structures and can adapt to continuous 

action spaces, even though the implementation here uses discrete actions. In the case of 

the LiDAR-based PPO agent, its sensor provides dense, spatially structured data which 

aligns well with the reward signal based on distance minimization. The results show this 

synergy enables the agent to gradually optimize its path without frequent collisions or 

erratic decisions. This contrasts with the RGB DQN agent, which must rely on color 

segmentation that is prone to fail under poor lighting, partial occlusions, or abrupt 

movements, all of which can drastically affect Q-value estimation. 

The PPO agent using RGB data also struggled due to the limitations of visual processing 

and the high entropy of the environment. However, its architecture still allowed it to 

maintain more consistent behavior than DQN, suggesting better robustness even under 

degraded input quality. In summary, PPO models especially with structured inputs like 

LiDAR offer more reliable learning under complex conditions, while DQN is more 

reactive and dependent on good state observability, making it suitable for simpler, 

deterministic setups. 

 

6. Discussion and Real-World Application 

6.1 Simulation Limitations 

Simulation environments like Microsoft AirSim provide a valuable platform for safe and 

rapid testing of autonomous aerial agents. However, there are significant limitations that 

must be considered before extrapolating results to real-world applications. First, 

simulated physics and sensor models can only approximate the behavior of real-world 

drones. For instance, AirSim's drone dynamics are based on simplified flight models that 

do not fully capture wind disturbances, hardware latencies, or sensor noise present in field 

environments. 

 

Second, visual perception systems trained on simulated RGB data may not generalize due 
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to domain gap issues. Lighting, background variability, and target textures in the real 

world differ greatly from simulation. This is especially problematic for DQN models 

relying on color segmentation, which was observed to fail when the target partially exited 

the camera's field of view or when lighting changed abruptly. 

 

Third, reward shaping in simulations is often idealized. Agents in AirSim receive 

immediate and dense feedback (e.g., distance-to-target or collision signals), whereas in 

real applications such signals may be delayed, noisy, or ambiguous. These limitations 

make it difficult to guarantee that policies learned in AirSim will behave safely and 

effectively in deployment scenarios. 

 

Lastly, the simulation restricts sensory and environmental complexity. While LiDAR in 

AirSim provides structured data that aids PPO learning, it still lacks the variability of real-

world clutter, occlusions, and multi-agent interactions. Therefore, while simulation 

accelerates prototyping, field validation is indispensable for reliability assessment. 

 

6.2 Projection to Real-World Environments 

Bridging simulation-trained models into real-world scenarios involves several adaptation 

strategies. Domain adaptation, sensor calibration, and transfer learning are key to making 

trained models operationally useful. For example, PPO agents trained using LiDAR in 

simulation could be fine-tuned with real-world point cloud data collected via onboard 

sensors like Velodyne or Ouster, ensuring that the reward model continues to function 

reliably with physical inputs [84]. 

 

In visual agents, sim-to-real transfer may require techniques such as domain 

randomization or GAN-based image refinement to close the gap between synthetic and 

real camera inputs. Generative Adversarial Networks (GANs) consist of two competing 

neural networks, that creates realistic fake images and a discriminator that tries to 

distinguish them from real ones enabling the generation of highly realistic visuals from 

simulated inputs. This refinement improves generalization to real-world imagery. Further, 

retraining on real-world edge cases and adversarial conditions (e.g., occlusions, abrupt 
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motion, reflections) is necessary to avoid the fragility observed in simulation-only DQN 

performance. 

 

The deployment platform must also support onboard computation, such as using Jetson 

Xavier or EdgeTPU devices to run lightweight PPO models in real time. These embedded 

AI accelerators offer a balance between power efficiency and computational throughput, 

enabling real-time inference for tasks like target tracking, collision avoidance, and 

trajectory control. However, edge deployment imposes constraints in terms of memory 

footprint, energy consumption, and thermal management, all of which must be considered 

when porting models from simulation. 

Latency, robustness, and failure handling must all be evaluated in physical trials before 

adoption. Real-world environments introduce unpredictable factors—such as variable 

lighting, sensor noise, wind gusts, and communication delays—that can severely affect 

system behavior if not accounted for during training and testing. Additionally, safety 

mechanisms must be in place to manage fail-safes during inference failures or hardware 

faults. 

 

6.3 Technical Viability in Airports and Defense 

Autonomous drones with real-time object tracking have growing applications in security-

sensitive domains like airport perimeter monitoring and defense. In airport scenarios, 

agents must identify and follow intrusions (e.g., rogue drones or unauthorized personnel) 

without colliding with infrastructure or disrupting airspace protocols. The PPO LiDAR 

model demonstrates promising results in maintaining pursuit with minimal collisions and 

stable performance over long episodes. This suggests viability for patrol-style monitoring 

tasks if integrated with certified safety layers and geofencing logic. 

 

For military or defense applications, tracking unidentified aerial vehicles requires models 

that can adapt rapidly, operate in GPS denied environments, and remain robust to 

adversarial behaviors. Here, LiDAR-based tracking offers advantages in low-light or 

visually cluttered environments. However, redundancy in sensing (e.g., thermal + radar + 

visual) and multi-agent reinforcement learning (via swarm intelligence) will be essential 
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to cover complex threat profiles. Edge inference using PPO-trained agents is technically 

feasible on embedded GPU platforms, making them suitable for field operations where 

bandwidth and power are constrained. 

 

Nonetheless, challenges remain in interpretability, fail-safes, and integration with air 

traffic management systems. Continued development and standardized testing under 

realistic constraints are necessary for certification and trust. 

 

7. Conclusions 

This final degree project focused on the development, implementation, and evaluation of 

an autonomous drone system for tracking a moving target using Deep Reinforcement 

Learning (DRL) techniques. The study addressed multiple disciplines including artificial 

intelligence, robotics, simulation environments, sensor integration, and control systems. 

By leveraging Microsoft AirSim as the simulation platform, the work facilitated the safe 

and efficient testing of complex aerial maneuvers and learning strategies. 

 

From a methodological standpoint, the project demonstrated the practical application of 

two leading DRL algorithms: Deep Q-NETWORK (DQN) and Proximal Policy 

Optimization (PPO). These were tested in varied configurations that included both vision 

only setups and multi sensor approaches combining RGB imagery and LiDAR point 

cloud data. Through these configurations, the project assessed the impact of sensory 

richness, algorithmic complexity, and environment variability on the agent's learning 

curve. 

 

In terms of algorithmic performance, PPO agents consistently achieved superior results 

compared to DQN counterparts. This was particularly evident in metrics related to policy 

stability, reward consistency, and convergence speed. The inclusion of LiDAR data 

significantly improved spatial awareness and obstacle avoidance, which translated into 

fewer collisions and more efficient trajectories. These findings support the idea that 

structured, reliable inputs are critical for robust learning in dynamic tasks. 
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Beyond the technical aspects of machine learning and control, the project also considered 

practical issues of simulation to reality transfer. It acknowledged the inherent limitations 

of simulation, such as idealized physics, noise free sensors, and latency free actuation. 

For real world applicability, further steps are needed to adapt trained policies to physical 

systems. This includes compensating for sensor inaccuracies, communication delays, 

actuator constraints, and unexpected environments. 

The project is particularly relevant in the context of security and surveillance. The 

possibility of deploying trained agents on lightweight embedded platforms offers 

potential applications in airport perimeter monitoring, critical infrastructure protection, 

or military reconnaissance. The modularity and flexibility of the architecture allow future 

extension to swarm behavior, collaborative tasks, and even integration with classical path 

planning or SLAM systems. 

The educational impact of this work is also significant. It bridged theoretical knowledge 

from university coursework such as computer vision, control theory, and programming 

with real world implementation in a sophisticated simulation environment. It fostered 

interdisciplinary thinking and developed competencies in experimental design, 

debugging, and iterative development. 

As future work, the thesis proposes multiple directions: increasing the robustness of 

agents in partially observable or adversarial environments, improving interpretability 

through visual attention models or explainable AI techniques, refining the visual detection 

pipeline to reduce false positives, and expanding to more diverse mission profiles, 

including multi agent coordination or long range tracking. 

In conclusion, the project successfully validated the use of reinforcement learning 

especially PPO with rich sensory input as a feasible and effective approach for developing 

intelligent aerial systems. With proper adaptation to real world conditions, these systems 

show strong promise for deployment in autonomous surveillance, monitoring, and 

tracking applications. 

Moreover, based on the experiments conducted in this thesis, it was determined that the 

most effective counter UAS system is a kamikaze or suicide drone. While electromagnetic 

wave based systems and detection networks provide theoretical advantages, in practice it 

is much more feasible to train a drone that intercepts by crashing directly into the target. 

The simulation results indicated that maintaining constant proximity between two 
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autonomous drones is far more difficult and unstable, especially using AirSim. Therefore, 

the recommended approach is to allow the trained drone to collide with the adversarial 

drone to neutralize it, a strategy that is easier to implement and more reliable within the 

constraints of current simulation and reinforcement learning capabilities. 

 

 

8. Appendix 

Settings.json: 

{ 

  "SeeDocsAt": "https://github.com/Microsoft/AirSim/blob/main/docs/settings.md", 

  "SettingsVersion": 1.2, 

  "SimMode": "Multirotor", 

  "ClockSpeed": 1, 

 

  "Vehicles": { 

    "drone1": { 

      "VehicleType": "SimpleFlight", 

      "X": 0, 

      "Y": 0, 

      "Z": 0, 

      "Sensors": { 

        "LidarSensor1": { 

          "SensorType": 6, 

          "Enabled": true, 

          "NumberOfChannels": 16, 

          "RotationsPerSecond": 10, 
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          "PointsPerSecond": 10000, 

          "X": 0, 

          "Y": 0, 

          "Z": -1, 

          "Roll": 0, 

          "Pitch": 0, 

          "Yaw": 0, 

          "VerticalFOVUpper": 10, 

          "VerticalFOVLower": -10, 

          "HorizontalFOVStart": -180, 

          "HorizontalFOVEnd": 180, 

          "DrawDebugPoints": true, 

          "DataFrame": "SensorLocalFrame" 

        } 

      }, 

      "Cameras": { 

        "front_center": { 

          "CaptureSettings": [ 

            { 

              "ImageType": 0, 

              "Width": 256, 

              "Height": 144 

            } 

          ], 

          "X": 0.5, 

          "Y": 0.0, 
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          "Z": 0.1, 

          "Pitch": 0.0, 

          "Roll": 0.0, 

          "Yaw": 0.0 

        } 

      } 

    }, 

    "drone2": { 

      "VehicleType": "SimpleFlight", 

      "X": -20, 

      "Y": 0, 

      "Z": 0, 

      "Sensors": { 

        "LidarSensor1": { 

          "SensorType": 6, 

          "Enabled": true, 

          "NumberOfChannels": 16, 

          "RotationsPerSecond": 10, 

          "PointsPerSecond": 10000, 

          "X": 0, 

          "Y": 0, 

          "Z": -1, 

          "Roll": 0, 

          "Pitch": 0, 

          "Yaw": 0, 

          "VerticalFOVUpper": 10, 
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          "VerticalFOVLower": -10, 

          "HorizontalFOVStart": -180, 

          "HorizontalFOVEnd": 180, 

          "DrawDebugPoints": true, 

          "DataFrame": "SensorLocalFrame" 

        } 

      } 

    } 

  } 

} 

 

P28.4: 

 

import gymnasium as gym 

import airsim 

import numpy as np 

import time 

import cv2 

from gymnasium import spaces 

from stable_baselines3 import DQN 

from stable_baselines3.common.vec_env import DummyVecEnv 

from stable_baselines3.common.monitor import Monitor 

from stable_baselines3.common.callbacks import BaseCallback 

import pandas as pd 

import math 

import matplotlib.pyplot as plt 

import os 

import logging 

 

# Configuración de directorios 
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SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) 

RESULTS_DIR = os.path.join(SCRIPT_DIR, "training_results") 

os.makedirs(RESULTS_DIR, exist_ok=True) 

 

# Configuración de logging 

logging.basicConfig( 

    level=logging.INFO, 

    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', 

    handlers=[ 

        logging.FileHandler(os.path.join(SCRIPT_DIR, 'drone_training.log')), 

        logging.StreamHandler() 

    ] 

) 

logger = logging.getLogger(__name__) 

logger.info(f"Los resultados se guardarán en: {RESULTS_DIR}") 

 

class DroneEnv(gym.Env): 

    def __init__(self): 

        super(DroneEnv, self).__init__() 

        self.client = airsim.MultirotorClient() 

        self.client.confirmConnection() 

        self.drone1_name = "drone1" 

        self.drone2_name = "drone2" 

        self.action_space = spaces.Discrete(5)  # 4 direcciones + hover 

        self.camera_name = "front_center" 

        self.image_width = 84 

        self.image_height = 84 

        self.observation_space = spaces.Box( 

            low=0, high=255, 

            shape=(self.image_height, self.image_width, 3), 

            dtype=np.uint8 
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        ) 

 

        # Parámetros del entorno 

        self.x_limit = 30 

        self.y_limit = 10 

        self.fixed_altitude = -5 

        self.speed = 5 

        self.yaw_rate = 30 

        self.drone2_speed = 1.5 

 

        # Parámetros de recompensa 

        self.capture_threshold = 1.0 

        self.capture_reward = 100 

        self.collision_penalty = -100 

        self.time_penalty = -0.5 

        self.distance_reward_factor = 2.0 

        self.progress_reward_factor = 1.5 

        self.visibility_reward = 0.5 

        self.out_of_bounds_penalty = -20 

        self.hover_penalty = -0.5 

        self.max_duration = 40 

        self.safe_distance = 5.0 

 

        # Estado del entorno 

        self.start_time = None 

        self._last_dist = None 

        self._last_action = None 

        self._consecutive_hover = 0 

        self.last_image = None 

 

        # Detección visual mejorada 
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        self.drone2_color_lower1 = np.array([0, 70, 150]) 

        self.drone2_color_upper1 = np.array([10, 255, 255]) 

        self.drone2_color_lower2 = np.array([170, 70, 150]) 

        self.drone2_color_upper2 = np.array([180, 255, 255]) 

        self.min_contour_area = 100 

        self.detection_history = [] 

        self.required_consecutive_detections = 3 

        self.detection_window_size = 5 

        self.last_detection_position = None 

 

        self.episode_path = [] 

 

        self._initialize_drones() 

 

    def _initialize_drones(self): 

        try: 

            self.client.reset() 

            self.client.enableApiControl(True, self.drone1_name) 

            self.client.armDisarm(True, self.drone1_name) 

            self.client.enableApiControl(True, self.drone2_name) 

            self.client.armDisarm(True, self.drone2_name) 

            self.client.takeoffAsync(vehicle_name=self.drone1_name).join() 

            self.client.takeoffAsync(vehicle_name=self.drone2_name).join() 

            self._set_initial_positions() 

            self.client.hoverAsync(vehicle_name=self.drone1_name).join() 

        except Exception as e: 

            logger.error(f"Error inicializando drones: {str(e)}") 

            raise 

 

    def _set_initial_positions(self): 

        x1, y1 = 0, 0 
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        x2, y2 = 0, 0 

        dx = x2 - x1 

        dy = y2 - y1 

        yaw = math.degrees(math.atan2(dy, dx)) 

         

        self.client.moveToPositionAsync( 

            x1, y1, self.fixed_altitude, 5, 

            yaw_mode=airsim.YawMode(True, yaw), 

            vehicle_name=self.drone1_name 

        ).join() 

         

        self.client.moveToPositionAsync( 

            x2, y2, self.fixed_altitude, 5, 

            vehicle_name=self.drone2_name 

        ).join() 

         

        self.client.hoverAsync(vehicle_name=self.drone2_name).join() 

         

        state1 = self.client.getMultirotorState(vehicle_name=self.drone1_name) 

        state2 = self.client.getMultirotorState(vehicle_name=self.drone2_name) 

        pos1 = state1.kinematics_estimated.position 

        pos2 = state2.kinematics_estimated.position 

        self._last_dist = math.sqrt((pos1.x_val - pos2.x_val)**2 + (pos1.y_val - pos2.y_val)**2) 

        self.detection_history = [] 

        self._consecutive_hover = 0 

        self.episode_path = [] 

 

    def _get_lidar_distance(self, drone_name): 

        try: 

            lidar_data = self.client.getLidarData(vehicle_name=drone_name) 

            if len(lidar_data.point_cloud) < 3: 
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                return float('inf') 

            points = np.array(lidar_data.point_cloud, dtype=np.float32).reshape(-1, 3) 

            distances = np.linalg.norm(points, axis=1) 

            return np.min(distances) 

        except Exception as e: 

            logger.warning(f"[Lidar Error] {e}") 

            return float('inf') 

 

    def _get_camera_image(self): 

        try: 

            responses = self.client.simGetImages([ 

                airsim.ImageRequest(self.camera_name, airsim.ImageType.Scene, False, False) 

            ], vehicle_name=self.drone1_name) 

             

            if responses and len(responses) > 0: 

                response = responses[0] 

                img1d = np.frombuffer(response.image_data_uint8, dtype=np.uint8) 

                img_rgb = img1d.reshape(response.height, response.width, 3) 

                img_resized = cv2.resize(img_rgb, (self.image_width, self.image_height)) 

                img_normalized = cv2.normalize(img_resized, None, 0, 255, cv2.NORM_MINMAX) 

                self.last_image = img_normalized 

                return img_normalized 

        except Exception as e: 

            logger.error(f"Error obteniendo imagen de la cámara: {str(e)}") 

         

        return np.zeros((self.image_height, self.image_width, 3), dtype=np.uint8) if 
self.last_image is None else self.last_image 

 

    def _detect_drone2(self, image): 

        try: 

            hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) 
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            # Mejor detección de color con dos rangos para rojo 

            mask1 = cv2.inRange(hsv, self.drone2_color_lower1, self.drone2_color_upper1) 

            mask2 = cv2.inRange(hsv, self.drone2_color_lower2, self.drone2_color_upper2) 

            mask = cv2.bitwise_or(mask1, mask2) 

             

            # Mejores operaciones morfológicas 

            kernel = np.ones((5, 5), np.uint8) 

            mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1) 

            mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2) 

             

            contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, 
cv2.CHAIN_APPROX_SIMPLE) 

             

            if contours: 

                largest_contour = max(contours, key=cv2.contourArea) 

                if cv2.contourArea(largest_contour) > self.min_contour_area: 

                    M = cv2.moments(largest_contour) 

                    if M["m00"] > 0: 

                        cx = int(M["m10"] / M["m00"]) 

                        cy = int(M["m01"] / M["m00"]) 

                        self.last_detection_position = (cx, cy) 

                        return True 

             

            self.last_detection_position = None 

            return False 

             

        except Exception as e: 

            logger.error(f"Error en detección: {e}") 

            return False 
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    def _is_drone2_visible(self): 

        if len(self.detection_history) < self.required_consecutive_detections: 

            return False 

        recent_detections = self.detection_history[-self.required_consecutive_detections:] 

        return all(recent_detections) 

 

    def _get_obs(self): 

        image = self._get_camera_image() 

        self._detect_drone2(image) 

        return image 

 

    def step(self, action): 

        duration = 1.5 

        drone2_visible = self._is_drone2_visible() 

 

        # Redirigir acción si está en hover y drone2 es visible 

        if action == 4 and drone2_visible and self.last_detection_position: 

            cx, cy = self.last_detection_position 

            center_x = self.image_width // 2 

            offset = 10 

            if cx < center_x - offset: 

                action = 2  # izquierda 

            elif cx > center_x + offset: 

                action = 3  # derecha 

            else: 

                action = 0  # adelante 

 

        # Ejecutar acciones 

        try: 

            if action == 0: 
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                self.client.moveByVelocityZAsync(self.speed, 0, self.fixed_altitude, duration, 
vehicle_name=self.drone1_name) 

                self._consecutive_hover = 0 

            elif action == 1: 

                self.client.moveByVelocityZAsync(-self.speed, 0, self.fixed_altitude, duration, 
vehicle_name=self.drone1_name) 

                self._consecutive_hover = 0 

            elif action == 2: 

                self.client.moveByVelocityZAsync(0, -self.speed, self.fixed_altitude, duration, 
vehicle_name=self.drone1_name) 

                self._consecutive_hover = 0 

            elif action == 3: 

                self.client.moveByVelocityZAsync(0, self.speed, self.fixed_altitude, duration, 
vehicle_name=self.drone1_name) 

                self._consecutive_hover = 0 

            elif action == 4: 

                self.client.hoverAsync(vehicle_name=self.drone1_name) 

                self._consecutive_hover += 1 

        except Exception as e: 

            logger.error(f"Error ejecutando acción: {e}") 

 

        time.sleep(duration) 

 

        # Obtener estados actuales 

        state1 = self.client.getMultirotorState(vehicle_name=self.drone1_name) 

        state2 = self.client.getMultirotorState(vehicle_name=self.drone2_name) 

        pos1 = state1.kinematics_estimated.position 

        pos2 = state2.kinematics_estimated.position 

        current_dist = math.sqrt((pos1.x_val - pos2.x_val)**2 + (pos1.y_val - pos2.y_val)**2) 

 

        obs = self._get_obs() 
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        # Verificar colisiones 

        collision_info = self.client.simGetCollisionInfo(vehicle_name=self.drone1_name) 

        has_collided = collision_info.has_collided 

 

        # Calcular recompensa 

        reward, done = self._compute_reward(pos1, pos2, current_dist, has_collided, 
drone2_visible, action) 

 

        # Verificar tiempo máximo 

        current_time = time.time() - self.start_time 

        if current_time > self.max_duration: 

            done = True 

 

        logger.info( 

            f"Dist: {current_dist:.1f}m | Reward: {reward:.1f} | " 

            f"Visible: {'YES' if drone2_visible else 'NO'} | " 

            f"Collision: {'YES' if has_collided else 'NO'} | " 

            f"Action: {['Fwd', 'Bwd', 'Left', 'Right', 'Hover'][action]} | " 

            f"Hover Streak: {self._consecutive_hover}" 

        ) 

 

        self._last_action = action 

        self._last_dist = current_dist 

 

        # Guardar trayectoria 

        self.episode_path.append((pos1.x_val, pos1.y_val, pos1.z_val, reward)) 

 

        # Guardar trayectoria al final del episodio 

        if done: 

            try: 

                with open(os.path.join(RESULTS_DIR, "trajectory.csv"), "a") as f: 
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                    for x, y, z, r in self.episode_path: 

                        f.write(f"{x},{y},{z},{r}\n") 

                    f.write("\n") 

                self.episode_path = [] 

            except Exception as e: 

                logger.error(f"Error guardando trayectoria: {e}") 

 

        return obs, reward, done, False, {} 

 

    def _compute_reward(self, pos1, pos2, current_dist, has_collided, drone2_visible, 
action): 

        # Check collision 

        if has_collided: 

            return self.collision_penalty, True 

 

        # Check capture 

        if current_dist < self.capture_threshold: 

            return self.capture_reward, True 

 

        # Check geofence for drone1 

        if (abs(pos1.x_val) > self.x_limit or abs(pos1.y_val) > self.y_limit or  

            abs(pos1.z_val - self.fixed_altitude) > 0.5): 

            return self.out_of_bounds_penalty, True 

 

        # Base reward components 

        reward = 0 

         

        # Distance-based reward (shaped reward) 

        distance_reward = np.exp(-current_dist / self.safe_distance) * 5 

        reward += distance_reward 
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        # Progress reward (only if getting closer) 

        if self._last_dist is not None: 

            distance_improvement = self._last_dist - current_dist 

            if distance_improvement > 0: 

                progress_reward = distance_improvement * self.progress_reward_factor 

                if drone2_visible: 

                    progress_reward *= 1.5  # Visibility bonus 

                reward += progress_reward 

         

        # Visibility bonus (diminishing with distance) 

        if drone2_visible: 

            visibility_bonus = self.visibility_reward * (1 + 4*(1 - current_dist/15)) 

            reward += visibility_bonus 

         

        # Time penalty (encourage faster completion) 

        reward += self.time_penalty 

         

        # Hover penalty (increasing with consecutive hovers) 

        if action == 4: 

            hover_penalty = self.hover_penalty * (self._consecutive_hover ** 0.5) 

            reward += hover_penalty 

         

        # Penalty if too far and no progress 

        if current_dist > 15 and (self._last_dist is not None and current_dist >= self._last_dist): 

            reward -= 2.0 

         

        # Clip reward to reasonable range 

        reward = np.clip(reward, -10, 20) 

         

        # Early termination if performing very poorly 

        done = reward <= -20 
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        return reward, done 

 

    def reset(self, seed=None, options=None): 

        super().reset(seed=seed) 

        self._initialize_drones() 

        self.start_time = time.time() 

        self._last_action = None 

        self._consecutive_hover = 0 

        self.detection_history = [] 

        self.episode_path = [] 

        return self._get_obs(), {} 

 

    def close(self): 

        try: 

            self.client.armDisarm(False, self.drone1_name) 

            self.client.armDisarm(False, self.drone2_name) 

            self.client.enableApiControl(False, self.drone1_name) 

            self.client.enableApiControl(False, self.drone2_name) 

            self.client.reset() 

        except Exception as e: 

            logger.error(f"Error cerrando entorno: {e}") 

 

class CustomPlotAndSaveCallback(BaseCallback): 

    def __init__(self, save_freq: int, save_path: str, verbose=1): 

        super().__init__(verbose) 

        self.save_freq = save_freq 

        self.save_path = save_path 

        self.episode_count = 0 

        self.run_count = self._get_run_count() 
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    def _get_run_count(self): 

        counter_file = os.path.join(SCRIPT_DIR, "run_counter.txt") 

        if os.path.exists(counter_file): 

            with open(counter_file, "r") as f: 

                return int(f.read().strip()) 

        return 1 

 

    def _on_step(self) -> bool: 

        return True 

 

    def _on_episode_end(self) -> bool: 

        self.episode_count += 1 

 

        if self.episode_count % 2 == 0: 

            try: 

                monitor_file = os.path.join(self.save_path, "monitor.csv") 

                if os.path.exists(monitor_file): 

                    df = pd.read_csv(monitor_file, skiprows=1) 

                    df["reward_smooth"] = df["r"].rolling(window=10).mean() 

 

                    plt.figure(figsize=(10, 5)) 

                    plt.plot(df["reward_smooth"], label="Recompensa suavizada") 

                    plt.title(f"Evolución de la recompensa (Ejecución {self.run_count}, Episodio 
{self.episode_count})") 

                    plt.xlabel("Paso") 

                    plt.ylabel("Recompensa") 

                    plt.grid(True) 

                    plt.legend() 

 

                    plot_filename = os.path.join(RESULTS_DIR, 
f"reward_plot_run{self.run_count}_ep{self.episode_count}.png") 

                    plt.tight_layout() 
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                    plt.savefig(plot_filename) 

                    plt.close() 

 

                    data_filename = os.path.join(RESULTS_DIR, 
f"monitor_processed_run{self.run_count}_ep{self.episode_count}.csv") 

                    df.to_csv(data_filename, index=False) 

 

                    if self.verbose: 

                        logger.info(f"[Callback] Gráfico y datos guardados en: {plot_filename}") 

            except Exception as e: 

                logger.error(f"[Callback] Error generando gráfico: {e}") 

 

        return True 

 

def main(): 

    env = DroneEnv() 

    env = Monitor(env, filename=os.path.join(RESULTS_DIR, "monitor.csv")) 

    env = DummyVecEnv([lambda: env]) 

 

    # Hyperparameters optimizados 

    model = DQN( 

        "CnnPolicy", 

        env, 

        learning_rate=3e-4, 

        buffer_size=200000, 

        learning_starts=5000, 

        batch_size=128, 

        target_update_interval=500, 

        train_freq=4, 

        gradient_steps=1, 

        exploration_initial_eps=1.0, 
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        exploration_final_eps=0.02, 

        exploration_fraction=0.3, 

        policy_kwargs=dict( 

            net_arch=[256, 256] 

        ), 

        verbose=1 

    ) 

 

    # Manejar contador de ejecuciones 

    counter_file = os.path.join(SCRIPT_DIR, "run_counter.txt") 

    if os.path.exists(counter_file): 

        with open(counter_file, "r") as f: 

            run_count = int(f.read().strip()) + 1 

    else: 

        run_count = 1 

    with open(counter_file, "w") as f: 

        f.write(str(run_count)) 

 

    callback = CustomPlotAndSaveCallback(save_freq=1000, save_path=RESULTS_DIR) 

    model.learn(total_timesteps=100000, callback=callback, log_interval=10) 

    model.save(os.path.join(RESULTS_DIR, "dqn_drone_chaser_2d_moving_target")) 

    env.close() 

 

if __name__ == "__main__": 

    main() 
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P32.3.py: 

import os, time, math, logging 

from pathlib import Path 

import numpy as np 

import cv2 

import pandas as pd 

import airsim 

import gymnasium as gym 

from gymnasium import spaces 

from stable_baselines3 import PPO 

from stable_baselines3.common.vec_env import DummyVecEnv 

from stable_baselines3.common.monitor import Monitor 

 

ROOT = Path(__file__).parent.resolve() 

OUT  = ROOT / "training_results" 

OUT.mkdir(parents=True, exist_ok=True) 

 

logging.basicConfig( 

    level=logging.INFO, 

    format="%(asctime)s - %(levelname)s - %(message)s", 

    handlers=[logging.FileHandler(ROOT / "drone_training.log", encoding="utf-8"), 

              logging.StreamHandler()] 

) 

log = logging.getLogger("PPO_LIDAR_FIXED") 

 

class DroneEnv(gym.Env): 

    metadata = {"render_modes": []} 

 

    def __init__(self): 

        super().__init__() 

        self.client = airsim.MultirotorClient() 
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        self.client.confirmConnection() 

 

        self.drone1, self.drone2 = "drone1", "drone2" 

        self.action_space = spaces.Discrete(7)   # 0 fwd,1 bwd,2 L,3 R,4 hover,5 yawL,6 yawR 

        self.W, self.H = 84, 84 

        self.observation_space = spaces.Box(0, 255, shape=(self.H, self.W, 3), dtype=np.uint8) 

 

         

        self.speed, self.yaw_rate, self.alt = 5, 35, -5 

        self.x_lim, self.y_lim, self.max_secs = 30, 10, 40 

        self.cap_th = 1.0 

        self.R_CAP, self.R_COL, self.R_TIME = 100, -100, -0.2 

        self.R_VIS, self.R_HOVER, self.R_PROG = 1.0, -0.4, 2.5 

        self.R_OUT, self.safe_d = -25, 4.0 

 

        # Detection 

        self.seg_id = 23 

        self.hsv1 = (np.array([0,60,130]), np.array([15,255,255])) 

        self.hsv2 = (np.array([160,60,130]), np.array([180,255,255])) 

        self.min_area = 60 

        self.det_hist, self.det_win, self.det_need = [], 5, 2 

 

        # Estates 

        self._consecutive_hover = 0 

        self._last_dist = None 

 

        # Setup 

        self._setup_lidar() 

        self._init_drones() 

 

    # ------------- Configure LIDAR ------------- 
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    def _setup_lidar(self): 

        # El LIDAR "LidarSensor1" ya está en settings.json 

        try: 

            self.client.simSetSegmentationObjectID(f".*{self.drone2}.*", self.seg_id, True) 

        except Exception as e: 

            log.debug(f"Segmentation setup skipped: {e}") 

 

    # ------------- Inicialize drones ----------- 

    def _init_drones(self): 

        self.client.reset() 

 

        # Drone1 

        self.client.enableApiControl(True, self.drone1) 

        self.client.armDisarm(True, self.drone1) 

        if self.client.getMultirotorState(self.drone1).landed_state == 
airsim.LandedState.Landed: 

            self.client.takeoffAsync(vehicle_name=self.drone1).join() 

        self.client.moveToPositionAsync(0, 0, self.alt, 5, 

                                        yaw_mode=airsim.YawMode(is_rate=False, yaw_or_rate=0), 

                                        vehicle_name=self.drone1).join() 

 

        # Drone2 

        self.client.enableApiControl(True, self.drone2) 

        self.client.armDisarm(True, self.drone2) 

        if self.client.getMultirotorState(self.drone2).landed_state == 
airsim.LandedState.Landed: 

            self.client.takeoffAsync(vehicle_name=self.drone2).join() 

        self.client.moveToPositionAsync(10, 0, self.alt, 3, vehicle_name=self.drone2).join() 

        self.client.hoverAsync(vehicle_name=self.drone2).join() 

 

        time.sleep(0.3) 

        self._last_dist = self._pose_distance() 
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        self.start = time.time() 

 

        # Buffers 

        self.det_hist.clear() 

 

    # ------------- Utilidades ------------------ 

    def _pose_distance(self): 

        p1 = self.client.getMultirotorState(self.drone1).kinematics_estimated.position 

        p2 = self.client.getMultirotorState(self.drone2).kinematics_estimated.position 

        return math.dist((p1.x_val, p1.y_val, p1.z_val), (p2.x_val, p2.y_val, p2.z_val)) 

 

    def _lidar_distance(self): 

        data = self.client.getLidarData("LidarSensor1", vehicle_name=self.drone1) 

        if len(data.point_cloud) < 3: 

            return None 

        pts = np.array(data.point_cloud, dtype=np.float32).reshape(-1, 3) 

        pts = pts[pts[:,0] > 0]  # sólo puntos delante 

        if pts.size == 0: 

            return None 

        return float(np.min(np.linalg.norm(pts, axis=1))) 

 

    def _get_image(self): 

        rsp = self.client.simGetImages([airsim.ImageRequest("front_center", 
airsim.ImageType.Scene, False, False)], 

                                       vehicle_name=self.drone1)[0] 

        img = np.frombuffer(rsp.image_data_uint8, np.uint8).reshape(rsp.height, rsp.width, 3) 

        return cv2.resize(img, (self.W, self.H)) 

 

    def _detect(self, img): 

        hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) 

        mask = cv2.inRange(hsv, *self.hsv1) | cv2.inRange(hsv, *self.hsv2) 
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        contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, 
cv2.CHAIN_APPROX_SIMPLE) 

        return bool(contours and cv2.contourArea(max(contours, key=cv2.contourArea)) > 
self.min_area) 

 

    # ------------- Gym API --------------------- 

    def reset(self, *, seed=None, options=None): 

        super().reset(seed=seed) 

        self._init_drones() 

        return self._obs(), {} 

 

    def _obs(self): 

        img = self._get_image() 

        detected = self._detect(img) 

        self.det_hist.append(detected) 

        if len(self.det_hist) > self.det_win: 

            self.det_hist.pop(0) 

        return img.astype(np.uint8) 

 

    def _visible(self): 

        return len(self.det_hist) >= self.det_need and all(self.det_hist[-self.det_need:]) 

 

    def step(self, action): 

        dur = 1.0 

        vis = self._visible() 

 

        if action == 4 and vis: 

            action = 0  # si ve al objetivo y está en hover, avanza 

 

        move = {0:( self.speed,0), 1:(-self.speed,0), 2:(0,-self.speed), 3:(0,self.speed)} 

        if action in move: 

            vx, vy = move[action] 
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            self.client.moveByVelocityZAsync(vx, vy, self.alt, dur, vehicle_name=self.drone1) 

            self._consecutive_hover = 0 

        elif action == 5: 

            self.client.rotateByYawRateAsync( self.yaw_rate, dur, vehicle_name=self.drone1) 

        elif action == 6: 

            self.client.rotateByYawRateAsync(-self.yaw_rate, dur, vehicle_name=self.drone1) 

        else: 

            self.client.hoverAsync(vehicle_name=self.drone1) 

            self._consecutive_hover += 1 

 

        time.sleep(dur + 0.1) 

 

        dist_lidar = self._lidar_distance() 

        dist_pose  = self._pose_distance() 

        dist = dist_lidar if dist_lidar is not None else dist_pose 

        col  = self.client.simGetCollisionInfo(vehicle_name=self.drone1).has_collided 

 

        rew, done = self._reward(dist, col, vis, action) 

        self._last_dist = dist 

 

        # Verbose 

        pos = self.client.getMultirotorState(self.drone1).kinematics_estimated.position 

        log.info(f"STEP | dL={dist_lidar} | dP={dist_pose:.2f} | use={dist:.2f} | r={rew:.2f} | 
a={action} | vis={vis} | col={col} | pos=({pos.x_val:.1f},{pos.y_val:.1f},{pos.z_val:.1f})") 

 

        if time.time() - self.start > self.max_secs: 

            done = True 

 

        return self._obs(), rew, done, False, {} 

 

    def _reward(self, dist, col, vis, act): 
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        if col: 

            return self.R_COL, True 

        if dist < self.cap_th: 

            return self.R_CAP, True 

 

        p = self.client.getMultirotorState(self.drone1).kinematics_estimated.position 

        if abs(p.x_val) > self.x_lim or abs(p.y_val) > self.y_lim: 

            return self.R_OUT, True 

 

        r = math.exp(-dist / self.safe_d) * 5 

        if self._last_dist and self._last_dist > dist: 

            r += (self._last_dist - dist) * self.R_PROG 

        if vis: 

            r += self.R_VIS 

        r += self.R_TIME 

        if act == 4: 

            r += self.R_HOVER * (self._consecutive_hover ** 0.7) 

        return float(np.clip(r, -12, 20)), False 

 

    def close(self): 

        for d in (self.drone1, self.drone2): 

            self.client.armDisarm(False, d) 

            self.client.enableApiControl(False, d) 

        self.client.reset() 

 

def train(): 

    env = DroneEnv() 

    env = Monitor(env, filename=str(OUT / "monitor.csv")) 

    env = DummyVecEnv([lambda: env]) 

    model = PPO("CnnPolicy", env, learning_rate=5e-4, n_steps=512, batch_size=64, 
verbose=1) 
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    model.learn(total_timesteps=50_000) 

    model.save(str(OUT / "ppo_lidar_fixed")) 

    env.close() 

    log.info("TRAIN DONE") 

 

if __name__ == "__main__": 

    train() 

 

P28.7.py: 

import gymnasium as gym 

import airsim 

import numpy as np 

import time 

import cv2 

from gymnasium import spaces 

from stable_baselines3 import PPO 

from stable_baselines3.common.vec_env import DummyVecEnv 

from stable_baselines3.common.monitor import Monitor 

from stable_baselines3.common.callbacks import BaseCallback 

import pandas as pd 

import math 

import matplotlib.pyplot as plt 

import os 

import logging 

 

SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) 

RESULTS_DIR = os.path.join(SCRIPT_DIR, "training_results") 

os.makedirs(RESULTS_DIR, exist_ok=True) 

 

logging.basicConfig( 

    level=logging.INFO, 
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    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', 

    handlers=[ 

        logging.FileHandler(os.path.join(SCRIPT_DIR, 'drone_training.log')), 

        logging.StreamHandler() 

    ] 

) 

logger = logging.getLogger(__name__) 

logger.info(f"Los resultados se guardaran en: {RESULTS_DIR}") 

 

class CustomPlotAndSaveCallback(BaseCallback): 

    def __init__(self, save_freq: int, save_path: str, verbose=1): 

        super().__init__(verbose) 

        self.save_freq = save_freq 

        self.save_path = save_path 

        self.trajectory_log = [] 

 

    def _on_step(self) -> bool: 

        if self.num_timesteps % self.save_freq == 0: 

            try: 

                df = pd.read_csv(os.path.join(self.save_path, "monitor.csv"), skiprows=1) 

                df["reward_smooth"] = df["r"].rolling(window=10).mean() 

                plt.figure(figsize=(10, 5)) 

                plt.plot(df["reward_smooth"], label="Recompensa suavizada") 

                plt.title(f"Recompensa hasta el paso {self.num_timesteps}") 

                plt.xlabel("Episodio") 

                plt.ylabel("Recompensa suavizada") 

                plt.grid(True) 

                plt.legend() 

                plt.tight_layout() 

                filename = os.path.join(self.save_path, 
f"reward_plot_step_{self.num_timesteps}.png") 
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                plt.savefig(filename) 

                plt.close() 

                if self.verbose: 

                    logger.info(f"Gráfico guardado en: {filename}") 

            except Exception as e: 

                logger.error(f"Error al generar gráfico: {e}") 

        return True 

 

class DroneEnv(gym.Env): 

    def __init__(self): 

        super(DroneEnv, self).__init__() 

        self.client = airsim.MultirotorClient() 

        self.client.confirmConnection() 

        self.drone1_name = "drone1" 

        self.drone2_name = "drone2" 

        self.action_space = spaces.Discrete(7)  # +2 para girar izq/dcha 

        self.image_width = 84 

        self.image_height = 84 

        self.observation_space = spaces.Box(low=0, high=255, shape=(self.image_height, 
self.image_width, 3), dtype=np.uint8) 

        self.x_limit = 30 

        self.y_limit = 10 

        self.fixed_altitude = -5 

        self.speed = 5 

        self.yaw_step = 30 

        self.capture_threshold = 1.0 

        self.capture_reward = 100 

        self.collision_penalty = -100 

        self.time_penalty = -0.5 

        self.distance_reward_factor = 2.0 

        self.out_of_bounds_penalty = -100 
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        self.hover_penalty = -1.0 

        self.visibility_reward = 1.0 

        self.max_duration = 40 

        self._last_dist = None 

        self.episode_path = [] 

        self.collision_count = 0 

        self.current_yaw = 0 

        self._initialize_drones() 

 

    def _initialize_drones(self): 

        self.client.reset() 

        self.client.enableApiControl(True, self.drone1_name) 

        self.client.armDisarm(True, self.drone1_name) 

        self.client.enableApiControl(True, self.drone2_name) 

        self.client.armDisarm(True, self.drone2_name) 

        self.client.takeoffAsync(vehicle_name=self.drone1_name).join() 

        self.client.takeoffAsync(vehicle_name=self.drone2_name).join() 

        x1, y1 = -10, 0 

        x2, y2 = 10, 0 

        self.client.moveToPositionAsync(x1, y1, self.fixed_altitude, 5, 
yaw_mode=airsim.YawMode(True, 0), vehicle_name=self.drone1_name).join() 

        self.client.moveToZAsync(self.fixed_altitude, 2, 
vehicle_name=self.drone2_name).join() 

        self.client.hoverAsync(vehicle_name=self.drone2_name).join() 

        self.current_yaw = 0 

        state1 = self.client.getMultirotorState(vehicle_name=self.drone1_name) 

        state2 = self.client.getMultirotorState(vehicle_name=self.drone2_name) 

        pos1 = state1.kinematics_estimated.position 

        pos2 = state2.kinematics_estimated.position 

        self._last_dist = math.sqrt((pos1.x_val - pos2.x_val)**2 + (pos1.y_val - pos2.y_val)**2) 

        self.episode_path = [] 

        self.collision_count = 0 
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    def _get_camera_image(self): 

        response = self.client.simGetImages([airsim.ImageRequest("0", 
airsim.ImageType.Scene, False, False)], vehicle_name=self.drone1_name)[0] 

        img1d = np.frombuffer(response.image_data_uint8, dtype=np.uint8) 

        img_rgb = img1d.reshape(response.height, response.width, 3) 

        return cv2.resize(img_rgb, (self.image_width, self.image_height)) 

 

    def _detect_drone2(self, image): 

        hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) 

        lower = np.array([0, 0, 200]) 

        upper = np.array([50, 50, 255]) 

        mask = cv2.inRange(hsv, lower, upper) 

        contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) 

        return any(cv2.contourArea(c) > 30 for c in contours) 

 

    def _get_obs(self): 

        return self._get_camera_image() 

 

    def step(self, action): 

        duration = 1.5 

        movement = ["Fwd", "Bwd", "Left", "Right", "Hover", "YawLeft", "YawRight"] 

 

        if action == 0: 

            self.client.moveByVelocityZAsync(self.speed, 0, self.fixed_altitude, duration, 
vehicle_name=self.drone1_name) 

        elif action == 1: 

            self.client.moveByVelocityZAsync(-self.speed, 0, self.fixed_altitude, duration, 
vehicle_name=self.drone1_name) 

        elif action == 2: 

            self.client.moveByVelocityZAsync(0, -self.speed, self.fixed_altitude, duration, 
vehicle_name=self.drone1_name) 
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        elif action == 3: 

            self.client.moveByVelocityZAsync(0, self.speed, self.fixed_altitude, duration, 
vehicle_name=self.drone1_name) 

        elif action == 4: 

            self.client.hoverAsync(vehicle_name=self.drone1_name) 

        elif action == 5: 

            self.current_yaw -= self.yaw_step 

            self.client.rotateToYawAsync(self.current_yaw, 
vehicle_name=self.drone1_name).join() 

        elif action == 6: 

            self.current_yaw += self.yaw_step 

            self.client.rotateToYawAsync(self.current_yaw, 
vehicle_name=self.drone1_name).join() 

 

        time.sleep(duration) 

        state1 = self.client.getMultirotorState(vehicle_name=self.drone1_name) 

        state2 = self.client.getMultirotorState(vehicle_name=self.drone2_name) 

        pos1 = state1.kinematics_estimated.position 

        pos2 = state2.kinematics_estimated.position 

        current_dist = math.sqrt((pos1.x_val - pos2.x_val)**2 + (pos1.y_val - pos2.y_val)**2) 

 

        collision_info = self.client.simGetCollisionInfo(vehicle_name=self.drone1_name) 

        has_collided = collision_info.has_collided 

 

        reward = (1 / (current_dist + 0.1)) * self.distance_reward_factor 

        done = False 

 

        image = self._get_camera_image() 

        visible = self._detect_drone2(image) 

        if visible: 

            reward += self.visibility_reward 
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        if self._last_dist is not None: 

            delta = current_dist - self._last_dist 

            if delta > 0: 

                reward -= delta * self.distance_reward_factor 

 

        if current_dist < self.capture_threshold: 

            reward += self.capture_reward 

            done = True 

        if abs(pos1.x_val) > self.x_limit or abs(pos1.y_val) > self.y_limit: 

            reward += self.out_of_bounds_penalty 

            done = True 

        if has_collided: 

            reward += self.collision_penalty 

            self.collision_count += 1 

            done = True 

 

        print(f"Distancia: {current_dist:.2f} m | Recompensa: {reward:.2f} | Accion: 
{movement[action]} | Colision: {'Si' if has_collided else 'No'} | Drone2 Visible: {'Si' if visible 
else 'No'} | Colisiones: {self.collision_count}") 

 

        self._last_dist = current_dist 

        self.episode_path.append((pos1.x_val, pos1.y_val, pos1.z_val, reward)) 

        return self._get_obs(), reward, done, False, {} 

 

    def reset(self, seed=None, options=None): 

        super().reset(seed=seed) 

        if self.episode_path: 

            with open(os.path.join(RESULTS_DIR, "trayectoria.csv"), "a") as f: 

                for x, y, z, r in self.episode_path: 

                    f.write(f"{x},{y},{z},{r}\n") 

                f.write("\n") 

        self._initialize_drones() 
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        return self._get_obs(), {} 

 

    def close(self): 

        self.client.armDisarm(False, self.drone1_name) 

        self.client.enableApiControl(False, self.drone1_name) 

        self.client.armDisarm(False, self.drone2_name) 

        self.client.enableApiControl(False, self.drone2_name) 

        self.client.reset() 

 

def main(): 

    env = DroneEnv() 

    env = Monitor(env, filename=os.path.join(RESULTS_DIR, "monitor.csv")) 

    env = DummyVecEnv([lambda: env]) 

 

    model = PPO( 

        "CnnPolicy", 

        env, 

        learning_rate=3e-4, 

        n_steps=2048, 

        batch_size=64, 

        n_epochs=10, 

        gamma=0.99, 

        gae_lambda=0.95, 

        clip_range=0.2, 

        ent_coef=0.01, 

        vf_coef=0.5, 

        max_grad_norm=0.5, 

        policy_kwargs=dict(net_arch=[256, 256]), 

        verbose=1 

    ) 
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    counter_file = os.path.join(SCRIPT_DIR, "run_counter.txt") 

    if os.path.exists(counter_file): 

        with open(counter_file, "r") as f: 

            run_count = int(f.read().strip()) + 1 

    else: 

        run_count = 1 

    with open(counter_file, "w") as f: 

        f.write(str(run_count)) 

 

    callback = CustomPlotAndSaveCallback(save_freq=1000, save_path=RESULTS_DIR) 

    model.learn(total_timesteps=100000, callback=callback, log_interval=10) 

    model.save(os.path.join(RESULTS_DIR, "ppo_drone_chaser_2d_moving_target")) 

    env.close() 

 

if __name__ == "__main__": 

    main() 
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