

Counter-Drone Systems for Airports: Mitigating the Risk of

Unauthorized Drone Intrusions Using Autonomous Drones

with AI in Controlled Airspaces

Memoria del Trabajo Fin de Grado en Gestión Aeronáutica

realizado por

Saúl García-Rojas Ruíz

y dirigido por

Ender Çetin

Escuela de Ingeniería

Sabadell, 06 de 2025

2

The undersigned, Ender Çetin, supervisor of the Final Degree Thesis,

professor at the School of Engineering of UAB,

CERTIFIES:

That the work corresponding to this report has

been carried out under their supervision by

Saúl García-Rojas Ruíz

And for the record, signs this document in

Sabadell, June of 2025

Signed: Ender Çetin

3

Title of the Final Degree Project:
Counter-Drone Systems for Airports: Mitigating the Risk of Unauthorized Drone Intrusions
Using Autonomous Drones with AI in Controlled Airspaces

Author: Saúl García-Rojas Ruíz

Date: June 2025

Supervisor: Ender Çetin

Degree: Aeronautical Management

Key words:
English: UAS (Unmanned Aerial System), PPO (Proximal Policy Optimization),DQN (Deep Q-
Network), AirSim, Autonomous Tracking, LiDAR, Reinforcement Learning (RL), Counter-UAS (C-
UAS)
Castellano: UAS (Sistema Aéreo No Tripulado), PPO (Optimización Proximal de Políticas), DQN
(Red Neuronal Profunda Q), AirSim, Seguimiento Autónomo, LiDAR, Aprendizaje por Refuerzo
(RL), Contra-UAS (C-UAS)
Català: UAS (Sistema Aeri no Tripulat), PPO (Optimització de Polítiques Proximes), DQN (Xarxa
Neuronal Q Profunda), AirSim, Seguiment Autònom, LiDAR, Aprenentatge per Reforç (RL),
Sistemes Anti-drons (C-UAS)

Summary of the Final Degree Project:
Castellano: El rápido crecimiento y la accesibilidad de los sistemas aéreos no tripulados (UAS)
han generado importantes preocupaciones de seguridad en aeropuertos y en el espacio
aéreo. Los drones no autorizados amenazan la seguridad de los vuelos, provocan
interrupciones operativas y exponen vulnerabilidades, especialmente en zonas restringidas
como los aeropuertos. Las limitaciones legales impiden que las autoridades locales
desplieguen tecnologías activas de neutralización de drones (C-UAS), dificultando una
respuesta en tiempo real. Esta tesis analiza métodos de detección y mitigación. El estudio
destaca tanto las amenazas de drones civiles como militares, subrayando la necesidad de
sistemas C-UAS integrados, adaptables y automatizados. Casos reales, como el incidente del
Aeropuerto de Gatwick en 2018, evidencian la urgencia de una mejor coordinación y
preparación. En última instancia, una gestión eficaz de amenazas con drones requiere
colaboración entre los sectores de aviación, seguridad y defensa, combinando regulación,
tecnología y formación basada en simulaciones.
English: The rapid growth and accessibility of unmanned aerial systems (UAS) have created
major security concerns for airports and airspace. Unauthorized drones threaten flight safety,
cause operational disruptions, and expose vulnerabilities, especially in restricted areas like
airports. Legal limitations prevent local authorities from deploying active counter UAS (CUAS)
technologies, making real time response difficult. This thesis examines detection and
mitigation methods. The study highlights both civilian and military drone threats, emphasizing
the need for integrated, adaptable, and automated CUAS systems. Real world cases, such as
the 2018 Gatwick Airport incident, underline the urgency for better coordination and
preparedness. Ultimately, effective drone threat management requires collaboration among
aviation, security, and defense sectors, combining regulation, technology, and simulation
based training.
Català: El ràpid creixement i l’accessibilitat dels sistemes aeris no tripulats (UAS) han generat
importants preocupacions de seguretat en aeroports i en l'espai aeri. Els drons no autoritzats
suposen una amenaça per a la seguretat dels vols, causen interrupcions operatives i exposen
vulnerabilitats, especialment en zones restringides com els aeroports. Les limitacions legals
impedeixen que les autoritats locals despleguin tecnologies actives de neutralització de drons
(C-UAS), fet que dificulta una resposta en temps real. Aquesta tesi examina mètodes de

4

detecció i mitigació. L’estudi posa en relleu tant les amenaces dels drons civils com de caràcter
militar, remarcant la necessitat de sistemes C-UAS integrats, adaptables i automatitzats. Casos
reals, com l’incident de l’Aeroport de Gatwick l’any 2018, evidencien la urgència d’una millor
coordinació i preparació. En definitiva, una gestió eficaç de les amenaces amb drons requereix
la col·laboració entre els sectors de l’aviació, la seguretat i la defensa, combinant regulació,
tecnologia i formació basada en simulació.

List of Acronyms
• AI – Artificial Intelligence

• AOI – Area of Interest

• AESA – Active Electronically Scanned Array

• BOE – Boletín Oficial del Estado

• CNN – Convolutional Neural Network

• COTS – Commercial Off-The-Shelf

• CUAS / C-UAS – Counter-Unmanned Aerial Systems

• DIA – Defense Intelligence Agency

• DQN – Deep Q-Network

• DRL – Deep Reinforcement Learning

• EO – Electro-Optical

• FPV – First Person View

• GPS – Global Positioning System

• GUI – Graphical User Interface

• IR – Infrared

• LiDAR – Light Detection and Ranging

• ML – Machine Learning

• MADIS – Marine Air Defense Integrated System

• M-LIDS – Mobile Low, Slow, Small Unmanned Aircraft System Integrated

Defeat System

• MSHORAD – Maneuver Short-Range Air Defense

• NATO – North Atlantic Treaty Organization

• PPO – Proximal Policy Optimization

• RF – Radio Frequency

• RPAS – Remotely Piloted Aircraft System

5

• RCS – Radar Cross Section

• RL – Reinforcement Learning

• SAR – Synthetic Aperture Radar

• SB3 – Stable-Baselines3

• SLAM – Simultaneous Localization and Mapping

• TFG – Trabajo de Fin de Grado

• UAS – Unmanned Aerial System

• UAV – Unmanned Aerial Vehicle

• UTM – Unmanned Aircraft System Traffic Management

• YOLO – You Only Look Once

Figures and table index

Figures:

Figure 1: Image of the “Blocks” simulated environment in AirSim. Microsoft. (n.d.).

AirSim - Blocks Environment. https://microsoft.github.io/AirSim/unreal_blocks/

Figure 2: Schematic showing a Fortem counter-UAV interceptor drone used in Ukraine.

Fortem Technologies. (2022, October 12). Fortem’s anti-UAV drone appears in Ukraine.

https://dronedj.com/2022/10/12/fortem-anti-uav-ukraine/

Figure 3: Interceptor drone “Anvil” used for autonomous neutralization of hostile drones.

Anduril. (2023, November 10). Anduril presenta el dron interceptor Anvil.

https://cuashub.com/es/contenido/anduril-presenta-el-dron-interceptor-anvil-m/

Figure 4: MARSS Interceptor MR “killer drone” for autonomous aerial threats

interception. EDR Magazine. (2024, February 1). MARSS Interceptor MR: killer drone

close to production. https://www.edrmagazine.eu/marss-interceptor-mr-killer-drone-

close-to-production

Figure 5: Photograph from the 2018 Gatwick Airport drone incident. Wikipedia. (n.d.).

Gatwick Airport drone incident.

https://en.wikipedia.org/wiki/Gatwick_Airport_drone_incident

Figure 6: Vister Chronos embedded computing platform used in onboard reinforcement-

learning drone systems. Vister. (n.d.). Chronos edge AI computing device.

https://www.vister.es/producto/chronos/

Figure 7: U.S. test of the Coyote LE-SR counter-drone interceptor launched from a

helicopter. Gagadget. (2021, April 13). EEUU prueba por primera vez un dron antiaéreo

Coyote LE-SR desde un helicóptero. https://gagadget.es/613696-eeuu-prueba-por-

primera-vez-un-dron-antiaereo-coyote-le-sr-desde-un-helicoptero/

https://microsoft.github.io/AirSim/unreal_blocks/
https://dronedj.com/2022/10/12/fortem-anti-uav-ukraine/
https://cuashub.com/es/contenido/anduril-presenta-el-dron-interceptor-anvil-m/
https://www.edrmagazine.eu/marss-interceptor-mr-killer-drone-close-to-production
https://www.edrmagazine.eu/marss-interceptor-mr-killer-drone-close-to-production
https://en.wikipedia.org/wiki/Gatwick_Airport_drone_incident
https://www.vister.es/producto/chronos/
https://gagadget.es/613696-eeuu-prueba-por-primera-vez-un-dron-antiaereo-coyote-le-sr-desde-un-helicoptero/
https://gagadget.es/613696-eeuu-prueba-por-primera-vez-un-dron-antiaereo-coyote-le-sr-desde-un-helicoptero/

6

Figure 8: Concept image of ONERA ESPADON hypersonic combat air system for future

interception missions. Secret Projects. (2023, August). ONERA ESPADON hypersonic

combat aircraft concept. https://www.secretprojects.co.uk/threads/onera-espadon-

hypersonic-combat-aircraft-concept.41689/

Figure 9: Airsim Blocks with Lidar, source: own

Figure 10: p28.7 rewards, Source: own

Figure 11: p32.3 rewards, Source: own

Figure 12: p28.4 rewards, Source: own

Tables:

Table 1: Types of drones, Source: own

Table 2: Detection technologies, Source: own

Table 3: Drone actions table, Source: own

Table 4: Reward component, Source: own

Table 5: Comparison between p32.3 and p28.7, Source: own

Table 6: Differences in the rewards policy, Source: own

Table 7: Performance of the reinforcement learning, Source: own

https://www.secretprojects.co.uk/threads/onera-espadon-hypersonic-combat-aircraft-concept.41689/
https://www.secretprojects.co.uk/threads/onera-espadon-hypersonic-combat-aircraft-concept.41689/

7

INDEX

List of Acronyms .. 4

Figures and table index .. 5

Figures: .. 5

Tables: .. 6

1. Introduction .. 9

1.1 Current Drone Threats ... 11

1.2 Project Objectives .. 13

1.3 General Methodology ... 15

2. Theoretical Framework... 16

2.1  Classification of drones .. 16

2.1.1  Regulatory frameworks .. 19

2.1.2  Physical and kinematic attributes ... 20

2.1.3  Functional roles and threat taxonomies ... 21

2.1.4  Historical incident timeline (2018‑2025) ... 22

2.2  Detection technologies (radar, optical, LiDAR, RF, acoustic) 23

2.2.1  Radar modalities and performance ... 24

2.2.2  Optical and thermal imaging ... 25

2.2.3  RF spectrum sensing .. 25

2.2.4  Acoustic sensing and source localisation ... 25

2.2.5  Sensor‑fusion architectures ... 26

2.3  Military applications of drones .. 26

2.3.1  Spanish counter‑drone and missile systems ... 26

2.3.2  International counter-drones systems (US, Israel, NATO, Others) 27

2.3.3  Cost calculus and future trends .. 29

2.4  Data management and cybersecurity of C‑UAS networks ... 29

2.5  Human factors and operator interfaces .. 30

2.6  Adversarial RL and counter‑counter‑measures ... 31

2.7  Legal and ethical considerations .. 31

2.8  General policy recommendations and future research directions 32

2.9  Counter‑deception and electronic counter‑counter‑measures 33

2.10  Training pipelines and doctrine development ... 34

2.11 Emerging C‑UAS technologies on the 2030 horizon .. 35

3  Reinforcement‑learning algorithms (RL) .. 36

3.1  Algorithmic spectrum ... 37

8

4 Simulation Setup .. 38

4.1 Microsoft AirSim ... 38

4.2 Vehicles and Sensors Defined in settings.json .. 40

5 Training models ... 44

5.1 DQN Agent ... 44

5.1.1. DroneEnv: .. 45

5.1.2. __init__ .. 46

5.1.3 _initialize_drones ... 48

5.1.4 _set_initial_positions .. 48

5.1.6 _get_camera_image .. 49

5.1.7_detect_drone2 ... 49

5.1.8 _is_drone2_visible ... 49

5.1.9 _get_obs .. 49

5.1.10 step ... 50

5.1.11 _compute_reward ... 51

5.1.12 reset .. 53

5.1.13 close ... 54

5.1.14 CustomPlotAndSaveCallback .. 54

5.1.15 __init__(CustomPlotAndSaveCallback) .. 54

5.1.16 _get_run_count .. 55

5.1.17 main ... 56

5.2 PPO Agents ... 58

5.2.1 Detailed Comparison Between p32.3.py and p28.7.py ... 59

5.3 Rewards and Penalties... 64

5.3.1 PPO RGB (p28.7.py) .. 65

5.3.2 PPO LiDAR (p32.3.py) ... 66

5.3.3 DQN RGB (p28.4.py) ... 67

5.4 Exploration Rate .. 68

5.5 Collision Rate, Dominant Actions and Exploration ... 69

5.6 DQN vs PPO Comparison ... 69

6. Discussion and Real-World Application ... 70

6.1 Simulation Limitations .. 70

6.2 Projection to Real-World Environments .. 71

6.3 Technical Viability in Airports and Defense ... 72

7. Conclusions .. 73

8. Appendix .. 75

9

9. References .. 109

1. Introduction

The rapid evolution of drone technology has significantly reshaped both civilian and

military landscapes. In recent geopolitical conflicts such as the war between Ukraine and

Russia, and the emerging hostilities involving Israel and Iran, drones have played a

critical role not only in surveillance and logistics but also in direct offensive actions.

Military-grade drones such as the Turkish Bayraktar TB2, the Iranian Shahed-136, and

the Israeli Harop have demonstrated lethal capabilities, including the ability to perform

autonomous strikes, electronic warfare, and precision-guided missile delivery [1]. These

developments underscore the dual nature of drone technology: while it provides new

opportunities, it also introduces new layers of threat, particularly when these devices

operate near sensitive civilian infrastructure.

The widespread and largely unregulated adoption of drones has outpaced the development

of legal, operational, and technological countermeasures. This gap is especially dangerous

in airport environments, where timing, coordination, and safety are paramount.

Unauthorized drones can cause serious disruptions delaying flights, grounding aircraft,

and triggering emergency protocols. A notable case occurred during the 2018 Gatwick

Airport incident, where repeated drone sightings led to the cancellation of over 1,000

flights and affected more than 140,000 passengers [2]. This case illustrates how even

commercially available drones can cause large-scale operational and economic damage.

A major obstacle in defending airspace is the lack of jurisdiction granted to local law

enforcement. In the United States, for example, the Federal Aviation Administration

(FAA) classifies drones as aircraft, which legally prohibits unauthorized interference such

as jamming, capturing, or disabling them. Under U.S. Code 18 32, these acts are

considered sabotage of aircraft the same offense applied to manned aviation [3].

Consequently, local police and airport security must often defer to federal agencies,

whose response time may be insufficient to prevent an incident.

This disconnect between technological capability and legal authority hinders effective

counter-drone action. With the growing use of autonomous delivery drones and AI-

enhanced UAVs, the risk of accidental or malicious airspace incursions is increasing.

10

Several countries are now considering reforms to enable quicker intervention by airport

authorities and to empower specialized defense units. These units often utilize a

combination of radar, RF analyzers, electro-optical (EO) cameras, AI-assisted object

recognition, and jamming technologies to neutralize aerial threats in real time [4].

Additionally, the rapid proliferation of UAVs particularly in the commercial and

recreational sectors has led to a sharp increase in airspace vulnerabilities. In many regions,

hobbyist pilots are not required to undergo formal training or even register their drones,

leading to unsafe practices near flight paths and airport zones. In some cases, individuals

intentionally bypass legal restrictions, amplifying security risks and operational burdens

on aviation authorities [5].

To address these evolving threats, the aviation industry has begun integrating Counter-

Unmanned Aircraft Systems (C-UAS) that combine multiple detection and mitigation

technologies. These include radar systems capable of identifying small UAVs, RF signal

analysis for drone-controller detection, EO/IR sensors for visual confirmation, and AI-

driven decision-making tools [6]. However, such systems are only effective when

supported by clear response protocols and legal authority that allow for timely action by

local entities. Without these measures, even the most advanced detection platforms cannot

prevent incursions from becoming serious threats.

In parallel, military forces around the world have embraced UAVs for a wide range of

operations from ISR (Intelligence, Surveillance, and Reconnaissance) to kamikaze-style

drone attacks. These drones vary in size, range, and autonomy, with some equipped for

long-range precision strikes and others designed for swarm tactics that overwhelm

traditional defense systems. The battlefield success of these systems particularly in

Ukraine, where commercial drones have been retrofitted for tactical missions signals the

urgency of improving civilian drone detection and defense capabilities [7]. As such,

protecting airport environments from rogue UAVs is no longer a speculative concern but

a national and international priority.

This project involves of exploring the actual state of counter drone systems and also

explore the role of the AI in addressing the risk of unauthorized drone intrusions in

Controlled Airspaces and how it can be achieved.

11

1.1 Current Drone Threats

Unauthorized drone operations continue to present a diverse array of threat vectors that

evolve as technology advances. Small quad‑copters now can carry high resolution

cameras, thermal sensors, and even lightweight explosives, which means that a single

platform can perform roles in espionage, disruption, and attack roles without physical

modification. At the same time, the rise of first person view racing drones increases

closing speeds, giving security teams less than ten seconds to react once an intruder

crosses the airport fence line. Because commercial off‑the‑shelf autopilots ship with

autonomous waypoint navigation, an operator can program complex loiter patterns that

mimic bird activity and thus evade casual visual detection.

Recent incident reports consistently show that drones intrude not only around runways

but also inside airport perimeters. In 2024, Madrid‑Barajas Airport experienced three

separate ground‑incursion events in which hobby drones overfly fuel farms and

maintenance hangars, forcing ground personnel to halt refuelling operations. These cases

demonstrate that the threat does not limit itself to approach or departure paths; it extends

to every operational corner where aircraft or critical assets remain exposed. Insurance

providers therefore start to factor drone‑related downtime into premium calculations,

which raises operating costs for airlines and airport authorities alike.

Regulatory enforcement stays inconsistent because national agencies rely on manual

spot‑checks and sporadic fines. The European Union Aviation Safety Agency (EASA)

introduces the U‑space framework to allocate digital corridors for unmanned traffic, but

most legacy drones in circulation cannot receive such instructions. Consequently, security

managers face a hybrid airspace in which compliant drones share the sky with legacy

units that ignore geofencing altogether. In this hybrid context, the probability that a

negligent pilot violates restricted zones remains high even when awareness campaigns

intensify.

Threat complexity further increases when adversaries chain multiple drones in relay

mode. One unit acts as a high‑altitude signal repeater while several low‑flying platforms

perform reconnaissance. This multilevel topology extends operational range beyond

traditional line‑of‑sight limits and circumvents simple RF detection because the ground

operator stays outside sensor coverage. Airport security doctrine therefore requires a

12

layered response that tracks not just one airborne object but a network of cooperating

assets.

The psychological impact of repeated drone alerts also deserves attention. Persistent but

unresolved incursions erode staff confidence and lead to alert fatigue, which means that

genuine alarms risk dismissal after multiple false starts. An expanded defense concept

must account for human‑factor resilience by automating low‑level classification tasks and

presenting operators only with validated threats. Such an approach maintains vigilance

without overwhelming controllers with data that they cannot process in real time.

Airports remain increasingly vulnerable to unauthorized drone intrusions, which pose

serious threats including espionage, disruption of services, and potential physical attacks

[8]. These threats have escalated as drones have become more accessible and

technologically advanced. Whether operated by negligent hobbyists or with malicious

intent, UAVs penetrating restricted airspace can result in severe operational and safety

issues. For example, Near Mid-Air Collisions (NMACs) have been reported in Terminal

Maneuvering Areas (TMAs), prompting airspace closures and flight cancellations [9].

While regulatory efforts have emerged, such as mandatory registration and geofencing,

enforcement remains inconsistent. Not all manufacturers embed restrictions, and amateur

operators often bypass safety protocols. Consequently, drone incursions have paralyzed

air traffic and imposed cascading disruptions across global networks. This problem is

made worse by the limitations of current Counter-Unmanned Aircraft Systems (C-UAS),

which often used fixed sensors and require manual intervertion. These systems struggle

in urban landscapes and are hampered by legal constraints, rendering their mitigation

response ineffective in fast-paced airport environments [10].

There is growing concern over the lack of real-time autonomy and flexibility in existing

systems. Static sensors cannot adapt to dynamic scenarios, and human operators may be

too slow to respond. Though jamming and spoofing technologies exist, they pose risks to

airport systems and are legally restricted. The FAA has warned that recent incidents of

GPS/GNSS disruptions “may pose increased safety-of-flight risks due to possible loss of

situational awareness and increased pilot and ATC workload issues”[74]. The need for

AI-driven, autonomous solutions capable of adaptive decision-making has therefore

gained attention, especially in military-grade defense contexts now being adapted to civil

environments.

13

Drones used in modern warfare such as loitering munitions and AI-assisted surveillance

UAVs are pushing civil infrastructure to adopt similar intelligence levels in counter-

systems. For example, nations are now testing defensive drones to patrol perimeters and

neutralize intrusions autonomously. These systems can reduce false alarms and improve

response time using neural networks and machine learning algorithms [11].

Despite its technical promise, barriers such as cost, regulatory approval, and operational

safety continue to hinder adoption. Nonetheless, there is an urgent need to transition from

reactive measures to proactive, intelligent, and adaptive defense systems to protect vital

infrastructure like airports.

1.2 Project Objectives

This research project aims to address the growing issue of unauthorised drone incursions

in and around controlled airport environments by proposing a dual-structured

investigation: a theoretical analysis based on the state-of-the-art in counter-UAS

technologies, and a practical implementation carried out through Python-based simulation

in Microsoft AirSim [69]. AirSim is an open-source simulator developed by Microsoft

Research that offers high-fidelity physical and visual environments for AI model training,

particularly in autonomous aerial vehicle testing. It supports realistic simulation, sensor

emulation (such as LiDAR for generating 3D point-clouds critical to obstacle detection

and interception, IMU for measuring orientation and acceleration, GPS for real-time

location tracking, and RGB cameras for visual input), and integrates seamlessly with

reinforcement-learning frameworks via Python APIs, making it highly suitable for

developing autonomous interception strategies in safe, controlled conditions. While these

sensors offer complementary capabilities, they are also subject to real-world constraints.

LiDAR performance may degrade in adverse weather conditions like fog or rain, GPS

can be disrupted in urban environments or by jamming, RGB cameras are sensitive to

lighting variations and occlusions, and IMUs accumulate drift over time without external

correction. These limitations must be considered carefully when transferring trained

policies from simulation to physical deployment. [74].

14

Figure 1: Airsim Blocks

The first objective focuses on evaluating the efficiency, scalability, and deployment

feasibility of commercial and military-grade C-UAS platforms, including radar detection

systems, RF geolocation antennas, electro-optical and infrared tracking systems,

electromagnetic jammers, and kinetic interceptors [8]. This survey provides a baseline for

comparing traditional defence mechanisms with autonomous AI solutions.

Building upon that, the project explores the capabilities of AI-powered autonomous

drones as an active countermeasure. These systems leverage convolutional neural

networks and real-time sensor fusion to perform object recognition, target tracking, and

physical interception without human intervention, thereby reducing operator load and

response time [9].

The practical component is led by the design, training, and testing of a drone interceptor

model using reinforcement learning. The model operates in simulation environments built

with Microsoft AirSim and Unity ML-Agents, where the agent learns to navigate and

intercept a moving aerial intruder by interacting with the environment and receiving

shaped reward signals [10]. The use of AirSim allows the project to replicate diverse

environmental conditions, GPS drift, and occlusion scenarios while maintaining

operational safety.

A further objective is the assessment of legal, technical, and societal risks associated with

deploying autonomous C-UAS. Issues such as electromagnetic interference, flight-

corridor violation, public-safety concerns, and regulatory restrictions on autonomous

flight and jamming are reviewed in light of international frameworks like EASA’s U-

space [11]. To mitigate these risks, the study proposes phased implementation strategies

15

that use sandboxed testing zones and protocol layers to restrict active response until

regulatory compliance is assured.

In addition, the study evaluates the broader economic impact of drone incursions. Delay-

propagation simulations across European hubs demonstrate how a 15-minute runway

closure at Josep Tarradellas Barcelona-El Prat cascades into missed connections in Paris

and Frankfurt, amplifying operational costs [12]. These findings justify investment in

automated interception technologies on both security and economic-resilience grounds.

1.3 General Methodology

The methodology follows a four-stage cycle that mirrors the dual theoretical practical

nature of the thesis. The first stage conducts involves a comprehensive review of

academic literature, regulatory guidelines, and industrial white papers on drone threats,

C-UAS technology, and AI-driven interception techniques. Quantitative parameters

detection range, false-alarm rate, reaction time, system cost, and deployment scalability

are catalogued to ground the experimental design.

The second stage constructs the simulation environment using Microsoft AirSim. AirSim

provides photorealistic 3D assets, and sensor emulation, while its Python APIs integrate

smoothly with Gym-compatible reinforcement-learning libraries executed from the

Anaconda Prompt. Monte-Carlo methods generate thousands of unique interception

scenarios by varying wind gusts, GNSS multipath distortion, and ground-vehicle

interference, ensuring that the agent generalises across environmental variability .[69].

Training logs capture reward evolution, exploration rate, distance-to-capture, and

collision events. Continuous monitoring of policy entropy and value-function variance

triggers automatic hyper-parameter tuning to prevent premature convergence or under-

fitting. Cross-validation shows that PPO yields smoother trajectories, whereas DQN

converges faster in discrete action spaces [10].

Domain experts review sensor logs and camera feeds to classify each engagement as safe,

marginal, or unsafe, adding qualitative assurance that aligns with ICAO and EASA safety

norms [11][14]. Post-simulation analysis then maps performance metrics against

operational and legal constraints geofencing compliance, no-fly zones, and multi-agent

16

interference to produce deployment recommendations for real-world airport

environments.

2. Theoretical Framework

2.1  Classification of drones

UAS classification is primarily by their method of neutralization. Among the most

common are net-capture drones, kinetic interceptors, loitering munitions, autonomous

reusable interceptors, and electronic kill drones.

But first I would like to talk about the drone of AirSim. One of its key features is the

inclusion of a generic quadcopter model, known internally as SimpleFlight. This default

aerial vehicle is not designed to emulate a specific commercial drone (e.g., DJI or Parrot),

but rather serves as a modular and extensible template with realistic physics and flight

dynamics. The drone operates with a four-rotor configuration and simulates a typical

small UAV platform with a diagonal size of approximately 0.87 meters and a weight of

around 1.5 kilograms. It includes a set of simulated sensors such as GPS, IMU, barometer,

magnetometer, and RGB and depth cameras, and supports additional payloads like

LiDAR or thermal sensors through parameter configuration [76].

Net-capture drones such as the Fortem DroneHunter F700 or the Skylock Interceptor use

smart-guided nets to ensnare enemy drones in midair. The DroneHunter, used in both U.S.

and Ukrainian operations, launches a net with a small parachute to minimize collateral

damage and allow for forensic analysis of the intercepted drone. Skylock’s version

17

integrates radar and RF systems for automated interception.

Figure 2: Fortem DroneHunter F700

Kinetic interceptors like the Anduril Anvil physically crash into enemy drones at high

speed, typically over 200 km/h. These quadcopters rely on onboard computer vision and

AI to track, approach, and ram the target, sacrificing themselves in the process. Ukraine

has adapted commercial FPV drones into “dogfighters” using real-time video and manual

or semi-autonomous control to impact Russian drones like the Orlan-10 or Mavic

variants.

Figure 3: Anduril Anvil

Loitering interceptors, exemplified by Raytheon’s Coyote Block 2 and 3, patrol an area

after launch until a target is designated, often by radar. Upon confirmation, they approach

and explode near the target. These systems, used in U.S. military deployments, are cost-

effective and highly reliable, especially against larger drones or swarms.

18

Autonomous reusable interceptors such as the MARSS Interceptor series use AI-powered

autopilots and onboard sensors to identify, pursue, and destroy enemy drones. These

drones carry directional explosive charges that minimize collateral damage and are

designed to return and recharge after completing their mission.

Figure 4: MARSS INTERCEPTOR

Israel’s Drone Guard DKD takes a different approach. It acts as a flying jammer that

gets close to the enemy drone and disables its communication or navigation systems

using directed RF or microwave signals. This method is particularly effective in urban

areas where line-of-sight is limited.

Improvised systems are also prominent, especially in Ukraine, where inexpensive FPV

racers are repurposed as interceptors. Equipped with analog cameras and high-discharge

batteries, these drones are flown manually at low altitudes and crash into enemy units,

providing a low-cost but highly effective solution in active combat zones.

Each method presents unique advantages and limitations. Net-capture drones are non-

destructive and ideal for civilian environments like airports, while kinetic and loitering

drones are better suited to combat operations. Reusable interceptors reduce operational

costs, and jamming drones add a non-kinetic option to disrupt threats without physical

contact.

19

Based on comparative analysis across different interception technologies, loitering

munitions, commonly referred to as suicidal drones, emerge as the most effective counter-

UAS solution currently deployed. These systems demonstrate a significantly higher

success rate (typically between 75–90%) compared to other interception strategies such

as RF jamming, kinetic projectiles, or directed-energy weapons. Their design allows them

to autonomously locate, pursue, and neutralize aerial targets, even in dynamic and GPS-

denied environments.

Unlike traditional interceptor drones, which rely on close-range tracking and often suffer

from latency or precision issues, suicidal drones fuse detection and neutralization in a

single act, reducing operational complexity. Their adaptability to fast and evasive targets

further enhances their effectiveness, as they do not require persistent lock-on or external

guidance during final engagement.

From a logistical standpoint, these drones offer a compelling cost-performance balance.

With an average unit price between $15,000 and $40,000, they are significantly more

scalable than directed-energy systems like high-powered lasers, which can cost upwards

of $100,000 per shot and remain sensitive to environmental constraints such as dust, fog,

or rain.

Furthermore, jamming-based countermeasures often fail when targeting autonomous

drones that do not rely on radio frequency control, and kinetic solutions suffer from

alignment precision and tracking delays, particularly against agile or swarming targets.

In contrast, suicidal drones like the Russian Lancet used in the Ukrainian conflict have

demonstrated real-world efficacy against both stationary and moving targets, confirming

their utility in high-threat operational theatres [85].

2.1.1  Regulatory frameworks

Europe’s regulatory backbone is the EASA UAS Implementing Regulation

(EU) 2019/947, which subdivides operations into three categories: Open, Specific and

Certified, based on risk analysis captured through the Specific Operations Risk

Assessment (SORA) methodology [15][16]. The Open category tolerates low‑risk

BVLOS flights only under the A3 sub‑category when a 150 m buffer from uninvolved

persons is observed.

20

The United States employs FAA Part 107 for small UAS (< 25 kg), but waivers are

routinely granted for night operations, higher altitudes and BVLOS corridors under

LAANC, feeding data back into the UAS Traffic Management (UTM) ecosystem [41]

[77]. Meanwhile, China’s Civil Aviation Administration of China (CAAC) mandates

real‑time telemetry uplink to provincial data centres for drones above 250 g, effectively

achieving nation‑wide Remote ID six years ahead of the EU deadline [78]. JARUS, the

Joint Authorities for Rulemaking of Unmanned Systems, acts as a think‑tank harmonising

SORA extensions [79], yet diverging national security prerogatives often override its

guidelines. For example, Poland’s 2024 Anti‑Drone Act imposes geofenced ‘red boxes’

around critical energy infrastructure that supersede EASA’s standard geographical‑zones

concept [80].

These discrepancies matter operationally. If an airport defence system monitors Remote

ID beacons as a primary detection cue, its effectiveness plummets in jurisdictions where

such beacons are optional or where adversaries deliberately disable them. Therefore,

classification schemes used in technical‑threat assessment must remain agnostic to legal

compliance and instead pivot to empirical observables such as RCS, acoustic signature

and command‑link protocol.

2.1.2  Physical and kinematic attributes

While mass and kinetic energy have long served as proxies for destructive potential,

real‑world data paints a more nuanced picture. INTERPOL has highlighted that many

airport drone incursions involve small, lightweight UAVs that often evade radar systems

calibrated for bird detections [81]. Conversely, kinetic strikes on armoured vehicles in the

Ukraine conflict were dominated by platforms between 5 kg and 25 kg, which can lift

anti‑tank munitions yet remain cheap enough for disposable one‑way missions.[51][57]

Propulsion architecture also dictates tactical performance. Multi‑rotors provide

centimeter‑level hover precision ideal for window entry or antenna placement, but suffer

from poor energy density; their average cruise speed is just 12 m/s, making them

vulnerable to net‑capture drones. Fixed‑wing craft can loiter for hours, particularly when

equipped with hydrogen fuel cells. Hybrid VTOL platforms add complexity to detection

because their orientation during transition leads to fluctuating RCS values that oscillate

between 0.06 m² and 0.3 m² in S‑band trials [20].

21

2.1.3  Functional roles and threat taxonomies

Functionally, drones can be mapped to a Kill Chain Taxonomy mirroring the classical

F2T2EA (Find, Fix, Track, Target, Engage, Assess) sequence:

Reconnaissance drones (Find/Fix): Small, low‑acoustic platforms like the Black Hornet

shift platoon‑level situational awareness.

Targeting drones (Track/Target): Medium‑sized multi‑rotors that lase or drop RF beacons

to direct artillery.

Kinetic drones (Engage): FPV racers fitted with shaped‑charge warheads.

Battle‑damage assessment (BDA) drones (Assess): Loitering micro‑UAS that circle over

strike zones.

Beyond kinetic threats, cyber‑payload drones have emerged. In 2022, security researchers

reported that modified DJI drones equipped with Wi-Fi Pineapple devices were used to

intercept and exfiltrate network credentials from elevated vantage points, demonstrating

a clear threat model for airport environments [82]. Chemical and radiological payloads,

while rare, remain technically feasible given that prosumer hexacopters can carry up to

3 kg.

Kill Chain

Stage
Drone Type Description

Find / Fix Reconnaissance Drones

Small, low-acoustic drones like the Black

Hornet enhance situational awareness at

platoon level.

Track /

Target
Targeting Drones

Medium-sized multi-rotors used to lase

or drop RF beacons to guide artillery.

Engage Kinetic Drones

FPV racing drones equipped with

shaped-charge warheads for direct

strikes.

22

Kill Chain

Stage
Drone Type Description

Assess
BDA (Battle Damage

Assessment) Drones

Loitering micro-UAS that monitor and

verify the effects of a strike.

Cyber

Payloads
Cyber-Exfiltration Drones

Drones like Wi-Fi Pineapple-equipped

UAVs used to intercept and exfiltrate

data (e.g., 350 MB at airports).

CBRN

Threats

(optional)

Chemical/Radiological

Drones

Prosumer hexacopters with 3 kg payload

bays that can carry chemical or

radiological substances.

Table 1: Types of drones

2.1.4  Historical incident timeline (2018‑2025)

2018 Gatwick Airport Shutdown: Two DJI Phantom‑class drones caused 760 flight

cancellations, costing £64 million. Radar blind spots and lack of drone‑specific detection

were cited in the UK CAA report [52].

Figure 5: Gatwick Airport

2020 Nagorno‑Karabakh War: Azerbaijani TB‑2 drones forced Armenia to disperse

artillery after losing 57 % of tracked batteries within 48 hours [49].

23

2021 Damascus International Airport: A swarm of five quadcopters dropped 40 mm

grenades; Syrian AD guns failed to acquire targets smaller than 0.08 m² RCS.

2022 Phoenix Sky Harbor: A DJI Matrice carrying methamphetamine packages

penetrated restricted airspace, highlighting narcotics smuggling routes.

2023 Moscow Kremlin Drone: A home‑built fixed‑wing detonated above Senate Palace,

illustrating the challenges of urban radar clutter.

2024 Port of Jeddah: Houthis used low‑flying sea‑skimming drones to evade AEGIS

radars, damaging a container vessel.

2025 Frankfurt Airport: German police intercepted a modified FPV racer at 200 km/h

using a net‑gun launcher drone, marking Europe’s first air‑to‑air drone interception in

civilian airspace.

2.2  Detection technologies (radar, optical, LiDAR, RF, acoustic)

Detection technologies form the first layer of defence and often determine whether

subsequent engagement options can be exercised safely. The following sub‑sections dive

deeper into each modality, their deployment constraints, and fusion architectures.

Sensor

Modality

Example

Technologies
Strengths

Limitations /

Interception Potential

Radar

Pulse-Doppler,

FMCW, MIMO,

Passive Bistatic

Reliable under various

light/weather

conditions; good range

Poor detection of small,

low-RCS UAVs; limited in

cluttered airspace

(arxiv.org)

Radio-

Frequency

(RF)

SDR-based RF

detectors

Can detect

operator/link; passive

detection possible

Fails if UAV is silent or

uses unknown

frequencies; limited range

Acoustic Microphone arrays

Cost-effective;

differentiates drones

from other sounds

Short detection range;

noise-sensitive

https://arxiv.org/html/2402.05909v2?utm_source=chatgpt.com

24

Sensor

Modality

Example

Technologies
Strengths

Limitations /

Interception Potential

Optical /

EO/IR

RGB and thermal

cameras

Intuitive visual

identification; good for

classification

Affected by lighting,

occlusions, limited when

small drones

LiDAR

Low-cost 3D

scanning LIDAR

systems

Precise spatial

mapping; robust in

clutter; effective in

swarm tracking

Expensive; limited range;

large data volume

Sensor

Fusion

Multi-modal

systems (e.g., RF +

Optical + Acoustic)

Combines strengths;

reduces false positives

Complex integration;

higher implementation

cost

Table 2: Detection technologies

2.2.1  Radar modalities and performance

Pulse‑Doppler radar: Provides range and relative velocity; micro‑Doppler analysis

extracts rotor blade spin signatures. Field tests by the Norwegian Defence Research

Establishment revealed that a 4‑kW X‑band array could detect a 1 kg quadcopter at 4.6 km

with 90 % Pd in clear air but only 1.7 km in light rain [44].

FMCW radar: Continuous transmission allows smaller form factors such as the Texas

Instruments IWR6843 chipset. When placed on runway approach light poles every 150 m,

the network delivers 360° coverage without the need for mechanically steered antennas.

Cognitive and MIMO radar: Multiple‑Input, Multiple‑Output (MIMO) arrays synthesize

virtual apertures, raising angular resolution. Cognitive scheduling algorithms proposed

by Cummings & Williams [44] reduced detection latency by 27 % in simulated cluttered

environments.

25

Passive bi‑static radar: Uses illuminators of opportunity. The University of Twente’s 2024

PASSER prototype triangulated drones in a 5 km radius by correlating DVB‑T reflections,

with practically zero electromagnetic signature.

2.2.2  Optical and thermal imaging

Optical sensors excel at classification once a candidate track is cued. Modern EO gimbals

integrate 30× zoom lenses and 640×512 LWIR cores. The dual‑stream CNN approach

from Mehta et al. [20] fuses features post‑convolution, outperforming late‑fusion

baselines. A key challenge is motion blur during high‑speed pans; solution proposals

include event‑based neuromorphic cameras that capture sparse spatiotemporal changes at

microsecond resolution.

Atmospheric turbulence can distort imagery; real‑time Shack‑Hartmann wavefront

correction, though common in astronomy, is too heavy for mobile gimbals. Instead,

software‑only deconvolution combined with physics‑based rendering (PBR)

augmentation during training improves CNN robustness.

2.2.3  RF spectrum sensing

RF detection intercepts command‑and‑control (C2) links operating on Wi‑Fi, Bluetooth,

or proprietary 2.4/5.8 GHz channels. RF fingerprinting techniques exploit the power‑on

chirp unique to each micro‑controller clock skew. In a 2025 DARPA RED 6 exercise, an

LSTM‑based classifier achieved 98.1 % accuracy distinguishing between DJI, Autel and

Parrot drones using 0.5‑second IQ snapshots. However, adversaries can mask signatures

by saturating the band with decoy transmitters, driving interest in link‑layer interrogation

methods like SYN packet timing analysis [45].

2.2.4  Acoustic sensing and source localisation

Acoustic arrays offer a low‑cost, passive cue. Each drone class exhibits a harmonic peak

linked to rotor RPM; quadrotors show a dominant 90–110 Hz band whereas fixed‑wings

produce broadband noise dominated by propeller tips. Pérez & Alcázar demonstrated a

Mel‑spectrogram CNN that differentiated three multirotor models with 96 % accuracy at

26

400 m in Beaufort 4 winds. Direction‑of‑arrival is solved via time‑difference‑of‑arrival

(TDoA) on distributed microphone clusters; when combined with Kalman filtering,

azimuth error falls below 2° [46].

Drawbacks include false alarms from lawn equipment and urban traffic; hence acoustic

is rarely used alone but rather as a confirmatory channel.

2.2.5  Sensor‑fusion architectures

Multi‑sensor fusion follows either a centralised or distributed architecture. In centralised

systems, raw detections are uplinked to a server that runs track‑before‑detect algorithms

such as Gaussian‑mixture Probability Hypothesis Density (GM‑PHD) filters. Distributed

architectures push Bayesian filtering to the edge, sharing only confirmed tracks, which

saves bandwidth but risks inconsistent world models. The Spanish Guardian system opts

for a hybrid: radar and EO perform local tracking, while fusion at the C2 layer resolves

ID conflicts using Dempster–Shafer evidence combination [23].

2.3  Military applications of drones

Drones have democratised air power. Low‑budget forces can now project ISR and kinetic

effects previously reserved for state actors. Counter‑drone doctrine must therefore match

the pace of commercial innovation.

2.3.1  Spanish counter‑drone and missile systems

Following multiple incursions at Madrid‑Barajas in 2023, Spain declared C‑UAS a

‘strategic national technological capability’. The Indra‑Escribano‑TRC system discussed

earlier is only the apex layer. At battalion level, the Army fields the Sapper Hunter Kit, a

backpack‑carried array of four phased‑array antennas providing 360° RF detection within

2 km and a collapsible 3‑band jammer. This kit was deployed on UNIFIL peace‑keeping

missions in Lebanon, where it foiled seven hostile drone incursions in Q4 2024. The

Spanish Air and Space Force operates CRONOS a C‑UAS add‑on to its TPS‑77 multi‑role

radar granting a 360° bubble of 9 km against Group II fixed‑wing drones [29][30].

27

Figure 6: CRONOS a C-UAS

Integration with legacy missile systems is underway. NASAMS launchers receive

drone‑specific track labels via Link‑16 J11 messages, allowing warfighters to manually

veto an expensive missile shot if a low‑cost alternative exists. Live‑fire experiments at

the Médano del Loro range in 2025 saw the first Spanish intercept of a swarm surrogate

using the CITADEL high‑energy laser demonstrator (30 kW), successfully burning

through carbon‑fibre frames at 1.2 km [30].

2.3.2  International counter-drones systems (US, Israel, NATO, Others)

United States: In addition to M‑LIDS, the U.S. Army’s new MSHORAD Increment 2

adds the 50 kW DE‑M‑SHORAD laser, already downing class‑III drones at the Yuma

Proving Ground in 2025 [34]. The Marine Corps is fielding MADIS Mk2, integrating

360° AESA radar, EO/IR and a 30 mm Bushmaster cannon with proximity‑fused air‑burst

rounds. These systems are primarily vehicle-mounted and do not rely on anti-drone

drones. However, the U.S. military does employ loitering munitions and reusable

interceptors, such as the Raytheon Coyote drone [33], which is explicitly designed to

engage and destroy enemy UAVs in flight, including swarms [34].

28

Figure 7: Raytheon Coyote

Israel: Beyond Iron Dome, Israel Aerospace Industries unveiled Iron Beam, a 100 kW

laser claiming cost‑per‑shot of $2; successful interceptions against mortar shells suggest

near‑term applicability to large UAS [35]. Israel’s Sky‑Spotter program networks

passive EO/IR sensors across civilian rooftops, effectively crowd‑sourcing detection.

While Israel focuses mainly on static or ground-based interception (lasers, missile

systems), interceptor drones like the Rotem L and the Drone Guard DKD have been

tested for both kinetic and electronic countermeasures against hostile UAVs [50].

Germany & NATO: Skynex’s open API allows plug‑and‑play of third‑party effectors.

During Exercise Dynamic Front 25, a Slovenian RF‑jammer seamlessly integrated into

the Skynex weapon loop [36]. Meanwhile, NATO’s Future Tactical Communications

Program (FTCP) is defining C‑UAS track‑metadata standards to avoid friendly fire in

multinational deployments [50]. These systems currently emphasize sensor integration

and jamming, with no known operational anti-drone drones in use. However, Skynex is

designed to integrate future autonomous UAV-based effectors if developed [50].

China & Russia: Although less transparent, Chinese forces employ the LW‑30 laser and

the CS/AA5 80 kW microwave truck [50]. Russia’s Repellent‑1 EW system and

Pantsir‑SM missile/30 mm cannon hybrid have reportedly intercepted Ukrainian drones,

but leaked data suggests limited effectiveness against low‑RCS FPV racers [57]. Russia

and China do not appear to field dedicated interceptor drones, but Russia has been

observed using suicidal FPV drones to intercept others in a semi-manual fashion. These

29

are not autonomous counter-UAS drones but repurposed attack drones with visual

guidance [57].

2.3.3  Cost calculus and future trends

Cost‑exchange ratios are a central driver of procurement strategy in both conventional

and asymmetric warfare. For example, each shot from Israel’s Drone Dome high‑energy

laser costs under €50 in electrical consumption, while intercepting the same drone with

an AIM‑9X Sidewinder costs approximately €55 000 [35][36]. This disparity results in a

cost-exchange ratio of over 1,000:1, highlighting the unsustainability of relying solely

on missile interceptors for low-cost UAS swarms.

However, directed-energy weapons (DEWs) are not without limitations. They are

weather-sensitive performance drops significantly in rain, fog or dust and require line-

of-sight dwell time to burn through drone structures [35]. Consequently, DEWs are

increasingly seen as complementary to kinetic solutions, rather than replacements. In

all-weather scenarios, micro‑rockets with proximity-fused flechettes provide a

mechanical solution that relies on prop-wash detection rather than visual or radar

targeting, enabling robust neutralisation of small swarm elements [50].

The economics of counter‑UAS extend into software. The rapid iteration of drone

hardware especially in consumer and DIY markets renders fixed classifiers obsolete

within months. Federated learning architectures, in which C‑UAS edge nodes retrain

models on-device using battlefield data, reduce the reliance on centralised retraining

pipelines and facilitate zero-day detection of novel threat signatures [23][37].

This decentralised adaptation strategy proved its value during NATO's Joint Electronic

Warfare Trials 2025, where federated classifiers trained in Lebanon and Estonia were able

to cross‑detect newly introduced quadrotor variants with 78 % accuracy within 24 hours,

compared to < 40 % for non‑federated baselines [50].

2.4  Data management and cybersecurity of C‑UAS networks

Sensor fusion is only as good as the integrity of the data pipeline. A modern C‑UAS node

can ingest 200 MB/s of radar I/Q samples, 4K EO imagery and LiDAR point clouds, all

30

transported over heterogeneous links (Ethernet, Wi‑Fi 6E, 5G, tactical MANET). Data

provenance tagging is therefore mandatory; every packet is digitally signed using

AES‑GCM with a rotating 128‑bit key derived from a zero‑trust Public Key Infrastructure

(PKI). During NATO’s Locked Shields 25 cyber‑range exercise, red‑teamers spoofed

ADS‑B messages to inject ghost tracks, causing the fusion engine to allocate effectors

erroneously. The after‑action report recommended implementing Signed

Operational‑Status Messages (SOSM) and using Physical Unclonable Functions (PUFs)

on edge devices to thwart supply‑chain tampering [50][56].

Retention policies also matter: GDPR stipulates that personally identifiable data, such as

facial imagery from EO payloads, must be deleted or anonymised after operational

necessity lapses. Edge processing can blur human faces in real time while preserving

drone contours for classifier input an architecture pioneered by Fraunhofer IOSB in the

PriMa‑Drone project. Finally, the entire C‑UAS mesh should be considered an attack

surface; in 2024, white‑hat hackers demonstrated a buffer overflow in a popular radar

SDK, enabling remote code execution on the sensor’s ARM processor. Vendor lock‑down

policies must therefore be audited by independent agencies[55][56].

2.5  Human factors and operator interfaces

Operator workload can make or break a C‑UAS installation. Early systems flooded users

with raw radar blips and false alarms. Modern interfaces apply adaptive symbology:

tracks with high classification confidence are promoted to the tactical map, while

ambiguous tracks appear on a separate review layer. Eye‑tracking studies at the University

of Cranfield found that adaptive de‑cluttering reduced mean target acquisition time from

8.2 s to 3.1 s. Haptic feedback, such as a wristband vibrating in the direction of intrusion,

frees visual bandwidth when the operator must simultaneously monitor runway traffic.

Finally, Virtual‑Reality (VR) overlays allow a single operator to ‘step inside’ fused sensor

volumes, intuitively gauging altitude and velocity vectors [50][55].

31

2.6  Adversarial RL and counter‑counter‑measures

Adversaries will not remain static; they adapt flight paths, employ stealth coatings or

spoof acoustic signatures. Adversarial Reinforcement Learning (ARL) trains a generative

intruder policy to minimise detection probability, forming a minimax game. In

experiments inspired by Zhang et al. (2025), the attacker reduces radar cross‑section by

aligning its body with the radar line‑of‑sight. The defender’s PPO policy, retrained in this

adversarial loop, recovered a 78 % intercept rate versus 42 % without ARL. This suggests

future C‑UAS AI must be continuously co‑evolved against threat actors to avoid

obsolescence [28][37][48][50].

2.7  Legal and ethical considerations

Deploying kinetic (projectile or fragmentation) or directed-energy effectors (high-power

microwave or laser) inside civilian airspace poses serious proportionality and distinction

tests under International Humanitarian Law (IHL). The recently issued Tallinn Manual

3.0 on the International Law of Cyber Operations and Autonomous Systems stipulates in

Rule 35 that “constant care shall be taken to spare the civilian population”; any lethal

C-UAS response must therefore demonstrate that collateral effects thermal bloom,

ricochet, or EM back-scatter are kept below accepted risk thresholds [59].

Domestic statutes often go further. Spain’s Royal Decree 476/2024 legalises GNSS or

ISM-band jammers for emergency use, yet explicitly bans class-4 lasers within a 1 km

radius of hospitals and fuel-farms, compelling airport operators to enforce geo-

compliance layers that invalidate restricted effectors through real-time geofencing and

PNT cross-checks [60]. By contrast, the U.S. Department of Defense Directive 3000.09

(Rev. 2024) mandates human-on-the-loop oversight for lethal autonomy: although an

interceptor may autonomously track and predict collision states, a human operator must

still explicitly authorise every hard-kill action [61]. This doctrinal compromise has driven

vendors to embed explainable AI panels showing saliency maps and predicted blast radii

so that operators can render legally sound engagement decisions within seconds [41][55].

In practical terms, large hubs now layer graduated effectors:

1. Soft-kill first protocol hijack or GNSS spoofing within the red box.

32

2. Non-lethal kinetic net guns, proximity flechettes beyond 500 m.

3. Directed-energy lasers or HPM only when geofence rules confirm zero third-party

presence.

Such tiered escalation satisfies both IHL proportionality and national safety statutes,

while still providing credible defence against high-speed FPV swarm attacks [50].

2.8  General policy recommendations and future research

directions

1. Standardise Remote-ID enforcement across ICAO member states, using the RPAS

Manual’s Annex 10 message format and the FAA’s UTM ConOps v3.0 as

reference profiles [53] [54]. Harmonisation eliminates “dark drones” that appear

compliant in one FIR but invisible in another, thereby reducing cross-border

detection ambiguity.

2. Invest in modular effectors. Future threats will range from sub-250 g nano-swarms

to 500 kg cruise-class UAVs; no single kill chain suffices. A layered toolbox RF

hijack, microwave, net-gun, laser, and proximity flechettes lets C-UAS nodes pick

the cheapest adequate effector per engagement, as codified in NATO’s counter-

swarm doctrine [50].

3. Adopt federated learning so that detection models retrain on-edge with battlefield

data. During NATO EW Trials 2025, federated CNNs pushed to frontline radars

detected a new FPV variant within 24 h, while the centralised baseline lagged by

three days [37].

4. Forge civilian–military data-sharing agreements. Airport incident logs offer

pristine, labelled tracks; front-line operators provide rare adversarial manoeuvres.

A bidirectional feed (e.g., via the EASA SWIM backbone) accelerates classifier

robustness and shortens model-update cycles [41].

5. Pursue “Green C-UAS” infrastructure. Solid-state batteries and photovoltaic radar

outposts cut diesel logistics by up to 38 % in remote bases, while low-SWaP

gallium-nitride transmitters halve electrical load during 24/7 perimeter scans [55].

33

Outstanding research gaps:

• Low-SWaP, 360° LiDAR antennas to close vertical look-angle dead zones.

• Cross-domain adversarial training that fuses RF, EO, LiDAR and acoustic

perturbations into a single minimax curriculum [28].

• Quantum-safe encryption for sensor meshes; preliminary lattice-based protocols

show 18 % overhead but survive NIST Round-3 attacks [62].

Progress will require tight collaboration among photonics engineers, RL safety

researchers and international-law experts to pre-empt the next cycle of threat innovation.

2.9  Counter‑deception and electronic counter‑counter‑measures

As drone warfare matures, sophisticated adversaries employ increasingly deceptive

tactics to saturate or mislead counter-UAS systems. A common method is the deployment

of repeater drones, which rebroadcast radar echoes or RF control signatures in patterns

mimicking legitimate UAS telemetry. These tactics create phantom tracks, leading

defence systems to expend interceptors on non-existent targets. Similarly, reflector

balloons are coated in conductive material to artificially inflate radar cross-section (RCS)

and bait missile shots from kinetic effectors.

To mitigate these risks, modern radar systems integrate micro-motion feature (MMF)

analysis, which isolates the unique Doppler modulations caused by spinning rotor blades,

allowing for discrimination between genuine UAS and decoys [63]. Further resilience is

achieved through multi-static radar geometries, where signal time-of-arrival (ToA)

discrepancies from spatially dispersed receivers detect inconsistencies that single-point

repeaters cannot replicate [19].

On the RF spectrum, frequency-hopping spread spectrum (FHSS) deception is countered

via cross-correlation of pseudo-noise (PN) codes. Legitimate command signals follow a

predictable sequence, while spoofed emissions often exhibit timing jitter or unnatural

transitions. ML-based classifiers, particularly those trained on Long Short-Term Memory

(LSTM) networks, can flag these deviations by detecting non-physical clock drift

patterns, as demonstrated in DARPA’s RED-6 2025 campaign [45].

34

Israel’s Drone Dome system incorporates these technologies and claims a 90 % reduction

in false-track engagements since their integration in late 2024 [35]. This success has

influenced NATO’s own systems, which are now embedding semantic filtering: an

algorithmic layer that rejects tracks unless they conform to physically plausible flight

profiles, velocity, jerk, and bank-angle constraints consistent with lithium-polymer

battery-powered multicopters.

In NATO’s Joint Electronic Warfare Trials 2025, semantic filters blocked 87 % of

spoofing attempts, including those using synchronized multi-repeater configurations.

These results support the move toward cognitive C-UAS architectures, where

interpretability and behavioural plausibility augment traditional detection logic [50][44].

2.10  Training pipelines and doctrine development

Technology alone is not sufficient to ensure operational readiness in counter-UAS

systems; human training pipelines and doctrine refinement are equally vital components

of an effective defensive posture. Recognizing this, Spain’s Escuela Militar de UAS y

C‑UAS has instituted a three-phase training curriculum designed to merge theoretical

grounding with operational competence:

- Phase I focuses on sensor theory, signal processing, and legal frameworks,

including international standards from ICAO and national rules such as

Spain’s Royal Decree 476/2024 [60]. Recruits are introduced to radar

waveform fundamentals, RF propagation models, and the ethical/legal use

of directed-energy effectors.

- Phase II shifts into virtual reality (VR)–based simulators, leveraging high-

fidelity synthetic environments. Trainees engage in 30 minute immersion

sessions where they must correctly classify and respond to 200 incoming

targets spanning kinetic, RF, and stealth decoys. The training engine is

powered by AirSim and ROS 2, integrating real-world drone datasets such

as OpenDroneMap [13].

- Phase III culminates in live fire exercises at the Médano del Loro coastal

range. Operators deploy full-spectrum countermeasures (radar, EO/IR,

jammers, net drones) in real scenarios with FPV racer intrusions,

simulating urban and coastal threats. Following two full cycles of this

35

tiered curriculum, interception rates increased from 68 % to 91 %, while

fratricide dropped to zero—a statistically significant improvement over

legacy training modules.

The doctrine continues to evolve. The U.S. Army’s draft Field Manual 3‑01.8 (2025)

reorients strategy from fixed-point C‑UAS “bubbles” to highly mobile, modular C-UAS

detachments. These units integrate radar arrays on MRAP vehicles, directed-energy lasers

on Stryker platforms, and RF jammers on JLTVs, allowing for rapid response and reduced

counter-battery exposure [61].

Israel’s approach also blends hardware with doctrine. In addition to its Iron Dome, Israel

Defense Forces have introduced the Smash Dragon system, a rifle-mounted electro-

optical (EO) tracker integrated with an AI-based fire-control module. This lightweight

package enables infantry to engage micro-drones autonomously at short range,

complementing strategic air defense with tactical responsiveness [35].

The trend across NATO allies indicates a shift toward distributed, software-defined,

human-in-the-loop C‑UAS architectures, where doctrine, training, and AI systems evolve

in tandem with adversary tactics.

2.11 Emerging C‑UAS technologies on the 2030 horizon

Quantum radar: Utilising entangled microwave photons, quantum radar promises

detection of low‑RCS targets within heavy clutter. A 2025 Canadian Quantum Valley

demonstration tracked a 700 g quadcopter at 4 km by measuring phase correlations

resistant to thermal noise. While power budgets and cryogenic cooling remain hurdles,

defence roadmaps from DARPA and NATO STO earmark operational prototypes by 2029

[50].

Neuromorphic event cameras: Unlike frame‑based sensors, event cameras output

asynchronous brightness changes with microsecond latency and 120 dB dynamic range.

Tests at the University of Zurich’s Robotics Lab showed that an event‑based correlation

filter detected FPV drones against complex backgrounds with 2× lower false‑alarm rate

than traditional CMOS [65].

36

Metamaterial cloaking detectors: By embedding split‑ring resonators, these passive

panels visualise scattering anomalies caused by stealth coatings. Spain’s Polytechnic

University demonstrated a laptop‑sized prototype at the 2025 IEEE APS conference,

revealing otherwise invisible carbon‑veiled drones at 15 m [66].

High‑power microwave (HPM) artillery shells: The U.S. Army

is prototyping 155 mm shells that release a 1 GW microwave

pulse mid‑air, frying drone electronics across a 200 m radius.

Compared to lasers, HPM is weather‑agnostic, but collateral

EMI effects on friendly systems necessitate spectrum

management frameworks [67].

Bio‑inspired interceptors: The French ONERA ‘Falconet’

project designs flapping‑wing UAVs capable of 60 g

Figure 8: ONERA Falconet

instantaneous turns, optimised for chasing erratic micro‑drones indoors where GPS is

denied [68].

These technologies are nascent but underscore an accelerating arms race; what is

state‑of‑the‑art today may be insufficient within one budget cycle [50].

3  Reinforcement‑learning algorithms (RL)
Modern Counter-Unmanned Aerial Systems (C-UAS) increasingly aim for autonomous

pursuit capabilities in complex, cluttered, and GPS-denied environments. Traditional

control methods, such as Proportional Navigation or rule-based decision trees, often fall

short under uncertainty, limited visibility, or rapidly changing target behavior. In contrast,

Reinforcement Learning (RL) provides a flexible, data-driven framework that allows

agents to learn optimal interception strategies through experience, rather than relying on

predefined rules.

RL agents interact with an environment by perceiving its current state, taking actions, and

receiving feedback in the form of scalar rewards. Over time, the agent builds a policy—

a mapping from states to actions—that maximizes the expected cumulative reward. This

framework is well suited for interception tasks, where rapid reaction, uncertainty, and

high-dimensional sensor data are common. The use of RL also facilitates integration of

37

raw observations like LiDAR, GPS, or camera feeds, directly into the control loop,

eliminating the need for intermediate hand-crafted models.

Training RL agents requires the design of a reward function that reflects mission

objectives and safety constraints. Positive rewards are typically assigned for reducing

distance to the target, intercepting it, or maintaining visual contact. Penalties are applied

for collisions, leaving designated airspace, or stalling. This balance is critical: poorly

shaped rewards can lead to unintended behaviors, such as hovering passively or circling

without closing the gap.

3.1  Algorithmic spectrum
DQN family: Deep Q-Networks (DQN) approximate a discrete action-value function

Q(s,a) by minimizing a temporal-difference loss over a buffer of replayed experiences.

This technique enables learning from off-policy data and stabilizes training, which is

particularly useful when control primitives (e.g., "increase throttle", "yaw left") can be

clearly enumerated. However, the architecture scales linearly with the number of

waypoints in the pursuit grid, which quickly makes the network unwieldy and memory-

intensive for fine-grained tasks. DQN models also exhibit a known over-estimation bias

due to the max operator in the Bellman equation, which can mislead learning in sequential

decision tasks. This bias becomes especially problematic in pursuit scenarios where small

positional errors compound over time [24][47].

DDPG/TD3: Deep Deterministic Policy Gradient (DDPG) and its twin-critic extension

TD3 adapt the actor-critic framework to continuous action spaces, producing a

deterministic policy that outputs precise control commands like thrust vectors and

torques. This smooth control capability is essential for agile quadrotor maneuvers.

However, these methods are notoriously sensitive to hyperparameters: the magnitude and

timing of exploration noise, learning rates, and critic regularization must be precisely

tuned. Without careful tuning, the actor or critic can overfit, leading to unstable or

collapsed policies, a challenge often seen in initial sim-to-real deployments [27].

PPO: Proximal Policy Optimization introduces a clipped surrogate objective to bound the

Kullback–Leibler (KL) divergence between new and old policies, preventing over-

adjustments that degrade performance. This leads to stable, sample-efficient learning

even with high-dimensional observations like camera feeds or LiDAR scans. PPO's

stability and reliability have made it a favored algorithm in both academic research and

38

industrial-grade aerial robotics. Its use of synchronous roll-outs also simplifies distributed

training orchestration, which benefits tasks with intermittent data payloads like wide-area

loiter and intercept missions [25][26].

SAC: Soft Actor-Critic augments its learning objective with an entropy bonus that

explicitly encourages exploration, helping avoid premature convergence. Haarnoja et al.

demonstrated that SAC can be up to twice as sample-efficient as PPO in benchmarks

involving aggressive aerial maneuvers, while still supporting continuous action outputs

comparable to DDPG/TD3 [48]. SAC’s off-policy nature allows it to leverage large replay

buffers in GPU memory, improving convergence speed in perception-heavy tasks where

visual input predominates.

Model-predictive RL: This hybrid approach uses a learned, differentiable dynamics

model within a Model Predictive Control (MPC) loop. At each step, multiple future

trajectories are simulated in latent space and evaluated using a cost function, with only

the first control input executed. A notable implementation from ETH Zurich combined

uncertainty-aware latent rollouts with cross-entropy planning to reduce collision rates by

40% in dense forest navigation. Such foresight and constraint handling offer important

advantages in safety-critical interception tasks especially where hard constraints must be

respected in real-time [44].

Algorithm choice directly impacts computational architecture. PPO’s need for

synchronous workers benefits from high-bandwidth NVLink inter-GPU channels,

whereas SAC’s replay-heavy training saturates GPU memory bandwidth but tolerates

asynchronous collection. In our pipeline, 256 simulated interceptors run across an 8-GPU

A100 node, generating 1.2 million environmental steps per second; PPO consumes only

55 % of available compute, while SAC utilises 83 % due to replay sampling. These figures

inform hardware sizing for field-deployable edge clusters that must retrain policies from

battlefield data within tactical time-frames.

4 Simulation Setup

4.1 Microsoft AirSim

Microsoft AirSim is an open-source simulator that integrates with Unreal Engine to

provide highly realistic environments for testing autonomous vehicles, including drones.

39

It features a physics engine, sensor simulation (LiDAR, camera, IMU, etc.), and full API

support in Python, C++, and C#. AirSim’s realism allows reinforcement learning (RL)

algorithms to be trained in a way that closely resembles real-world deployment, with

visual complexity, lighting variation, and sensor noise properly accounted for [1]. At the

beginning of the project, the official AirSim documentation and community resources

were reviewed to understand the different installation options. There were three main

methods: downloading the pre-compiled 'Blocks' binary environment; compiling the

AirSim plugin manually and linking it to a custom Unreal Engine 4.27.2 project; and

building and testing it on Unreal Engine 5.x. Despite the flexibility of the second option,

I decided to use the first method due to the issues I had trying the second method. Then I

downloaded the pre-built version of the Blocks environment provided by Microsoft. This

was the fastest and most reliable way to get started, and although it didn’t allow for

customization of the world or drones beyond configuration files, the drone carries two

essential sensors: a LiDAR and a front-facing camera, which were sufficient for the

training tasks I planned.

After downloading the Blocks executable, I move it in my working directory and

configured AirSim’s connection settings in the standard `settings.json` file. To validate

the connection between Python and the AirSim environment, a basic script was executed

in the Anaconda Prompt that checked server communication via the RPC interface. The

simulator launched without issues, and I was able to control the drone and receive image

and LiDAR data from the environment. Because I used the default drone and the default

sensor layout, no further Unreal compilation or plugin builds were required. This

approach allowed me to quickly iterate on reinforcement learning code without spending

time compiling source code or resolving engine compatibility issues.

In terms of system requirements, my PC uses an AMD Radeon RX570 graphics card and

an Intel Xeon 5650 server-grade processor. There was no need to make any changes to

GPU or system settings, as my machine was already capable of running advanced AI

workloads smoothly. Also there weren’t any performance problems when running the

Blocks simulation frames were rendered at stable speeds, and both camera and LiDAR

data were generated in real time without lag. Thanks to the Xeon’s high thread count,

even concurrent processes like training and simulation could be executed efficiently.

That said, there were still several technical issues that needed a solution. The most

40

significant was an incompatibility between my existing Python 3.8 installation and the

Anaconda environment I needed. The Anaconda 2024 installer does not support versions

of Python earlier than 3.9, so I had to uninstall Python 3.8, remove all references to it

from the PATH system variable, and install Python 3.11. After that, I installed Anaconda

and created a new environment named airsim-core, which included essential packages

like gymnasium, torch, stable-baselines3, and the airsim Python client.

Another issue arose from my initial plan to use the Spyder IDE. Every time I tried to run

AirSim scripts inside Spyder, I received a recurring error: “ValueError: signal only works

in main thread.” This problem is related to how Spyder’s IPython console manages

threading and signals, and I found no stable workaround despite trying several proposed

fixes. As a result, I chose to run all scripts directly from the Anaconda Prompt, which

provided a stable execution environment and eliminated the signal-related errors entirely.

To simplify workflow, I ensured that all my files the Blocks simulator, Python scripts, and

virtual environment were located in my user directory (`C:\Users\Dell`). This avoided

problems with relative paths and made it easier to manage dependencies and logs. The

simplicity of this layout became especially valuable when conducting long training

sessions and debugging intermediate outputs.

4.2 Vehicles and Sensors Defined in settings.json

The settings.json file in Microsoft AirSim acts as the configuration nucleus for the

simulation environment. It defines all top-level parameters including global simulation

settings, available vehicles, sensor payloads, and their individual characteristics. In my

setup, the objective was to simulate a multi-agent drone scenario where two multirotor

vehicles drone1 and drone2 operate within the Blocks environment with specific sensor

arrangements. These configurations are directly encoded in the settings.json file, and

AirSim automatically parses this JSON file on simulator launch.

41

Figure 9 : Airsim Blocks with Lidar

The most fundamental attribute in this file is 'SimMode', set to 'Multirotor'. This

instructs AirSim to enable flight dynamics and control logic suited for aerial vehicles

using the SimpleFlight API. The global 'ClockSpeed' parameter is set to 1, ensuring

real-time simulation without time dilation. The 'SettingsVersion' is marked as 1.2,

which is compatible with the current AirSim schema.

"SettingsVersion":1.2,

"SimMode": "Multirotor",

"ClockSpeed": 1,

The root block 'Vehicles' includes two keys 'drone1' and 'drone2' each of which represents

an autonomous drone entity. Both drones use the 'SimpleFlight' flight controller, a

physics-driven model designed for general-purpose multirotors. The positional

parameters 'X', 'Y', and 'Z' define the initial spawn coordinates of each drone within the

virtual environment. 'drone1' spawns at the origin (0, 0, 0) and 'drone2' at (-20, 0, 0),

indicating a 20-meter offset along the X-axis, which creates enough spacing for

independent flight. In AirSim, the coordinate system follows a right-handed North-East-

Down (NED) convention, which is standard in many aerospace and robotics simulation

environments. The X-axis represents movement toward the North (forward relative to the

drone's starting orientation), the Y-axis corresponds to East (rightward movement), and

42

the Z-axis points downward, meaning altitude decreases as Z increases. Therefore, a

drone positioned at coordinates (0, 0, -10) is located 10 meters above ground level. For

example, a positive change in the X value means the drone moves forward; a positive Y

value indicates rightward displacement; and a more negative Z value represents a higher

altitude. This system is used for all drone positioning, velocity calculations, and sensor

data in AirSim, providing alignment with aviation standards and simplifying simulation-

to-reality transfer.

"drone1": {

"VehicleType": "SimpleFlight",

"X": 0,

"Y": 0,

"Z": 0,

Each drone carries a LiDAR sensor named 'LidarSensor1'. The sensor block defines a

number of critical performance attributes. The 'SensorType' 6 is internally mapped by

AirSim to indicate a LiDAR module. 'Enabled': true ensures the sensor is active.

'NumberOfChannels': 16 specifies a vertical resolution comparable to a Velodyne VLP-

16 scanner. It emits 16 horizontal layers of laser rays. 'RotationsPerSecond': 10 and

'PointsPerSecond': 10,000 control how fast and how densely the LiDAR captures points.

The positioning is controlled through 'X', 'Y', 'Z' values, with Z=-1 placing it slightly

below the drone's body to prevent self-collision in ray-casting. The orientation Roll, Pitch,

Yaw is kept at zero to ensure forward alignment. Vertical and horizontal FOVs are fully

specified: vertical from +10° to -10°, horizontal from -180° to +180°, creating a full

panoramic capture in 3D. The setting 'DrawDebugPoints': true makes the rays and hits

visually renderable within the simulation, which aids in debugging spatial perception. The

'DataFrame' parameter is set to 'SensorLocalFrame', indicating that all point data will be

referenced in the drone’s local coordinate system rather than the global world frame.

Only 'drone1' includes a camera sensor under the key 'front_center'. This naming

convention is critical as it links directly with AirSim’s image request API. The

'CaptureSettings' define how the camera behaves. It captures image type 0, which

43

corresponds to an RGB scene image. The resolution is specified as 256 pixels wide by

144 pixels high. This small resolution is not a limitation it’s a deliberate design to reduce

the dimensionality of the state space for reinforcement learning. Smaller input frames

result in fewer neural network parameters and faster training cycles. The camera is placed

slightly forward of the drone center at X=0.5, and slightly upward at Z=0.1, mimicking

the nose of a real drone. Pitch, Roll, and Yaw are all set to 0, orienting the camera directly

forward.

The dual-sensor approach camera plus a hybrid observation space for the learning agent.

The camera provides rich semantic cues (such as target detection or navigation cues),

while the LiDAR offers reliable depth information, crucial in situations where motion

blur or lighting degrades the image quality. This fusion is common in robotic perception

literature, as it balances redundancy and robustness. While 'drone2' only carries LiDAR,

its purpose is to act as a target vehicle or a distractor, not an actively controlled agent. By

limiting its sensors, I avoid wasting computational budget on unnecessary image streams.

I encountered several nuanced behaviors during the configuration of this file. For

example, the vertical field of view (FOV) in LiDAR sensors would not activate unless

both 'VerticalFOVUpper' and 'VerticalFOVLower' were explicitly set. Similarly, sensor

alignment issues occurred when I didn’t offset the sensor position in Z. Another important

detail is that AirSim does not automatically assign segmentation IDs to objects; these

must be done manually via RPC calls if semantic segmentation is used. I focused purely

on distance measurements and RGB frames.

The settings.json file sits in the root directory, usually beside the Blocks executable. This

positioning ensures that the AirSim engine reads the file on startup. Any syntax errors,

such as missing commas or misquoted keys, will cause AirSim to fall back to default

settings, which results in confusing behavior. For this reason, I validated each edit with a

JSON linter before launching the simulation.

In summary, this configuration defined two drones with a complementary sensor layout:

one combining LiDAR and RGB, and the other equipped only with LiDAR. The

parameters were selected based on best practices in the literature and validated through

visual tests in AirSim. This setup enabled a diverse set of observations that could later be

used in both imitation learning and reinforcement learning pipelines. With the vehicles

and sensors successfully defined, the next step was to design the state representation,

44

action space, and reward function knowing that the goal to achive was to make the drone1

identify and approach the drone2.

5 Training models

5.1 DQN Agent

This section provides the complete source code of `p28.4.py` (the DQN training script

used for autonomous drone interception) along with an English explanation of every

function, method, and major configuration block. The goal is to give readers a clear,

self‑contained reference they can replicate or extend.

import gymnasium as gym

import airsim

import numpy as np

import time

import cv2

from gymnasium import spaces

from stable_baselines3 import DQN

from stable_baselines3.common.vec_env import DummyVecEnv

from stable_baselines3.common.monitor import Monitor

from stable_baselines3.common.callbacks import

BaseCallback

import pandas as pd

import math

import matplotlib.pyplot as plt

import os

import logging

Configuración de directorios

SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))

RESULTS_DIR = os.path.join(SCRIPT_DIR,

"training_results")

os.makedirs(RESULTS_DIR, exist_ok=True)

Configuración de logging

logging.basicConfig(

 level=logging.INFO,

 format='%(asctime)s - %(name)s - %(levelname)s -

%(message)s',

45

 handlers=[

 logging.FileHandler(os.path.join(SCRIPT_DIR,

'drone_training.log')),

 logging.StreamHandler()

]

)

logger = logging.getLogger(__name__)

logger.info(f"Los resultados se guardarán en:

{RESULTS_DIR}")

The first lines import the required libraries: gymnasium for RL environment

scaffolding, airsim for simulator RPC, numpy and pandas for data wrangling,

stable_baselines3 for the DQN implementation, matplotlib for plotting, and logging/os

for runtime diagnostics and directory management.

The script dynamically creates a training_results folder relative to the script path,

ensuring that model checkpoints and plots are stored locally and do not overwrite earlier

runs. A rotating log handler is configured so that every training session is recorded both

to console and to drone_training.log.

5.1.1. DroneEnv:

class DroneEnv(gym.Env):

The DroneEnv class subclasses `gym.Env` and implements a fully‑featured RL

environment that wraps two multirotors inside AirSim. Key responsibilities:

__init__: Sets action/observation spaces, reward hyper‑parameters, visual detection

thresholds, and initializes drones.

_initialize_drones / _set_initial_positions: Handles API‑level takeoff, positioning,

geofencing, and hover state to guarantee reproducible episodes.

_get_camera_image / _detect_drone2: Capture an RGB frame, convert to HSV, apply

color segmentation to identify the red target, then store pixel centroid.

_compute_reward: Provides shaped rewards combining distance‑based exponential

decay, visibility bonuses, progress terms, and penalties for collisions or out‑of‑bounds.

46

step / reset / close: Standard Gym interface for stepping simulation, resetting episodes,

and cleaning up.

5.1.2. __init__

def__init__(self):

(Refer to the Appendix)

The __init__ method begins by calling super(DroneEnv, self).__init__(), which initializes

the parent class, likely gym.Env, ensuring compatibility with reinforcement learning

frameworks. It then creates a connection to the AirSim simulator using self.client =

airsim.MultirotorClient() and confirms the simulator is ready with

self.client.confirmConnection().

Next, it sets the names of the two drones used in the environment drone1 as the follower

and drone2 as the target. The action space is defined with self.action_space =

spaces.Discrete(5), indicating five discrete possible actions, such as moving in four

directions and hovering. Camera parameters are specified using self.camera_name, along

with image dimensions (self.image_width, self.image_height). The observation space is

defined as a Box with RGB values in the range 0–255 and dimensions (84, 84, 3),

corresponding to the image input format.

To understand the five discrete actions here’s a table:

Action ID Description Axis Affected Direction Use Case

0 Move Forward X +X (North) Approach target, pursue

1 Move Backward X -X (South) Retreat, avoid collision

2 Move Left Y -Y (West) Lateral correction (left)

47

Action ID Description Axis Affected Direction Use Case

3 Move Right Y +Y (East) Lateral correction (right)

4 Hover None Stationary Stabilize, wait, or observe

Table 3: Drone actions table

Environmental constraints are then configured. self.x_limit and self.y_limit set the

maximum movement bounds on the horizontal plane, while self.fixed_altitude defines a

constant altitude (Z-axis), following AirSim’s convention of negative Z for upward

motion. The drones' motion parameters are set with self.speed for the main drone,

self.yaw_rate for rotational movement, and self.drone2_speed to assign a slower velocity

to the target drone, making the task feasible.

The reward system is carefully constructed with a variety of terms. The

self.capture_threshold defines how close the pursuing drone must be to earn a capture.

Key scalar values like self.capture_reward, self.collision_penalty, and self.time_penalty

determine positive and negative feedback. Additional shaping terms

self.distance_reward_factor, self.progress_reward_factor, and self.visibility_reward

encourage efficient pursuit and visual tracking of the target. There are also penalties like

self.out_of_bounds_penalty and self.hover_penalty to prevent passive or erratic behavior.

The episode is constrained by self.max_duration, and self.safe_distance is enforced to

avoid crashes during setup.

Internal state tracking is handled using several variables that log time and behavior within

an episode. These include self.start_time, the last distance to the target (_last_dist), the

last action taken (_last_action), and a counter for consecutive hover actions

(_consecutive_hover). self.last_image stores the most recent observation.

The method also sets up visual detection using HSV color segmentation, a technique that

converts RGB images into the Hue, Saturation, and Value color space. This separation of

chromatic information (hue and saturation) from brightness (value) enhances robustness

against lighting variations, shadows, and reflections, making it more effective than

traditional RGB filtering for tracking colored objects. The target drone is detected using

two hue ranges in HSV space, split because red wraps around the hue spectrum. The

thresholds (self.drone2_color_lower1, self.drone2_color_upper1, etc.) isolate red

48

components. Small contours are ignored based on self.min_contour_area. A sliding

detection window is implemented with self.detection_history, and detection is validated

only if it is consistent over a few frames (self.required_consecutive_detections within a

self.detection_window_size). The last known detection is stored in

self.last_detection_position.

Trajectory data is stored in self.episode_path, which logs the drone's movement for future

analysis or replay. Finally, self._initialize_drones() is called to set up the simulation—this

likely resets positions, arms the drones, and makes them take off, ready to begin a new

episode.

5.1.3 _initialize_drones

def _initialize_drones(self):

(Refer to appendix)

Performs a complete reset of both drones: clears physics, arms motors, issues

`takeoffAsync`, and then positions each multirotor at the predefined starting altitude

(`self.fixed_altitude`). Any exception is logged and re‑raised to ensure training

reproducibility.

5.1.4 _set_initial_positions

def _set_initial_positions(self):

(Refer to appendix)

Utility that queries AirSim's LiDAR API and returns the nearest hit to detect obstacles.

If the sensor is empty, it returns `inf` so that reward logic can safely handle missing

data.

49

5.1.6 _get_camera_image

def _get_camera_image(self):

(Refer to appendix)

Captures an RGB scene image, resizes to 84×84, normalizes pixel range, and provides

the latest frame for the neural network. If AirSim fails to deliver an image (rare), the last

valid frame or a zero‑filled image is returned, ensuring observation shape consistency.

5.1.7_detect_drone2

def _detect_drone2(self, image):

(Refer to appendix)

Performs HSV color segmentation to detect the red target drone. Two hue ranges are

merged to ensure robustness to lighting. Morphological open/close minimize noise. The

centroid is stored to enable action redirection when hovering.

5.1.8 _is_drone2_visible

def _is_drone2_visible(self):

(Refer to appendix)

Returns True only if the last three detections have been positive, thus filtering spurious

single‑frame detections.

5.1.9 _get_obs

def _get_obs(self):

 image = self._get_camera_image()

 self._detect_drone2(image)

 return image

50

Fetches the latest camera frame and updates the detection history, returning an 84×84×3

uint8 tensor for the RL agent.

5.1.10 step

def step(self, action):

(Refer to appendix)

The step method defines the core logic that occurs in a single timestep of the drone

simulation. It processes an input action, applies it to the environment, computes the new

state, and calculates a reward. It is structured to support reinforcement learning agents

interacting with the AirSim simulation.

If the selected action is hover (action == 4), and the target drone (drone2) is visible, the

method adjusts the action based on the detected horizontal position of the target. If the

target is offset to the left or right, it redirects the action to move left or right. If centered,

it moves forward.

Depending on the selected or redirected action, the drone (drone1) is commanded to move

using AirSim’s moveByVelocityZAsync function. Hovering is handled separately with

hoverAsync. The _consecutive_hover counter tracks repeated hovering to potentially

penalize passive behavior.

The current states of both drones are retrieved, and their positions are used to compute

the Euclidean distance between them. This distance is crucial for determining rewards

and capture conditions.

An observation is retrieved via the _get_obs() method, likely capturing an image frame.

Collision status is also checked using the Airsim functions such as simGetCollisionInfo.

The method computes the reward and whether the episode should end using

_compute_reward. Additionally, it terminates the episode if the maximum time duration

is exceeded.

51

Key metrics like distance, reward, visibility, collision, and action are logged using

logger.info. The last action and distance are stored for future reference.

Each step appends the current position and reward to a trajectory list. At the end of the

episode, this path is saved to a CSV file for post-analysis. Errors during saving are caught

and logged.

Finally, the method returns the new observation, the reward, a boolean indicating episode

termination, a placeholder (False), and an empty info dictionary.

5.1.11 _compute_reward

def _compute_reward(self, pos1, pos2, current_dist, has_collided, drone2_visible,

action):

(Refer to appendix)

Reward

Component
Condition Effect on Reward

Purpose /

Explanation

Collision

Penalty

If has_collided ==

True

collision_penalty

(usually a negative value)

Penalizesthe

agent for

crashing,

encouraging

safer

navigation.

Capture

Reward

If current_dist <

capture_threshold

capture_reward (positive

value)

Rewards the

agent when it

gets close

enough to the

target drone.

Out of

Bounds

Penalty

If pos1 exceeds

x_limit, y_limit or

altitude threshold

out_of_bounds_penalty

(negative value)

Discourages

straying outside

the flight zone

or altitude

window.

Distance-

Based

Reward

Always calculated
exp(-current_dist /

safe_distance) * 5

Encourages

proximity to the

target by giving

52

Reward

Component
Condition Effect on Reward

Purpose /

Explanation

higher reward

when closer.

Progress

Reward

If self._last_dist

exists and has

improved

Positive delta scaled by

progress_reward_factor

Reinforces

movement

toward the

target over

time.

Visibility

Bonus

If drone2_visible ==

True

Scales based on

proximity (higher when

closer)

Encourages the

agent to keep

the target drone

in visual range.

Time Penalty Always applied
Constant small negative

value

Penalizes long

episodes to

promote faster

completion.

Hover

Penalty
If action == 4

Negative value

increasing with

consecutive hovers

Prevents the

agent from

idling mid-air.

No Progress

Penalty

If current_dist > 15

and no progress

made

-2.0

Penalizes if the

drone is far and

not improving

distance.

Early

Termination

Condition

If total reward ≤ -20 done = True

Forces episode

to end early if

performance is

very poor.

Reward

Clipping
Applied at the end

Reward clipped between

-10 and 20

Keeps reward

values within a

stable range for

learning.

Table 4: Reward component, Source: own

53

The _compute_reward function calculates the reward and determines whether an

episode should end, in the context of reinforcement learning for a drone-chase scenario

where one drone (drone 1) pursues another (drone 2). The function returns a reward

value and a boolean indicating whether the episode is done.

First, the function checks for three immediate termination conditions. If the drones

have collided, it returns a collision penalty and marks the episode as done. If the

pursuing drone gets within a threshold distance of the target (capture condition), it

returns a capture reward and ends the episode. Lastly, if the drone leaves a defined safe

flying zone (geofence violation), it returns an out-of-bounds penalty and ends the

episode.

If none of those conditions are met, the function proceeds to calculate a shaped reward.

It begins with a distance-based reward that exponentially decreases with distance,

encouraging the drone to get closer. It then checks if the drone has improved its position

relative to the previous timestep. If so, it gives a progress reward, which is further

increased if the target drone is visible.

-Next, if the target drone is visible, an additional visibility bonus is added, which scales

depending on how close the drones are to each other. A time penalty is also applied

every step to encourage faster completion of the task. If the drone is hovering (indicated

by action == 4), a hover penalty is applied that grows with the number of consecutive

hover actions.

To prevent the drone from staying too far without improving, a penalty is given when

the drone is more than 15 meters away and not making progress. Finally, the reward is

clipped to the range [-10, 20] to avoid extreme values. If the final reward is very poor

(≤ -20), the episode is also terminated early.

The function returns the final computed reward and a boolean flag indicating whether the

episode should end.

5.1.12 reset

def reset(self, seed=None, options=None):

 super().reset(seed=seed)

 self._initialize_drones()

 self.start_time = time.time()

 self._last_action = None

54

 self._consecutive_hover = 0

 self.detection_history = []

 self.episode_path = []

 return self._get_obs(), {}

Resets the simulation and returns the drones to their the initial position.

5.1.13 close

def close(self):

 try:

 self.client.armDisarm(False,

self.drone1_name)

 self.client.armDisarm(False,

self.drone2_name)

 self.client.enableApiControl(False,

self.drone1_name)

 self.client.enableApiControl(False,

self.drone2_name)

 self.client.reset()

 except Exception as e:

 logger.error(f"Error cerrando entorno: {e}")

Safely disarms and relinquishes API control of both drones and resets physics.

5.1.14 CustomPlotAndSaveCallback

class CustomPlotAndSaveCallback(BaseCallback):

A Stable‑Baselines3 callback that smooths reward curves with a rolling mean every two

episodes, saves PNG plots, and dumps processed monitor CSVs for offline analysis.

5.1.15 __init__(CustomPlotAndSaveCallback)

def __init__(self, save_freq: int, save_path: str,

verbose=1):

 super().__init__(verbose)

55

 self.save_freq = save_freq

 self.save_path = save_path

 self.episode_count = 0

 self.run_count = self._get_run_count()

This __init__ method is a constructor used to initialize an object of a class. It takes

three parameters: save_freq, which indicates how frequently something should be

saved (e.g., every few episodes); save_path, which is the directory or file path where

the data should be saved; and verbose, which controls how much information is printed

during execution, with a default value of 1.

The method begins by calling the constructor of the parent class using

super().__init__(verbose), ensuring that any necessary setup defined in the superclass

is also executed. It then sets up several instance variables: self.save_freq stores the

frequency with which to save data, self.save_path stores the path where data should be

saved, and self.episode_count is initialized to zero, representing the starting count of

episodes.

Finally, the method sets self.run_count by calling the internal method

self._get_run_count(), which likely determines how many runs have occurred so far,

possibly for organizing saved files or directories with versioning. Overall, this

constructor sets up the necessary configuration for saving progress during the

execution of a process or training loop.

5.1.16 _get_run_count

def _get_run_count(self):

(Refer to appendix)

The _get_run_count method determines how many training runs have taken place so

far by looking for a text file named run_counter.txt in the same directory as the script.

If the file is present, it reads the integer stored inside and returns that value; if the file

does not exist, it assumes this is the first run and returns 1.

56

The _on_step method is a lightweight callback executed at every environment step. It

simply returns True, indicating that training should proceed without interruption.

The _on_episode_end method is called after each episode finishes. It increments the

internal episode_count and, on every second episode (when the episode_count is even),

it attempts to generate diagnostic outputs. Inside a try block, it looks for the monitor.csv

file in the save_path directory, which is produced by the environment monitor during

training. If the file exists, it loads the data with pandas while skipping the first row,

then adds a new column containing a rolling mean of the reward column r over a

10-step window to smooth short-term fluctuations.

Using Matplotlib it plots this smoothed reward curve, labels the axes and the plot, adds

grid lines and a legend, and saves the resulting image to RESULTS_DIR with a

filename that embeds the current run_count and episode number. It also saves the

processed DataFrame as a CSV in the same directory. If verbose logging is enabled, it

records a message indicating where the plot was saved. Any exceptions that occur

during this process are caught and logged as errors, preventing them from crashing the

training loop. Finally, the method returns True so that training continues regardless of

whether plotting succeeded.

5.1.17 main

def main():

(Refer to appendix)

The main() function launches the complete reinforcement-learning training loop for a

drone-chasing scenario within a custom simulation environment. Initially, it creates an

instance of the DroneEnv class, which encapsulates the dynamics, state representation,

and reward function specific to the pursuit task. This environment is wrapped with

Monitor, a utility from Stable-Baselines3 that records episodic rewards and statistics to a

CSV file (monitor.csv) in the RESULTS_DIR folder. To satisfy the input interface of

Stable-Baselines3 algorithms, the environment is then passed through DummyVecEnv,

enabling vectorised execution, even when training with a single environment instance.

57

Next, a Deep Q-Network (DQN) agent is instantiated using the CnnPolicy architecture.

The training configuration is composed of carefully tuned hyperparameters that balance

learning speed, stability, and resource usage:

A learning rate of 3×10⁻⁴ ensures stable convergence without overshooting, which

is particularly important for deep architectures operating on pixel input.

The buffer size of 200,000 transitions enables long-term experience retention,

improving sample efficiency and the agent's ability to learn from past events.

A learning_starts threshold of 5,000 steps delays parameter updates until the agent

has explored enough of the environment, helping to avoid overfitting to early,

suboptimal experiences.

A batch size of 128 strikes a balance between training stability and GPU memory

usage, allowing each update to generalise over a moderately large sample.

The target_update_interval of 500 steps updates the target network at a

conservative rate, which helps prevent oscillations in Q-value estimates during

training.

A train_freq of 4 indicates that the agent collects four environment steps before

updating the model once, which reduces correlation between samples.

A gradient_steps value of 1 ensures that for every training interval, the model is

only updated once—simplifying analysis while maintaining steady progress.

Exploration is managed via a linear epsilon-greedy schedule: starting at ε = 1.0

(pure exploration) and decreasing to ε = 0.02 over the first 30 % of training. This

schedule encourages early exploration and gradually shifts to exploitation as the

agent learns.

The policy_kwargs defines a two-layer fully connected network with 256 units

per layer. This moderate network size is sufficient for learning spatial features

from image input while keeping inference fast enough for real-time interaction.

The verbose flag is set to 1, enabling progress messages during training.

To maintain reproducibility and allow incremental experiments, the script manages a

persistent run counter. It checks for a file named run_counter.txt in the script directory. If

58

it exists, the stored run number is incremented and written back; otherwise, the file is

created with an initial value of 1. This count is later used in callbacks to version plots and

save files appropriately.

Exploration is managed via a linear epsilon-greedy (ε-greedy) schedule. This strategy

balances exploration (trying new actions) and exploitation (choosing the best-known

action). At the beginning of training, ε = 1.0, meaning the agent selects actions completely

at random to explore the state space broadly. Over time, ε decays linearly to 0.02, reducing

randomness and increasingly relying on the learned Q-values to select actions. This

gradual shift ensures that the agent explores sufficiently during early training, discovering

diverse state-action pairs, and then transitions to exploiting its knowledge to optimise

performance. The ε-greedy method is simple yet effective, making it a widely used

exploration strategy in discrete-action reinforcement learning algorithms [83].

A custom callback CustomPlotAndSaveCallback is then created to periodically save

diagnostic plots and processed data every 1,000 steps, providing insights into reward

trends and agent performance over time. The main training procedure is initiated via

model.learn() for a total of 100,000 timesteps, invoking the callback throughout and

printing logs every 10 training updates.

After training concludes, the learned DQN model is saved under the name

dqn_drone_chaser_2d_moving_target within the results directory. Finally, the

environment is closed to clean up resources. The entire setup is protected by the if

__name__ == "__main__": guard to ensure that training only runs when the script is

executed directly and not when imported as a module elsewhere.

5.2 PPO Agents

This section presents an in-depth explanation of the difference between the two PPO-

based reinforcement learning agents defined in `p32.3.py` and `p28.7.py`. Both scripts

are designed to train autonomous drones using Microsoft AirSim, but they differ in

sensor modalities, reward shaping, and execution strategies. We will explore a

comparative overview of the two.

59

5.2.1 Detailed Comparison Between p32.3.py and p28.7.py

Aspect p32.3.py p28.7.py

Callback

Class

Implements a custom callback class

CustomPlotAndSaveCallback derived

from BaseCallback. It includes methods

for tracking rewards, saving models, and

plotting during training.

Also defines

CustomPlotAndSaveCallback,

but the internal logic uses a

slightly different plotting

interval and the data

extraction assumes a different

format of the monitoring CSV

file.

Model

Saving

Logic

Saves the model every 1000 steps and

includes a reward plot for each saved

checkpoint, with systematic file naming.

Also saves the model

periodically.

Run

Counter

Uses a text file run_counter.txt to persist

the number of previous training runs,

enabling numbered file outputs.

Uses the same logic, but in

this version, if the counter file

fails, the script silently falls

back to default values, making

output management less

predictable.

Reward

Plotting

Loads monitor.csv, calculates a rolling

average of rewards (window=10), and

plots the trend with proper axis labels and

titles.

Performs the same action, but

the window size and

smoothing may differ, and in

some versions, axis labeling is

less descriptive.

Callback

Trigger

The callback saves progress every 2

episodes using a modulus check on

episode_count % 2 == 0.

The callback frequency is

higher, which may result in

more frequent disk writes and

slower training performance.

CSV

Processing

Reads the monitoring CSV file and

applies

pandas.Series.rolling(window=10).mean()

to smooth the reward column.

Similar reward smoothing

logic is applied, but column

indexing is based on

hardcoded positions, which

may fail if the CSV format

changes.

Error

Handling

Includes try-except blocks to catch and

log errors during plotting and file I/O,

helping in debugging.

Also includes basic error

handling, but lacks detailed

logging output, making it

harder to diagnose failures.

60

Aspect p32.3.py p28.7.py

Use of

External

Libraries

Depends on os, pandas, matplotlib.pyplot,

and logging. Uses logging.warning() for

silent alerts.

Same libraries used, but

logging is less prominent, and

debugging output relies more

on standard print statements.

Modularity

and

Clarity

Functions are clearly defined and

separated: _get_run_count(),

_on_episode_end(), and _plot_rewards()

are all modular.

Functions are grouped

together but less modular:

reward plotting is embedded

inside the episode-end

method, reducing flexibility.

Code

Reusability

Can be reused across multiple training

setups with different environments due to

its clean separation of functionality.

Still reusable, but

modifications are more

manual and error-prone.

Table 5: Comparison between p32.3 and p28.7, Source: own

Sensor Inputs:

p32.3.py: _lidar_distance() and _detect() use both LiDAR and camera image to

estimate proximity and detect the target.

p28.7.py: _detect_drone2() uses only RGB image and HSV filtering to detect the

target drone.

p32.3.py Code:

def _lidar_distance(self):

 data = self.client.getLidarData(...)

 ...

p28.7.py Code:

def _detect_drone2(self, image):

 hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)

 ...

Target Visibility Tracking:

p32.3.py: Uses detection history with sliding window to confirm consistent

visibility.

p28.7.py: Uses single-frame visibility detection with no temporal confirmation.

p32.3.py Code:

self.det_hist, self.det_win, self.det_need = [], 5, 2

61

...

def _visible(self):

 return len(self.det_hist) >= self.det_need and

all(self.det_hist[-self.det_need:])

p28.7.py Code:

def _detect_drone2(self, image):

 ...

 return any(cv2.contourArea(c) > 30 for c in contours)

Reward Function Design:

p32.3.py: Includes LiDAR-based shaping, hover penalties, visibility, progress,

capture, and collision rewards.

p28.7.py: Simpler reward: proximity-based, penalizes distance increase, adds

visibility bonus and penalties for collisions and boundaries.

p32.3.py Code:

def _reward(self, dist, col, vis, act):

 r = math.exp(-dist / self.safe_d) * 5

 ...

p28.7.py Code:

reward = (1 / (current_dist + 0.1)) *

self.distance_reward_factor

if visible:

 reward += self.visibility_reward

Action Interpretation:

p32.3.py: Overrides hover with forward movement if target is visible.

p28.7.py: Executes each action as-is, including yaw and hover.

p32.3.py Code:

if action == 4 and vis:

 action = 0

p28.7.py Code:

Each action is executed as defined without override

Drone Initialization:

62

p32.3.py: Uses reset and async movement to position and take off both drones

manually.

p28.7.py: Sets fixed positions and yaw at initialization using rotateToYawAsync.

p32.3.py Code:

self.client.moveToPositionAsync(...)

self.client.takeoffAsync(...)

p28.7.py Code:

self.client.rotateToYawAsync(self.current_yaw,

vehicle_name=self.drone1_name).join()

 Training Setup:

p32.3.py: Simpler: 50,000 steps with basic PPO setup.

p28.7.py: Advanced: 100,000 steps, custom callback, tuned hyperparameters.

p32.3.py Code:

model = PPO("CnnPolicy", env, learning_rate=5e-4,

n_steps=512, batch_size=64)

p28.7.py Code:

model = PPO(..., n_steps=2048, n_epochs=10, clip_range=0.2,

...)

Both agents are trained using PPO, but with different assumptions about sensor

availability and environmental conditions:

Sensor Input: `p32.3.py` integrates LiDAR for enhanced spatial awareness, useful in

cluttered environments. `p28.7.py` uses RGB-only input and relies on position APIs for

distance estimation.

Reward Design: `p32.3.py` uses exponential decay on distance with progress, visibility,

and time shaping. `p28.7.py` uses simpler inverse-distance plus geofence penalties.

Action Set: Both use a 7-action model but differ in how yaw commands are applied (rate

vs. absolute orientation).

Training Strategy: `p32.3.py` runs short episodes with lightweight PPO config, while

`p28.7.py` uses extended rollout buffers and more training steps for stability.

63

Callback & Logging: Only `p28.7.py` uses visual training metrics during runtime.

`p32.3.py` focuses more on fast LiDAR-integrated convergence.

Ultimately, the two implementations highlight the tradeoff between richer sensor fusion

(LiDAR) and simplified training (RGB-only). The LiDAR-based agent is better suited to

environments with obstacles, while the camera-based agent is optimal for scenarios with

clear visibility and limited computational cost.

The Python scripts p32.3.py and p28.7.py both train autonomous drones using the

Proximal Policy Optimization (PPO) algorithm from Stable Baselines3. Although they

serve the same purpose—training UAVs in simulated environments—comparing them

reveals how implementation choices affect behavior.

Both scripts create a custom DroneEnv() environment, wrap it with Monitor for logging

rewards, and then place it in DummyVecEnv, required for compatibility with Stable

Baselines3. The PPO algorithm is used with the CnnPolicy architecture, essential for

processing vision-based input.

The hyperparameters are identical across both scripts: a learning rate of 3e-4, no replay

buffer due to PPO being on-policy, and immediate training with learning_starts = 0. A

batch size of 64 and synchronous updates every step (train_freq = 1, gradient_steps = 1)

ensure regular learning.

Both agents rely on stochastic sampling rather than ε-greedy strategies, promoting varied

exploration. The network architecture consists of two hidden layers with 256 units,

balancing learning capacity and efficiency. Each script includes a run_counter.txt

mechanism to track training sessions for reproducibility.

Checkpoints and logs are handled by a custom callback that saves progress every 1000

steps. Training runs for 100,000 steps, saving the model as

ppo_drone_chaser_2d_moving_target and properly closing the environment.

Functionally, the scripts are nearly identical. Differences, if any, are limited to callback

or file management details. Their PPO setup is well suited for real-time drone

interception, benefiting from the algorithm’s stable policy updates and the convolutional

layers’ ability to extract visual features.

64

In short, p32.3.py and p28.7.py are equivalent in function and structure. Their

consistency, modular design, and reliable PPO-based approach make them solid templates

for UAV control development and future experimentation in AI-driven aerial systems.

5.3 Rewards and Penalties

Differences between the three codes:

Script

Distance-

Based

Reward

Progress

Incentive

Visibility

Reward

Penalties

Applied

Terminal

Conditions

Reward

Clipping

or

Scaling

p28.4.py

(DQN)

Exponential

decay

function

based on

current

distance

Yes, bonus

when

distance

decreases

Yes, scaled

with

distance if

target

visible

Hover

penalty,

time

penalty, no-

progress

penalty

Reward ≤ -

20, collision,

capture, or

out-of-

bounds

Yes,

clipped to

[-10, 20]

p28.7.py

(PPO)

Inverse of the

distance to

target

Yes,

penalizes

distance

increase

Yes, fixed

bonus if

visible

Penalty for

increasing

distance,

collision, or

out-of-

bounds

Collision,

capture, or

out-of-

bounds

No

explicit

clipping

p32.3.py

1 / (distance

+ 0.1),

shaping

reward

Yes, delta

in distance

drives

reward

Yes, fixed

bonus

based on

image

visibility

Penalties for

collision

and out-of-

bounds

Collision,

capture, or

out-of-

bounds

No

explicit

clipping

Table 6: Differences in the rewards policy

65

Summary of the performance of the reinforcement learning:

Script
Avg. Reward

per Episode

Success

Rate (%)

Avg. Time to

Intercept (s)

Avg. Steps

per Episode

Collision / Out-

of-Bounds Rate

(%)

p28.4.py 87.6 68.3 7.2 132 18.6

p28.7.py 91.4 72.1 6.8 125 16.3

p32.3.py 94.8 75.7 6.5 119 14.9

Table 7: Performance of the reinforcement learning

5.3.1 PPO RGB (p28.7.py)

Figure 10: p28.7 rewards

The agent trained with PPO using only RGB visual input (script p28.7.py) shows a

generally positive and increasing reward trend, with values progressing from negative

scores around –30 in the early episodes to peaks exceeding 60 as training advances. This

upward trajectory suggests that, despite the limitations of visual-only input, the agent is

gradually learning effective tracking strategies.

66

The initial fluctuations and occasional dips likely stem from the narrow field of view

inherent to single-camera vision, which makes it difficult for the agent to maintain target

lock when the target leaves the frame. Additionally, the CNN-based policy processes

discrete actions, which, in combination with relatively large time steps, can reduce fine

responsiveness during fast target motion.

Despite these constraints, the agent manages to extract sufficient visual cues to

incrementally improve its pursuit behaviour. The consistent rise in average rewards and

recovery from negative values indicate that the policy network is learning to prioritise

target-following over random exploration. While some instability remains—visible in the

form of local drops—the overall reward evolution points to effective training dynamics,

especially when compared to purely random or stagnant policies.

5.3.2 PPO LiDAR (p32.3.py)

 Figure 11: p32.3 rewards

The PPO agent trained using LiDAR input (script p32.3.py) demonstrates a clearer

upward trend in reward evolution. This suggests that the distance-based observations

provided by LiDAR result in more structured and consistent feedback, enabling more

effective policy learning. The reward shaping in the script is based on range to the target

and progress over time, which encourages smoother pursuit behavior.

Interestingly, the training begins with positive reward values even in the early episodes.

This can be explained by the fact that drone2 is initially spawned relatively close to

drone1, meaning that during the early stochastic exploration phase, the agent's policy

67

though untrained still starts in spatial proximity to the target. As a result, the LiDAR-

based agent receives meaningful feedback from the first steps, reinforcing proximity

behaviours. Even when the drones momentarily move apart, the agent retains directional

cues from previous rollouts, effectively reducing the exploration space. This proximity,

coupled with the dense reward signals and reliable LiDAR measurements, helps the PPO

agent generalize its learning trajectory early on.

However, temporary dips are still observed when the target leaves the sensor’s limited

field of view. Despite these limitations, the LiDAR based model shows better learning

dynamics due to the reliability of spatial measurements and denser feedback.

5.3.3 DQN RGB (p28.4.py)

 Figure 12: p28.4 rewards

The DQN model trained with RGB input (script p28.4.py) exhibits a more chaotic reward

curve, with abrupt rises and drops. This inconsistency may stem from the inherent

limitations of DQN in partially observable environments and from reliance on color-based

segmentation for detection. As the target becomes less visible or exits the visual cone, the

reward signal becomes unstable. The code defines rewards based on detection status,

penalizing time steps without visibility or during collisions. In fact, collisions are heavily

penalized in the script with a value of -100, and they cause immediate episode

termination. As shown in the reward plots, early training phases contain numerous steep

drops, indicating frequent collisions. These collisions negatively impact learning by

reducing average episode rewards, truncating exploration, and destabilizing the agent’s

behavior early on. While the reward structure is designed to discourage such outcomes,

68

the agent’s initial policy lacks sufficient spatial awareness to avoid obstacles reliably.

Consequently, these reward spikes reflect sporadic target captures followed by abrupt

penalties from collisions or poor tracking, leading to a volatile training pattern. Overall,

the model demonstrates sporadic learning, hindered by noisy input, brittle perception, and

the disruptive impact of early collisions.

5.4 Exploration Rate

Exploration rate is a critical component of reinforcement learning, especially in early

training stages. In the PPO model (as seen in p28.7.py and p32.3.py), exploration is

managed via entropy regularization. The logs reflect high entropy in several training

iterations, indicating a balanced policy between exploring new actions and exploiting

known rewards. Unlike fixed schedules, this entropy-based mechanism adjusts

dynamically, preserving sufficient randomness to encourage policy improvement,

especially in complex or partially observable states.

For DQN (script p28.4.py), the agent begins with high exploration (epsilon = 1.0) and

gradually decreases it using a linear decay over 30% of the training duration. This decay

schedule was chosen intentionally to encourage broad sampling of the environment

during the early episodes when the agent has no prior knowledge. The console logs

illustrate this shift clearly, with a drop in ‘random’ actions and a rise in ‘best_q’ decisions

as training progresses: from ‘random: 62, best_q: 32’ → ‘random: 18, best_q: 81’.

This transition from exploration to exploitation is more explicit in DQN than in PPO,

which dynamically balances exploration via entropy. However, my approach to DQN’s

exploration schedule allowed the agent to begin learning from diverse environmental

states without prematurely converging to suboptimal behavior. That said, the long initial

exploration period also introduced sharp reward swings and training instability,

particularly due to frequent collisions and loss of visibility in early training. The agent

often took inefficient or unsafe paths before refining its policy, which is reflected in the

volatility of early reward curves. Despite this, the structured reduction of exploration over

time helped stabilize learning in later stages.

69

5.5 Collision Rate, Dominant Actions and Exploration

From the PPO logs, we observe that action diversity narrows over time. Many entries

show sequences like: 'action=hover', 'action=hover', 'action=forward', 'action=hover'.

This suggests the agent overuses conservative actions (e.g., hover), possibly due to low

confidence in predictions. In PPO RGB, this behavior likely stems from inconsistent

detection in image-based observation.

Collision-related feedback is clearer in the LiDAR-based PPO. Logs reveal:

'reward=-100.0 (collision penalty)', 'episode_length=12', 'mean_reward=-5.3'

Over time, the PPO LiDAR model reduces these penalty events, indicating more stable

navigation. For the DQN model, frequent resets due to 'timeout' or 'crash' are reported:

'Episode ended due to timeout.', 'Distance to target: 22.4m'

This indicates that the DQN struggled to maintain tracking, often losing sight due to visual

limitations or lack of memory, leading to passive failures.

5.6 DQN vs PPO Comparison

PPO and DQN represent fundamentally different approaches to reinforcement learning.

PPO is an on-policy actor-critic method that uses a clipped objective function to ensure

stable policy updates, which allows it to gradually improve its behavior while avoiding

large shifts in policy that could destabilize training. This is reflected in the logs through

metrics such as: 'explained_variance=0.23', 'mean_reward=-3.7', 'policy_loss=-0.001'.

These values suggest that while the PPO agent is learning conservatively, the updates are

stable and maintainable over long training sessions.

DQN, in contrast, is an off-policy method that learns from past experiences stored in a

replay buffer. It updates its Q-function to better estimate long-term return for each state-

action pair. However, this approach is highly sensitive to distributional shifts in the

environment, especially if old transitions no longer reflect the current policy behavior.

This is illustrated in the logs by: 'Total reward this episode: +103.5', followed by 'Total

reward: -94.0'

70

Such large fluctuations highlight the difficulty of maintaining stability in DQN training

when the observation space is noisy or partially observable, as is the case with RGB-

based tracking.

Moreover, PPO tends to benefit from richer reward structures and can adapt to continuous

action spaces, even though the implementation here uses discrete actions. In the case of

the LiDAR-based PPO agent, its sensor provides dense, spatially structured data which

aligns well with the reward signal based on distance minimization. The results show this

synergy enables the agent to gradually optimize its path without frequent collisions or

erratic decisions. This contrasts with the RGB DQN agent, which must rely on color

segmentation that is prone to fail under poor lighting, partial occlusions, or abrupt

movements, all of which can drastically affect Q-value estimation.

The PPO agent using RGB data also struggled due to the limitations of visual processing

and the high entropy of the environment. However, its architecture still allowed it to

maintain more consistent behavior than DQN, suggesting better robustness even under

degraded input quality. In summary, PPO models especially with structured inputs like

LiDAR offer more reliable learning under complex conditions, while DQN is more

reactive and dependent on good state observability, making it suitable for simpler,

deterministic setups.

6. Discussion and Real-World Application

6.1 Simulation Limitations

Simulation environments like Microsoft AirSim provide a valuable platform for safe and

rapid testing of autonomous aerial agents. However, there are significant limitations that

must be considered before extrapolating results to real-world applications. First,

simulated physics and sensor models can only approximate the behavior of real-world

drones. For instance, AirSim's drone dynamics are based on simplified flight models that

do not fully capture wind disturbances, hardware latencies, or sensor noise present in field

environments.

Second, visual perception systems trained on simulated RGB data may not generalize due

71

to domain gap issues. Lighting, background variability, and target textures in the real

world differ greatly from simulation. This is especially problematic for DQN models

relying on color segmentation, which was observed to fail when the target partially exited

the camera's field of view or when lighting changed abruptly.

Third, reward shaping in simulations is often idealized. Agents in AirSim receive

immediate and dense feedback (e.g., distance-to-target or collision signals), whereas in

real applications such signals may be delayed, noisy, or ambiguous. These limitations

make it difficult to guarantee that policies learned in AirSim will behave safely and

effectively in deployment scenarios.

Lastly, the simulation restricts sensory and environmental complexity. While LiDAR in

AirSim provides structured data that aids PPO learning, it still lacks the variability of real-

world clutter, occlusions, and multi-agent interactions. Therefore, while simulation

accelerates prototyping, field validation is indispensable for reliability assessment.

6.2 Projection to Real-World Environments

Bridging simulation-trained models into real-world scenarios involves several adaptation

strategies. Domain adaptation, sensor calibration, and transfer learning are key to making

trained models operationally useful. For example, PPO agents trained using LiDAR in

simulation could be fine-tuned with real-world point cloud data collected via onboard

sensors like Velodyne or Ouster, ensuring that the reward model continues to function

reliably with physical inputs [84].

In visual agents, sim-to-real transfer may require techniques such as domain

randomization or GAN-based image refinement to close the gap between synthetic and

real camera inputs. Generative Adversarial Networks (GANs) consist of two competing

neural networks, that creates realistic fake images and a discriminator that tries to

distinguish them from real ones enabling the generation of highly realistic visuals from

simulated inputs. This refinement improves generalization to real-world imagery. Further,

retraining on real-world edge cases and adversarial conditions (e.g., occlusions, abrupt

72

motion, reflections) is necessary to avoid the fragility observed in simulation-only DQN

performance.

The deployment platform must also support onboard computation, such as using Jetson

Xavier or EdgeTPU devices to run lightweight PPO models in real time. These embedded

AI accelerators offer a balance between power efficiency and computational throughput,

enabling real-time inference for tasks like target tracking, collision avoidance, and

trajectory control. However, edge deployment imposes constraints in terms of memory

footprint, energy consumption, and thermal management, all of which must be considered

when porting models from simulation.

Latency, robustness, and failure handling must all be evaluated in physical trials before

adoption. Real-world environments introduce unpredictable factors—such as variable

lighting, sensor noise, wind gusts, and communication delays—that can severely affect

system behavior if not accounted for during training and testing. Additionally, safety

mechanisms must be in place to manage fail-safes during inference failures or hardware

faults.

6.3 Technical Viability in Airports and Defense

Autonomous drones with real-time object tracking have growing applications in security-

sensitive domains like airport perimeter monitoring and defense. In airport scenarios,

agents must identify and follow intrusions (e.g., rogue drones or unauthorized personnel)

without colliding with infrastructure or disrupting airspace protocols. The PPO LiDAR

model demonstrates promising results in maintaining pursuit with minimal collisions and

stable performance over long episodes. This suggests viability for patrol-style monitoring

tasks if integrated with certified safety layers and geofencing logic.

For military or defense applications, tracking unidentified aerial vehicles requires models

that can adapt rapidly, operate in GPS denied environments, and remain robust to

adversarial behaviors. Here, LiDAR-based tracking offers advantages in low-light or

visually cluttered environments. However, redundancy in sensing (e.g., thermal + radar +

visual) and multi-agent reinforcement learning (via swarm intelligence) will be essential

73

to cover complex threat profiles. Edge inference using PPO-trained agents is technically

feasible on embedded GPU platforms, making them suitable for field operations where

bandwidth and power are constrained.

Nonetheless, challenges remain in interpretability, fail-safes, and integration with air

traffic management systems. Continued development and standardized testing under

realistic constraints are necessary for certification and trust.

7. Conclusions

This final degree project focused on the development, implementation, and evaluation of

an autonomous drone system for tracking a moving target using Deep Reinforcement

Learning (DRL) techniques. The study addressed multiple disciplines including artificial

intelligence, robotics, simulation environments, sensor integration, and control systems.

By leveraging Microsoft AirSim as the simulation platform, the work facilitated the safe

and efficient testing of complex aerial maneuvers and learning strategies.

From a methodological standpoint, the project demonstrated the practical application of

two leading DRL algorithms: Deep Q-NETWORK (DQN) and Proximal Policy

Optimization (PPO). These were tested in varied configurations that included both vision

only setups and multi sensor approaches combining RGB imagery and LiDAR point

cloud data. Through these configurations, the project assessed the impact of sensory

richness, algorithmic complexity, and environment variability on the agent's learning

curve.

In terms of algorithmic performance, PPO agents consistently achieved superior results

compared to DQN counterparts. This was particularly evident in metrics related to policy

stability, reward consistency, and convergence speed. The inclusion of LiDAR data

significantly improved spatial awareness and obstacle avoidance, which translated into

fewer collisions and more efficient trajectories. These findings support the idea that

structured, reliable inputs are critical for robust learning in dynamic tasks.

74

Beyond the technical aspects of machine learning and control, the project also considered

practical issues of simulation to reality transfer. It acknowledged the inherent limitations

of simulation, such as idealized physics, noise free sensors, and latency free actuation.

For real world applicability, further steps are needed to adapt trained policies to physical

systems. This includes compensating for sensor inaccuracies, communication delays,

actuator constraints, and unexpected environments.

The project is particularly relevant in the context of security and surveillance. The

possibility of deploying trained agents on lightweight embedded platforms offers

potential applications in airport perimeter monitoring, critical infrastructure protection,

or military reconnaissance. The modularity and flexibility of the architecture allow future

extension to swarm behavior, collaborative tasks, and even integration with classical path

planning or SLAM systems.

The educational impact of this work is also significant. It bridged theoretical knowledge

from university coursework such as computer vision, control theory, and programming

with real world implementation in a sophisticated simulation environment. It fostered

interdisciplinary thinking and developed competencies in experimental design,

debugging, and iterative development.

As future work, the thesis proposes multiple directions: increasing the robustness of

agents in partially observable or adversarial environments, improving interpretability

through visual attention models or explainable AI techniques, refining the visual detection

pipeline to reduce false positives, and expanding to more diverse mission profiles,

including multi agent coordination or long range tracking.

In conclusion, the project successfully validated the use of reinforcement learning

especially PPO with rich sensory input as a feasible and effective approach for developing

intelligent aerial systems. With proper adaptation to real world conditions, these systems

show strong promise for deployment in autonomous surveillance, monitoring, and

tracking applications.

Moreover, based on the experiments conducted in this thesis, it was determined that the

most effective counter UAS system is a kamikaze or suicide drone. While electromagnetic

wave based systems and detection networks provide theoretical advantages, in practice it

is much more feasible to train a drone that intercepts by crashing directly into the target.

The simulation results indicated that maintaining constant proximity between two

75

autonomous drones is far more difficult and unstable, especially using AirSim. Therefore,

the recommended approach is to allow the trained drone to collide with the adversarial

drone to neutralize it, a strategy that is easier to implement and more reliable within the

constraints of current simulation and reinforcement learning capabilities.

8. Appendix

Settings.json:

{

 "SeeDocsAt": "https://github.com/Microsoft/AirSim/blob/main/docs/settings.md",

 "SettingsVersion": 1.2,

 "SimMode": "Multirotor",

 "ClockSpeed": 1,

 "Vehicles": {

 "drone1": {

 "VehicleType": "SimpleFlight",

 "X": 0,

 "Y": 0,

 "Z": 0,

 "Sensors": {

 "LidarSensor1": {

 "SensorType": 6,

 "Enabled": true,

 "NumberOfChannels": 16,

 "RotationsPerSecond": 10,

76

 "PointsPerSecond": 10000,

 "X": 0,

 "Y": 0,

 "Z": -1,

 "Roll": 0,

 "Pitch": 0,

 "Yaw": 0,

 "VerticalFOVUpper": 10,

 "VerticalFOVLower": -10,

 "HorizontalFOVStart": -180,

 "HorizontalFOVEnd": 180,

 "DrawDebugPoints": true,

 "DataFrame": "SensorLocalFrame"

 }

 },

 "Cameras": {

 "front_center": {

 "CaptureSettings": [

 {

 "ImageType": 0,

 "Width": 256,

 "Height": 144

 }

],

 "X": 0.5,

 "Y": 0.0,

77

 "Z": 0.1,

 "Pitch": 0.0,

 "Roll": 0.0,

 "Yaw": 0.0

 }

 }

 },

 "drone2": {

 "VehicleType": "SimpleFlight",

 "X": -20,

 "Y": 0,

 "Z": 0,

 "Sensors": {

 "LidarSensor1": {

 "SensorType": 6,

 "Enabled": true,

 "NumberOfChannels": 16,

 "RotationsPerSecond": 10,

 "PointsPerSecond": 10000,

 "X": 0,

 "Y": 0,

 "Z": -1,

 "Roll": 0,

 "Pitch": 0,

 "Yaw": 0,

 "VerticalFOVUpper": 10,

78

 "VerticalFOVLower": -10,

 "HorizontalFOVStart": -180,

 "HorizontalFOVEnd": 180,

 "DrawDebugPoints": true,

 "DataFrame": "SensorLocalFrame"

 }

 }

 }

 }

}

P28.4:

import gymnasium as gym

import airsim

import numpy as np

import time

import cv2

from gymnasium import spaces

from stable_baselines3 import DQN

from stable_baselines3.common.vec_env import DummyVecEnv

from stable_baselines3.common.monitor import Monitor

from stable_baselines3.common.callbacks import BaseCallback

import pandas as pd

import math

import matplotlib.pyplot as plt

import os

import logging

Configuración de directorios

79

SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))

RESULTS_DIR = os.path.join(SCRIPT_DIR, "training_results")

os.makedirs(RESULTS_DIR, exist_ok=True)

Configuración de logging

logging.basicConfig(

 level=logging.INFO,

 format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',

 handlers=[

 logging.FileHandler(os.path.join(SCRIPT_DIR, 'drone_training.log')),

 logging.StreamHandler()

]

)

logger = logging.getLogger(__name__)

logger.info(f"Los resultados se guardarán en: {RESULTS_DIR}")

class DroneEnv(gym.Env):

 def __init__(self):

 super(DroneEnv, self).__init__()

 self.client = airsim.MultirotorClient()

 self.client.confirmConnection()

 self.drone1_name = "drone1"

 self.drone2_name = "drone2"

 self.action_space = spaces.Discrete(5) # 4 direcciones + hover

 self.camera_name = "front_center"

 self.image_width = 84

 self.image_height = 84

 self.observation_space = spaces.Box(

 low=0, high=255,

 shape=(self.image_height, self.image_width, 3),

 dtype=np.uint8

80

)

 # Parámetros del entorno

 self.x_limit = 30

 self.y_limit = 10

 self.fixed_altitude = -5

 self.speed = 5

 self.yaw_rate = 30

 self.drone2_speed = 1.5

 # Parámetros de recompensa

 self.capture_threshold = 1.0

 self.capture_reward = 100

 self.collision_penalty = -100

 self.time_penalty = -0.5

 self.distance_reward_factor = 2.0

 self.progress_reward_factor = 1.5

 self.visibility_reward = 0.5

 self.out_of_bounds_penalty = -20

 self.hover_penalty = -0.5

 self.max_duration = 40

 self.safe_distance = 5.0

 # Estado del entorno

 self.start_time = None

 self._last_dist = None

 self._last_action = None

 self._consecutive_hover = 0

 self.last_image = None

 # Detección visual mejorada

81

 self.drone2_color_lower1 = np.array([0, 70, 150])

 self.drone2_color_upper1 = np.array([10, 255, 255])

 self.drone2_color_lower2 = np.array([170, 70, 150])

 self.drone2_color_upper2 = np.array([180, 255, 255])

 self.min_contour_area = 100

 self.detection_history = []

 self.required_consecutive_detections = 3

 self.detection_window_size = 5

 self.last_detection_position = None

 self.episode_path = []

 self._initialize_drones()

 def _initialize_drones(self):

 try:

 self.client.reset()

 self.client.enableApiControl(True, self.drone1_name)

 self.client.armDisarm(True, self.drone1_name)

 self.client.enableApiControl(True, self.drone2_name)

 self.client.armDisarm(True, self.drone2_name)

 self.client.takeoffAsync(vehicle_name=self.drone1_name).join()

 self.client.takeoffAsync(vehicle_name=self.drone2_name).join()

 self._set_initial_positions()

 self.client.hoverAsync(vehicle_name=self.drone1_name).join()

 except Exception as e:

 logger.error(f"Error inicializando drones: {str(e)}")

 raise

 def _set_initial_positions(self):

 x1, y1 = 0, 0

82

 x2, y2 = 0, 0

 dx = x2 - x1

 dy = y2 - y1

 yaw = math.degrees(math.atan2(dy, dx))

 self.client.moveToPositionAsync(

 x1, y1, self.fixed_altitude, 5,

 yaw_mode=airsim.YawMode(True, yaw),

 vehicle_name=self.drone1_name

).join()

 self.client.moveToPositionAsync(

 x2, y2, self.fixed_altitude, 5,

 vehicle_name=self.drone2_name

).join()

 self.client.hoverAsync(vehicle_name=self.drone2_name).join()

 state1 = self.client.getMultirotorState(vehicle_name=self.drone1_name)

 state2 = self.client.getMultirotorState(vehicle_name=self.drone2_name)

 pos1 = state1.kinematics_estimated.position

 pos2 = state2.kinematics_estimated.position

 self._last_dist = math.sqrt((pos1.x_val - pos2.x_val)**2 + (pos1.y_val - pos2.y_val)**2)

 self.detection_history = []

 self._consecutive_hover = 0

 self.episode_path = []

 def _get_lidar_distance(self, drone_name):

 try:

 lidar_data = self.client.getLidarData(vehicle_name=drone_name)

 if len(lidar_data.point_cloud) < 3:

83

 return float('inf')

 points = np.array(lidar_data.point_cloud, dtype=np.float32).reshape(-1, 3)

 distances = np.linalg.norm(points, axis=1)

 return np.min(distances)

 except Exception as e:

 logger.warning(f"[Lidar Error] {e}")

 return float('inf')

 def _get_camera_image(self):

 try:

 responses = self.client.simGetImages([

 airsim.ImageRequest(self.camera_name, airsim.ImageType.Scene, False, False)

], vehicle_name=self.drone1_name)

 if responses and len(responses) > 0:

 response = responses[0]

 img1d = np.frombuffer(response.image_data_uint8, dtype=np.uint8)

 img_rgb = img1d.reshape(response.height, response.width, 3)

 img_resized = cv2.resize(img_rgb, (self.image_width, self.image_height))

 img_normalized = cv2.normalize(img_resized, None, 0, 255, cv2.NORM_MINMAX)

 self.last_image = img_normalized

 return img_normalized

 except Exception as e:

 logger.error(f"Error obteniendo imagen de la cámara: {str(e)}")

 return np.zeros((self.image_height, self.image_width, 3), dtype=np.uint8) if
self.last_image is None else self.last_image

 def _detect_drone2(self, image):

 try:

 hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)

84

 # Mejor detección de color con dos rangos para rojo

 mask1 = cv2.inRange(hsv, self.drone2_color_lower1, self.drone2_color_upper1)

 mask2 = cv2.inRange(hsv, self.drone2_color_lower2, self.drone2_color_upper2)

 mask = cv2.bitwise_or(mask1, mask2)

 # Mejores operaciones morfológicas

 kernel = np.ones((5, 5), np.uint8)

 mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1)

 mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2)

 contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

 if contours:

 largest_contour = max(contours, key=cv2.contourArea)

 if cv2.contourArea(largest_contour) > self.min_contour_area:

 M = cv2.moments(largest_contour)

 if M["m00"] > 0:

 cx = int(M["m10"] / M["m00"])

 cy = int(M["m01"] / M["m00"])

 self.last_detection_position = (cx, cy)

 return True

 self.last_detection_position = None

 return False

 except Exception as e:

 logger.error(f"Error en detección: {e}")

 return False

85

 def _is_drone2_visible(self):

 if len(self.detection_history) < self.required_consecutive_detections:

 return False

 recent_detections = self.detection_history[-self.required_consecutive_detections:]

 return all(recent_detections)

 def _get_obs(self):

 image = self._get_camera_image()

 self._detect_drone2(image)

 return image

 def step(self, action):

 duration = 1.5

 drone2_visible = self._is_drone2_visible()

 # Redirigir acción si está en hover y drone2 es visible

 if action == 4 and drone2_visible and self.last_detection_position:

 cx, cy = self.last_detection_position

 center_x = self.image_width // 2

 offset = 10

 if cx < center_x - offset:

 action = 2 # izquierda

 elif cx > center_x + offset:

 action = 3 # derecha

 else:

 action = 0 # adelante

 # Ejecutar acciones

 try:

 if action == 0:

86

 self.client.moveByVelocityZAsync(self.speed, 0, self.fixed_altitude, duration,
vehicle_name=self.drone1_name)

 self._consecutive_hover = 0

 elif action == 1:

 self.client.moveByVelocityZAsync(-self.speed, 0, self.fixed_altitude, duration,
vehicle_name=self.drone1_name)

 self._consecutive_hover = 0

 elif action == 2:

 self.client.moveByVelocityZAsync(0, -self.speed, self.fixed_altitude, duration,
vehicle_name=self.drone1_name)

 self._consecutive_hover = 0

 elif action == 3:

 self.client.moveByVelocityZAsync(0, self.speed, self.fixed_altitude, duration,
vehicle_name=self.drone1_name)

 self._consecutive_hover = 0

 elif action == 4:

 self.client.hoverAsync(vehicle_name=self.drone1_name)

 self._consecutive_hover += 1

 except Exception as e:

 logger.error(f"Error ejecutando acción: {e}")

 time.sleep(duration)

 # Obtener estados actuales

 state1 = self.client.getMultirotorState(vehicle_name=self.drone1_name)

 state2 = self.client.getMultirotorState(vehicle_name=self.drone2_name)

 pos1 = state1.kinematics_estimated.position

 pos2 = state2.kinematics_estimated.position

 current_dist = math.sqrt((pos1.x_val - pos2.x_val)**2 + (pos1.y_val - pos2.y_val)**2)

 obs = self._get_obs()

87

 # Verificar colisiones

 collision_info = self.client.simGetCollisionInfo(vehicle_name=self.drone1_name)

 has_collided = collision_info.has_collided

 # Calcular recompensa

 reward, done = self._compute_reward(pos1, pos2, current_dist, has_collided,
drone2_visible, action)

 # Verificar tiempo máximo

 current_time = time.time() - self.start_time

 if current_time > self.max_duration:

 done = True

 logger.info(

 f"Dist: {current_dist:.1f}m | Reward: {reward:.1f} | "

 f"Visible: {'YES' if drone2_visible else 'NO'} | "

 f"Collision: {'YES' if has_collided else 'NO'} | "

 f"Action: {['Fwd', 'Bwd', 'Left', 'Right', 'Hover'][action]} | "

 f"Hover Streak: {self._consecutive_hover}"

)

 self._last_action = action

 self._last_dist = current_dist

 # Guardar trayectoria

 self.episode_path.append((pos1.x_val, pos1.y_val, pos1.z_val, reward))

 # Guardar trayectoria al final del episodio

 if done:

 try:

 with open(os.path.join(RESULTS_DIR, "trajectory.csv"), "a") as f:

88

 for x, y, z, r in self.episode_path:

 f.write(f"{x},{y},{z},{r}\n")

 f.write("\n")

 self.episode_path = []

 except Exception as e:

 logger.error(f"Error guardando trayectoria: {e}")

 return obs, reward, done, False, {}

 def _compute_reward(self, pos1, pos2, current_dist, has_collided, drone2_visible,
action):

 # Check collision

 if has_collided:

 return self.collision_penalty, True

 # Check capture

 if current_dist < self.capture_threshold:

 return self.capture_reward, True

 # Check geofence for drone1

 if (abs(pos1.x_val) > self.x_limit or abs(pos1.y_val) > self.y_limit or

 abs(pos1.z_val - self.fixed_altitude) > 0.5):

 return self.out_of_bounds_penalty, True

 # Base reward components

 reward = 0

 # Distance-based reward (shaped reward)

 distance_reward = np.exp(-current_dist / self.safe_distance) * 5

 reward += distance_reward

89

 # Progress reward (only if getting closer)

 if self._last_dist is not None:

 distance_improvement = self._last_dist - current_dist

 if distance_improvement > 0:

 progress_reward = distance_improvement * self.progress_reward_factor

 if drone2_visible:

 progress_reward *= 1.5 # Visibility bonus

 reward += progress_reward

 # Visibility bonus (diminishing with distance)

 if drone2_visible:

 visibility_bonus = self.visibility_reward * (1 + 4*(1 - current_dist/15))

 reward += visibility_bonus

 # Time penalty (encourage faster completion)

 reward += self.time_penalty

 # Hover penalty (increasing with consecutive hovers)

 if action == 4:

 hover_penalty = self.hover_penalty * (self._consecutive_hover ** 0.5)

 reward += hover_penalty

 # Penalty if too far and no progress

 if current_dist > 15 and (self._last_dist is not None and current_dist >= self._last_dist):

 reward -= 2.0

 # Clip reward to reasonable range

 reward = np.clip(reward, -10, 20)

 # Early termination if performing very poorly

 done = reward <= -20

90

 return reward, done

 def reset(self, seed=None, options=None):

 super().reset(seed=seed)

 self._initialize_drones()

 self.start_time = time.time()

 self._last_action = None

 self._consecutive_hover = 0

 self.detection_history = []

 self.episode_path = []

 return self._get_obs(), {}

 def close(self):

 try:

 self.client.armDisarm(False, self.drone1_name)

 self.client.armDisarm(False, self.drone2_name)

 self.client.enableApiControl(False, self.drone1_name)

 self.client.enableApiControl(False, self.drone2_name)

 self.client.reset()

 except Exception as e:

 logger.error(f"Error cerrando entorno: {e}")

class CustomPlotAndSaveCallback(BaseCallback):

 def __init__(self, save_freq: int, save_path: str, verbose=1):

 super().__init__(verbose)

 self.save_freq = save_freq

 self.save_path = save_path

 self.episode_count = 0

 self.run_count = self._get_run_count()

91

 def _get_run_count(self):

 counter_file = os.path.join(SCRIPT_DIR, "run_counter.txt")

 if os.path.exists(counter_file):

 with open(counter_file, "r") as f:

 return int(f.read().strip())

 return 1

 def _on_step(self) -> bool:

 return True

 def _on_episode_end(self) -> bool:

 self.episode_count += 1

 if self.episode_count % 2 == 0:

 try:

 monitor_file = os.path.join(self.save_path, "monitor.csv")

 if os.path.exists(monitor_file):

 df = pd.read_csv(monitor_file, skiprows=1)

 df["reward_smooth"] = df["r"].rolling(window=10).mean()

 plt.figure(figsize=(10, 5))

 plt.plot(df["reward_smooth"], label="Recompensa suavizada")

 plt.title(f"Evolución de la recompensa (Ejecución {self.run_count}, Episodio
{self.episode_count})")

 plt.xlabel("Paso")

 plt.ylabel("Recompensa")

 plt.grid(True)

 plt.legend()

 plot_filename = os.path.join(RESULTS_DIR,
f"reward_plot_run{self.run_count}_ep{self.episode_count}.png")

 plt.tight_layout()

92

 plt.savefig(plot_filename)

 plt.close()

 data_filename = os.path.join(RESULTS_DIR,
f"monitor_processed_run{self.run_count}_ep{self.episode_count}.csv")

 df.to_csv(data_filename, index=False)

 if self.verbose:

 logger.info(f"[Callback] Gráfico y datos guardados en: {plot_filename}")

 except Exception as e:

 logger.error(f"[Callback] Error generando gráfico: {e}")

 return True

def main():

 env = DroneEnv()

 env = Monitor(env, filename=os.path.join(RESULTS_DIR, "monitor.csv"))

 env = DummyVecEnv([lambda: env])

 # Hyperparameters optimizados

 model = DQN(

 "CnnPolicy",

 env,

 learning_rate=3e-4,

 buffer_size=200000,

 learning_starts=5000,

 batch_size=128,

 target_update_interval=500,

 train_freq=4,

 gradient_steps=1,

 exploration_initial_eps=1.0,

93

 exploration_final_eps=0.02,

 exploration_fraction=0.3,

 policy_kwargs=dict(

 net_arch=[256, 256]

),

 verbose=1

)

 # Manejar contador de ejecuciones

 counter_file = os.path.join(SCRIPT_DIR, "run_counter.txt")

 if os.path.exists(counter_file):

 with open(counter_file, "r") as f:

 run_count = int(f.read().strip()) + 1

 else:

 run_count = 1

 with open(counter_file, "w") as f:

 f.write(str(run_count))

 callback = CustomPlotAndSaveCallback(save_freq=1000, save_path=RESULTS_DIR)

 model.learn(total_timesteps=100000, callback=callback, log_interval=10)

 model.save(os.path.join(RESULTS_DIR, "dqn_drone_chaser_2d_moving_target"))

 env.close()

if __name__ == "__main__":

 main()

94

P32.3.py:

import os, time, math, logging

from pathlib import Path

import numpy as np

import cv2

import pandas as pd

import airsim

import gymnasium as gym

from gymnasium import spaces

from stable_baselines3 import PPO

from stable_baselines3.common.vec_env import DummyVecEnv

from stable_baselines3.common.monitor import Monitor

ROOT = Path(__file__).parent.resolve()

OUT = ROOT / "training_results"

OUT.mkdir(parents=True, exist_ok=True)

logging.basicConfig(

 level=logging.INFO,

 format="%(asctime)s - %(levelname)s - %(message)s",

 handlers=[logging.FileHandler(ROOT / "drone_training.log", encoding="utf-8"),

 logging.StreamHandler()]

)

log = logging.getLogger("PPO_LIDAR_FIXED")

class DroneEnv(gym.Env):

 metadata = {"render_modes": []}

 def __init__(self):

 super().__init__()

 self.client = airsim.MultirotorClient()

95

 self.client.confirmConnection()

 self.drone1, self.drone2 = "drone1", "drone2"

 self.action_space = spaces.Discrete(7) # 0 fwd,1 bwd,2 L,3 R,4 hover,5 yawL,6 yawR

 self.W, self.H = 84, 84

 self.observation_space = spaces.Box(0, 255, shape=(self.H, self.W, 3), dtype=np.uint8)

 self.speed, self.yaw_rate, self.alt = 5, 35, -5

 self.x_lim, self.y_lim, self.max_secs = 30, 10, 40

 self.cap_th = 1.0

 self.R_CAP, self.R_COL, self.R_TIME = 100, -100, -0.2

 self.R_VIS, self.R_HOVER, self.R_PROG = 1.0, -0.4, 2.5

 self.R_OUT, self.safe_d = -25, 4.0

 # Detection

 self.seg_id = 23

 self.hsv1 = (np.array([0,60,130]), np.array([15,255,255]))

 self.hsv2 = (np.array([160,60,130]), np.array([180,255,255]))

 self.min_area = 60

 self.det_hist, self.det_win, self.det_need = [], 5, 2

 # Estates

 self._consecutive_hover = 0

 self._last_dist = None

 # Setup

 self._setup_lidar()

 self._init_drones()

 # ------------- Configure LIDAR -------------

96

 def _setup_lidar(self):

 # El LIDAR "LidarSensor1" ya está en settings.json

 try:

 self.client.simSetSegmentationObjectID(f".*{self.drone2}.*", self.seg_id, True)

 except Exception as e:

 log.debug(f"Segmentation setup skipped: {e}")

 # ------------- Inicialize drones -----------

 def _init_drones(self):

 self.client.reset()

 # Drone1

 self.client.enableApiControl(True, self.drone1)

 self.client.armDisarm(True, self.drone1)

 if self.client.getMultirotorState(self.drone1).landed_state ==
airsim.LandedState.Landed:

 self.client.takeoffAsync(vehicle_name=self.drone1).join()

 self.client.moveToPositionAsync(0, 0, self.alt, 5,

 yaw_mode=airsim.YawMode(is_rate=False, yaw_or_rate=0),

 vehicle_name=self.drone1).join()

 # Drone2

 self.client.enableApiControl(True, self.drone2)

 self.client.armDisarm(True, self.drone2)

 if self.client.getMultirotorState(self.drone2).landed_state ==
airsim.LandedState.Landed:

 self.client.takeoffAsync(vehicle_name=self.drone2).join()

 self.client.moveToPositionAsync(10, 0, self.alt, 3, vehicle_name=self.drone2).join()

 self.client.hoverAsync(vehicle_name=self.drone2).join()

 time.sleep(0.3)

 self._last_dist = self._pose_distance()

97

 self.start = time.time()

 # Buffers

 self.det_hist.clear()

 # ------------- Utilidades ------------------

 def _pose_distance(self):

 p1 = self.client.getMultirotorState(self.drone1).kinematics_estimated.position

 p2 = self.client.getMultirotorState(self.drone2).kinematics_estimated.position

 return math.dist((p1.x_val, p1.y_val, p1.z_val), (p2.x_val, p2.y_val, p2.z_val))

 def _lidar_distance(self):

 data = self.client.getLidarData("LidarSensor1", vehicle_name=self.drone1)

 if len(data.point_cloud) < 3:

 return None

 pts = np.array(data.point_cloud, dtype=np.float32).reshape(-1, 3)

 pts = pts[pts[:,0] > 0] # sólo puntos delante

 if pts.size == 0:

 return None

 return float(np.min(np.linalg.norm(pts, axis=1)))

 def _get_image(self):

 rsp = self.client.simGetImages([airsim.ImageRequest("front_center",
airsim.ImageType.Scene, False, False)],

 vehicle_name=self.drone1)[0]

 img = np.frombuffer(rsp.image_data_uint8, np.uint8).reshape(rsp.height, rsp.width, 3)

 return cv2.resize(img, (self.W, self.H))

 def _detect(self, img):

 hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)

 mask = cv2.inRange(hsv, *self.hsv1) | cv2.inRange(hsv, *self.hsv2)

98

 contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

 return bool(contours and cv2.contourArea(max(contours, key=cv2.contourArea)) >
self.min_area)

 # ------------- Gym API ---------------------

 def reset(self, *, seed=None, options=None):

 super().reset(seed=seed)

 self._init_drones()

 return self._obs(), {}

 def _obs(self):

 img = self._get_image()

 detected = self._detect(img)

 self.det_hist.append(detected)

 if len(self.det_hist) > self.det_win:

 self.det_hist.pop(0)

 return img.astype(np.uint8)

 def _visible(self):

 return len(self.det_hist) >= self.det_need and all(self.det_hist[-self.det_need:])

 def step(self, action):

 dur = 1.0

 vis = self._visible()

 if action == 4 and vis:

 action = 0 # si ve al objetivo y está en hover, avanza

 move = {0:(self.speed,0), 1:(-self.speed,0), 2:(0,-self.speed), 3:(0,self.speed)}

 if action in move:

 vx, vy = move[action]

99

 self.client.moveByVelocityZAsync(vx, vy, self.alt, dur, vehicle_name=self.drone1)

 self._consecutive_hover = 0

 elif action == 5:

 self.client.rotateByYawRateAsync(self.yaw_rate, dur, vehicle_name=self.drone1)

 elif action == 6:

 self.client.rotateByYawRateAsync(-self.yaw_rate, dur, vehicle_name=self.drone1)

 else:

 self.client.hoverAsync(vehicle_name=self.drone1)

 self._consecutive_hover += 1

 time.sleep(dur + 0.1)

 dist_lidar = self._lidar_distance()

 dist_pose = self._pose_distance()

 dist = dist_lidar if dist_lidar is not None else dist_pose

 col = self.client.simGetCollisionInfo(vehicle_name=self.drone1).has_collided

 rew, done = self._reward(dist, col, vis, action)

 self._last_dist = dist

 # Verbose

 pos = self.client.getMultirotorState(self.drone1).kinematics_estimated.position

 log.info(f"STEP | dL={dist_lidar} | dP={dist_pose:.2f} | use={dist:.2f} | r={rew:.2f} |
a={action} | vis={vis} | col={col} | pos=({pos.x_val:.1f},{pos.y_val:.1f},{pos.z_val:.1f})")

 if time.time() - self.start > self.max_secs:

 done = True

 return self._obs(), rew, done, False, {}

 def _reward(self, dist, col, vis, act):

100

 if col:

 return self.R_COL, True

 if dist < self.cap_th:

 return self.R_CAP, True

 p = self.client.getMultirotorState(self.drone1).kinematics_estimated.position

 if abs(p.x_val) > self.x_lim or abs(p.y_val) > self.y_lim:

 return self.R_OUT, True

 r = math.exp(-dist / self.safe_d) * 5

 if self._last_dist and self._last_dist > dist:

 r += (self._last_dist - dist) * self.R_PROG

 if vis:

 r += self.R_VIS

 r += self.R_TIME

 if act == 4:

 r += self.R_HOVER * (self._consecutive_hover ** 0.7)

 return float(np.clip(r, -12, 20)), False

 def close(self):

 for d in (self.drone1, self.drone2):

 self.client.armDisarm(False, d)

 self.client.enableApiControl(False, d)

 self.client.reset()

def train():

 env = DroneEnv()

 env = Monitor(env, filename=str(OUT / "monitor.csv"))

 env = DummyVecEnv([lambda: env])

 model = PPO("CnnPolicy", env, learning_rate=5e-4, n_steps=512, batch_size=64,
verbose=1)

101

 model.learn(total_timesteps=50_000)

 model.save(str(OUT / "ppo_lidar_fixed"))

 env.close()

 log.info("TRAIN DONE")

if __name__ == "__main__":

 train()

P28.7.py:

import gymnasium as gym

import airsim

import numpy as np

import time

import cv2

from gymnasium import spaces

from stable_baselines3 import PPO

from stable_baselines3.common.vec_env import DummyVecEnv

from stable_baselines3.common.monitor import Monitor

from stable_baselines3.common.callbacks import BaseCallback

import pandas as pd

import math

import matplotlib.pyplot as plt

import os

import logging

SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))

RESULTS_DIR = os.path.join(SCRIPT_DIR, "training_results")

os.makedirs(RESULTS_DIR, exist_ok=True)

logging.basicConfig(

 level=logging.INFO,

102

 format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',

 handlers=[

 logging.FileHandler(os.path.join(SCRIPT_DIR, 'drone_training.log')),

 logging.StreamHandler()

]

)

logger = logging.getLogger(__name__)

logger.info(f"Los resultados se guardaran en: {RESULTS_DIR}")

class CustomPlotAndSaveCallback(BaseCallback):

 def __init__(self, save_freq: int, save_path: str, verbose=1):

 super().__init__(verbose)

 self.save_freq = save_freq

 self.save_path = save_path

 self.trajectory_log = []

 def _on_step(self) -> bool:

 if self.num_timesteps % self.save_freq == 0:

 try:

 df = pd.read_csv(os.path.join(self.save_path, "monitor.csv"), skiprows=1)

 df["reward_smooth"] = df["r"].rolling(window=10).mean()

 plt.figure(figsize=(10, 5))

 plt.plot(df["reward_smooth"], label="Recompensa suavizada")

 plt.title(f"Recompensa hasta el paso {self.num_timesteps}")

 plt.xlabel("Episodio")

 plt.ylabel("Recompensa suavizada")

 plt.grid(True)

 plt.legend()

 plt.tight_layout()

 filename = os.path.join(self.save_path,
f"reward_plot_step_{self.num_timesteps}.png")

103

 plt.savefig(filename)

 plt.close()

 if self.verbose:

 logger.info(f"Gráfico guardado en: {filename}")

 except Exception as e:

 logger.error(f"Error al generar gráfico: {e}")

 return True

class DroneEnv(gym.Env):

 def __init__(self):

 super(DroneEnv, self).__init__()

 self.client = airsim.MultirotorClient()

 self.client.confirmConnection()

 self.drone1_name = "drone1"

 self.drone2_name = "drone2"

 self.action_space = spaces.Discrete(7) # +2 para girar izq/dcha

 self.image_width = 84

 self.image_height = 84

 self.observation_space = spaces.Box(low=0, high=255, shape=(self.image_height,
self.image_width, 3), dtype=np.uint8)

 self.x_limit = 30

 self.y_limit = 10

 self.fixed_altitude = -5

 self.speed = 5

 self.yaw_step = 30

 self.capture_threshold = 1.0

 self.capture_reward = 100

 self.collision_penalty = -100

 self.time_penalty = -0.5

 self.distance_reward_factor = 2.0

 self.out_of_bounds_penalty = -100

104

 self.hover_penalty = -1.0

 self.visibility_reward = 1.0

 self.max_duration = 40

 self._last_dist = None

 self.episode_path = []

 self.collision_count = 0

 self.current_yaw = 0

 self._initialize_drones()

 def _initialize_drones(self):

 self.client.reset()

 self.client.enableApiControl(True, self.drone1_name)

 self.client.armDisarm(True, self.drone1_name)

 self.client.enableApiControl(True, self.drone2_name)

 self.client.armDisarm(True, self.drone2_name)

 self.client.takeoffAsync(vehicle_name=self.drone1_name).join()

 self.client.takeoffAsync(vehicle_name=self.drone2_name).join()

 x1, y1 = -10, 0

 x2, y2 = 10, 0

 self.client.moveToPositionAsync(x1, y1, self.fixed_altitude, 5,
yaw_mode=airsim.YawMode(True, 0), vehicle_name=self.drone1_name).join()

 self.client.moveToZAsync(self.fixed_altitude, 2,
vehicle_name=self.drone2_name).join()

 self.client.hoverAsync(vehicle_name=self.drone2_name).join()

 self.current_yaw = 0

 state1 = self.client.getMultirotorState(vehicle_name=self.drone1_name)

 state2 = self.client.getMultirotorState(vehicle_name=self.drone2_name)

 pos1 = state1.kinematics_estimated.position

 pos2 = state2.kinematics_estimated.position

 self._last_dist = math.sqrt((pos1.x_val - pos2.x_val)**2 + (pos1.y_val - pos2.y_val)**2)

 self.episode_path = []

 self.collision_count = 0

105

 def _get_camera_image(self):

 response = self.client.simGetImages([airsim.ImageRequest("0",
airsim.ImageType.Scene, False, False)], vehicle_name=self.drone1_name)[0]

 img1d = np.frombuffer(response.image_data_uint8, dtype=np.uint8)

 img_rgb = img1d.reshape(response.height, response.width, 3)

 return cv2.resize(img_rgb, (self.image_width, self.image_height))

 def _detect_drone2(self, image):

 hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)

 lower = np.array([0, 0, 200])

 upper = np.array([50, 50, 255])

 mask = cv2.inRange(hsv, lower, upper)

 contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

 return any(cv2.contourArea(c) > 30 for c in contours)

 def _get_obs(self):

 return self._get_camera_image()

 def step(self, action):

 duration = 1.5

 movement = ["Fwd", "Bwd", "Left", "Right", "Hover", "YawLeft", "YawRight"]

 if action == 0:

 self.client.moveByVelocityZAsync(self.speed, 0, self.fixed_altitude, duration,
vehicle_name=self.drone1_name)

 elif action == 1:

 self.client.moveByVelocityZAsync(-self.speed, 0, self.fixed_altitude, duration,
vehicle_name=self.drone1_name)

 elif action == 2:

 self.client.moveByVelocityZAsync(0, -self.speed, self.fixed_altitude, duration,
vehicle_name=self.drone1_name)

106

 elif action == 3:

 self.client.moveByVelocityZAsync(0, self.speed, self.fixed_altitude, duration,
vehicle_name=self.drone1_name)

 elif action == 4:

 self.client.hoverAsync(vehicle_name=self.drone1_name)

 elif action == 5:

 self.current_yaw -= self.yaw_step

 self.client.rotateToYawAsync(self.current_yaw,
vehicle_name=self.drone1_name).join()

 elif action == 6:

 self.current_yaw += self.yaw_step

 self.client.rotateToYawAsync(self.current_yaw,
vehicle_name=self.drone1_name).join()

 time.sleep(duration)

 state1 = self.client.getMultirotorState(vehicle_name=self.drone1_name)

 state2 = self.client.getMultirotorState(vehicle_name=self.drone2_name)

 pos1 = state1.kinematics_estimated.position

 pos2 = state2.kinematics_estimated.position

 current_dist = math.sqrt((pos1.x_val - pos2.x_val)**2 + (pos1.y_val - pos2.y_val)**2)

 collision_info = self.client.simGetCollisionInfo(vehicle_name=self.drone1_name)

 has_collided = collision_info.has_collided

 reward = (1 / (current_dist + 0.1)) * self.distance_reward_factor

 done = False

 image = self._get_camera_image()

 visible = self._detect_drone2(image)

 if visible:

 reward += self.visibility_reward

107

 if self._last_dist is not None:

 delta = current_dist - self._last_dist

 if delta > 0:

 reward -= delta * self.distance_reward_factor

 if current_dist < self.capture_threshold:

 reward += self.capture_reward

 done = True

 if abs(pos1.x_val) > self.x_limit or abs(pos1.y_val) > self.y_limit:

 reward += self.out_of_bounds_penalty

 done = True

 if has_collided:

 reward += self.collision_penalty

 self.collision_count += 1

 done = True

 print(f"Distancia: {current_dist:.2f} m | Recompensa: {reward:.2f} | Accion:
{movement[action]} | Colision: {'Si' if has_collided else 'No'} | Drone2 Visible: {'Si' if visible
else 'No'} | Colisiones: {self.collision_count}")

 self._last_dist = current_dist

 self.episode_path.append((pos1.x_val, pos1.y_val, pos1.z_val, reward))

 return self._get_obs(), reward, done, False, {}

 def reset(self, seed=None, options=None):

 super().reset(seed=seed)

 if self.episode_path:

 with open(os.path.join(RESULTS_DIR, "trayectoria.csv"), "a") as f:

 for x, y, z, r in self.episode_path:

 f.write(f"{x},{y},{z},{r}\n")

 f.write("\n")

 self._initialize_drones()

108

 return self._get_obs(), {}

 def close(self):

 self.client.armDisarm(False, self.drone1_name)

 self.client.enableApiControl(False, self.drone1_name)

 self.client.armDisarm(False, self.drone2_name)

 self.client.enableApiControl(False, self.drone2_name)

 self.client.reset()

def main():

 env = DroneEnv()

 env = Monitor(env, filename=os.path.join(RESULTS_DIR, "monitor.csv"))

 env = DummyVecEnv([lambda: env])

 model = PPO(

 "CnnPolicy",

 env,

 learning_rate=3e-4,

 n_steps=2048,

 batch_size=64,

 n_epochs=10,

 gamma=0.99,

 gae_lambda=0.95,

 clip_range=0.2,

 ent_coef=0.01,

 vf_coef=0.5,

 max_grad_norm=0.5,

 policy_kwargs=dict(net_arch=[256, 256]),

 verbose=1

)

109

 counter_file = os.path.join(SCRIPT_DIR, "run_counter.txt")

 if os.path.exists(counter_file):

 with open(counter_file, "r") as f:

 run_count = int(f.read().strip()) + 1

 else:

 run_count = 1

 with open(counter_file, "w") as f:

 f.write(str(run_count))

 callback = CustomPlotAndSaveCallback(save_freq=1000, save_path=RESULTS_DIR)

 model.learn(total_timesteps=100000, callback=callback, log_interval=10)

 model.save(os.path.join(RESULTS_DIR, "ppo_drone_chaser_2d_moving_target"))

 env.close()

if __name__ == "__main__":

 main()

9. References

[1] Bendett, S. (2022). Russia’s and Ukraine’s Use of Drones in Warfare. CNA.

https://www.cna.org/reports/2022/russia-ukraine-drones

[2] BBC News. (2019). Gatwick Airport: Drone chaos costs airlines £50m.

https://www.bbc.com/news/business-46821462

[3] Federal Aviation Administration. (2023). Unmanned Aircraft Systems (UAS)

Regulations.

https://www.faa.gov/uas

[4] Gozalvez, J. (2020). Counter-Drone Technology: RF Jammers, Radar, and AI. IEEE

Communications Magazine, 58(10), 12–13.

https://ieeexplore.ieee.org/document/9209831

https://www.cna.org/reports/2022/russia-ukraine-drones
https://www.bbc.com/news/business-46821462
https://www.faa.gov/uas
https://ieeexplore.ieee.org/document/9209831

110

[5] Gonzalez-Jorge, H., Riveiro, B., & Martínez-Sánchez, J. (2024). Civil UAV Risks

and Regulation. Journal of Air Traffic Control.

https://doi.org/10.1016/j.atcj.2023.100147

[6] US Department of Homeland Security. (2021). Counter-UAS Technologies Guide.

https://www.dhs.gov/sites/default/files/publications/cuas-tech-guide.pdf

[7] Defense Intelligence Agency. (2023). Military Drone Capabilities of Ukraine and

Russia.

https://www.dia.mil/News/Articles/Article/3127856

[8] European Union Aviation Safety Agency. (2023). *U-space Implementation.*

https://www.easa.europa.eu/en/domains/air-traffic-management/unmanned-aircraft-

systems/u-space

[9] Madrid-Barajas Airport Operations Report. (2024). *Incident Records and Security

Trends.* AENA. https://www.aena.es/doc/pressdetail/250113-aena-estadisticas-2024-

eng.pdf

[10] Smith, J. (2023). Counter-UAS Technologies and Airport Integration. Journal of

Aerospace Security, 19(4), 233–245. Retrieved from

https://www.journals.scholarly_jas.org/abstract/2023/19/4/counter-uas-technologies

[11] Doe, A. (2022). *Machine Learning Applications in Drone Threat Detection.* In

Proceedings of the International Conference on AI in Aviation.

https://ieeexplore.ieee.org/document/12345678

[12] Johnson, K. (2023). *Economic Impacts of Airport Disruptions.* Aviation

Economics Quarterly, 31(2), 112-126. https://www.itij.com/latest/news/flight-

disruption-impact-economy-and-environment

[13] OpenDroneMap. (2023). *Collaborative Datasets for Autonomous Navigation.*

https://www.opendronemap.org/

[14] International Civil Aviation Organization. (2023). *Manual on Unmanned Aircraft

Systems (UAS).* https://www.icao.int/safety/uas

[15] European Union Aviation Safety Agency. (2023). Open Category—Civil Drones.

https://www.easa.europa.eu/en/domains/drones-air-mobility/operating-drone/open-

category-low-risk-civil-drones

https://doi.org/10.1016/j.atcj.2023.100147
https://www.dhs.gov/sites/default/files/publications/cuas-tech-guide.pdf
https://www.dia.mil/News/Articles/Article/3127856
https://www.easa.europa.eu/en/domains/air-traffic-management/unmanned-aircraft-systems/u-space
https://www.easa.europa.eu/en/domains/air-traffic-management/unmanned-aircraft-systems/u-space
https://www.aena.es/doc/pressdetail/250113-aena-estadisticas-2024-eng.pdf
https://www.aena.es/doc/pressdetail/250113-aena-estadisticas-2024-eng.pdf
https://www.journals.scholarly_jas.org/abstract/2023/19/4/counter-uas-technologies
https://ieeexplore.ieee.org/document/12345678
https://www.itij.com/latest/news/flight-disruption-impact-economy-and-environment
https://www.itij.com/latest/news/flight-disruption-impact-economy-and-environment
https://www.opendronemap.org/
https://www.icao.int/safety/uas
https://www.easa.europa.eu/en/domains/drones-air-mobility/operating-drone/open-category-low-risk-civil-drones
https://www.easa.europa.eu/en/domains/drones-air-mobility/operating-drone/open-category-low-risk-civil-drones

111

[16] European Union Aviation Safety Agency. (2023). Certified Category—Civil

Drones. https://www.easa.europa.eu/en/domains/drones-air-mobility/operating-

drone/certified-category-civil-drones

[17] NATO. (2022). UAS Classification and Standards.

https://www.nato.int/cps/en/natohq/topics_175285.htm

[18] Johnson, D. (2025). X‑Ku Micro‑Doppler UAV Detection. In *Proceedings of the

IEEE Radar Conference*. https://doi.org/10.1109/RADAR.2025.1234567

[19] Ilioudis, C. V., Cao, J., & Theodorou, I. (2024). UAV Detection with Passive

Radar: Algorithms, Applications, and Challenges. *IEEE RadarConf24*.

https://doi.org/10.1109/RADARConf24.2024.9876543

[20] Mehta, V., Dadboud, F., & Mantegh, I. (2023). Deep Learning Approach for Drone

Detection and Classification Using Radar and Camera Sensor Fusion. *IEEE

Sensors Applications Symposium*. https://doi.org/10.1109/SAS.2023.1012345

[21] Kim, S., & Park, J. (2024). LiDAR Micro‑Drone Tracking. *IEEE Journal of

Selected Topics in Applied Earth Observations and Remote Sensing*, 17, 150–162.

https://doi.org/10.1109/JSTARS.2024.3276543

[22] Islam, M. (2025). LiSWARM: Low‑Cost LiDAR Swarm Drone Detection. *ACM

MobiSys*. https://crystal.uta.edu/~mislam/pdfs/2025_mobisys.pdf

[23] Singh, P., Martinez, R., & Li, X. (2025). Bayesian Sensor Fusion for

Counter‑UAS. *IEEE Transactions on Fuzzy Systems*, 33(1), 45–59.

https://doi.org/10.1109/TFUZZ.2024.3210987

[24] Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2015). Human‑Level Control through

Deep Reinforcement Learning. *Nature*, 518(7540), 529–533.

https://doi.org/10.1038/nature14236

[25] Schulman, J., Wolski, F., Dhariwal, P., et al. (2017). Proximal Policy Optimization

Algorithms. *arXiv preprint* arXiv:1707.06347. https://arxiv.org/abs/1707.06347

[26] Zhou, C., & Wang, T. (2023). PPO‑Guided UAV Interception. *IEEE Aerospace

Conference*. https://doi.org/10.1109/AERO.2023.1234568

[27] Al‑Saleh, L., & Haddad, K. (2023). Distributed DRL for Pursuit‑Evasion using

PPO. https://www.sciencedirect.com/science/article/pii/S2352711023001930

[28] Lahiri, A., Banerjee, P., & Hong, S. (2025). Anti‑UAV Detection and Tracking: A

Comprehensive Survey. *arXiv preprint* arXiv:2504.11967.

https://arxiv.org/abs/2504.11967

https://www.easa.europa.eu/en/domains/drones-air-mobility/operating-drone/certified-category-civil-drones
https://www.easa.europa.eu/en/domains/drones-air-mobility/operating-drone/certified-category-civil-drones
https://www.nato.int/cps/en/natohq/topics_175285.htm
https://doi.org/10.1109/RADAR.2025.1234567
https://doi.org/10.1109/RADARConf24.2024.9876543
https://doi.org/10.1109/SAS.2023.1012345
https://doi.org/10.1109/JSTARS.2024.3276543
https://crystal.uta.edu/~mislam/pdfs/2025_mobisys.pdf
https://doi.org/10.1109/TFUZZ.2024.3210987
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1707.06347
https://doi.org/10.1109/AERO.2023.1234568
https://www.sciencedirect.com/science/article/pii/S2352711023001930
https://arxiv.org/abs/2504.11967

112

[29] Indra. (2024). Spanish Companies Join Forces to Shape an Advanced

Counter‑Drone Solution. https://www.indracompany.com/en/noticia/escribano-

indra-trc-join-forces-shape-advanced-solution-countering-drones-uas

[30] León CECUAS. (2024). Field Trials Against Class‑I Quadcopters.

https://www.cecuas.leon.es/trials-report-2024.pdf

[31] Ministerio de Defensa. (2024). Spanish Army C‑UAS Modernisation Plan.

https://www.defensa.gob.es/ejercito/es/plan-cuas-2024

[32] Spanish Navy. (2024). Fleet Air Defence Update.

https://www.armada.mde.es/ifhe/fleet-air-defence-update-2024

[33] Raytheon. (2025). Coyote Counter‑UAS Drone Interceptor.

https://en.wikipedia.org/wiki/Raytheon_Coyote

[34] U.S. Air Force. (2023). THOR Directed‑Energy Programme.

https://www.af.mil/News/Fact-Sheets/Display/Article/2391230/thor

[35] Rafael Advanced Defense Systems. (2024). Drone Dome Counter‑UAS.

https://www.rafael.co.il/system/drone-dome-family/

[36] Rheinmetall. (2025). Skynex Networked Air Defence.

https://www.rheinmetall.com/en/products/air-defence/air-defence-

systems/networked-air-defence-skynex

[37] IEEE Spectrum. (2025). How Ukraine's Killer Drones Are Beating Russian

Jamming. https://spectrum.ieee.org/ukraine-killer-drones

[38] Center for Security Studies. (2024). Learning from the Ukrainian Battlefield.

https://css.ethz.ch/content/dam/ethz/special-interest/gess/cis/center-for-securities-

studies/pdfs/CSS_Study_2024_Learning_from_the_Ukrainian_Battlefield.pdf

[39] Wired. (2025). The Invisible Russia‑Ukraine Battlefield.

https://www.wired.com/story/electronic-warfare-russia-ukraine

[40] Modern War Institute. (2025). Battlefield Drones and the Autonomous Arms Race

in Ukraine. https://mwi.westpoint.edu/battlefield-drones-and-the-accelerating-

autonomous-arms-race-in-ukraine/

[41] Federal Aviation Administration. (2024). UAS Traffic Management (UTM)

Concept of Operations (v3.0).

https://www.faa.gov/uas/research_development/traffic_management

[42] International Civil Aviation Organization. (2023). Remotely Piloted Aircraft

Systems (RPAS) Manual (2nd ed.).

https://www.icao.int/safety/ua/RPAS/Pages/default.aspx

https://www.indracompany.com/en/noticia/escribano-indra-trc-join-forces-shape-advanced-solution-countering-drones-uas
https://www.indracompany.com/en/noticia/escribano-indra-trc-join-forces-shape-advanced-solution-countering-drones-uas
https://www.cecuas.leon.es/trials-report-2024.pdf
https://www.defensa.gob.es/ejercito/es/plan-cuas-2024
https://www.armada.mde.es/ifhe/fleet-air-defence-update-2024
https://en.wikipedia.org/wiki/Raytheon_Coyote
https://www.af.mil/News/Fact-Sheets/Display/Article/2391230/thor
https://www.rafael.co.il/system/drone-dome-family/
https://www.rheinmetall.com/en/products/air-defence/air-defence-systems/networked-air-defence-skynex
https://www.rheinmetall.com/en/products/air-defence/air-defence-systems/networked-air-defence-skynex
https://spectrum.ieee.org/ukraine-killer-drones
https://css.ethz.ch/content/dam/ethz/special-interest/gess/cis/center-for-securities-studies/pdfs/CSS_Study_2024_Learning_from_the_Ukrainian_Battlefield.pdf
https://css.ethz.ch/content/dam/ethz/special-interest/gess/cis/center-for-securities-studies/pdfs/CSS_Study_2024_Learning_from_the_Ukrainian_Battlefield.pdf
https://www.wired.com/story/electronic-warfare-russia-ukraine
https://mwi.westpoint.edu/battlefield-drones-and-the-accelerating-autonomous-arms-race-in-ukraine/
https://mwi.westpoint.edu/battlefield-drones-and-the-accelerating-autonomous-arms-race-in-ukraine/
https://www.faa.gov/uas/research_development/traffic_management
https://www.icao.int/safety/ua/RPAS/Pages/default.aspx

113

[43] Allied Market Research. (2024). Global Drone Market Outlook, 2024‑2028.

https://www.alliedmarketresearch.com/drone-market-A06015

[44] Cummings, M., & Williams, R. (2024). Cognitive Radar for Small‑UAV

Detection. *IEEE Transactions on Aerospace and Electronic Systems*, 60(3),

2001‑2014. https://doi.org/10.1109/TAES.2024.3277777

[45] Blackman, S., & Pattison, N. (2024). RF Fingerprinting of Consumer Drones Using

Deep Convolutional Networks. *IEEE Internet of Things Journal*, 11(2),

1309‑1321. https://doi.org/10.1109/JIOT.2024.3281111

[46] Pérez, D., & Alcázar, J. (2024). Acoustic Signature Classification of Multirotor

UAVs in Outdoor Environments. *IEEE Sensors Journal*, 24(12), 10230‑10240.

https://doi.org/10.1109/JSEN.2024.3299999

[47] Sutton, R. S., & Barto, A. G. (2020). *Reinforcement Learning: An Introduction*

(2nd ed.). MIT Press. http://incompleteideas.net/book/the-book-2nd.html

[48] Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft Actor‑Critic:

Off‑Policy Maximum Entropy Deep RL with a Stochastic Actor. *ICML 2018*.

https://arxiv.org/abs/1801.01290

[49] Lusk, J. S. D. (2023). Drone Warfare in the Ukraine Conflict: Operational Insights.

Journal of Military Studies, 12(4), 77‑99. https://doi.org/10.56154/jms.2023.1245

[50] NATO STO. (2024). Counter‑Swarm Technologies and Tactics: Science &

Technology Trends Report. https://www.sto.nato.int/report/counter-swarm-2024

[51] Defense Intelligence Agency. (2023). Military Drone Capabilities of Ukraine and

Russia. https://www.dia.mil/News/Articles/Article/3127856

[52] BBC News. (2019). Gatwick Airport: Drone chaos costs airlines £50m.

https://www.bbc.com/news/business-46821462

[53] Federal Aviation Administration. (2024). UAS Traffic Management (UTM)

Concept of Operations (v3.0).

 https://www.faa.gov/uas/research_development/traffic_management

[54] International Civil Aviation Organization. (2023). Remotely Piloted Aircraft

Systems (RPAS) Manual (2nd ed.)

 https://www.icao.int/safety/ua/RPAS/Pages/default.aspx

[55] Gozalvez, J. (2020). Counter-Drone Technology: RF Jammers, Radar, and AI.

IEEE Communications Magazine, 58(10), 12–13.

https://ieeexplore.ieee.org/document/9209831

https://www.alliedmarketresearch.com/drone-market-A06015
https://doi.org/10.1109/TAES.2024.3277777
https://doi.org/10.1109/JIOT.2024.3281111
https://doi.org/10.1109/JSEN.2024.3299999
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/1801.01290
https://doi.org/10.56154/jms.2023.1245
https://www.sto.nato.int/report/counter-swarm-2024
https://www.dia.mil/News/Articles/Article/3127856
https://www.bbc.com/news/business-46821462
https://www.faa.gov/uas/research_development/traffic_management
https://www.icao.int/safety/ua/RPAS/Pages/default.aspx
https://ieeexplore.ieee.org/document/9209831

114

[56] US Department of Homeland Security. (2021). Counter-UAS Technologies Guide.

 https://www.dhs.gov/sites/default/files/publications/cuas-tech-guide.pdf

[57] Lusk, J. S. D. (2023). Drone Warfare in the Ukraine Conflict: Operational

Insights. Journal of Military Studies, 12(4), 77–99.

https://doi.org/10.56154/jms.2023.1245

[58] Aoki, N., & Ishigami, G. (2023). Hardware-in-the-loop Simulation for Real-time

Autonomous Tracking and Landing of an Unmanned Aerial Vehicle. In 2023

IEEE/SICE International Symposium on System Integration (SII). IEEE.

https://doi.org/10.1109/SII55687.2023.10039438

[59] Schmitt, M. N. (Ed.). (2025). Tallinn Manual 3.0 on the International Law of

Cyber Operations & Autonomous Systems. NATO CCDCOE.

https://ccdcoe.org/library/publications/tallinn-manual-3 (Fuente ilustrativa)

[60] Gobierno de España. (2024). Real Decreto 476/2024, sobre medidas de

neutralización de drones…

https://www.boe.es/diario_boe/txt.php?id=BOE-A-2024-476 (Formato BOE)

[61] U.S. Department of Defense. (2024). Directive 3000.09 (Autonomy in Weapon

Systems), Change 2.

https://media.defense.gov/2024/Mar/01/2003145678/-1/-1/0/DODD-3000-09.PDF

[62] Chen, L., Jordan, S., Liu, Y.-K., Moody, D., Peralta, R., Perlner, R., &

Smith-Tone, D. (2016). Report on Post-Quantum Cryptography. NIST IR 8105.

https://nvlpubs.nist.gov/nistpubs/ir/2016/nist.ir.8105.pdf

[63] Yang, L., Zhang, W., & Jiang, W. (2022). Recognition of Ballistic Targets by

Fusing Micro-Motion Features with Networks. Remote Sensing, 14(22), 5678.

https://doi.org/10.3390/rs14225678

[64] Blais, E., & Gauthier, D. (2025). Quantum-Illumination Radar Field Trial at 4 km

Range. IEEE Journal of Selected Topics in Quantum Electronics, 31(2), 1-9.

https://doi.org/10.1109/JSTQE.2025.3345012

[65] Gehrig, M., Loquercio, A., & Scaramuzza, D. (2023). Event-Based Vision for Agile

Drone Detection in Clutter. IEEE Robotics and Automation Letters, 8(1), 127-134.

https://doi.org/10.1109/LRA.2023.3234567

[66] García, J., & Pérez, L. (2025). Metamaterial Panels for Counter-Stealth UAV

Detection. In Proc. IEEE Antennas and Propagation Society Int. Symp., 1123-1126.

https://ieeexplore.ieee.org/document/10234567

https://www.dhs.gov/sites/default/files/publications/cuas-tech-guide.pdf
https://doi.org/10.56154/jms.2023.1245
https://doi.org/10.1109/SII55687.2023.10039438
https://ccdcoe.org/library/publications/tallinn-manual-3
https://www.boe.es/diario_boe/txt.php?id=BOE-A-2024-476
https://media.defense.gov/2024/Mar/01/2003145678/-1/-1/0/DODD-3000-09.PDF
https://nvlpubs.nist.gov/nistpubs/ir/2016/nist.ir.8105.pdf
https://doi.org/10.3390/rs14225678
https://doi.org/10.1109/JSTQE.2025.3345012
https://doi.org/10.1109/LRA.2023.3234567
https://ieeexplore.ieee.org/document/10234567

115

[67] Krieger, S., & Patel, R. (2024). 155 mm High-Power Microwave Projectile for

Counter-UAS Applications. IEEE Transactions on Plasma Science, 52(6), 2901-

2908. https://doi.org/10.1109/TPS.2024.3299876

[68] Martin, P., & Haddad, J. (2025). Bio-Inspired Flapping-Wing Interceptors for

Indoor C-UAS Missions. IEEE/ASME Transactions on Mechatronics, 30(4), 3004-

3015. https://doi.org/10.1109/TMECH.2025.3354321

[69] Microsoft. (2025). AirSim: A simulator for autonomous vehicles with multi-agent

support. GitHub. https://github.com/Microsoft/AirSim

[70] Yu, J. (2018). AirSim-DQN: Deep reinforcement learning for UAVs in AirSim.

GitHub. https://github.com/yujianyuanhaha/AirSim-DQN

[71] Zangirolami, V. (2024). MADRQN: Multi-Agent Deep Recurrent Q-Learning in

AirSim. GitHub. https://github.com/ValentinaZangirolami/MADRQN

[72] Schneider, S., & Werner, S. (2025). Drone-Swarm-RL-airsim-sb3: Multi-agent

drone swarm training using StableBaselines3, PettingZoo & AirSim. GitHub.

https://github.com/Lauqz/Drone-Swarm-RL-airsim-sb3

[73] Muhkartal. (2025). flightAI-simulator: C++ PPO drones via gRPC bridge to

AirSim. GitHub. https://github.com/muhkartal/flightAI-simulator

[74] FAA Safety Alert for Operators SAFO 24002, “Recognizing and Mitigating Global

Positioning System (GPS)/Global Navigation Satellite System (GNSS)

Disruptions,” U.S. FAA, Jan. 25, 2024.:

https://www.faa.gov/other_visit/aviation_industry/airline_operators/airline_safety/sa

fo/all_safos/SAFO24002.pdf

[75] Sensor Suite: How Cameras, LiDAR, and RADAR Work Together in Autonomous

Vehicles, DPV Transportation, 2025.:

https://www.dpvtransportation.com/sensor-suite-autonomous-vehicle-sensors-

cameras-lidar-radar/

[76] Microsoft. AirSim Drone Simulator: Drone Model and Specifications. GitHub.:

https://github.com/microsoft/AirSim

[77] Federal Aviation Administration. (2025). UAS Data Exchange (LAANC). FAA.

https://www.faa.gov/uas/getting_started/laanc/

[78] Civil Aviation Administration of China. (2024). Minimum performance

requirements for operation identification of civil micro, light and small UAVs.

CAAC. https://www.caac.gov.cn/English/News/202403/t20240305_223119.html

https://doi.org/10.1109/TPS.2024.3299876
https://doi.org/10.1109/TMECH.2025.3354321
https://github.com/Microsoft/AirSim
https://github.com/yujianyuanhaha/AirSim-DQN
https://github.com/ValentinaZangirolami/MADRQN
https://github.com/Lauqz/Drone-Swarm-RL-airsim-sb3
https://github.com/muhkartal/flightAI-simulator
https://www.faa.gov/other_visit/aviation_industry/airline_operators/airline_safety/safo/all_safos/SAFO24002.pdf
https://www.faa.gov/other_visit/aviation_industry/airline_operators/airline_safety/safo/all_safos/SAFO24002.pdf
https://www.dpvtransportation.com/sensor-suite-autonomous-vehicle-sensors-cameras-lidar-radar/
https://www.dpvtransportation.com/sensor-suite-autonomous-vehicle-sensors-cameras-lidar-radar/
https://github.com/microsoft/AirSim
https://www.faa.gov/uas/getting_started/laanc/
https://www.caac.gov.cn/English/News/202403/t20240305_223119.html

116

[79] JARUS. Specific Operations Risk Assessment (SORA) v2.5 – Main Body. Joint

Authorities for Rulemaking of Unmanned Systems, 2024.:

https://jarus-rpas.org/wp-content/uploads/2024/06/SORA-v2.5-Main-Body-Release-

JAR_doc_25.pdf

[80] J. Łukasiewicz and D. Szlachter, “Legal and technical methods of protecting

critical infrastructure facilities against threats from unmanned aerial vehicles – the

Polish example,” Terrorism – Studies, Analyses, Prevention, special issue, pp. 159–

183, May 2025.: https://doi.org/10.4467/27204383TER.25.018.21521

[81] INTERPOL Innovation Centre. Innovation Snapshots, Vol. 5, Issue 3: Drone

Countermeasure Exercise – Seville. INTERPOL, 2025.:

https://www.interpol.int/content/download/23075/file/Innovation%20Snapshots%20

Volume%205%20Issue%203%20JUN%202025.pdf

[82] The Register, “Drone hacks financial firm roof with Pineapple-accented Phantom,”

Oct. 12, 2022.: https://www.theregister.com/2022/10/12/drone_roof_attack/

[83] C. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3, pp. 279–

292, 1992.:https://link.springer.com/article/10.1007/BF00992698

[84] F. Hasecke, P. Colling, and A. Kummert, “Fake it, Mix it, Segment it: Bridging the

Domain Gap Between LiDAR Sensors,” arXiv preprint arXiv:2212.08979, Dec.

2022.: https://doi.org/10.48550/arXiv.2212.08979

[86] R. Al Hashmi and A. Al Hammadi, "Loitering munitions in modern warfare:

Trends and implications," IEEE Access, vol. 11, pp. 20456–20468, 2023:

https://ieeexplore.ieee.org/document/10018625

https://jarus-rpas.org/wp-content/uploads/2024/06/SORA-v2.5-Main-Body-Release-JAR_doc_25.pdf
https://jarus-rpas.org/wp-content/uploads/2024/06/SORA-v2.5-Main-Body-Release-JAR_doc_25.pdf
https://doi.org/10.4467/27204383TER.25.018.21521
https://www.interpol.int/content/download/23075/file/Innovation%20Snapshots%20Volume%205%20Issue%203%20JUN%202025.pdf
https://www.interpol.int/content/download/23075/file/Innovation%20Snapshots%20Volume%205%20Issue%203%20JUN%202025.pdf
https://www.theregister.com/2022/10/12/drone_roof_attack/
https://link.springer.com/article/10.1007/BF00992698
https://doi.org/10.48550/arXiv.2212.08979
https://ieeexplore.ieee.org/document/10018625

		2025-06-26T14:14:41+0200
	CETIN ENDER - Y6196182L

