UAB

Universitat Autonoma
de Barcelona

Counter-Drone Systems for Airports: Mitigating the Risk of
Unauthorized Drone Intrusions Using Autonomous Drones
with Al in Controlled Airspaces

Memoria del Trabajo Fin de Grado en Gestidon Aeronautica

realizado por

Saul Garcia-Rojas Ruiz
y dirigido por

Ender Cetin

Escuela de Ingenieria
Sabadell, 06 de 2025

The undersigned, Ender Cetin, supervisor of the Final Degree Thesis,
professor at the School of Engineering of UAB,

CERTIFIES:

That the work corresponding to this report has
been carried out under their supervision by

Saul Garcia-Rojas Ruiz

And for the record, signs this document in
Sabadell, June of 2025

CETIN Digitally signed by

CETIN ENDER -

ENDER - Y6196182L

Date: 2025.06.26

Y6196182L 141441 +0200

Signed: Ender Cetin

Title of the Final Degree Project:
Counter-Drone Systems for Airports: Mitigating the Risk of Unauthorized Drone Intrusions
Using Autonomous Drones with Al in Controlled Airspaces

Author: Saul Garcia-Rojas Ruiz Date: June 2025

Supervisor: Ender Cetin

Degree: Aeronautical Management

Key words:

English: UAS (Unmanned Aerial System), PPO (Proximal Policy Optimization),DQN (Deep Q-
Network), AirSim, Autonomous Tracking, LiDAR, Reinforcement Learning (RL), Counter-UAS (C-
UAS)

Castellano: UAS (Sistema Aéreo No Tripulado), PPO (Optimizacién Proximal de Politicas), DQN
(Red Neuronal Profunda Q), AirSim, Seguimiento Auténomo, LiDAR, Aprendizaje por Refuerzo
(RL), Contra-UAS (C-UAS)

Catala: UAS (Sistema Aeri no Tripulat), PPO (Optimitzacié de Politiques Proximes), DQN (Xarxa
Neuronal Q Profunda), AirSim, Seguiment Autonom, LiDAR, Aprenentatge per Reforg (RL),
Sistemes Anti-drons (C-UAS)

Summary of the Final Degree Project:

Castellano: El rapido crecimiento y la accesibilidad de los sistemas aéreos no tripulados (UAS)
han generado importantes preocupaciones de seguridad en aeropuertos y en el espacio
aéreo. Los drones no autorizados amenazan la seguridad de los vuelos, provocan
interrupciones operativas y exponen vulnerabilidades, especialmente en zonas restringidas
como los aeropuertos. Las limitaciones legales impiden que las autoridades locales
desplieguen tecnologias activas de neutralizacién de drones (C-UAS), dificultando una
respuesta en tiempo real. Esta tesis analiza métodos de deteccidn y mitigacién. El estudio
destaca tanto las amenazas de drones civiles como militares, subrayando la necesidad de
sistemas C-UAS integrados, adaptables y automatizados. Casos reales, como el incidente del
Aeropuerto de Gatwick en 2018, evidencian la urgencia de una mejor coordinacién vy
preparacion. En dltima instancia, una gestion eficaz de amenazas con drones requiere
colaboracion entre los sectores de aviacidn, seguridad y defensa, combinando regulacion,
tecnologia y formacion basada en simulaciones.

English: The rapid growth and accessibility of unmanned aerial systems (UAS) have created
major security concerns for airports and airspace. Unauthorized drones threaten flight safety,
cause operational disruptions, and expose vulnerabilities, especially in restricted areas like
airports. Legal limitations prevent local authorities from deploying active counter UAS (CUAS)
technologies, making real time response difficult. This thesis examines detection and
mitigation methods. The study highlights both civilian and military drone threats, emphasizing
the need for integrated, adaptable, and automated CUAS systems. Real world cases, such as
the 2018 Gatwick Airport incident, underline the urgency for better coordination and
preparedness. Ultimately, effective drone threat management requires collaboration among
aviation, security, and defense sectors, combining regulation, technology, and simulation
based training.

Catala: El rapid creixement i I'accessibilitat dels sistemes aeris no tripulats (UAS) han generat
importants preocupacions de seguretat en aeroports i en I'espai aeri. Els drons no autoritzats
suposen una amenaca per a la seguretat dels vols, causen interrupcions operatives i exposen
vulnerabilitats, especialment en zones restringides com els aeroports. Les limitacions legals
impedeixen que les autoritats locals despleguin tecnologies actives de neutralitzacié de drons
(C-UAS), fet que dificulta una resposta en temps real. Aquesta tesi examina métodes de

deteccid i mitigacid. L'estudi posa en relleu tant les amenaces dels drons civils com de caracter
militar, remarcant la necessitat de sistemes C-UAS integrats, adaptables i automatitzats. Casos
reals, com l'incident de I'Aeroport de Gatwick I'any 2018, evidencien la urgéncia d’una millor
coordinacié i preparacié. En definitiva, una gestid efica¢ de les amenaces amb drons requereix
la col-laboracié entre els sectors de |'aviacid, la seguretat i la defensa, combinant regulacié,
tecnologia i formacid basada en simulacio.

List of Acronyms
o Al — Artificial Intelligence
e AOI — Area of Interest
e AESA —Active Electronically Scanned Array
e BOE — Boletin Oficial del Estado
e CNN - Convolutional Neural Network
e COTS - Commercial Off-The-Shelf
e CUAS/ C-UAS — Counter-Unmanned Aerial Systems
e DIA — Defense Intelligence Agency
e DQN — Deep Q-Network
e DRL — Deep Reinforcement Learning
e EO — Electro-Optical
e FPV — First Person View
e GPS — Global Positioning System
e GUI - Graphical User Interface
e IR - Infrared
e LiDAR - Light Detection and Ranging
e ML — Machine Learning
e MADIS — Marine Air Defense Integrated System

e M-LIDS — Mobile Low, Slow, Small Unmanned Aircraft System Integrated
Defeat System

e MSHORAD — Maneuver Short-Range Air Defense
e NATO — North Atlantic Treaty Organization
e PPO — Proximal Policy Optimization
e RF — Radio Frequency
e RPAS — Remotely Piloted Aircraft System
4

e RCS — Radar Cross Section

o RL — Reinforcement Learning

e SAR - Synthetic Aperture Radar

o SB3 - Stable-Baselines3

e SLAM - Simultaneous Localization and Mapping

e TFG — Trabajo de Fin de Grado

e UAS — Unmanned Aerial System

e UAV - Unmanned Aerial Vehicle

e UTM - Unmanned Aircraft System Traffic Management
e YOLO - You Only Look Once

Figures and table index

Figures:

Figure 1: Image of the “Blocks” simulated environment in AirSim. Microsoft. (n.d.).
AirSim - Blocks Environment. https://microsoft.github.io/AirSim/unreal blocks/

Figure 2: Schematic showing a Fortem counter-UAV interceptor drone used in Ukraine.
Fortem Technologies. (2022, October 12). Fortem s anti-UAV drone appears in Ukraine.
https://dronedj.com/2022/10/12/fortem-anti-uav-ukraine/

Figure 3: Interceptor drone “Anvil” used for autonomous neutralization of hostile drones.
Anduril. (2023, November 10). Anduril presenta el dron interceptor Anvil.
https://cuashub.com/es/contenido/anduril-presenta-el-dron-interceptor-anvil-m/

Figure 4: MARSS Interceptor MR “killer drone” for autonomous aerial threats
interception. EDR Magazine. (2024, February 1). MARSS Interceptor MR: killer drone
close to production. https://www.edrmagazine.eu/marss-interceptor-mr-killer-drone-
close-to-production

Figure 5: Photograph from the 2018 Gatwick Airport drone incident. Wikipedia. (n.d.).
Gatwick Airport drone incident.
https://en.wikipedia.org/wiki/Gatwick Airport drone_incident

Figure 6: Vister Chronos embedded computing platform used in onboard reinforcement-
learning drone systems. Vister. (n.d.). Chronos edge Al computing device.
https://www.vister.es/producto/chronos/

Figure 7: U.S. test of the Coyote LE-SR counter-drone interceptor launched from a
helicopter. Gagadget. (2021, April 13). EEUU prueba por primera vez un dron antiaéreo
Coyote LE-SR desde un helicoptero. https://gagadget.es/613696-eeuu-prueba-por-
primera-vez-un-dron-antiaereo-coyote-le-sr-desde-un-helicoptero/

5

https://microsoft.github.io/AirSim/unreal_blocks/
https://dronedj.com/2022/10/12/fortem-anti-uav-ukraine/
https://cuashub.com/es/contenido/anduril-presenta-el-dron-interceptor-anvil-m/
https://www.edrmagazine.eu/marss-interceptor-mr-killer-drone-close-to-production
https://www.edrmagazine.eu/marss-interceptor-mr-killer-drone-close-to-production
https://en.wikipedia.org/wiki/Gatwick_Airport_drone_incident
https://www.vister.es/producto/chronos/
https://gagadget.es/613696-eeuu-prueba-por-primera-vez-un-dron-antiaereo-coyote-le-sr-desde-un-helicoptero/
https://gagadget.es/613696-eeuu-prueba-por-primera-vez-un-dron-antiaereo-coyote-le-sr-desde-un-helicoptero/

Figure 8: Concept image of ONERA ESPADON hypersonic combat air system for future
interception missions. Secret Projects. (2023, August). ONERA ESPADON hypersonic
combat aircraft concept. https://www.secretprojects.co.uk/threads/onera-espadon-
hypersonic-combat-aircraft-concept.41689/

Figure 9: Airsim Blocks with Lidar, source: own
Figure 10: p28.7 rewards, Source: own

Figure 11: p32.3 rewards, Source: own

Figure 12: p28.4 rewards, Source: own

Tables:

Table 1: Types of drones, Source: own

Table 2: Detection technologies, Source: own

Table 3: Drone actions table, Source: own

Table 4: Reward component, Source: own

Table 5: Comparison between p32.3 and p28.7, Source: own

Table 6: Differences in the rewards policy, Source: own

Table 7: Performance of the reinforcement learning, Source: own

https://www.secretprojects.co.uk/threads/onera-espadon-hypersonic-combat-aircraft-concept.41689/
https://www.secretprojects.co.uk/threads/onera-espadon-hypersonic-combat-aircraft-concept.41689/

INDEX

LISt OFf ACKONYIMS ittt et et et et e e eaeeeea et s e e e aneenesansenransensensanns 4
Figures and table 1NAeXccuuuiiiiimiiieiiiieee ettt et e e e eeens 5
FAGUIS: .ttt e et e s e et e et e e e e e e e een e enens 5
1) (S PP PRI PPRPPRRPPPRt 6

L. INEEOAUCTION ettt ettt ettt e e et e e ettt e e e et e e etena e e eeenna s eetenaeeeranaanaans 9
1.1 Current D1rone ThrEatsS......cceuuuieeiunireeiiiei et etieiee ettt eeteie s eerenae s e erenae e eeeenaeeeee 11
1.2 PTOJECE ODJECLIVES «.eevenueieiiiieieiiiie ettt eetetie e ettt e e ettt s e e tene s eerena s eerenneseeennaeees 13
1.3 General MethodOLOZY «....eceeeuuiieiiiieieiiiie ettt et e et s e e e e eeeen e 15
2. Theoretical FrameWOTK.........oevuuueiiiiiiiieiieiiie ettt eetee s eeteie s e e et s e eeenae s s eeenaaaees 16
2.1 Classification Of ATONEScccuuueiieiimuerieiiiie et eetiiee et s eeteae s e eteaa s e eeeene e eeeenaens 16
2.1.1 Regulatory framewWoOrKsc..cieeriumiiiiiiiiieieeiie ettt 19
2.1.2 Physical and kinematic attributescccuuureeiemuereeiiiiir et eereee e eeeeie e 20
2.1.3 Functional roles and threat taXOnOMmMIescceuuureeremuereeiimiaeeeeiiie et eeeenieee 21
2.1.4 Historical incident timeline (2018-2025)......uceriieiiriieimiieerreeeeriieeiieee e eeeeeeeennnne 22

2.2 Detection technologies (radar, optical, LIDAR, RF, acoustic)cceverevurrereennereenennen. 23
2.2.1 Radar modalities and performancecoeeeeuuereeiimiirreiiiieieeiie et eeeeeie e 24
2.2.2 Optical and thermal iMagingccoeeeeiriiimmmiiiniiiiiiiiii e 25
2.2.3 RF SPECIIUM SEINSINGZ «evvuunrerrrnunrrerirurrertnuerereennseerenissereenenserrenssseeresnesseresnnsens 25
2.2.4 Acoustic sensing and source 10Calisation...........uevieveuuerreriuienreeiiiiereerineneeeennnnens 25
2.2.5 Sensor-fusion archit@CtUIESuueeeeeeerrieemnieee e eeeriteeniee e e e eeerteennniee e e eeeeeeeennnas 26

2.3 Military applications of drONesceeeeuuiiiiiiniieeiiiee ettt eeeee e 26
2.3.1 Spanish counter-drone and missile SYStEMScccerrrrmmmieiriiiiiiiiiiiiiiieniieeeniiennn. 26
2.3.2 International counter-drones systems (US, Israel, NATO, Others)cc.eereeeuuennens 27
2.3.3 Cost calculus and future trendscceeeeeemmueerreeeeriieenieee e eeereeeenee e e eeeeeeennnas 29

2.4 Data management and cybersecurity of C-UAS networkseeuveeriiiiiiiiiimiicnniiennnns 29
2.5 Human factors and operator iNteTfaCeSuueiieiiriiiumiiiiiiiieeeiiiiiicee ettt eeeee 30
2.6 Adversarial RL and counter-COUNter-measures.......cccuu e eeeeeuureeeenueeeeremneeeeeenneseerennens 31
2.7 Legal and ethical CONSIAETAtIONS .vv.uunierrruererreriereereiiereereeiereerenieseernenesserrnnnnseerennens 31
2.8 General policy recommendations and future research directionseeveeveuenreernnnen. 32
2.9 Counter-deception and electronic counter-counter-Measuresceceeueeeeeeennnreerennes 33
2.10 Training pipelines and doctrine developmenteevrieeiiiiiiiiiiiiniieeiiiieeiiiennieeeenee 34
2.11 Emerging C-UAS technologies on the 2030 horizon.......ccuueeveevereerieiinnenreeennnreerennens 35

3 Reinforcement-learning algorithms (RL) ..c.euininin i 36
3.1 ALZOrIthmIC SPECIIUM ... et ettt e e e e e e e e e e eans 37

4 STMUIALION SEUP +evvvrnneerieeiiiiiiiieee ettt ee ettt s e e e et teeesee s s e eeereeenssaeesseaennee 38

4.1 MICTOSOTt ATISIIT «.eereiiieeiiiie et e ettt e ettt s e et e e e e eene s eeeene s eerena s eeennan s 38
4.2 Vehicles and Sensors Defined in SEttings.JSONccceuuereereuuerieiimmiereeieiereereneeeeeennees 40

5 Training MOAELSeeeiiiiuiiiiiiieeeiiiiit ettt s eeerteees e s e e e e e eennna s 44
ST DOQN AZENL ettt ettt s et e e et e et e e e s aaaees 44

T O B B (03 1<) 25 4 PRSPPI 45
S.120 NI ettt ettt e e e e ettt e e e e e e et teea e e e e e e et eeena e e e eeeenee 46
5.1.3 _INTtHAHZE dIONES cevnuneeieniiieiiiiee ettt ettt e e e e rene e e e 48
5.1.4 _set_initial POSTHONS «evuuuerreeeeriiinniieeeeeeeettteteiee e e e eeettteenniieeseeeeereeennnaenseeeeenee 48
5.1.6 gt CAMETA TMAZE .eevvuuueereeeeriiiuriieeeeeeeettteeniieeeeeeeetteaennaieseeeeereeennnaaessseeeenee 49

S.1.7 detect dIONE2 ...eeenieiieiiieeeieee ettt ettt e e s e et e e e renaans 49
5.1.8 1S drone2 VISIDIEceeeeuuiiiiiiiiiieiiiie ettt et 49

I B - < o oL PRSPPI 49

T O L] 1<) o PSP PR PPPPRO 50
5111 _COMPULE TEWATA ceevvrniieeeeeetiiiiiiiieee e e eeetteetniee e s e eeeetteennaeeseeeeereeennnaaeeseeeeenee 51
BT B B (T PP PPPTPPPI 53
D113 ClOSE cenneeeieiee ettt et et e e e e e een e e e eenaens 54
5.1.14 CustomPlotAndSaveCallbackccoeeeeeiiiemmmieierieeeiiiiiieee e eeeereeeiee e e eeeeee 54
5.1.15 _init (CustomPlotAndSaveCallback)cceuuerreiienrriiiinierieriienreeeeieneenennen. 54
S5.1.16 GOt TUN COUNL teuuernneiinieeeieeiiieeeneeteeeteneeeteesetenerernesereneaenneserensreenesensnsseenes 55

T O A 11 3 s B PR UPPPPRO 56
S2PPO AGENLS ceuvniiiiiiiiiiiiiii et e 58
5.2.1 Detailed Comparison Between p32.3.py and p28.7.pY ceueereerereeriereennreeeennereenennent 59

5.3 Rewards and Penalties.......cccuuuumuuerrieeeiiiiiiieee ettt eeee et eeeereeenn e 64
5.3.1 PPO RGB (P28.7.DF) tvvuuueeeeeeetttttiiiaaeeeeeeettttiuaeeeeeeeeetttenaaeeeseeeeeeatesnaaeeeeeeaaees 65
5.3 2 PPO LIDAR (P32.3.D7) ceetttiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeee e 66
5.3.3 DQN RGB (P28.4.DY) ceeteeiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 67

R 25 0] (0] 1310 s S 1 PR 68
5.5 Collision Rate, Dominant Actions and EXplorationccc.uevrerveuerierninnreereneneerennens 69
5.6 DQN VS PPO COMPATISON c.etvvrrruieiieiiiiiiiiiiiieteeeetiiieeiies e eeeetteensiisseeeeeteannsaaeesses 69

6. Discussion and Real-World Applicationceeuuueeiiiiiiiiiiiiiiiniieiiiiiiicen e 70
6.1 SIMulation Limitationscceeeeeemuuerreeeeiiiiiiiieee e eeetieeeiiee e e e eeeeteeeniie e e e eeeeeeennnaaenes 70
6.2 Projection to Real-World EnvIronmentscceueeveeriuierieiniienierieieneeemnneseerenneseerennens 71
6.3 Technical Viability in Airports and Defensecevvvvuueriiiiiieriiiiienieriienneeeeieeeerennens 72

7. CONCIUSIONS «.eetieeiitie ettt ettt ettt e ettt e e ettt e e e teai e e eetea e e eetena s eetenaseetenaeeeeennanaaes 73
B APPCIIAIX c ettt ettt s e e et e e e et e enan s 75

L I S £ (=) 1 Lol ST 109

1. Introduction

The rapid evolution of drone technology has significantly reshaped both civilian and
military landscapes. In recent geopolitical conflicts such as the war between Ukraine and
Russia, and the emerging hostilities involving Israel and Iran, drones have played a
critical role not only in surveillance and logistics but also in direct offensive actions.
Military-grade drones such as the Turkish Bayraktar TB2, the Iranian Shahed-136, and
the Israeli Harop have demonstrated lethal capabilities, including the ability to perform
autonomous strikes, electronic warfare, and precision-guided missile delivery [1]. These
developments underscore the dual nature of drone technology: while it provides new
opportunities, it also introduces new layers of threat, particularly when these devices

operate near sensitive civilian infrastructure.

The widespread and largely unregulated adoption of drones has outpaced the development
oflegal, operational, and technological countermeasures. This gap is especially dangerous
in airport environments, where timing, coordination, and safety are paramount.
Unauthorized drones can cause serious disruptions delaying flights, grounding aircraft,
and triggering emergency protocols. A notable case occurred during the 2018 Gatwick
Airport incident, where repeated drone sightings led to the cancellation of over 1,000
flights and affected more than 140,000 passengers [2]. This case illustrates how even

commercially available drones can cause large-scale operational and economic damage.

A major obstacle in defending airspace is the lack of jurisdiction granted to local law
enforcement. In the United States, for example, the Federal Aviation Administration
(FAA) classifies drones as aircraft, which legally prohibits unauthorized interference such
as jamming, capturing, or disabling them. Under U.S. Code 18 32, these acts are
considered sabotage of aircraft the same offense applied to manned aviation [3].
Consequently, local police and airport security must often defer to federal agencies,

whose response time may be insufficient to prevent an incident.

This disconnect between technological capability and legal authority hinders effective
counter-drone action. With the growing use of autonomous delivery drones and Al-

enhanced UAVs, the risk of accidental or malicious airspace incursions is increasing.

Several countries are now considering reforms to enable quicker intervention by airport
authorities and to empower specialized defense units. These units often utilize a
combination of radar, RF analyzers, electro-optical (EO) cameras, Al-assisted object

recognition, and jamming technologies to neutralize aerial threats in real time [4].

Additionally, the rapid proliferation of UAVs particularly in the commercial and
recreational sectors has led to a sharp increase in airspace vulnerabilities. In many regions,
hobbyist pilots are not required to undergo formal training or even register their drones,
leading to unsafe practices near flight paths and airport zones. In some cases, individuals
intentionally bypass legal restrictions, amplifying security risks and operational burdens

on aviation authorities [5].

To address these evolving threats, the aviation industry has begun integrating Counter-
Unmanned Aircraft Systems (C-UAS) that combine multiple detection and mitigation
technologies. These include radar systems capable of identifying small UAVs, RF signal
analysis for drone-controller detection, EO/IR sensors for visual confirmation, and Al-
driven decision-making tools [6]. However, such systems are only effective when
supported by clear response protocols and legal authority that allow for timely action by
local entities. Without these measures, even the most advanced detection platforms cannot

prevent incursions from becoming serious threats.

In parallel, military forces around the world have embraced UAVs for a wide range of
operations from ISR (Intelligence, Surveillance, and Reconnaissance) to kamikaze-style
drone attacks. These drones vary in size, range, and autonomy, with some equipped for
long-range precision strikes and others designed for swarm tactics that overwhelm
traditional defense systems. The battlefield success of these systems particularly in
Ukraine, where commercial drones have been retrofitted for tactical missions signals the
urgency of improving civilian drone detection and defense capabilities [7]. As such,
protecting airport environments from rogue UAVs is no longer a speculative concern but

a national and international priority.

This project involves of exploring the actual state of counter drone systems and also
explore the role of the Al in addressing the risk of unauthorized drone intrusions in

Controlled Airspaces and how it can be achieved.

10

1.1 Current Drone Threats

Unauthorized drone operations continue to present a diverse array of threat vectors that
evolve as technology advances. Small quad-copters now can carry high resolution
cameras, thermal sensors, and even lightweight explosives, which means that a single
platform can perform roles in espionage, disruption, and attack roles without physical
modification. At the same time, the rise of first person view racing drones increases
closing speeds, giving security teams less than ten seconds to react once an intruder
crosses the airport fence line. Because commercial off-the-shelf autopilots ship with
autonomous waypoint navigation, an operator can program complex loiter patterns that

mimic bird activity and thus evade casual visual detection.

Recent incident reports consistently show that drones intrude not only around runways
but also inside airport perimeters. In 2024, Madrid-Barajas Airport experienced three
separate ground-incursion events in which hobby drones overfly fuel farms and
maintenance hangars, forcing ground personnel to halt refuelling operations. These cases
demonstrate that the threat does not limit itself to approach or departure paths; it extends
to every operational corner where aircraft or critical assets remain exposed. Insurance
providers therefore start to factor drone-related downtime into premium calculations,

which raises operating costs for airlines and airport authorities alike.

Regulatory enforcement stays inconsistent because national agencies rely on manual
spot-checks and sporadic fines. The European Union Aviation Safety Agency (EASA)
introduces the U-space framework to allocate digital corridors for unmanned traffic, but
most legacy drones in circulation cannot receive such instructions. Consequently, security
managers face a hybrid airspace in which compliant drones share the sky with legacy
units that ignore geofencing altogether. In this hybrid context, the probability that a
negligent pilot violates restricted zones remains high even when awareness campaigns

intensify.

Threat complexity further increases when adversaries chain multiple drones in relay
mode. One unit acts as a high-altitude signal repeater while several low-flying platforms
perform reconnaissance. This multilevel topology extends operational range beyond
traditional line-of-sight limits and circumvents simple RF detection because the ground

operator stays outside sensor coverage. Airport security doctrine therefore requires a

11

layered response that tracks not just one airborne object but a network of cooperating

assets.

The psychological impact of repeated drone alerts also deserves attention. Persistent but
unresolved incursions erode staft confidence and lead to alert fatigue, which means that
genuine alarms risk dismissal after multiple false starts. An expanded defense concept
must account for human-factor resilience by automating low-level classification tasks and
presenting operators only with validated threats. Such an approach maintains vigilance

without overwhelming controllers with data that they cannot process in real time.

Airports remain increasingly vulnerable to unauthorized drone intrusions, which pose
serious threats including espionage, disruption of services, and potential physical attacks
[8]. These threats have escalated as drones have become more accessible and
technologically advanced. Whether operated by negligent hobbyists or with malicious
intent, UAVs penetrating restricted airspace can result in severe operational and safety
issues. For example, Near Mid-Air Collisions (NMACs) have been reported in Terminal

Maneuvering Areas (TMAs), prompting airspace closures and flight cancellations [9].

While regulatory efforts have emerged, such as mandatory registration and geofencing,
enforcement remains inconsistent. Not all manufacturers embed restrictions, and amateur
operators often bypass safety protocols. Consequently, drone incursions have paralyzed
air traffic and imposed cascading disruptions across global networks. This problem is
made worse by the limitations of current Counter-Unmanned Aircraft Systems (C-UAS),
which often used fixed sensors and require manual intervertion. These systems struggle
in urban landscapes and are hampered by legal constraints, rendering their mitigation

response ineffective in fast-paced airport environments [10].

There is growing concern over the lack of real-time autonomy and flexibility in existing
systems. Static sensors cannot adapt to dynamic scenarios, and human operators may be
too slow to respond. Though jamming and spoofing technologies exist, they pose risks to
airport systems and are legally restricted. The FAA has warned that recent incidents of
GPS/GNSS disruptions “may pose increased safety-of-flight risks due to possible loss of
situational awareness and increased pilot and ATC workload issues”[74]. The need for
Al-driven, autonomous solutions capable of adaptive decision-making has therefore
gained attention, especially in military-grade defense contexts now being adapted to civil

environments.

12

Drones used in modern warfare such as loitering munitions and Al-assisted surveillance
UAVs are pushing civil infrastructure to adopt similar intelligence levels in counter-
systems. For example, nations are now testing defensive drones to patrol perimeters and
neutralize intrusions autonomously. These systems can reduce false alarms and improve

response time using neural networks and machine learning algorithms [11].

Despite its technical promise, barriers such as cost, regulatory approval, and operational
safety continue to hinder adoption. Nonetheless, there is an urgent need to transition from
reactive measures to proactive, intelligent, and adaptive defense systems to protect vital

infrastructure like airports.

1.2 Project Objectives

This research project aims to address the growing issue of unauthorised drone incursions
in and around controlled airport environments by proposing a dual-structured
investigation: a theoretical analysis based on the state-of-the-art in counter-UAS
technologies, and a practical implementation carried out through Python-based simulation
in Microsoft AirSim [69]. AirSim is an open-source simulator developed by Microsoft
Research that offers high-fidelity physical and visual environments for AI model training,
particularly in autonomous aerial vehicle testing. It supports realistic simulation, sensor
emulation (such as LiDAR for generating 3D point-clouds critical to obstacle detection
and interception, IMU for measuring orientation and acceleration, GPS for real-time
location tracking, and RGB cameras for visual input), and integrates seamlessly with
reinforcement-learning frameworks via Python APIs, making it highly suitable for
developing autonomous interception strategies in safe, controlled conditions. While these
sensors offer complementary capabilities, they are also subject to real-world constraints.
LiDAR performance may degrade in adverse weather conditions like fog or rain, GPS
can be disrupted in urban environments or by jamming, RGB cameras are sensitive to
lighting variations and occlusions, and IMUs accumulate drift over time without external
correction. These limitations must be considered carefully when transferring trained

policies from simulation to physical deployment. [74].

13

Figure 1: Airsim Blocks

The first objective focuses on evaluating the efficiency, scalability, and deployment
feasibility of commercial and military-grade C-UAS platforms, including radar detection
systems, RF geolocation antennas, electro-optical and infrared tracking systems,
electromagnetic jammers, and kinetic interceptors [8]. This survey provides a baseline for

comparing traditional defence mechanisms with autonomous Al solutions.

Building upon that, the project explores the capabilities of Al-powered autonomous
drones as an active countermeasure. These systems leverage convolutional neural
networks and real-time sensor fusion to perform object recognition, target tracking, and
physical interception without human intervention, thereby reducing operator load and

response time [9].

The practical component is led by the design, training, and testing of a drone interceptor
model using reinforcement learning. The model operates in simulation environments built
with Microsoft AirSim and Unity ML-Agents, where the agent learns to navigate and
intercept a moving aerial intruder by interacting with the environment and receiving
shaped reward signals [10]. The use of AirSim allows the project to replicate diverse
environmental conditions, GPS drift, and occlusion scenarios while maintaining

operational safety.

A further objective is the assessment of legal, technical, and societal risks associated with
deploying autonomous C-UAS. Issues such as electromagnetic interference, flight-
corridor violation, public-safety concerns, and regulatory restrictions on autonomous
flight and jamming are reviewed in light of international frameworks like EASA’s U-

space [11]. To mitigate these risks, the study proposes phased implementation strategies

14

that use sandboxed testing zones and protocol layers to restrict active response until

regulatory compliance is assured.

In addition, the study evaluates the broader economic impact of drone incursions. Delay-
propagation simulations across European hubs demonstrate how a 15-minute runway
closure at Josep Tarradellas Barcelona-El Prat cascades into missed connections in Paris
and Frankfurt, amplifying operational costs [12]. These findings justify investment in

automated interception technologies on both security and economic-resilience grounds.

1.3 General Methodology

The methodology follows a four-stage cycle that mirrors the dual theoretical practical
nature of the thesis. The first stage conducts involves a comprehensive review of
academic literature, regulatory guidelines, and industrial white papers on drone threats,
C-UAS technology, and Al-driven interception techniques. Quantitative parameters
detection range, false-alarm rate, reaction time, system cost, and deployment scalability

are catalogued to ground the experimental design.

The second stage constructs the simulation environment using Microsoft AirSim. AirSim
provides photorealistic 3D assets, and sensor emulation, while its Python APIs integrate
smoothly with Gym-compatible reinforcement-learning libraries executed from the
Anaconda Prompt. Monte-Carlo methods generate thousands of unique interception
scenarios by varying wind gusts, GNSS multipath distortion, and ground-vehicle

interference, ensuring that the agent generalises across environmental variability .[69].

Training logs capture reward evolution, exploration rate, distance-to-capture, and
collision events. Continuous monitoring of policy entropy and value-function variance
triggers automatic hyper-parameter tuning to prevent premature convergence or under-
fitting. Cross-validation shows that PPO yields smoother trajectories, whereas DQN

converges faster in discrete action spaces [10].

Domain experts review sensor logs and camera feeds to classify each engagement as safe,
marginal, or unsafe, adding qualitative assurance that aligns with ICAO and EASA safety
norms [11][14]. Post-simulation analysis then maps performance metrics against

operational and legal constraints geofencing compliance, no-fly zones, and multi-agent

15

interference to produce deployment recommendations for real-world airport

environments.

2. Theoretical Framework

2.1 Classification of drones

UAS classification is primarily by their method of neutralization. Among the most
common are net-capture drones, kinetic interceptors, loitering munitions, autonomous

reusable interceptors, and electronic kill drones.

But first I would like to talk about the drone of AirSim. One of its key features is the
inclusion of a generic quadcopter model, known internally as SimpleFlight. This default
aerial vehicle is not designed to emulate a specific commercial drone (e.g., DJI or Parrot),
but rather serves as a modular and extensible template with realistic physics and flight
dynamics. The drone operates with a four-rotor configuration and simulates a typical
small UAV platform with a diagonal size of approximately 0.87 meters and a weight of
around 1.5 kilograms. It includes a set of simulated sensors such as GPS, IMU, barometer,
magnetometer, and RGB and depth cameras, and supports additional payloads like

LiDAR or thermal sensors through parameter configuration [76].

Net-capture drones such as the Fortem DroneHunter F700 or the Skylock Interceptor use
smart-guided nets to ensnare enemy drones in midair. The DroneHunter, used in both U.S.
and Ukrainian operations, launches a net with a small parachute to minimize collateral

damage and allow for forensic analysis of the intercepted drone. Skylock’s version

16

integrates radar and RF systems for automated interception.

Figure 2: Fortem DroneHunter F700

Kinetic interceptors like the Anduril Anvil physically crash into enemy drones at high
speed, typically over 200 km/h. These quadcopters rely on onboard computer vision and
Al to track, approach, and ram the target, sacrificing themselves in the process. Ukraine
has adapted commercial FPV drones into “dogfighters” using real-time video and manual
or semi-autonomous control to impact Russian drones like the Orlan-10 or Mavic

variants.

Figure 3: Anduril Anvil

Loitering interceptors, exemplified by Raytheon’s Coyote Block 2 and 3, patrol an area
after launch until a target is designated, often by radar. Upon confirmation, they approach
and explode near the target. These systems, used in U.S. military deployments, are cost-

effective and highly reliable, especially against larger drones or swarms.

17

Autonomous reusable interceptors such as the MARSS Interceptor series use Al-powered
autopilots and onboard sensors to identify, pursue, and destroy enemy drones. These
drones carry directional explosive charges that minimize collateral damage and are

designed to return and recharge after completing their mission.

Figure 4: MARSS INTERCEPTOR

Israel’s Drone Guard DKD takes a different approach. It acts as a flying jammer that
gets close to the enemy drone and disables its communication or navigation systems
using directed RF or microwave signals. This method is particularly effective in urban

areas where line-of-sight is limited.

Improvised systems are also prominent, especially in Ukraine, where inexpensive FPV
racers are repurposed as interceptors. Equipped with analog cameras and high-discharge
batteries, these drones are flown manually at low altitudes and crash into enemy units,

providing a low-cost but highly effective solution in active combat zones.

Each method presents unique advantages and limitations. Net-capture drones are non-
destructive and ideal for civilian environments like airports, while kinetic and loitering
drones are better suited to combat operations. Reusable interceptors reduce operational
costs, and jamming drones add a non-kinetic option to disrupt threats without physical

contact.

18

Based on comparative analysis across different interception technologies, loitering
munitions, commonly referred to as suicidal drones, emerge as the most effective counter-
UAS solution currently deployed. These systems demonstrate a significantly higher
success rate (typically between 75-90%) compared to other interception strategies such
as RF jamming, kinetic projectiles, or directed-energy weapons. Their design allows them
to autonomously locate, pursue, and neutralize aerial targets, even in dynamic and GPS-

denied environments.

Unlike traditional interceptor drones, which rely on close-range tracking and often suffer
from latency or precision issues, suicidal drones fuse detection and neutralization in a
single act, reducing operational complexity. Their adaptability to fast and evasive targets
further enhances their effectiveness, as they do not require persistent lock-on or external

guidance during final engagement.

From a logistical standpoint, these drones offer a compelling cost-performance balance.
With an average unit price between $15,000 and $40,000, they are significantly more
scalable than directed-energy systems like high-powered lasers, which can cost upwards
of $100,000 per shot and remain sensitive to environmental constraints such as dust, fog,

or rain.

Furthermore, jamming-based countermeasures often fail when targeting autonomous
drones that do not rely on radio frequency control, and kinetic solutions suffer from
alignment precision and tracking delays, particularly against agile or swarming targets.
In contrast, suicidal drones like the Russian Lancet used in the Ukrainian conflict have
demonstrated real-world efficacy against both stationary and moving targets, confirming

their utility in high-threat operational theatres [85].

2.1.1 Regulatory frameworks

Europe’s regulatory backbone is the EASA UAS Implementing Regulation
(EU) 2019/947, which subdivides operations into three categories: Open, Specific and
Certified, based on risk analysis captured through the Specific Operations Risk
Assessment (SORA) methodology [15][16]. The Open category tolerates low-risk
BVLOS flights only under the A3 sub-category when a 150 m buffer from uninvolved

persons is observed.

19

The United States employs FAA Part 107 for small UAS (<25 kg), but waivers are
routinely granted for night operations, higher altitudes and BVLOS corridors under
LAANC, feeding data back into the UAS Traffic Management (UTM) ecosystem [41]
[77]. Meanwhile, China’s Civil Aviation Administration of China (CAAC) mandates
real-time telemetry uplink to provincial data centres for drones above 250 g, effectively
achieving nation-wide Remote ID six years ahead of the EU deadline [78]. JARUS, the
Joint Authorities for Rulemaking of Unmanned Systems, acts as a think-tank harmonising
SORA extensions [79], yet diverging national security prerogatives often override its
guidelines. For example, Poland’s 2024 Anti-Drone Act imposes geofenced ‘red boxes’
around critical energy infrastructure that supersede EASA’s standard geographical-zones

concept [80].

These discrepancies matter operationally. If an airport defence system monitors Remote
ID beacons as a primary detection cue, its effectiveness plummets in jurisdictions where
such beacons are optional or where adversaries deliberately disable them. Therefore,
classification schemes used in technical-threat assessment must remain agnostic to legal
compliance and instead pivot to empirical observables such as RCS, acoustic signature

and command-link protocol.

2.1.2 Physical and kinematic attributes

While mass and kinetic energy have long served as proxies for destructive potential,
real-world data paints a more nuanced picture. INTERPOL has highlighted that many
airport drone incursions involve small, lightweight UAVs that often evade radar systems
calibrated for bird detections [81]. Conversely, kinetic strikes on armoured vehicles in the
Ukraine conflict were dominated by platforms between 5 kg and 25 kg, which can lift

anti-tank munitions yet remain cheap enough for disposable one-way missions.[51][57]

Propulsion architecture also dictates tactical performance. Multi-rotors provide
centimeter-level hover precision ideal for window entry or antenna placement, but suffer
from poor energy density; their average cruise speed is just 12 m/s, making them
vulnerable to net-capture drones. Fixed-wing craft can loiter for hours, particularly when
equipped with hydrogen fuel cells. Hybrid VTOL platforms add complexity to detection
because their orientation during transition leads to fluctuating RCS values that oscillate

between 0.06 m? and 0.3 m? in S-band trials [20].

20

2.1.3 Functional roles and threat taxonomies

Functionally, drones can be mapped to a Kill Chain Taxonomy mirroring the classical

F2T2EA (Find, Fix, Track, Target, Engage, Assess) sequence:

Reconnaissance drones (Find/Fix): Small, low-acoustic platforms like the Black Hornet

shift platoon-level situational awareness.

Targeting drones (Track/Target): Medium-sized multi-rotors that lase or drop RF beacons

to direct artillery.
Kinetic drones (Engage): FPV racers fitted with shaped-charge warheads.

Battle-damage assessment (BDA) drones (Assess): Loitering micro-UAS that circle over

strike zones.

Beyond kinetic threats, cyber-payload drones have emerged. In 2022, security researchers
reported that modified DJI drones equipped with Wi-Fi Pineapple devices were used to
intercept and exfiltrate network credentials from elevated vantage points, demonstrating
a clear threat model for airport environments [82]. Chemical and radiological payloads,
while rare, remain technically feasible given that prosumer hexacopters can carry up to

3 kg.

Kill Chain
Drone Type Description
Stage
Small, low-acoustic drones like the Black
Find / Fix Reconnaissance Drones || Hornet enhance situational awareness at
platoon level.
Track / ' Medium-sized multi-rotors used to lase
Targeting Drones) .
Target or drop RF beacons to guide artillery.
FPV racing drones equipped with
Engage Kinetic Drones shaped-charge warheads for direct
strikes.

21

Kill Chain
Drone Type Description
Stage
A BDA (Battle Damage Loitering micro-UAS that monitor and
ssess
Assessment) Drones verify the effects of a strike.
Drones like Wi-Fi Pineapple-equipped
Cyber ' ‘
Cyber-Exfiltration Drones UAVs used to intercept and exfiltrate
Payloads)
data (e.g., 350 MB at airports).
CBRN ' _ _ Prosumer hexacopters with 3 kg payload
Chemical/Radiological .
Threats bays that can carry chemical or
) Drones))
(optional) radiological substances.

Table 1: Types of drones

2.1.4 Historical incident timeline (2018-2025)

2018 Gatwick Airport Shutdown: Two DJI Phantom-class drones caused 760 flight
cancellations, costing £64 million. Radar blind spots and lack of drone-specific detection

were cited in the UK CAA report [52].

Figure 5: Gatwick Airport

2020 Nagorno-Karabakh War: Azerbaijani TB-2 drones forced Armenia to disperse
artillery after losing 57 % of tracked batteries within 48 hours [49].

22

2021 Damascus International Airport: A swarm of five quadcopters dropped 40 mm

grenades; Syrian AD guns failed to acquire targets smaller than 0.08 m? RCS.

2022 Phoenix Sky Harbor: A DJI Matrice carrying methamphetamine packages

penetrated restricted airspace, highlighting narcotics smuggling routes.

2023 Moscow Kremlin Drone: A home-built fixed-wing detonated above Senate Palace,

illustrating the challenges of urban radar clutter.

2024 Port of Jeddah: Houthis used low-flying sea-skimming drones to evade AEGIS

radars, damaging a container vessel.

2025 Frankfurt Airport: German police intercepted a modified FPV racer at 200 km/h
using a net-gun launcher drone, marking Europe’s first air-to-air drone interception in

civilian airspace.

2.2 Detection technologies (radar, optical, LIDAR, RF, acoustic)

Detection technologies form the first layer of defence and often determine whether
subsequent engagement options can be exercised safely. The following sub-sections dive

deeper into each modality, their deployment constraints, and fusion architectures.

Sensor Example Limitations /
Strengths
Modality Technologies Interception Potential

Poor detection of small,

Pulse-Doppler, || Reliable under various
low-RCS UAVs; limited in

Radar FMCW, MIMO, light/weather .
) o N cluttered airspace
Passive Bistatic ||conditions; good range

(arxiv.org)
Radio- Can detect Fails if UAV is silent or
SDR-based RF . ‘
Frequency operator/link; passive uses unknown
detectors . _ o
(RF) detection possible | frequencies; limited range

Cost-effective;
Short detection range;
Acoustic || Microphone arrays || differentiates drones) o
noise-sensitive
from other sounds

23

https://arxiv.org/html/2402.05909v2?utm_source=chatgpt.com

Sensor Example Limitations /
Strengths
Modality Technologies Interception Potential

Intuitive visual Affected by lighting,
Optical / || RGB and thermal

identification; good for|| occlusions, limited when
EO/IR cameras

classification small drones

Precise spatial
Low-cost 3D

. mapping; robust in || Expensive; limited range;
LiDAR scanning LIDAR

clutter; effective in large data volume
systems .
swarm tracking
Multi-modal Complex integration;

Sensor Combines strengths; ‘ ‘ ‘

systems (e.g., RF + - higher implementation
Fusion . || reduces false positives

Optical + Acoustic) cost

Table 2: Detection technologies

2.2.1 Radar modalities and performance

Pulse-Doppler radar: Provides range and relative velocity; micro-Doppler analysis
extracts rotor blade spin signatures. Field tests by the Norwegian Defence Research
Establishment revealed that a 4-kW X-band array could detect a 1 kg quadcopter at 4.6 km
with 90 % Pd in clear air but only 1.7 km in light rain [44].

FMCW radar: Continuous transmission allows smaller form factors such as the Texas
Instruments IWR6843 chipset. When placed on runway approach light poles every 150 m,

the network delivers 360° coverage without the need for mechanically steered antennas.

Cognitive and MIMO radar: Multiple-Input, Multiple-Output (MIMO) arrays synthesize
virtual apertures, raising angular resolution. Cognitive scheduling algorithms proposed
by Cummings & Williams [44] reduced detection latency by 27 % in simulated cluttered

environments.

24

Passive bi-static radar: Uses illuminators of opportunity. The University of Twente’s 2024
PASSER prototype triangulated drones in a 5 km radius by correlating DVB-T reflections,

with practically zero electromagnetic signature.

2.2.2 Optical and thermal imaging

Optical sensors excel at classification once a candidate track is cued. Modern EO gimbals
integrate 30x zoom lenses and 640x512 LWIR cores. The dual-stream CNN approach
from Mehta etal. [20] fuses features post-convolution, outperforming late-fusion
baselines. A key challenge is motion blur during high-speed pans; solution proposals
include event-based neuromorphic cameras that capture sparse spatiotemporal changes at

microsecond resolution.

Atmospheric turbulence can distort imagery; real-time Shack-Hartmann wavefront
correction, though common in astronomy, is too heavy for mobile gimbals. Instead,
software-only deconvolution combined with physics-based rendering (PBR)

augmentation during training improves CNN robustness.

2.2.3 RF spectrum sensing

RF detection intercepts command-and-control (C2) links operating on Wi-Fi, Bluetooth,
or proprietary 2.4/5.8 GHz channels. RF fingerprinting techniques exploit the power-on
chirp unique to each micro-controller clock skew. In a 2025 DARPA RED 6 exercise, an
LSTM-based classifier achieved 98.1 % accuracy distinguishing between DJI, Autel and
Parrot drones using 0.5-second 1Q snapshots. However, adversaries can mask signatures
by saturating the band with decoy transmitters, driving interest in link-layer interrogation

methods like SYN packet timing analysis [45].

2.2.4 Acoustic sensing and source localisation

Acoustic arrays offer a low-cost, passive cue. Each drone class exhibits a harmonic peak
linked to rotor RPM; quadrotors show a dominant 90—110 Hz band whereas fixed-wings
produce broadband noise dominated by propeller tips. Pérez & Alcadzar demonstrated a

Mel-spectrogram CNN that differentiated three multirotor models with 96 % accuracy at

25

400 m in Beaufort 4 winds. Direction-of-arrival is solved via time-difference-of-arrival
(TDoA) on distributed microphone clusters; when combined with Kalman filtering,

azimuth error falls below 2° [46].

Drawbacks include false alarms from lawn equipment and urban traffic; hence acoustic

is rarely used alone but rather as a confirmatory channel.

2.2.5 Sensor-fusion architectures

Multi-sensor fusion follows either a centralised or distributed architecture. In centralised
systems, raw detections are uplinked to a server that runs track-before-detect algorithms
such as Gaussian-mixture Probability Hypothesis Density (GM-PHD) filters. Distributed
architectures push Bayesian filtering to the edge, sharing only confirmed tracks, which
saves bandwidth but risks inconsistent world models. The Spanish Guardian system opts
for a hybrid: radar and EO perform local tracking, while fusion at the C2 layer resolves

ID conflicts using Dempster—Shafer evidence combination [23].

2.3 Military applications of drones

Drones have democratised air power. Low-budget forces can now project ISR and kinetic
effects previously reserved for state actors. Counter-drone doctrine must therefore match

the pace of commercial innovation.

2.3.1 Spanish counter-drone and missile systems

Following multiple incursions at Madrid-Barajas in 2023, Spain declared C-UAS a
‘strategic national technological capability’. The Indra-Escribano-TRC system discussed
earlier is only the apex layer. At battalion level, the Army fields the Sapper Hunter Kit, a
backpack-carried array of four phased-array antennas providing 360° RF detection within
2 km and a collapsible 3-band jammer. This kit was deployed on UNIFIL peace-keeping
missions in Lebanon, where it foiled seven hostile drone incursions in Q4 2024. The
Spanish Air and Space Force operates CRONOS a C-UAS add-on to its TPS-77 multi-role
radar granting a 360° bubble of 9 km against Group II fixed-wing drones [29][30].

26

Figure 6: CRONOS a C-UAS

Integration with legacy missile systems is underway. NASAMS launchers receive
drone-specific track labels via Link-16 J11 messages, allowing warfighters to manually
veto an expensive missile shot if a low-cost alternative exists. Live-fire experiments at
the Médano del Loro range in 2025 saw the first Spanish intercept of a swarm surrogate
using the CITADEL high-energy laser demonstrator (30 kW), successfully burning
through carbon-fibre frames at 1.2 km [30].

2.3.2 International counter-drones systems (US, Israel, NATO, Others)

United States: In addition to M-LIDS, the U.S. Army’s new MSHORAD Increment 2
adds the 50 kW DE-M-SHORAD laser, already downing class-1II drones at the Yuma
Proving Ground in 2025 [34]. The Marine Corps is fielding MADIS Mk2, integrating
360° AESA radar, EO/IR and a 30 mm Bushmaster cannon with proximity-fused air-burst
rounds. These systems are primarily vehicle-mounted and do not rely on anti-drone
drones. However, the U.S. military does employ loitering munitions and reusable
interceptors, such as the Raytheon Coyote drone [33], which is explicitly designed to
engage and destroy enemy UAVs in flight, including swarms [34].

27

Figure 7: Raytheon Coyote

Israel: Beyond Iron Dome, Israel Aerospace Industries unveiled Iron Beam, a 100 kW
laser claiming cost-per-shot of $2; successful interceptions against mortar shells suggest
near-term applicability to large UAS [35]. Israel’s Sky-Spotter program networks
passive EO/IR sensors across civilian rooftops, effectively crowd-sourcing detection.
While Israel focuses mainly on static or ground-based interception (lasers, missile
systems), interceptor drones like the Rotem L and the Drone Guard DKD have been

tested for both kinetic and electronic countermeasures against hostile UAVs [50].

Germany & NATO: Skynex’s open API allows plug-and-play of third-party effectors.
During Exercise Dynamic Front 25, a Slovenian RF-jammer seamlessly integrated into
the Skynex weapon loop [36]. Meanwhile, NATO’s Future Tactical Communications
Program (FTCP) is defining C-UAS track-metadata standards to avoid friendly fire in
multinational deployments [50]. These systems currently emphasize sensor integration
and jamming, with no known operational anti-drone drones in use. However, Skynex is

designed to integrate future autonomous UAV-based effectors if developed [50].

China & Russia: Although less transparent, Chinese forces employ the LW-30 laser and
the CS/AAS 80 kW microwave truck [50]. Russia’s Repellent-1 EW system and
Pantsir-SM missile/30 mm cannon hybrid have reportedly intercepted Ukrainian drones,
but leaked data suggests limited effectiveness against low-RCS FPV racers [57]. Russia
and China do not appear to field dedicated interceptor drones, but Russia has been

observed using suicidal FPV drones to intercept others in a semi-manual fashion. These

28

are not autonomous counter-UAS drones but repurposed attack drones with visual

guidance [57].

2.3.3 Cost calculus and future trends

Cost-exchange ratios are a central driver of procurement strategy in both conventional
and asymmetric warfare. For example, each shot from Israel’s Drone Dome high-energy
laser costs under €50 in electrical consumption, while intercepting the same drone with
an AIM-9X Sidewinder costs approximately €55 000 [35][36]. This disparity results in a
cost-exchange ratio of over 1,000:1, highlighting the unsustainability of relying solely

on missile interceptors for low-cost UAS swarms.

However, directed-energy weapons (DEWs) are not without limitations. They are
weather-sensitive performance drops significantly in rain, fog or dust and require line-
of-sight dwell time to burn through drone structures [35]. Consequently, DEWs are
increasingly seen as complementary to kinetic solutions, rather than replacements. In
all-weather scenarios, micro-rockets with proximity-fused flechettes provide a
mechanical solution that relies on prop-wash detection rather than visual or radar

targeting, enabling robust neutralisation of small swarm elements [50].

The economics of counter-UAS extend into software. The rapid iteration of drone
hardware especially in consumer and DIY markets renders fixed classifiers obsolete
within months. Federated learning architectures, in which C-UAS edge nodes retrain
models on-device using battlefield data, reduce the reliance on centralised retraining

pipelines and facilitate zero-day detection of novel threat signatures [23][37].

This decentralised adaptation strategy proved its value during NATO's Joint Electronic
Warfare Trials 2025, where federated classifiers trained in Lebanon and Estonia were able
to cross-detect newly introduced quadrotor variants with 78 % accuracy within 24 hours,

compared to <40 % for non-federated baselines [50].

2.4 Data management and cybersecurity of C-UAS networks

Sensor fusion is only as good as the integrity of the data pipeline. A modern C-UAS node
can ingest 200 MB/s of radar I/Q samples, 4K EO imagery and LiDAR point clouds, all

29

transported over heterogeneous links (Ethernet, Wi-Fi 6E, 5G, tactical MANET). Data
provenance tagging is therefore mandatory; every packet is digitally signed using
AES-GCM with a rotating 128-bit key derived from a zero-trust Public Key Infrastructure
(PKI). During NATO’s Locked Shields 25 cyber-range exercise, red-teamers spoofed
ADS-B messages to inject ghost tracks, causing the fusion engine to allocate effectors
erronecously. The after-action report recommended implementing Signed
Operational-Status Messages (SOSM) and using Physical Unclonable Functions (PUFs)
on edge devices to thwart supply-chain tampering [50][56].

Retention policies also matter: GDPR stipulates that personally identifiable data, such as
facial imagery from EO payloads, must be deleted or anonymised after operational
necessity lapses. Edge processing can blur human faces in real time while preserving
drone contours for classifier input an architecture pioneered by Fraunhofer IOSB in the
PriMa-Drone project. Finally, the entire C-UAS mesh should be considered an attack
surface; in 2024, white-hat hackers demonstrated a buffer overflow in a popular radar
SDK, enabling remote code execution on the sensor’s ARM processor. Vendor lock-down

policies must therefore be audited by independent agencies[55][56].

2.5 Human factors and operator interfaces

Operator workload can make or break a C-UAS installation. Early systems flooded users
with raw radar blips and false alarms. Modern interfaces apply adaptive symbology:
tracks with high classification confidence are promoted to the tactical map, while
ambiguous tracks appear on a separate review layer. Eye-tracking studies at the University
of Cranfield found that adaptive de-cluttering reduced mean target acquisition time from
8.2 sto 3.1 s. Haptic feedback, such as a wristband vibrating in the direction of intrusion,
frees visual bandwidth when the operator must simultaneously monitor runway traffic.
Finally, Virtual-Reality (VR) overlays allow a single operator to ‘step inside’ fused sensor

volumes, intuitively gauging altitude and velocity vectors [S0][55].

30

2.6 Adversarial RL and counter-counter-measures

Adversaries will not remain static; they adapt flight paths, employ stealth coatings or
spoof acoustic signatures. Adversarial Reinforcement Learning (ARL) trains a generative
intruder policy to minimise detection probability, forming a minimax game. In
experiments inspired by Zhang et al. (2025), the attacker reduces radar cross-section by
aligning its body with the radar line-of-sight. The defender’s PPO policy, retrained in this
adversarial loop, recovered a 78 % intercept rate versus 42 % without ARL. This suggests
future C-UAS AI must be continuously co-evolved against threat actors to avoid

obsolescence [28][37][48][50].

2.7 Legal and ethical considerations

Deploying kinetic (projectile or fragmentation) or directed-energy effectors (high-power
microwave or laser) inside civilian airspace poses serious proportionality and distinction
tests under International Humanitarian Law (IHL). The recently issued Tallinn Manual
3.0 on the International Law of Cyber Operations and Autonomous Systems stipulates in
Rule 35 that “constant care shall be taken to spare the civilian population”; any lethal
C-UAS response must therefore demonstrate that collateral effects thermal bloom,

ricochet, or EM back-scatter are kept below accepted risk thresholds [59].

Domestic statutes often go further. Spain’s Royal Decree 476/2024 legalises GNSS or
ISM-band jammers for emergency use, yet explicitly bans class-4 lasers within a 1 km
radius of hospitals and fuel-farms, compelling airport operators to enforce geo-
compliance layers that invalidate restricted effectors through real-time geofencing and
PNT cross-checks [60]. By contrast, the U.S. Department of Defense Directive 3000.09
(Rev. 2024) mandates human-on-the-loop oversight for lethal autonomy: although an
interceptor may autonomously track and predict collision states, a human operator must
still explicitly authorise every hard-kill action [61]. This doctrinal compromise has driven
vendors to embed explainable Al panels showing saliency maps and predicted blast radii

so that operators can render legally sound engagement decisions within seconds [41][55].
In practical terms, large hubs now layer graduated effectors:

1. Soft-kill first protocol hijack or GNSS spoofing within the red box.

31

2.

3.

Non-lethal kinetic net guns, proximity flechettes beyond 500 m.

Directed-energy lasers or HPM only when geofence rules confirm zero third-party

presence.

Such tiered escalation satisfies both IHL proportionality and national safety statutes,

while still providing credible defence against high-speed FPV swarm attacks [50].

2.8 General policy recommendations and future research

directions

1.

Standardise Remote-ID enforcement across ICAO member states, using the RPAS
Manual’s Annex 10 message format and the FAA’s UTM ConOps v3.0 as
reference profiles [53] [54]. Harmonisation eliminates “dark drones” that appear
compliant in one FIR but invisible in another, thereby reducing cross-border

detection ambiguity.

Invest in modular effectors. Future threats will range from sub-250 g nano-swarms
to 500 kg cruise-class UAVs; no single kill chain suffices. A layered toolbox RF
hijack, microwave, net-gun, laser, and proximity flechettes lets C-UAS nodes pick
the cheapest adequate effector per engagement, as codified in NATO’s counter-

swarm doctrine [50].

. Adopt federated learning so that detection models retrain on-edge with battlefield

data. During NATO EW Trials 2025, federated CNNs pushed to frontline radars
detected a new FPV variant within 24 h, while the centralised baseline lagged by
three days [37].

Forge civilian—military data-sharing agreements. Airport incident logs offer
pristine, labelled tracks; front-line operators provide rare adversarial manoeuvres.
A bidirectional feed (e.g., via the EASA SWIM backbone) accelerates classifier

robustness and shortens model-update cycles [41].

Pursue “Green C-UAS” infrastructure. Solid-state batteries and photovoltaic radar
outposts cut diesel logistics by up to 38 % in remote bases, while low-SWaP

gallium-nitride transmitters halve electrical load during 24/7 perimeter scans [55].

32

Outstanding research gaps:
e Low-SWaP, 360° LiDAR antennas to close vertical look-angle dead zones.

e Cross-domain adversarial training that fuses RF, EO, LiDAR and acoustic

perturbations into a single minimax curriculum [28].

e Quantum-safe encryption for sensor meshes; preliminary lattice-based protocols

show 18 % overhead but survive NIST Round-3 attacks [62].

Progress will require tight collaboration among photonics engineers, RL safety

researchers and international-law experts to pre-empt the next cycle of threat innovation.

2.9 Counter-deception and electronic counter-counter-measures

As drone warfare matures, sophisticated adversaries employ increasingly deceptive
tactics to saturate or mislead counter-UAS systems. A common method is the deployment
of repeater drones, which rebroadcast radar echoes or RF control signatures in patterns
mimicking legitimate UAS telemetry. These tactics create phantom tracks, leading
defence systems to expend interceptors on non-existent targets. Similarly, reflector
balloons are coated in conductive material to artificially inflate radar cross-section (RCS)

and bait missile shots from kinetic effectors.

To mitigate these risks, modern radar systems integrate micro-motion feature (MMF)
analysis, which isolates the unique Doppler modulations caused by spinning rotor blades,
allowing for discrimination between genuine UAS and decoys [63]. Further resilience is
achieved through multi-static radar geometries, where signal time-of-arrival (ToA)
discrepancies from spatially dispersed receivers detect inconsistencies that single-point

repeaters cannot replicate [19].

On the RF spectrum, frequency-hopping spread spectrum (FHSS) deception is countered
via cross-correlation of pseudo-noise (PN) codes. Legitimate command signals follow a
predictable sequence, while spoofed emissions often exhibit timing jitter or unnatural
transitions. ML-based classifiers, particularly those trained on Long Short-Term Memory
(LSTM) networks, can flag these deviations by detecting non-physical clock drift
patterns, as demonstrated in DARPA’s RED-6 2025 campaign [45].

33

Israel’s Drone Dome system incorporates these technologies and claims a 90 % reduction
in false-track engagements since their integration in late 2024 [35]. This success has
influenced NATO’s own systems, which are now embedding semantic filtering: an
algorithmic layer that rejects tracks unless they conform to physically plausible flight
profiles, velocity, jerk, and bank-angle constraints consistent with lithium-polymer

battery-powered multicopters.

In NATO’s Joint Electronic Warfare Trials 2025, semantic filters blocked 87 % of
spoofing attempts, including those using synchronized multi-repeater configurations.
These results support the move toward cognitive C-UAS architectures, where

interpretability and behavioural plausibility augment traditional detection logic [50][44].

2.10 Training pipelines and doctrine development

Technology alone is not sufficient to ensure operational readiness in counter-UAS
systems; human training pipelines and doctrine refinement are equally vital components
of an effective defensive posture. Recognizing this, Spain’s Escuela Militar de UAS y
C-UAS has instituted a three-phase training curriculum designed to merge theoretical

grounding with operational competence:

- Phase I focuses on sensor theory, signal processing, and legal frameworks,
including international standards from ICAO and national rules such as
Spain’s Royal Decree 476/2024 [60]. Recruits are introduced to radar
waveform fundamentals, RF propagation models, and the ethical/legal use
of directed-energy effectors.

- Phase II shifts into virtual reality (VR)-based simulators, leveraging high-
fidelity synthetic environments. Trainees engage in 30 minute immersion
sessions where they must correctly classify and respond to 200 incoming
targets spanning kinetic, RF, and stealth decoys. The training engine is
powered by AirSim and ROS 2, integrating real-world drone datasets such
as OpenDroneMap [13].

- Phase III culminates in live fire exercises at the Médano del Loro coastal
range. Operators deploy full-spectrum countermeasures (radar, EO/IR,
jammers, net drones) in real scenarios with FPV racer intrusions,

simulating urban and coastal threats. Following two full cycles of this

34

tiered curriculum, interception rates increased from 68 % to 91 %, while
fratricide dropped to zero—a statistically significant improvement over

legacy training modules.

The doctrine continues to evolve. The U.S. Army’s draft Field Manual 3-01.8 (2025)
reorients strategy from fixed-point C-UAS “bubbles” to highly mobile, modular C-UAS
detachments. These units integrate radar arrays on MRAP vehicles, directed-energy lasers
on Stryker platforms, and RF jammers on JLTVs, allowing for rapid response and reduced

counter-battery exposure [61].

Israel’s approach also blends hardware with doctrine. In addition to its [ron Dome, Israel
Defense Forces have introduced the Smash Dragon system, a rifle-mounted electro-
optical (EO) tracker integrated with an Al-based fire-control module. This lightweight
package enables infantry to engage micro-drones autonomously at short range,

complementing strategic air defense with tactical responsiveness [35].

The trend across NATO allies indicates a shift toward distributed, software-defined,
human-in-the-loop C-UAS architectures, where doctrine, training, and Al systems evolve

in tandem with adversary tactics.

2.11 Emerging C-UAS technologies on the 2030 horizon

Quantum radar: Utilising entangled microwave photons, quantum radar promises
detection of low-RCS targets within heavy clutter. A 2025 Canadian Quantum Valley
demonstration tracked a 700 g quadcopter at 4 km by measuring phase correlations
resistant to thermal noise. While power budgets and cryogenic cooling remain hurdles,
defence roadmaps from DARPA and NATO STO earmark operational prototypes by 2029
[50].

Neuromorphic event cameras: Unlike frame-based sensors, event cameras output
asynchronous brightness changes with microsecond latency and 120 dB dynamic range.
Tests at the University of Zurich’s Robotics Lab showed that an event-based correlation
filter detected FPV drones against complex backgrounds with 2x lower false-alarm rate

than traditional CMOS [65].

35

Metamaterial cloaking detectors: By embedding split-ring resonators, these passive
panels visualise scattering anomalies caused by stealth coatings. Spain’s Polytechnic
University demonstrated a laptop-sized prototype at the 2025 IEEE APS conference,

revealing otherwise invisible carbon-veiled drones at 15m [66].

High-power microwave (HPM) artillery shells: The U.S. Army
| J s prototyping 155 mm shells that release a 1 GW microwave
pulse mid-air, frying drone electronics across a 200 m radius.
Compared to lasers, HPM is weather-agnostic, but collateral
EMI effects on friendly systems necessitate spectrum

management frameworks [67].

Bio-inspired interceptors: The French ONERA ‘Falconet’

project designs flapping-wing UAVs capable of 60 g

Figure 8: ONERA Falconet

instantaneous turns, optimised for chasing erratic micro-drones indoors where GPS is

denied [68].

These technologies are nascent but underscore an accelerating arms race; what is

state-of-the-art today may be insufficient within one budget cycle [50].

3 Reinforcement-learning algorithms (RL)

Modern Counter-Unmanned Aerial Systems (C-UAS) increasingly aim for autonomous
pursuit capabilities in complex, cluttered, and GPS-denied environments. Traditional
control methods, such as Proportional Navigation or rule-based decision trees, often fall
short under uncertainty, limited visibility, or rapidly changing target behavior. In contrast,
Reinforcement Learning (RL) provides a flexible, data-driven framework that allows
agents to learn optimal interception strategies through experience, rather than relying on

predefined rules.

RL agents interact with an environment by perceiving its current state, taking actions, and
receiving feedback in the form of scalar rewards. Over time, the agent builds a policy—
a mapping from states to actions—that maximizes the expected cumulative reward. This
framework is well suited for interception tasks, where rapid reaction, uncertainty, and

high-dimensional sensor data are common. The use of RL also facilitates integration of

36

raw observations like LiDAR, GPS, or camera feeds, directly into the control loop,

eliminating the need for intermediate hand-crafted models.

Training RL agents requires the design of a reward function that reflects mission
objectives and safety constraints. Positive rewards are typically assigned for reducing
distance to the target, intercepting it, or maintaining visual contact. Penalties are applied
for collisions, leaving designated airspace, or stalling. This balance is critical: poorly
shaped rewards can lead to unintended behaviors, such as hovering passively or circling

without closing the gap.

3.1 Algorithmic spectrum

DQN family: Deep Q-Networks (DQN) approximate a discrete action-value function
Q(s,a) by minimizing a temporal-difference loss over a buffer of replayed experiences.
This technique enables learning from off-policy data and stabilizes training, which is
particularly useful when control primitives (e.g., "increase throttle", "yaw left") can be
clearly enumerated. However, the architecture scales linearly with the number of
waypoints in the pursuit grid, which quickly makes the network unwieldy and memory-
intensive for fine-grained tasks. DQN models also exhibit a known over-estimation bias
due to the max operator in the Bellman equation, which can mislead learning in sequential

decision tasks. This bias becomes especially problematic in pursuit scenarios where small

positional errors compound over time [24][47].

DDPG/TD3: Deep Deterministic Policy Gradient (DDPG) and its twin-critic extension
TD3 adapt the actor-critic framework to continuous action spaces, producing a
deterministic policy that outputs precise control commands like thrust vectors and
torques. This smooth control capability is essential for agile quadrotor maneuvers.
However, these methods are notoriously sensitive to hyperparameters: the magnitude and
timing of exploration noise, learning rates, and critic regularization must be precisely
tuned. Without careful tuning, the actor or critic can overfit, leading to unstable or

collapsed policies, a challenge often seen in initial sim-to-real deployments [27].

PPO: Proximal Policy Optimization introduces a clipped surrogate objective to bound the
Kullback—Leibler (KL) divergence between new and old policies, preventing over-
adjustments that degrade performance. This leads to stable, sample-efficient learning
even with high-dimensional observations like camera feeds or LiDAR scans. PPO's

stability and reliability have made it a favored algorithm in both academic research and

37

industrial-grade aerial robotics. Its use of synchronous roll-outs also simplifies distributed
training orchestration, which benefits tasks with intermittent data payloads like wide-area

loiter and intercept missions [25][26].

SAC: Soft Actor-Critic augments its learning objective with an entropy bonus that
explicitly encourages exploration, helping avoid premature convergence. Haarnoja et al.
demonstrated that SAC can be up to twice as sample-efficient as PPO in benchmarks
involving aggressive aerial maneuvers, while still supporting continuous action outputs
comparable to DDPG/TD3 [48]. SAC’s off-policy nature allows it to leverage large replay
buffers in GPU memory, improving convergence speed in perception-heavy tasks where

visual input predominates.

Model-predictive RL: This hybrid approach uses a learned, differentiable dynamics
model within a Model Predictive Control (MPC) loop. At each step, multiple future
trajectories are simulated in latent space and evaluated using a cost function, with only
the first control input executed. A notable implementation from ETH Zurich combined
uncertainty-aware latent rollouts with cross-entropy planning to reduce collision rates by
40% 1in dense forest navigation. Such foresight and constraint handling offer important
advantages in safety-critical interception tasks especially where hard constraints must be

respected in real-time [44].

Algorithm choice directly impacts computational architecture. PPO’s need for
synchronous workers benefits from high-bandwidth NVLink inter-GPU channels,
whereas SAC’s replay-heavy training saturates GPU memory bandwidth but tolerates
asynchronous collection. In our pipeline, 256 simulated interceptors run across an 8-GPU
A100 node, generating 1.2 million environmental steps per second; PPO consumes only
55 % of available compute, while SAC utilises 83 % due to replay sampling. These figures
inform hardware sizing for field-deployable edge clusters that must retrain policies from

battlefield data within tactical time-frames.

4 Simulation Setup

4.1 Microsoft AirSim

Microsoft AirSim is an open-source simulator that integrates with Unreal Engine to

provide highly realistic environments for testing autonomous vehicles, including drones.

38

It features a physics engine, sensor simulation (LiDAR, camera, IMU, etc.), and full API
support in Python, C++, and C#. AirSim’s realism allows reinforcement learning (RL)
algorithms to be trained in a way that closely resembles real-world deployment, with
visual complexity, lighting variation, and sensor noise properly accounted for [1]. At the
beginning of the project, the official AirSim documentation and community resources
were reviewed to understand the different installation options. There were three main
methods: downloading the pre-compiled 'Blocks' binary environment; compiling the
AirSim plugin manually and linking it to a custom Unreal Engine 4.27.2 project; and
building and testing it on Unreal Engine 5.x. Despite the flexibility of the second option,
I decided to use the first method due to the issues I had trying the second method. Then I
downloaded the pre-built version of the Blocks environment provided by Microsoft. This
was the fastest and most reliable way to get started, and although it didn’t allow for
customization of the world or drones beyond configuration files, the drone carries two
essential sensors: a LIDAR and a front-facing camera, which were sufficient for the

training tasks I planned.

After downloading the Blocks executable, I move it in my working directory and
configured AirSim’s connection settings in the standard settings.json’ file. To validate
the connection between Python and the AirSim environment, a basic script was executed
in the Anaconda Prompt that checked server communication via the RPC interface. The
simulator launched without issues, and I was able to control the drone and receive image
and LiDAR data from the environment. Because I used the default drone and the default
sensor layout, no further Unreal compilation or plugin builds were required. This
approach allowed me to quickly iterate on reinforcement learning code without spending

time compiling source code or resolving engine compatibility issues.

In terms of system requirements, my PC uses an AMD Radeon RX570 graphics card and
an Intel Xeon 5650 server-grade processor. There was no need to make any changes to
GPU or system settings, as my machine was already capable of running advanced Al
workloads smoothly. Also there weren’t any performance problems when running the
Blocks simulation frames were rendered at stable speeds, and both camera and LiDAR
data were generated in real time without lag. Thanks to the Xeon’s high thread count,

even concurrent processes like training and simulation could be executed efficiently.

That said, there were still several technical issues that needed a solution. The most

39

significant was an incompatibility between my existing Python 3.8 installation and the
Anaconda environment I needed. The Anaconda 2024 installer does not support versions
of Python earlier than 3.9, so I had to uninstall Python 3.8, remove all references to it
from the PATH system variable, and install Python 3.11. After that, I installed Anaconda
and created a new environment named airsim-core, which included essential packages

like gymnasium, torch, stable-baselines3, and the airsim Python client.

Another issue arose from my initial plan to use the Spyder IDE. Every time I tried to run
AirSim scripts inside Spyder, I received a recurring error: “ValueError: signal only works
in main thread.” This problem is related to how Spyder’s IPython console manages
threading and signals, and I found no stable workaround despite trying several proposed
fixes. As a result, I chose to run all scripts directly from the Anaconda Prompt, which

provided a stable execution environment and eliminated the signal-related errors entirely.

To simplity workflow, I ensured that all my files the Blocks simulator, Python scripts, and
virtual environment were located in my user directory ("C:\Users\Dell"). This avoided
problems with relative paths and made it easier to manage dependencies and logs. The
simplicity of this layout became especially valuable when conducting long training

sessions and debugging intermediate outputs.

4.2 Vehicles and Sensors Defined in settings.json

The settings.json file in Microsoft AirSim acts as the configuration nucleus for the
simulation environment. It defines all top-level parameters including global simulation
settings, available vehicles, sensor payloads, and their individual characteristics. In my
setup, the objective was to simulate a multi-agent drone scenario where two multirotor
vehicles dronel and drone2 operate within the Blocks environment with specific sensor
arrangements. These configurations are directly encoded in the settings.json file, and

AirSim automatically parses this JSON file on simulator launch.

40

o=

Figure 9 : Airsim Blocks with Lidar

The most fundamental attribute in this file is 'SimMode', set to 'Multirotor'. This
instructs AirSim to enable flight dynamics and control logic suited for aerial vehicles
using the SimpleFlight API. The global 'ClockSpeed' parameter is set to 1, ensuring
real-time simulation without time dilation. The 'SettingsVersion' is marked as 1.2,

which is compatible with the current AirSim schema.

"SettingsVersion":1.2,

"SimMode": "Multirotor",

"ClockSpeed": 1,

The root block 'Vehicles' includes two keys 'dronel' and 'drone2' each of which represents
an autonomous drone entity. Both drones use the 'SimpleFlight' flight controller, a
physics-driven model designed for general-purpose multirotors. The positional
parameters 'X', 'Y', and 'Z' define the initial spawn coordinates of each drone within the
virtual environment. 'dronel' spawns at the origin (0, 0, 0) and 'drone2' at (-20, 0, 0),
indicating a 20-meter offset along the X-axis, which creates enough spacing for
independent flight. In AirSim, the coordinate system follows a right-handed North-East-
Down (NED) convention, which is standard in many aerospace and robotics simulation
environments. The X-axis represents movement toward the North (forward relative to the

drone's starting orientation), the Y-axis corresponds to East (rightward movement), and

41

the Z-axis points downward, meaning altitude decreases as Z increases. Therefore, a
drone positioned at coordinates (0, 0, -10) is located 10 meters above ground level. For
example, a positive change in the X value means the drone moves forward; a positive Y
value indicates rightward displacement; and a more negative Z value represents a higher
altitude. This system is used for all drone positioning, velocity calculations, and sensor
data in AirSim, providing alignment with aviation standards and simplifying simulation-

to-reality transfer.

"dronel": {

"VehicleType": "SimpleFlight",

"X": 0,
HYH: 0,
HZ": O’

Each drone carries a LiDAR sensor named 'LidarSensorl'. The sensor block defines a
number of critical performance attributes. The 'SensorType' 6 is internally mapped by
AirSim to indicate a LiDAR module. 'Enabled": true ensures the sensor is active.
"NumberOfChannels': 16 specifies a vertical resolution comparable to a Velodyne VLP-
16 scanner. It emits 16 horizontal layers of laser rays. 'RotationsPerSecond': 10 and
'"PointsPerSecond': 10,000 control how fast and how densely the LiDAR captures points.
The positioning is controlled through 'X', 'Y', 'Z' values, with Z=-1 placing it slightly
below the drone's body to prevent self-collision in ray-casting. The orientation Roll, Pitch,
Yaw is kept at zero to ensure forward alignment. Vertical and horizontal FOVs are fully
specified: vertical from +10° to -10°, horizontal from -180° to +180°, creating a full
panoramic capture in 3D. The setting 'DrawDebugPoints': true makes the rays and hits
visually renderable within the simulation, which aids in debugging spatial perception. The
'DataFrame' parameter is set to 'SensorLocalFrame', indicating that all point data will be

referenced in the drone’s local coordinate system rather than the global world frame.

Only 'dronel' includes a camera sensor under the key 'front center'. This naming
convention is critical as it links directly with AirSim’s image request API. The

'CaptureSettings' define how the camera behaves. It captures image type 0, which

42

corresponds to an RGB scene image. The resolution is specified as 256 pixels wide by
144 pixels high. This small resolution is not a limitation it’s a deliberate design to reduce
the dimensionality of the state space for reinforcement learning. Smaller input frames
result in fewer neural network parameters and faster training cycles. The camera is placed
slightly forward of the drone center at X=0.5, and slightly upward at Z=0.1, mimicking
the nose of a real drone. Pitch, Roll, and Yaw are all set to 0, orienting the camera directly

forward.

The dual-sensor approach camera plus a hybrid observation space for the learning agent.
The camera provides rich semantic cues (such as target detection or navigation cues),
while the LiDAR offers reliable depth information, crucial in situations where motion
blur or lighting degrades the image quality. This fusion is common in robotic perception
literature, as it balances redundancy and robustness. While 'drone2' only carries LiDAR,
its purpose is to act as a target vehicle or a distractor, not an actively controlled agent. By

limiting its sensors, [avoid wasting computational budget on unnecessary image streams.

I encountered several nuanced behaviors during the configuration of this file. For
example, the vertical field of view (FOV) in LiDAR sensors would not activate unless
both 'VerticaFOVUpper' and "VerticaFOVLower' were explicitly set. Similarly, sensor
alignment issues occurred when I didn’t offset the sensor position in Z. Another important
detail is that AirSim does not automatically assign segmentation IDs to objects; these
must be done manually via RPC calls if semantic segmentation is used. I focused purely

on distance measurements and RGB frames.

The settings.json file sits in the root directory, usually beside the Blocks executable. This
positioning ensures that the AirSim engine reads the file on startup. Any syntax errors,
such as missing commas or misquoted keys, will cause AirSim to fall back to default
settings, which results in confusing behavior. For this reason, I validated each edit with a

JSON linter before launching the simulation.

In summary, this configuration defined two drones with a complementary sensor layout:
one combining LiDAR and RGB, and the other equipped only with LiDAR. The
parameters were selected based on best practices in the literature and validated through
visual tests in AirSim. This setup enabled a diverse set of observations that could later be
used in both imitation learning and reinforcement learning pipelines. With the vehicles

and sensors successfully defined, the next step was to design the state representation,

43

action space, and reward function knowing that the goal to achive was to make the dronel

identify and approach the drone?2.

5 Training models

5.1 DQN Agent

This section provides the complete source code of 'p28.4.py" (the DQN training script
used for autonomous drone interception) along with an English explanation of every
function, method, and major configuration block. The goal is to give readers a clear,

self-contained reference they can replicate or extend.

import gymnasium as gym

import airsim

import numpy as np

import time

import cv2

from gymnasium import spaces

from stable baselines3 import DON

from stable baselines3.common.vec env import DummyVecEnv
from stable baselines3.common.monitor import Monitor
from stable baselines3.common.callbacks import
BaseCallback

import pandas as pd

import math

import matplotlib.pyplot as plt

import os

import logging

Configuracién de directorios

SCRIPT DIR = os.path.dirname (os.path.abspath(file))
RESULTS DIR = os.path.join (SCRIPT DIR,

"training results")

os.makedirs (RESULTS DIR, exist ok=True)

Configuracidén de logging
logging.basicConfig(

level=logging.INFO,

format="'% (asctime)s - %$(name)s - % (levelname)s -
% (message)s',

44

handlers=|
logging.FileHandler (os.path.join (SCRIPT DIR,
'drone training.log')),
logging.StreamHandler ()

)

logger = logging.getLogger (name)
logger.info (f"Los resultados se guardaran en:
{RESULTS DIR}")

The first lines import the required libraries: gymnasium for RL environment
scaffolding, airsim for simulator RPC, numpy and pandas for data wrangling,
stable baselines3 for the DQN implementation, matplotlib for plotting, and logging/os

for runtime diagnostics and directory management.

The script dynamically creates a training_results folder relative to the script path,
ensuring that model checkpoints and plots are stored locally and do not overwrite earlier
runs. A rotating log handler is configured so that every training session is recorded both

to console and to drone_training.log.

5.1.1. DroneEnv:

class DroneEnv (gym.Env) :

The DroneEnv class subclasses 'gym.Env' and implements a fully-featured RL

environment that wraps two multirotors inside AirSim. Key responsibilities:

__init_: Sets action/observation spaces, reward hyper-parameters, visual detection

thresholds, and initializes drones.

_initialize drones / _set initial positions: Handles API-level takeoff, positioning,
geofencing, and hover state to guarantee reproducible episodes.
_get camera image / detect drone2: Capture an RGB frame, convert to HSV, apply

color segmentation to identify the red target, then store pixel centroid.

_compute reward: Provides shaped rewards combining distance-based exponential

decay, visibility bonuses, progress terms, and penalties for collisions or out-of-bounds.

45

step / reset / close: Standard Gym interface for stepping simulation, resetting episodes,

and cleaning up.

5.1.2. init

def init (self):

(Refer to the Appendix)

The init method begins by calling super(DroneEnv, self). init (), which initializes
the parent class, likely gym.Env, ensuring compatibility with reinforcement learning
frameworks. It then creates a connection to the AirSim simulator using self.client =
airsim.MultirotorClient() = and confirms the simulator is ready with

self.client.confirmConnection().

Next, it sets the names of the two drones used in the environment dronel as the follower
and drone2 as the target. The action space is defined with self.action space =
spaces.Discrete(5), indicating five discrete possible actions, such as moving in four
directions and hovering. Camera parameters are specified using self.camera name, along
with image dimensions (self.image width, self.image height). The observation space is
defined as a Box with RGB values in the range 0-255 and dimensions (84, 84, 3),

corresponding to the image input format.

To understand the five discrete actions here’s a table:

Action ID|Description Axis Affected|Direction |Use Case

0 Move Forward ||X +X (North)||Approach target, pursue
1 Move Backward| X -X (South) |Retreat, avoid collision
2 Move Left Y -Y (West) |Lateral correction (left)

46

Action ID|Description Axis Affected|Direction |Use Case

3 Move Right Y +Y (East) |Lateral correction (right)

4 Hover None Stationary ||Stabilize, wait, or observe

Table 3: Drone actions table

Environmental constraints are then configured. self.x limit and self.y limit set the
maximum movement bounds on the horizontal plane, while self.fixed altitude defines a
constant altitude (Z-axis), following AirSim’s convention of negative Z for upward
motion. The drones' motion parameters are set with self.speed for the main drone,
self.yaw_rate for rotational movement, and self.drone2_speed to assign a slower velocity

to the target drone, making the task feasible.

The reward system is carefully constructed with a variety of terms. The
self.capture threshold defines how close the pursuing drone must be to earn a capture.
Key scalar values like self.capture reward, self.collision penalty, and self.time penalty
determine positive and negative feedback. Additional shaping terms
self.distance reward factor, self.progress reward factor, and self.visibility reward
encourage efficient pursuit and visual tracking of the target. There are also penalties like
self.out_of bounds penalty and self.hover penalty to prevent passive or erratic behavior.
The episode is constrained by self.max duration, and self.safe distance is enforced to

avoid crashes during setup.

Internal state tracking is handled using several variables that log time and behavior within
an episode. These include self.start time, the last distance to the target (_last dist), the
last action taken (last action), and a counter for consecutive hover actions

(_consecutive_hover). self.last_image stores the most recent observation.

The method also sets up visual detection using HSV color segmentation, a technique that
converts RGB images into the Hue, Saturation, and Value color space. This separation of
chromatic information (hue and saturation) from brightness (value) enhances robustness
against lighting variations, shadows, and reflections, making it more effective than
traditional RGB filtering for tracking colored objects. The target drone is detected using
two hue ranges in HSV space, split because red wraps around the hue spectrum. The

thresholds (self.drone2 color lowerl, self.drone2 color upperl, etc.) isolate red

47

components. Small contours are ignored based on self.min contour area. A sliding
detection window is implemented with self.detection_history, and detection is validated
only if it is consistent over a few frames (self.required consecutive detections within a
self.detection window size). The last known detection is stored in

self.last_detection_position.

Trajectory data is stored in self.episode path, which logs the drone's movement for future
analysis or replay. Finally, self. initialize drones() is called to set up the simulation—this
likely resets positions, arms the drones, and makes them take off, ready to begin a new

episode.

5.1.3 _initialize drones

def initialize drones(self):

(Refer to appendix)

Performs a complete reset of both drones: clears physics, arms motors, issues
“takeoffAsync’, and then positions each multirotor at the predefined starting altitude
(‘self.fixed altitude’). Any exception is logged and re-raised to ensure training

reproducibility.

5.1.4 set initial positions

def set initial positions(self):

(Refer to appendix)

Utility that queries AirSim's LIDAR API and returns the nearest hit to detect obstacles.
If the sensor is empty, it returns "inf" so that reward logic can safely handle missing

data.

48

5.1.6 get camera image

def get camera image (self):

(Refer to appendix)

Captures an RGB scene image, resizes to 84x84, normalizes pixel range, and provides
the latest frame for the neural network. If AirSim fails to deliver an image (rare), the last

valid frame or a zero-filled image is returned, ensuring observation shape consistency.

5.1.7 detect_drone2
def detect drone2(self, image):

(Refer to appendix)

Performs HSV color segmentation to detect the red target drone. Two hue ranges are
merged to ensure robustness to lighting. Morphological open/close minimize noise. The

centroid is stored to enable action redirection when hovering.

5.1.8 is_drone2 visible

def 1is drone2 visible (self):
(Refer to appendix)

Returns True only if the last three detections have been positive, thus filtering spurious

single-frame detections.

5.1.9 get obs

def get obs(self):
image = self. get camera image ()
self. detect drone2 (image)
return image

49

Fetches the latest camera frame and updates the detection history, returning an 84x84x3

uint8 tensor for the RL agent.

5.1.10 step
def step(self, action):

(Refer to appendix)

The step method defines the core logic that occurs in a single timestep of the drone
simulation. It processes an input action, applies it to the environment, computes the new
state, and calculates a reward. It is structured to support reinforcement learning agents

interacting with the AirSim simulation.

If the selected action is hover (action == 4), and the target drone (drone2) is visible, the
method adjusts the action based on the detected horizontal position of the target. If the
target is offset to the left or right, it redirects the action to move left or right. If centered,

it moves forward.

Depending on the selected or redirected action, the drone (dronel) is commanded to move
using AirSim’s moveByVelocityZAsync function. Hovering is handled separately with
hoverAsync. The consecutive hover counter tracks repeated hovering to potentially

penalize passive behavior.

The current states of both drones are retrieved, and their positions are used to compute
the Euclidean distance between them. This distance is crucial for determining rewards

and capture conditions.

An observation is retrieved via the get obs() method, likely capturing an image frame.

Collision status is also checked using the Airsim functions such as simGetCollisionInfo.

The method computes the reward and whether the episode should end using
_compute_reward. Additionally, it terminates the episode if the maximum time duration

is exceeded.

50

Key metrics like distance, reward, visibility, collision, and action are logged using

logger.info. The last action and distance are stored for future reference.

Each step appends the current position and reward to a trajectory list. At the end of the

episode, this path is saved to a CSV file for post-analysis. Errors during saving are caught

and logged.

Finally, the method returns the new observation, the reward, a boolean indicating episode

termination, a placeholder (False), and an empty info dictionary.

5.1.11 compute reward

def compute reward(self, posl, pos2, current dist, has collided, drone2 visible,

action):

(Refer to appendix)

Reward Condition Effect on Reward Purpose . /
Component Explanation
Penalizesthe
agent for
Collision If has collided ==| collision penalty crashing,
Penalty True (usually a negative value)|| encouraging
safer
navigation.
Rewards the
Capture If current dist <|| capture reward (positive agent when it
gets close
Reward capture threshold value)
enough to the
target drone.
Discourages
Out of | If ‘ pf)sl §x9eeds out of bounds penalty strayn.lg outside
Bounds x_limit, y limit or : the flight zone
- - (negative value) .
Penalty altitude threshold or altitude
window.
]l;zllsst:(;l - Always calculated exp(-current_dist / Enco'ur?ges
4 safe distance) * 5 proximity to jche
Reward target by giving

51

Reward Condition Effect on Reward Purpose . /
Component Explanation
higher reward
when closer.
Reinforces
If 1f. last dist .. t
Progress | Senas _dis Positive delta scaled by fnovemen
exists and has toward the
Reward . progress_reward factor
improved target over
time.
Encourages the
.. 1
Visibility If drone2 visible == Sca . be'lsed on agent to keep
proximity (higher when
Bonus True the target drone
closer) ..
in visual range.
Penalizes long
Time Penalty| Always applied Constant small negative|| episodes to
value promote faster
completion.
Negative value|| Prevents the
Hover If action == 4 increasin with|| agent from
Penalty £ £

consecutive hovers

idling mid-air.

No Progress

If current dist > 15

Penalizes if the
drone is far and

Penalty and mo progress| -2.0 not improving
made :
distance.
e, e
Termination If total reward < -20|| done = True Y
o performance is
Condition
Very poor.
Keeps reward
Reward . Reward clipped between|| values within a
Appl h
Clipping pplied at the end -10 and 20 stable range for

learning.

Table 4: Reward component, Source: own

52

The compute reward function calculates the reward and determines whether an
episode should end, in the context of reinforcement learning for a drone-chase scenario
where one drone (drone 1) pursues another (drone 2). The function returns a reward

value and a boolean indicating whether the episode is done.

First, the function checks for three immediate termination conditions. If the drones
have collided, it returns a collision penalty and marks the episode as done. If the
pursuing drone gets within a threshold distance of the target (capture condition), it
returns a capture reward and ends the episode. Lastly, if the drone leaves a defined safe
flying zone (geofence violation), it returns an out-of-bounds penalty and ends the

episode.

If none of those conditions are met, the function proceeds to calculate a shaped reward.
It begins with a distance-based reward that exponentially decreases with distance,
encouraging the drone to get closer. It then checks if the drone has improved its position
relative to the previous timestep. If so, it gives a progress reward, which is further

increased if the target drone is visible.

-Next, if the target drone is visible, an additional visibility bonus is added, which scales
depending on how close the drones are to each other. A time penalty is also applied
every step to encourage faster completion of the task. If the drone is hovering (indicated
by action == 4), a hover penalty is applied that grows with the number of consecutive

hover actions.

To prevent the drone from staying too far without improving, a penalty is given when
the drone is more than 15 meters away and not making progress. Finally, the reward is
clipped to the range [-10, 20] to avoid extreme values. If the final reward is very poor

(<-20), the episode is also terminated early.

The function returns the final computed reward and a boolean flag indicating whether the

episode should end.

5.1.12 reset

def reset(self, seed=None, options=None) :
super () .reset (seed=seed)
self. initialize drones ()
self.start time = time.time ()
self. last action = None

53

self. consecutive hover = 0
self.detection history = []
self.episode path = []
return self. get obs (), {}

Resets the simulation and returns the drones to their the initial position.

5.1.13 close

def close(self):
try:
self.client.armDisarm(False,
self.dronel name)
self.client.armDisarm(False,
self.drone2 name)
self.client.enableApiControl (False,
self.dronel name)
self.client.enableApiControl (False,
self.drone2 name)
self.client.reset ()
except Exception as e:
logger.error (f"Error cerrando entorno: {e}")

Safely disarms and relinquishes API control of both drones and resets physics.

5.1.14 CustomPlotAndSaveCallback

class CustomPlotAndSaveCallback (BaseCallback) :

A Stable-Baselines3 callback that smooths reward curves with a rolling mean every two

episodes, saves PNG plots, and dumps processed monitor CSVs for offline analysis.

5.1.15 _init (CustomPlotAndSaveCallback)

def init (self, save freq: int, save path: str,
verbose=1) :

super (). 1init (verbose)

54

self.save freq = save freq
self.save path = save path

self.episode count = 0

self.run count self. get run count ()
This _ init method is a constructor used to initialize an object of a class. It takes
three parameters: save freq, which indicates how frequently something should be
saved (e.g., every few episodes); save path, which is the directory or file path where
the data should be saved; and verbose, which controls how much information is printed

during execution, with a default value of 1.

The method begins by calling the constructor of the parent class using
super(). _init (verbose), ensuring that any necessary setup defined in the superclass
is also executed. It then sets up several instance variables: self.save freq stores the
frequency with which to save data, self.save path stores the path where data should be
saved, and self.episode count is initialized to zero, representing the starting count of

episodes.

Finally, the method sets self.run count by calling the internal method
self. get run_count(), which likely determines how many runs have occurred so far,
possibly for organizing saved files or directories with versioning. Overall, this
constructor sets up the necessary configuration for saving progress during the

execution of a process or training loop.

5.1.16 get run count

def get run count (self):

(Refer to appendix)

The get run count method determines how many training runs have taken place so
far by looking for a text file named run_counter.txt in the same directory as the script.
If the file is present, it reads the integer stored inside and returns that value; if the file

does not exist, it assumes this is the first run and returns 1.

55

The on_step method is a lightweight callback executed at every environment step. It

simply returns True, indicating that training should proceed without interruption.

The on episode end method is called after each episode finishes. It increments the
internal episode count and, on every second episode (when the episode count is even),
it attempts to generate diagnostic outputs. Inside a try block, it looks for the monitor.csv
file in the save path directory, which is produced by the environment monitor during
training. If the file exists, it loads the data with pandas while skipping the first row,
then adds a new column containing a rolling mean of the reward column r over a

10-step window to smooth short-term fluctuations.

Using Matplotlib it plots this smoothed reward curve, labels the axes and the plot, adds
grid lines and a legend, and saves the resulting image to RESULTS DIR with a
filename that embeds the current run_count and episode number. It also saves the
processed DataFrame as a CSV in the same directory. If verbose logging is enabled, it
records a message indicating where the plot was saved. Any exceptions that occur
during this process are caught and logged as errors, preventing them from crashing the
training loop. Finally, the method returns True so that training continues regardless of

whether plotting succeeded.

5.1.17 main

def main() :

(Refer to appendix)

The main() function launches the complete reinforcement-learning training loop for a
drone-chasing scenario within a custom simulation environment. Initially, it creates an
instance of the DroneEnv class, which encapsulates the dynamics, state representation,
and reward function specific to the pursuit task. This environment is wrapped with
Monitor, a utility from Stable-Baselines3 that records episodic rewards and statistics to a
CSV file (monitor.csv) in the RESULTS DIR folder. To satisfy the input interface of
Stable-Baselines3 algorithms, the environment is then passed through DummyVecEnv,

enabling vectorised execution, even when training with a single environment instance.

56

Next, a Deep Q-Network (DQN) agent is instantiated using the CnnPolicy architecture.
The training configuration is composed of carefully tuned hyperparameters that balance

learning speed, stability, and resource usage:

A learning rate of 3x10~* ensures stable convergence without overshooting, which

is particularly important for deep architectures operating on pixel input.

The buffer size of 200,000 transitions enables long-term experience retention,

improving sample efficiency and the agent's ability to learn from past events.

Alearning_starts threshold of 5,000 steps delays parameter updates until the agent
has explored enough of the environment, helping to avoid overfitting to early,

suboptimal experiences.

A batch size of 128 strikes a balance between training stability and GPU memory

usage, allowing each update to generalise over a moderately large sample.

The target update interval of 500 steps updates the target network at a
conservative rate, which helps prevent oscillations in Q-value estimates during

training.

A train_freq of 4 indicates that the agent collects four environment steps before

updating the model once, which reduces correlation between samples.

A gradient_steps value of 1 ensures that for every training interval, the model is

only updated once—simplifying analysis while maintaining steady progress.

Exploration is managed via a linear epsilon-greedy schedule: starting at € = 1.0
(pure exploration) and decreasing to € = 0.02 over the first 30 % of training. This
schedule encourages early exploration and gradually shifts to exploitation as the

agent learns.

The policy kwargs defines a two-layer fully connected network with 256 units
per layer. This moderate network size is sufficient for learning spatial features

from image input while keeping inference fast enough for real-time interaction.
The verbose flag is set to 1, enabling progress messages during training.

To maintain reproducibility and allow incremental experiments, the script manages a

persistent run counter. It checks for a file named run_counter.txt in the script directory. If

57

it exists, the stored run number is incremented and written back; otherwise, the file is
created with an initial value of 1. This count is later used in callbacks to version plots and

save files appropriately.

Exploration is managed via a linear epsilon-greedy (e-greedy) schedule. This strategy
balances exploration (trying new actions) and exploitation (choosing the best-known
action). At the beginning of training, € = 1.0, meaning the agent selects actions completely
at random to explore the state space broadly. Over time, € decays linearly to 0.02, reducing
randomness and increasingly relying on the learned Q-values to select actions. This
gradual shift ensures that the agent explores sufficiently during early training, discovering
diverse state-action pairs, and then transitions to exploiting its knowledge to optimise
performance. The e-greedy method is simple yet effective, making it a widely used

exploration strategy in discrete-action reinforcement learning algorithms [83].

A custom callback CustomPlotAndSaveCallback is then created to periodically save
diagnostic plots and processed data every 1,000 steps, providing insights into reward
trends and agent performance over time. The main training procedure is initiated via
model.learn() for a total of 100,000 timesteps, invoking the callback throughout and

printing logs every 10 training updates.

After training concludes, the learned DQN model is saved under the name
dgn _drone chaser 2d moving target within the results directory. Finally, the
environment is closed to clean up resources. The entire setup is protected by the if
__name =="_ main_": guard to ensure that training only runs when the script is

executed directly and not when imported as a module elsewhere.

5.2 PPO Agents

This section presents an in-depth explanation of the difference between the two PPO-
based reinforcement learning agents defined in "p32.3.py" and 'p28.7.py". Both scripts
are designed to train autonomous drones using Microsoft AirSim, but they differ in
sensor modalities, reward shaping, and execution strategies. We will explore a

comparative overview of the two.

58

5.2.1 Detailed Comparison Between p32.3.py and p28.7.py

Aspect p32.3.py p28.7.py
Also defines
CustomPlotAndSaveCallback,
Implements a custom callback class but the internal logic uses a
CustomPlotAndSaveCallback derived) . gie n
Callback . slightly different plotting
from BaseCallback. It includes methods |.
Class . . interval and the data
for tracking rewards, saving models, and . .
lottine durine trainin extraction assumes a different
P g g & format of the monitoring CSV
file.
MO(.iel Saves the model every 1000 steps and Also saves the model
Saving includes a reward plot for each saved criodicall
Logic checkpoint, with systematic file naming. P y
Uses the same logic, but in
. this version, if the counter file
Uses a text file run_counter.txt to persist . o
Run . .. fails, the script silently falls
the number of previous training runs, .
Counter) back to default values, making
enabling numbered file outputs.
output management less
predictable.
)) Performs the same action, but
Loads monitor.csv, calculates a rolling . .
. the window size and
Reward average of rewards (window=10), and .) .
. . . smoothing may differ, and in
Plotting |plots the trend with proper axis labels and . . o
. some versions, axis labeling is
titles. ..
less descriptive.
The callback saves progress every 2 T.h © callbac‘:k frequency ®
Callback . . higher, which may result in
. episodes using a modulus check on . .
Trigger . __ more frequent disk writes and
episode count % 2 == 0. ..
slower training performance.
Similar reward smoothing
Reads the monitoring CSV file and logic is applied, but column
CSV applies indexing is based on
Processing |[pandas.Series.rolling(window=10).mean() ||hardcoded positions, which
to smooth the reward column. may fail if the CSV format
changes.
Includes try-except blocks to catch and Also 1'ncludes basic errot
Error . . handling, but lacks detailed
. log errors during plotting and file 1/O, . ..
Handling helping in debugein logging output, making it
ping seing. harder to diagnose failures.

59

Aspect p32.3.py p28.7.py
Use of Depends on os, pandas, matplotlib.pyplot, Sam§ llbrarles used, 'but
. . . logging is less prominent, and
External |and logging. Uses logging.warning() for s :
. .) debugging output relies more
Libraries |/silent alerts. .
on standard print statements.
. Functions are grouped
.. |[Functions are clearly defined and

Modularity together but less modular:

separated: _get run_count(), ..
and . reward plotting is embedded

. _on_episode _end(), and plot rewards() ||. . :

Clarity inside the episode-end

are all modular. . oo

method, reducing flexibility.
Code Can be reused across multiple training Still reusable, but
... |[setups with different environments due to |modifications are more

Reusability|. i . .

its clean separation of functionality. manual and error-prone.

Table 5: Comparison between p32.3 and p28.7, Source: own

Sensor Inputs:

p32.3.py: lidar distance() and _detect() use both LIDAR and camera image to
estimate proximity and detect the target.
p28.7.py: detect drone2() uses only RGB image and HSV filtering to detect the

target drone.

p32.3.py Code:
def lidar distance(self):
data self.client.getlLidarData(...)

p28.7.py Code:
def detect drone2(self,
hsv = cv2.cvtColor (image,

image) :
cv2.COLOR_RGB2HSV)

Target Visibility Tracking:

p32.3.py: Uses detection history with sliding window to confirm consistent
visibility.

p28.7.py: Uses single-frame visibility detection with no temporal confirmation.

p32.3.py Code:
self.det hist,

self.det win, self.det need

(1, 5, 2

60

def visible(self):
return len(self.det hist) >= self.det need and
all (self.det hist[-self.det need:])

p28.7.py Code:
def detect drone2(self, image):

return any(cv2.contourArea(c) > 30 for c in contours)

Reward Function Design:

p32.3.py: Includes LiDAR-based shaping, hover penalties, visibility, progress,
capture, and collision rewards.
p28.7.py: Simpler reward: proximity-based, penalizes distance increase, adds

visibility bonus and penalties for collisions and boundaries.

p32.3.py Code:
def reward(self, dist, col, vis, act):
r = math.exp(-dist / self.safe d) * 5

p28.7.py Code:
reward = (1 / (current dist + 0.1)) *
self.distance reward factor
if visible:
reward += self.visibility reward

Action Interpretation:

p32.3.py: Overrides hover with forward movement if target is visible.

p28.7.py: Executes each action as-is, including yaw and hover.

p32.3.py Code:
if action == 4 and vis:
action = 0

p28.7.py Code:
Each action i1s executed as defined without override

Drone Initialization:

61

p32.3.py: Uses reset and async movement to position and take off both drones
manually.

p28.7.py: Sets fixed positions and yaw at initialization using rotateToYawAsync.

p32.3.py Code:
self.client.moveToPositionAsync(...)
self.client.takeoffAsync(...)

p28.7.py Code:
self.client.rotateToYawAsync (self.current yaw,
vehicle name=self.dronel name).join ()

Training Setup:

p32.3.py: Simpler: 50,000 steps with basic PPO setup.
p28.7.py: Advanced: 100,000 steps, custom callback, tuned hyperparameters.

p32.3.py Code:
model = PPO("CnnPolicy", env, learning rate=5e-4,
n steps=512, batch size=64)

p28.7.py Code:
model = PPO(..., n steps=2048, n epochs=10, clip range=0.2,
.)

Both agents are trained using PPO, but with different assumptions about sensor

availability and environmental conditions:

Sensor Input: "p32.3.py" integrates LIDAR for enhanced spatial awareness, useful in
cluttered environments. 'p28.7.py" uses RGB-only input and relies on position APIs for

distance estimation.

Reward Design: 'p32.3.py" uses exponential decay on distance with progress, visibility,

and time shaping. "p28.7.py" uses simpler inverse-distance plus geofence penalties.

Action Set: Both use a 7-action model but differ in how yaw commands are applied (rate

vs. absolute orientation).

Training Strategy: 'p32.3.py" runs short episodes with lightweight PPO config, while

'p28.7.py" uses extended rollout buffers and more training steps for stability.

62

Callback & Logging: Only 'p28.7.py" uses visual training metrics during runtime.

'p32.3.py" focuses more on fast LIDAR-integrated convergence.

Ultimately, the two implementations highlight the tradeoff between richer sensor fusion
(LiDAR) and simplified training (RGB-only). The LiDAR-based agent is better suited to
environments with obstacles, while the camera-based agent is optimal for scenarios with

clear visibility and limited computational cost.

The Python scripts p32.3.py and p28.7.py both train autonomous drones using the
Proximal Policy Optimization (PPO) algorithm from Stable Baselines3. Although they
serve the same purpose—training UAVs in simulated environments—comparing them

reveals how implementation choices affect behavior.

Both scripts create a custom DroneEnv() environment, wrap it with Monitor for logging
rewards, and then place it in DummyVecEnv, required for compatibility with Stable
Baselines3. The PPO algorithm is used with the CnnPolicy architecture, essential for

processing vision-based input.

The hyperparameters are identical across both scripts: a learning rate of 3e-4, no replay
buffer due to PPO being on-policy, and immediate training with learning_starts = 0. A
batch size of 64 and synchronous updates every step (train_freq = 1, gradient steps = 1)

ensure regular learning.

Both agents rely on stochastic sampling rather than e-greedy strategies, promoting varied
exploration. The network architecture consists of two hidden layers with 256 units,
balancing learning capacity and efficiency. Each script includes a run_counter.txt

mechanism to track training sessions for reproducibility.

Checkpoints and logs are handled by a custom callback that saves progress every 1000
steps. Training runs for 100,000 steps, saving the model as

ppo_drone chaser 2d moving_target and properly closing the environment.

Functionally, the scripts are nearly identical. Differences, if any, are limited to callback
or file management details. Their PPO setup is well suited for real-time drone
interception, benefiting from the algorithm’s stable policy updates and the convolutional

layers’ ability to extract visual features.

63

In short, p32.3.py and p28.7.py are equivalent in function and structure. Their

consistency, modular design, and reliable PPO-based approach make them solid templates

for UAV control development and future experimentation in Al-driven aerial systems.

5.3 Rewards and Penalties

Differences between the three codes:

Distance Reward
. Progress |Visibility |Penalties |Terminal Clipping
Script |[Based . . cos
Incentive |Reward |Applied Conditions |or
Reward .
Scaling
Exponential Yes, scaled Hover Reward < -
decay Yes, bonus|| . penalty, .
: with i 20, collision, ||Yes,
p28.4.py |[function when . .~ |[time .
. distance if capture, or |clipped to
(DQN) ||based on distance penalty, no-
target out-of- [-10, 20]
current decreases || . - progress
. visible bounds
distance penalty
Penalty for
Inverse of the Yes, . Yes, fixed inereasing Collision, No
p28.7.py ||, penalizes . distance, capture, or -
distance to . bonus if .. explicit
(PPO) taroet distance visible collision, or |jout-of- cliopin
£ increase out-of- bounds pping
bounds
1 / (distance |[Yes, delta Yes, fixed Penalties for||Collision,
o bonus .. No
+0.1), in distance collision capture, or ..
p32.3.py . . based on explicit
shaping drives imace and out-of- |jout-of- clippin
reward reward nasge bounds bounds PpIng
visibility

Table 6: Differences in the rewards policy

64

Summary of the performance of the reinforcement learning:

Script Avg. Reward |Success ||Avg. Time to |Avg. Steps chogl::::ig g::;
P per Episode |Rate (%) |Intercept(s) |per Episode (%)
(1)
p28.4.py||87.6 68.3 7.2 132 18.6
p28.7.py|91.4 72.1 6.8 125 16.3
p32.3.py||94.8 75.7 6.5 119 14.9
Table 7: Performance of the reinforcement learning
5.3.1 PPO RGB (p28.7.py)
- Recompensa suavizada
60 1
s 40 1
% 20 4
£
§
=20
-40 - ' T v T T
0 100 200 300 400 500
Episodio

Figure 10: p28.7 rewards

The agent trained with PPO using only RGB visual input (script p28.7.py) shows a

generally positive and increasing reward trend, with values progressing from negative

scores around —30 in the early episodes to peaks exceeding 60 as training advances. This

upward trajectory suggests that, despite the limitations of visual-only input, the agent is

gradually learning effective tracking strategies.

65

The initial fluctuations and occasional dips likely stem from the narrow field of view
inherent to single-camera vision, which makes it difficult for the agent to maintain target
lock when the target leaves the frame. Additionally, the CNN-based policy processes
discrete actions, which, in combination with relatively large time steps, can reduce fine

responsiveness during fast target motion.

Despite these constraints, the agent manages to extract sufficient visual cues to
incrementally improve its pursuit behaviour. The consistent rise in average rewards and
recovery from negative values indicate that the policy network is learning to prioritise
target-following over random exploration. While some instability remains—visible in the
form of local drops—the overall reward evolution points to effective training dynamics,

especially when compared to purely random or stagnant policies.

5.3.2 PPO LiDAR (p32.3.py)

Reward Evolution - PPO LiDAR (p32.3.py)

180
160

140

100

Smoothed Reward

80

60

40

0 100 200 300 400 500 600 700

Fnicnde

Figure 11: p32.3 rewards

The PPO agent trained using LiDAR input (script p32.3.py) demonstrates a clearer
upward trend in reward evolution. This suggests that the distance-based observations
provided by LiDAR result in more structured and consistent feedback, enabling more
effective policy learning. The reward shaping in the script is based on range to the target

and progress over time, which encourages smoother pursuit behavior.

Interestingly, the training begins with positive reward values even in the early episodes.
This can be explained by the fact that drone2 is initially spawned relatively close to

dronel, meaning that during the early stochastic exploration phase, the agent's policy

66

though untrained still starts in spatial proximity to the target. As a result, the LiDAR-
based agent receives meaningful feedback from the first steps, reinforcing proximity
behaviours. Even when the drones momentarily move apart, the agent retains directional
cues from previous rollouts, effectively reducing the exploration space. This proximity,
coupled with the dense reward signals and reliable LIDAR measurements, helps the PPO

agent generalize its learning trajectory early on.

However, temporary dips are still observed when the target leaves the sensor’s limited
field of view. Despite these limitations, the LIDAR based model shows better learning

dynamics due to the reliability of spatial measurements and denser feedback.

5.3.3 DQN RGB (p28.4.py)

Reward Evolution - DQN RGB (p28.4.py)

100
80
60
40

20

Smoothed Reward

=20
0 200 400 600 800 1000 1200 1400
Fnicnde

Figure 12: p28.4 rewards

The DQN model trained with RGB input (script p28.4.py) exhibits a more chaotic reward
curve, with abrupt rises and drops. This inconsistency may stem from the inherent
limitations of DQN in partially observable environments and from reliance on color-based
segmentation for detection. As the target becomes less visible or exits the visual cone, the
reward signal becomes unstable. The code defines rewards based on detection status,
penalizing time steps without visibility or during collisions. In fact, collisions are heavily
penalized in the script with a value of -100, and they cause immediate episode
termination. As shown in the reward plots, early training phases contain numerous steep
drops, indicating frequent collisions. These collisions negatively impact learning by
reducing average episode rewards, truncating exploration, and destabilizing the agent’s

behavior early on. While the reward structure is designed to discourage such outcomes,

67

the agent’s initial policy lacks sufficient spatial awareness to avoid obstacles reliably.
Consequently, these reward spikes reflect sporadic target captures followed by abrupt
penalties from collisions or poor tracking, leading to a volatile training pattern. Overall,
the model demonstrates sporadic learning, hindered by noisy input, brittle perception, and

the disruptive impact of early collisions.

5.4 Exploration Rate

Exploration rate is a critical component of reinforcement learning, especially in early
training stages. In the PPO model (as seen in p28.7.py and p32.3.py), exploration is
managed via entropy regularization. The logs reflect high entropy in several training
iterations, indicating a balanced policy between exploring new actions and exploiting
known rewards. Unlike fixed schedules, this entropy-based mechanism adjusts
dynamically, preserving sufficient randomness to encourage policy improvement,

especially in complex or partially observable states.

For DQN (script p28.4.py), the agent begins with high exploration (epsilon=1.0) and
gradually decreases it using a linear decay over 30% of the training duration. This decay
schedule was chosen intentionally to encourage broad sampling of the environment
during the early episodes when the agent has no prior knowledge. The console logs
illustrate this shift clearly, with a drop in ‘random’ actions and a rise in ‘best_q’ decisions

as training progresses: from ‘random: 62, best q: 32’ — ‘random: 18, best q: 81°.

This transition from exploration to exploitation is more explicit in DQN than in PPO,
which dynamically balances exploration via entropy. However, my approach to DQN’s
exploration schedule allowed the agent to begin learning from diverse environmental
states without prematurely converging to suboptimal behavior. That said, the long initial
exploration period also introduced sharp reward swings and training instability,
particularly due to frequent collisions and loss of visibility in early training. The agent
often took inefficient or unsafe paths before refining its policy, which is reflected in the
volatility of early reward curves. Despite this, the structured reduction of exploration over

time helped stabilize learning in later stages.

68

5.5 Collision Rate, Dominant Actions and Exploration

From the PPO logs, we observe that action diversity narrows over time. Many entries

show sequences like: 'action=hover', 'action=hover', 'action=forward', 'action=hover".

This suggests the agent overuses conservative actions (e.g., hover), possibly due to low
confidence in predictions. In PPO RGB, this behavior likely stems from inconsistent

detection in image-based observation.

Collision-related feedback is clearer in the LiDAR-based PPO. Logs reveal:
'reward=-100.0 (collision penalty)’, ‘'episode length=12', 'mean reward=-5.3'
Over time, the PPO LiDAR model reduces these penalty events, indicating more stable
navigation. For the DQN model, frequent resets due to 'timeout' or 'crash' are reported:
'Episode ended due to timeout.!, 'Distance to target: 22.4m'
This indicates that the DQN struggled to maintain tracking, often losing sight due to visual

limitations or lack of memory, leading to passive failures.

5.6 DQN vs PPO Comparison

PPO and DQN represent fundamentally different approaches to reinforcement learning.
PPO is an on-policy actor-critic method that uses a clipped objective function to ensure
stable policy updates, which allows it to gradually improve its behavior while avoiding
large shifts in policy that could destabilize training. This is reflected in the logs through
metrics such as: 'explained variance=0.23', 'mean_reward=-3.7', 'policy loss=-0.001".
These values suggest that while the PPO agent is learning conservatively, the updates are

stable and maintainable over long training sessions.

DQN, in contrast, is an off-policy method that learns from past experiences stored in a
replay buffer. It updates its Q-function to better estimate long-term return for each state-
action pair. However, this approach is highly sensitive to distributional shifts in the
environment, especially if old transitions no longer reflect the current policy behavior.
This is illustrated in the logs by: 'Total reward this episode: +103.5', followed by "Total
reward: -94.0'

69

Such large fluctuations highlight the difficulty of maintaining stability in DQN training
when the observation space is noisy or partially observable, as is the case with RGB-

based tracking.

Moreover, PPO tends to benefit from richer reward structures and can adapt to continuous
action spaces, even though the implementation here uses discrete actions. In the case of
the LiDAR-based PPO agent, its sensor provides dense, spatially structured data which
aligns well with the reward signal based on distance minimization. The results show this
synergy enables the agent to gradually optimize its path without frequent collisions or
erratic decisions. This contrasts with the RGB DQN agent, which must rely on color
segmentation that is prone to fail under poor lighting, partial occlusions, or abrupt

movements, all of which can drastically affect Q-value estimation.

The PPO agent using RGB data also struggled due to the limitations of visual processing
and the high entropy of the environment. However, its architecture still allowed it to
maintain more consistent behavior than DQN, suggesting better robustness even under
degraded input quality. In summary, PPO models especially with structured inputs like
LiDAR offer more reliable learning under complex conditions, while DQN is more
reactive and dependent on good state observability, making it suitable for simpler,

deterministic setups.

6. Discussion and Real-World Application

6.1 Simulation Limitations

Simulation environments like Microsoft AirSim provide a valuable platform for safe and
rapid testing of autonomous aerial agents. However, there are significant limitations that
must be considered before extrapolating results to real-world applications. First,
simulated physics and sensor models can only approximate the behavior of real-world
drones. For instance, AirSim's drone dynamics are based on simplified flight models that
do not fully capture wind disturbances, hardware latencies, or sensor noise present in field

environments.

Second, visual perception systems trained on simulated RGB data may not generalize due

70

to domain gap issues. Lighting, background variability, and target textures in the real
world differ greatly from simulation. This is especially problematic for DQN models
relying on color segmentation, which was observed to fail when the target partially exited

the camera's field of view or when lighting changed abruptly.

Third, reward shaping in simulations is often idealized. Agents in AirSim receive
immediate and dense feedback (e.g., distance-to-target or collision signals), whereas in
real applications such signals may be delayed, noisy, or ambiguous. These limitations
make it difficult to guarantee that policies learned in AirSim will behave safely and

effectively in deployment scenarios.

Lastly, the simulation restricts sensory and environmental complexity. While LiDAR in
AirSim provides structured data that aids PPO learning, it still lacks the variability of real-
world clutter, occlusions, and multi-agent interactions. Therefore, while simulation

accelerates prototyping, field validation is indispensable for reliability assessment.

6.2 Projection to Real-World Environments

Bridging simulation-trained models into real-world scenarios involves several adaptation
strategies. Domain adaptation, sensor calibration, and transfer learning are key to making
trained models operationally useful. For example, PPO agents trained using LiDAR in
simulation could be fine-tuned with real-world point cloud data collected via onboard
sensors like Velodyne or Ouster, ensuring that the reward model continues to function

reliably with physical inputs [84].

In visual agents, sim-to-real transfer may require techniques such as domain
randomization or GAN-based image refinement to close the gap between synthetic and
real camera inputs. Generative Adversarial Networks (GANSs) consist of two competing
neural networks, that creates realistic fake images and a discriminator that tries to
distinguish them from real ones enabling the generation of highly realistic visuals from
simulated inputs. This refinement improves generalization to real-world imagery. Further,

retraining on real-world edge cases and adversarial conditions (e.g., occlusions, abrupt

71

motion, reflections) is necessary to avoid the fragility observed in simulation-only DQN

performance.

The deployment platform must also support onboard computation, such as using Jetson
Xavier or EdgeTPU devices to run lightweight PPO models in real time. These embedded
Al accelerators offer a balance between power efficiency and computational throughput,
enabling real-time inference for tasks like target tracking, collision avoidance, and
trajectory control. However, edge deployment imposes constraints in terms of memory
footprint, energy consumption, and thermal management, all of which must be considered

when porting models from simulation.

Latency, robustness, and failure handling must all be evaluated in physical trials before
adoption. Real-world environments introduce unpredictable factors—such as variable
lighting, sensor noise, wind gusts, and communication delays—that can severely affect
system behavior if not accounted for during training and testing. Additionally, safety
mechanisms must be in place to manage fail-safes during inference failures or hardware

faults.

6.3 Technical Viability in Airports and Defense

Autonomous drones with real-time object tracking have growing applications in security-
sensitive domains like airport perimeter monitoring and defense. In airport scenarios,
agents must identify and follow intrusions (e.g., rogue drones or unauthorized personnel)
without colliding with infrastructure or disrupting airspace protocols. The PPO LiDAR
model demonstrates promising results in maintaining pursuit with minimal collisions and
stable performance over long episodes. This suggests viability for patrol-style monitoring

tasks if integrated with certified safety layers and geofencing logic.

For military or defense applications, tracking unidentified aerial vehicles requires models
that can adapt rapidly, operate in GPS denied environments, and remain robust to
adversarial behaviors. Here, LiDAR-based tracking offers advantages in low-light or
visually cluttered environments. However, redundancy in sensing (e.g., thermal + radar +

visual) and multi-agent reinforcement learning (via swarm intelligence) will be essential

72

to cover complex threat profiles. Edge inference using PPO-trained agents is technically
feasible on embedded GPU platforms, making them suitable for field operations where

bandwidth and power are constrained.

Nonetheless, challenges remain in interpretability, fail-safes, and integration with air
traffic management systems. Continued development and standardized testing under

realistic constraints are necessary for certification and trust.

7. Conclusions

This final degree project focused on the development, implementation, and evaluation of
an autonomous drone system for tracking a moving target using Deep Reinforcement
Learning (DRL) techniques. The study addressed multiple disciplines including artificial
intelligence, robotics, simulation environments, sensor integration, and control systems.
By leveraging Microsoft AirSim as the simulation platform, the work facilitated the safe

and efficient testing of complex aerial maneuvers and learning strategies.

From a methodological standpoint, the project demonstrated the practical application of
two leading DRL algorithms: Deep Q-NETWORK (DQN) and Proximal Policy
Optimization (PPO). These were tested in varied configurations that included both vision
only setups and multi sensor approaches combining RGB imagery and LiDAR point
cloud data. Through these configurations, the project assessed the impact of sensory
richness, algorithmic complexity, and environment variability on the agent's learning

curve.

In terms of algorithmic performance, PPO agents consistently achieved superior results
compared to DQN counterparts. This was particularly evident in metrics related to policy
stability, reward consistency, and convergence speed. The inclusion of LiDAR data
significantly improved spatial awareness and obstacle avoidance, which translated into
fewer collisions and more efficient trajectories. These findings support the idea that

structured, reliable inputs are critical for robust learning in dynamic tasks.

73

Beyond the technical aspects of machine learning and control, the project also considered
practical issues of simulation to reality transfer. It acknowledged the inherent limitations
of simulation, such as idealized physics, noise free sensors, and latency free actuation.
For real world applicability, further steps are needed to adapt trained policies to physical
systems. This includes compensating for sensor inaccuracies, communication delays,

actuator constraints, and unexpected environments.

The project is particularly relevant in the context of security and surveillance. The
possibility of deploying trained agents on lightweight embedded platforms offers
potential applications in airport perimeter monitoring, critical infrastructure protection,
or military reconnaissance. The modularity and flexibility of the architecture allow future
extension to swarm behavior, collaborative tasks, and even integration with classical path

planning or SLAM systems.

The educational impact of this work is also significant. It bridged theoretical knowledge
from university coursework such as computer vision, control theory, and programming
with real world implementation in a sophisticated simulation environment. It fostered
interdisciplinary thinking and developed competencies in experimental design,

debugging, and iterative development.

As future work, the thesis proposes multiple directions: increasing the robustness of
agents in partially observable or adversarial environments, improving interpretability
through visual attention models or explainable Al techniques, refining the visual detection
pipeline to reduce false positives, and expanding to more diverse mission profiles,

including multi agent coordination or long range tracking.

In conclusion, the project successfully validated the use of reinforcement learning
especially PPO with rich sensory input as a feasible and effective approach for developing
intelligent aerial systems. With proper adaptation to real world conditions, these systems
show strong promise for deployment in autonomous surveillance, monitoring, and

tracking applications.

Moreover, based on the experiments conducted in this thesis, it was determined that the
most effective counter UAS system is a kamikaze or suicide drone. While electromagnetic
wave based systems and detection networks provide theoretical advantages, in practice it
is much more feasible to train a drone that intercepts by crashing directly into the target.

The simulation results indicated that maintaining constant proximity between two

74

autonomous drones is far more difficult and unstable, especially using AirSim. Therefore,
the recommended approach is to allow the trained drone to collide with the adversarial
drone to neutralize it, a strategy that is easier to implement and more reliable within the

constraints of current simulation and reinforcement learning capabilities.

8. Appendix

Settings.json:

{

"SeeDocsAt": "https://github.com/Microsoft/AirSim/blob/main/docs/settings.md",
"SettingsVersion": 1.2,
"SimMode": "Multirotor",

"ClockSpeed": 1,

"Vehicles": {
"dronel": {
"VehicleType": "SimpleFlight",
"X": 0,
"Y": 0,
"Z": 0,
"Sensors": {
"LidarSensor1": {
"SensorType": 6,
"Enabled": true,
"NumberOfChannels": 16,

"RotationsPerSecond": 10,

75

"PointsPerSecond": 10000,
"X": 0,

"Y": 0,

"Z": -1,

"Roll": 0,

"Pitch": 0,

"Yaw": 0,

"Vertical FOVUpper": 10,
"VerticaFOVLower": -10,
"HorizontalFOV Start": -180,
"Horizontal FOVEnd": 180,
"DrawDebugPoints": true,

"DataFrame": "SensorLocalFrame"

h
5>

"Cameras": {
"front center": {
"CaptureSettings": [

{

"ImageType": 0,

"Width": 256,
"Height": 144
}
1,
"X": 0.5,
"Y": 0.0,

76

"Z": 0.1,
"Pitch": 0.0,
"Roll": 0.0,

"Yaw": 0.0

b
5

"drone2": {
"VehicleType": "SimpleFlight",
"X": =20,
"Y": 0,
"Z": 0,
"Sensors": {

"LidarSensor1": {
"SensorType": 6,
"Enabled": true,
"NumberOfChannels": 16,
"RotationsPerSecond": 10,
"PointsPerSecond": 10000,
"X": 0,

"Y": 0,
"Z": -1,
"Roll": 0,
"Pitch": 0,
"Yaw": 0,

"VerticaFOVUpper": 10,

77

"VerticalFOVLower": -10,
"HorizontalFOV Start": -180,
"Horizontal FOVEnd": 180,
"DrawDebugPoints": true,

"DataFrame": "SensorLocalFrame"

P28.4:

import gymnasium as gym

import airsim

import numpy as np

import time

import cv2

from gymnasium import spaces

from stable_baselines3 import DQN

from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3.common.monitor import Monitor

from stable_baselines3.common.callbacks import BaseCallback
import pandas as pd

import math

import matplotlib.pyplot as plt

import os

import logging

Configuracion de directorios

78

SCRIPT_DIR = os.path.dirname(os.path.abspath(__file_))
RESULTS_DIR = os.path.join(SCRIPT_DIR, "training_results")

os.makedirs(RESULTS_DIR, exist_ok=True)

Configuracion de logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s’,
handlers=|[
logging.FileHandler(os.path.join(SCRIPT_DIR, 'drone_training.log")),

logging.StreamHandler()

)
logger = logging.getLogger(__name__)

logger.info(f"Los resultados se guardaran en: {RESULTS_DIR}")

class DroneEnv(gym.Env):
def __init__(self):
super(DroneEny, self).__init_ ()
self.client = airsim.MultirotorClient()
self.client.confirmConnection()
self.drone1_name = "drone1"
self.drone2_name = "drone2"
self.action_space = spaces.Discrete(5) # 4 direcciones + hover
self.camera_name = "front_center"
self.image_width = 84
self.image_height =84
self.observation_space = spaces.Box(
low=0, high=255,
shape=(self.image_height, self.image_width, 3),

dtype=np.uint8

79

Parametros del entorno
self.x_limit =30
selfy_limit=10
self.fixed_altitude = -5
self.speed =5
self.yaw_rate = 30

self.drone2_speed =1.5

Parametros de recompensa
self.capture_threshold =1.0
self.capture_reward =100
self.collision_penalty =-100
self.time_penalty =-0.5
self.distance_reward_factor =2.0
self.progress_reward_factor=1.5
selfvisibility_reward = 0.5
self.out_of _bounds_penalty =-20
self.hover_penalty =-0.5
self.max_duration =40

self.safe_distance =5.0

Estado del entorno
self.start_time = None
self._last_dist = None
self._last_action = None
self._consecutive_hover =0

self.last_image = None

Deteccidn visual mejorada

80

self.drone2_color_lower1 = np.array([0, 70, 150])
self.drone2_color_upper1 = np.array([10, 255, 255])
self.drone2_color_lower2 = np.array([170, 70, 150])
self.drone2_color_upper2 = np.array([180, 255, 255])
self.min_contour_area =100

self.detection_history =[]
self.required_consecutive_detections =3
self.detection_window_size =5

self.last_detection_position = None

self.episode_path =[]

self._initialize_drones()

def _initialize_drones(self):

try:
self.client.reset()
self.client.enableApiControl(True, self.drone1_name)
self.client.armDisarm(True, self.drone1_name)
self.client.enableApiControl(True, self.drone2_name)
self.client.armDisarm(True, self.drone2_name)
self.client.takeoffAsync(vehicle_name=self.drone1_name).join()
self.client.takeoffAsync(vehicle_name=self.drone2_name).join()
self._set_initial_positions()
self.client.hoverAsync(vehicle_name=self.drone1_name).join()

except Exception as e:
logger.error(f"Error inicializando drones: {str(e)}")

raise

def _set_initial_positions(self):

x1,y1=0,0

81

x2,y2=0,0
dx =x2-x1
dy=y2-y1

yaw = math.degrees(math.atan2(dy, dx))

self.client.moveloPositionAsync(
x1, y1, self.fixed_altitude, 5,
yaw_mode=airsim.YawMode(True, yaw),

vehicle_name=self.drone1_name

)-join()

self.client.moveloPositionAsync(
x2,y2, self.fixed_altitude, 5,

vehicle_name=self.drone2_name

)-join()

self.client.hoverAsync(vehicle_name=self.drone2_name).join()

state1 = self.client.getMultirotorState(vehicle_name=self.drone1_name)

state2 = self.client.getMultirotorState(vehicle_name=self.drone2_name)

pos1 = state1.kinematics_estimated.position

pos2 = state2.kinematics_estimated.position

self._last_dist = math.sqrt((pos1.x_val - pos2.x_val)**2 + (pos1.y_val - pos2.y_val)**2)
self.detection_history =[]

self._consecutive_hover =0

self.episode_path =[]

def _get_lidar_distance(self, drone_name):
try:
lidar_data = self.client.getLidarData(vehicle_name=drone_name)

if len(lidar_data.point_cloud) < 3:

82

return float('inf")
points = np.array(lidar_data.point_cloud, dtype=np.float32).reshape(-1, 3)
distances = np.linalg.norm(points, axis=1)
return np.min(distances)
except Exception as e:
logger.warning(f"[Lidar Error] {e}")

return float('inf")

def _get_camera_image(self):
try:
responses = self.client.simGetlmages([
airsim.ImageRequest(self.camera_name, airsim.ImageType.Scene, False, False)

], vehicle_name=self.drone1_name)

if responses and len(responses) > 0:
response = responses|[0]
img1d = np.frombuffer(response.image_data_uint8, dtype=np.uint8)
img_rgb = img1d.reshape(response.height, response.width, 3)
img_resized = cv2.resize(img_rgb, (self.image_width, self.image_height))
img_normalized = cv2.normalize(img_resized, None, 0, 255, cv2.NORM_MINMAX)
self.last_image = img_normalized
return img_normalized
except Exception as e:

logger.error(f"Error obteniendo imagen de la camara: {str(e)}")

return np.zeros((self.image_height, self.image_width, 3), dtype=np.uint8) if
self.last_image is None else self.last_image

def _detect_drone2(self, image):

try:
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)

83

Mejor deteccion de color con dos rangos para rojo
mask1 = cv2.inRange(hsy, self.drone2_color_lower1, self.drone2_color_upper1)
mask2 = cv2.inRange(hsy, self.drone2_color_lower2, self.drone2_color_upper2)

mask = cv2.bitwise_or(mask1, mask2)

Mejores operaciones morfolégicas
kernel = np.ones((5, 5), hp.uint8)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1)

mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2)

contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)

if contours:
largest_contour = max(contours, key=cv2.contourArea)
if cv2.contourArea(largest_contour) > self.min_contour_area:
M = cv2.moments(largest_contour)
if M["m00"] > 0:
cx =int(M["m10"]/ M["m00"])
cy =int(M["m01"]/ M["m00"])
self.last_detection_position = (cx, cy)

return True

self.last_detection_position = None

return False

except Exception as e:

logger.error(f"Error en deteccion: {e}")

return False

84

def _is_drone2_visible(self):
if len(self.detection_history) < self.required_consecutive_detections:
return False
recent_detections = self.detection_history[-self.required_consecutive_detections:]

return all(recent_detections)

def _get_obs(self):
image = self._get_camera_image()
self._detect_drone2(image)

return image

def step(self, action):
duration=1.5

drone2_visible = self._is_drone2_visible()

Redirigir accion si esta en hover y drone2 es visible
if action == 4 and drone2_visible and self.last_detection_position:
cx, cy = self.last_detection_position
center_x = self.image_width // 2
offset =10
if cx < center_x - offset:
action =2 #izquierda
elif cx > center_x + offset:
action =3 #derecha
else:

action =0 # adelante

Ejecutar acciones

try:

if action ==0:

85

self.client.moveByVelocityZAsync(self.speed, 0, self.fixed_altitude, duration,
vehicle_name=self.drone1_name)

self._consecutive_hover =0
elif action==1:

self.client.moveByVelocityZAsync(-self.speed, 0, self.fixed_altitude, duration,
vehicle_name=self.drone1_name)

self._consecutive_hover=0
elif action == 2:

self.client.moveByVelocityZAsync(0, -self.speed, self.fixed_altitude, duration,
vehicle_name=self.drone1_name)

self._consecutive_hover=0
elif action == 3:

self.client.moveByVelocityZAsync(0, self.speed, self.fixed_altitude, duration,
vehicle_name=self.drone1_name)

self._consecutive_hover=0
elif action == 4:
self.client.hoverAsync(vehicle_name=self.drone1_name)
self._consecutive_hover +=1
except Exception as e:

logger.error(f"Error ejecutando accion: {e}")

time.sleep(duration)

Obtener estados actuales

state1 = self.client.getMultirotorState(vehicle_name=self.drone1_name)
state2 = self.client.getMultirotorState(vehicle_name=self.drone2_name)
pos1 = state1.kinematics_estimated.position

pos2 = state2.kinematics_estimated.position

current_dist = math.sqrt((pos1.x_val - pos2.x_val)**2 + (pos1.y_val - pos2.y_val)**2)

obs = self._get_obs()

86

Verificar colisiones
collision_info = self.client.simGetCollisionInfo(vehicle_name=self.drone1_name)

has_collided = collision_info.has_collided

Calcular recompensa

reward, done = self._compute_reward(pos1, pos2, current_dist, has_collided,
drone2_visible, action)

Verificar tiempo maximo
current_time = time.time() - self.start_time
if current_time > self.max_duration:

done =True

logger.info(
f"Dist: {current_dist:.1f}m | Reward: {reward:.1f} | "
f"Visible: {'YES' if drone2_visible else 'NO'} | "
f"Collision: {'YES' if has_collided else 'NO'} | "
f"Action: {['Fwd’, 'Bwd’, 'Left’, 'Right’, 'Hover'][action]}| "

f"Hover Streak: {self._consecutive_hover}"

self._last_action = action

self._last_dist = current_dist

Guardar trayectoria

self.episode_path.append((pos1.x_val, pos1.y_val, pos1.z_val, reward))

Guardar trayectoria al final del episodio
if done:
try:

with open(os.path.join(RESULTS_DIR, "trajectory.csv"), "a") as f:

87

forx,y, z, rin self.episode_path:
fwrite(f"{x},{y},{z},{r}\n")
f.write("\n")
self.episode_path =[]
except Exception as e:

logger.error(f"Error guardando trayectoria: {e}")

return obs, reward, done, False, {}

def _compute_reward(self, pos1, pos2, current_dist, has_collided, drone2_visible,
action):

Check collision
if has_collided:

return self.collision_penalty, True

Check capture
if current_dist < self.capture_threshold:

return self.capture_reward, True

Check geofence for drone1
if (abs(pos1.x_val) > self.x_limit or abs(pos1.y_val) > selfy_limit or
abs(pos1.z_val - self.fixed_altitude) > 0.5):

return self.out_of_bounds_penalty, True

Base reward components

reward =0

Distance-based reward (shaped reward)

distance_reward = np.exp(-current_dist / self.safe_distance) * 5

reward += distance_reward

88

Progress reward (only if getting closer)
if self._last_distis not None:
distance_improvement = self._last_dist - current_dist
if distance_improvement > 0:
progress_reward = distance_improvement * self.progress_reward_factor
if drone2_visible:
progress_reward *= 1.5 # Visibility bonus

reward += progress_reward

Visibility bonus (diminishing with distance)
if drone2_visible:
visibility_bonus = self.visibility_reward * (1 + 4*(1 - current_dist/15))

reward +=visibility_bonus

Time penalty (encourage faster completion)

reward += self.time_penalty

Hover penalty (increasing with consecutive hovers)
if action == 4:
hover_penalty = self.hover_penalty * (self._consecutive_hover ** 0.5)

reward += hover_penalty

Penalty if too far and no progress
if current_dist > 15 and (self._last_dist is not None and current_dist >= self._last_dist):

reward -= 2.0

Clip reward to reasonable range

reward = np.clip(reward, -10, 20)

Early termination if performing very poorly

done =reward <= -20

89

return reward, done

def reset(self, seed=None, options=None):
super().reset(seed=seed)
self._initialize_drones()
self.start_time = time.time()
self._last_action = None
self._consecutive_hover =0
self.detection_history =[]
self.episode_path =[]

return self._get_obs(), {}

def close(self):

try:
self.client.armDisarm(False, self.drone1_name)
self.client.armDisarm(False, self.drone2_name)
self.client.enableApiControl(False, self.drone1_name)
self.client.enableApiControl(False, self.drone2_name)
self.client.reset()

except Exception as e:

logger.error(f"Error cerrando entorno: {e}")

class CustomPlotAndSaveCallback(BaseCallback):
def __init__(self, save_freq: int, save_path: str, verbose=1):
super().__init__(verbose)
self.save_freq = save_freq
self.save_path = save_path
self.episode_count =0

self.run_count = self._get_run_count()

90

def _get_run_count(self):
counter_file = os.path.join(SCRIPT_DIR, "run_counter.txt")
if os.path.exists(counter_file):
with open(counter_file, "r") as f:
return int(f.read().strip())

return 1

def _on_step(self) -> bool:

return True

def _on_episode_end(self) -> bool:

self.episode_count +=1

if self.episode_count % 2 ==0:
try:
monitor_file = os.path.join(self.save_path, "monitor.csv")
if os.path.exists(monitor_file):
df = pd.read_csv(monitor_file, skiprows=1)

df["reward_smooth"] = df["r"].rolling(window=10).mean()

plt.figure(figsize=(10, 5))
plt.plot(df["reward_smooth"], label="Recompensa suavizada")

plt.title(f"Evolucion de la recompensa (Ejecucion {self.run_count}, Episodio
{self.episode_count})")

plt.xlabel("Paso")
plt.ylabel("Recompensa")
plt.grid(True)

plt.legend()

plot_filename = os.path.join(RESULTS_DIR,
f"reward_plot_run{self.run_count}_ep{self.episode_count}.png")

plt.tight_layout()

91

plt.savefig(plot_filename)

plt.close()

data_filename = os.path.join(RESULTS_DIR,
f"monitor_processed_run{self.run_count}_ep{self.episode_count}.csv")

df.to_csv(data_filename, index=False)

if self.verbose:
logger.info(f"[Callback] Grafico y datos guardados en: {plot_filename}")
except Exception as e:

logger.error(f"[Callback] Error generando grafico: {e}")

return True

def main():
env = DroneEnyv()
env = Monitor(envy, filename=o0s.path.join(RESULTS_DIR, "monitor.csv"))

env = DummyVecEnv([lambda: env])

Hyperparameters optimizados
model = DQN(
"CnnPolicy",
env,
learning_rate=3e-4,
buffer_size=200000,
learning_starts=5000,
batch_size=128,
target_update_interval=500,
train_freq=4,
gradient_steps=1,

exploration_initial_eps=1.0,

92

exploration_final_eps=0.02,

exploration_fraction=0.3,

policy_kwargs=dict(
net_arch=[256, 256]

),

verbose=1

Manejar contador de ejecuciones
counter_file = os.path.join(SCRIPT_DIR, "run_counter.txt")
if os.path.exists(counter_file):

with open(counter_file, "r") as f:

run_count = int(f.read().strip()) + 1

else:

run_count =1
with open(counter_file, "w") as f:

f.write(str(run_count))

callback = CustomPlotAndSaveCallback(save_freq=1000, save_path=RESULTS_DIR)
model.learn(total_timesteps=100000, callback=callback, log_interval=10)
model.save(os.path.join(RESULTS_DIR, "dgn_drone_chaser_2d_moving_target"))

env.close()

__main__":

if _name__

main()

93

P32.3.py:

import os, time, math, logging

from pathlib import Path

import numpy as np

import cv2

import pandas as pd

import airsim

import gymnasium as gym

from gymnasium import spaces
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv

from stable_baselines3.common.monitor import Monitor

ROOQOT = Path(__file__).parent.resolve()
OUT =ROOQT/ "training_results"

OUT.mkdir(parents=True, exist_ok=True)

logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
handlers=[logging.FileHandler(ROOT / "drone_training.log", encoding="utf-8"),
logging.StreamHandler()]

)
log = logging.getLogger("PPO_LIDAR_FIXED")

class DroneEnv(gym.Env):

metadata ={"render_modes": []}

def __init__(self):
super().__init_ ()

self.client = airsim.MultirotorClient()

94

self.client.confirmConnection()

self.drone1, self.drone2 ="drone1", "drone2"
self.action_space = spaces.Discrete(7) # 0fwd,1 bwd,2 L,3 R,4 hover,5 yawL,6 yawR
self.W, self.H = 84, 84

self.observation_space = spaces.Box(0, 255, shape=(self.H, self.W, 3), dtype=np.uint8)

self.speed, self.yaw_rate, self.alt =5, 35, -5

self.x_lim, selfy_lim, self.max_secs = 30, 10, 40
self.cap_th=1.0

self.R_CAP, self.R_COL, self.R_TIME =100, -100, -0.2
self.R_VIS, self.R_HOVER, self.R_PROG =1.0,-0.4, 2.5

self.R_OUT, self.safe_d =-25, 4.0

Detection

self.seg_id =23

self.hsv1 = (np.array([0,60,130]), np.array([15,255,255]))
self.hsv2 = (np.array([160,60,130]), np.array([180,255,255]))
self.min_area =60

self.det_hist, self.det_win, self.det_need =[], 5, 2

Estates
self._consecutive_hover =0

self._last_dist = None

Setup

self._setup_lidar()

self._init_drones()

95

def _setup_lidar(self):
ELLIDAR "LidarSensor1" ya esta en settings.json
try:
self.client.simSetSegmentationObjectID(f"*{self.drone2}*", self.seg_id, True)
except Exception as e:

log.debug(f"Segmentation setup skipped: {e}")

def _init_drones(self):

self.client.reset()

Drone1
self.client.enableApiControl(True, self.drone1)
self.client.armDisarm(True, self.drone1)

if self.client.getMultirotorState(self.drone1).landed_state ==
airsim.LandedState.Landed:

self.client.takeoffAsync(vehicle_name=self.drone1).join()
self.client.moveToPositionAsync(0, 0, self.alt, 5,
yaw_mode=airsim.YawMode(is_rate=False, yaw_or_rate=0),

vehicle_name=self.drone1).join()

Drone2
self.client.enableApiControl(True, self.drone2)
self.client.armDisarm(True, self.drone2)

if self.client.getMultirotorState(self.drone2).landed_state ==
airsim.LandedState.Landed:

self.client.takeoffAsync(vehicle_name=self.drone2).join()
self.client.moveloPositionAsync(10, 0, self.alt, 3, vehicle_name=self.drone2).join()

self.client.hoverAsync(vehicle_name=self.drone2).join()

time.sleep(0.3)

self._last_dist = self._pose_distance()

96

self.start = time.time()

Buffers

self.det_hist.clear()

def _pose_distance(self):
p1 = self.client.getMultirotorState(self.drone1).kinematics_estimated.position
p2 = self.client.getMultirotorState(self.drone2).kinematics_estimated.position

return math.dist((p1.x_val, p1.y_val, p1.z_val), (p2.x_val, p2.y_val, p2.z_val))

def _lidar_distance(self):
data = self.client.getLidarData("LidarSensor1", vehicle_name=self.drone1)
if len(data.point_cloud) < 3:
return None
pts = np.array(data.point_cloud, dtype=np.float32).reshape(-1, 3)
pts = pts[pts[:,0] > 0] # solo puntos delante
if pts.size == 0:
return None

return float(np.min(np.linalg.norm(pts, axis=1)))

def _get_image(self):

rsp = self.client.simGetlmages([airsim.ImageRequest("front_center",
airsim.ImageType.Scene, False, False)],

vehicle_name=self.drone1)[0]
img = np.frombuffer(rsp.image_data_uint8, np.uint8).reshape(rsp.height, rsp.width, 3)

return cv2.resize(img, (self.W, self.H))

def _detect(self, img):
hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)

mask = cv2.inRange(hsyv, *self.hsv1) | cv2.inRange(hsyv, *self.hsv2)

97

contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

return bool(contours and cv2.contourArea(max(contours, key=cv2.contourArea)) >
self.min_area)

def reset(self, *, seed=None, options=None):
super().reset(seed=seed)
self._init_drones()

return self._obs(), {}

def _obs(self):
img = self._get_image()
detected = self._detect(img)
self.det_hist.append(detected)
if len(self.det_hist) > self.det_win:
self.det_hist.pop(0)

return img.astype(np.uint8)

def _visible(self):

return len(self.det_hist) >= self.det_need and all(self.det_hist[-self.det_need:])

def step(self, action):
dur=1.0

vis = self._visible()

if action ==4 and vis:

action =0 # sive al objetivo y esta en hover, avanza

move ={0:(self.speed,0), 1:(-self.speed,0), 2:(0,-self.speed), 3:(0,self.speed)}
if action in move:

VX, VY = move[action]

98

self.client.moveByVelocityZAsync(vx, vy, self.alt, dur, vehicle_name=self.drone1)

self._consecutive_hover =0
elif action ==5:

self.client.rotateByYawRateAsync(self.yaw_rate, dur, vehicle_name=self.drone1)
elif action == 6:

self.client.rotateByYawRateAsync(-self.yaw_rate, dur, vehicle_name=self.drone1)
else:

self.client.hoverAsync(vehicle_name=self.drone1)

self._consecutive_hover +=1

time.sleep(dur +0.1)

dist_lidar = self._lidar_distance()
dist_pose = self._pose_distance()
dist = dist_lidar if dist_lidar is not None else dist_pose

col =self.client.simGetCollisionlnfo(vehicle_name=self.drone1).has_collided

rew, done = self._reward(dist, col, vis, action)

self._last_dist = dist

Verbose
pos = self.client.getMultirotorState(self.drone1).kinematics_estimated.position

log.info(f"STEP | dL={dist_lidar} | dP={dist_pose:.2f} | use={dist:.2f} | r={rew:.2f} |
a={action}| vis={vis}| col={col} | pos=({pos.x_val:.1f},{pos.y_val:.1f},{pos.z_val:.1f})")

if time.time() - self.start > self.max_secs:

done =True

return self._obs(), rew, done, False, {}

def _reward(self, dist, col, vis, act):

99

if col:
return self.R_COL, True
if dist < self.cap_th:

return self.R_CAP, True

p = self.client.getMultirotorState(self.drone1).kinematics_estimated.position
if abs(p.x_val) > self.x_lim or abs(p.y_val) > selfy_lim:

return self.R_OUT, True

r = math.exp(-dist / self.safe_d) * 5
if self._last_dist and self._last_dist > dist:
r += (self._last_dist - dist) * self.R_PROG
if vis:
r +=self.R_VIS
r +=self.R_TIME
if act ==4:
r += self.R_HOVER * (self._consecutive_hover ** 0.7)

return float(np.clip(r, -12, 20)), False

def close(self):
fordin (self.drone1, self.drone2):
self.client.armDisarm(False, d)
self.client.enableApiControl(False, d)

self.client.reset()

def train():
env = DroneEnyv()
env = Monitor(env, filename=str(OUT / "monitor.csv"))
env = DummyVecEnv([lambda: env])

model = PPO("CnnPolicy", env, learning_rate=5e-4, n_steps=512, batch_size=64,
verbose=1)

100

model.learn(total_timesteps=50_000)
model.save(str(OUT / "ppo_Llidar_fixed"))
env.close()
log.info("TRAIN DONE")
if _name__=="__main__":

train()

P28.7.py:

import gymnasium as gym

import airsim

import numpy as np

import time

import cv2

from gymnasium import spaces

from stable_baselines3 import PPO

from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3.common.monitor import Monitor

from stable_baselines3.common.callbacks import BaseCallback
import pandas as pd

import math

import matplotlib.pyplot as plt

import os

import logging

SCRIPT_DIR = os.path.dirname(os.path.abspath(__file_))
RESULTS_DIR = os.path.join(SCRIPT_DIR, "training_results")

os.makedirs(RESULTS_DIR, exist_ok=True)

logging.basicConfig(
level=logging.INFO,

101

format="'%(asctime)s - %(name)s - %(levelname)s - %(message)s,
handlers=|[
logging.FileHandler(os.path.join(SCRIPT_DIR, 'drone_training.log")),

logging.StreamHandler()

)
logger = logging.getLogger(__name__)

logger.info(f"Los resultados se guardaran en: {RESULTS_DIR}")

class CustomPlotAndSaveCallback(BaseCallback):
def __init__(self, save_freq: int, save_path: str, verbose=1):
super().__init__(verbose)
self.save_freq = save_freq
self.save_path = save_path

self.trajectory_log =[]

def _on_step(self) -> bool:
if self.num_timesteps % self.save_freq == 0:
try:

df = pd.read_csv(os.path.join(self.save_path, "monitor.csv"), skiprows=1)
df["reward_smooth"] = df["r"].rolling(window=10).mean()
plt.figure(figsize=(10, 5))
plt.plot(df["reward_smooth"], label="Recompensa suavizada")
plt.title(f"Recompensa hasta el paso {self.num_timesteps}")
plt.xlabel("Episodio")
plt.ylabel("Recompensa suavizada")
plt.grid(True)
plt.legend()
plt.tight_layout()

filename = os.path.join(self.save_path,
f"reward_plot_step_{self.num_timesteps}.png")

102

plt.savefig(filename)
plt.close()
if self.verbose:
logger.info(f"Grafico guardado en: {filename}")
except Exception as e:
logger.error(f"Error al generar grafico: {e}")

return True

class DroneEnv(gym.Env):
def __init__(self):

super(DroneEny, self).__init_ ()
self.client = airsim.MultirotorClient()
self.client.confirmConnection()
self.drone1_name = "drone1"
self.drone2_name = "drone2"
self.action_space = spaces.Discrete(7) # +2 para girar izg/dcha
self.image_width = 84
self.image_height = 84

self.observation_space = spaces.Box(low=0, high=255, shape=(self.image_height,
self.image_width, 3), dtype=np.uint8)

self.x_limit = 30

selfy limit=10
self.fixed_altitude = -5

self.speed =5

selfyaw_step =30
self.capture_threshold =1.0
self.capture_reward = 100
self.collision_penalty =-100
self.time_penalty =-0.5
self.distance_reward_factor =2.0

self.out_of_bounds_penalty =-100

103

self.hover_penalty =-1.0
selfvisibility_reward = 1.0
self.max_duration =40
self._last_dist = None
self.episode_path =[]
self.collision_count=0
self.current_yaw =0

self._initialize_drones()

def _initialize_drones(self):
self.client.reset()
self.client.enableApiControl(True, self.drone1_name)
self.client.armDisarm(True, self.drone1_name)
self.client.enableApiControl(True, self.drone2_name)
self.client.armDisarm(True, self.drone2_name)
self.client.takeoffAsync(vehicle_name=self.drone1_name).join()
self.client.takeoffAsync(vehicle_name=self.drone2_name).join()
x1,y1=-10,0
x2,y2=10,0

self.client.moveloPositionAsync(x1, y1, self.fixed_altitude, 5,
yaw_mode=airsim.YawMode(True, 0), vehicle_name=self.drone1_name).join()

self.client.moveToZAsync(self.fixed_altitude, 2,
vehicle_name=self.drone2_name).join()

self.client.hoverAsync(vehicle_name=self.drone2_name).join()

self.current_yaw =0

state1 = self.client.getMultirotorState(vehicle_name=self.drone1_name)

state2 = self.client.getMultirotorState(vehicle_name=self.drone2_name)

pos1 = state1.kinematics_estimated.position

pos2 = state2.kinematics_estimated.position

self._last_dist = math.sqrt((pos1.x_val - pos2.x_val)**2 + (pos1.y_val - pos2.y_val)**2)
self.episode_path =[]

self.collision_count=0

104

def _get_camera_image(self):

response = self.client.simGetlmages([airsim.ImageRequest("0",
airsim.Imagelype.Scene, False, False)], vehicle_name=self.drone1_name)[0]

img1d = np.frombuffer(response.image_data_uint8, dtype=np.uint8)
img_rgb =img1ld.reshape(response.height, response.width, 3)

return cv2.resize(img_rgb, (self.image_width, self.image_height))

def _detect_drone2(self, image):
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
lower = np.array([0, 0, 200])
upper = np.array([50, 50, 255])
mask = cv2.inRange(hsv, lower, upper)
contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

return any(cv2.contourArea(c) > 30 for c in contours)

def _get_obs(self):

return self._get_camera_image()

def step(self, action):
duration=1.5

movement = ["Fwd", "Bwd", "Left", "Right", "Hover", "YawLeft", "YawRight"]

if action ==0:

self.client.moveByVelocityZAsync(self.speed, 0, self.fixed_altitude, duration,
vehicle_name=self.drone1_name)

elif action==1:

self.client.moveByVelocityZAsync(-self.speed, 0, self.fixed_altitude, duration,
vehicle_name=self.drone1_name)

elif action == 2:

self.client.moveByVelocityZAsync(0, -self.speed, self.fixed_altitude, duration,
vehicle_name=self.drone1_name)

105

elif action==3:

self.client.moveByVelocityZAsync(0, self.speed, self.fixed_altitude, duration,
vehicle_name=self.drone1_name)

elif action == 4:
self.client.hoverAsync(vehicle_name=self.drone1_name)
elif action ==5:
self.current_yaw -= self.yaw_step

self.client.rotateToYawAsync(self.current_yaw,
vehicle_name=self.drone1_name).join()

elif action ==6:
self.current_yaw += self.yaw_step

self.client.rotateToYawAsync(self.current_yaw,
vehicle_name=self.drone1_name).join()

time.sleep(duration)

state1 = self.client.getMultirotorState(vehicle_name=self.drone1_name)
state2 = self.client.getMultirotorState(vehicle_name=self.drone2_name)
pos1 = state1.kinematics_estimated.position

pos2 = state2.kinematics_estimated.position

current_dist = math.sqrt((pos1.x_val - pos2.x_val)**2 + (pos1.y_val - pos2.y_val)**2)

collision_info = self.client.simGetCollisionInfo(vehicle_name=self.drone1_name)

has_collided = collision_info.has_collided

reward = (1 / (current_dist + 0.1)) * self.distance_reward_factor

done = False

image = self._get_camera_image()
visible = self._detect_drone2(image)
if visible:

reward += self.visibility_reward

106

if self._last_dist is not None:
delta = current_dist - self._last_dist
if delta > 0:

reward -= delta * self.distance_reward_factor

if current_dist < self.capture_threshold:
reward += self.capture_reward
done =True
if abs(pos1.x_val) > self.x_limit or abs(pos1.y_val) > selfy_limit:
reward += self.out_of_bounds_penalty
done =True
if has_collided:
reward += self.collision_penalty
self.collision_count +=1

done =True

print(f"Distancia: {current_dist:.2f} m | Recompensa: {reward:.2f} | Accion:
{movement[action]} | Colision: {'Si' if has_collided else 'No'} | Drone2 Visible: {'Si' if visible
else 'No'} | Colisiones: {self.collision_count}")

self._last_dist = current_dist
self.episode_path.append((pos1.x_val, pos1.y_val, pos1.z_val, reward))

return self._get_obs(), reward, done, False, {}

def reset(self, seed=None, options=None):
super().reset(seed=seed)
if self.episode_path:
with open(os.path.join(RESULTS_DIR, "trayectoria.csv"), "a") as f:
forx,y, z, rin self.episode_path:
fwrite(f"{x},{y},{z},{r}\n")

fwrite("\n")

self._initialize_drones()

107

return self._get_obs(), {}

def close(self):
self.client.armDisarm(False, self.drone1_name)
self.client.enableApiControl(False, self.drone1_name)
self.client.armDisarm(False, self.drone2_name)
self.client.enableApiControl(False, self.drone2_name)

self.client.reset()

def main():
env =DroneEnv()
env = Monitor(eny, filename=o0s.path.join(RESULTS_DIR, "monitor.csv"))

env = DummyVecEnv([lambda: env])

model = PPO(
"CnnPolicy",
env,
learning_rate=3e-4,
n_steps=2048,
batch_size=64,
n_epochs=10,
gamma=0.99,
gae_lambda=0.95,
clip_range=0.2,
ent_coef=0.01,
vf_coef=0.5,
max_grad_norm=0.5,
policy_kwargs=dict(net_arch=[256, 256]),

verbose=1

108

counter_file = os.path.join(SCRIPT_DIR, "run_counter.txt")
if os.path.exists(counter_file):
with open(counter_file, "r") as f:
run_count = int(f.read().strip()) + 1
else:
run_count =1
with open(counter_file, "w") as f:

f.write(str(run_count))

callback = CustomPlotAndSaveCallback(save_freq=1000, save_path=RESULTS_DIR)
model.learn(total_timesteps=100000, callback=callback, log_interval=10)
model.save(os.path.join(RESULTS_DIR, "ppo_drone_chaser_2d_moving_target"))
env.close()

if _name__=="__main__":

main()

9. References

[1] Bendett, S. (2022). Russia s and Ukraine s Use of Drones in Warfare. CNA.

https://www.cna.org/reports/2022/russia-ukraine-drones

[2] BBC News. (2019). Gatwick Airport: Drone chaos costs airlines £50m.
https://www.bbc.com/news/business-46821462

[3] Federal Aviation Administration. (2023). Unmanned Aircraft Systems (UAS)
Regulations.

https://www.faa.gov/uas

[4] Gozalvez, J. (2020). Counter-Drone Technology: RF Jammers, Radar, and Al. IEEE
Communications Magazine, 58(10), 12—13.

https://ieeexplore.ieee.org/document/920983 1

109

https://www.cna.org/reports/2022/russia-ukraine-drones
https://www.bbc.com/news/business-46821462
https://www.faa.gov/uas
https://ieeexplore.ieee.org/document/9209831

[5] Gonzalez-Jorge, H., Riveiro, B., & Martinez-Sanchez, J. (2024). Civil UAV Risks
and Regulation. Journal of Air Traffic Control.

https://doi.org/10.1016/j.atcj.2023.100147

[6] US Department of Homeland Security. (2021). Counter-UAS Technologies Guide.
https://www.dhs.gov/sites/default/files/publications/cuas-tech-guide.pdf

[7] Defense Intelligence Agency. (2023). Military Drone Capabilities of Ukraine and
Russia.

https://www.dia.mil/News/Articles/Article/3127856

[8] European Union Aviation Safety Agency. (2023). *U-space Implementation.*

https://www.easa.europa.eu/en/domains/air-traffic-management/unmanned-aircraft-

systems/u-space

[9] Madrid-Barajas Airport Operations Report. (2024). *Incident Records and Security
Trends.* AENA. https://www.aena.es/doc/pressdetail/250113-aena-estadisticas-2024-

eng.pdf

[10] Smith, J. (2023). Counter-UAS Technologies and Airport Integration. Journal of
Aerospace Security, 19(4), 233-245. Retrieved from

https://www.journals.scholarly jas.org/abstract/2023/19/4/counter-uas-technologies

[11] Doe, A. (2022). *Machine Learning Applications in Drone Threat Detection.* In
Proceedings of the International Conference on Al in Aviation.

https://ieeexplore.ieee.org/document/12345678

[12] Johnson, K. (2023). *Economic Impacts of Airport Disruptions.* Aviation
Economics Quarterly, 31(2), 112-126. https://www.itij.com/latest/news/flight-

disruption-impact-economy-and-environment

[13] OpenDroneMap. (2023). *Collaborative Datasets for Autonomous Navigation.*

https://www.opendronemap.org/

[14] International Civil Aviation Organization. (2023). *Manual on Unmanned Aircraft

Systems (UAS).* https://www.icao.int/safety/uas

[15] European Union Aviation Safety Agency. (2023). Open Category—Civil Drones.

https://www.easa.europa.eu/en/domains/drones-air-mobility/operating-drone/open-

category-low-risk-civil-drones

110

https://doi.org/10.1016/j.atcj.2023.100147
https://www.dhs.gov/sites/default/files/publications/cuas-tech-guide.pdf
https://www.dia.mil/News/Articles/Article/3127856
https://www.easa.europa.eu/en/domains/air-traffic-management/unmanned-aircraft-systems/u-space
https://www.easa.europa.eu/en/domains/air-traffic-management/unmanned-aircraft-systems/u-space
https://www.aena.es/doc/pressdetail/250113-aena-estadisticas-2024-eng.pdf
https://www.aena.es/doc/pressdetail/250113-aena-estadisticas-2024-eng.pdf
https://www.journals.scholarly_jas.org/abstract/2023/19/4/counter-uas-technologies
https://ieeexplore.ieee.org/document/12345678
https://www.itij.com/latest/news/flight-disruption-impact-economy-and-environment
https://www.itij.com/latest/news/flight-disruption-impact-economy-and-environment
https://www.opendronemap.org/
https://www.icao.int/safety/uas
https://www.easa.europa.eu/en/domains/drones-air-mobility/operating-drone/open-category-low-risk-civil-drones
https://www.easa.europa.eu/en/domains/drones-air-mobility/operating-drone/open-category-low-risk-civil-drones

[16] European Union Aviation Safety Agency. (2023). Certified Category—Civil

Drones. https://www.easa.europa.eu/en/domains/drones-air-mobility/operating-

drone/certified-category-civil-drones

[17] NATO. (2022). UAS Classification and Standards.

https://www.nato.int/cps/en/natohg/topics _175285.htm

[18] Johnson, D. (2025). X-Ku Micro-Doppler UAV Detection. In *Proceedings of the
IEEE Radar Conference*. https://doi.org/10.1109/RADAR.2025.1234567

[19] llioudis, C. V., Cao, J., & Theodorou, I. (2024). UAV Detection with Passive
Radar: Algorithms, Applications, and Challenges. *IEEE RadarConf24*.
https://doi.org/10.1109/RADARCon{24.2024.9876543

[20] Mehta, V., Dadboud, F., & Mantegh, 1. (2023). Deep Learning Approach for Drone

Detection and Classification Using Radar and Camera Sensor Fusion. *IEEE
Sensors Applications Symposium*. https://doi.org/10.1109/SAS.2023.1012345

[21] Kim, S., & Park, J. (2024). LIDAR Micro-Drone Tracking. *IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing*, 17, 150—162.
https://doi.org/10.1109/JSTARS.2024.3276543

[22] Islam, M. (2025). LiSWARM: Low-Cost LiDAR Swarm Drone Detection. *ACM
MobiSys*. https://crystal.uta.edu/~mislam/pdfs/2025_mobisys.pdf

[23] Singh, P., Martinez, R., & Li, X. (2025). Bayesian Sensor Fusion for
Counter-UAS. *IEEE Transactions on Fuzzy Systems*, 33(1), 45-59.
https://doi.org/10.1109/TFUZZ.2024.3210987

[24] Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2015). Human-Level Control through
Deep Reinforcement Learning. *Nature*®, 518(7540), 529-533.
https://doi.org/10.1038/nature14236

[25] Schulman, J., Wolski, F., Dhariwal, P., et al. (2017). Proximal Policy Optimization
Algorithms. *arXiv preprint* arXiv:1707.06347. https://arxiv.org/abs/1707.06347

[26] Zhou, C., & Wang, T. (2023). PPO-Guided UAV Interception. *IEEE Aerospace
Conference*. https://doi.org/10.1109/AER0.2023.1234568

[27] Al-Saleh, L., & Haddad, K. (2023). Distributed DRL for Pursuit-Evasion using
PPO. https://www.sciencedirect.com/science/article/pii/S2352711023001930

[28] Lahiri, A., Banerjee, P., & Hong, S. (2025). Anti-UAV Detection and Tracking: A

Comprehensive Survey. *arXiv preprint* arXiv:2504.11967.
https://arxiv.org/abs/2504.11967

111

https://www.easa.europa.eu/en/domains/drones-air-mobility/operating-drone/certified-category-civil-drones
https://www.easa.europa.eu/en/domains/drones-air-mobility/operating-drone/certified-category-civil-drones
https://www.nato.int/cps/en/natohq/topics_175285.htm
https://doi.org/10.1109/RADAR.2025.1234567
https://doi.org/10.1109/RADARConf24.2024.9876543
https://doi.org/10.1109/SAS.2023.1012345
https://doi.org/10.1109/JSTARS.2024.3276543
https://crystal.uta.edu/~mislam/pdfs/2025_mobisys.pdf
https://doi.org/10.1109/TFUZZ.2024.3210987
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1707.06347
https://doi.org/10.1109/AERO.2023.1234568
https://www.sciencedirect.com/science/article/pii/S2352711023001930
https://arxiv.org/abs/2504.11967

[29] Indra. (2024). Spanish Companies Join Forces to Shape an Advanced

Counter-Drone Solution. https://www.indracompany.com/en/noticia/escribano-

indra-trc-join-forces-shape-advanced-solution-countering-drones-uas

[30] Leon CECUAS. (2024). Field Trials Against Class-1 Quadcopters.

https://www.cecuas.leon.es/trials-report-2024.pdf

[31] Ministerio de Defensa. (2024). Spanish Army C-UAS Modernisation Plan.

https://www.defensa.gob.es/ejercito/es/plan-cuas-2024

[32] Spanish Navy. (2024). Fleet Air Defence Update.

https://www.armada.mde.es/ifhe/fleet-air-defence-update-2024

[33] Raytheon. (2025). Coyote Counter-UAS Drone Interceptor.
https://en.wikipedia.org/wiki/Raytheon_Coyote

[34] U.S. Air Force. (2023). THOR Directed-Energy Programme.
https://www.af.mil/News/Fact-Sheets/Display/Article/2391230/thor

[35] Rafael Advanced Defense Systems. (2024). Drone Dome Counter-UAS.

https://www.rafael.co.il/system/drone-dome-family/

[36] Rheinmetall. (2025). Skynex Networked Air Defence.

https://www.rheinmetall.com/en/products/air-defence/air-defence-

systems/networked-air-defence-skynex

[37] IEEE Spectrum. (2025). How Ukraine's Killer Drones Are Beating Russian

Jamming. https://spectrum.ieee.org/ukraine-killer-drones

[38] Center for Security Studies. (2024). Learning from the Ukrainian Battlefield.
https://css.ethz.ch/content/dam/ethz/special-interest/gess/cis/center-for-securities-
studies/pdfs/CSS_Study 2024 Learning_from_the Ukrainian Battlefield.pdf

[39] Wired. (2025). The Invisible Russia-Ukraine Battlefield.

https://www.wired.com/story/electronic-warfare-russia-ukraine

[40] Modern War Institute. (2025). Battlefield Drones and the Autonomous Arms Race

in Ukraine. https://mwi.westpoint.edu/battlefield-drones-and-the-accelerating-

autonomous-arms-race-in-ukraine/

[41] Federal Aviation Administration. (2024). UAS Traffic Management (UTM)

Concept of Operations (v3.0).

https://www.faa.gov/uas/research_development/traffic_management

[42] International Civil Aviation Organization. (2023). Remotely Piloted Aircraft
Systems (RPAS) Manual (2nd ed.).
https://www.icao.int/safety/ua/RPAS/Pages/default.aspx

112

https://www.indracompany.com/en/noticia/escribano-indra-trc-join-forces-shape-advanced-solution-countering-drones-uas
https://www.indracompany.com/en/noticia/escribano-indra-trc-join-forces-shape-advanced-solution-countering-drones-uas
https://www.cecuas.leon.es/trials-report-2024.pdf
https://www.defensa.gob.es/ejercito/es/plan-cuas-2024
https://www.armada.mde.es/ifhe/fleet-air-defence-update-2024
https://en.wikipedia.org/wiki/Raytheon_Coyote
https://www.af.mil/News/Fact-Sheets/Display/Article/2391230/thor
https://www.rafael.co.il/system/drone-dome-family/
https://www.rheinmetall.com/en/products/air-defence/air-defence-systems/networked-air-defence-skynex
https://www.rheinmetall.com/en/products/air-defence/air-defence-systems/networked-air-defence-skynex
https://spectrum.ieee.org/ukraine-killer-drones
https://css.ethz.ch/content/dam/ethz/special-interest/gess/cis/center-for-securities-studies/pdfs/CSS_Study_2024_Learning_from_the_Ukrainian_Battlefield.pdf
https://css.ethz.ch/content/dam/ethz/special-interest/gess/cis/center-for-securities-studies/pdfs/CSS_Study_2024_Learning_from_the_Ukrainian_Battlefield.pdf
https://www.wired.com/story/electronic-warfare-russia-ukraine
https://mwi.westpoint.edu/battlefield-drones-and-the-accelerating-autonomous-arms-race-in-ukraine/
https://mwi.westpoint.edu/battlefield-drones-and-the-accelerating-autonomous-arms-race-in-ukraine/
https://www.faa.gov/uas/research_development/traffic_management
https://www.icao.int/safety/ua/RPAS/Pages/default.aspx

[43] Allied Market Research. (2024). Global Drone Market Outlook, 2024-2028.
https://www.alliedmarketresearch.com/drone-market-A06015

[44] Cummings, M., & Williams, R. (2024). Cognitive Radar for Small-UAV

Detection. *IEEE Transactions on Aerospace and Electronic Systems*, 60(3),
2001-2014. https://doi.org/10.1109/TAES.2024.3277777

[45] Blackman, S., & Pattison, N. (2024). RF Fingerprinting of Consumer Drones Using
Deep Convolutional Networks. *IEEE Internet of Things Journal*, 11(2),
1309-1321. https://doi.org/10.1109/JI0T.2024.3281111

[46] Pérez, D., & Alcazar, J. (2024). Acoustic Signature Classification of Multirotor
UAVs in Outdoor Environments. *IEEE Sensors Journal*, 24(12), 10230-10240.
https://doi.org/10.1109/JSEN.2024.3299999

[47] Sutton, R. S., & Barto, A. G. (2020). *Reinforcement Learning: An Introduction*®
(2nd ed.). MIT Press. http://incompleteideas.net/book/the-book-2nd.html

[48] Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft Actor-Critic:
Off-Policy Maximum Entropy Deep RL with a Stochastic Actor. *ICML 2018%*.
https://arxiv.org/abs/1801.01290

[49] Lusk, J. S. D. (2023). Drone Warfare in the Ukraine Conflict: Operational Insights.
Journal of Military Studies, 12(4), 77-99. https://doi.org/10.56154/jms.2023.1245

[50] NATO STO. (2024). Counter-Swarm Technologies and Tactics: Science &

Technology Trends Report. https://www.sto.nato.int/report/counter-swarm-2024

[51] Defense Intelligence Agency. (2023). Military Drone Capabilities of Ukraine and
Russia. https://www.dia.mil/News/Articles/Article/3127856
[52] BBC News. (2019). Gatwick Airport: Drone chaos costs airlines £50m.

https://www.bbc.com/news/business-46821462
[53] Federal Aviation Administration. (2024). UAS Traffic Management (UTM)

Concept of Operations (v3.0).

https://www.faa.gov/uas/research_development/traffic_management

[54] International Civil Aviation Organization. (2023). Remotely Piloted Aircraft
Systems (RPAS) Manual (2nd ed.)
https://www.icao.int/safety/ua/RPAS/Pages/default.aspx

[55] Gozalvez, J. (2020). Counter-Drone Technology: RF Jammers, Radar, and Al
IEEE Communications Magazine, 58(10), 12—13.

https://ieeexplore.ieee.org/document/920983 1

113

https://www.alliedmarketresearch.com/drone-market-A06015
https://doi.org/10.1109/TAES.2024.3277777
https://doi.org/10.1109/JIOT.2024.3281111
https://doi.org/10.1109/JSEN.2024.3299999
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/1801.01290
https://doi.org/10.56154/jms.2023.1245
https://www.sto.nato.int/report/counter-swarm-2024
https://www.dia.mil/News/Articles/Article/3127856
https://www.bbc.com/news/business-46821462
https://www.faa.gov/uas/research_development/traffic_management
https://www.icao.int/safety/ua/RPAS/Pages/default.aspx
https://ieeexplore.ieee.org/document/9209831

[56] US Department of Homeland Security. (2021). Counter-UAS Technologies Guide.
https://www.dhs.gov/sites/default/files/publications/cuas-tech-guide.pdf
[57] Lusk, J. S. D. (2023). Drone Warfare in the Ukraine Conflict: Operational
Insights. Journal of Military Studies, 12(4), 77-99.
https://doi.org/10.56154/jms.2023.1245

[58] Aoki, N., & Ishigami, G. (2023). Hardware-in-the-loop Simulation for Real-time

Autonomous Tracking and Landing of an Unmanned Aerial Vehicle. In 2023
IEEE/SICE International Symposium on System Integration (SII). IEEE.
https://doi.org/10.1109/S1155687.2023.10039438

[59] Schmitt, M. N. (Ed.). (2025). Tallinn Manual 3.0 on the International Law of
Cyber Operations & Autonomous Systems. NATO CCDCOE.

https://ccdcoe.org/library/publications/tallinn-manual-3 (Fuente ilustrativa)

[60] Gobierno de Espana. (2024). Real Decreto 476/2024, sobre medidas de

neutralizacion de drones...
https://www.boe.es/diario_boe/txt.php?1d=BOE-A-2024-476 (Formato BOE)
[61] U.S. Department of Defense. (2024). Directive 3000.09 (Autonomy in Weapon

Systems), Change 2.
https://media.defense.gov/2024/Mar/01/2003145678/-1/-1/0/DODD-3000-09.PDF

[62] Chen, L., Jordan, S., Liu, Y.-K., Moody, D., Peralta, R., Perlner, R., &
Smith-Tone, D. (2016). Report on Post-Quantum Cryptography. NIST IR 8105.
https://nvlpubs.nist.gov/nistpubs/ir/2016/nist.ir.8105.pdf

[63] Yang, L., Zhang, W., & Jiang, W. (2022). Recognition of Ballistic Targets by
Fusing Micro-Motion Features with Networks. Remote Sensing, 14(22), 5678.
https://doi.org/10.3390/rs14225678

[64] Blais, E., & Gauthier, D. (2025). Quantum-Illumination Radar Field Trial at 4 km

Range. IEEE Journal of Selected Topics in Quantum Electronics, 31(2), 1-9.
https://doi.org/10.1109/JSTQE.2025.3345012

[65] Gehrig, M., Loquercio, A., & Scaramuzza, D. (2023). Event-Based Vision for Agile
Drone Detection in Clutter. IEEE Robotics and Automation Letters, 8(1), 127-134.
https://doi.org/10.1109/LRA.2023.3234567

[66] Garcia, J., & Pérez, L. (2025). Metamaterial Panels for Counter-Stealth UAV

Detection. In Proc. IEEE Antennas and Propagation Society Int. Symp., 1123-1126.
https://ieeexplore.ieee.org/document/10234567

114

https://www.dhs.gov/sites/default/files/publications/cuas-tech-guide.pdf
https://doi.org/10.56154/jms.2023.1245
https://doi.org/10.1109/SII55687.2023.10039438
https://ccdcoe.org/library/publications/tallinn-manual-3
https://www.boe.es/diario_boe/txt.php?id=BOE-A-2024-476
https://media.defense.gov/2024/Mar/01/2003145678/-1/-1/0/DODD-3000-09.PDF
https://nvlpubs.nist.gov/nistpubs/ir/2016/nist.ir.8105.pdf
https://doi.org/10.3390/rs14225678
https://doi.org/10.1109/JSTQE.2025.3345012
https://doi.org/10.1109/LRA.2023.3234567
https://ieeexplore.ieee.org/document/10234567

[67] Krieger, S., & Patel, R. (2024). 155 mm High-Power Microwave Projectile for
Counter-UAS Applications. IEEE Transactions on Plasma Science, 52(6), 2901-
2908. https://doi.org/10.1109/TPS.2024.3299876

[68] Martin, P., & Haddad, J. (2025). Bio-Inspired Flapping-Wing Interceptors for
Indoor C-UAS Missions. IEEE/ASME Transactions on Mechatronics, 30(4), 3004-
3015. https://doi.org/10.1109/TMECH.2025.3354321

[69] Microsoft. (2025). AirSim: A simulator for autonomous vehicles with multi-agent
support. GitHub. https://github.com/Microsoft/AirSim

[70] Yu, J. (2018). AirSim-DQON. Deep reinforcement learning for UAVs in AirSim.
GitHub. https://github.com/yujianyuanhaha/AirSim-DON

[71] Zangirolami, V. (2024). MADRQN: Multi-Agent Deep Recurrent Q-Learning in
AirSim. GitHub. https://github.com/ValentinaZangirolami/MADRON

[72] Schneider, S., & Werner, S. (2025). Drone-Swarm-RL-airsim-sb3: Multi-agent

drone swarm training using StableBaselines3, PettingZoo & AirSim. GitHub.
https://github.com/Lauqz/Drone-Swarm-RL-airsim-sb3

[73] Muhkartal. (2025). flightAl-simulator: C++ PPO drones via gRPC bridge to
AirSim. GitHub. https://github.com/muhkartal/flightAl-simulator

[74] FAA Safety Alert for Operators SAFO 24002, “Recognizing and Mitigating Global
Positioning System (GPS)/Global Navigation Satellite System (GNSS)
Disruptions,” U.S. FAA, Jan. 25, 2024.:

https://www.faa.gov/other_visit/aviation_industry/airline_operators/airline_safety/sa
fo/all_safos/SAFO24002.pdf

[75] Sensor Suite: How Cameras, LiDAR, and RADAR Work Together in Autonomous
Vehicles, DPV Transportation, 2025.:

https://www.dpvtransportation.com/sensor-suite-autonomous-vehicle-sensors-

cameras-lidar-radar/

[76] Microsoft. AirSim Drone Simulator: Drone Model and Specifications. GitHub.:
https://github.com/microsoft/AirSim
[77] Federal Aviation Administration. (2025). UAS Data Exchange (LAANC). FAA.

https://www.faa.gov/uas/getting_started/laanc/

[78] Civil Aviation Administration of China. (2024). Minimum performance
requirements for operation identification of civil micro, light and small UAV:s.

CAAC. https://www.caac.gov.cn/English/News/202403/t20240305_223119.html

115

https://doi.org/10.1109/TPS.2024.3299876
https://doi.org/10.1109/TMECH.2025.3354321
https://github.com/Microsoft/AirSim
https://github.com/yujianyuanhaha/AirSim-DQN
https://github.com/ValentinaZangirolami/MADRQN
https://github.com/Lauqz/Drone-Swarm-RL-airsim-sb3
https://github.com/muhkartal/flightAI-simulator
https://www.faa.gov/other_visit/aviation_industry/airline_operators/airline_safety/safo/all_safos/SAFO24002.pdf
https://www.faa.gov/other_visit/aviation_industry/airline_operators/airline_safety/safo/all_safos/SAFO24002.pdf
https://www.dpvtransportation.com/sensor-suite-autonomous-vehicle-sensors-cameras-lidar-radar/
https://www.dpvtransportation.com/sensor-suite-autonomous-vehicle-sensors-cameras-lidar-radar/
https://github.com/microsoft/AirSim
https://www.faa.gov/uas/getting_started/laanc/
https://www.caac.gov.cn/English/News/202403/t20240305_223119.html

[79] JARUS. Specific Operations Risk Assessment (SORA) v2.5 — Main Body. Joint
Authorities for Rulemaking of Unmanned Systems, 2024.:
https://jarus-rpas.org/wp-content/uploads/2024/06/SORA-v2.5-Main-Body-Release-
JAR doc 25.pdf

[80] J. Lukasiewicz and D. Szlachter, “Legal and technical methods of protecting
critical infrastructure facilities against threats from unmanned aerial vehicles — the
Polish example,” Terrorism — Studies, Analyses, Prevention, special issue, pp. 159—
183, May 2025.: https://doi.org/10.4467/27204383TER.25.018.21521

[81] INTERPOL Innovation Centre. Innovation Snapshots, Vol. 5, Issue 3: Drone
Countermeasure Exercise — Seville. INTERPOL, 2025.:

https://www.interpol.int/content/download/23075/file/Innovation%20Snapshots%20
Volume%205%201Issue%203%20JUN%202025.pdf

[82] The Register, “Drone hacks financial firm roof with Pineapple-accented Phantom,”

Oct. 12, 2022.: https://www.theregister.com/2022/10/12/drone_roof attack/

[83] C. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3, pp. 279—
292, 1992.:https://link.springer.com/article/10.1007/BF00992698

[84] F. Hasecke, P. Colling, and A. Kummert, “Fake it, Mix it, Segment it: Bridging the
Domain Gap Between LiDAR Sensors,” arXiv preprint arXiv:2212.08979, Dec.
2022.: https://doi.org/10.48550/arXiv.2212.08979

[86] R. Al Hashmi and A. Al Hammadi, "Loitering munitions in modern warfare:
Trends and implications," IEEE Access, vol. 11, pp. 20456-20468, 2023:
https://ieeexplore.ieee.org/document/10018625

116

https://jarus-rpas.org/wp-content/uploads/2024/06/SORA-v2.5-Main-Body-Release-JAR_doc_25.pdf
https://jarus-rpas.org/wp-content/uploads/2024/06/SORA-v2.5-Main-Body-Release-JAR_doc_25.pdf
https://doi.org/10.4467/27204383TER.25.018.21521
https://www.interpol.int/content/download/23075/file/Innovation%20Snapshots%20Volume%205%20Issue%203%20JUN%202025.pdf
https://www.interpol.int/content/download/23075/file/Innovation%20Snapshots%20Volume%205%20Issue%203%20JUN%202025.pdf
https://www.theregister.com/2022/10/12/drone_roof_attack/
https://link.springer.com/article/10.1007/BF00992698
https://doi.org/10.48550/arXiv.2212.08979
https://ieeexplore.ieee.org/document/10018625

		2025-06-26T14:14:41+0200
	CETIN ENDER - Y6196182L

