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Términos y acrónimos utilizados

AI Artificial Intelligence Inteligencia artificial 
API Application Programming Interface Interfaz de programación de 

aplicaciones 
ATC Air Traffic Control Control del tráfico aéreo 
ATM Air Traffic Management Gestión del tráfico aéreo 
CWI Centrum Wiskunde & Informatica Instituto nacional de 

investigación en matemáticas e 
informática 

DDPG Deep Deterministic Policy Gradient Algoritmo de RL para acciones 
continuas 

DQN Deep Q-Network Algoritmo que combina Q-
learning con redes neuronales 

FAA Federal Aviation Administration Administración federal de 
aviación 

GPU Graphics Processing Unit Unidad de procesamiento 
gráfico 

GUI Graphical User Interface Interfaz gráfica de usuario 
HRL Hierarchical Reinforcement Learning Aprendizaje por refuerzo 

jerárquico 
IEEE Institute of Electrical and Electronics 

Engineers 
Instituto de ingenieros 
eléctricos y electrónicos 

IRL Inverse Reinforcement Learning Aprendizaje por refuerzo 
inverso 

MARL Multi-Agent Reinforcement Learning Aprendizaje multi-agente 
MCTS Monte Carlo Tree Search Método de búsqueda para 

planificación en RL 
ML Machine Learning Aprendizaje automático 
PPO Proximal Policy Optimization Algoritmo de optimización de 

políticas en RL 
RL Reinforcement Learning Aprendizaje por Refuerzo 
SAC Soft Actor-Critic Algoritmo de RL que equilibra 

eficiencia y exploración 
TD3 Twin Delayed Deep Deterministic 

Policy Gradient 
Algoritmo de RL sucesor de 
DDPG 

TU Delft Delft University of Technology Universidad Tecnológica de 
Delft 

TPU Tensor Processing Unit Unidad de procesamiento de 
Google para IA 

UAV Unmanned Aerial Vehicle Vehículo Aéreo no Tripulado 
XAI Explainable AI IA Explicable 
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Agente (RL): Entidad que toma decisiones en un entorno de aprendizaje por refuerzo, 

interactuando con el entorno para maximizar recompensas. 

Algoritmo Actor-Crítico: Método de RL que combina un "actor" (toma decisiones) y un 

"crítico" (evalúa decisiones) para mejorar políticas. 

Batch Size: Número de muestras utilizadas en una iteración de entrenamiento de un 

modelo de RL. 

Buffer de Reproducción: Memoria que almacena experiencias pasadas del agente para 

reutilizarlas durante el entrenamiento. 

Coeficiente de Entropía (ent_coef): Parámetro que regula el balance entre exploración 

(probabilidad de probar acciones nuevas) y explotación (usar acciones conocidas). 

Deep Q-Network (DQN): Algoritmo de RL que combina Q-learning con redes neuronales 

profundas para manejar entornos complejos. 

Entorno (RL): Contexto simulado o real donde el agente interactúa y aprende. 

Espacio de Acciones: Conjunto de todas las acciones posibles que un agente puede 

tomar en un entorno. 

Espacio de Estados: Conjunto de todas las situaciones posibles en las que puede 

encontrarse un entorno. 

Función de Valor: Estimación de la recompensa acumulada esperada desde un estado o 

acción específica. 

Hiperparámetros: Parámetros configurables que controlan el proceso de entrenamiento 

(ej. tasa de aprendizaje). 

Política (RL): Estrategia que define cómo el agente selecciona acciones en función del 

estado actual. 

Q-learning: Algoritmo de RL basado en valores que aprende una política óptima 

mediante una tabla Q. 

Recompensa Descontada: Método para ponderar recompensas futuras en RL, dando 

más peso a las recompensas inmediatas. 

Red Neuronal Profunda: Modelo computacional inspirado en el cerebro humano, usado 

en RL para aproximar funciones complejas. 

Stable-Baselines3: Biblioteca de Python que implementa algoritmos de RL estables y 

optimizados. 

Tasa de Aprendizaje (learning_rate): Parámetro que determina cuánto ajusta el modelo 

sus pesos en cada iteración de entrenamiento.  
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1. Introducción 

El aprendizaje por refuerzo (RL, por sus siglas en inglés) [1,2] se ha consolidado como 

una de las áreas más prometedoras de la inteligencia artificial, especialmente en 

aplicaciones que requieren toma de decisiones en tiempo real y adaptabilidad a 

entornos dinámicos. El RL consiste en entrenar a un agente a tomar decisiones óptimas 

mediante la interacción reiterada con entornos, recibiendo recompensas o 

penalizaciones según sus acciones. Su objetivo es maximizar una recompensa 

acumulada a lo largo del tiempo, utilizando estrategias de exploración y explotación 

para mejorar su desempeño en la tarea asignada. En el ámbito del control de tráfico 

aéreo (ATC) y la gestión del tráfico aéreo (ATM), el RL ofrece un potencial significativo 

para optimizar operaciones, mejorar la seguridad y aumentar la eficiencia en espacios 

aéreos cada vez más congestionados. Por ejemplo, avisando al controlador de posibles 

conflictos futuros (aviones al mismo nivel de altitud con una ruta donde se cruzan) o 

automatizando procesos como peticiones de "vuelo en ruta directa" comprobando si 

efectuar la maniobra supone riesgos en la seguridad. Sin embargo, la falta de entornos 

estandarizados y herramientas accesibles para probar y comparar algoritmos de RL ha 

sido un obstáculo para el avance de la investigación en este campo. 

Aun estando todavía en desarrollo BlueSky-Gym [3] surge como una solución 

innovadora para poder afrontar este desafío. Basado en el simulador de tráfico aéreo 

de código abierto BlueSky [4,5], proporciona una plataforma estandarizada y flexible 

para la investigación y aplicación de algoritmos de RL en tareas relacionadas con el 

control de tráfico aéreo. BlueSky-Gym se basa en la popular API Gymnasium [6], lo que 

permite a los investigadores y desarrolladores utilizar una amplia gama de algoritmos 

de RL disponibles en bibliotecas. Además, ofrece una colección de entornos predefinidos 

que abarcan desde tareas básicas de control vertical y horizontal hasta escenarios más 

complejos, como la resolución de conflictos y la fusión de flujos de tráfico. 

La importancia de BlueSky-Gym radica en su capacidad para simplificar y estandarizar el 

proceso de investigación en RL aplicado al tráfico aéreo. Al proporcionar entornos 

reproducibles y bien documentados, como los del entorno de la figura 1, donde el 

agente debe trazar la ruta más corta y realizarla en el menor tiempo posible hasta el 

nodo (circulo blanco) teniendo en cuenta y evitando los obstáculos estáticos del 

escenario, este escenario junto con otros facilita la comparación de distintos algoritmos 

y la validación de resultados, lo que permite el avance de la investigación en este campo. 

Figura 1: Visualización utilizada para el entorno StaticObstacleEnv-v0 dentro de BlueSky-Gym. 
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Además, su enfoque de generación procedural asegura que los algoritmos no se adapten 

únicamente a escenarios específicos, promoviendo la generalización y robustez de las 

políticas aprendidas. 

Este trabajo tiene como objetivo explorar las funcionalidades y aplicaciones de BlueSky-

Gym en el contexto del control de tráfico aéreo. A través de una revisión exhaustiva de 

la literatura, un análisis detallado del paquete y la realización de simulaciones 

computacionales se busca demostrar cómo el paquete puede ser utilizado para entrenar 

y evaluar algoritmos de RL en tareas de ATC/ATM. Además, se propone la creación de 

un tutorial, con el fin de hacer esta herramienta accesible a una audiencia más amplia, 

incluyendo estudiantes, investigadores y profesionales del sector. 

1.1. Contexto 

El tráfico aéreo mundial ha experimentado una notable evolución en los últimos años, 

marcada por un crecimiento sostenido hasta 2019, una drástica caída en 2020 debido a 

la pandemia de COVID-19 y una recuperación gradual que culminó en niveles récord en 

2024. 

Actualmente, el tráfico aéreo mundial ha aumentado un 10,4% con respecto a 2023, 

superando en un 3,8% los niveles de 2019. Este crecimiento ha llevado al tráfico aéreo 

a superar los niveles pre-COVID, evidenciando una recuperación completa del sector. 

Este aumento también se ha visto reflejado en los aeropuertos españoles, donde se han 

alcanzado cifras históricas de pasajeros. Por ejemplo, el Aeropuerto de Valencia cerró 

2024 con 10,8 millones de pasajeros, un 8,7% más que el año anterior. 

 

Este crecimiento en el tráfico aéreo no solo responde a la recuperación de la demanda 

de pasajeros, sino también a una serie de factores clave que han impulsado el sector. 

Entre ellos, destacan la apertura de nuevas rutas internacionales, el aumento del 

turismo y la consolidación de aerolíneas de bajo costo, que han facilitado el acceso a los 

viajes aéreos para un mayor número de personas. 
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Figura 2: Gráfica de número de operaciones anuales de aeropuertos españoles contabilizados por AENA[8]. 
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A nivel operativo, la recuperación del tráfico ha supuesto nuevos retos para la gestión 

del espacio aéreo. La congestión en aeropuertos y rutas de alto tráfico ha generado una 

creciente necesidad de optimizar la planificación y el control de vuelos. 

1.2. Conceptos básicos 

1.2.1. Origen de la Inteligencia Artificial 

La inteligencia artificial (AI) es el campo que estudia cómo hacer que las computadoras 

imiten la inteligencia humana, lo que ha permitido avances increíbles en diversos 

sectores, desde la medicina hasta la aviación. 

La idea de máquinas inteligentes no es nueva. Ya en la antigüedad, los filósofos 

imaginaban autómatas capaces de razonar. No obstante, no fue hasta el siglo XX cuando 

se dieron los primeros pasos. En la década de 1940, durante la Segunda Guerra Mundial, 

el matemático Alan Turing desarrolló una de las primeras computadoras y propuso la 

idea de que una máquina podía "pensar" si lograba imitar el comportamiento humano 

en una conversación. Este concepto dio lugar al Test de Turing [7], que aún hoy se usa 

para evaluar si una IA puede engañar a una persona haciéndole creer que está hablando 

con otro humano. 

Posteriormente, en 1956, en la Conferencia de Dartmouth, John McCarthy acuñó el 

término "Inteligencia Artificial", marcando el inicio oficial de esta disciplina. Durante 

esta época, los científicos eran optimistas y creían que en poco tiempo las computadoras 

podrían alcanzar el nivel de inteligencia humana. Sin embargo, en las décadas de 1960 

y 1970, aunque se desarrollaron algunos de los primeros programas de AI, como ELIZA, 

un chatbot rudimentario, las limitaciones tecnológicas llevaron a una pérdida de interés. 

 

En los años 80 y 90, gracias a la mejora de los procesadores y al desarrollo de redes 

neuronales artificiales, la AI volvió a cobrar importancia. Se crearon sistemas expertos 

capaces de resolver problemas complejos en medicina e industria. No obstante, fue en 

el siglo XXI cuando la AI experimentó un crecimiento explosivo, impulsado por el acceso 

a grandes volúmenes de datos (Big Data) y el aumento del poder computacional. 

Figura 3: Conversación con el chatbot ELIZA. 
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Durante este período, aparecieron asistentes virtuales como Siri y Alexa, sistemas de 

reconocimiento facial y vehículos autónomos como los de Tesla. 

1.2.2. Tipos de Aprendizaje en Inteligencia Artificial 

Para entender cómo funciona la AI, es fundamental conocer sus diferentes formas de 

aprendizaje. Estas no "nacen" sabiendo qué hacer, sino que deben ser entrenadas para 

tomar decisiones y mejorar con el tiempo. Existen tres principales tipos de aprendizaje: 

1. Aprendizaje Supervisado: En este método, el modelo aprende a partir de datos 

etiquetados. Por ejemplo, si quieres enseñar a una AI a reconocer gatos en fotos, 

le muestras imágenes etiquetadas como "con gato" o "sin gato". Con suficiente 

entrenamiento, puede predecir si una nueva imagen contiene un gato. Este tipo 

de aprendizaje se aplica en reconocimiento facial, diagnóstico médico y 

predicción del clima. 

2. Aprendizaje no Supervisado: Aquí, la AI analiza datos sin etiquetar para 

encontrar patrones y organizar la información. Un ejemplo es Spotify, que 

observa las canciones que escuchas y te recomienda nuevas basadas en tus 

gustos. Este método se utiliza en segmentación de clientes, detección de fraudes 

y sistemas de recomendación. 

 

 

3. Aprendizaje por Refuerzo (Reinforcement Learning - RL): En este caso, la AI 

aprende por prueba y error. Un "agente" realiza acciones en un entorno y recibe 

recompensas o penalizaciones según sus decisiones. Por ejemplo, un robot que 

aprende a jugar ajedrez recibe puntos positivos por buenos movimientos y 

negativos por malos. Este enfoque se aplica en juegos, robótica y optimización. 

 

 

 

Figura 4: Ejemplo visual de aprendizaje supervisado (regresión lineal) y no supervisado (Clustering). 
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1.2.3. BlueSky 

BlueSky es un simulador de tráfico aéreo de código abierto diseñado para investigar y 

desarrollar soluciones innovadoras en la gestión del tráfico aéreo. BlueSky fue creado 

en 2015 por el Instituto Nacional de Investigación Matemática e Informática (CWI) de 

los Países Bajos, en colaboración con la Universidad Tecnológica de Delft (TU Delft). Este 

proyecto surgió como una iniciativa de código abierto para proporcionar una 

herramienta flexible y accesible para la investigación en gestión del tráfico aéreo. Este 

software permite recrear escenarios realistas de vuelo, simulando el comportamiento 

de aeronaves, controladores aéreos y otros elementos clave del espacio aéreo. Su 

flexibilidad y capacidad de personalización lo convierten en una herramienta invaluable 

para investigadores, desarrolladores y profesionales de la aviación que buscan optimizar 

la eficiencia y seguridad en los cielos. 

Una de las aplicaciones más destacadas de BlueSky es su integración con sistemas de AI. 

En este contexto, surge BlueSky-Gym, una plataforma que combina el simulador con 

técnicas de RL para entrenar modelos de AI en la gestión del tráfico aéreo. BlueSky-Gym 

permite a los investigadores desarrollar y probar algoritmos que optimicen rutas, 

reduzcan demoras y mejoren la toma de decisiones en tiempo real, marcando un hito 

en la modernización de la aviación. 

  

Figura 5: Flujo de trabajo de BlueSky para la adquisición, procesamiento y almacenamiento de datos experimentales. Incluye 

interacción con hardware, abstracción en Python, serialización, almacenamiento persistente y análisis de datos en entornos 

interactivos. 
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1.3. Motivación 

A medida que avanzaba en mis estudios en el grado en Gestión Aeronáutica, me ha 

interesado mucho la evolución de las tecnologías especialmente de las AI y de su 

aplicación al ATC y de cómo estas pueden mejorar la seguridad y eficiencia en la aviación. 

En un mundo donde el número de vuelos sigue en aumento y donde la automatización 

desempeña un papel cada vez más relevante, considero que el RL representa una 

oportunidad clave para optimizar la gestión del espacio aéreo y la toma de decisiones. 

El tráfico aéreo es un sistema altamente complejo, donde cada decisión puede afectar 

la seguridad. Tradicionalmente, las estrategias de control se basan en reglas 

predefinidas y en la experiencia de los controladores. Sin embargo, con el crecimiento 

del tráfico aéreo y la incorporación de drones y aeronaves autónomas, surgen desafíos 

que requieren soluciones más dinámicas y adaptativas. 

El uso de AI permite desarrollar sistemas que pueden aprender y mejorar 

continuamente en la gestión del tráfico aéreo. Con BlueSky-Gym, se pueden entrenar 

modelos de RL en entornos simulados sin poner en riesgo operaciones reales. 

Como estudiante, creo que este proyecto es una oportunidad única para combinar 

conocimientos de gestión del tráfico aéreo con herramientas tecnológicas avanzadas. 

Explorar cómo los algoritmos de AI pueden integrarse en ATC no solo es un tema 

innovador, sino que también tiene aplicaciones concretas en el sector aeronáutico, 

desde la automatización del control de tráfico hasta la optimización de la capacidad 

aeroportuaria. 

En conclusión, este trabajo no solo representa una oportunidad para profundizar en un 

tema innovador dentro de la gestión aeronáutica, sino que también contribuye al 

desarrollo de nuevas estrategias para la optimización del tráfico aéreo mediante 

inteligencia artificial. A través de esta investigación, espero no solo aprender sobre 

BlueSky-Gym y el aprendizaje por refuerzo, sino también aportar soluciones prácticas 

que puedan optimizar el tráfico aéreo del futuro. 

1.4. Objetivos 

El objetivo general del trabajo es explorar el uso del aprendizaje por refuerzo en el 

control aéreo, con un enfoque específico en el estudio de las funcionalidades y 

aplicaciones potenciales del paquete BlueSky-Gym. Para alcanzar este objetivo general, 

se han definido los siguientes objetivos específicos, que guiarán el desarrollo del trabajo: 

1. Revisar la literatura existente acerca de aprendizaje por refuerzo y el simulador 

BlueSky. 

2. Estudiar el paquete BlueSky-Gym: características y aplicaciones. 

3. Escribir un tutorial BlueSky-Gym para no expertos. 

4. Llevar a cabo simulaciones o experimentos computacionales con varios 

escenarios y analizar resultados. 

5. Estudiar limitaciones y posibles desarrollos del paquete.  
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1.5. Metodología 

Para abordar los objetivos planteados en el trabajo, se pueden combinar diversas 

metodologías de investigación, en función de la naturaleza de cada objetivo. En primer 

lugar, para revisar la literatura existente sobre aprendizaje por refuerzo y el simulador 

BlueSky, se realizará una búsqueda sistemática en bases de datos académicos como IEEE 

Xplore y Google Scholar. Esta revisión permitirá identificar las aplicaciones más comunes 

del aprendizaje para reforzar el control de tráfico aéreo y analizar las tendencias, 

limitaciones y avances en el uso de BlueSky. 

Posteriormente, el estudio del paquete BlueSky-Gym se llevará a cabo mediante un 

análisis de datos y una verificación técnica. Se examinará la documentación oficial, el 

código fuente y los ejemplos disponibles, con el fin de identificar sus características 

principales, las aplicaciones disponibles y prácticas reportadas en la literatura o en 

proyectos anteriores. Para ello, se utilizarán recursos como la documentación de 

BlueSky-Gym. 

Una vez comprendido el funcionamiento del paquete, se diseñará un tutorial dirigido a 

usuarios sin experiencia en BlueSky-Gym. Este documento incluye instrucciones paso a 

paso para la instalación, configuración y uso del simulador, complementadas con 

ejemplos prácticos y capturas de pantalla. Para la elaboración del tutorial, se emplearán 

herramientas de documentación, así como grabadoras de pantalla. 

En la siguiente fase del trabajo, se llevarán a cabo simulaciones y experimentos 

computacionales con diferentes escenarios dentro de BlueSky-Gym. Se evaluará el 

algoritmo de aprendizaje por refuerzo, en tareas específicas como resolución de 

conflictos y fusión de tráfico. Los datos recopilados incluyen métricas de rendimiento 

como la recompensa acumulada, el tiempo de convergencia y su eficiencia. Para el 

análisis de los resultados, se utilizarán herramientas como Python [9] y bibliotecas de 

aprendizaje. 

Finalmente, se realizará un análisis crítico de BlueSky-Gym para identificar sus 

limitaciones y proponer posibles mejoras. Se evaluará la falta de soporte para entornos 

multiagente, la complejidad de los escenarios y la integración con otras herramientas. A 

partir de este diagnóstico, se sugerirán desarrollos futuros, como la ampliación a 

entornos más complejos o la mejora de la documentación. Este proceso se 

complementará con una revisión de la literatura existente. 

A través de esta metodología estructurada, se espera lograr un análisis completo del 

paquete BlueSky-Gym, generar recursos accesibles para nuevos usuarios y aportar 

conocimientos valiosos para su mejora y aplicación en el control de tráfico aéreo.  
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1.6. Análisis de viabilidad 

El proyecto presenta una viabilidad técnica sólida, respaldada por los recursos 

disponibles y las herramientas de software adecuadas. En primer lugar, se cuenta con 

BlueSky, un simulador de tráfico aéreo de código abierto que permite personalizaciones 

y es ampliamente utilizado en investigaciones académicas. Además, BlueSky-Gym, una 

extensión basada en Gymnasium, facilita la integración con algoritmos de RL, lo que 

agiliza el desarrollo de modelos avanzados. En cuanto al hardware, no se requiere un 

equipo de alto rendimiento, aunque contar con una GPU podría acelerar el 

entrenamiento de los modelos. Por otro lado, la documentación disponible en GitHub, 

junto con estudios previos y referencias académicas, proporciona una amplia base para 

el desarrollo del proyecto. 

En cuanto a la viabilidad legal y ética, el uso de software de código abierto como BlueSky 

y BlueSky-Gym no presenta restricciones significativas, ya que ambos están disponibles 

bajo licencias que permiten su uso en investigación y desarrollo. En el caso de utilizar 

datos de tráfico aéreo real, como los proporcionados por Flightradar24[10] o eAIP [11], 

es fundamental verificar sus términos de empleo. Desde una perspectiva ética, el 

impacto en la seguridad aérea es un aspecto crítico. Un modelo mal entrenado podría 

generar recomendaciones erróneas. 

La viabilidad económica del proyecto también es favorable. Los costos de software son 

bajos, ya que BlueSky y BlueSky-Gym son gratuitos y de código abierto. En cuanto al 

hardware, los costos pueden variar desde un nivel medio hasta uno más elevado, 

dependiendo de la capacidad de cómputo requerida. 

1.7. Recursos necesarios 

Recursos computacionales y de software 

1. PC o portátil con capacidad suficiente para correr simulaciones. 
2. Python 3.11 (lenguaje principal). 
3. BlueSky-Gym (simulador) 
4. Bibliotecas adicionales: NumPy 1.24, Matplotlib, Gym, etc. 

Recursos Bibliográficos y Teóricos 

1. Revisiones recientes sobre aprendizaje por refuerzo en simulaciones. 

2. Aplicaciones del aprendizaje para refuerzo en tráfico aéreo o simulaciones 

similares.   



18 

 

1.8. Cronograma 

Actividad 3-17 de 
febrero 

18-4 de 
marzo 

5-19 de 
marzo 

20-3 de abril 4-18 de abril 19-3 de 
mayo 

4-18 de 
mayo 

19-2 de junio 3-17 de junio 18-2 de julio 

Revisar la literatura existente 
acerca de aprendizaje por refuerzo 
y el simulador Bluesky. 

                     

Estudiar el paquete Bluesky-gym: 
características y aplicaciones. 

                     

Llevar a cabo simulaciones o 
experimentos computacionales 
con escenarios básicos. 

                     

Iniciar la redacción del tutorial 
Bluesky-gym para no expertos. 

                     

Analizar resultados preliminares y 
realizar ajustes en las simulaciones. 

                     

Estudiar limitaciones y posibles 
desarrollos del paquete. 

                     

Refinar el tutorial Bluesky-gym con 
base en retroalimentación. 

                     

Ampliar simulaciones con 
escenarios más complejos. 

                     

Analizar resultados avanzados y 
documentar hallazgos. 

                     

Finalizar el análisis de limitaciones 
y propuestas de mejora del 
paquete. 

                     

Redacción del informe y ajustes 
finales en experimentos. 

                     

Revisión y edición del trabajo 
completo. 

                     

  

Tabla 1: Cronograma de actividades. 
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1.9. Riesgos 

La siguiente tabla muestra las principales fuentes de riesgos identificadas, así como las 

estrategias a seguir para prevenir, controlar o responder a los posibles problemas 

antes de que afecten significativamente los objetivos.  

Riesgo Impacto Estrategia de mitigación 

Falta de experiencia en 
BlueSky-Gym 

Medio Realizar tutoriales y 
pruebas con ejemplos 
básicos antes de los 
experimentos principales. 

Problemas de 
compatibilidad entre 
BlueSky-Gym, Python y 
bibliotecas 

Medio Asegurarse que se usa la 
versión compatible de los 
paquetes y revisar 
documentación y foros de 
usuarios. 

Tiempo de entrenamiento 
excesivo 

Alto Realizar pruebas con 
modelos más simples 
antes de ejecutar 
experimentos complejos. 

Falta de métricas claras 
para evaluar el 
rendimiento del modelo 

Medio-Alto Definir métricas clave 
como eficiencia del 
tráfico, número de 
conflictos resueltos y 
tiempos de convergencia. 

Dificultad en la validación 
de los resultados con 
datos reales 

Bajo Comparar los resultados 
de la simulación con 
estudios previos o 
modelos heurísticos de 
control de tráfico aéreo. 

Limitaciones de tiempo 
para cumplir con el 
cronograma 

Alto Establecer hitos 
intermedios y aplicar 
metodologías ágiles para 
ajustar el plan de trabajo 
según los avances. 

 

  

Tabla 2: Tabla de riesgos. 
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Estructura de la memoria 

Capítulo 1: Introducción 

- Presentación del tema: Aprendizaje por refuerzo (RL) y su aplicación en la gestión 

del tráfico aéreo mediante BlueSky-Gym. 

Capítulo 2: El aprendizaje por refuerzo (RL) 

- Profundizar en el RL: Aprendizaje acumulado, generaciones, convergencia, 

ventajas y desventajas, con ejemplos e imágenes. 

Capítulo 3: Estudio de BlueSky y BlueSky-Gym 

- Estudio del paquete BlueSky y BlueSky-Gym: Características principales, 

funcionalidades y aplicaciones existentes. 

- Descripción de los escenarios básicos seleccionados para las simulaciones 

iniciales. 

- Análisis de resultados preliminares y ajustes en los parámetros de las 

simulaciones. 

Capítulo 4: Tutorial de BlueSky-Gym 

- Instalación y configuración del entorno. Descripción de los módulos principales: 

Simulador, entorno de RL y herramientas de visualización. 

- Creación de un escenario simple: Definición de aeronaves, rutas y condiciones 

iniciales. Parámetros clave: Velocidad, altitud, separación entre aeronaves, etc. 

- Ejecución de una simulación básica y visualización de resultados. 

Capítulo 5: Experimentos computacionales con BlueSky-Gym 

- Diseño de escenarios más complejos para evaluar el rendimiento de BlueSky-

Gym en condiciones desafiantes. 

- Ejecución de simulaciones avanzadas y recopilación de datos. Análisis de 

resultados avanzados: Eficiencia, limitaciones y posibles mejoras en el paquete. 

Capítulo 6: Limitaciones y propuestas de mejora 

- Identificación de las limitaciones actuales de BlueSky-Gym: Compatibilidad, 

escalabilidad y usabilidad. 

- Propuestas de desarrollo futuro: Mejoras en la documentación, optimización del 

código y ampliación de funcionalidades. 

- Discusión sobre cómo estas mejoras podrían impactar en la investigación y 

aplicaciones prácticas. 

Capítulo 7: Conclusión 

- Resumen de los hallazgos principales del trabajo. 

- Reflexiones sobre la importancia de las AI y a herramientas como BlueSky-Gym. 

- Perspectivas futuras: Posibles líneas de investigación y desarrollo. 
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2. El aprendizaje por refuerzo 

2.1 Introducción 

El aprendizaje por refuerzo es un tipo de aprendizaje automático en el que un agente 

aprende a tomar decisiones en un entorno interactivo mediante prueba y error. El 

agente recibe recompensas o castigos por sus acciones, y su objetivo es maximizar la 

recompensa total a lo largo del tiempo. A diferencia de otros enfoques de aprendizaje 

automático, como el aprendizaje supervisado, donde el agente aprende a partir de 

ejemplos etiquetados, o el aprendizaje no supervisado, que busca patrones en datos no 

estructurados, el RL se basa en la exploración y explotación de acciones para maximizar 

una recompensa acumulada a lo largo del tiempo [13]. Este enfoque lo convierte en una 

herramienta poderosa para resolver problemas secuenciales y de toma de decisiones en 

entornos dinámicos y complejos. 

El aprendizaje por refuerzo tiene sus raíces en la psicología conductista, donde en 1855 

Alexander Bain y posteriormente en 1898 Edward Thorndike estudiaron cómo los 

organismos aprenden a través de la interacción con su entorno, finalmente sentando las 

bases del aprendizaje por ensayo y error, e posteriormente en la década de 1927 Iván 

Pávlov contribuyó con sus estudios sobre el condicionamiento clásico donde explora 

cómo los animales pueden asociar estímulos para generar respuestas automáticas. En 

el ámbito de la inteligencia artificial, el RL se formalizó en la década de 1980, con 

contribuciones clave de investigadores como Richard Sutton y Andrew Barto, quienes 

desarrollaron las bases teóricas y prácticas del campo. Durante este periodo, se crearon 

algoritmos como el Q-learning, que marcaron un avance significativo en el sector de las 

AIs, esta técnica de aprendizaje por refuerzo utilizada en el aprendizaje automático ha 

permitido hoy en día realizar diagnósticos basado en imágenes en medicina igualando 

el nivel de los profesionales del sector [14]. Otro ejemplo, fue la combinación del RL con 

redes neuronales profundas, ejemplificada por el éxito de DeepMind en dominar 

videojuegos de Atari y el juego de Go [13]. 

 

Figura 6: Richard Sutton y Andrew Barto autores “Introducción al aprendizaje por refuerzo”. 
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Uno de los aspectos más destacados del RL es su capacidad para aprender de manera 

autónoma, sin necesidad de supervisión explícita. El agente interactúa con el entorno, 

observa los resultados de sus acciones y ajusta su comportamiento para maximizar las 

recompensas futuras [13]. Este proceso de aprendizaje acumulado, donde el agente no 

solo busca recompensas inmediatas sino también a largo plazo, es fundamental en 

problemas como juegos, control de robots y optimización de recursos [15]. 

En los últimos años, el RL ha alcanzado hitos significativos gracias a la combinación con 

técnicas de aprendizaje profundo. Por ejemplo, el algoritmo Deep Q-Network (DQN) 

permitió a un agente alcanzar un rendimiento a nivel humano en juegos de Atari, 

utilizando redes neuronales profundas para aproximar la función de valor [15]. Otro 

avance notable fue AlphaGo Zero, que aprendió a jugar Go a un nivel superhumano sin 

datos de entrenamiento humanos, utilizando solo RL y búsqueda de árboles Monte Carlo 

[16]. Además, el algoritmo Deep Deterministic Policy Gradient (DDPG) extendió el RL a 

entornos con acciones continuas, como el control de robots [17]. 

 

2.2 Fundamentos Teóricos del Aprendizaje por Refuerzo 

El aprendizaje por refuerzo (RL) se basa en un marco teórico bien definido que permite 

a un agente aprender a tomar decisiones óptimas mediante la interacción con un 

entorno. Este marco se compone de varios elementos clave y conceptos fundamentales 

que guían el proceso de aprendizaje. 

2.2.1. Marco de Trabajo: Agente, Entorno, Estado, Acción y Recompensa 

El RL se estructura en torno a la interacción entre un agente y un entorno. El agente es 

la entidad que toma decisiones, mientras que el entorno representa el mundo externo 

con el que el agente interactúa. En cada paso de tiempo, el agente observa el estado 

actual del entorno, selecciona una acción y recibe una recompensa como 

retroalimentación. El objetivo del agente es aprender una política que maximice la 

recompensa acumulada a lo largo del tiempo [13]. 

Figura 7: Estructura de la red neuronal utilizada para la Red de Aprendizaje por Refuerzo Profundo (Deep Q-learning Network). 
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2.2.2. Conceptos Clave 

• Política: La política es la estrategia que el agente utiliza para seleccionar acciones 

en función del estado actual. Puede ser determinista (siempre selecciona la 

misma acción para un estado dado) o estocástica (asigna probabilidades a las 

acciones posibles) [13]. 

• Función de Valor: La función de valor estima la recompensa acumulada que el 

agente puede esperar obtener a partir de un estado o acción. Existen dos tipos 

principales: la función de valor de estado (que evalúa cuán bueno es estar en un 

estado) y la función de valor de acción (que evalúa cuán buena es una acción en 

un estado dado) [13]. 

• Aprendizaje Acumulado y Recompensa Descontada: El RL se enfoca en maximizar 

la recompensa acumulada a largo plazo, no solo la recompensa inmediata. Para 

ello, se introduce un factor de descuento que pondera la importancia de las 

recompensas futuras. Este enfoque permite al agente priorizar acciones que 

generen beneficios sostenidos en el tiempo [2,13]. 

2.2.3. Exploración vs. Explotación 

Uno de los dilemas centrales en el RL es el balance entre exploración y explotación. La 

exploración implica probar nuevas acciones para descubrir sus efectos, mientras que la 

explotación se refiere a utilizar acciones conocidas que han generado buenas 

recompensas. Un agente debe equilibrar ambos aspectos para aprender 

eficientemente: demasiada explotación puede llevar a soluciones subóptimas, mientras 

que demasiada exploración puede retrasar la convergencia a una política óptima [2,13]. 

 

 

Figura 8: Diagrama simplificado de agente y entorno. 
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2.3. Algoritmos Clásicos de Aprendizaje por Refuerzo 

El aprendizaje por refuerzo (RL) cuenta con una variedad de algoritmos que se clasifican 

en tres categorías principales: métodos basados en valor, métodos basados en políticas 

y métodos basados en modelos. Cada uno de estos enfoques tiene sus propias 

características y aplicaciones, lo que los hace adecuados para diferentes tipos de 

problemas. 

2.3.1. Métodos Basados en Valor 

Estos métodos buscan calcular qué tan bueno es un estado o una acción en un problema 

de toma de decisiones. Para hacerlo, intentan predecir la recompensa total que se 

podría obtener en el futuro si se sigue una estrategia determinada. Dos de los algoritmos 

más representativos son: 

Q-learning: Este algoritmo aprende a estimar qué tan buena es cada acción en un 

determinado estado. Para ello, utiliza una función llamada "función Q", que asigna un 

valor a cada acción según las recompensas futuras esperadas. Q-learning es un método 

off-policy, lo que significa que aprende “el camino” más optimo independientemente de 

las acciones que el agente esté tomando durante el aprendizaje [13]. 

 

Deep Q-Networks (DQN): DQN es una mejora del algoritmo Q-learning que usa redes 

neuronales para tomar decisiones en entornos complejos, como videojuegos. En lugar 

de almacenar todos los valores de las acciones en una tabla, la red neuronal aprende a 

estimarlos, lo que permite manejar situaciones con muchas posibilidades. Además, usa 

trucos como guardar experiencias pasadas y tener una red de referencia para hacer el 

aprendizaje más estable y efectivo [15]. DQN se ha utilizado en juegos de estrategia en 

tiempo real, como StarCraft II, para entrenar agentes que aprenden a tomar decisiones 

complejas en entornos dinámicos. 

 

 

 

 

Figura 9: Ejemplo visual de una Q-Table, donde el algoritmo debería alcanzar el objetivo utilizando el camino más corto. 
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2.3.2. Métodos Basados en Políticas 

Estos métodos enseñan directamente al agente cómo tomar decisiones. En lugar de 

calcular el valor de cada acción, ajustan la forma en que el agente elige sus acciones para 

obtener la mayor recompensa posible. Dos algoritmos destacados son: 

Policy Gradient: Es un método que enseña al agente a mejorar sus decisiones ajustando 

directamente la forma en que elige sus acciones. En lugar de calcular valores para cada 

acción, el agente aprende probando diferentes estrategias y ajustándolas para 

maximizar la recompensa. Aunque este método es flexible y funciona bien en 

situaciones donde las acciones son aleatorias (estocásticas), puede necesitar muchas 

pruebas para aprender correctamente [13]. Por ejemplo, un robot debe aprender a 

lanzar una pelota a un objetivo. En lugar de calcular cuál es el mejor ángulo y fuerza 

exactos en cada intento, el robot prueba diferentes formas de lanzar la pelota, recibe 

una puntuación por cada intento y ajusta su estrategia hasta mejorar su precisión. 

Deep Deterministic Policy Gradient (DDPG): DDPG es una extensión de Policy Gradient 

que combina redes neuronales profundas con métodos basados en políticas para 

manejar entornos con acciones continuas. Este algoritmo es especialmente útil en 

aplicaciones de control, como la robótica, donde las acciones suelen ser continuas y de 

alta dimensionalidad. DDPG utiliza un enfoque actor-crítico, donde el actor decide que 

acción tomar y el crítico que evalúa las acciones tomadas [17]. En este caso imagina un 

dron que debe aprender a volar suavemente para aterrizar en una plataforma. DDPG 

permite que el dron ajuste gradualmente la potencia de sus motores en lugar de elegir 

entre opciones fijas como "subir" o "bajar". Así, puede realizar movimientos más 

precisos y eficientes. 

2.3.3. Métodos Basados en Modelos 

Finalmente, estos métodos utilizan una representación del entorno para planificar antes 

de actuar. En lugar de aprender solo a partir de la experiencia directa, el agente simula 

diferentes escenarios para predecir los resultados de sus acciones y tomar mejores 

decisiones. Un ejemplo destacado es: 

Búsqueda de Árboles Monte Carlo (MCTS): MCTS es un método que ayuda a tomar 

decisiones explorando diferentes opciones de manera inteligente. En lugar de analizar 

todas las posibilidades (lo que puede ser imposible en juegos complejos), prueba 

algunas opciones al azar, construye un árbol con los mejores movimientos y se enfoca 

en los más prometedores [16]. 
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2.4. Software y hardware que se utiliza actualmente en las 

aplicaciones RL 

El desarrollo de aplicaciones de aprendizaje por refuerzo (RL) como BlueSky-Gym se ve 

impulsado por la sinergia software-hardware necesario para realizar simulaciones 

eficientes y precisas. En el lado del software, herramientas como TensorFlow o PyTorch 

constituyen la base sobre la que implementar las redes neuronales profundas que 

resulta esencial en algoritmos como DQN o DDPG que el propio BlueSky-Gym aplica para 

permitir entrenar a los agentes de gestión del tráfico aéreo. Junto a estas bibliotecas 

concretas, también se encuentran bibliotecas más especializadas (Stable-Baselines3 o 

Ray RLlib) que simplifican la experimentación con algoritmos clásicos (PPO o SAC) y que 

permiten escalar el entrenamiento a entornos distribuidos, lo que resulta fundamental 

para escenificar entornos complejos y realistas (con aeropuertos que tienen cientos de 

vuelos simultáneos). Por otra parte, entornos como OpenAI Gym son los que 

permitieron estandarizar la evaluación de modelos, mientras que simuladores físicos 

(MuJoCo) o 3D (Unity ML-Agents) inspiraron el diseño de los entornos realistas en 

BlueSky-Gym y su utilización en variables extra como la meteorológica o la existencia de 

rutas en función de la situación. 

Con respecto al hardware, las exigencias computacionales de BlueSky-Gym requieren 

unos recursos potentes. Por ejemplo, las GPUs (NVIDIA Tesla, RTX) aceleran el 

entrenamiento de modelos profundos mediante la ejecución en paralelo de operaciones 

matriciales, lo que permite reducir el tiempo requerido para simular miles de episodios. 

Para proyectos extensos, como el optimizador de tráfico aéreo global, se pueden 

aprovechar las TPUs de Google, que destacan a nivel de rendimiento. Asimismo, la 

computación distribuida (clusters y herramientas como Ray) permite dividir el trabajo 

entre varios nodos, lo que resulta un enfoque determinante para el paso de BlueSky-

Gym hacia un simulador profesional. Además, el hardware específico (placas NVIDIA 

Jetson) se podría incorporar en las fases de producción para realizar inferencias en 

sistemas físicos (torres de control automatizadas). 

Para un mayor entendimiento se pasará a explicar los dos mayores componentes que 

intervienen en una simulación: 

2.4.1. Software (Las "Herramientas Digitales") 

Sin el software, BlueSky-Gym no tendría cerebro: no podría aprender ni simular. 

• Frameworks de Aprendizaje Profundo y RL: 

o TensorFlow y PyTorch: Son como los cuadernos de notas de la AI, como 

los cuadros de una novela, permitiendo programar redes neuronales 

(modelos matemáticos inspirados en el cerebro humano) para que la 

máquina aprenda de sus errores. Es decir, si BlueSky-Gym hace un error 

dando las órdenes para dirigir un avión, estos programas se hacen cargo 

de realizar correcciones en sus cálculos para hacerlo mejor la próxima 

vez. 
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o Stable-Baselines3: Es como el libro de recetas con algoritmos 

predefinidos y que si quieres enseñar a BlueSky-Gym a tomar decisiones, 

aquí encuentras métodos que han sido probados, como el PPO (simula 

un entrenador que da premios por buenas acciones) o el DQN (que 

aprende por prueba y error). 

o OpenAI Gym: Un entorno de desarrollo que ofrece una variedad de 

entornos simulados para probar y evaluar algoritmos de RL, desde juegos 

clásicos hasta problemas de control, pero los de BlueSky-Gym se usan 

para simular aviones, rutas y emergencias. 

o Ray RLlib: Hay que pensar en esto como en un equipo de trabajadores, 

de tal forma que si BlueSky-Gym necesita ejecutar varios aviones, 

entonces el RLlib divide el trabajo en varias máquinas para así hacerlo lo 

más rápido posible. 

• Herramientas de Simulación: 

o Unity ML-Agents: Es como los estudios de cine que crean mundos 

virtuales. Unity se usa para simulaciones en 3D (por ejemplo, un 

aeropuerto con gráficos realistas), y MuJoCo es para simular las leyes 

físicas (como el viento afectando a un avión). 

2.4.2. Hardware (Los "Motores" que Hacen el Trabajo Pesado) 

Sin el hardware, sería como un cerebro sin cuerpo: sabría qué hacer, pero no podría 

hacerlo rápido. 

• Unidades de Procesamiento Gráfico (GPUs): Son tarjetas que ejecutan cálculos 

de forma muy rápida. En BlueSky-Gym, una mejor GPU ayudará a acelerar el 

entrenamiento de modo que simular cientos de aterrizajes lleve horas en vez de 

días. 

• Unidades de Procesamiento Tensor (TPUs): Desarrolladas por Google, las TPUs 

están optimizadas para operaciones de aprendizaje profundo y son utilizadas en 

aplicaciones de RL que requieren un alto rendimiento computacional, como el 

entrenamiento de modelos a gran escala. Podríamos pensar en ellos como 

motores de Fórmula 1. No son para uso doméstico, pero en el caso de proyectos 

masivos (como el que trata de simular el tráfico aéreo de todo un país) son 

extremadamente rápidos. 

• Computación Distribuida: Sería como si quisiéramos resolver un enorme 

rompecabezas al contratar a un pool enorme de personas que lo hicieran. En vez 

de usar una sola computadora instalada en una oficina, BlueSky-Gym podría usar 

decenas conectadas en red (usando herramientas como Ray) para hacer el 

trabajo repartiendo las tareas 

• Hardware Especializado: Es hardware que tiene una potencia enorme en 

formatos muy pequeños: computadoras que usan drones o robots (en el caso 

que BlueSky-Gym quisiera controlar aviones). Esta opción permitiría poder 

ejecutar el modelo entrenado en tiempo real fuera de la oficina, por ejemplo, a 

un avión que vuela por la costa incluso sin internet disponible. 
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2.5. Aplicaciones del Aprendizaje por Refuerzo 

2.5.1. Juegos 

Los juegos han sido un campo de pruebas ideal para el RL debido a su naturaleza 

estructurada y la posibilidad de definir recompensas claras. Dos ejemplos emblemáticos 

son: 

Aplicación de DQN en juegos de Atari: El algoritmo Deep Q-Network (DQN) revolucionó 

el campo del RL al combinar redes neuronales profundas con Q-learning. Este enfoque 

permitió a un agente aprender a jugar directamente a partir de imágenes de pantalla, 

alcanzando un rendimiento a nivel humano en varios juegos clásicos de Atari, como 

Breakout y Space Invaders. DQN demostró que el RL puede manejar entornos de alta 

dimensionalidad y aprender políticas efectivas sin supervisión explícita [15]. 

AlphaGo Zero y su dominio del juego de Go: AlphaGo Zero es un hito en la historia del 

RL. A diferencia de su predecesor, AlphaGo, que utilizaba datos de partidas humanas, 

AlphaGo Zero aprendió a jugar Go desde cero, utilizando únicamente RL y búsqueda de 

árboles Monte Carlo (MCTS). Este sistema no solo superó a los mejores jugadores 

humanos, sino que también descubrió estrategias novedosas que revolucionaron la 

comprensión del juego [16]. 

2.5.2. Robótica 

El RL ha encontrado aplicaciones significativas en robótica, donde la capacidad de 

aprender en entornos dinámicos y complejos es crucial. Un ejemplo destacado es: 

Control de robots con DDPG: El algoritmo Deep Deterministic Policy Gradient (DDPG) ha 

sido utilizado para controlar robots en tareas que requieren precisión y coordinación, 

como la manipulación de objetos y el movimiento autónomo. DDPG es especialmente 

adecuado para entornos con acciones continuas, lo que lo convierte en una opción ideal 

para aplicaciones de control en robótica. Este enfoque ha permitido a los robots 

aprender tareas complejas de manera autónoma, sin necesidad de programación 

explícita [17]. 

Figura 10: Ejemplo de elementos de hardware y de software. 



29 

 

2.5.3. Otras Aplicaciones 

Investigaciones en el ámbito del control del tráfico aéreo han explorado el uso de 

algoritmos de Reinforcement Learning (RL) para optimizar la gestión del espacio aéreo 

en tiempo real. En particular, el proyecto Dynamic Airspace Configuration (DAC) de la 

NASA ha demostrado mediante simulaciones sobre el espacio aéreo de Kansas City que 

ciertas técnicas de reconfiguración dinámica pueden reducir los retrasos promedio por 

vuelo en escenarios de alta congestión en hasta un 15–20 % [18]. Estas simulaciones 

consideraron múltiples variables como restricciones operacionales, condiciones 

meteorológicas y distribución del tráfico aéreo. Aunque en los documentos públicos del 

proyecto DAC no se mencionan algoritmos específicos de aprendizaje profundo, otras 

investigaciones han demostrado el potencial del enfoque Deep Deterministic Policy 

Gradient (DDPG) en entornos aeronáuticos. Este algoritmo de aprendizaje por refuerzo 

profundo desarrollado por Google DeepMind en 2015. Está diseñado para resolver 

tareas de control continuo, donde las acciones no son discretas (como girar a la izquierda 

o a la derecha), sino continuas (como ajustar gradualmente el ángulo de vuelo, velocidad 

o altitud). Gracias a este algoritmo, una tesis de la Universidad de Cranfield desarrolló 

un sistema de control de vuelo autónomo basado en DDPG, capaz de operar en 

condiciones de alta complejidad dinámica con seis grados de libertad [19]. 

Microsoft Flight Simulator incorpora avanzadas técnicas de inteligencia artificial 

generativa, apoyadas en tecnologías de Azure y Blackshark.ai, que permiten reconstruir 

de forma precisa y detallada el entorno global mediante el uso de datos satelitales y 

fotogrametría [20,21]. Este sistema crea más de 1,500 millones de edificaciones, 

carreteras, vegetación y otras estructuras, incluso rellenando automáticamente zonas 

con datos escasos, como aeropuertos secundarios o extremos de paisaje, y reproduce 

efectos meteorológicos en tiempo real [20]. Además, integra tráfico aéreo real basado 

en datos “live” de transpondedores, lo que contribuye a una simulación altamente 

inmersiva y realista [22]. Aunque no se ha confirmado el uso de algoritmos de 

aprendizaje por refuerzo puro como Proximal Policy Optimization (PPO) en el sistema 

de tráfico, investigaciones académicas han aplicado PPO para el control autónomo de 

tráfico aéreo simulado, demostrando que estas técnicas permiten a las aeronaves tomar 

decisiones autónomas, como cambiar rutas ante tormentas o mantener la separación 

entre aviones [1]. 

Investigadores del MIT Lincoln Laboratory han desarrollado avanzados sistemas de 

evitación de colisiones basados en aprendizaje profundo, tales como ACAS‑X y su 

variante para drones ACAS Xu, diseñados para operar en entornos mixtos de tráfico 

tripulado y no tripulado [23,24]. Estos sistemas han sido evaluados con millones de 

simulaciones en entornos de encuentro entre vehículos aéreos, utilizando técnicas de 

Monte Carlo en simulaciones rápidas, evaluando maniobras evasivas como cambios de 

altitud y trayectoria para aumentar la seguridad [25,26]. Los desarrollos de ACAS Xu han 

sido distinguidos por su innovación y están en proceso de ser integrados en sistemas 

certificados para drones, lo que representa un paso clave hacia su eventual uso conjunto 

con agencias como la FAA [24,27]. 
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2.6. Desafíos y Limitaciones del Aprendizaje por Refuerzo 

A pesar de su potencial y versatilidad, el RL enfrenta varios desafíos y limitaciones que 

dificultan su aplicación en problemas complejos y del mundo real. Estos desafíos están 

relacionados con aspectos computacionales, de exploración y de estabilidad en el 

aprendizaje. 

2.6.1. Alto Costo Computacional 

Uno de los principales obstáculos del RL es su alto costo computacional. Los algoritmos 

de RL requieren una gran cantidad de interacciones con el entorno para aprender 

políticas efectivas, lo que puede ser extremadamente costoso en términos de tiempo y 

recursos. Por ejemplo, en el caso de Deep Q-Networks (DQN), se necesitaron millones 

de pasos de entrenamiento para alcanzar un rendimiento a nivel humano en juegos de 

Atari. Además, muchos algoritmos de RL, especialmente aquellos que combinan RL con 

redes neuronales profundas, requieren grandes cantidades de datos y potencia de 

cálculo, lo que limita su aplicabilidad en entornos donde los recursos son escasos [2]. 

2.6.2. Dificultad en la Exploración en Entornos Grandes  

La exploración eficiente es un desafío fundamental en el RL, especialmente en entornos 

grandes o con recompensas escasas. En estos casos, el agente puede tener dificultades 

para encontrar acciones que generen recompensas significativas, lo que retrasa el 

aprendizaje. El dilema de exploración vs. explotación es particularmente crítico: si el 

agente explota demasiado acciones conocidas, puede quedar atrapado en soluciones 

subóptimas; si explora demasiado, puede tardar mucho tiempo en converger a una 

política efectiva [2,13]. Este problema se agrava en entornos con espacios de estado y 

acción de alta dimensionalidad, donde la exploración aleatoria no es viable. 

2.6.3. Inestabilidad en la Convergencia de Algoritmos 

La inestabilidad en la convergencia es otro desafío importante en el RL. Muchos 

algoritmos, especialmente aquellos que combinan RL con redes neuronales profundas, 

pueden ser inestables durante el entrenamiento. Por ejemplo, en el caso de Deep 

Deterministic Policy Gradient (DDPG), pequeños cambios en los hiperparámetros o en 

la inicialización de los pesos de la red pueden llevar a resultados muy diferentes, lo que 

dificulta la reproducibilidad y la confiabilidad del aprendizaje [17]. Además, la 

convergencia a una política óptima no está garantizada en todos los casos, 

especialmente en entornos no estacionarios o con recompensas ruidosas [2]. 
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2.7. Ventajas y Desventajas del Aprendizaje por Refuerzo 

El RL es un enfoque poderoso y versátil en el campo de la inteligencia artificial, pero 

como cualquier técnica, tiene sus ventajas y desventajas. A continuación, se describen 

los aspectos más destacados de ambas. 

2.7.1. Ventajas 

Aprendizaje Autónomo y Adaptabilidad a Entornos Dinámicos: Una de las principales 

ventajas del RL es su capacidad para aprender de manera autónoma, sin necesidad de 

supervisión explícita. El agente interactúa con el entorno y ajusta su comportamiento 

en función de las recompensas obtenidas, lo que lo hace ideal para entornos dinámicos 

y cambiantes donde las reglas no están predefinidas [2,13]. 

Optimización a Largo Plazo en Problemas Secuenciales: El RL está diseñado para 

maximizar la recompensa acumulada a lo largo del tiempo, lo que lo hace especialmente 

útil en problemas secuenciales y de toma de decisiones a largo plazo. Esto contrasta con 

otros enfoques que se centran en optimizar recompensas inmediatas. Ejemplos 

notables incluyen el dominio de juegos como Go y Atari, donde el agente debe planificar 

varias jugadas adelante para alcanzar el éxito [14,15]. 

2.7.2. Desventajas 

Dificultad para Escalar a Problemas de Alta Dimensionalidad: Aunque el RL ha 

demostrado su eficacia en problemas con espacios de estado y acción discretos o de 

baja dimensionalidad, escalar a entornos de alta dimensionalidad sigue siendo un 

desafío. Por ejemplo, en aplicaciones de control de robots o procesamiento de 

imágenes, el alto costo computacional y la complejidad del espacio de búsqueda pueden 

dificultar el aprendizaje [2,16]. 

Dependencia de la Calidad de las Recompensas y la Exploración: El rendimiento del RL 

depende en gran medida de la definición adecuada de las recompensas y de una 

exploración eficiente. Si las recompensas no están bien diseñadas, el agente puede 

aprender políticas subóptimas o incluso contraproducentes. Además, el dilema de 

exploración vs. explotación puede dificultar el aprendizaje en entornos donde las 

recompensas son escasas o difíciles de obtener [2,13].  
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3. Estudio de BlueSky-Gym y BlueSky 

3.1. Introducción 

El análisis de herramientas de simulación en el campo aeronáutico es esencial para 

impulsar el desarrollo de ingeniería de sistemas que se utilizan en el control de tráfico 

aéreo y la gestión de flotas. En este sentido, BlueSky y su extensión BlueSky-Gym se 

presentan como unas plataformas de simulación de referencia en el campo de la 

simulación para entornos aeronáuticos, así como para la automatización y la 

optimización de tareas complejas, mediante la integración de algoritmos de aprendizaje 

por refuerzo (RL). Esta finalidad de este capítulo es presentar las principales 

características, las funcionalidades y las aplicaciones que tienen estas herramientas, así 

como dar a conocer los resultados preliminares obtenidos en simulaciones básicas con 

escenarios escogidos. 

BlueSky es un simulador específico de tráfico aéreo de código abierto que ofrece un 

entorno realista y altamente configurable para simular operaciones aéreas; en cambio, 

BlueSky-Gym es una interfaz de software que permite la integración de BlueSky con el 

ecosistema OpenAI Gym; lo que permite implementar y evaluar algoritmos RL en 

entornos aeronáuticos. Estas herramientas han sido empleadas en trabajos de 

investigación recientes para abordar problemas como la gestión del tráfico aéreo, la 

optimización de rutas y la minimización de colisiones, demostrando así su versatilidad y 

su propio potencial en el ámbito de la inteligencia artificial en la aviación. 

En este apartado, se hará una presentación detallada de las características y 

funcionalidades de BlueSky y BlueSky-Gym, de los escenarios básicos escogidos para las 

simulaciones iniciales, así como de los resultados preliminares analizados. Del mismo 

modo, se discutirán ajustes confeccionados en los parámetros de las simulaciones para 

su optimización. Este estudio puede considerarse como una base para los estudios 

futuros que empleen estas herramientas en problemas más complejos y escalables. 

3.2. Estudio del Paquete BlueSky-Gym y BlueSky 

En este apartado, se lleva a cabo un estudio en profundidad de las herramientas BlueSky 

y BlueSky-Gym donde se presentan sus principales características, funciones y 

aplicaciones concretas dentro del ámbito de la investigación y de la simulación 

aeronáutica. Estas herramientas han sido diseñadas para proporcionar un entorno de 

simulación adecuado y muy configurable que haga posible la conexión con 

determinados algoritmos de aprendizaje por refuerzo (RL) así como la simulación de 

situaciones complejas de tráfico aéreo. 
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3.2.1. Principales características 

BlueSky es un simulador de tráfico aéreo Open Source que destaca por su flexibilidad y 

su capacidad para simular operaciones aéreas en tiempo real. Las principales 

características de BlueSky son: 

➢ Simulación en tiempo real: BlueSky es capaz de simular el comportamiento de 

aeronaves, controladores aéreos y otros elementos del espacio aéreo con un 

elevado grado de precisión. 

➢ Interfaz gráfica y API: Proporciona una GUI intuitiva para la visualización de 

simulaciones y una API robusta para la automatización de tareas y la integración 

con otras herramientas. 

➢ Escalabilidad: Puede gestionar desde escenarios simples con pocas aeronaves 

hasta entornos complejos con cientos de vuelos simultáneos. 

Por otro lado, BlueSky-Gym es una extensión de BlueSky que conecta el simulador con 

el ecosistema OpenAI Gym, facilitando así la implementación y evaluación de algoritmos 

de RL. Sus principales características son: 

➢ Compatibilidad con OpenAI Gym: Proporciona una interfaz estándar para definir 

los entornos de RL con soporte para que los investigadores aplicen algoritmos ya 

implementados y comparen resultados de forma consistente (Sun et al., 2020). 

➢ Configuración flexible: Se pueden definir escenarios, recompensas y métricas de 

evaluación que se adapten a los objetivos de la investigación. 

3.2.2. Funcionalidades 

Las funcionalidades de BlueSky y BlueSky-Gym las hacen herramientas muy adecuadas 

para la investigación en control del tráfico aéreo y la gestión de flotas. Las 

funcionalidades más destacadas son las siguientes: 

➢ Modelado de aeronaves: Incluir modelos de todo tipo de aeronaves comerciales 

o privadas, definiendo parámetros tales como la velocidad, la altitud o la ruta. 

➢ Gestión del espacio aéreo: Permitir simular la interacción entre aeronaves y 

controladores aéreos, incluyendo gestión de colisiones, desvíos, retrasos, etc. 

➢ Integración con RL: BlueSky-Gym proporciona funciones para definir 

recompensas, estados y acciones, lo que facilita el entrenamiento de agentes 

para RL en escenarios de aviones. 
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3.2.3. Algoritmos 

El paquete BlueSky-Gym integra cuatro distintos algoritmos que podemos utilizar al 

momento de realizar los distintos entrenamientos, siendo estos DDPG, TD3, PPO y SAC. 

➢ DDPG (Deep Deterministic Policy Gradient): Es el más antiguo de los algoritmos 

disponibles y predecesor de estos, se puede considerar una extensión del DQN 

(Deep Q-Networks) pero aplicado a espacios de acciones continuos. Entre sus 

principales características se pueden considerar la utilización de dos redes 

neuronales (Actor-Critico), es decir el actor toma una acción y el critico 

determina que tan buena ha sido esa acción, mientras que es un algoritmo Off-

Policy que utiliza un replay buffer, una memoria que almacena transiciones 

pasadas y de esta forma el algoritmo puede aprender experiencias antiguas. 

Finalmente, su política es determinista donde el actor produce una única acción 

para un estado dado, en lugar de una distribución de probabilidad sobre las 

acciones. 

➢ TD3 (Twin Delayed Deep Deterministic Policy Gradient): TD3 es el sucesor directo 

de DDPG y fue diseñado para solucionar uno de sus mayores problemas 

relacionados con la sobreestimación del valor Q. Es decir, el algoritmo DDPG 

suele ser “optimista” sobre las recompensas futuras, lo que ralentiza el 

aprendizaje y da pie a soluciones subóptimas, para paliar esto el TD3 añadió tres 

innovaciones claves: 

o Críticos Gemelos (Twin Critics): Se entrenan dos redes de críticos en lugar 

de una. 

o Actualizaciones de Política Retrasadas (Delayed Policy Updates): El actor 

y las redes "objetivo" (target networks) se actualizan con menos 

frecuencia que el crítico. 

o Suavizado del Ruido en el Objetivo (Target Noise Smoothing): Suaviza el 

aprendizaje lo que evita picos y hace el aprendizaje más robusto. 

➢ PPO (Proximal Policy Optimization): PPO es un algoritmo on-policy de tipo actor-

crítico. Es conocido por su robustez, debido a que a diferencia de los demás 

algoritmos realiza actualizaciones de sus políticas de manera conservadora 

limitando los cambios posibles entre entrenamientos, a su vez elimina el replay 

buffer, lo que significa que después de cada interacción descarta las experiencias 

y usa unas nuevas. Finalmente, su política es estocástica, lo que significa que, 

para un estado dado, produce una distribución de probabilidad sobre las 

acciones. 

➢  SAC (Soft Actor-Critic): SAC es un algoritmo off-policy y actor-crítico que 

introduce el concepto de maximización de la entropía. Es considerado uno de los 

algoritmos más eficientes y potentes para control continuo. El objetivo de SAC 

no es solo maximizar la recompensa acumulada, sino hacerlo mientras se 

mantiene la política lo más aleatoria posible (alta entropía). Al igual que el 

algoritmo PPO utiliza una política estocástica. 
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3.2.1. Escenarios disponibles 

 BlueSky-Gym viene con siete entornos diseñados para facilitar la investigación del 

aprendizaje por refuerzo en la gestión del trafico aéreo, estos entornos se pueden dividir 

en tres categorías principales: 

➢ Control vertical: Estos escenarios se centran en el control vertical de la aeronave. 

Los entornos dentro de esta categoría son: 

o DescentEnv-v0: Este entorno está preparado para enseñar al agente a 

realizar un descenso eficiente, donde el agente debe mantener el mayor 

tiempo posible la velocidad crucero antes de antes de iniciar el descenso 

a pista en el momento óptimo. 

o VerticalCREnv-v0: En este caso el agente debe descender de manera 

segura y controlada mientras evita a los intrusos y obstáculos que 

aparecen en el escenario. 

➢ Resolución de Conflictos Horizontales: Estos escenarios se enfocan en evitar 

colisiones modificando la ruta en el plano horizontal, es decir equivalente al 

rumbo. 

o HorizontalCREnv-v0: En este escenario el agente debe evitar las 

colisiones con otras aeronaves manteniendo una distancia mínima de 

seguridad. 

o SectorCREnv-v0: Este caso es similar pero centrado en un sector del 

espacio aéreo. El agente controla una única aeronave que debe cruzar un 

sector mientras otras aeronaves (no controladas) también lo atraviesan. 

o MergeEnv-v0: En este escenario el agente controla el rumbo y la 

velocidad de las aeronaves en una de las corrientes de tráfico para que 

se incorporen a un punto de fusión (merge-point). Debe evitar en todo 

momento la colisión y además conseguir que crucen todas las aeronaves 

en el menor tiempo posible. 

Característica DDPG TD3 PPO SAC 

Tipo de política Off-policy Off-policy On-policy Off-policy 

Eficiencia Alta Alta Baja Muy alta 

Política Determinista Determinista Estocástica Estocástica 

Exploración Ruido añadido Ruido añadido Natural 
(estocástica) 

Maximización de 
entropía 

Estabilidad Baja Media-Alta Muy alta Alta 

Complejidad Media Media-Alta Baja Alta 

Característica 
clave 

Actor-Crítico para 
acciones 
continuas 

Críticos Gemelos 
y actualizaciones 
retrasadas 

Objetivo 
"recortado" para 
actualizaciones 
seguras 

Maximización de 
la entropía 

Tabla 3: Tabla comparativa de los distintos algoritmos de BlueSky. 
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➢ Control Horizontal: En esta categoría se incluyen aquellos escenarios 

horizontales que se centran en otras tareas y no tanto en la resolución de 

conflictos. 

o ObstacleAvoidanceEnv-v0: En este caso el agente debe llevar el avión de 

un punto de inicio al otro evitando obstáculos fijos, por lo tanto, el agente 

entrena para interpretar la ruta más corta hasta su objetivo. 

o MultiGoalEnv-v0: Aquí el agente debe pasar por unos waypoints (puntos 

de ruta) de la manera más eficiente, este escenario carece de obstáculos, 

por lo tanto, el agente solo debe centrarse en encontrar el camino más 

corto que pase por todos los puntos de ruta. 

3.2.2. Aplicaciones existentes 

BlueSky y BlueSky-Gym son utilizados en muchos ámbitos de la investigación y 

formación de aeronáutica. Algunos ejemplos donde se podrían aplicar son: 

❖ Control de tráfico aéreo: Todo tipo de investigaciones que buscan optimizar las 

rutas, minimizar el riesgo de colisiones y maximizar la gestión del espacio aéreo. 

❖ Formación de controladores: Los simuladores son usados para entrenar 

controladores aéreos en escenarios que son lo más realistas y dinámicos posible. 

❖ Desarrollo de algoritmos de RL: Investigaciones que emplean BlueSky-Gym para 

entrenar y evaluar agentes de RL en tareas como la gestión de flotas o la 

planificación de rutas. 

3.3. Descripción de los Escenarios Básicos Seleccionados 

3.3.1. Criterios de Selección de Escenarios 

PlanWaypointEnv-v0: Es un escenario de dificultad media, en él el agente 

navegar tiene que ir navegando por una serie de waypoints sucesivamente, es 

un escenario en el que planificar la ruta, y realizar parámetros de rumbo. No 

incluye el control en conflictos con otras aeronaves, lo que hace que sea un buen 

punto de partida para empezar a aprender. 

Representatividad: Representa un caso típico de un tipo de tarea de la 

navegación aérea: navegar por una ruta determinada. Es algo habitual en la 

navegación de vuelos, dadas las operaciones de vuelo, tanto en vuelo para 

control aéreo, como en vuelo libre. 

Objetivos de aprendizaje:  

➢ Desarrollar destrezas de 

navegación básica. 

➢ Aprender a adaptar el rumbo 

a waypoints determinados. 

➢ Familiarizarse con la dinámica 

del entorno de simulación.  

 

Figura 11: Escenario PlanWaypointEnv-v0. 



37 

 

VerticalCREnv-v0: Este escenario cuenta con un nivel de complejidad superior a 

la anterior, ya que se requiere que el agente gestione conflictos verticales con 

otras aeronaves. Además de mantener una altitud objetivo, el agente debe 

localizar otras aeronaves para evitar posibles colisiones. 

Representatividad: Representa una circunstancia que se puede dar en 

coordinación con otras aeronaves (la coordinación de altitud y de velocidad 

vertical), pero que es especialmente propio de situaciones en espacios aéreos 

congestionados en los que la separación por el vertical es prioritaria. 

Objetivos de aprendizaje: 

➢ Desarrollar habilidades para mantener una altitud objetivo. 

➢ Aprender a evitar conflictos verticales con otras aeronaves. 

➢ Mejorar la toma de decisiones en situaciones no estacionarias y 

potencialmente conflictivas.  

HorizontalCREnv-v0: Este entorno es de la misma complejidad que 

VerticalCREnv-v0, pero aquí se necesita controlar los conflictos horizontales. El 

agente controlará su rumbo a partir del conflicto que debe evitar en el camino 

para navegar hacia un waypoint específico, lo que requerirá cautela en la 

planificación y la realización de las tareas. 

Representatividad: Representa una situación habitual en el caso de la 

navegación aérea en la que se encuentra el agente evitando aeronaves en 

conflicto mientras navega hacia un destino concreto. Se hace hincapié en este 

objetivo también en los corredores aéreos congestionados o en los alrededores 

de los aeropuertos. 

Objetivos de aprendizaje: 

➢ Desarrollar habilidades para ajustar el 

rumbo y evitar conflictos horizontales. 

➢ Aprender a navegar hacia waypoints en 

presencia de otras aeronaves. 

➢ Mejorar la capacidad de anticipación y 

reacción ante situaciones dinámicas. 

 

Figura 12: Escenario VerticalCREnv-v0. 

Figura 13: Escenario HorizontalCREnv-v0. 
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3.3.2. Descripción de los Escenarios 

• Escenario 1: [PlanWaypointEnv-v0]. 

Es un escenario de ejemplo diseñado para demostrar la lógica de control horizontal. El 

objetivo del agente es aprender a planificar de manera eficiente una trayectoria que 

visite una serie de waypoints (puntos de ruta) generados aleatoriamente. El agente 

controla el rumbo de la aeronave para cumplir esta tarea. 

n_updates 50000 100000 200000 300000 400000 500000 1000000 1500000 2000000 

rollout          

ep_len_mean      300 300 300 300 300 300 292 297 271 

ep_rew_mean      1.25 2.46 2 1.35 1 1.7 2.78 2.57 4.13 

time          

episodes 4 168 164 164 4 164 1668 1668 1732 

time_elapsed     74 3018 2791 2804 72 3464 30148 28252 30212 

total_timesteps 1200 49942 48934 49187 1200 49133 498896 499316 499651 

train          

actor_loss -3.36 -1.72 -5.52 -3.27 -5.93 -15.9 0.2 0.182 -0.217 

critic_loss 0.0241    0.0223 0.261 0.0964 0.148 2.48 0.00316 0.00656 0.0211 

ent_coef 0.00715   0.00894 0.0265 0.0186 0.0202 0.0507 0.000797 0.00116 0.00214 

ent_coef_loss 0.529 0.144 0.0857 0.00477   0.746 0.0938 -0.968 -0.35 -0.696 

learning_rate 0.0003 0.0003 0.0003 0.0003 0.0003  0.0003 0.0003 0.0003 0.0003 

 

• Escenario 2: [VerticalCREnv-v0]. 

Este es un escenario de control vertical para la resolución de conflictos. El agente debe 

mantener una altitud de crucero objetivo y descender a una pista, evitando colisiones 

con otras aeronaves que se encuentran en trayectorias de crucero conflictivas. El agente 

controla la velocidad vertical de la aeronave para lograrlo. 

n_updates 50000 100000 200000 300000 400000 500000 1000000 1500000 2000000 

rollout          

ep_len_mean      39.8 39.9 40 40 40 40 40 40.2 40.1 

ep_rew_mean      -182 -97.9 -91.5 -77.3 -71.6 -65.4 -56.4 -49.8 -51.2 

time          

episodes 8 1256 3756 6256 8756 11256 11260 11244 11232 

time_elapsed     40 5387 15728 25844 35994 46548 47349 45942 51088 

total_timesteps 318 50151 150095 250074 350151 450187 450291 450392 450428 

train          

actor_loss 73 62.7 59.4 56.2 52.4 48.3 47.4 43.6 42.8 

critic_loss 33.9 13.4 14.9 18.2 11.2 39.7 7.92 5.47 4.83 

ent_coef 0.114 0.0991 0.0888 0.0859 0.078 0.0765 0.073 0.0759 0.0686 

ent_coef_loss 1.37 -0.157 -0.216 -0.25 0.178 -0.533 -0.298 -0.103 -0.537 

learning_rate 0.0003 0.0003 0.0003 0.0003 0.0003  0.0003 0.0003 0.0003 0.0003 

 

 

 

 

Tabla 4: Resultados entrenamiento escenario PlanWaypointEnv-v0. 

Tabla 5: Resultados entrenamiento escenario VerticalCREnv-v0. 
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• Escenario 3: [HorizontalCREnv-v0]. 

En este entorno de resolución de conflictos horizontales, el agente aprende a navegar 

hacia un destino final mientras evita a otras aeronaves mediante cambios de rumbo. Las 

otras aeronaves se generan inicialmente en trayectorias que entran en conflicto con la 

del agente. 

n_updates 50000 100000 200000 300000 400000 500000 1000000 1500000 2000000 

rollout          

ep_len_mean      150 150 150 150 150 150 149 148 146 

ep_rew_mean      -97.8 -103.1 -92 -86.3 -70.8 -68.9 61.6 -54.2 -53.1 

time          

episodes 7 1235 3693 6127 8533 10872 11009 11131 11126 

time_elapsed     46 5387 15634 25823 35894 45936 46562 45629 46957 

total_timesteps 1376 6389 195490 311757 397263 501745 501381 501847 502008 

train          

actor_loss 94.4 87.7 76.7 71.3 64.9 61.5 58.7 54.6 52.9 

critic_loss 49.8 41.3 29.7 28.9 24.3 27.1 21.4 15.9 13.4 

ent_coef 0.271 0.141 0.0978 0.0917 0.0872 0.0811 0.0765 0.074 0.0691 

ent_coef_loss 3.52 1.98 0.043 -0.092 -0.173 -0.297 -0.166 -0.209 -0.132 

learning_rate 0.0003 0.0003 0.0003 0.0003 0.0003  0.0003 0.0003 0.0003 0.0003 

 

3.4. Análisis de Resultados Preliminares 

3.4.1. Metodología de Evaluación 

Explicación de los parámetros: 

o Recompensa media por episodio (ep_rew_mean): Indica cómo de bien está 

desempeñando el agente su tarea. 

o Longitud media del episodio (ep_len_mean): Muestra si el agente está 

realizando los episodios de forma eficiente. 

o Pérdidas del actor y crítico (actor_loss; critic_loss): Reflejan cómo está 

aprendiendo el agente respecto a maximizar la recompensa (actor_loss) y 

predecir los valores de los estados (critic_loss). Estas métricas tienden a 0, siendo 

que 0 indica una política clara tomada por el agente y una predicción perfecta en 

los valores de estado. 

o Coeficiente de entropía (ent_coef): Muestra el nivel de exploración que tiene el 

agente. Cuanto más cercano a 0 es el coeficiente de entropía más explotación 

realiza el agente y menor es la exploración. Siendo la máxima exploración el 1 y 

la máxima explotación el 0. 

o Tiempo y pasos de entrenamiento (time_elapsed; total_timesteps): Muestra la 

evolución del entrenamiento. 

 

 

 

Tabla 6: Resultados entrenamiento escenario HorizontalCREnv-v0. 
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Métricas clave: 

Para proceder con la valoración de los resultados del entrenamiento, se ha realizado un 

análisis de estos basado en diferentes técnicas. En primer lugar, se ha llevado a cabo un 

análisis de tendencias en el que se han observado las evoluciones de las métricas clave 

que nos interesan, es decir, la recompensa media, la longitud del episodio, las pérdidas, 

el coeficiente de entropía, etc. En segundo lugar, se ha ejecutado un análisis por etapas, 

comparando las métricas en los momentos iniciales, intermedios y finales del 

entrenamiento, con el propósito de ver cambios significativos y patrones claros. 

También, se ha realizado un análisis del comportamiento de las métricas mencionadas, 

entendiendo que las fluctuaciones son parte del proceso de exploración y aprendizaje 

en el marco del aprendizaje por refuerzo. Por último, se ha realizado una evaluación de 

la convergencia, es decir, si las métricas clave, en especial las pérdidas del actor y del 

crítico, se estabilizan en valores similares, lo que implica que el agente ha sido capaz de 

generar cierta política más o menos eficaz. Este análisis en profundidad permite 

entender lo que ha ido logrando el agente, pero también permite entender la eficacia 

del propio proceso de entrenamiento. 

3.4.2. Resultados Obtenidos 

El estudio de los datos  que  se  han generado a lo largo de las etapas de entrenamiento 

del agente pone de manifiesto una progresión notoria en el aprendizaje que ha 

adquirido durante la formación del agente, ya que se ha producido también una 

evolución bastante evidente en lo que respeta de su funcionamiento. En primer lugar, 

la media de la recompensa del episodio concluye con una tendencia positiva (siendo la 

primera de 1.25 y , al final del entrenamiento , de 4.13), lo que quiere decir que ha 

mejorado su capacidad para maximizar el aprendizaje del agente. Sin embargo, en el 

trascurso del entrenamiento han aparecido oscilaciones, como la caída a 1.0 en etapas 

intermedias, lo que es normal por la exploración activa que estaba realizando el agente. 

Por otro lado, la longitud media del episodio se ha mantenido constante en 300 pasos 

en la mayoría del entrenamiento, aunque en el final ha disminuido levemente a 271 

pasos, lo que sugiere que el agente también ha optimizado su eficiencia. 
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Figura 14: Recompensa escenario PlanWaypointEnv-v0 con línea de tendencia. 
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La pérdida del actor y la pérdida del crítico que se han podido observar tendencia a 

converger a valores más estables en las etapas finales. La pérdida del actor, que 

inicialmente fluctúa entre -3.36 y -15.9, alcanzan unos valores iguales a cero en las 

últimas fases, es decir que da conformidad a una política ya fijada. De forma similar, la 

pérdida del crítico, que arranca 0.0223 alcanzando picos de 2.48, se reduce hasta valores 

de 0.00316, evidenciando una mejoría en la predicción de los valores de los estados. Por 

otra parte, el coeficiente de entropía que comienza con un valor de 0.00715 está en 

0.00214 al final del episodio, lo que también muestra una disminución, que señala que 

el agente está pasando de una fase de exploración a una fase de explotación de lo que 

ha aprendido. 

Finalmente cabe resaltar que pese a que el aprendizaje del agente ha sido evidente ha 

necesitado casi dos millones de actualizaciones para empezar aumentar la eficiencia y 

reducir el tiempo que tarda en realizar la tarea lo cual indica que la eficiencia del 

entrenamiento es reducida y podría significar que los hiperparámetros no están del todo 

optimizados. 

3.4.3. Ajustes en los Parámetros de las Simulaciones 

Con el fin de mejorar la velocidad y la eficiencia del entrenamiento del agente en el 

código, se han modificado ciertos parámetros de la configuración del algoritmo y del 

entorno. 

Primero, se ha aumentado la tasa de aprendizaje (learning_rate=1e-3) para acelerar las 

actualizaciones del modelo, de este modo, el agente puede aprender más rápidamente 

de cada una de las experiencias. Se ha incrementado el tamaño del lote 

(batch_size=256), lo que permite que el entrenamiento sea más estable, dado que se 

obtendrán más muestras para calcular los gradientes en cada paso de optimización. Por 

último, se ha ampliado el tamaño del buffer de reproducción (buffer_size=1_000_000); 

en este caso se permite contar con un mayor número de experiencias pasadas, 

favoreciendo un entrenamiento más estable y diverso. 

Adicionalmente, se ha ajustado el coeficiente de entropía (ent_coef=0.1), para 

equilibrar la exploración y la explotación durante el aprendizaje del agente. Igualmente 

se ha incrementado el parámetro tau (tau=0.01), para acelerar la actualización de los 

valores objetivo en los algoritmos de actores-críticos, permitiendo que el modelo se 

adapte más rápidamente. 

En lo que respecta a la configuración del entorno, se ha realizado paralelización del 

entorno de entrenamiento mediante la función make_vec_env con varios entornos a la 

vez (es decir, n_envs=4). Esta estrategia permite recolectar de forma más rápida 

experiencias reformulando distintas copias del entorno simultáneamente, siendo el 

método de entrenamiento más efectivo en su funcionamiento. 

Además, se ha añadido la normalización de observaciones y recompensas mediante el 

uso de VecNormalize, que resulta en un entrenamiento más estable puesto que no se 

producirán entradas o salidas desbalanceadas o variables en el modelo. 
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Para salvaguardar el avance en el proceso del entrenamiento de posibles problemas, se 

ha incluido una devolución de llamada de checkpoints (CheckpointCallback) que guarda 

regulamente el estado del modelo, lo que permitirá continuar el entrenamiento desde 

el último punto guardado sin perder información relevante. 

Por último, se ha adicionado una fase de evaluación del agente justo después del 

entrenamiento, en donde se medirá la recompensa total obtenida en distintos 

episodios, haciendo una salida de los resultados en formato CSV y graficando el 

rendimiento, aportando en cierta forma una imagen clara y cuantificada del rendimiento 

del agente que aminora el análisis y comparación de diferentes versiones del modelo. 

3.4.4. Resultados iniciales tras ajustes 

Gracias a las modificaciones en el código ahora disponemos de una carpeta de 

resultados donde se guardan los históricos del entrenamiento, en este caso se puede 

apreciar la media en intervalos de 40000 actualizaciones, lo que permite ver mejor la 

evolución del agente, y evitar datos aislados que podrían falsear experimentos futuros. 

Se ha decidido volver a entrenar al agente desde 0 en el escenario 1 (PlanWaypointEnv-

v0) dado que es el escenario menos complejo y se podrán notar mayores diferencias 

iniciales. 

Como se puede ver a partir de la tabla de aprendizaje del agente esta segunda vez 

también genera unas primeras estimaciones que nos indican una mejoría en la 

recompensa media por episodio (ep_rew_mean), la cual pasa de 0'95 a ~2'23, aunque 

en un segundo momento se presentaron unas oscilaciones que nos pueden sugerir 

inestabilidad o una exploración activa. La duración media de los episodios 

(ep_len_mean) se estabilizó en torno a 300 pasos siendo el límite de tiempo establecido 

por episodio, pero se puede notar una pequeña reducción en la etapa final. Las pérdidas 

del actor (actor_loss) evolucionan de -7.0 a ~0.037, con lo que nos indicarían un proceso 

de mejora de la política, mientras que la del crítico (critic_loss) se mantenía en cifras 

bajas (0.001–0.008), si bien el bajo valor que nos ofrece podría sugerir incluso una 

subestimación de las recompensas. El coeficiente de entropía (ent_coef) pasó de 0.050 

a 0.0003, con lo que nos podría indicar que la exploración se iría reduciendo con el paso 

del tiempo. Sin embargo, hemos podido detectar algunas anomalías críticas, como 

valores imposibles desde el punto de vista de la temporalidad, como el que nos arroja 

el time_elapsed, que tiene el valor -1.7E+18, en el apartado de fps podemos ver que 

dicho valor era de -2.29E-13, lo que nos puede indicar que existían fallas de registro. 

n_updates episodes ep_len_mean ep_rew_mean time_elapsed total_timesteps actor_loss critic_loss ent_coef ent_coef_loss learning_rate fps timestamp

40000 100 300 0,949999988 -1,74416E+18 160000 -7,006715775 0,001744943 0,050295554 -4,91553688 0,0003 -2,29337E-14 2025-04-09 01:51:16

80000 100 300 1,5 -1,74416E+18 320000 -4,427482605 0,004698405 0,002755786 -6,277266502 0,0003 -4,58675E-14 2025-04-09 02:12:37

120000 100 298,24 1,629999995 -1,74416E+18 480000 -2,533821344 0,002091667 0,000454962 0,671323717 0,0003 -6,88012E-14 2025-04-09 02:32:40

160000 100 299,16 1,309999943 -1,74416E+18 640000 -1,603900433 0,009544099 0,000452502 1,154852986 0,0003 -9,1735E-14 2025-04-09 02:53:06

200000 100 298,32 1,460000038 -1,74416E+18 800000 -0,94804585 0,002141542 0,000449906 0,067853563 0,0003 -1,14669E-13 2025-04-09 03:13:29

240000 100 297,91 2,190000057 -1,74416E+18 960000 -0,570666909 0,004232383 0,000477243 0,766058564 0,0003 -1,37602E-13 2025-04-09 03:33:35

280000 100 299,71 2,230000019 -1,74416E+18 1120000 -0,328757197 0,003918371 0,000511667 -0,578528166 0,0003 -1,60536E-13 2025-04-09 03:53:53

320000 100 299,85 1,690000057 -1,74416E+18 1280000 -0,174185723 0,001835785 0,000406696 -1,118625164 0,0003 -1,8347E-13 2025-04-09 04:13:52

360000 100 298,81 1,629999995 -1,74416E+18 1440000 -0,124477297 0,007152225 0,00038733 0,187580675 0,0003 -2,06404E-13 2025-04-09 04:33:59

400000 100 297,45 1,789999962 -1,74416E+18 1600000 -0,032563914 0,00566678 0,00035912 0,943505049 0,0003 -2,29337E-13 2025-04-09 04:54:26

440000 100 300 1,870000005 -1,74416E+18 1760000 -0,00595837 0,00800099 0,000295775 0,48614943 0,0003 -2,52271E-13 2025-04-09 05:14:52

480000 100 296,65 1,730000019 -1,74416E+18 1920000 0,03705686 0,001997148 0,000298926 1,028913379 0,0003 -2,75205E-13 2025-04-09 05:35:29

Tabla 7: Resultados entrenamiento escenario PlanWaypointEnv-v0 tras modificaciones iniciales. 
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En comparación se puede apreciar como las primeras tablas muestran un 

comportamiento más volátil en relación con la realizada tras los cambios en el código, 

asociado a caídas profundas en las recompensas (ep_rew_mean), oscilando entre 1.0 y 

2.46, y sin que se pueda identificar una tendencia clara de mejora, a diferencia de lo 

observado en el segundo experimento, donde el aumento progresivo (aunque inestable) 

de la recompensa se dejaba ver en la media de las recompensas. Para esta segunda 

tabla, el ep_len_mean se mantiene fijado en 300 (límite fijado por el entorno), al igual 

que en la primera tabla. Pero las pérdidas del actor (actor_loss) son muy profundas (de 

-3.36 a -15.9), lo que hace suponer inestabilidad, a diferencia de lo observado en la 

primera tabla, donde convergían hacia cero; el crítico (critic_loss) también presenta 

valores peores, hasta 2.48 (vs. 0.008 en la primera tabla) lo que sugiere que es complejo 

estimar el valor de los estados, y el coeficiente de entropía (ent_coef) es más alto en la 

segunda tabla (0.007–0.0507 vs. 0.0003–0.050) lo que podría significar una mayor 

exploración pero menos eficiente. 

 

3.5. Conclusiones del Capítulo 

Los resultados del entrenamiento constituyen una demostración de la capacidad del 

aprendizaje por refuerzo (RL) para resolver el dominio del tráfico aéreo, aunque con 

divergencias importantes entre los distintos escenarios. Los experimentos evidencian 

una clara evolución en la consistencia del Escenario 1 (PlanWaypointEnv-v0) con una 

mejoría en la recompensa media (de 1.25 a 4.13) y, la estabilización progresiva de la 

pérdida del actor y la pérdida del crítico (significativas de cierta forma) sugiere una 

política de navegación satisfactoria y una estimación adecuada del valor de los estados. 

Sin embargo, esta mejora requiere elevados tiempos de entrenamiento (cercanos a los 

dos millones de actualizaciones), y además se han evidenciado la volatilidad entre unos 

resultados y otros, pasando de máximos a mínimos, lo que conlleva la necesidad de una 

optimización de hiperparámetros como el learning rate o el tamaño del batch con el 

objetivo de acelerar la convergencia y adicionalmente mejorar la forma en que se 

muestra los resultados para poder hacer mejores análisis en el futuro. 
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Figura 15: Gráfica comparativa PlanWaypointEnv-v0. 
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El Escenario 2 (VerticalCREnv-v0), por su parte, supone un entorno más complejo, en el 

que se aprecian recompensas negativas, métricas inestables y con grandes oscilaciones, 

si bien existieron pequeñas progresiones. En este caso, la oscilación de las pérdidas del 

crítico, además del incremento de las pérdidas (hasta 2.48) no sólo indican que 

existieron mejoras, pero, por otro lado, también ilustra el hecho de que, incluso en 

entornos complejos, se pueden alcanzar dificultades de generalización. Este hecho pone 

de manifiesto la importancia de crear un entorno específico, del tipo: 

✓ Mayor exploración controlada (ajustar ent_coef). 

✓ Normalización robusta de observaciones y recompensas 

✓ Paralelización de entornos (con make_vec_env) para incrementar la variedad 

de experiencias. 

Las mejoras implementadas para el modelo, como el incremento del buffer de 

experiencias, la aplicación de checkpoints y la evaluación sistemática, fueron cruciales 

para un aprendizaje de RL que fuera estable y recuperable, si bien el coste 

computacional y la sensibilidad a los metaparámetros subrayan la necesidad de mejorar 

el modelo, sobre todo para entornos dinámicos con restricciones de operación reales. 

Por tanto, este trabajo muestra que el RL se puede aplicar a la gestión del tráfico aéreo, 

pero también señala los retos que le quedan por afrontar: la eficiencia del 

entrenamiento en entornos complejos y la delicadeza de encontrar un equilibrio entre 

la exploración y la explotación. Los resultados apuntan hacia futuras líneas de 

investigación para reducir el coste computacional y aumentar la transferibilidad a 

entornos reales, donde la robustez y la adaptación son esenciales. 
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4. Tutorial de BlueSky-Gym 

4.1. Instalación y configuración del entorno 

El dispositivo utilizado es un portátil matebookD15 con Windows 10, tiene un 

procesador AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx 2.10 GHz con una RAM 

de 8,00 GB (6,94 GB usable) y un sistema operativo de 64 bits. 

1. Descargar e instalar Python 3.11 

2. Agregar la Ruta de pip a las Variables de Entorno 

- Agregar Python y pip al PATH 

o Presiona Win + R, escribe sysdm.cply presiona Enter. 

o Ve a la pestaña "Opciones avanzadas" y haz clic en "Variables de 

entorno". 

o En la sección "Variables del sistema", busca y selecciona la 

variable Path y haz clic en Editar. 

o Haz clic en Nuevo y agrega las siguientes rutas: 

C:\Users\franm\AppData\Local\Programs\Python\Python311\ 

C:\Users\franm\AppData\Local\Programs\Python\Python311\Sc

ripts\ 

o Haz clic en Aceptar para guardar los cambios. 

o Compruebe si tiene pip instalado usando: py -m pip –version o 

python -m pip –version 

3. Instalar las dependencias del sistema (compiladores) 

o Ve a este enlace y descarga el instalador de Build Tools for Visual 

Studio. (https://visualstudio.microsoft.com/es/downloads/) 

o Durante la instalación, seleccione la opción "Herramientas de 

compilación C++". 

o Asegúrate de marcar la casilla de "Windows 10 SDK". 

o Haga clic en Instalar y espere a que termine el proceso. 

4. A partir de Python 3.10, el paquete distutils fue descontinuado y no se incluye 

por defecto en algunas distribuciones de Python. Este, es necesario para la 

instalación de muchas bibliotecas que requieren compilación (como numpy). 

o python -m pip install setuptools o py -m pip install setuptools 

5. Para el programa Bluesky-gym es necesario descargar e instalar numpy 1.24 

o pip install numpy==1.24.0 

6. Con todo ello ya debería ser posible instalar el programa Bluesky-gym 

o pip install bluesky-gym 

 

 

 

https://visualstudio.microsoft.com/es/downloads/
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4.2. Descripción de los módulos principales: Simulador, 

entorno de RL y herramientas de visualización. 

Posteriormente a la instalación podremos ver una carpeta denominada bluesky-gym-

main donde se divide en otros sub ficheros. Inicialmente solo contará con las carpeta de  

bluesky, bluesky_gym, docs/media y scrips, y después del primer entrenamiento se 

generará la carpeta models. A continuación analizaremos las principales carpetas y su 

contenido. 

 

4.2.1. El corazón del programa 

El archivo de Python denominado “main” es el núcleo del programa, comienza 

definiendo y llamando las variables del entorno. Es necesario definir el nombre del 

entorno entre los siete distintos entornos existentes, además podemos elegir entre 

cuatro distintos algoritmos descritos anteriormente en el punto 3 “estudio del paquete 

BlueSky-Gym”. También se encarga de buscar un modelo existente pudiendo cambiar 

entre distintos modelos para un mismo escenario, en caso de que no se haya entrenado 

previamente ningún modelo lo creará. Otro apartado importante es que podemos 

definir el número de pasos que deseamos entrenar y una vez finalizado el 

entrenamiento guardará el modelo y mostrará una simulación de este. 

Figura 16: Contenido de la carpeta principal BlueSky-Gym. 
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4.2.2. Carpeta bluesky_gym 

En esta carpeta se encuentra la carpeta “envs” donde se sitúan los 7 siete escenarios 

que podemos utilizar para las simulaciones. 

 

En el interior de la carpeta “envs” además de los distintos escenarios encontramos la 

carpeta “common”, en esta hay tres archivos de Python llamados “functions” (realiza las 

operaciones necesarias para situar los waypoints y otros objetos de varios escenarios), 

polygon_generator (se encarga de generar las formas de los obstáculos y otros objetos) 

y finalmente screen_dummy (que permite la visualización de la simulación).

 

 

 

 

Figura 17: Parte inicial del código main. 
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4.2.3. Carpeta bluesky 

Aquí se encuentra el simulador, es decir el motor que permite simular distintos 

escenarios y mover todo para que el agente pueda aprender y nosotros podamos 

visualizarlo. Una vez instalado en mi caso apareció la carpeta venv que posee la librería 

y el conjunto de recursos que utiliza el simulador. 

 

4.2.4. Docs/media 

Esta carpeta posee gif que permiten visualizar como se comporta el agente en una 

política establecida en los escenarios DescentEnv-v0, HorizontalCREnv-v0 y 

PlanWaypointEnv-v0 de un agente con una política aún por definir. 

 

4.2.5. Scripts 

Esta carpeta contiene bucles de entrenamiento de ejemplo para los diferentes 

escenarios en bluesky_gym/envs creados por los autores del programa para facilitar su 

entendimiento y uso. 

 

4.2.6. Models 

En esta carpeta se guardan los modelos por escenario, los modelos se guardan en un 

archivo comprimido, podemos apreciar que además del escenario también genera una 

carpeta distinta si el archivo tiene un algoritmo distinto a SAC, en este caso se ha 

guardado el modelo de una prueba con el algoritmo PPO. 

Figura 18: Ejemplo del contenido de la carpeta media. 
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Al revisar los modelos creados podemos ver que guarda información como la política, 

el actor, crítico y el coeficiente de entropía además de datos adicionales, como las 

variables o el motor del simulador. 

 

4.2.7. Otras carpetas y añadidos 

Finalmente, encontramos otras carpetas como por ejemplo de log y algunas creadas al 

realizar las pruebas para un mayor entendimiento y poder disponer de datos para 

analizar los entrenamientos. En este caso la carpeta más importante es la de 

experimentos donde guarda el modelo (siendo redundante en este caso), los datos del 

entrenamiento en formato Excel para poder generar graficas de aprendizaje, 

checkpoints para evitar la pérdida del entrenamiento completo en caso de fallo 

durante el entrenamiento y otros datos de interés. 

 

4.3. Ejecución de simulaciones básicas y visualización de 

resultados y evolución en video. 

En la finalización de los entrenamientos del agente, por defecto se muestra una 

simulación de este para que el espectador pueda hacer un seguimiento de los avances, 

hemos decidido realizar un video en el escenario PlanWaypointEnv-v0 que ejemplifique 

las mejoras de manera visual que ha ido obteniendo durante el aprendizaje hasta un 

límite de dos millones de pasos. 
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En este video: Video entrenamiento agente.mp4, se puede ver como el agente va 

mejorando lentamente formando una política adecuada, si bien al principio realiza una 

fase de exploración, va pasando a una fase de explotación a medida que el agente va 

obteniendo una política más definida, lo que permite que finalice la mayoría de 

escenarios. Sin embargo, después de dos millones de pasos, aún es incapaz de encontrar 

la ruta más rápida para conseguir sus objetivos y además los avances se vuelven más 

lentos debido a que el agente realiza una mayor explotación que exploración. 

 

  

Figura 19: Captura de uno de los videos durante la simulación. 

https://uab-my.sharepoint.com/:v:/g/personal/1605990_uab_cat/EeTfdqTmf9ZHgF9ocH_cUdMBLTkGSSHQxXTVU1IVJNTV2Q?nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJPbmVEcml2ZUZvckJ1c2luZXNzIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXciLCJyZWZlcnJhbFZpZXciOiJNeUZpbGVzTGlua0NvcHkifX0&e=t8rneW
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5. Experimentos computacionales con BlueSky-Gym 

El objetivo de este apartado es ver hasta qué punto podemos utilizar el simulador 

BlueSky-Gym para crear entornos más realistas y de esta forma ver sus virtudes y 

limitaciones. 

5.1. Creación de un escenario simple: Definición de 

aeronaves, rutas y condiciones iniciales. Parámetros 

clave: Velocidad, altitud, separación entre aeronaves, 

etc. 

Para crear un escenario primero debemos situarnos en la carpeta de escenarios 

denominada en el archivo como “envs” mencionada anteriormente y seleccionar el 

escenario que queremos modificar. 

5.1.1. Configuración y parámetros globales 

Para empezar, debes llamar a las bibliotecas necesarias: 

 

Posteriormente se establecen las constantes o variables globales. Aquí es donde nos 

permite modificar en numero de aeronaves intrusas que aparecen, también el numero 

de puntos objetivos que debe pasar el agente, así como velocidades y otras variables. 

También se definen las recompensas y penalizaciones que ayudarán al agente a 

conseguir una heurística adecuada. 
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5.1.2. Función __init__(self, ...) 

Este es el constructor, su principal función es crear el entorno de la simulación, destaca 

el “bs.init(...):” pues se encarga de inicia el motor de simulación de BlueSky y también 

“self.observation_space:” donde se define todo lo que la AI puede "ver" o percibir del 

mundo. En este caso, es un diccionario que contiene el estado de su propia aeronave 

(rumbo y velocidad), el estado de los intrusos (distancia y rumbo relativo) y la ubicación 

de los waypoints. Finalmente tenemos “self.action_space:” que define lo que la AI 

puede "hacer". En este caso, su única acción es decidir cuánto cambiar su rumbo (entre 

-30 y +30 grados). Cada vez que un episodio termina se inicializan variables internas 

como “self.intrusion = False” o “self.reward = 0” para empezar cada episodio desde cero. 
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5.1.3. Función reset(self, ...) 

Esta función tiene la tarea de reiniciar la simulación, es decir limpia el escenario 

utilizando bs.traf.reset() que elimina los componentes de la simulación anterior, además 

restablece las puntuaciones a 0 para posteriormente generar la aeronave principal 

controlada por el agente, las naves intrusas y finalmente los waypoint. 

 

5.1.4. Función step(self, action) 

Esta parte se dedica a hacer avanzar la simulación, recibe la acción del agente para 

posteriormente aplicar la decisión en el mundo y calcular una puntuación obtenida en 

ese paso. Devuelve el nuevo estado de la simulación, la recompensa y “terminated” que 

indica si el episodio ha finalizado. 
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5.1.5. Función generate_conflicts y función generate_waypoint (self, acid = 

'KL001'): 

Este segmento es uno de los más interesantes porque la primera parte se encarga de 

generar las naves intrusas u obstáculos y la segunda parte se encarga de generar los 

waypoint que son los objetivos que debe alcanzar el agente. Permite añadir dificultad a 

al escenario como generar nuevos objetivos y normas al momento de realizar la 

simulación y por lo tanto será una de las partes modificadas más adelante para intentar 

hacer que se asemeje más a una situación real. 

 

5.1.6. Función get_obs(self): 

Se podría considerar los “sentidos” del agente, pues su función es traducir el estado en 

"crudo" de la simulación a la "percepción" que la AI entiende. Para cada intruso y 

waypoint, calcula la distancia y los ángulos, posteriormente transforma estos datos al 

formato definido en observation_space y normaliza los valores dividiendo las distancias 

y velocidades por valores máximos (WAYPOINT_DISTANCE_MAX, AC_SPD). Esto 

mantiene todos los datos de entrada en un rango similar entre 0 y 1 fundamental para 

que el algoritmo de aprendizaje funcione. 
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5.1.7. Función get_info, get_reward, check_waypoint, check_drift y 

check_intrusion (self): 

Estas funciones sirven como el sistema de puntuación, calculando aspectos como la 

desviación respecto al objetivo, si ha alcanzado un waypoint o si ha invadido el margen 

de seguridad de una aeronave intrusa todas estas puntuaciones se suman dentro de 

“get_reward” para obtener la puntuación que ha obtenido en ese paso. 

 

5.1.8. Función get_action(self,action): 

Esta parte actúa como un traductor entre la decisión abstracta de la AI y el comando 

concreto que entiende el simulador de vuelo. Para ello lo hace de la siguiente manera, 

toma la decisión normalizada de la AI (un valor entre -1 y 1), la convierte en un cambio 

de rumbo específico en grados, calcula el nuevo rumbo absoluto y envía esta orden final 

al simulador para que la aeronave la ejecute. 

 

5.1.9. Función render_frame(self): 

Render_frame se encarga de dibuja el estado actual de la simulación en una ventana 

para que podamos observarla, toma como referencia la aeronave controlada por el 

agente situándola en el centro y moviéndose según se mueva la aeronave. 
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5.2. Creación de un escenario complejo 

Si bien podemos modificar las variables de entorno de todos los escenarios para 

nuestras simulaciones, también podemos crear escenarios complejos, o modificar las 

bases de uno existente. En este caso se ha modificado el escenario “horizontal_cr_env” 

anteriormente analizado, con el objetivo de asemejarlo más al radar de un controlador 

aéreo, en este caso no solo se ha modificado el apartado visual, sino que también se han 

creado caminos “airway” que conectan los distintos puntos “waypoints”, al crear los 

caminos también se debe crear un valor y unas condiciones, estos caminos no son 

aleatorios sino que siempre deben estar conectados y hacer de enlace con los distintos 

puntos, para calcular y crear estos caminos se ha tenido que crear una nueva función en 

el archivo “functions” para que los “airway” no se crearan de manera aleatoria como si 

fueran “waypoints”, además también se le debe asignar una recompensa para que el 

agente identifique que debe ir por estas rutas establecidas, al mismo tiempo están las 

aeronaves intrusas que debe evitar, para evitar que el agente prefiera mantenerse por 

la ruta por encima de evitar una colisión con una aeronave ajena se ha decidido 

aumentar la reducción de puntos en caso de acercamiento y también en caso de colisión, 

también se ha decidido comenzar la simulación fuera de una vía aérea para que el 

agente intente aproximarse lo más rápido posible a una. Para un mayor entendimiento 

vamos a pasar a la explicación del código paso por paso. 

 

5.2.1. Explicación de los nuevos parámetros globales y 

recompensas/penalizaciones 

Después de llamar las bibliotecas necesarias debemos definir los parámetros principales 

o también denominados parámetros de entorno, están conformado por constantes que 

actúan como reglas de la simulación, en nuestro caso hemos utilizado 14 parámetros de 

entorno, pero las principales son: 

• NUM_INTRUDERS: Define cuántas otras aeronaves habrá en el cielo junto a la 

nuestra. 

• NUM_WAYPOINTS: El número de puntos de referencia que conforman la ruta a 

seguir. 

• NUM_CONNECTIONS_PER_WAYPOINT: Indica cuántas aerovías (conexiones) 

debe tener cada waypoint, creando una red de rutas. 

• AC_SPD y INTRUDER_SPD_RANGE: Definen las velocidades de nuestra aeronave 

y de las demás. 

• MIN_SEP_DISTANCE y COLLISION_DISTANCE: Son las distancias de seguridad. Si 

un intruso se acerca más que MIN_SEP_DISTANCE, es una infracción. Si se acerca 

más que COLLISION_DISTANCE, se considera una colisión. 

A su vez debemos definir las recompensas y penalizaciones siendo esta una de las partes 

más importantes debido a que afectan al aprendizaje de la AI diciéndole lo que hace mal 

o bien. Como el objetivo es que el agente pase por los distintos waypoints en un tiempo 
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de 150 segundo he decidido otorgar al agente una recompensa de 10 puntos cada vez 

que pase por algún nodo, siendo esta la recompensa más alta, sin embargo es 

recomendable que llegue a los nodos siguiendo las aerovías generadas, debido a que en 

caso de no hacerlo tiene una resta de su puntuación de -0,1 por cada paso que efectúe 

fuera de una aerovía, además para facilitar que el agente entienda que debe continuar 

sobre estas vías se le ha puesto una penalización al momento de salirse de una de -0,5, 

por lo tanto el agente pasaría de sumar 0,5 puntos por cada paso que se mantenga 

dentro de la aerovía a perder inmediatamente esa cantidad y posteriormente perder -

0,1 por cada paso que realice fuera de la misma. Finalmente hemos querido recalcar y 

priorizar la seguridad, por lo tanto, si el agente no mantiene una distancia de seguridad 

respecto al resto de aeronaves se le penalizará con -20 puntos y si llega a colisionar 

perderá -100 durante la simulación, lo que facilitará que el agente priorice evitar 

colisiones y romper la distancia de seguridad incluso si para ello debe salirse de la ruta 

o debe esperar para pasar por uno de los nodos. 

  

5.2.2. Primer prototipo 

Para este primer prototipo aparte de modificar y añadir valores de entorno vamos a 

definir el concepto de aerovía, en este caso hemos modificado la función 

“generate_waypoint”, para que cree líneas que serán airway, la forma más fácil de 

generar estas vías es guardando las coordenadas del último waypoint generado para 

posteriormente compararla con el nuevo waypoint y de esta forma crear una línea recta 

de punto a punto, de esta manera nos aseguramos que cada nodo este conectado con 

otro y permite formar una aerovía que conecta todos los puntos que el agente debe 

intentar seguir.  
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También debemos modificar el sistema de recompensas y penalizadores, en mi caso he 

decidido centralizar todo en la función “calculate_reward” y generar mediante 

condicionantes si el agente recibe recompensa o penalización. 

 

Sin embargo, este método no nos sirve al momento de escalar a más de una aerovía, 

debido a que la forma de crearlas es en base al punto anterior y al actuar y por lo tanto 

no tiene en cuenta otros puntos ya creados.   

 

 

 

Figura 20: Captura de la simulación del primer prototipo. 
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5.2.3. Segundo prototipo (Más complejo) 

En este segundo escenario se ha vuelto a modificar totalmente la función 

“generate_waypoint” y la hemos renombrado, esta vez la función crea primero una 

nube de puntos, es decir, primero genera las coordenadas de todos los waypoints de la 

simulación.  

 

Una vez tiene esas coordenadas las pasa a una función externa que he creado dentro 

del archivo “functions”, esta función toma todos los waypoints generados y los conecta 

para formar una red. Lo hace en dos fases, la primera calcula todas las posibles 

conexiones, toma un punto y comienza a crear caminos con los puntos más cercanos 

hasta alcanzar el limite de caminos previamente indicado, momento que pasará al 

siguiente punto y así hasta finalizar con todos. 
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La segunda fase de creación de la red de caminos se basa en buscar si existen puntos 

aislados, si localiza algún punto sin conexiones creará una conexión con el punto más 

cercano a este, durante este proceso elimina el camino más lejano que tuviera el punto 

y añade el nuevo camino, una vez resuelta la incidencia buscará más puntos aislados 

hasta que no haya ninguno y devolverá el mapa de puntos y aerovías. Cabe destacar que 

el código intenta que siempre se cumpla la condición de caminos que se haya 

especificado, sin embargo, hay situaciones donde la combinación de puntos y la 

exigencia de aerovías hace que esta tarea sea imposible, por ejemplo 3 carriles por 

punto y una generación de 5 puntos, en estos casos el programa intentará cumplir con 

el máximo de puntos posibles y aquellos que no sea posible intentará acercarse a lo 

estipulado.  

 

En estas imágenes de ejemplo se puede apreciar el resultado, situandose la nave que 

controla el agente en el centro con forma de flecha verde, la de intrusos con forma de 

flecha amarilla, los puntos como circulos verdes y las aerovias como lineas blencas. 
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Figura 21: Capturas de distintas simulaciones del segundo prototipo. 
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6. Limitaciones y propuestas de mejora 

Si bien este proyecto demuestra el enorme potencial de la inteligencia artificial en el 

ámbito aeronáutico, su aplicación práctica en el control de tráfico aéreo (ATC) no está 

exenta de limitaciones críticas que, hoy en día, comprometen la viabilidad de un 

despliegue autónomo. 

Es fundamental matizar que el siguiente análisis se centra específicamente en la 

metodología de Aprendizaje por Refuerzo (RL), utilizada en el entorno de simulación 

BlueSky-Gym, sin profundizar en otros paradigmas de AI que podrían ofrecer soluciones 

diferentes. 

A continuación, se detallan las limitaciones observadas y se expande el análisis a otros 

desafíos inherentes a esta tecnología. 

1. Generalización ante Escenarios Inéditos (Falta de Improvisación) 

Un agente entrenado con RL se vuelve extraordinariamente eficiente en la gestión de 

configuraciones de tráfico para las que ha sido entrenado. Sin embargo, su rendimiento 

se degrada drásticamente ante eventos imprevistos o no incluidos en su set de 

entrenamiento (lo que se conoce como out-of-distribution data). Esto puede incluir: 

➢ Un tipo de aeronave con un rendimiento de ascenso/descenso no visto antes. 

➢ Una condición meteorológica adversa y localizada que aparece súbitamente. 

➢ El comportamiento inesperado de un piloto (ej. una desviación no comunicada). 

El agente no "improvisa", simplemente carece del modelo aprendido para gestionar una 

situación que no ha experimentado, lo que en un entorno real es inaceptable. 

Propuestas de Mejora: 

Domain Randomization (Aleatorización del Dominio): Entrenar al agente no en un único 

escenario estático, sino en miles de simulaciones donde los parámetros (meteorología, 

rendimiento de las aeronaves, densidad del tráfico, etc.) varían constantemente y de 

forma aleatoria. Esto fuerza al agente a aprender políticas de decisión más robustas y 

generalizables [28]. 

Curriculum Learning (Aprendizaje Curricular): Exponer al agente a escenarios de 

complejidad creciente. Se empieza con problemas sencillos (dos aviones, sin viento) y, a 

medida que el agente los domina, se introduce gradualmente más dificultad y 

variabilidad [28]. 

Transfer Learning: Pre-entrenar modelos en un vasto conjunto de datos de tráfico aéreo 

general (incluso de otros sectores o aeropuertos) y luego afinarlos (fine-tuning) para el 

sector específico en el que operarán [29]. 

2. El Equilibrio entre Exploración y Explotación 

Un agente que rápidamente encuentra una estrategia "suficientemente buena" 

(explotación) dejará de buscar alternativas que podrían ser óptimas a largo plazo 
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(exploración). En el control aéreo, esto es peligroso. Una solución que parece eficiente 

puede ser frágil y fallar ante una pequeña perturbación que no fue explorada durante el 

entrenamiento. Forzar una exploración exhaustiva en un espacio de estados tan vasto 

como el del tráfico aéreo puede llevar a tiempos de entrenamiento 

computacionalmente prohibitivos. 

Propuestas de Mejora: 

Algoritmos de Exploración Avanzados: Utilizar técnicas como Intrinsic Curiosity 

Motivation, donde el agente recibe una recompensa adicional no solo por cumplir el 

objetivo, sino por visitar estados nuevos y desconocidos. Esto incentiva una exploración 

más sistemática [30]. 

Ensembles de Agentes: Entrenar a múltiples agentes de forma independiente. Durante 

la operación, sus decisiones pueden ser promediadas o sometidas a un sistema de 

votación, reduciendo el riesgo de que una única política subóptima tome el control [30]. 

3. El Problema de la "Caja Negra" (Explainability) y la Certificación de Seguridad 

Las redes neuronales profundas, que son el cerebro de los agentes de RL modernos, 

operan como "cajas negras". Pueden tomar una decisión óptima, pero es 

extremadamente difícil (a veces imposible) trazar el razonamiento exacto que los llevó 

a ella. En aviación, toda decisión crítica debe ser auditable y explicable. ¿Por qué el 

agente decidió desviar el avión A en lugar del B? Sin una respuesta clara, es imposible 

certificar el sistema bajo los estrictos estándares de la aviación (como DO-178C). 

Propuestas de Mejora: 

AI Explicable (XAI - Explainable AI): Desarrollar e integrar herramientas que "traduzcan" 

las decisiones del agente a un formato comprensible para un humano. Por ejemplo, 

mediante mapas de atención que resalten qué aviones o datos fueron más influyentes 

para una decisión concreta [31]. 

Modelos Híbridos: Combinar el RL con sistemas basados en reglas o lógicas simbólicas. 

El agente de RL puede proponer una estrategia, pero esta debe ser validada por un 

"guardián" basado en reglas (por ejemplo, "nunca violar la separación mínima de 5 

millas náuticas"). Esto crea una red de seguridad verificable [31]. 

Verificación Formal: Utilizar métodos matemáticos para probar formalmente que, bajo 

cualquier circunstancia dentro de un conjunto definido, el agente nunca tomará una 

acción que lleve a un estado inseguro [31] 

4. Escalabilidad y Complejidad del Espacio Aéreo Real 

Un simulador como BlueSky-Gym, aunque avanzado, simplifica la realidad. El espacio 

aéreo real es un sistema multi-agente masivo. No se trata solo de gestionar un sector, 

sino de coordinar traspasos fluidos con docenas de sectores adyacentes, cada uno con 

su propio controlador (o agente). La complejidad computacional (el "curse of 

dimensionality") crece exponencialmente con cada avión y cada agente añadido. 
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Propuestas de Mejora: 

Aprendizaje por Refuerzo Jerárquico (HRL): Diseñar una estructura de agentes de varios 

niveles. Un "meta-agente" de alto nivel podría tomar decisiones estratégicas (ej. 

gestionar el flujo general de un corredor aéreo), mientras que agentes de bajo nivel se 

encargarían de tareas tácticas (ej. mantener la separación entre un par de aviones) [33]. 

Aprendizaje Multi-Agente (MARL): En lugar de un único agente omnisciente, entrenar a 

múltiples agentes que aprendan a cooperar y comunicarse entre sí, imitando la 

estructura de los centros de control del mundo real [33]. 

5. Diseño de la Función de Recompensa (Reward Hacking) 

Definir qué es una "buena" gestión del tráfico aéreo en una fórmula matemática (la 

función de recompensa) es increíblemente difícil. Un agente de RL es un optimizador 

implacable y podría encontrar lagunas o atajos para maximizar su recompensa de 

maneras no deseadas (reward hacking). Por ejemplo, si la recompensa se basa 

únicamente en la eficiencia del combustible, el agente podría guiar a los aviones por 

rutas muy juntas, justo en el límite legal de separación, aumentando el riesgo para 

maximizar su puntuación. 

Propuestas de Mejora: 

Aprendizaje por Refuerzo Inverso (IRL - Inverse Reinforcement Learning): En lugar de 

definir manualmente la recompensa, el agente la aprende observando a controladores 

aéreos humanos expertos. Intenta deducir cuál es la función de recompensa implícita 

que guía las decisiones humanas [28]. 

Funciones de Recompensa Multiobjetivo: Crear una función de recompensa que 

equilibre múltiples objetivos, a menudo contrapuestos: seguridad (máxima separación), 

eficiencia (rutas directas), puntualidad, y confort del pasajero (evitar virajes bruscos). 

Asignar penalizaciones severas por cualquier acción que se acerque a un límite de 

seguridad [28]. 
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7. Conclusión 

A lo largo de este trabajo, se ha profundizado en los fundamentos teóricos del 

Aprendizaje por Refuerzo (RL), sentando las bases para su aplicación práctica en la 

gestión del tráfico aéreo. La revisión de la literatura y el estudio de algoritmos clave 

como PPO o SAC fueron pasos indispensables para abordar el núcleo del proyecto: la 

exploración del simulador BlueSky-Gym. Para facilitar su adopción por parte de otros 

investigadores y estudiantes, se desarrolló un pequeño tutorial, cumpliendo con uno de 

los objetivos clave de este trabajo y contribuyendo a hacer esta herramienta un poquito 

más accesible. 

La fase experimental no solo se limitó a evaluar los escenarios predefinidos, sino que se 

extendió al diseño y creación de un entorno de simulación propio y más complejo, que 

modela una red de aerovías para reflejar condiciones más realistas. Los resultados de 

los experimentos muestran tanto las oportunidades como los retos que presenta el 

aprendizaje por refuerzo (RL) en este campo. En situaciones simples como 

PlanWaypointEnv-v0, se evidenció que el agente puede aprender políticas de 

navegación efectivas, aunque esto viene con un alto costo computacional y una notable 

sensibilidad a los hiperparámetros. La complejidad aumentó en los escenarios de 

resolución de conflictos y en nuestro entorno personalizado, donde la inestabilidad de 

las métricas destacó la dificultad del agente para generalizar su aprendizaje en 

condiciones cambiantes. Estos hallazgos confirman que, aunque el RL es funcional, su 

eficiencia depende en gran medida de una configuración cuidadosa y de la complejidad 

del entorno. 

De cara al futuro, la aplicación de inteligencias artificiales como las exploradas en este 

proyecto se pueden considerar más una herramienta de asistencia más que como un 

sustituto autónomo del controlador humano. Las limitaciones observadas, 

especialmente la falta de capacidad para improvisar ante escenarios no previstos y la 

naturaleza de "caja negra" de las redes neuronales, representan barreras significativas 

para su certificación en un entorno donde la seguridad es innegociable. La viabilidad de 

una implementación real dependerá de superar estos escollos, posiblemente a través 

de arquitecturas híbridas que combinen el RL con sistemas basados en reglas y el 

desarrollo de la IA Explicable (XAI). Sin embargo, su aplicación se podría aplicar como un 

asistente para el controlador, de forma que facilite y agilice las operaciones aéreas. Por 

tanto, aunque la visión de un ATC totalmente automatizado sigue siendo un horizonte 

lejano, este trabajo confirma que BlueSky-Gym es un paso más y una plataforma de 

investigación necesaria para instar a los estudiantes a forjar los sistemas inteligentes 

que harán de la aviación del mañana un espacio más seguro y eficiente.  
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Anexo 

Código inicial: 

import gymnasium as gym 

from stable_baselines3 import PPO, SAC, TD3, DDPG 

import numpy as np 

import bluesky_gym 

import bluesky_gym.envs 

from bluesky_gym.utils import logger 

bluesky_gym.register_envs() 

env_name = 'StaticObstacleEnv-v0' 

algorithm = SAC 

# Initialize logger 

log_dir = f'./logs/{env_name}/' 

file_name = f'{env_name}_{str(algorithm.__name__)}.csv' 

csv_logger_callback = logger.CSVLoggerCallback(log_dir, file_name) 

TRAIN = True 

EVAL_EPISODES = 10 

if __name__ == "__main__": 

    env = gym.make(env_name, render_mode=None) 

    obs, info = env.reset() 

    model = algorithm("MultiInputPolicy", env, verbose=1,learning_rate=3e-4) 

    if TRAIN: 

        model.learn(total_timesteps=2e6, callback=csv_logger_callback)  

        

model.save(f"models/{env_name}/{env_name}_{str(algorithm.__name__)}/model")  

        del model 

    env.close() 
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# Test the trained model 

    model = 

algorithm.load(f"models/{env_name}/{env_name}_{str(algorithm.__name__)}/model", 

env=env) 

    env = gym.make(env_name, render_mode="human") 

    for i in range(EVAL_EPISODES): 

        done = truncated = False 

        obs, info = env.reset() 

        tot_rew = 0 

        while not (done or truncated): 

            # action = np.array(np.random.randint(-100,100,size=(2))/100) 

            # action = np.array([0,-1]) 

            action, _states = model.predict(obs, deterministic=True) 

            obs, reward, done, truncated, info = env.step(action[()]) 

            tot_rew += reward 

        print(tot_rew) 

    env.close() 
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Código tras primera revisión: 

import gymnasium as gym 

from stable_baselines3 import SAC 

from stable_baselines3.common.env_util import make_vec_env 

from stable_baselines3.common.vec_env import VecNormalize 

from stable_baselines3.common.callbacks import CheckpointCallback 

import numpy as np 

import bluesky_gym 

import bluesky_gym.envs 

from bluesky_gym.utils import logger 

# Registrar los entornos de Bluesky 

bluesky_gym.register_envs() 

# Definir el nombre del entorno y el algoritmo 

env_name = 'PlanWaypointEnv-v0' 

algorithm = SAC 

# Crear múltiples entornos en paralelo 

n_envs = 4 

env = make_vec_env(env_name, n_envs=n_envs, seed=0) 

# Normalizar las observaciones y recompensas 

env = VecNormalize(env, norm_obs=True, norm_reward=True) 

# Inicializar el logger 

log_dir = f'./logs/{env_name}/' 

file_name = f'{env_name}_{str(algorithm.__name__)}.csv' 

csv_logger_callback = logger.CSVLoggerCallback(log_dir, file_name) 

# Configuración de entrenamiento y evaluación 

TRAIN = True  # Cambia a False si no deseas entrenar 

EVAL_EPISODES = 10 

if __name__ == "__main__": 

    # Cargar o crear el modelo 



69 

 

    model_path = 

f"models/{env_name}/{env_name}_{str(algorithm.__name__)}/model" 

    if TRAIN: 

        try: 

            # Intentar cargar el modelo previamente entrenado 

            model = algorithm.load(model_path, env=env) 

            print("Modelo cargado exitosamente.") 

        except: 

            # Si no existe, crear un nuevo modelo 

            model = algorithm( 

                "MultiInputPolicy", 

                env, 

                verbose=1, 

                learning_rate=1e-3,  # Aumentar la tasa de aprendizaje 

                buffer_size=1_000_000,  # Aumentar el tamaño del buffer 

                batch_size=256,  # Aumentar el tamaño del batch 

                ent_coef=0.1,  # Ajustar el coeficiente de entropía 

                tau=0.01)  # Aumentar tau para actualizar el target network más rápido 

            print("Nuevo modelo creado.") 

        # Callback para guardar el modelo periódicamente 

        checkpoint_callback = CheckpointCallback( 

            save_freq=10_000, 

            save_path="./checkpoints/", 

            name_prefix=f"{env_name}_{str(algorithm.__name__)}") 

        # Entrenar el modelo 

        model.learn(total_timesteps=500000, callback=[csv_logger_callback, 

checkpoint_callback], log_interval=10) 

        # Guardar el modelo entrenado 

        model.save(model_path) 

        print("Modelo guardado exitosamente.") 
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    # Cerrar el entorno de entrenamiento 

    env.close() 

    # Evaluar el modelo entrenado 

    env = gym.make(env_name, render_mode="human") 

    model = algorithm.load(model_path, env=env)  # Cargar el modelo para evaluación 

    for i in range(EVAL_EPISODES): 

        done = truncated = False 

        obs, info = env.reset() 

        tot_rew = 0 

        while not (done or truncated): 

            action, _states = model.predict(obs, deterministic=True) 

            obs, reward, done, truncated, info = env.step(action[()]) 

            tot_rew += reward 

        print(f"Episodio {i+1}: Recompensa total = {tot_rew}") 

    # Cerrar el entorno de evaluación 

    env.close() 

 

Fichero de BlueSky-Gym utilizado durante los experimentos 

bluesky-gym-main 

  

https://uab-my.sharepoint.com/:f:/g/personal/1605990_uab_cat/ElPOMblFv_BLg-0PVcC7YN4BT19U06EXJnlKkrBDVtBMYw?e=aIwzuU
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