
Entornos de aprendizaje por refuerzo para

aplicaciones de tráfico aéreo con BlueSky-Gym

Memoria del Trabajo Fin de Grado en Gestión Aeronáutica

realizado por

Francisco José Muñoz

y dirigido por

Laura Calvet Liñan

Escuela de Ingeniería

Sabadell, junio de 2025

2

Modelo de certificado del director/a

La abajo firmante, Laura Calvet Liñan director/a del Trabajo de Fin de Grado, profesora

de la Escuela de Ingeniería de la UAB,

CERTIFICA:

Que el trabajo al que corresponde la presente memoria ha sido realizado bajo

su dirección por

Francisco José Muñoz Alsina

Y para que conste firma la presente en Sabadell, junio de 2025

Firmado: Laura Calvet Liñan

3

Índice
Términos y acrónimos utilizados .. 6

Índice de figuras ... 8

Índice de tablas ... 9

1. Introducción ... 10

1.1. Contexto ... 11

1.2. Conceptos básicos .. 12

1.2.1. Origen de la Inteligencia Artificial .. 12

1.2.2. Tipos de Aprendizaje en Inteligencia Artificial 13

1.2.3. BlueSky.. 14

1.3. Motivación .. 15

1.4. Objetivos ... 15

1.5. Metodología ... 16

1.6. Análisis de viabilidad .. 17

1.7. Recursos necesarios ... 17

1.8. Cronograma .. 18

1.9. Riesgos .. 19

Estructura de la memoria ... 20

2. El aprendizaje por refuerzo .. 21

2.1 Introducción.. 21

2.2 Fundamentos Teóricos del Aprendizaje por Refuerzo 22

2.2.1. Marco de Trabajo: Agente, Entorno, Estado, Acción y Recompensa 22

2.2.2. Conceptos Clave ... 23

2.2.3. Exploración vs. Explotación .. 23

2.3. Algoritmos Clásicos de Aprendizaje por Refuerzo ... 24

2.3.1. Métodos Basados en Valor ... 24

2.3.2. Métodos Basados en Políticas .. 25

2.3.3. Métodos Basados en Modelos ... 25

2.4. Software y hardware que se utiliza actualmente en las aplicaciones RL 26

2.4.1. Software (Las "Herramientas Digitales") .. 26

2.4.2. Hardware (Los "Motores" que Hacen el Trabajo Pesado) 27

2.5. Aplicaciones del Aprendizaje por Refuerzo .. 28

2.5.1. Juegos ... 28

4

2.5.2. Robótica .. 28

2.5.3. Otras Aplicaciones .. 29

2.6. Desafíos y Limitaciones del Aprendizaje por Refuerzo 30

2.6.1. Alto Costo Computacional .. 30

2.6.2. Dificultad en la Exploración en Entornos Grandes 30

2.6.3. Inestabilidad en la Convergencia de Algoritmos 30

2.7. Ventajas y Desventajas del Aprendizaje por Refuerzo 31

2.7.1. Ventajas .. 31

2.7.2. Desventajas ... 31

3. Estudio de BlueSky-Gym y BlueSky .. 32

3.1. Introducción ... 32

3.2. Estudio del Paquete BlueSky-Gym y BlueSky ... 32

3.2.1. Principales características .. 33

3.2.2. Funcionalidades .. 33

3.2.3. Algoritmos .. 34

3.2.1. Escenarios disponibles .. 35

3.2.2. Aplicaciones existentes .. 36

3.3. Descripción de los Escenarios Básicos Seleccionados 36

3.3.1. Criterios de Selección de Escenarios .. 36

3.3.2. Descripción de los Escenarios ... 38

3.4. Análisis de Resultados Preliminares ... 39

3.4.1. Metodología de Evaluación .. 39

3.4.2. Resultados Obtenidos ... 40

3.4.3. Ajustes en los Parámetros de las Simulaciones 41

3.4.4. Resultados iniciales tras ajustes ... 42

3.5. Conclusiones del Capítulo .. 43

4. Tutorial de BlueSky-Gym .. 45

4.1. Instalación y configuración del entorno ... 45

4.2. Descripción de los módulos principales: Simulador, entorno de RL y

herramientas de visualización. ... 46

4.2.1. El corazón del programa ... 46

4.2.2. Carpeta bluesky_gym ... 47

4.2.3. Carpeta bluesky .. 48

5

4.2.4. Docs/media ... 48

4.2.5. Scripts ... 48

4.2.6. Models .. 48

4.2.7. Otras carpetas y añadidos .. 49

4.3. Ejecución de simulaciones básicas y visualización de resultados y evolución

en video. ... 49

5. Experimentos computacionales con BlueSky-Gym .. 51

5.1. Creación de un escenario simple: Definición de aeronaves, rutas y

condiciones iniciales. Parámetros clave: Velocidad, altitud, separación entre

aeronaves, etc. ... 51

5.1.1. Configuración y parámetros globales ... 51

5.1.2. Función __init__(self, ...) .. 52

5.1.3. Función reset(self, ...) ... 53

5.1.4. Función step(self, action) ... 53

5.1.5. Función generate_conflicts y función generate_waypoint (self, acid =

'KL001'): 54

5.1.6. Función get_obs(self): .. 54

5.1.7. Función get_info, get_reward, check_waypoint, check_drift y

check_intrusion (self): .. 55

5.1.8. Función get_action(self,action): ... 55

5.1.9. Función render_frame(self):... 55

5.2. Creación de un escenario complejo ... 56

5.2.1. Explicación de los nuevos parámetros globales y

recompensas/penalizaciones ... 56

5.2.2. Primer prototipo ... 57

5.2.3. Segundo prototipo (Más complejo) ... 59

6. Limitaciones y propuestas de mejora... 62

7. Conclusión .. 65

Anexo .. 66

Bibliografía .. 71

6

Términos y acrónimos utilizados

AI Artificial Intelligence Inteligencia artificial
API Application Programming Interface Interfaz de programación de

aplicaciones
ATC Air Traffic Control Control del tráfico aéreo
ATM Air Traffic Management Gestión del tráfico aéreo
CWI Centrum Wiskunde & Informatica Instituto nacional de

investigación en matemáticas e
informática

DDPG Deep Deterministic Policy Gradient Algoritmo de RL para acciones
continuas

DQN Deep Q-Network Algoritmo que combina Q-
learning con redes neuronales

FAA Federal Aviation Administration Administración federal de
aviación

GPU Graphics Processing Unit Unidad de procesamiento
gráfico

GUI Graphical User Interface Interfaz gráfica de usuario
HRL Hierarchical Reinforcement Learning Aprendizaje por refuerzo

jerárquico
IEEE Institute of Electrical and Electronics

Engineers
Instituto de ingenieros
eléctricos y electrónicos

IRL Inverse Reinforcement Learning Aprendizaje por refuerzo
inverso

MARL Multi-Agent Reinforcement Learning Aprendizaje multi-agente
MCTS Monte Carlo Tree Search Método de búsqueda para

planificación en RL
ML Machine Learning Aprendizaje automático
PPO Proximal Policy Optimization Algoritmo de optimización de

políticas en RL
RL Reinforcement Learning Aprendizaje por Refuerzo
SAC Soft Actor-Critic Algoritmo de RL que equilibra

eficiencia y exploración
TD3 Twin Delayed Deep Deterministic

Policy Gradient
Algoritmo de RL sucesor de
DDPG

TU Delft Delft University of Technology Universidad Tecnológica de
Delft

TPU Tensor Processing Unit Unidad de procesamiento de
Google para IA

UAV Unmanned Aerial Vehicle Vehículo Aéreo no Tripulado
XAI Explainable AI IA Explicable

7

Agente (RL): Entidad que toma decisiones en un entorno de aprendizaje por refuerzo,

interactuando con el entorno para maximizar recompensas.

Algoritmo Actor-Crítico: Método de RL que combina un "actor" (toma decisiones) y un

"crítico" (evalúa decisiones) para mejorar políticas.

Batch Size: Número de muestras utilizadas en una iteración de entrenamiento de un

modelo de RL.

Buffer de Reproducción: Memoria que almacena experiencias pasadas del agente para

reutilizarlas durante el entrenamiento.

Coeficiente de Entropía (ent_coef): Parámetro que regula el balance entre exploración

(probabilidad de probar acciones nuevas) y explotación (usar acciones conocidas).

Deep Q-Network (DQN): Algoritmo de RL que combina Q-learning con redes neuronales

profundas para manejar entornos complejos.

Entorno (RL): Contexto simulado o real donde el agente interactúa y aprende.

Espacio de Acciones: Conjunto de todas las acciones posibles que un agente puede

tomar en un entorno.

Espacio de Estados: Conjunto de todas las situaciones posibles en las que puede

encontrarse un entorno.

Función de Valor: Estimación de la recompensa acumulada esperada desde un estado o

acción específica.

Hiperparámetros: Parámetros configurables que controlan el proceso de entrenamiento

(ej. tasa de aprendizaje).

Política (RL): Estrategia que define cómo el agente selecciona acciones en función del

estado actual.

Q-learning: Algoritmo de RL basado en valores que aprende una política óptima

mediante una tabla Q.

Recompensa Descontada: Método para ponderar recompensas futuras en RL, dando

más peso a las recompensas inmediatas.

Red Neuronal Profunda: Modelo computacional inspirado en el cerebro humano, usado

en RL para aproximar funciones complejas.

Stable-Baselines3: Biblioteca de Python que implementa algoritmos de RL estables y

optimizados.

Tasa de Aprendizaje (learning_rate): Parámetro que determina cuánto ajusta el modelo

sus pesos en cada iteración de entrenamiento.

8

Índice de figuras

Figura 1: Visualización utilizada para el entorno StaticObstacleEnv-v0 dentro de BlueSky-

Gym.

Figura 2: Gráfica de número de operaciones anuales de aeropuertos españoles

contabilizados por AENA. Fuente: [7]

Figura 3: Conversación con el chatbot ELIZA. Fuente: [12]

Figura 4: Ejemplo visual de aprendizaje supervisado (regresión lineal) y no supervisado

(Clustering).

Figura 5: Flujo de trabajo de BlueSky para la adquisición, procesamiento y

almacenamiento de datos experimentales. Incluye interacción con hardware,

abstracción en Python, serialización, almacenamiento persistente y análisis de datos en

entornos interactivos.

Figura 6: Richard Sutton y Andrew Barto autores “Introducción al aprendizaje por

refuerzo”.

Figura 7: Estructura de la red neuronal utilizada para la Red de Aprendizaje por Refuerzo

Profundo (Deep Q-learning Network).

Figura 8: Diagrama simplificado de agente y entorno.

Figura 9: Ejemplo visual de una Q-Table, donde el algoritmo debería alcanzar el objetivo

utilizando el camino más corto.

Figura 10: Ejemplo de elementos de hardware y de software.

Figura 11: Escenario PlanWaypointEnv-v0.

Figura 12: Escenario VerticalCREnv-v0.

Figura 13: Escenario HorizontalCREnv-v0.

Figura 14: Recompensa escenario PlanWaypointEnv-v0 con línea de tendencia.

Figura 15: Gráfica comparativa PlanWaypointEnv-v0.

Figura 16: Contenido de la carpeta principal BlueSky-Gym.

Figura 17: Parte inicial del código main.

Figura 18: Ejemplo del contenido de la carpeta media.

Figura 19: Captura de uno de los videos durante la simulación.

Figura 20: Captura de la simulación del primer prototipo.

Figura 21: Capturas de distintas simulaciones del segundo prototipo.

9

Índice de tablas

Tabla 1: Cronograma de actividades.

Tabla 2: Tabla de riesgos.

Tabla 3: Tabla comparativa de los distintos algoritmos de BlueSky

Tabla 4: Resultados entrenamiento escenario PlanWaypointEnv-v0.

Tabla 5: Resultados entrenamiento escenario VerticalCREnv-v0.

Tabla 6: Resultados entrenamiento escenario HorizontalCREnv-v0.

10

1. Introducción

El aprendizaje por refuerzo (RL, por sus siglas en inglés) [1,2] se ha consolidado como

una de las áreas más prometedoras de la inteligencia artificial, especialmente en

aplicaciones que requieren toma de decisiones en tiempo real y adaptabilidad a

entornos dinámicos. El RL consiste en entrenar a un agente a tomar decisiones óptimas

mediante la interacción reiterada con entornos, recibiendo recompensas o

penalizaciones según sus acciones. Su objetivo es maximizar una recompensa

acumulada a lo largo del tiempo, utilizando estrategias de exploración y explotación

para mejorar su desempeño en la tarea asignada. En el ámbito del control de tráfico

aéreo (ATC) y la gestión del tráfico aéreo (ATM), el RL ofrece un potencial significativo

para optimizar operaciones, mejorar la seguridad y aumentar la eficiencia en espacios

aéreos cada vez más congestionados. Por ejemplo, avisando al controlador de posibles

conflictos futuros (aviones al mismo nivel de altitud con una ruta donde se cruzan) o

automatizando procesos como peticiones de "vuelo en ruta directa" comprobando si

efectuar la maniobra supone riesgos en la seguridad. Sin embargo, la falta de entornos

estandarizados y herramientas accesibles para probar y comparar algoritmos de RL ha

sido un obstáculo para el avance de la investigación en este campo.

Aun estando todavía en desarrollo BlueSky-Gym [3] surge como una solución

innovadora para poder afrontar este desafío. Basado en el simulador de tráfico aéreo

de código abierto BlueSky [4,5], proporciona una plataforma estandarizada y flexible

para la investigación y aplicación de algoritmos de RL en tareas relacionadas con el

control de tráfico aéreo. BlueSky-Gym se basa en la popular API Gymnasium [6], lo que

permite a los investigadores y desarrolladores utilizar una amplia gama de algoritmos

de RL disponibles en bibliotecas. Además, ofrece una colección de entornos predefinidos

que abarcan desde tareas básicas de control vertical y horizontal hasta escenarios más

complejos, como la resolución de conflictos y la fusión de flujos de tráfico.

La importancia de BlueSky-Gym radica en su capacidad para simplificar y estandarizar el

proceso de investigación en RL aplicado al tráfico aéreo. Al proporcionar entornos

reproducibles y bien documentados, como los del entorno de la figura 1, donde el

agente debe trazar la ruta más corta y realizarla en el menor tiempo posible hasta el

nodo (circulo blanco) teniendo en cuenta y evitando los obstáculos estáticos del

escenario, este escenario junto con otros facilita la comparación de distintos algoritmos

y la validación de resultados, lo que permite el avance de la investigación en este campo.

Figura 1: Visualización utilizada para el entorno StaticObstacleEnv-v0 dentro de BlueSky-Gym.

11

Además, su enfoque de generación procedural asegura que los algoritmos no se adapten

únicamente a escenarios específicos, promoviendo la generalización y robustez de las

políticas aprendidas.

Este trabajo tiene como objetivo explorar las funcionalidades y aplicaciones de BlueSky-

Gym en el contexto del control de tráfico aéreo. A través de una revisión exhaustiva de

la literatura, un análisis detallado del paquete y la realización de simulaciones

computacionales se busca demostrar cómo el paquete puede ser utilizado para entrenar

y evaluar algoritmos de RL en tareas de ATC/ATM. Además, se propone la creación de

un tutorial, con el fin de hacer esta herramienta accesible a una audiencia más amplia,

incluyendo estudiantes, investigadores y profesionales del sector.

1.1. Contexto

El tráfico aéreo mundial ha experimentado una notable evolución en los últimos años,

marcada por un crecimiento sostenido hasta 2019, una drástica caída en 2020 debido a

la pandemia de COVID-19 y una recuperación gradual que culminó en niveles récord en

2024.

Actualmente, el tráfico aéreo mundial ha aumentado un 10,4% con respecto a 2023,

superando en un 3,8% los niveles de 2019. Este crecimiento ha llevado al tráfico aéreo

a superar los niveles pre-COVID, evidenciando una recuperación completa del sector.

Este aumento también se ha visto reflejado en los aeropuertos españoles, donde se han

alcanzado cifras históricas de pasajeros. Por ejemplo, el Aeropuerto de Valencia cerró

2024 con 10,8 millones de pasajeros, un 8,7% más que el año anterior.

Este crecimiento en el tráfico aéreo no solo responde a la recuperación de la demanda

de pasajeros, sino también a una serie de factores clave que han impulsado el sector.

Entre ellos, destacan la apertura de nuevas rutas internacionales, el aumento del

turismo y la consolidación de aerolíneas de bajo costo, que han facilitado el acceso a los

viajes aéreos para un mayor número de personas.

2.590.861
2.404.054

2.216.474

1.518.847

1.101.250

2.361.045

2.300.307

0

500.000

1.000.000

1.500.000

2.000.000

2.500.000

3.000.000

2 0 2 4 2 0 2 3 2 0 2 2 2 0 2 1 2 0 2 0 2 0 1 9 2 0 1 8

OPERACIONES

Figura 2: Gráfica de número de operaciones anuales de aeropuertos españoles contabilizados por AENA[8].

12

A nivel operativo, la recuperación del tráfico ha supuesto nuevos retos para la gestión

del espacio aéreo. La congestión en aeropuertos y rutas de alto tráfico ha generado una

creciente necesidad de optimizar la planificación y el control de vuelos.

1.2. Conceptos básicos

1.2.1. Origen de la Inteligencia Artificial

La inteligencia artificial (AI) es el campo que estudia cómo hacer que las computadoras

imiten la inteligencia humana, lo que ha permitido avances increíbles en diversos

sectores, desde la medicina hasta la aviación.

La idea de máquinas inteligentes no es nueva. Ya en la antigüedad, los filósofos

imaginaban autómatas capaces de razonar. No obstante, no fue hasta el siglo XX cuando

se dieron los primeros pasos. En la década de 1940, durante la Segunda Guerra Mundial,

el matemático Alan Turing desarrolló una de las primeras computadoras y propuso la

idea de que una máquina podía "pensar" si lograba imitar el comportamiento humano

en una conversación. Este concepto dio lugar al Test de Turing [7], que aún hoy se usa

para evaluar si una IA puede engañar a una persona haciéndole creer que está hablando

con otro humano.

Posteriormente, en 1956, en la Conferencia de Dartmouth, John McCarthy acuñó el

término "Inteligencia Artificial", marcando el inicio oficial de esta disciplina. Durante

esta época, los científicos eran optimistas y creían que en poco tiempo las computadoras

podrían alcanzar el nivel de inteligencia humana. Sin embargo, en las décadas de 1960

y 1970, aunque se desarrollaron algunos de los primeros programas de AI, como ELIZA,

un chatbot rudimentario, las limitaciones tecnológicas llevaron a una pérdida de interés.

En los años 80 y 90, gracias a la mejora de los procesadores y al desarrollo de redes

neuronales artificiales, la AI volvió a cobrar importancia. Se crearon sistemas expertos

capaces de resolver problemas complejos en medicina e industria. No obstante, fue en

el siglo XXI cuando la AI experimentó un crecimiento explosivo, impulsado por el acceso

a grandes volúmenes de datos (Big Data) y el aumento del poder computacional.

Figura 3: Conversación con el chatbot ELIZA.

13

Durante este período, aparecieron asistentes virtuales como Siri y Alexa, sistemas de

reconocimiento facial y vehículos autónomos como los de Tesla.

1.2.2. Tipos de Aprendizaje en Inteligencia Artificial

Para entender cómo funciona la AI, es fundamental conocer sus diferentes formas de

aprendizaje. Estas no "nacen" sabiendo qué hacer, sino que deben ser entrenadas para

tomar decisiones y mejorar con el tiempo. Existen tres principales tipos de aprendizaje:

1. Aprendizaje Supervisado: En este método, el modelo aprende a partir de datos

etiquetados. Por ejemplo, si quieres enseñar a una AI a reconocer gatos en fotos,

le muestras imágenes etiquetadas como "con gato" o "sin gato". Con suficiente

entrenamiento, puede predecir si una nueva imagen contiene un gato. Este tipo

de aprendizaje se aplica en reconocimiento facial, diagnóstico médico y

predicción del clima.

2. Aprendizaje no Supervisado: Aquí, la AI analiza datos sin etiquetar para

encontrar patrones y organizar la información. Un ejemplo es Spotify, que

observa las canciones que escuchas y te recomienda nuevas basadas en tus

gustos. Este método se utiliza en segmentación de clientes, detección de fraudes

y sistemas de recomendación.

3. Aprendizaje por Refuerzo (Reinforcement Learning - RL): En este caso, la AI

aprende por prueba y error. Un "agente" realiza acciones en un entorno y recibe

recompensas o penalizaciones según sus decisiones. Por ejemplo, un robot que

aprende a jugar ajedrez recibe puntos positivos por buenos movimientos y

negativos por malos. Este enfoque se aplica en juegos, robótica y optimización.

Figura 4: Ejemplo visual de aprendizaje supervisado (regresión lineal) y no supervisado (Clustering).

14

1.2.3. BlueSky

BlueSky es un simulador de tráfico aéreo de código abierto diseñado para investigar y

desarrollar soluciones innovadoras en la gestión del tráfico aéreo. BlueSky fue creado

en 2015 por el Instituto Nacional de Investigación Matemática e Informática (CWI) de

los Países Bajos, en colaboración con la Universidad Tecnológica de Delft (TU Delft). Este

proyecto surgió como una iniciativa de código abierto para proporcionar una

herramienta flexible y accesible para la investigación en gestión del tráfico aéreo. Este

software permite recrear escenarios realistas de vuelo, simulando el comportamiento

de aeronaves, controladores aéreos y otros elementos clave del espacio aéreo. Su

flexibilidad y capacidad de personalización lo convierten en una herramienta invaluable

para investigadores, desarrolladores y profesionales de la aviación que buscan optimizar

la eficiencia y seguridad en los cielos.

Una de las aplicaciones más destacadas de BlueSky es su integración con sistemas de AI.

En este contexto, surge BlueSky-Gym, una plataforma que combina el simulador con

técnicas de RL para entrenar modelos de AI en la gestión del tráfico aéreo. BlueSky-Gym

permite a los investigadores desarrollar y probar algoritmos que optimicen rutas,

reduzcan demoras y mejoren la toma de decisiones en tiempo real, marcando un hito

en la modernización de la aviación.

Figura 5: Flujo de trabajo de BlueSky para la adquisición, procesamiento y almacenamiento de datos experimentales. Incluye

interacción con hardware, abstracción en Python, serialización, almacenamiento persistente y análisis de datos en entornos

interactivos.

15

1.3. Motivación

A medida que avanzaba en mis estudios en el grado en Gestión Aeronáutica, me ha

interesado mucho la evolución de las tecnologías especialmente de las AI y de su

aplicación al ATC y de cómo estas pueden mejorar la seguridad y eficiencia en la aviación.

En un mundo donde el número de vuelos sigue en aumento y donde la automatización

desempeña un papel cada vez más relevante, considero que el RL representa una

oportunidad clave para optimizar la gestión del espacio aéreo y la toma de decisiones.

El tráfico aéreo es un sistema altamente complejo, donde cada decisión puede afectar

la seguridad. Tradicionalmente, las estrategias de control se basan en reglas

predefinidas y en la experiencia de los controladores. Sin embargo, con el crecimiento

del tráfico aéreo y la incorporación de drones y aeronaves autónomas, surgen desafíos

que requieren soluciones más dinámicas y adaptativas.

El uso de AI permite desarrollar sistemas que pueden aprender y mejorar

continuamente en la gestión del tráfico aéreo. Con BlueSky-Gym, se pueden entrenar

modelos de RL en entornos simulados sin poner en riesgo operaciones reales.

Como estudiante, creo que este proyecto es una oportunidad única para combinar

conocimientos de gestión del tráfico aéreo con herramientas tecnológicas avanzadas.

Explorar cómo los algoritmos de AI pueden integrarse en ATC no solo es un tema

innovador, sino que también tiene aplicaciones concretas en el sector aeronáutico,

desde la automatización del control de tráfico hasta la optimización de la capacidad

aeroportuaria.

En conclusión, este trabajo no solo representa una oportunidad para profundizar en un

tema innovador dentro de la gestión aeronáutica, sino que también contribuye al

desarrollo de nuevas estrategias para la optimización del tráfico aéreo mediante

inteligencia artificial. A través de esta investigación, espero no solo aprender sobre

BlueSky-Gym y el aprendizaje por refuerzo, sino también aportar soluciones prácticas

que puedan optimizar el tráfico aéreo del futuro.

1.4. Objetivos

El objetivo general del trabajo es explorar el uso del aprendizaje por refuerzo en el

control aéreo, con un enfoque específico en el estudio de las funcionalidades y

aplicaciones potenciales del paquete BlueSky-Gym. Para alcanzar este objetivo general,

se han definido los siguientes objetivos específicos, que guiarán el desarrollo del trabajo:

1. Revisar la literatura existente acerca de aprendizaje por refuerzo y el simulador

BlueSky.

2. Estudiar el paquete BlueSky-Gym: características y aplicaciones.

3. Escribir un tutorial BlueSky-Gym para no expertos.

4. Llevar a cabo simulaciones o experimentos computacionales con varios

escenarios y analizar resultados.

5. Estudiar limitaciones y posibles desarrollos del paquete.

16

1.5. Metodología

Para abordar los objetivos planteados en el trabajo, se pueden combinar diversas

metodologías de investigación, en función de la naturaleza de cada objetivo. En primer

lugar, para revisar la literatura existente sobre aprendizaje por refuerzo y el simulador

BlueSky, se realizará una búsqueda sistemática en bases de datos académicos como IEEE

Xplore y Google Scholar. Esta revisión permitirá identificar las aplicaciones más comunes

del aprendizaje para reforzar el control de tráfico aéreo y analizar las tendencias,

limitaciones y avances en el uso de BlueSky.

Posteriormente, el estudio del paquete BlueSky-Gym se llevará a cabo mediante un

análisis de datos y una verificación técnica. Se examinará la documentación oficial, el

código fuente y los ejemplos disponibles, con el fin de identificar sus características

principales, las aplicaciones disponibles y prácticas reportadas en la literatura o en

proyectos anteriores. Para ello, se utilizarán recursos como la documentación de

BlueSky-Gym.

Una vez comprendido el funcionamiento del paquete, se diseñará un tutorial dirigido a

usuarios sin experiencia en BlueSky-Gym. Este documento incluye instrucciones paso a

paso para la instalación, configuración y uso del simulador, complementadas con

ejemplos prácticos y capturas de pantalla. Para la elaboración del tutorial, se emplearán

herramientas de documentación, así como grabadoras de pantalla.

En la siguiente fase del trabajo, se llevarán a cabo simulaciones y experimentos

computacionales con diferentes escenarios dentro de BlueSky-Gym. Se evaluará el

algoritmo de aprendizaje por refuerzo, en tareas específicas como resolución de

conflictos y fusión de tráfico. Los datos recopilados incluyen métricas de rendimiento

como la recompensa acumulada, el tiempo de convergencia y su eficiencia. Para el

análisis de los resultados, se utilizarán herramientas como Python [9] y bibliotecas de

aprendizaje.

Finalmente, se realizará un análisis crítico de BlueSky-Gym para identificar sus

limitaciones y proponer posibles mejoras. Se evaluará la falta de soporte para entornos

multiagente, la complejidad de los escenarios y la integración con otras herramientas. A

partir de este diagnóstico, se sugerirán desarrollos futuros, como la ampliación a

entornos más complejos o la mejora de la documentación. Este proceso se

complementará con una revisión de la literatura existente.

A través de esta metodología estructurada, se espera lograr un análisis completo del

paquete BlueSky-Gym, generar recursos accesibles para nuevos usuarios y aportar

conocimientos valiosos para su mejora y aplicación en el control de tráfico aéreo.

17

1.6. Análisis de viabilidad

El proyecto presenta una viabilidad técnica sólida, respaldada por los recursos

disponibles y las herramientas de software adecuadas. En primer lugar, se cuenta con

BlueSky, un simulador de tráfico aéreo de código abierto que permite personalizaciones

y es ampliamente utilizado en investigaciones académicas. Además, BlueSky-Gym, una

extensión basada en Gymnasium, facilita la integración con algoritmos de RL, lo que

agiliza el desarrollo de modelos avanzados. En cuanto al hardware, no se requiere un

equipo de alto rendimiento, aunque contar con una GPU podría acelerar el

entrenamiento de los modelos. Por otro lado, la documentación disponible en GitHub,

junto con estudios previos y referencias académicas, proporciona una amplia base para

el desarrollo del proyecto.

En cuanto a la viabilidad legal y ética, el uso de software de código abierto como BlueSky

y BlueSky-Gym no presenta restricciones significativas, ya que ambos están disponibles

bajo licencias que permiten su uso en investigación y desarrollo. En el caso de utilizar

datos de tráfico aéreo real, como los proporcionados por Flightradar24[10] o eAIP [11],

es fundamental verificar sus términos de empleo. Desde una perspectiva ética, el

impacto en la seguridad aérea es un aspecto crítico. Un modelo mal entrenado podría

generar recomendaciones erróneas.

La viabilidad económica del proyecto también es favorable. Los costos de software son

bajos, ya que BlueSky y BlueSky-Gym son gratuitos y de código abierto. En cuanto al

hardware, los costos pueden variar desde un nivel medio hasta uno más elevado,

dependiendo de la capacidad de cómputo requerida.

1.7. Recursos necesarios

Recursos computacionales y de software

1. PC o portátil con capacidad suficiente para correr simulaciones.
2. Python 3.11 (lenguaje principal).
3. BlueSky-Gym (simulador)
4. Bibliotecas adicionales: NumPy 1.24, Matplotlib, Gym, etc.

Recursos Bibliográficos y Teóricos

1. Revisiones recientes sobre aprendizaje por refuerzo en simulaciones.

2. Aplicaciones del aprendizaje para refuerzo en tráfico aéreo o simulaciones

similares.

18

1.8. Cronograma

Actividad 3-17 de
febrero

18-4 de
marzo

5-19 de
marzo

20-3 de abril 4-18 de abril 19-3 de
mayo

4-18 de
mayo

19-2 de junio 3-17 de junio 18-2 de julio

Revisar la literatura existente
acerca de aprendizaje por refuerzo
y el simulador Bluesky.

Estudiar el paquete Bluesky-gym:
características y aplicaciones.

Llevar a cabo simulaciones o
experimentos computacionales
con escenarios básicos.

Iniciar la redacción del tutorial
Bluesky-gym para no expertos.

Analizar resultados preliminares y
realizar ajustes en las simulaciones.

Estudiar limitaciones y posibles
desarrollos del paquete.

Refinar el tutorial Bluesky-gym con
base en retroalimentación.

Ampliar simulaciones con
escenarios más complejos.

Analizar resultados avanzados y
documentar hallazgos.

Finalizar el análisis de limitaciones
y propuestas de mejora del
paquete.

Redacción del informe y ajustes
finales en experimentos.

Revisión y edición del trabajo
completo.

Tabla 1: Cronograma de actividades.

19

1.9. Riesgos

La siguiente tabla muestra las principales fuentes de riesgos identificadas, así como las

estrategias a seguir para prevenir, controlar o responder a los posibles problemas

antes de que afecten significativamente los objetivos.

Riesgo Impacto Estrategia de mitigación

Falta de experiencia en
BlueSky-Gym

Medio Realizar tutoriales y
pruebas con ejemplos
básicos antes de los
experimentos principales.

Problemas de
compatibilidad entre
BlueSky-Gym, Python y
bibliotecas

Medio Asegurarse que se usa la
versión compatible de los
paquetes y revisar
documentación y foros de
usuarios.

Tiempo de entrenamiento
excesivo

Alto Realizar pruebas con
modelos más simples
antes de ejecutar
experimentos complejos.

Falta de métricas claras
para evaluar el
rendimiento del modelo

Medio-Alto Definir métricas clave
como eficiencia del
tráfico, número de
conflictos resueltos y
tiempos de convergencia.

Dificultad en la validación
de los resultados con
datos reales

Bajo Comparar los resultados
de la simulación con
estudios previos o
modelos heurísticos de
control de tráfico aéreo.

Limitaciones de tiempo
para cumplir con el
cronograma

Alto Establecer hitos
intermedios y aplicar
metodologías ágiles para
ajustar el plan de trabajo
según los avances.

Tabla 2: Tabla de riesgos.

20

Estructura de la memoria

Capítulo 1: Introducción

- Presentación del tema: Aprendizaje por refuerzo (RL) y su aplicación en la gestión

del tráfico aéreo mediante BlueSky-Gym.

Capítulo 2: El aprendizaje por refuerzo (RL)

- Profundizar en el RL: Aprendizaje acumulado, generaciones, convergencia,

ventajas y desventajas, con ejemplos e imágenes.

Capítulo 3: Estudio de BlueSky y BlueSky-Gym

- Estudio del paquete BlueSky y BlueSky-Gym: Características principales,

funcionalidades y aplicaciones existentes.

- Descripción de los escenarios básicos seleccionados para las simulaciones

iniciales.

- Análisis de resultados preliminares y ajustes en los parámetros de las

simulaciones.

Capítulo 4: Tutorial de BlueSky-Gym

- Instalación y configuración del entorno. Descripción de los módulos principales:

Simulador, entorno de RL y herramientas de visualización.

- Creación de un escenario simple: Definición de aeronaves, rutas y condiciones

iniciales. Parámetros clave: Velocidad, altitud, separación entre aeronaves, etc.

- Ejecución de una simulación básica y visualización de resultados.

Capítulo 5: Experimentos computacionales con BlueSky-Gym

- Diseño de escenarios más complejos para evaluar el rendimiento de BlueSky-

Gym en condiciones desafiantes.

- Ejecución de simulaciones avanzadas y recopilación de datos. Análisis de

resultados avanzados: Eficiencia, limitaciones y posibles mejoras en el paquete.

Capítulo 6: Limitaciones y propuestas de mejora

- Identificación de las limitaciones actuales de BlueSky-Gym: Compatibilidad,

escalabilidad y usabilidad.

- Propuestas de desarrollo futuro: Mejoras en la documentación, optimización del

código y ampliación de funcionalidades.

- Discusión sobre cómo estas mejoras podrían impactar en la investigación y

aplicaciones prácticas.

Capítulo 7: Conclusión

- Resumen de los hallazgos principales del trabajo.

- Reflexiones sobre la importancia de las AI y a herramientas como BlueSky-Gym.

- Perspectivas futuras: Posibles líneas de investigación y desarrollo.

21

2. El aprendizaje por refuerzo

2.1 Introducción

El aprendizaje por refuerzo es un tipo de aprendizaje automático en el que un agente

aprende a tomar decisiones en un entorno interactivo mediante prueba y error. El

agente recibe recompensas o castigos por sus acciones, y su objetivo es maximizar la

recompensa total a lo largo del tiempo. A diferencia de otros enfoques de aprendizaje

automático, como el aprendizaje supervisado, donde el agente aprende a partir de

ejemplos etiquetados, o el aprendizaje no supervisado, que busca patrones en datos no

estructurados, el RL se basa en la exploración y explotación de acciones para maximizar

una recompensa acumulada a lo largo del tiempo [13]. Este enfoque lo convierte en una

herramienta poderosa para resolver problemas secuenciales y de toma de decisiones en

entornos dinámicos y complejos.

El aprendizaje por refuerzo tiene sus raíces en la psicología conductista, donde en 1855

Alexander Bain y posteriormente en 1898 Edward Thorndike estudiaron cómo los

organismos aprenden a través de la interacción con su entorno, finalmente sentando las

bases del aprendizaje por ensayo y error, e posteriormente en la década de 1927 Iván

Pávlov contribuyó con sus estudios sobre el condicionamiento clásico donde explora

cómo los animales pueden asociar estímulos para generar respuestas automáticas. En

el ámbito de la inteligencia artificial, el RL se formalizó en la década de 1980, con

contribuciones clave de investigadores como Richard Sutton y Andrew Barto, quienes

desarrollaron las bases teóricas y prácticas del campo. Durante este periodo, se crearon

algoritmos como el Q-learning, que marcaron un avance significativo en el sector de las

AIs, esta técnica de aprendizaje por refuerzo utilizada en el aprendizaje automático ha

permitido hoy en día realizar diagnósticos basado en imágenes en medicina igualando

el nivel de los profesionales del sector [14]. Otro ejemplo, fue la combinación del RL con

redes neuronales profundas, ejemplificada por el éxito de DeepMind en dominar

videojuegos de Atari y el juego de Go [13].

Figura 6: Richard Sutton y Andrew Barto autores “Introducción al aprendizaje por refuerzo”.

22

Uno de los aspectos más destacados del RL es su capacidad para aprender de manera

autónoma, sin necesidad de supervisión explícita. El agente interactúa con el entorno,

observa los resultados de sus acciones y ajusta su comportamiento para maximizar las

recompensas futuras [13]. Este proceso de aprendizaje acumulado, donde el agente no

solo busca recompensas inmediatas sino también a largo plazo, es fundamental en

problemas como juegos, control de robots y optimización de recursos [15].

En los últimos años, el RL ha alcanzado hitos significativos gracias a la combinación con

técnicas de aprendizaje profundo. Por ejemplo, el algoritmo Deep Q-Network (DQN)

permitió a un agente alcanzar un rendimiento a nivel humano en juegos de Atari,

utilizando redes neuronales profundas para aproximar la función de valor [15]. Otro

avance notable fue AlphaGo Zero, que aprendió a jugar Go a un nivel superhumano sin

datos de entrenamiento humanos, utilizando solo RL y búsqueda de árboles Monte Carlo

[16]. Además, el algoritmo Deep Deterministic Policy Gradient (DDPG) extendió el RL a

entornos con acciones continuas, como el control de robots [17].

2.2 Fundamentos Teóricos del Aprendizaje por Refuerzo

El aprendizaje por refuerzo (RL) se basa en un marco teórico bien definido que permite

a un agente aprender a tomar decisiones óptimas mediante la interacción con un

entorno. Este marco se compone de varios elementos clave y conceptos fundamentales

que guían el proceso de aprendizaje.

2.2.1. Marco de Trabajo: Agente, Entorno, Estado, Acción y Recompensa

El RL se estructura en torno a la interacción entre un agente y un entorno. El agente es

la entidad que toma decisiones, mientras que el entorno representa el mundo externo

con el que el agente interactúa. En cada paso de tiempo, el agente observa el estado

actual del entorno, selecciona una acción y recibe una recompensa como

retroalimentación. El objetivo del agente es aprender una política que maximice la

recompensa acumulada a lo largo del tiempo [13].

Figura 7: Estructura de la red neuronal utilizada para la Red de Aprendizaje por Refuerzo Profundo (Deep Q-learning Network).

23

2.2.2. Conceptos Clave

• Política: La política es la estrategia que el agente utiliza para seleccionar acciones

en función del estado actual. Puede ser determinista (siempre selecciona la

misma acción para un estado dado) o estocástica (asigna probabilidades a las

acciones posibles) [13].

• Función de Valor: La función de valor estima la recompensa acumulada que el

agente puede esperar obtener a partir de un estado o acción. Existen dos tipos

principales: la función de valor de estado (que evalúa cuán bueno es estar en un

estado) y la función de valor de acción (que evalúa cuán buena es una acción en

un estado dado) [13].

• Aprendizaje Acumulado y Recompensa Descontada: El RL se enfoca en maximizar

la recompensa acumulada a largo plazo, no solo la recompensa inmediata. Para

ello, se introduce un factor de descuento que pondera la importancia de las

recompensas futuras. Este enfoque permite al agente priorizar acciones que

generen beneficios sostenidos en el tiempo [2,13].

2.2.3. Exploración vs. Explotación

Uno de los dilemas centrales en el RL es el balance entre exploración y explotación. La

exploración implica probar nuevas acciones para descubrir sus efectos, mientras que la

explotación se refiere a utilizar acciones conocidas que han generado buenas

recompensas. Un agente debe equilibrar ambos aspectos para aprender

eficientemente: demasiada explotación puede llevar a soluciones subóptimas, mientras

que demasiada exploración puede retrasar la convergencia a una política óptima [2,13].

Figura 8: Diagrama simplificado de agente y entorno.

24

2.3. Algoritmos Clásicos de Aprendizaje por Refuerzo

El aprendizaje por refuerzo (RL) cuenta con una variedad de algoritmos que se clasifican

en tres categorías principales: métodos basados en valor, métodos basados en políticas

y métodos basados en modelos. Cada uno de estos enfoques tiene sus propias

características y aplicaciones, lo que los hace adecuados para diferentes tipos de

problemas.

2.3.1. Métodos Basados en Valor

Estos métodos buscan calcular qué tan bueno es un estado o una acción en un problema

de toma de decisiones. Para hacerlo, intentan predecir la recompensa total que se

podría obtener en el futuro si se sigue una estrategia determinada. Dos de los algoritmos

más representativos son:

Q-learning: Este algoritmo aprende a estimar qué tan buena es cada acción en un

determinado estado. Para ello, utiliza una función llamada "función Q", que asigna un

valor a cada acción según las recompensas futuras esperadas. Q-learning es un método

off-policy, lo que significa que aprende “el camino” más optimo independientemente de

las acciones que el agente esté tomando durante el aprendizaje [13].

Deep Q-Networks (DQN): DQN es una mejora del algoritmo Q-learning que usa redes

neuronales para tomar decisiones en entornos complejos, como videojuegos. En lugar

de almacenar todos los valores de las acciones en una tabla, la red neuronal aprende a

estimarlos, lo que permite manejar situaciones con muchas posibilidades. Además, usa

trucos como guardar experiencias pasadas y tener una red de referencia para hacer el

aprendizaje más estable y efectivo [15]. DQN se ha utilizado en juegos de estrategia en

tiempo real, como StarCraft II, para entrenar agentes que aprenden a tomar decisiones

complejas en entornos dinámicos.

Figura 9: Ejemplo visual de una Q-Table, donde el algoritmo debería alcanzar el objetivo utilizando el camino más corto.

25

2.3.2. Métodos Basados en Políticas

Estos métodos enseñan directamente al agente cómo tomar decisiones. En lugar de

calcular el valor de cada acción, ajustan la forma en que el agente elige sus acciones para

obtener la mayor recompensa posible. Dos algoritmos destacados son:

Policy Gradient: Es un método que enseña al agente a mejorar sus decisiones ajustando

directamente la forma en que elige sus acciones. En lugar de calcular valores para cada

acción, el agente aprende probando diferentes estrategias y ajustándolas para

maximizar la recompensa. Aunque este método es flexible y funciona bien en

situaciones donde las acciones son aleatorias (estocásticas), puede necesitar muchas

pruebas para aprender correctamente [13]. Por ejemplo, un robot debe aprender a

lanzar una pelota a un objetivo. En lugar de calcular cuál es el mejor ángulo y fuerza

exactos en cada intento, el robot prueba diferentes formas de lanzar la pelota, recibe

una puntuación por cada intento y ajusta su estrategia hasta mejorar su precisión.

Deep Deterministic Policy Gradient (DDPG): DDPG es una extensión de Policy Gradient

que combina redes neuronales profundas con métodos basados en políticas para

manejar entornos con acciones continuas. Este algoritmo es especialmente útil en

aplicaciones de control, como la robótica, donde las acciones suelen ser continuas y de

alta dimensionalidad. DDPG utiliza un enfoque actor-crítico, donde el actor decide que

acción tomar y el crítico que evalúa las acciones tomadas [17]. En este caso imagina un

dron que debe aprender a volar suavemente para aterrizar en una plataforma. DDPG

permite que el dron ajuste gradualmente la potencia de sus motores en lugar de elegir

entre opciones fijas como "subir" o "bajar". Así, puede realizar movimientos más

precisos y eficientes.

2.3.3. Métodos Basados en Modelos

Finalmente, estos métodos utilizan una representación del entorno para planificar antes

de actuar. En lugar de aprender solo a partir de la experiencia directa, el agente simula

diferentes escenarios para predecir los resultados de sus acciones y tomar mejores

decisiones. Un ejemplo destacado es:

Búsqueda de Árboles Monte Carlo (MCTS): MCTS es un método que ayuda a tomar

decisiones explorando diferentes opciones de manera inteligente. En lugar de analizar

todas las posibilidades (lo que puede ser imposible en juegos complejos), prueba

algunas opciones al azar, construye un árbol con los mejores movimientos y se enfoca

en los más prometedores [16].

26

2.4. Software y hardware que se utiliza actualmente en las

aplicaciones RL

El desarrollo de aplicaciones de aprendizaje por refuerzo (RL) como BlueSky-Gym se ve

impulsado por la sinergia software-hardware necesario para realizar simulaciones

eficientes y precisas. En el lado del software, herramientas como TensorFlow o PyTorch

constituyen la base sobre la que implementar las redes neuronales profundas que

resulta esencial en algoritmos como DQN o DDPG que el propio BlueSky-Gym aplica para

permitir entrenar a los agentes de gestión del tráfico aéreo. Junto a estas bibliotecas

concretas, también se encuentran bibliotecas más especializadas (Stable-Baselines3 o

Ray RLlib) que simplifican la experimentación con algoritmos clásicos (PPO o SAC) y que

permiten escalar el entrenamiento a entornos distribuidos, lo que resulta fundamental

para escenificar entornos complejos y realistas (con aeropuertos que tienen cientos de

vuelos simultáneos). Por otra parte, entornos como OpenAI Gym son los que

permitieron estandarizar la evaluación de modelos, mientras que simuladores físicos

(MuJoCo) o 3D (Unity ML-Agents) inspiraron el diseño de los entornos realistas en

BlueSky-Gym y su utilización en variables extra como la meteorológica o la existencia de

rutas en función de la situación.

Con respecto al hardware, las exigencias computacionales de BlueSky-Gym requieren

unos recursos potentes. Por ejemplo, las GPUs (NVIDIA Tesla, RTX) aceleran el

entrenamiento de modelos profundos mediante la ejecución en paralelo de operaciones

matriciales, lo que permite reducir el tiempo requerido para simular miles de episodios.

Para proyectos extensos, como el optimizador de tráfico aéreo global, se pueden

aprovechar las TPUs de Google, que destacan a nivel de rendimiento. Asimismo, la

computación distribuida (clusters y herramientas como Ray) permite dividir el trabajo

entre varios nodos, lo que resulta un enfoque determinante para el paso de BlueSky-

Gym hacia un simulador profesional. Además, el hardware específico (placas NVIDIA

Jetson) se podría incorporar en las fases de producción para realizar inferencias en

sistemas físicos (torres de control automatizadas).

Para un mayor entendimiento se pasará a explicar los dos mayores componentes que

intervienen en una simulación:

2.4.1. Software (Las "Herramientas Digitales")

Sin el software, BlueSky-Gym no tendría cerebro: no podría aprender ni simular.

• Frameworks de Aprendizaje Profundo y RL:

o TensorFlow y PyTorch: Son como los cuadernos de notas de la AI, como

los cuadros de una novela, permitiendo programar redes neuronales

(modelos matemáticos inspirados en el cerebro humano) para que la

máquina aprenda de sus errores. Es decir, si BlueSky-Gym hace un error

dando las órdenes para dirigir un avión, estos programas se hacen cargo

de realizar correcciones en sus cálculos para hacerlo mejor la próxima

vez.

27

o Stable-Baselines3: Es como el libro de recetas con algoritmos

predefinidos y que si quieres enseñar a BlueSky-Gym a tomar decisiones,

aquí encuentras métodos que han sido probados, como el PPO (simula

un entrenador que da premios por buenas acciones) o el DQN (que

aprende por prueba y error).

o OpenAI Gym: Un entorno de desarrollo que ofrece una variedad de

entornos simulados para probar y evaluar algoritmos de RL, desde juegos

clásicos hasta problemas de control, pero los de BlueSky-Gym se usan

para simular aviones, rutas y emergencias.

o Ray RLlib: Hay que pensar en esto como en un equipo de trabajadores,

de tal forma que si BlueSky-Gym necesita ejecutar varios aviones,

entonces el RLlib divide el trabajo en varias máquinas para así hacerlo lo

más rápido posible.

• Herramientas de Simulación:

o Unity ML-Agents: Es como los estudios de cine que crean mundos

virtuales. Unity se usa para simulaciones en 3D (por ejemplo, un

aeropuerto con gráficos realistas), y MuJoCo es para simular las leyes

físicas (como el viento afectando a un avión).

2.4.2. Hardware (Los "Motores" que Hacen el Trabajo Pesado)

Sin el hardware, sería como un cerebro sin cuerpo: sabría qué hacer, pero no podría

hacerlo rápido.

• Unidades de Procesamiento Gráfico (GPUs): Son tarjetas que ejecutan cálculos

de forma muy rápida. En BlueSky-Gym, una mejor GPU ayudará a acelerar el

entrenamiento de modo que simular cientos de aterrizajes lleve horas en vez de

días.

• Unidades de Procesamiento Tensor (TPUs): Desarrolladas por Google, las TPUs

están optimizadas para operaciones de aprendizaje profundo y son utilizadas en

aplicaciones de RL que requieren un alto rendimiento computacional, como el

entrenamiento de modelos a gran escala. Podríamos pensar en ellos como

motores de Fórmula 1. No son para uso doméstico, pero en el caso de proyectos

masivos (como el que trata de simular el tráfico aéreo de todo un país) son

extremadamente rápidos.

• Computación Distribuida: Sería como si quisiéramos resolver un enorme

rompecabezas al contratar a un pool enorme de personas que lo hicieran. En vez

de usar una sola computadora instalada en una oficina, BlueSky-Gym podría usar

decenas conectadas en red (usando herramientas como Ray) para hacer el

trabajo repartiendo las tareas

• Hardware Especializado: Es hardware que tiene una potencia enorme en

formatos muy pequeños: computadoras que usan drones o robots (en el caso

que BlueSky-Gym quisiera controlar aviones). Esta opción permitiría poder

ejecutar el modelo entrenado en tiempo real fuera de la oficina, por ejemplo, a

un avión que vuela por la costa incluso sin internet disponible.

28

2.5. Aplicaciones del Aprendizaje por Refuerzo

2.5.1. Juegos

Los juegos han sido un campo de pruebas ideal para el RL debido a su naturaleza

estructurada y la posibilidad de definir recompensas claras. Dos ejemplos emblemáticos

son:

Aplicación de DQN en juegos de Atari: El algoritmo Deep Q-Network (DQN) revolucionó

el campo del RL al combinar redes neuronales profundas con Q-learning. Este enfoque

permitió a un agente aprender a jugar directamente a partir de imágenes de pantalla,

alcanzando un rendimiento a nivel humano en varios juegos clásicos de Atari, como

Breakout y Space Invaders. DQN demostró que el RL puede manejar entornos de alta

dimensionalidad y aprender políticas efectivas sin supervisión explícita [15].

AlphaGo Zero y su dominio del juego de Go: AlphaGo Zero es un hito en la historia del

RL. A diferencia de su predecesor, AlphaGo, que utilizaba datos de partidas humanas,

AlphaGo Zero aprendió a jugar Go desde cero, utilizando únicamente RL y búsqueda de

árboles Monte Carlo (MCTS). Este sistema no solo superó a los mejores jugadores

humanos, sino que también descubrió estrategias novedosas que revolucionaron la

comprensión del juego [16].

2.5.2. Robótica

El RL ha encontrado aplicaciones significativas en robótica, donde la capacidad de

aprender en entornos dinámicos y complejos es crucial. Un ejemplo destacado es:

Control de robots con DDPG: El algoritmo Deep Deterministic Policy Gradient (DDPG) ha

sido utilizado para controlar robots en tareas que requieren precisión y coordinación,

como la manipulación de objetos y el movimiento autónomo. DDPG es especialmente

adecuado para entornos con acciones continuas, lo que lo convierte en una opción ideal

para aplicaciones de control en robótica. Este enfoque ha permitido a los robots

aprender tareas complejas de manera autónoma, sin necesidad de programación

explícita [17].

Figura 10: Ejemplo de elementos de hardware y de software.

29

2.5.3. Otras Aplicaciones

Investigaciones en el ámbito del control del tráfico aéreo han explorado el uso de

algoritmos de Reinforcement Learning (RL) para optimizar la gestión del espacio aéreo

en tiempo real. En particular, el proyecto Dynamic Airspace Configuration (DAC) de la

NASA ha demostrado mediante simulaciones sobre el espacio aéreo de Kansas City que

ciertas técnicas de reconfiguración dinámica pueden reducir los retrasos promedio por

vuelo en escenarios de alta congestión en hasta un 15–20 % [18]. Estas simulaciones

consideraron múltiples variables como restricciones operacionales, condiciones

meteorológicas y distribución del tráfico aéreo. Aunque en los documentos públicos del

proyecto DAC no se mencionan algoritmos específicos de aprendizaje profundo, otras

investigaciones han demostrado el potencial del enfoque Deep Deterministic Policy

Gradient (DDPG) en entornos aeronáuticos. Este algoritmo de aprendizaje por refuerzo

profundo desarrollado por Google DeepMind en 2015. Está diseñado para resolver

tareas de control continuo, donde las acciones no son discretas (como girar a la izquierda

o a la derecha), sino continuas (como ajustar gradualmente el ángulo de vuelo, velocidad

o altitud). Gracias a este algoritmo, una tesis de la Universidad de Cranfield desarrolló

un sistema de control de vuelo autónomo basado en DDPG, capaz de operar en

condiciones de alta complejidad dinámica con seis grados de libertad [19].

Microsoft Flight Simulator incorpora avanzadas técnicas de inteligencia artificial

generativa, apoyadas en tecnologías de Azure y Blackshark.ai, que permiten reconstruir

de forma precisa y detallada el entorno global mediante el uso de datos satelitales y

fotogrametría [20,21]. Este sistema crea más de 1,500 millones de edificaciones,

carreteras, vegetación y otras estructuras, incluso rellenando automáticamente zonas

con datos escasos, como aeropuertos secundarios o extremos de paisaje, y reproduce

efectos meteorológicos en tiempo real [20]. Además, integra tráfico aéreo real basado

en datos “live” de transpondedores, lo que contribuye a una simulación altamente

inmersiva y realista [22]. Aunque no se ha confirmado el uso de algoritmos de

aprendizaje por refuerzo puro como Proximal Policy Optimization (PPO) en el sistema

de tráfico, investigaciones académicas han aplicado PPO para el control autónomo de

tráfico aéreo simulado, demostrando que estas técnicas permiten a las aeronaves tomar

decisiones autónomas, como cambiar rutas ante tormentas o mantener la separación

entre aviones [1].

Investigadores del MIT Lincoln Laboratory han desarrollado avanzados sistemas de

evitación de colisiones basados en aprendizaje profundo, tales como ACAS‑X y su

variante para drones ACAS Xu, diseñados para operar en entornos mixtos de tráfico

tripulado y no tripulado [23,24]. Estos sistemas han sido evaluados con millones de

simulaciones en entornos de encuentro entre vehículos aéreos, utilizando técnicas de

Monte Carlo en simulaciones rápidas, evaluando maniobras evasivas como cambios de

altitud y trayectoria para aumentar la seguridad [25,26]. Los desarrollos de ACAS Xu han

sido distinguidos por su innovación y están en proceso de ser integrados en sistemas

certificados para drones, lo que representa un paso clave hacia su eventual uso conjunto

con agencias como la FAA [24,27].

30

2.6. Desafíos y Limitaciones del Aprendizaje por Refuerzo

A pesar de su potencial y versatilidad, el RL enfrenta varios desafíos y limitaciones que

dificultan su aplicación en problemas complejos y del mundo real. Estos desafíos están

relacionados con aspectos computacionales, de exploración y de estabilidad en el

aprendizaje.

2.6.1. Alto Costo Computacional

Uno de los principales obstáculos del RL es su alto costo computacional. Los algoritmos

de RL requieren una gran cantidad de interacciones con el entorno para aprender

políticas efectivas, lo que puede ser extremadamente costoso en términos de tiempo y

recursos. Por ejemplo, en el caso de Deep Q-Networks (DQN), se necesitaron millones

de pasos de entrenamiento para alcanzar un rendimiento a nivel humano en juegos de

Atari. Además, muchos algoritmos de RL, especialmente aquellos que combinan RL con

redes neuronales profundas, requieren grandes cantidades de datos y potencia de

cálculo, lo que limita su aplicabilidad en entornos donde los recursos son escasos [2].

2.6.2. Dificultad en la Exploración en Entornos Grandes

La exploración eficiente es un desafío fundamental en el RL, especialmente en entornos

grandes o con recompensas escasas. En estos casos, el agente puede tener dificultades

para encontrar acciones que generen recompensas significativas, lo que retrasa el

aprendizaje. El dilema de exploración vs. explotación es particularmente crítico: si el

agente explota demasiado acciones conocidas, puede quedar atrapado en soluciones

subóptimas; si explora demasiado, puede tardar mucho tiempo en converger a una

política efectiva [2,13]. Este problema se agrava en entornos con espacios de estado y

acción de alta dimensionalidad, donde la exploración aleatoria no es viable.

2.6.3. Inestabilidad en la Convergencia de Algoritmos

La inestabilidad en la convergencia es otro desafío importante en el RL. Muchos

algoritmos, especialmente aquellos que combinan RL con redes neuronales profundas,

pueden ser inestables durante el entrenamiento. Por ejemplo, en el caso de Deep

Deterministic Policy Gradient (DDPG), pequeños cambios en los hiperparámetros o en

la inicialización de los pesos de la red pueden llevar a resultados muy diferentes, lo que

dificulta la reproducibilidad y la confiabilidad del aprendizaje [17]. Además, la

convergencia a una política óptima no está garantizada en todos los casos,

especialmente en entornos no estacionarios o con recompensas ruidosas [2].

31

2.7. Ventajas y Desventajas del Aprendizaje por Refuerzo

El RL es un enfoque poderoso y versátil en el campo de la inteligencia artificial, pero

como cualquier técnica, tiene sus ventajas y desventajas. A continuación, se describen

los aspectos más destacados de ambas.

2.7.1. Ventajas

Aprendizaje Autónomo y Adaptabilidad a Entornos Dinámicos: Una de las principales

ventajas del RL es su capacidad para aprender de manera autónoma, sin necesidad de

supervisión explícita. El agente interactúa con el entorno y ajusta su comportamiento

en función de las recompensas obtenidas, lo que lo hace ideal para entornos dinámicos

y cambiantes donde las reglas no están predefinidas [2,13].

Optimización a Largo Plazo en Problemas Secuenciales: El RL está diseñado para

maximizar la recompensa acumulada a lo largo del tiempo, lo que lo hace especialmente

útil en problemas secuenciales y de toma de decisiones a largo plazo. Esto contrasta con

otros enfoques que se centran en optimizar recompensas inmediatas. Ejemplos

notables incluyen el dominio de juegos como Go y Atari, donde el agente debe planificar

varias jugadas adelante para alcanzar el éxito [14,15].

2.7.2. Desventajas

Dificultad para Escalar a Problemas de Alta Dimensionalidad: Aunque el RL ha

demostrado su eficacia en problemas con espacios de estado y acción discretos o de

baja dimensionalidad, escalar a entornos de alta dimensionalidad sigue siendo un

desafío. Por ejemplo, en aplicaciones de control de robots o procesamiento de

imágenes, el alto costo computacional y la complejidad del espacio de búsqueda pueden

dificultar el aprendizaje [2,16].

Dependencia de la Calidad de las Recompensas y la Exploración: El rendimiento del RL

depende en gran medida de la definición adecuada de las recompensas y de una

exploración eficiente. Si las recompensas no están bien diseñadas, el agente puede

aprender políticas subóptimas o incluso contraproducentes. Además, el dilema de

exploración vs. explotación puede dificultar el aprendizaje en entornos donde las

recompensas son escasas o difíciles de obtener [2,13].

32

3. Estudio de BlueSky-Gym y BlueSky

3.1. Introducción

El análisis de herramientas de simulación en el campo aeronáutico es esencial para

impulsar el desarrollo de ingeniería de sistemas que se utilizan en el control de tráfico

aéreo y la gestión de flotas. En este sentido, BlueSky y su extensión BlueSky-Gym se

presentan como unas plataformas de simulación de referencia en el campo de la

simulación para entornos aeronáuticos, así como para la automatización y la

optimización de tareas complejas, mediante la integración de algoritmos de aprendizaje

por refuerzo (RL). Esta finalidad de este capítulo es presentar las principales

características, las funcionalidades y las aplicaciones que tienen estas herramientas, así

como dar a conocer los resultados preliminares obtenidos en simulaciones básicas con

escenarios escogidos.

BlueSky es un simulador específico de tráfico aéreo de código abierto que ofrece un

entorno realista y altamente configurable para simular operaciones aéreas; en cambio,

BlueSky-Gym es una interfaz de software que permite la integración de BlueSky con el

ecosistema OpenAI Gym; lo que permite implementar y evaluar algoritmos RL en

entornos aeronáuticos. Estas herramientas han sido empleadas en trabajos de

investigación recientes para abordar problemas como la gestión del tráfico aéreo, la

optimización de rutas y la minimización de colisiones, demostrando así su versatilidad y

su propio potencial en el ámbito de la inteligencia artificial en la aviación.

En este apartado, se hará una presentación detallada de las características y

funcionalidades de BlueSky y BlueSky-Gym, de los escenarios básicos escogidos para las

simulaciones iniciales, así como de los resultados preliminares analizados. Del mismo

modo, se discutirán ajustes confeccionados en los parámetros de las simulaciones para

su optimización. Este estudio puede considerarse como una base para los estudios

futuros que empleen estas herramientas en problemas más complejos y escalables.

3.2. Estudio del Paquete BlueSky-Gym y BlueSky

En este apartado, se lleva a cabo un estudio en profundidad de las herramientas BlueSky

y BlueSky-Gym donde se presentan sus principales características, funciones y

aplicaciones concretas dentro del ámbito de la investigación y de la simulación

aeronáutica. Estas herramientas han sido diseñadas para proporcionar un entorno de

simulación adecuado y muy configurable que haga posible la conexión con

determinados algoritmos de aprendizaje por refuerzo (RL) así como la simulación de

situaciones complejas de tráfico aéreo.

33

3.2.1. Principales características

BlueSky es un simulador de tráfico aéreo Open Source que destaca por su flexibilidad y

su capacidad para simular operaciones aéreas en tiempo real. Las principales

características de BlueSky son:

➢ Simulación en tiempo real: BlueSky es capaz de simular el comportamiento de

aeronaves, controladores aéreos y otros elementos del espacio aéreo con un

elevado grado de precisión.

➢ Interfaz gráfica y API: Proporciona una GUI intuitiva para la visualización de

simulaciones y una API robusta para la automatización de tareas y la integración

con otras herramientas.

➢ Escalabilidad: Puede gestionar desde escenarios simples con pocas aeronaves

hasta entornos complejos con cientos de vuelos simultáneos.

Por otro lado, BlueSky-Gym es una extensión de BlueSky que conecta el simulador con

el ecosistema OpenAI Gym, facilitando así la implementación y evaluación de algoritmos

de RL. Sus principales características son:

➢ Compatibilidad con OpenAI Gym: Proporciona una interfaz estándar para definir

los entornos de RL con soporte para que los investigadores aplicen algoritmos ya

implementados y comparen resultados de forma consistente (Sun et al., 2020).

➢ Configuración flexible: Se pueden definir escenarios, recompensas y métricas de

evaluación que se adapten a los objetivos de la investigación.

3.2.2. Funcionalidades

Las funcionalidades de BlueSky y BlueSky-Gym las hacen herramientas muy adecuadas

para la investigación en control del tráfico aéreo y la gestión de flotas. Las

funcionalidades más destacadas son las siguientes:

➢ Modelado de aeronaves: Incluir modelos de todo tipo de aeronaves comerciales

o privadas, definiendo parámetros tales como la velocidad, la altitud o la ruta.

➢ Gestión del espacio aéreo: Permitir simular la interacción entre aeronaves y

controladores aéreos, incluyendo gestión de colisiones, desvíos, retrasos, etc.

➢ Integración con RL: BlueSky-Gym proporciona funciones para definir

recompensas, estados y acciones, lo que facilita el entrenamiento de agentes

para RL en escenarios de aviones.

34

3.2.3. Algoritmos

El paquete BlueSky-Gym integra cuatro distintos algoritmos que podemos utilizar al

momento de realizar los distintos entrenamientos, siendo estos DDPG, TD3, PPO y SAC.

➢ DDPG (Deep Deterministic Policy Gradient): Es el más antiguo de los algoritmos

disponibles y predecesor de estos, se puede considerar una extensión del DQN

(Deep Q-Networks) pero aplicado a espacios de acciones continuos. Entre sus

principales características se pueden considerar la utilización de dos redes

neuronales (Actor-Critico), es decir el actor toma una acción y el critico

determina que tan buena ha sido esa acción, mientras que es un algoritmo Off-

Policy que utiliza un replay buffer, una memoria que almacena transiciones

pasadas y de esta forma el algoritmo puede aprender experiencias antiguas.

Finalmente, su política es determinista donde el actor produce una única acción

para un estado dado, en lugar de una distribución de probabilidad sobre las

acciones.

➢ TD3 (Twin Delayed Deep Deterministic Policy Gradient): TD3 es el sucesor directo

de DDPG y fue diseñado para solucionar uno de sus mayores problemas

relacionados con la sobreestimación del valor Q. Es decir, el algoritmo DDPG

suele ser “optimista” sobre las recompensas futuras, lo que ralentiza el

aprendizaje y da pie a soluciones subóptimas, para paliar esto el TD3 añadió tres

innovaciones claves:

o Críticos Gemelos (Twin Critics): Se entrenan dos redes de críticos en lugar

de una.

o Actualizaciones de Política Retrasadas (Delayed Policy Updates): El actor

y las redes "objetivo" (target networks) se actualizan con menos

frecuencia que el crítico.

o Suavizado del Ruido en el Objetivo (Target Noise Smoothing): Suaviza el

aprendizaje lo que evita picos y hace el aprendizaje más robusto.

➢ PPO (Proximal Policy Optimization): PPO es un algoritmo on-policy de tipo actor-

crítico. Es conocido por su robustez, debido a que a diferencia de los demás

algoritmos realiza actualizaciones de sus políticas de manera conservadora

limitando los cambios posibles entre entrenamientos, a su vez elimina el replay

buffer, lo que significa que después de cada interacción descarta las experiencias

y usa unas nuevas. Finalmente, su política es estocástica, lo que significa que,

para un estado dado, produce una distribución de probabilidad sobre las

acciones.

➢ SAC (Soft Actor-Critic): SAC es un algoritmo off-policy y actor-crítico que

introduce el concepto de maximización de la entropía. Es considerado uno de los

algoritmos más eficientes y potentes para control continuo. El objetivo de SAC

no es solo maximizar la recompensa acumulada, sino hacerlo mientras se

mantiene la política lo más aleatoria posible (alta entropía). Al igual que el

algoritmo PPO utiliza una política estocástica.

35

3.2.1. Escenarios disponibles

 BlueSky-Gym viene con siete entornos diseñados para facilitar la investigación del

aprendizaje por refuerzo en la gestión del trafico aéreo, estos entornos se pueden dividir

en tres categorías principales:

➢ Control vertical: Estos escenarios se centran en el control vertical de la aeronave.

Los entornos dentro de esta categoría son:

o DescentEnv-v0: Este entorno está preparado para enseñar al agente a

realizar un descenso eficiente, donde el agente debe mantener el mayor

tiempo posible la velocidad crucero antes de antes de iniciar el descenso

a pista en el momento óptimo.

o VerticalCREnv-v0: En este caso el agente debe descender de manera

segura y controlada mientras evita a los intrusos y obstáculos que

aparecen en el escenario.

➢ Resolución de Conflictos Horizontales: Estos escenarios se enfocan en evitar

colisiones modificando la ruta en el plano horizontal, es decir equivalente al

rumbo.

o HorizontalCREnv-v0: En este escenario el agente debe evitar las

colisiones con otras aeronaves manteniendo una distancia mínima de

seguridad.

o SectorCREnv-v0: Este caso es similar pero centrado en un sector del

espacio aéreo. El agente controla una única aeronave que debe cruzar un

sector mientras otras aeronaves (no controladas) también lo atraviesan.

o MergeEnv-v0: En este escenario el agente controla el rumbo y la

velocidad de las aeronaves en una de las corrientes de tráfico para que

se incorporen a un punto de fusión (merge-point). Debe evitar en todo

momento la colisión y además conseguir que crucen todas las aeronaves

en el menor tiempo posible.

Característica DDPG TD3 PPO SAC

Tipo de política Off-policy Off-policy On-policy Off-policy

Eficiencia Alta Alta Baja Muy alta

Política Determinista Determinista Estocástica Estocástica

Exploración Ruido añadido Ruido añadido Natural
(estocástica)

Maximización de
entropía

Estabilidad Baja Media-Alta Muy alta Alta

Complejidad Media Media-Alta Baja Alta

Característica
clave

Actor-Crítico para
acciones
continuas

Críticos Gemelos
y actualizaciones
retrasadas

Objetivo
"recortado" para
actualizaciones
seguras

Maximización de
la entropía

Tabla 3: Tabla comparativa de los distintos algoritmos de BlueSky.

36

➢ Control Horizontal: En esta categoría se incluyen aquellos escenarios

horizontales que se centran en otras tareas y no tanto en la resolución de

conflictos.

o ObstacleAvoidanceEnv-v0: En este caso el agente debe llevar el avión de

un punto de inicio al otro evitando obstáculos fijos, por lo tanto, el agente

entrena para interpretar la ruta más corta hasta su objetivo.

o MultiGoalEnv-v0: Aquí el agente debe pasar por unos waypoints (puntos

de ruta) de la manera más eficiente, este escenario carece de obstáculos,

por lo tanto, el agente solo debe centrarse en encontrar el camino más

corto que pase por todos los puntos de ruta.

3.2.2. Aplicaciones existentes

BlueSky y BlueSky-Gym son utilizados en muchos ámbitos de la investigación y

formación de aeronáutica. Algunos ejemplos donde se podrían aplicar son:

❖ Control de tráfico aéreo: Todo tipo de investigaciones que buscan optimizar las

rutas, minimizar el riesgo de colisiones y maximizar la gestión del espacio aéreo.

❖ Formación de controladores: Los simuladores son usados para entrenar

controladores aéreos en escenarios que son lo más realistas y dinámicos posible.

❖ Desarrollo de algoritmos de RL: Investigaciones que emplean BlueSky-Gym para

entrenar y evaluar agentes de RL en tareas como la gestión de flotas o la

planificación de rutas.

3.3. Descripción de los Escenarios Básicos Seleccionados

3.3.1. Criterios de Selección de Escenarios

PlanWaypointEnv-v0: Es un escenario de dificultad media, en él el agente

navegar tiene que ir navegando por una serie de waypoints sucesivamente, es

un escenario en el que planificar la ruta, y realizar parámetros de rumbo. No

incluye el control en conflictos con otras aeronaves, lo que hace que sea un buen

punto de partida para empezar a aprender.

Representatividad: Representa un caso típico de un tipo de tarea de la

navegación aérea: navegar por una ruta determinada. Es algo habitual en la

navegación de vuelos, dadas las operaciones de vuelo, tanto en vuelo para

control aéreo, como en vuelo libre.

Objetivos de aprendizaje:

➢ Desarrollar destrezas de

navegación básica.

➢ Aprender a adaptar el rumbo

a waypoints determinados.

➢ Familiarizarse con la dinámica

del entorno de simulación.

Figura 11: Escenario PlanWaypointEnv-v0.

37

VerticalCREnv-v0: Este escenario cuenta con un nivel de complejidad superior a

la anterior, ya que se requiere que el agente gestione conflictos verticales con

otras aeronaves. Además de mantener una altitud objetivo, el agente debe

localizar otras aeronaves para evitar posibles colisiones.

Representatividad: Representa una circunstancia que se puede dar en

coordinación con otras aeronaves (la coordinación de altitud y de velocidad

vertical), pero que es especialmente propio de situaciones en espacios aéreos

congestionados en los que la separación por el vertical es prioritaria.

Objetivos de aprendizaje:

➢ Desarrollar habilidades para mantener una altitud objetivo.

➢ Aprender a evitar conflictos verticales con otras aeronaves.

➢ Mejorar la toma de decisiones en situaciones no estacionarias y

potencialmente conflictivas.

HorizontalCREnv-v0: Este entorno es de la misma complejidad que

VerticalCREnv-v0, pero aquí se necesita controlar los conflictos horizontales. El

agente controlará su rumbo a partir del conflicto que debe evitar en el camino

para navegar hacia un waypoint específico, lo que requerirá cautela en la

planificación y la realización de las tareas.

Representatividad: Representa una situación habitual en el caso de la

navegación aérea en la que se encuentra el agente evitando aeronaves en

conflicto mientras navega hacia un destino concreto. Se hace hincapié en este

objetivo también en los corredores aéreos congestionados o en los alrededores

de los aeropuertos.

Objetivos de aprendizaje:

➢ Desarrollar habilidades para ajustar el

rumbo y evitar conflictos horizontales.

➢ Aprender a navegar hacia waypoints en

presencia de otras aeronaves.

➢ Mejorar la capacidad de anticipación y

reacción ante situaciones dinámicas.

Figura 12: Escenario VerticalCREnv-v0.

Figura 13: Escenario HorizontalCREnv-v0.

38

3.3.2. Descripción de los Escenarios

• Escenario 1: [PlanWaypointEnv-v0].

Es un escenario de ejemplo diseñado para demostrar la lógica de control horizontal. El

objetivo del agente es aprender a planificar de manera eficiente una trayectoria que

visite una serie de waypoints (puntos de ruta) generados aleatoriamente. El agente

controla el rumbo de la aeronave para cumplir esta tarea.

n_updates 50000 100000 200000 300000 400000 500000 1000000 1500000 2000000

rollout

ep_len_mean 300 300 300 300 300 300 292 297 271

ep_rew_mean 1.25 2.46 2 1.35 1 1.7 2.78 2.57 4.13

time

episodes 4 168 164 164 4 164 1668 1668 1732

time_elapsed 74 3018 2791 2804 72 3464 30148 28252 30212

total_timesteps 1200 49942 48934 49187 1200 49133 498896 499316 499651

train

actor_loss -3.36 -1.72 -5.52 -3.27 -5.93 -15.9 0.2 0.182 -0.217

critic_loss 0.0241 0.0223 0.261 0.0964 0.148 2.48 0.00316 0.00656 0.0211

ent_coef 0.00715 0.00894 0.0265 0.0186 0.0202 0.0507 0.000797 0.00116 0.00214

ent_coef_loss 0.529 0.144 0.0857 0.00477 0.746 0.0938 -0.968 -0.35 -0.696

learning_rate 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

• Escenario 2: [VerticalCREnv-v0].

Este es un escenario de control vertical para la resolución de conflictos. El agente debe

mantener una altitud de crucero objetivo y descender a una pista, evitando colisiones

con otras aeronaves que se encuentran en trayectorias de crucero conflictivas. El agente

controla la velocidad vertical de la aeronave para lograrlo.

n_updates 50000 100000 200000 300000 400000 500000 1000000 1500000 2000000

rollout

ep_len_mean 39.8 39.9 40 40 40 40 40 40.2 40.1

ep_rew_mean -182 -97.9 -91.5 -77.3 -71.6 -65.4 -56.4 -49.8 -51.2

time

episodes 8 1256 3756 6256 8756 11256 11260 11244 11232

time_elapsed 40 5387 15728 25844 35994 46548 47349 45942 51088

total_timesteps 318 50151 150095 250074 350151 450187 450291 450392 450428

train

actor_loss 73 62.7 59.4 56.2 52.4 48.3 47.4 43.6 42.8

critic_loss 33.9 13.4 14.9 18.2 11.2 39.7 7.92 5.47 4.83

ent_coef 0.114 0.0991 0.0888 0.0859 0.078 0.0765 0.073 0.0759 0.0686

ent_coef_loss 1.37 -0.157 -0.216 -0.25 0.178 -0.533 -0.298 -0.103 -0.537

learning_rate 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

Tabla 4: Resultados entrenamiento escenario PlanWaypointEnv-v0.

Tabla 5: Resultados entrenamiento escenario VerticalCREnv-v0.

39

• Escenario 3: [HorizontalCREnv-v0].

En este entorno de resolución de conflictos horizontales, el agente aprende a navegar

hacia un destino final mientras evita a otras aeronaves mediante cambios de rumbo. Las

otras aeronaves se generan inicialmente en trayectorias que entran en conflicto con la

del agente.

n_updates 50000 100000 200000 300000 400000 500000 1000000 1500000 2000000

rollout

ep_len_mean 150 150 150 150 150 150 149 148 146

ep_rew_mean -97.8 -103.1 -92 -86.3 -70.8 -68.9 61.6 -54.2 -53.1

time

episodes 7 1235 3693 6127 8533 10872 11009 11131 11126

time_elapsed 46 5387 15634 25823 35894 45936 46562 45629 46957

total_timesteps 1376 6389 195490 311757 397263 501745 501381 501847 502008

train

actor_loss 94.4 87.7 76.7 71.3 64.9 61.5 58.7 54.6 52.9

critic_loss 49.8 41.3 29.7 28.9 24.3 27.1 21.4 15.9 13.4

ent_coef 0.271 0.141 0.0978 0.0917 0.0872 0.0811 0.0765 0.074 0.0691

ent_coef_loss 3.52 1.98 0.043 -0.092 -0.173 -0.297 -0.166 -0.209 -0.132

learning_rate 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

3.4. Análisis de Resultados Preliminares

3.4.1. Metodología de Evaluación

Explicación de los parámetros:

o Recompensa media por episodio (ep_rew_mean): Indica cómo de bien está

desempeñando el agente su tarea.

o Longitud media del episodio (ep_len_mean): Muestra si el agente está

realizando los episodios de forma eficiente.

o Pérdidas del actor y crítico (actor_loss; critic_loss): Reflejan cómo está

aprendiendo el agente respecto a maximizar la recompensa (actor_loss) y

predecir los valores de los estados (critic_loss). Estas métricas tienden a 0, siendo

que 0 indica una política clara tomada por el agente y una predicción perfecta en

los valores de estado.

o Coeficiente de entropía (ent_coef): Muestra el nivel de exploración que tiene el

agente. Cuanto más cercano a 0 es el coeficiente de entropía más explotación

realiza el agente y menor es la exploración. Siendo la máxima exploración el 1 y

la máxima explotación el 0.

o Tiempo y pasos de entrenamiento (time_elapsed; total_timesteps): Muestra la

evolución del entrenamiento.

Tabla 6: Resultados entrenamiento escenario HorizontalCREnv-v0.

40

Métricas clave:

Para proceder con la valoración de los resultados del entrenamiento, se ha realizado un

análisis de estos basado en diferentes técnicas. En primer lugar, se ha llevado a cabo un

análisis de tendencias en el que se han observado las evoluciones de las métricas clave

que nos interesan, es decir, la recompensa media, la longitud del episodio, las pérdidas,

el coeficiente de entropía, etc. En segundo lugar, se ha ejecutado un análisis por etapas,

comparando las métricas en los momentos iniciales, intermedios y finales del

entrenamiento, con el propósito de ver cambios significativos y patrones claros.

También, se ha realizado un análisis del comportamiento de las métricas mencionadas,

entendiendo que las fluctuaciones son parte del proceso de exploración y aprendizaje

en el marco del aprendizaje por refuerzo. Por último, se ha realizado una evaluación de

la convergencia, es decir, si las métricas clave, en especial las pérdidas del actor y del

crítico, se estabilizan en valores similares, lo que implica que el agente ha sido capaz de

generar cierta política más o menos eficaz. Este análisis en profundidad permite

entender lo que ha ido logrando el agente, pero también permite entender la eficacia

del propio proceso de entrenamiento.

3.4.2. Resultados Obtenidos

El estudio de los datos que se han generado a lo largo de las etapas de entrenamiento

del agente pone de manifiesto una progresión notoria en el aprendizaje que ha

adquirido durante la formación del agente, ya que se ha producido también una

evolución bastante evidente en lo que respeta de su funcionamiento. En primer lugar,

la media de la recompensa del episodio concluye con una tendencia positiva (siendo la

primera de 1.25 y , al final del entrenamiento , de 4.13), lo que quiere decir que ha

mejorado su capacidad para maximizar el aprendizaje del agente. Sin embargo, en el

trascurso del entrenamiento han aparecido oscilaciones, como la caída a 1.0 en etapas

intermedias, lo que es normal por la exploración activa que estaba realizando el agente.

Por otro lado, la longitud media del episodio se ha mantenido constante en 300 pasos

en la mayoría del entrenamiento, aunque en el final ha disminuido levemente a 271

pasos, lo que sugiere que el agente también ha optimizado su eficiencia.

1,25

2,46
2,00

1,35
1,00

1,70

2,78
2,57

4,13

0,00
0,50
1,00
1,50
2,00
2,50
3,00
3,50
4,00
4,50

Recompensa

Figura 14: Recompensa escenario PlanWaypointEnv-v0 con línea de tendencia.

41

La pérdida del actor y la pérdida del crítico que se han podido observar tendencia a

converger a valores más estables en las etapas finales. La pérdida del actor, que

inicialmente fluctúa entre -3.36 y -15.9, alcanzan unos valores iguales a cero en las

últimas fases, es decir que da conformidad a una política ya fijada. De forma similar, la

pérdida del crítico, que arranca 0.0223 alcanzando picos de 2.48, se reduce hasta valores

de 0.00316, evidenciando una mejoría en la predicción de los valores de los estados. Por

otra parte, el coeficiente de entropía que comienza con un valor de 0.00715 está en

0.00214 al final del episodio, lo que también muestra una disminución, que señala que

el agente está pasando de una fase de exploración a una fase de explotación de lo que

ha aprendido.

Finalmente cabe resaltar que pese a que el aprendizaje del agente ha sido evidente ha

necesitado casi dos millones de actualizaciones para empezar aumentar la eficiencia y

reducir el tiempo que tarda en realizar la tarea lo cual indica que la eficiencia del

entrenamiento es reducida y podría significar que los hiperparámetros no están del todo

optimizados.

3.4.3. Ajustes en los Parámetros de las Simulaciones

Con el fin de mejorar la velocidad y la eficiencia del entrenamiento del agente en el

código, se han modificado ciertos parámetros de la configuración del algoritmo y del

entorno.

Primero, se ha aumentado la tasa de aprendizaje (learning_rate=1e-3) para acelerar las

actualizaciones del modelo, de este modo, el agente puede aprender más rápidamente

de cada una de las experiencias. Se ha incrementado el tamaño del lote

(batch_size=256), lo que permite que el entrenamiento sea más estable, dado que se

obtendrán más muestras para calcular los gradientes en cada paso de optimización. Por

último, se ha ampliado el tamaño del buffer de reproducción (buffer_size=1_000_000);

en este caso se permite contar con un mayor número de experiencias pasadas,

favoreciendo un entrenamiento más estable y diverso.

Adicionalmente, se ha ajustado el coeficiente de entropía (ent_coef=0.1), para

equilibrar la exploración y la explotación durante el aprendizaje del agente. Igualmente

se ha incrementado el parámetro tau (tau=0.01), para acelerar la actualización de los

valores objetivo en los algoritmos de actores-críticos, permitiendo que el modelo se

adapte más rápidamente.

En lo que respecta a la configuración del entorno, se ha realizado paralelización del

entorno de entrenamiento mediante la función make_vec_env con varios entornos a la

vez (es decir, n_envs=4). Esta estrategia permite recolectar de forma más rápida

experiencias reformulando distintas copias del entorno simultáneamente, siendo el

método de entrenamiento más efectivo en su funcionamiento.

Además, se ha añadido la normalización de observaciones y recompensas mediante el

uso de VecNormalize, que resulta en un entrenamiento más estable puesto que no se

producirán entradas o salidas desbalanceadas o variables en el modelo.

42

Para salvaguardar el avance en el proceso del entrenamiento de posibles problemas, se

ha incluido una devolución de llamada de checkpoints (CheckpointCallback) que guarda

regulamente el estado del modelo, lo que permitirá continuar el entrenamiento desde

el último punto guardado sin perder información relevante.

Por último, se ha adicionado una fase de evaluación del agente justo después del

entrenamiento, en donde se medirá la recompensa total obtenida en distintos

episodios, haciendo una salida de los resultados en formato CSV y graficando el

rendimiento, aportando en cierta forma una imagen clara y cuantificada del rendimiento

del agente que aminora el análisis y comparación de diferentes versiones del modelo.

3.4.4. Resultados iniciales tras ajustes

Gracias a las modificaciones en el código ahora disponemos de una carpeta de

resultados donde se guardan los históricos del entrenamiento, en este caso se puede

apreciar la media en intervalos de 40000 actualizaciones, lo que permite ver mejor la

evolución del agente, y evitar datos aislados que podrían falsear experimentos futuros.

Se ha decidido volver a entrenar al agente desde 0 en el escenario 1 (PlanWaypointEnv-

v0) dado que es el escenario menos complejo y se podrán notar mayores diferencias

iniciales.

Como se puede ver a partir de la tabla de aprendizaje del agente esta segunda vez

también genera unas primeras estimaciones que nos indican una mejoría en la

recompensa media por episodio (ep_rew_mean), la cual pasa de 0'95 a ~2'23, aunque

en un segundo momento se presentaron unas oscilaciones que nos pueden sugerir

inestabilidad o una exploración activa. La duración media de los episodios

(ep_len_mean) se estabilizó en torno a 300 pasos siendo el límite de tiempo establecido

por episodio, pero se puede notar una pequeña reducción en la etapa final. Las pérdidas

del actor (actor_loss) evolucionan de -7.0 a ~0.037, con lo que nos indicarían un proceso

de mejora de la política, mientras que la del crítico (critic_loss) se mantenía en cifras

bajas (0.001–0.008), si bien el bajo valor que nos ofrece podría sugerir incluso una

subestimación de las recompensas. El coeficiente de entropía (ent_coef) pasó de 0.050

a 0.0003, con lo que nos podría indicar que la exploración se iría reduciendo con el paso

del tiempo. Sin embargo, hemos podido detectar algunas anomalías críticas, como

valores imposibles desde el punto de vista de la temporalidad, como el que nos arroja

el time_elapsed, que tiene el valor -1.7E+18, en el apartado de fps podemos ver que

dicho valor era de -2.29E-13, lo que nos puede indicar que existían fallas de registro.

n_updates episodes ep_len_mean ep_rew_mean time_elapsed total_timesteps actor_loss critic_loss ent_coef ent_coef_loss learning_rate fps timestamp

40000 100 300 0,949999988 -1,74416E+18 160000 -7,006715775 0,001744943 0,050295554 -4,91553688 0,0003 -2,29337E-14 2025-04-09 01:51:16

80000 100 300 1,5 -1,74416E+18 320000 -4,427482605 0,004698405 0,002755786 -6,277266502 0,0003 -4,58675E-14 2025-04-09 02:12:37

120000 100 298,24 1,629999995 -1,74416E+18 480000 -2,533821344 0,002091667 0,000454962 0,671323717 0,0003 -6,88012E-14 2025-04-09 02:32:40

160000 100 299,16 1,309999943 -1,74416E+18 640000 -1,603900433 0,009544099 0,000452502 1,154852986 0,0003 -9,1735E-14 2025-04-09 02:53:06

200000 100 298,32 1,460000038 -1,74416E+18 800000 -0,94804585 0,002141542 0,000449906 0,067853563 0,0003 -1,14669E-13 2025-04-09 03:13:29

240000 100 297,91 2,190000057 -1,74416E+18 960000 -0,570666909 0,004232383 0,000477243 0,766058564 0,0003 -1,37602E-13 2025-04-09 03:33:35

280000 100 299,71 2,230000019 -1,74416E+18 1120000 -0,328757197 0,003918371 0,000511667 -0,578528166 0,0003 -1,60536E-13 2025-04-09 03:53:53

320000 100 299,85 1,690000057 -1,74416E+18 1280000 -0,174185723 0,001835785 0,000406696 -1,118625164 0,0003 -1,8347E-13 2025-04-09 04:13:52

360000 100 298,81 1,629999995 -1,74416E+18 1440000 -0,124477297 0,007152225 0,00038733 0,187580675 0,0003 -2,06404E-13 2025-04-09 04:33:59

400000 100 297,45 1,789999962 -1,74416E+18 1600000 -0,032563914 0,00566678 0,00035912 0,943505049 0,0003 -2,29337E-13 2025-04-09 04:54:26

440000 100 300 1,870000005 -1,74416E+18 1760000 -0,00595837 0,00800099 0,000295775 0,48614943 0,0003 -2,52271E-13 2025-04-09 05:14:52

480000 100 296,65 1,730000019 -1,74416E+18 1920000 0,03705686 0,001997148 0,000298926 1,028913379 0,0003 -2,75205E-13 2025-04-09 05:35:29

Tabla 7: Resultados entrenamiento escenario PlanWaypointEnv-v0 tras modificaciones iniciales.

43

En comparación se puede apreciar como las primeras tablas muestran un

comportamiento más volátil en relación con la realizada tras los cambios en el código,

asociado a caídas profundas en las recompensas (ep_rew_mean), oscilando entre 1.0 y

2.46, y sin que se pueda identificar una tendencia clara de mejora, a diferencia de lo

observado en el segundo experimento, donde el aumento progresivo (aunque inestable)

de la recompensa se dejaba ver en la media de las recompensas. Para esta segunda

tabla, el ep_len_mean se mantiene fijado en 300 (límite fijado por el entorno), al igual

que en la primera tabla. Pero las pérdidas del actor (actor_loss) son muy profundas (de

-3.36 a -15.9), lo que hace suponer inestabilidad, a diferencia de lo observado en la

primera tabla, donde convergían hacia cero; el crítico (critic_loss) también presenta

valores peores, hasta 2.48 (vs. 0.008 en la primera tabla) lo que sugiere que es complejo

estimar el valor de los estados, y el coeficiente de entropía (ent_coef) es más alto en la

segunda tabla (0.007–0.0507 vs. 0.0003–0.050) lo que podría significar una mayor

exploración pero menos eficiente.

3.5. Conclusiones del Capítulo

Los resultados del entrenamiento constituyen una demostración de la capacidad del

aprendizaje por refuerzo (RL) para resolver el dominio del tráfico aéreo, aunque con

divergencias importantes entre los distintos escenarios. Los experimentos evidencian

una clara evolución en la consistencia del Escenario 1 (PlanWaypointEnv-v0) con una

mejoría en la recompensa media (de 1.25 a 4.13) y, la estabilización progresiva de la

pérdida del actor y la pérdida del crítico (significativas de cierta forma) sugiere una

política de navegación satisfactoria y una estimación adecuada del valor de los estados.

Sin embargo, esta mejora requiere elevados tiempos de entrenamiento (cercanos a los

dos millones de actualizaciones), y además se han evidenciado la volatilidad entre unos

resultados y otros, pasando de máximos a mínimos, lo que conlleva la necesidad de una

optimización de hiperparámetros como el learning rate o el tamaño del batch con el

objetivo de acelerar la convergencia y adicionalmente mejorar la forma en que se

muestra los resultados para poder hacer mejores análisis en el futuro.

0

0,5

1

1,5

2

2,5

3

Tabla comparativa (rew_mean)

Tras cambios Aprendizaje inicial

Figura 15: Gráfica comparativa PlanWaypointEnv-v0.

44

El Escenario 2 (VerticalCREnv-v0), por su parte, supone un entorno más complejo, en el

que se aprecian recompensas negativas, métricas inestables y con grandes oscilaciones,

si bien existieron pequeñas progresiones. En este caso, la oscilación de las pérdidas del

crítico, además del incremento de las pérdidas (hasta 2.48) no sólo indican que

existieron mejoras, pero, por otro lado, también ilustra el hecho de que, incluso en

entornos complejos, se pueden alcanzar dificultades de generalización. Este hecho pone

de manifiesto la importancia de crear un entorno específico, del tipo:

✓ Mayor exploración controlada (ajustar ent_coef).

✓ Normalización robusta de observaciones y recompensas

✓ Paralelización de entornos (con make_vec_env) para incrementar la variedad

de experiencias.

Las mejoras implementadas para el modelo, como el incremento del buffer de

experiencias, la aplicación de checkpoints y la evaluación sistemática, fueron cruciales

para un aprendizaje de RL que fuera estable y recuperable, si bien el coste

computacional y la sensibilidad a los metaparámetros subrayan la necesidad de mejorar

el modelo, sobre todo para entornos dinámicos con restricciones de operación reales.

Por tanto, este trabajo muestra que el RL se puede aplicar a la gestión del tráfico aéreo,

pero también señala los retos que le quedan por afrontar: la eficiencia del

entrenamiento en entornos complejos y la delicadeza de encontrar un equilibrio entre

la exploración y la explotación. Los resultados apuntan hacia futuras líneas de

investigación para reducir el coste computacional y aumentar la transferibilidad a

entornos reales, donde la robustez y la adaptación son esenciales.

45

4. Tutorial de BlueSky-Gym

4.1. Instalación y configuración del entorno

El dispositivo utilizado es un portátil matebookD15 con Windows 10, tiene un

procesador AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx 2.10 GHz con una RAM

de 8,00 GB (6,94 GB usable) y un sistema operativo de 64 bits.

1. Descargar e instalar Python 3.11

2. Agregar la Ruta de pip a las Variables de Entorno

- Agregar Python y pip al PATH

o Presiona Win + R, escribe sysdm.cply presiona Enter.

o Ve a la pestaña "Opciones avanzadas" y haz clic en "Variables de

entorno".

o En la sección "Variables del sistema", busca y selecciona la

variable Path y haz clic en Editar.

o Haz clic en Nuevo y agrega las siguientes rutas:

C:\Users\franm\AppData\Local\Programs\Python\Python311\

C:\Users\franm\AppData\Local\Programs\Python\Python311\Sc

ripts\

o Haz clic en Aceptar para guardar los cambios.

o Compruebe si tiene pip instalado usando: py -m pip –version o

python -m pip –version

3. Instalar las dependencias del sistema (compiladores)

o Ve a este enlace y descarga el instalador de Build Tools for Visual

Studio. (https://visualstudio.microsoft.com/es/downloads/)

o Durante la instalación, seleccione la opción "Herramientas de

compilación C++".

o Asegúrate de marcar la casilla de "Windows 10 SDK".

o Haga clic en Instalar y espere a que termine el proceso.

4. A partir de Python 3.10, el paquete distutils fue descontinuado y no se incluye

por defecto en algunas distribuciones de Python. Este, es necesario para la

instalación de muchas bibliotecas que requieren compilación (como numpy).

o python -m pip install setuptools o py -m pip install setuptools

5. Para el programa Bluesky-gym es necesario descargar e instalar numpy 1.24

o pip install numpy==1.24.0

6. Con todo ello ya debería ser posible instalar el programa Bluesky-gym

o pip install bluesky-gym

https://visualstudio.microsoft.com/es/downloads/

46

4.2. Descripción de los módulos principales: Simulador,

entorno de RL y herramientas de visualización.

Posteriormente a la instalación podremos ver una carpeta denominada bluesky-gym-

main donde se divide en otros sub ficheros. Inicialmente solo contará con las carpeta de

bluesky, bluesky_gym, docs/media y scrips, y después del primer entrenamiento se

generará la carpeta models. A continuación analizaremos las principales carpetas y su

contenido.

4.2.1. El corazón del programa

El archivo de Python denominado “main” es el núcleo del programa, comienza

definiendo y llamando las variables del entorno. Es necesario definir el nombre del

entorno entre los siete distintos entornos existentes, además podemos elegir entre

cuatro distintos algoritmos descritos anteriormente en el punto 3 “estudio del paquete

BlueSky-Gym”. También se encarga de buscar un modelo existente pudiendo cambiar

entre distintos modelos para un mismo escenario, en caso de que no se haya entrenado

previamente ningún modelo lo creará. Otro apartado importante es que podemos

definir el número de pasos que deseamos entrenar y una vez finalizado el

entrenamiento guardará el modelo y mostrará una simulación de este.

Figura 16: Contenido de la carpeta principal BlueSky-Gym.

47

4.2.2. Carpeta bluesky_gym

En esta carpeta se encuentra la carpeta “envs” donde se sitúan los 7 siete escenarios

que podemos utilizar para las simulaciones.

En el interior de la carpeta “envs” además de los distintos escenarios encontramos la

carpeta “common”, en esta hay tres archivos de Python llamados “functions” (realiza las

operaciones necesarias para situar los waypoints y otros objetos de varios escenarios),

polygon_generator (se encarga de generar las formas de los obstáculos y otros objetos)

y finalmente screen_dummy (que permite la visualización de la simulación).

Figura 17: Parte inicial del código main.

48

4.2.3. Carpeta bluesky

Aquí se encuentra el simulador, es decir el motor que permite simular distintos

escenarios y mover todo para que el agente pueda aprender y nosotros podamos

visualizarlo. Una vez instalado en mi caso apareció la carpeta venv que posee la librería

y el conjunto de recursos que utiliza el simulador.

4.2.4. Docs/media

Esta carpeta posee gif que permiten visualizar como se comporta el agente en una

política establecida en los escenarios DescentEnv-v0, HorizontalCREnv-v0 y

PlanWaypointEnv-v0 de un agente con una política aún por definir.

4.2.5. Scripts

Esta carpeta contiene bucles de entrenamiento de ejemplo para los diferentes

escenarios en bluesky_gym/envs creados por los autores del programa para facilitar su

entendimiento y uso.

4.2.6. Models

En esta carpeta se guardan los modelos por escenario, los modelos se guardan en un

archivo comprimido, podemos apreciar que además del escenario también genera una

carpeta distinta si el archivo tiene un algoritmo distinto a SAC, en este caso se ha

guardado el modelo de una prueba con el algoritmo PPO.

Figura 18: Ejemplo del contenido de la carpeta media.

49

Al revisar los modelos creados podemos ver que guarda información como la política,

el actor, crítico y el coeficiente de entropía además de datos adicionales, como las

variables o el motor del simulador.

4.2.7. Otras carpetas y añadidos

Finalmente, encontramos otras carpetas como por ejemplo de log y algunas creadas al

realizar las pruebas para un mayor entendimiento y poder disponer de datos para

analizar los entrenamientos. En este caso la carpeta más importante es la de

experimentos donde guarda el modelo (siendo redundante en este caso), los datos del

entrenamiento en formato Excel para poder generar graficas de aprendizaje,

checkpoints para evitar la pérdida del entrenamiento completo en caso de fallo

durante el entrenamiento y otros datos de interés.

4.3. Ejecución de simulaciones básicas y visualización de

resultados y evolución en video.

En la finalización de los entrenamientos del agente, por defecto se muestra una

simulación de este para que el espectador pueda hacer un seguimiento de los avances,

hemos decidido realizar un video en el escenario PlanWaypointEnv-v0 que ejemplifique

las mejoras de manera visual que ha ido obteniendo durante el aprendizaje hasta un

límite de dos millones de pasos.

50

En este video: Video entrenamiento agente.mp4, se puede ver como el agente va

mejorando lentamente formando una política adecuada, si bien al principio realiza una

fase de exploración, va pasando a una fase de explotación a medida que el agente va

obteniendo una política más definida, lo que permite que finalice la mayoría de

escenarios. Sin embargo, después de dos millones de pasos, aún es incapaz de encontrar

la ruta más rápida para conseguir sus objetivos y además los avances se vuelven más

lentos debido a que el agente realiza una mayor explotación que exploración.

Figura 19: Captura de uno de los videos durante la simulación.

https://uab-my.sharepoint.com/:v:/g/personal/1605990_uab_cat/EeTfdqTmf9ZHgF9ocH_cUdMBLTkGSSHQxXTVU1IVJNTV2Q?nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJPbmVEcml2ZUZvckJ1c2luZXNzIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXciLCJyZWZlcnJhbFZpZXciOiJNeUZpbGVzTGlua0NvcHkifX0&e=t8rneW

51

5. Experimentos computacionales con BlueSky-Gym

El objetivo de este apartado es ver hasta qué punto podemos utilizar el simulador

BlueSky-Gym para crear entornos más realistas y de esta forma ver sus virtudes y

limitaciones.

5.1. Creación de un escenario simple: Definición de

aeronaves, rutas y condiciones iniciales. Parámetros

clave: Velocidad, altitud, separación entre aeronaves,

etc.

Para crear un escenario primero debemos situarnos en la carpeta de escenarios

denominada en el archivo como “envs” mencionada anteriormente y seleccionar el

escenario que queremos modificar.

5.1.1. Configuración y parámetros globales

Para empezar, debes llamar a las bibliotecas necesarias:

Posteriormente se establecen las constantes o variables globales. Aquí es donde nos

permite modificar en numero de aeronaves intrusas que aparecen, también el numero

de puntos objetivos que debe pasar el agente, así como velocidades y otras variables.

También se definen las recompensas y penalizaciones que ayudarán al agente a

conseguir una heurística adecuada.

52

5.1.2. Función __init__(self, ...)

Este es el constructor, su principal función es crear el entorno de la simulación, destaca

el “bs.init(...):” pues se encarga de inicia el motor de simulación de BlueSky y también

“self.observation_space:” donde se define todo lo que la AI puede "ver" o percibir del

mundo. En este caso, es un diccionario que contiene el estado de su propia aeronave

(rumbo y velocidad), el estado de los intrusos (distancia y rumbo relativo) y la ubicación

de los waypoints. Finalmente tenemos “self.action_space:” que define lo que la AI

puede "hacer". En este caso, su única acción es decidir cuánto cambiar su rumbo (entre

-30 y +30 grados). Cada vez que un episodio termina se inicializan variables internas

como “self.intrusion = False” o “self.reward = 0” para empezar cada episodio desde cero.

53

5.1.3. Función reset(self, ...)

Esta función tiene la tarea de reiniciar la simulación, es decir limpia el escenario

utilizando bs.traf.reset() que elimina los componentes de la simulación anterior, además

restablece las puntuaciones a 0 para posteriormente generar la aeronave principal

controlada por el agente, las naves intrusas y finalmente los waypoint.

5.1.4. Función step(self, action)

Esta parte se dedica a hacer avanzar la simulación, recibe la acción del agente para

posteriormente aplicar la decisión en el mundo y calcular una puntuación obtenida en

ese paso. Devuelve el nuevo estado de la simulación, la recompensa y “terminated” que

indica si el episodio ha finalizado.

54

5.1.5. Función generate_conflicts y función generate_waypoint (self, acid =

'KL001'):

Este segmento es uno de los más interesantes porque la primera parte se encarga de

generar las naves intrusas u obstáculos y la segunda parte se encarga de generar los

waypoint que son los objetivos que debe alcanzar el agente. Permite añadir dificultad a

al escenario como generar nuevos objetivos y normas al momento de realizar la

simulación y por lo tanto será una de las partes modificadas más adelante para intentar

hacer que se asemeje más a una situación real.

5.1.6. Función get_obs(self):

Se podría considerar los “sentidos” del agente, pues su función es traducir el estado en

"crudo" de la simulación a la "percepción" que la AI entiende. Para cada intruso y

waypoint, calcula la distancia y los ángulos, posteriormente transforma estos datos al

formato definido en observation_space y normaliza los valores dividiendo las distancias

y velocidades por valores máximos (WAYPOINT_DISTANCE_MAX, AC_SPD). Esto

mantiene todos los datos de entrada en un rango similar entre 0 y 1 fundamental para

que el algoritmo de aprendizaje funcione.

55

5.1.7. Función get_info, get_reward, check_waypoint, check_drift y

check_intrusion (self):

Estas funciones sirven como el sistema de puntuación, calculando aspectos como la

desviación respecto al objetivo, si ha alcanzado un waypoint o si ha invadido el margen

de seguridad de una aeronave intrusa todas estas puntuaciones se suman dentro de

“get_reward” para obtener la puntuación que ha obtenido en ese paso.

5.1.8. Función get_action(self,action):

Esta parte actúa como un traductor entre la decisión abstracta de la AI y el comando

concreto que entiende el simulador de vuelo. Para ello lo hace de la siguiente manera,

toma la decisión normalizada de la AI (un valor entre -1 y 1), la convierte en un cambio

de rumbo específico en grados, calcula el nuevo rumbo absoluto y envía esta orden final

al simulador para que la aeronave la ejecute.

5.1.9. Función render_frame(self):

Render_frame se encarga de dibuja el estado actual de la simulación en una ventana

para que podamos observarla, toma como referencia la aeronave controlada por el

agente situándola en el centro y moviéndose según se mueva la aeronave.

56

5.2. Creación de un escenario complejo

Si bien podemos modificar las variables de entorno de todos los escenarios para

nuestras simulaciones, también podemos crear escenarios complejos, o modificar las

bases de uno existente. En este caso se ha modificado el escenario “horizontal_cr_env”

anteriormente analizado, con el objetivo de asemejarlo más al radar de un controlador

aéreo, en este caso no solo se ha modificado el apartado visual, sino que también se han

creado caminos “airway” que conectan los distintos puntos “waypoints”, al crear los

caminos también se debe crear un valor y unas condiciones, estos caminos no son

aleatorios sino que siempre deben estar conectados y hacer de enlace con los distintos

puntos, para calcular y crear estos caminos se ha tenido que crear una nueva función en

el archivo “functions” para que los “airway” no se crearan de manera aleatoria como si

fueran “waypoints”, además también se le debe asignar una recompensa para que el

agente identifique que debe ir por estas rutas establecidas, al mismo tiempo están las

aeronaves intrusas que debe evitar, para evitar que el agente prefiera mantenerse por

la ruta por encima de evitar una colisión con una aeronave ajena se ha decidido

aumentar la reducción de puntos en caso de acercamiento y también en caso de colisión,

también se ha decidido comenzar la simulación fuera de una vía aérea para que el

agente intente aproximarse lo más rápido posible a una. Para un mayor entendimiento

vamos a pasar a la explicación del código paso por paso.

5.2.1. Explicación de los nuevos parámetros globales y

recompensas/penalizaciones

Después de llamar las bibliotecas necesarias debemos definir los parámetros principales

o también denominados parámetros de entorno, están conformado por constantes que

actúan como reglas de la simulación, en nuestro caso hemos utilizado 14 parámetros de

entorno, pero las principales son:

• NUM_INTRUDERS: Define cuántas otras aeronaves habrá en el cielo junto a la

nuestra.

• NUM_WAYPOINTS: El número de puntos de referencia que conforman la ruta a

seguir.

• NUM_CONNECTIONS_PER_WAYPOINT: Indica cuántas aerovías (conexiones)

debe tener cada waypoint, creando una red de rutas.

• AC_SPD y INTRUDER_SPD_RANGE: Definen las velocidades de nuestra aeronave

y de las demás.

• MIN_SEP_DISTANCE y COLLISION_DISTANCE: Son las distancias de seguridad. Si

un intruso se acerca más que MIN_SEP_DISTANCE, es una infracción. Si se acerca

más que COLLISION_DISTANCE, se considera una colisión.

A su vez debemos definir las recompensas y penalizaciones siendo esta una de las partes

más importantes debido a que afectan al aprendizaje de la AI diciéndole lo que hace mal

o bien. Como el objetivo es que el agente pase por los distintos waypoints en un tiempo

57

de 150 segundo he decidido otorgar al agente una recompensa de 10 puntos cada vez

que pase por algún nodo, siendo esta la recompensa más alta, sin embargo es

recomendable que llegue a los nodos siguiendo las aerovías generadas, debido a que en

caso de no hacerlo tiene una resta de su puntuación de -0,1 por cada paso que efectúe

fuera de una aerovía, además para facilitar que el agente entienda que debe continuar

sobre estas vías se le ha puesto una penalización al momento de salirse de una de -0,5,

por lo tanto el agente pasaría de sumar 0,5 puntos por cada paso que se mantenga

dentro de la aerovía a perder inmediatamente esa cantidad y posteriormente perder -

0,1 por cada paso que realice fuera de la misma. Finalmente hemos querido recalcar y

priorizar la seguridad, por lo tanto, si el agente no mantiene una distancia de seguridad

respecto al resto de aeronaves se le penalizará con -20 puntos y si llega a colisionar

perderá -100 durante la simulación, lo que facilitará que el agente priorice evitar

colisiones y romper la distancia de seguridad incluso si para ello debe salirse de la ruta

o debe esperar para pasar por uno de los nodos.

5.2.2. Primer prototipo

Para este primer prototipo aparte de modificar y añadir valores de entorno vamos a

definir el concepto de aerovía, en este caso hemos modificado la función

“generate_waypoint”, para que cree líneas que serán airway, la forma más fácil de

generar estas vías es guardando las coordenadas del último waypoint generado para

posteriormente compararla con el nuevo waypoint y de esta forma crear una línea recta

de punto a punto, de esta manera nos aseguramos que cada nodo este conectado con

otro y permite formar una aerovía que conecta todos los puntos que el agente debe

intentar seguir.

58

También debemos modificar el sistema de recompensas y penalizadores, en mi caso he

decidido centralizar todo en la función “calculate_reward” y generar mediante

condicionantes si el agente recibe recompensa o penalización.

Sin embargo, este método no nos sirve al momento de escalar a más de una aerovía,

debido a que la forma de crearlas es en base al punto anterior y al actuar y por lo tanto

no tiene en cuenta otros puntos ya creados.

Figura 20: Captura de la simulación del primer prototipo.

59

5.2.3. Segundo prototipo (Más complejo)

En este segundo escenario se ha vuelto a modificar totalmente la función

“generate_waypoint” y la hemos renombrado, esta vez la función crea primero una

nube de puntos, es decir, primero genera las coordenadas de todos los waypoints de la

simulación.

Una vez tiene esas coordenadas las pasa a una función externa que he creado dentro

del archivo “functions”, esta función toma todos los waypoints generados y los conecta

para formar una red. Lo hace en dos fases, la primera calcula todas las posibles

conexiones, toma un punto y comienza a crear caminos con los puntos más cercanos

hasta alcanzar el limite de caminos previamente indicado, momento que pasará al

siguiente punto y así hasta finalizar con todos.

60

La segunda fase de creación de la red de caminos se basa en buscar si existen puntos

aislados, si localiza algún punto sin conexiones creará una conexión con el punto más

cercano a este, durante este proceso elimina el camino más lejano que tuviera el punto

y añade el nuevo camino, una vez resuelta la incidencia buscará más puntos aislados

hasta que no haya ninguno y devolverá el mapa de puntos y aerovías. Cabe destacar que

el código intenta que siempre se cumpla la condición de caminos que se haya

especificado, sin embargo, hay situaciones donde la combinación de puntos y la

exigencia de aerovías hace que esta tarea sea imposible, por ejemplo 3 carriles por

punto y una generación de 5 puntos, en estos casos el programa intentará cumplir con

el máximo de puntos posibles y aquellos que no sea posible intentará acercarse a lo

estipulado.

En estas imágenes de ejemplo se puede apreciar el resultado, situandose la nave que

controla el agente en el centro con forma de flecha verde, la de intrusos con forma de

flecha amarilla, los puntos como circulos verdes y las aerovias como lineas blencas.

61

Figura 21: Capturas de distintas simulaciones del segundo prototipo.

62

6. Limitaciones y propuestas de mejora

Si bien este proyecto demuestra el enorme potencial de la inteligencia artificial en el

ámbito aeronáutico, su aplicación práctica en el control de tráfico aéreo (ATC) no está

exenta de limitaciones críticas que, hoy en día, comprometen la viabilidad de un

despliegue autónomo.

Es fundamental matizar que el siguiente análisis se centra específicamente en la

metodología de Aprendizaje por Refuerzo (RL), utilizada en el entorno de simulación

BlueSky-Gym, sin profundizar en otros paradigmas de AI que podrían ofrecer soluciones

diferentes.

A continuación, se detallan las limitaciones observadas y se expande el análisis a otros

desafíos inherentes a esta tecnología.

1. Generalización ante Escenarios Inéditos (Falta de Improvisación)

Un agente entrenado con RL se vuelve extraordinariamente eficiente en la gestión de

configuraciones de tráfico para las que ha sido entrenado. Sin embargo, su rendimiento

se degrada drásticamente ante eventos imprevistos o no incluidos en su set de

entrenamiento (lo que se conoce como out-of-distribution data). Esto puede incluir:

➢ Un tipo de aeronave con un rendimiento de ascenso/descenso no visto antes.

➢ Una condición meteorológica adversa y localizada que aparece súbitamente.

➢ El comportamiento inesperado de un piloto (ej. una desviación no comunicada).

El agente no "improvisa", simplemente carece del modelo aprendido para gestionar una

situación que no ha experimentado, lo que en un entorno real es inaceptable.

Propuestas de Mejora:

Domain Randomization (Aleatorización del Dominio): Entrenar al agente no en un único

escenario estático, sino en miles de simulaciones donde los parámetros (meteorología,

rendimiento de las aeronaves, densidad del tráfico, etc.) varían constantemente y de

forma aleatoria. Esto fuerza al agente a aprender políticas de decisión más robustas y

generalizables [28].

Curriculum Learning (Aprendizaje Curricular): Exponer al agente a escenarios de

complejidad creciente. Se empieza con problemas sencillos (dos aviones, sin viento) y, a

medida que el agente los domina, se introduce gradualmente más dificultad y

variabilidad [28].

Transfer Learning: Pre-entrenar modelos en un vasto conjunto de datos de tráfico aéreo

general (incluso de otros sectores o aeropuertos) y luego afinarlos (fine-tuning) para el

sector específico en el que operarán [29].

2. El Equilibrio entre Exploración y Explotación

Un agente que rápidamente encuentra una estrategia "suficientemente buena"

(explotación) dejará de buscar alternativas que podrían ser óptimas a largo plazo

63

(exploración). En el control aéreo, esto es peligroso. Una solución que parece eficiente

puede ser frágil y fallar ante una pequeña perturbación que no fue explorada durante el

entrenamiento. Forzar una exploración exhaustiva en un espacio de estados tan vasto

como el del tráfico aéreo puede llevar a tiempos de entrenamiento

computacionalmente prohibitivos.

Propuestas de Mejora:

Algoritmos de Exploración Avanzados: Utilizar técnicas como Intrinsic Curiosity

Motivation, donde el agente recibe una recompensa adicional no solo por cumplir el

objetivo, sino por visitar estados nuevos y desconocidos. Esto incentiva una exploración

más sistemática [30].

Ensembles de Agentes: Entrenar a múltiples agentes de forma independiente. Durante

la operación, sus decisiones pueden ser promediadas o sometidas a un sistema de

votación, reduciendo el riesgo de que una única política subóptima tome el control [30].

3. El Problema de la "Caja Negra" (Explainability) y la Certificación de Seguridad

Las redes neuronales profundas, que son el cerebro de los agentes de RL modernos,

operan como "cajas negras". Pueden tomar una decisión óptima, pero es

extremadamente difícil (a veces imposible) trazar el razonamiento exacto que los llevó

a ella. En aviación, toda decisión crítica debe ser auditable y explicable. ¿Por qué el

agente decidió desviar el avión A en lugar del B? Sin una respuesta clara, es imposible

certificar el sistema bajo los estrictos estándares de la aviación (como DO-178C).

Propuestas de Mejora:

AI Explicable (XAI - Explainable AI): Desarrollar e integrar herramientas que "traduzcan"

las decisiones del agente a un formato comprensible para un humano. Por ejemplo,

mediante mapas de atención que resalten qué aviones o datos fueron más influyentes

para una decisión concreta [31].

Modelos Híbridos: Combinar el RL con sistemas basados en reglas o lógicas simbólicas.

El agente de RL puede proponer una estrategia, pero esta debe ser validada por un

"guardián" basado en reglas (por ejemplo, "nunca violar la separación mínima de 5

millas náuticas"). Esto crea una red de seguridad verificable [31].

Verificación Formal: Utilizar métodos matemáticos para probar formalmente que, bajo

cualquier circunstancia dentro de un conjunto definido, el agente nunca tomará una

acción que lleve a un estado inseguro [31]

4. Escalabilidad y Complejidad del Espacio Aéreo Real

Un simulador como BlueSky-Gym, aunque avanzado, simplifica la realidad. El espacio

aéreo real es un sistema multi-agente masivo. No se trata solo de gestionar un sector,

sino de coordinar traspasos fluidos con docenas de sectores adyacentes, cada uno con

su propio controlador (o agente). La complejidad computacional (el "curse of

dimensionality") crece exponencialmente con cada avión y cada agente añadido.

64

Propuestas de Mejora:

Aprendizaje por Refuerzo Jerárquico (HRL): Diseñar una estructura de agentes de varios

niveles. Un "meta-agente" de alto nivel podría tomar decisiones estratégicas (ej.

gestionar el flujo general de un corredor aéreo), mientras que agentes de bajo nivel se

encargarían de tareas tácticas (ej. mantener la separación entre un par de aviones) [33].

Aprendizaje Multi-Agente (MARL): En lugar de un único agente omnisciente, entrenar a

múltiples agentes que aprendan a cooperar y comunicarse entre sí, imitando la

estructura de los centros de control del mundo real [33].

5. Diseño de la Función de Recompensa (Reward Hacking)

Definir qué es una "buena" gestión del tráfico aéreo en una fórmula matemática (la

función de recompensa) es increíblemente difícil. Un agente de RL es un optimizador

implacable y podría encontrar lagunas o atajos para maximizar su recompensa de

maneras no deseadas (reward hacking). Por ejemplo, si la recompensa se basa

únicamente en la eficiencia del combustible, el agente podría guiar a los aviones por

rutas muy juntas, justo en el límite legal de separación, aumentando el riesgo para

maximizar su puntuación.

Propuestas de Mejora:

Aprendizaje por Refuerzo Inverso (IRL - Inverse Reinforcement Learning): En lugar de

definir manualmente la recompensa, el agente la aprende observando a controladores

aéreos humanos expertos. Intenta deducir cuál es la función de recompensa implícita

que guía las decisiones humanas [28].

Funciones de Recompensa Multiobjetivo: Crear una función de recompensa que

equilibre múltiples objetivos, a menudo contrapuestos: seguridad (máxima separación),

eficiencia (rutas directas), puntualidad, y confort del pasajero (evitar virajes bruscos).

Asignar penalizaciones severas por cualquier acción que se acerque a un límite de

seguridad [28].

65

7. Conclusión

A lo largo de este trabajo, se ha profundizado en los fundamentos teóricos del

Aprendizaje por Refuerzo (RL), sentando las bases para su aplicación práctica en la

gestión del tráfico aéreo. La revisión de la literatura y el estudio de algoritmos clave

como PPO o SAC fueron pasos indispensables para abordar el núcleo del proyecto: la

exploración del simulador BlueSky-Gym. Para facilitar su adopción por parte de otros

investigadores y estudiantes, se desarrolló un pequeño tutorial, cumpliendo con uno de

los objetivos clave de este trabajo y contribuyendo a hacer esta herramienta un poquito

más accesible.

La fase experimental no solo se limitó a evaluar los escenarios predefinidos, sino que se

extendió al diseño y creación de un entorno de simulación propio y más complejo, que

modela una red de aerovías para reflejar condiciones más realistas. Los resultados de

los experimentos muestran tanto las oportunidades como los retos que presenta el

aprendizaje por refuerzo (RL) en este campo. En situaciones simples como

PlanWaypointEnv-v0, se evidenció que el agente puede aprender políticas de

navegación efectivas, aunque esto viene con un alto costo computacional y una notable

sensibilidad a los hiperparámetros. La complejidad aumentó en los escenarios de

resolución de conflictos y en nuestro entorno personalizado, donde la inestabilidad de

las métricas destacó la dificultad del agente para generalizar su aprendizaje en

condiciones cambiantes. Estos hallazgos confirman que, aunque el RL es funcional, su

eficiencia depende en gran medida de una configuración cuidadosa y de la complejidad

del entorno.

De cara al futuro, la aplicación de inteligencias artificiales como las exploradas en este

proyecto se pueden considerar más una herramienta de asistencia más que como un

sustituto autónomo del controlador humano. Las limitaciones observadas,

especialmente la falta de capacidad para improvisar ante escenarios no previstos y la

naturaleza de "caja negra" de las redes neuronales, representan barreras significativas

para su certificación en un entorno donde la seguridad es innegociable. La viabilidad de

una implementación real dependerá de superar estos escollos, posiblemente a través

de arquitecturas híbridas que combinen el RL con sistemas basados en reglas y el

desarrollo de la IA Explicable (XAI). Sin embargo, su aplicación se podría aplicar como un

asistente para el controlador, de forma que facilite y agilice las operaciones aéreas. Por

tanto, aunque la visión de un ATC totalmente automatizado sigue siendo un horizonte

lejano, este trabajo confirma que BlueSky-Gym es un paso más y una plataforma de

investigación necesaria para instar a los estudiantes a forjar los sistemas inteligentes

que harán de la aviación del mañana un espacio más seguro y eficiente.

66

Anexo

Código inicial:

import gymnasium as gym

from stable_baselines3 import PPO, SAC, TD3, DDPG

import numpy as np

import bluesky_gym

import bluesky_gym.envs

from bluesky_gym.utils import logger

bluesky_gym.register_envs()

env_name = 'StaticObstacleEnv-v0'

algorithm = SAC

Initialize logger

log_dir = f'./logs/{env_name}/'

file_name = f'{env_name}_{str(algorithm.__name__)}.csv'

csv_logger_callback = logger.CSVLoggerCallback(log_dir, file_name)

TRAIN = True

EVAL_EPISODES = 10

if __name__ == "__main__":

 env = gym.make(env_name, render_mode=None)

 obs, info = env.reset()

 model = algorithm("MultiInputPolicy", env, verbose=1,learning_rate=3e-4)

 if TRAIN:

 model.learn(total_timesteps=2e6, callback=csv_logger_callback)

model.save(f"models/{env_name}/{env_name}_{str(algorithm.__name__)}/model")

 del model

 env.close()

67

Test the trained model

 model =

algorithm.load(f"models/{env_name}/{env_name}_{str(algorithm.__name__)}/model",

env=env)

 env = gym.make(env_name, render_mode="human")

 for i in range(EVAL_EPISODES):

 done = truncated = False

 obs, info = env.reset()

 tot_rew = 0

 while not (done or truncated):

 # action = np.array(np.random.randint(-100,100,size=(2))/100)

 # action = np.array([0,-1])

 action, _states = model.predict(obs, deterministic=True)

 obs, reward, done, truncated, info = env.step(action[()])

 tot_rew += reward

 print(tot_rew)

 env.close()

68

Código tras primera revisión:

import gymnasium as gym

from stable_baselines3 import SAC

from stable_baselines3.common.env_util import make_vec_env

from stable_baselines3.common.vec_env import VecNormalize

from stable_baselines3.common.callbacks import CheckpointCallback

import numpy as np

import bluesky_gym

import bluesky_gym.envs

from bluesky_gym.utils import logger

Registrar los entornos de Bluesky

bluesky_gym.register_envs()

Definir el nombre del entorno y el algoritmo

env_name = 'PlanWaypointEnv-v0'

algorithm = SAC

Crear múltiples entornos en paralelo

n_envs = 4

env = make_vec_env(env_name, n_envs=n_envs, seed=0)

Normalizar las observaciones y recompensas

env = VecNormalize(env, norm_obs=True, norm_reward=True)

Inicializar el logger

log_dir = f'./logs/{env_name}/'

file_name = f'{env_name}_{str(algorithm.__name__)}.csv'

csv_logger_callback = logger.CSVLoggerCallback(log_dir, file_name)

Configuración de entrenamiento y evaluación

TRAIN = True # Cambia a False si no deseas entrenar

EVAL_EPISODES = 10

if __name__ == "__main__":

 # Cargar o crear el modelo

69

 model_path =

f"models/{env_name}/{env_name}_{str(algorithm.__name__)}/model"

 if TRAIN:

 try:

 # Intentar cargar el modelo previamente entrenado

 model = algorithm.load(model_path, env=env)

 print("Modelo cargado exitosamente.")

 except:

 # Si no existe, crear un nuevo modelo

 model = algorithm(

 "MultiInputPolicy",

 env,

 verbose=1,

 learning_rate=1e-3, # Aumentar la tasa de aprendizaje

 buffer_size=1_000_000, # Aumentar el tamaño del buffer

 batch_size=256, # Aumentar el tamaño del batch

 ent_coef=0.1, # Ajustar el coeficiente de entropía

 tau=0.01) # Aumentar tau para actualizar el target network más rápido

 print("Nuevo modelo creado.")

 # Callback para guardar el modelo periódicamente

 checkpoint_callback = CheckpointCallback(

 save_freq=10_000,

 save_path="./checkpoints/",

 name_prefix=f"{env_name}_{str(algorithm.__name__)}")

 # Entrenar el modelo

 model.learn(total_timesteps=500000, callback=[csv_logger_callback,

checkpoint_callback], log_interval=10)

 # Guardar el modelo entrenado

 model.save(model_path)

 print("Modelo guardado exitosamente.")

70

 # Cerrar el entorno de entrenamiento

 env.close()

 # Evaluar el modelo entrenado

 env = gym.make(env_name, render_mode="human")

 model = algorithm.load(model_path, env=env) # Cargar el modelo para evaluación

 for i in range(EVAL_EPISODES):

 done = truncated = False

 obs, info = env.reset()

 tot_rew = 0

 while not (done or truncated):

 action, _states = model.predict(obs, deterministic=True)

 obs, reward, done, truncated, info = env.step(action[()])

 tot_rew += reward

 print(f"Episodio {i+1}: Recompensa total = {tot_rew}")

 # Cerrar el entorno de evaluación

 env.close()

Fichero de BlueSky-Gym utilizado durante los experimentos

bluesky-gym-main

https://uab-my.sharepoint.com/:f:/g/personal/1605990_uab_cat/ElPOMblFv_BLg-0PVcC7YN4BT19U06EXJnlKkrBDVtBMYw?e=aIwzuU

71

Bibliografía

[1] M. Brittain, and P. Wei, “Autonomous Air Traffic Controller: A Deep Multi-Agent

Reinforcement Learning Approach”, arXiv, 10.48550/arXiv.1905.01303, 2019.

[2] L. Lascorz, “Aprendizaje por Refuerzo: Elementos básicos y algoritmos”, Universidad

de Zaragoza, TAZ-TFG-2018-2390, 2018.

[3] J. Groot, G. Leto, A. Vlaskin, A. Moec, and J. Ellerbroek, “BlueSky-gym:

Reinforcement learning environments for air traffic applications”, SESAR,

10.61009/SID.2024.1.10, 2024.

[4] BlueSky, “User Documentation”, BlueSky Data Collection Framework,

https://blueskyproject.io/, consultado el 19 de febrero de 2025.

[5] M. A. S. B. Affridi, and S. M. Abdul Rahman, “BlueSky simulator for air traffic control

training platform”, Universiti Teknologi MARA, eISSN 2773-5494, 2020.

[6] Farama Foundation, “Documentación del gimnasio”, Gymnasium,

https://gymnasium.farama.org/, consultado el 04 de marzo de 2025.

[7] W. Wu, H. Wu, and H. Zhao, “Self-Directed Turing Test for Large Language Models”,

arXiv, 10.48550/arXiv.2408.09853, 2024.

[8] AENA, “Fechas e Informes Estadísticos”, Estadísticas de tráfico aéreo,

https://www.aena.es/es/estadisticas/inicio.html, consultado el 17 de febrero de 2025.

[9] Python Software Foundation, “Python documentation”, https://www.python.org/,

consultado el 19 de febrero de 2025.

[10] Flightradar24.com, “Aviation data”, https://www.flightradar24.com, consultado el

04 de marzo de 2025.

[11] ENAIRE, “Servicio de Información Aeronáutica”, AIP, https://aip.enaire.es/AIP/,

consultado el 17 de febrero de 2025.

[12] H. Shum, X. He, and D. Li, “From Eliza to XiaoIce: Challenges and opportunities

with social chatbots”, Frontiers of Information Technology & Electronic Engineering,

vol. 19, pp. 10–26, 2018, doi: 10.1631/FITEE.1700826.

[13] K. H. Yu, A. L. Beam, and I. S. Kohane, “Artificial Intelligence in Healthcare”, Nature

Biomedical Engineering, vol. 2, pp. 719–731, 2018, doi: 10.1038/s41551-018-0305-z.

[14] R. S. Sutton, and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed.,

MIT Press, 2018.

[15] V. Mnih, et al., “Human-level control through deep reinforcement learning”,

Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[16] D. Silver, et al., “Mastering the game of Go without human knowledge”, Nature,

vol. 550, no. 7676, pp. 354–359, 2017.

https://blueskyproject.io/
https://gymnasium.farama.org/
https://www.aena.es/es/estadisticas/inicio.html
https://www.python.org/
https://www.flightradar24.com/
https://aip.enaire.es/AIP/

72

[17] T. P. Lillicrap, et al., “Continuous control with deep reinforcement learning”, arXiv,

10.48550/arXiv.1509.02971, 2015.

[18] S. Zelinski, “NextGen Simulation Technologies”, NASA,

https://aviationsystems.arc.nasa.gov/publications/2011/DASC2011_Zelinski.pdf,

consultado el 25 de junio de 2025.

[19] A. T. Budiarti, “Development of model-free flight control system using Deep

Deterministic Policy Gradient (DDPG)”, Cranfield University, tesis de maestría, 2019.

Disponible en: https://dspace.lib.cranfield.ac.uk/handle/1826/14798

[20] Microsoft, “How Microsoft Flight Simulator uses AI to create its world”, Microsoft

Flight Simulator Official Blog, 2020. https://news.xbox.com/en-us/2020/08/19/how-

microsoft-flight-simulator-uses-ai-to-create-its-world/

[21] Blackshark.ai, “AI at the core of Microsoft Flight Simulator”, 2020.

https://www.blackshark.ai/microsoft-flight-simulator

[22] Reddit.com, “Discusión sobre tráfico aéreo y simulación”, Comunidad de usuarios

Microsoft Flight Simulator, 2023. https://www.reddit.com/r/MicrosoftFlightSim/

[23] MIT Lincoln Laboratory, “ACAS Xu for Unmanned Aircraft Systems”, 2020.

https://www.ll.mit.edu/r-d/projects/acas-xu-unmanned-aircraft-systems

[24] NASA, “UAS Traffic Management (UTM) Project”, Aeronautics Research Mission

Directorate, 2020. https://www.nasa.gov/ames/utm

[25] E. R. Mueller, and M. J. Kochenderfer, “Challenges in aircraft collision avoidance”,

IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 6, pp. 1551–1559,

2016. https://doi.org/10.1109/TITS.2016.2603007

[26] MIT Lincoln Laboratory, “Fast-time Monte Carlo Simulations for Collision

Avoidance Systems”, 2021. https://www.ll.mit.edu/publications/fast-time-monte-

carlo-simulations

[27] FAA, “FAA Exploring Collision Avoidance Algorithms for UAS Integration”, Federal

Aviation Administration, 2022.

https://www.faa.gov/uas/research_development/traffic_management

[28] S. Ghosh, et al., “Deep Ensemble Multi-Agent Reinforcement Learning for Air

Traffic Control”, arXiv, 10.48550/arXiv.2004.01387, 2020.

[29] L. D. Ávila, D. Aguirre, J. V. Martel, and I. Pérez, “Air Traffic Control Using Deep

Reinforcement Learning: A Review”, Expert Systems with Applications, vol. 240, 2024,

https://doi.org/10.1016/j.eswa.2024.122776

[30] A. Vouros, et al., “Automating the Resolution of Flight Conflicts: Deep

Reinforcement Learning in Service of Air Traffic Controllers”, ResearchGate, 2022.

https://www.researchgate.net/publication/362184328

https://aviationsystems.arc.nasa.gov/publications/2011/DASC2011_Zelinski.pdf
https://dspace.lib.cranfield.ac.uk/handle/1826/14798
https://news.xbox.com/en-us/2020/08/19/how-microsoft-flight-simulator-uses-ai-to-create-its-world/
https://news.xbox.com/en-us/2020/08/19/how-microsoft-flight-simulator-uses-ai-to-create-its-world/
https://www.blackshark.ai/microsoft-flight-simulator
https://www.reddit.com/r/MicrosoftFlightSim/
https://www.ll.mit.edu/r-d/projects/acas-xu-unmanned-aircraft-systems
https://www.nasa.gov/ames/utm
https://doi.org/10.1109/TITS.2016.2603007
https://www.ll.mit.edu/publications/fast-time-monte-carlo-simulations
https://www.ll.mit.edu/publications/fast-time-monte-carlo-simulations
https://www.faa.gov/uas/research_development/traffic_management
https://doi.org/10.1016/j.eswa.2024.122776
https://www.researchgate.net/publication/362184328

73

[31] H. Wang, et al., “Safe and Explainable Reinforcement Learning for Autonomous Air

Mobility”, arXiv, 10.48550/arXiv.2211.13474, 2022.

