UAB

Universitat Autonoma
de Barcelona

Entornos de aprendizaje por refuerzo para
aplicaciones de trafico aéreo con BlueSky-Gym

Memoria del Trabajo Fin de Grado en Gestion Aeronautica
realizado por
Francisco José Mufioz
y dirigido por
Laura Calvet Lifian
Escuela de Ingenieria

Sabadell, junio de 2025

Modelo de certificado del director/a
La abajo firmante, Laura Calvet Lifian director/a del Trabajo de Fin de Grado, profesora
de la Escuela de Ingenieria de la UAB,

CERTIFICA:

Que el trabajo al que corresponde la presente memoria ha sido realizado bajo
su direccion por

Francisco José Murioz Alsina

Y para que conste firma la presente en Sabadell, junio de 2025

CALVET Signat
LlﬂAN digitalment per

CALVET LINAN
LAURA - LAURA-

43557218W
43557218 pata: 2025.06.26
W 08:50:34 +02'00"

Firmado: Laura Calvet Lifian

Indice

Términos y acronimos ULHiZad0Seeeeeeiiiiee e e s eae e 6
aTe [T LR AT L LI 8
INAICE @ TADIAS ...ttt ettt ettt ettt ettt nenes 9
L. INEFOAUCCION ettt ettt s bt e s b e s an e s eaneesanee 10
1.1, CONEEXEO weuiiiiiiiiiiiiiiiiiii e 11
7 @0 T (1= o] o 13l o 1= K] (ol e 3P SR SPR 12
1.2.1. Origen de la Inteligencia Artificialcccoeeveiieeecie e, 12
1.2.2. Tipos de Aprendizaje en Inteligencia Artificialcccvveeeriiieeeiiiinenen, 13
1.2.3. BIUBSKY ...ttt sttt st 14

1,30 IMOTIVACION .ttt et saeeas 15
O S 0 o 11 4 Y/ o 1= SR PSUPRR 15
T |V =1 oo [o] [o =4 - SRR 16
1.6. Analisis de viabilidadceoiiiiiiiiie e 17
1.7. RECUISOS NECESANIOS ...uuvriiiiiiiiiieiiiiiiee ettt ettt e e s 17
R T O fo] g Vo =4 =] o 1 - PO PO UPTPPPORO P PPPPPPTPPIR 18
1.0, RIBSEOS cevtetttiiiieitieittttttttetttetetetatetetebatebetabetetatetasetstasssabebabnbabebnbnbatnbannnnnnnnnnnnnnnes 19
Estructura de [a Memoria......oooiiiiiie e 20
2. Elaprendizaje por refUerzoccoeiciiieiiieeieeeeesee et 21
2.0 INErOAUCCION. ... ettt sre e sne e s n e e snneene e 21
2.2 Fundamentos Tedricos del Aprendizaje por Refuerzo......ccccccovvveeeeeeeeeccnnnnnee. 22
2.2.1. Marco de Trabajo: Agente, Entorno, Estado, Accién y Recompensa..... 22
2.2.2. (00] g 1ol =T o} (e 1 01 =1V IR 23
2.2.3. Exploracion vs. EXplotacioneceeiovicciiieeeiee e 23

2.3. Algoritmos Clasicos de Aprendizaje por RefUerzoccccccoeeecvivveeeeeeeecccnnnen, 24
2.3.1. Métodos Basados €n Valor..........cooveiiiiiiiiiinieiieee e 24
2.3.2. Métodos Basados en POlitiCas......c.cceeeeeereerieiiienieeee e 25
2.3.3. Métodos Basados en Modelosoeevieeiiiieniiiiiiiieeeeeeeeeee e 25

2.4. Software y hardware que se utiliza actualmente en las aplicaciones RL....... 26
2.4.1. Software (Las "Herramientas Digitales")cccoevvvveeeeeeiieicciiiieeeeee e, 26
2.4.2. Hardware (Los "Motores" que Hacen el Trabajo Pesado)ce....... 27

2.5. Aplicaciones del Aprendizaje por Refuerzo.........ccoocceeeeeiiiccciiiieeeee e, 28
2.5.1. L=y =0 L3RR 28

2.5.2. [200] oYo] [or= IR 28

2.5.3. (@11 - [Y o] [ToF=Tol o] o =T3RS 29
2.6. Desafios y Limitaciones del Aprendizaje por Refuerzoccccoecvveeevncineeenns 30
2.6.1. Alto Costo ComMpPUtACiONAl...cccuuieiiiiiiiie i 30
2.6.2. Dificultad en la Exploracion en Entornos Grandes........cccccccvveeeeecvvneeenne 30
2.6.3. Inestabilidad en la Convergencia de Algoritmos..........ccceeueeiiieeinieeennne 30
2.7. Ventajas y Desventajas del Aprendizaje por Refuerzo.........c.cccoevverivienienncnns 31
2.7.1. VENTAJAS weiiiiiiiiiiiiiie e 31
2.7.2. DESVENTAJAS. .. eviiiiiiiiieiiii e 31

3. Estudio de BlueSky-Gym y BIUESKYcc.cerriiiiiiiiiiieeiieeeee e 32
K 70 N [0 o Yo [V olol T] o EPUO PSP UPPROTPPRRRPPROPPRO 32
3.2. Estudio del Paquete BlueSky-Gym y BIUESKYcccoeeuiiiiiiiiiiiiniieee e 32
3.2.1. Principales caracteristiCasccceeeeiiieeeeiiiiee e 33
3.2.2. FUNCIONAlIdAdes....c..eviiiiiiiiiee e 33
3.2.3. FAN F=do] g1 4 1o L SR URPUPTRSR 34
3.2.1. Escenarios disponibles.........cccuuvivieeii e 35
3.2.2. Aplicaciones EXISTENTESuviiieiei i e e e 36
3.3. Descripcion de los Escenarios Basicos Seleccionados.........ccccvvvveeeeeeeeccennnneee. 36
3.3.1. Criterios de Seleccion de ESCENArioscccueeveereeeneeeieenee e 36
3.3.2. Descripcion de [0S ESCENAIiOS.....ccvieeiieccciiiiieiee et e e e e e 38
3.4. Anadlisis de Resultados Preliminares.........cccccoeveerieenieniienee e 39
3.4.1. Metodologia de EValuacCione.eeeeeicciiireeiee e 39
3.4.2. Resultados Obtenidos.........ceveiiiiiiiiiiiiic e 40
3.4.3. Ajustes en los Parametros de las Simulaciones.......ccccccceeecciiiveeeeennenes 41
3.4.4, Resultados iniciales tras ajustesccocccvvveeieeieeiccciieeeeee e, 42
3.5. Conclusiones del Capituloccoeiiieicciiiiiiiee e 43
4. Tutorial de BIUESKY-GYM ...t e et e e e e e 45
4.1. Instalacion y configuracion del entorno........cooeccciiieieei e, 45

4.2. Descripcion de los médulos principales: Simulador, entorno de RLy

herramientas de VisualizaCion.cocveriiiiiiiiiee e 46
4.2.1. El corazon del programa......ccccuveeeeeeeeieiccinieeeiee e eeciirreeee e e e e eesseenrreeeeee s 46
4.2.2. Carpeta bluesky _BYm ... 47
4.2.3. Carpeta BIUESKY coccooeeee e 48

4.2.4. [DYe Yoty 4 0 1 1=1c [T= FRTTTTR TR RO TR PRPPPRRRPRPRPRPRN 48

4.2.5. Kol 5] o) &3 TP 48
4.2.6. IMOEIS ...t e s 48
4.2.7. Otras carpetas y afadidoscoovcviieiiiiieiiiniiee e 49

4.3. Ejecucién de simulaciones basicas y visualizacién de resultados y evolucién
[IRV Lo [T o T TP TP OPPROPRROPRR 49
5. Experimentos computacionales con BlueSKy-GYmcccccevvuiieeiriiieeeeniieeee e 51

5.1. Creacién de un escenario simple: Definicidon de aeronaves, rutas y
condiciones iniciales. Parametros clave: Velocidad, altitud, separacion entre

Y] o] o= 1V T = ol 51
5.1.1. Configuracion y pardmetros globales..........cccceeeeiiieeiicciiee e, 51
5.1.2. FUNcion __init_ (SeIf, ...) v 52
5.1.3. FUNCION reset(Self, ...) oo e 53
5.1.4. Funcidn step(self, aCtion)ccccueeeeieiiieiiciee e 53

5.1.5. Funcién generate_conflicts y funcion generate_waypoint (self, acid =
'KLOO1'): 54

5.1.6. FUNCion get_obs(Self): .o 54
5.1.7. Funcidn get_info, get_reward, check_waypoint, check_drifty
Check_intrusion (SEIF): .. e 55
5.1.8. Funcidn get_action(self,action):......cceeeeeeiiiiiiciiiie e, 55
5.1.9. Funcion render_frame(self) ..., 55
5.2. Creacion de un escenario COMPIEJOuuvveeeeeeeeieiiiiirreieeeeeeeeccirrereee e e e e e eanneees 56

5.2.1. Explicacién de los nuevos parametros globales y

recompensas/PeNaliZaCioNescccveeeciireeiiie e ee ettt 56
5.2.2. o ST g L=T g o] o) o | T o Yo J 57
5.2.3. Segundo prototipo (MAs complejo)ccccuveeeeeiieeeeeciiee e 59
6. Limitacionesy propuestas de MeEjora......cccccceeiieiccriiiieee e ee e 62
7. CONCIUSION .ottt s b s b e s ean e snneas 65
Y 1= o PP 66
31 o] [1o ={ &= Y i - TP UPPPPRN 71

Términos y acronimos utilizados

Al
API

ATC

ATM

cwi

DDPG

DQN

FAA

GPU

GUI
HRL

IEEE

IRL

MARL
MCTS

ML
PPO

RL
SAC

TD3

TU Delft

TPU

UAV
XAl

Artificial Intelligence
Application Programming Interface

Air Traffic Control

Air Traffic Management

Centrum Wiskunde & Informatica
Deep Deterministic Policy Gradient
Deep Q-Network

Federal Aviation Administration

Graphics Processing Unit

Graphical User Interface
Hierarchical Reinforcement Learning

Institute of Electrical and Electronics
Engineers
Inverse Reinforcement Learning

Multi-Agent Reinforcement Learning
Monte Carlo Tree Search

Machine Learning
Proximal Policy Optimization

Reinforcement Learning
Soft Actor-Critic

Twin Delayed Deep Deterministic
Policy Gradient
Delft University of Technology

Tensor Processing Unit

Unmanned Aerial Vehicle
Explainable Al

Inteligencia artificial

Interfaz de programacion de
aplicaciones

Control del trafico aéreo
Gestion del trafico aéreo
Instituto nacional de
investigacion en matematicas e
informatica

Algoritmo de RL para acciones
continuas

Algoritmo que combina Q-
learning con redes neuronales
Administracion federal de
aviacion

Unidad de procesamiento
grafico

Interfaz grafica de usuario
Aprendizaje por refuerzo
jerdrquico

Instituto de ingenieros
eléctricos y electrdnicos
Aprendizaje por refuerzo
inverso

Aprendizaje multi-agente
Método de busqueda para
planificaciéon en RL
Aprendizaje automatico
Algoritmo de optimizacién de
politicas en RL

Aprendizaje por Refuerzo
Algoritmo de RL que equilibra
eficiencia y exploracién
Algoritmo de RL sucesor de
DDPG

Universidad Tecnoldgica de
Delft

Unidad de procesamiento de
Google para IA

Vehiculo Aéreo no Tripulado
IA Explicable

Agente (RL): Entidad que toma decisiones en un entorno de aprendizaje por refuerzo,
interactuando con el entorno para maximizar recompensas.

Algoritmo Actor-Critico: Método de RL que combina un "actor" (toma decisiones) y un
“critico" (evalua decisiones) para mejorar politicas.

Batch Size: Numero de muestras utilizadas en una iteracion de entrenamiento de un
modelo de RL.

Buffer de Reproduccidon: Memoria que almacena experiencias pasadas del agente para
reutilizarlas durante el entrenamiento.

Coeficiente de Entropia (ent_coef): Parametro que regula el balance entre exploracién
(probabilidad de probar acciones nuevas) y explotacién (usar acciones conocidas).

Deep Q-Network (DQN): Algoritmo de RL que combina Q-learning con redes neuronales
profundas para manejar entornos complejos.

Entorno (RL): Contexto simulado o real donde el agente interactia y aprende.

Espacio de Acciones: Conjunto de todas las acciones posibles que un agente puede
tomar en un entorno.

Espacio de Estados: Conjunto de todas las situaciones posibles en las que puede
encontrarse un entorno.

Funcién de Valor: Estimacion de la recompensa acumulada esperada desde un estado o
accion especifica.

Hiperparametros: Pardmetros configurables que controlan el proceso de entrenamiento
(ej. tasa de aprendizaje).

Politica (RL): Estrategia que define cémo el agente selecciona acciones en funcién del
estado actual.

Q-learning: Algoritmo de RL basado en valores que aprende una politica dptima
mediante una tabla Q.

Recompensa Descontada: Método para ponderar recompensas futuras en RL, dando
mas peso a las recompensas inmediatas.

Red Neuronal Profunda: Modelo computacional inspirado en el cerebro humano, usado
en RL para aproximar funciones complejas.

Stable-Baselines3: Biblioteca de Python que implementa algoritmos de RL estables y
optimizados.

Tasa de Aprendizaje (learning_rate): Pardmetro que determina cuanto ajusta el modelo
sus pesos en cada iteracion de entrenamiento.

Indice de figuras

Figura 1: Visualizacion utilizada para el entorno StaticObstacleEnv-v0 dentro de BlueSky-
Gym.

Figura 2: Grafica de numero de operaciones anuales de aeropuertos espanoles
contabilizados por AENA. Fuente: [7]

Figura 3: Conversacién con el chatbot ELIZA. Fuente: [12]

Figura 4: Ejemplo visual de aprendizaje supervisado (regresion lineal) y no supervisado
(Clustering).

Figura 5: Flujo de trabajo de BlueSky para la adquisiciéon, procesamiento y
almacenamiento de datos experimentales. Incluye interaccion con hardware,
abstraccion en Python, serializacién, almacenamiento persistente y andlisis de datos en
entornos interactivos.

Figura 6: Richard Sutton y Andrew Barto autores “Introduccién al aprendizaje por
refuerzo”.

Figura 7: Estructura de la red neuronal utilizada para la Red de Aprendizaje por Refuerzo
Profundo (Deep Q-learning Network).

Figura 8: Diagrama simplificado de agente y entorno.

Figura 9: Ejemplo visual de una Q-Table, donde el algoritmo deberia alcanzar el objetivo
utilizando el camino mas corto.

Figura 10: Ejemplo de elementos de hardware y de software.
Figura 11: Escenario PlanWaypointEnv-v0.

Figura 12: Escenario Vertical CREnv-vO.

Figura 13: Escenario HorizontalCREnv-v0.

Figura 14: Recompensa escenario PlanWaypointEnv-vO con linea de tendencia.
Figura 15: Grafica comparativa PlanWaypointEnv-vO.

Figura 16: Contenido de la carpeta principal BlueSky-Gym.
Figura 17: Parte inicial del cédigo main.

Figura 18: Ejemplo del contenido de la carpeta media.

Figura 19: Captura de uno de los videos durante la simulacién.
Figura 20: Captura de la simulacidon del primer prototipo.

Figura 21: Capturas de distintas simulaciones del segundo prototipo.

indice de tablas

Tabla 1: Cronograma de actividades.

Tabla 2: Tabla de riesgos.

Tabla 3: Tabla comparativa de los distintos algoritmos de BlueSky
Tabla 4: Resultados entrenamiento escenario PlanWaypointEnv-v0.
Tabla 5: Resultados entrenamiento escenario Vertical CREnv-vO.

Tabla 6: Resultados entrenamiento escenario Horizontal CREnv-vO.

1. Introduccion

El aprendizaje por refuerzo (RL, por sus siglas en inglés) [1,2] se ha consolidado como
una de las dreas mds prometedoras de la inteligencia artificial, especialmente en
aplicaciones que requieren toma de decisiones en tiempo real y adaptabilidad a
entornos dinamicos. El RL consiste en entrenar a un agente a tomar decisiones dptimas
mediante la interaccion reiterada con entornos, recibiendo recompensas o
penalizaciones segun sus acciones. Su objetivo es maximizar una recompensa
acumulada a lo largo del tiempo, utilizando estrategias de exploracion y explotacién
para mejorar su desempefio en la tarea asignada. En el dmbito del control de tréafico
aéreo (ATC) y la gestion del trafico aéreo (ATM), el RL ofrece un potencial significativo
para optimizar operaciones, mejorar la seguridad y aumentar la eficiencia en espacios
aéreos cada vez mas congestionados. Por ejemplo, avisando al controlador de posibles
conflictos futuros (aviones al mismo nivel de altitud con una ruta donde se cruzan) o
automatizando procesos como peticiones de "vuelo en ruta directa" comprobando si
efectuar la maniobra supone riesgos en la seguridad. Sin embargo, la falta de entornos
estandarizados y herramientas accesibles para probar y comparar algoritmos de RL ha
sido un obstdaculo para el avance de la investigacion en este campo.

Aun estando todavia en desarrollo BlueSky-Gym [3] surge como una solucidn
innovadora para poder afrontar este desafio. Basado en el simulador de trafico aéreo
de cddigo abierto BlueSky [4,5], proporciona una plataforma estandarizada y flexible
para la investigacion y aplicacién de algoritmos de RL en tareas relacionadas con el
control de trafico aéreo. BlueSky-Gym se basa en la popular APl Gymnasium [6], lo que
permite a los investigadores y desarrolladores utilizar una amplia gama de algoritmos
de RLdisponibles en bibliotecas. Ademas, ofrece una coleccién de entornos predefinidos
gue abarcan desde tareas basicas de control vertical y horizontal hasta escenarios mas
complejos, como la resolucion de conflictos y la fusidn de flujos de trafico.

La importancia de BlueSky-Gym radica en su capacidad para simplificar y estandarizar el
proceso de investigacion en RL aplicado al trafico aéreo. Al proporcionar entornos
reproducibles y bien documentados, como los del entorno de la figura 1, donde el
agente debe trazar la ruta mas corta y realizarla en el menor tiempo posible hasta el
nodo (circulo blanco) teniendo en cuenta y evitando los obstdculos estaticos del
escenario, este escenario junto con otros facilita la comparacién de distintos algoritmos
y la validacién de resultados, lo que permite el avance de la investigacidn en este campo.

¥ <

/
A v -

Figura 1: Visualizacion utilizada para el entorno StaticObstacleEnv-v0 dentro de BlueSky-Gym.

10

Ademas, su enfoque de generacion procedural asegura que los algoritmos no se adapten
Unicamente a escenarios especificos, promoviendo la generalizacidn y robustez de las
politicas aprendidas.

Este trabajo tiene como objetivo explorar las funcionalidades y aplicaciones de BlueSky-
Gym en el contexto del control de trafico aéreo. A través de una revisidon exhaustiva de
la literatura, un analisis detallado del paquete y la realizacién de simulaciones
computacionales se busca demostrar como el paquete puede ser utilizado para entrenar
y evaluar algoritmos de RL en tareas de ATC/ATM. Ademas, se propone la creacién de
un tutorial, con el fin de hacer esta herramienta accesible a una audiencia mas amplia,
incluyendo estudiantes, investigadores y profesionales del sector.

1.1. Contexto

El trafico aéreo mundial ha experimentado una notable evolucién en los Ultimos afios,
marcada por un crecimiento sostenido hasta 2019, una drastica caida en 2020 debido a
la pandemia de COVID-19 y una recuperacién gradual que culmind en niveles récord en
2024.

Actualmente, el trafico aéreo mundial ha aumentado un 10,4% con respecto a 2023,
superando en un 3,8% los niveles de 2019. Este crecimiento ha llevado al trafico aéreo
a superar los niveles pre-COVID, evidenciando una recuperacidon completa del sector.
Este aumento también se ha visto reflejado en los aeropuertos espafioles, donde se han
alcanzado cifras histéricas de pasajeros. Por ejemplo, el Aeropuerto de Valencia cerré
2024 con 10,8 millones de pasajeros, un 8,7% mas que el afio anterior.

OPERACIONES

3.000.000

2.590.861
2.500.000 2.404.054 2.361.045

2.216.474 2.300.307
2.000.000

1.500.000 1.518.847
1.000.000 1.101.250

500.000

2024 2023 2022 2021 2020 2019 2018

Figura 2: Grdfica de numero de operaciones anuales de aeropuertos espafioles contabilizados por AENA[8].

Este crecimiento en el trafico aéreo no solo responde a la recuperacion de la demanda
de pasajeros, sino también a una serie de factores clave que han impulsado el sector.
Entre ellos, destacan la apertura de nuevas rutas internacionales, el aumento del
turismo y la consolidacion de aerolineas de bajo costo, que han facilitado el acceso a los
viajes aéreos para un mayor nimero de personas.

11

A nivel operativo, la recuperacion del trafico ha supuesto nuevos retos para la gestion
del espacio aéreo. La congestidn en aeropuertos y rutas de alto trafico ha generado una
creciente necesidad de optimizar la planificacién y el control de vuelos.

1.2. Conceptos basicos
1.2.1. Origen de la Inteligencia Artificial

La inteligencia artificial (Al) es el campo que estudia como hacer que las computadoras
imiten la inteligencia humana, lo que ha permitido avances increibles en diversos
sectores, desde la medicina hasta la aviacion.

La idea de maquinas inteligentes no es nueva. Ya en la antigliedad, los fildsofos
imaginaban autématas capaces de razonar. No obstante, no fue hasta el siglo XX cuando
se dieron los primeros pasos. En la década de 1940, durante la Segunda Guerra Mundial,
el matemadtico Alan Turing desarrollé una de las primeras computadoras y propuso la
idea de que una maquina podia "pensar" si lograba imitar el comportamiento humano
en una conversacion. Este concepto dio lugar al Test de Turing [7], que aun hoy se usa
para evaluar si una IA puede engafiar a una persona haciéndole creer que estd hablando
con otro humano.

Posteriormente, en 1956, en la Conferencia de Dartmouth, John McCarthy acund el
término "Inteligencia Artificial", marcando el inicio oficial de esta disciplina. Durante
esta época, los cientificos eran optimistas y creian que en poco tiempo las computadoras
podrian alcanzar el nivel de inteligencia humana. Sin embargo, en las décadas de 1960
y 1970, aunque se desarrollaron algunos de los primeros programas de Al, como ELIZA,
un chatbot rudimentario, las limitaciones tecnolégicas llevaron a una pérdida de interés.

Figura 3: Conversacion con el chatbot ELIZA.

En los afios 80 y 90, gracias a la mejora de los procesadores y al desarrollo de redes
neuronales artificiales, la Al volvid a cobrar importancia. Se crearon sistemas expertos
capaces de resolver problemas complejos en medicina e industria. No obstante, fue en
el siglo XXI cuando la Al experimenté un crecimiento explosivo, impulsado por el acceso
a grandes volumenes de datos (Big Data) y el aumento del poder computacional.

12

Durante este periodo, aparecieron asistentes virtuales como Siri y Alexa, sistemas de
reconocimiento facial y vehiculos auténomos como los de Tesla.

1.2.2. Tipos de Aprendizaje en Inteligencia Artificial

Para entender codmo funciona la Al, es fundamental conocer sus diferentes formas de
aprendizaje. Estas no "nacen" sabiendo qué hacer, sino que deben ser entrenadas para
tomar decisiones y mejorar con el tiempo. Existen tres principales tipos de aprendizaje:

1. Aprendizaje Supervisado: En este método, el modelo aprende a partir de datos
etiquetados. Por ejemplo, si quieres ensefiar a una Al a reconocer gatos en fotos,
le muestras imdagenes etiquetadas como "con gato" o "sin gato". Con suficiente
entrenamiento, puede predecir si una nueva imagen contiene un gato. Este tipo
de aprendizaje se aplica en reconocimiento facial, diagnéstico médico y
prediccién del clima.

2. Aprendizaje no Supervisado: Aqui, la Al analiza datos sin etiquetar para
encontrar patrones y organizar la informacion. Un ejemplo es Spotify, que
observa las canciones que escuchas y te recomienda nuevas basadas en tus
gustos. Este método se utiliza en segmentacién de clientes, deteccion de fraudes
y sistemas de recomendacion.

supervisado no supervisado

Figura 4: Ejemplo visual de aprendizaje supervisado (regresion lineal) y no supervisado (Clustering).

3. Aprendizaje por Refuerzo (Reinforcement Learning - RL): En este caso, la Al
aprende por pruebay error. Un "agente" realiza acciones en un entorno y recibe
recompensas o penalizaciones segln sus decisiones. Por ejemplo, un robot que
aprende a jugar ajedrez recibe puntos positivos por buenos movimientos vy
negativos por malos. Este enfoque se aplica en juegos, robdtica y optimizacion.

13

1.2.3. BlueSky

BlueSky es un simulador de trafico aéreo de cédigo abierto disenado para investigar y
desarrollar soluciones innovadoras en la gestién del trafico aéreo. BlueSky fue creado
en 2015 por el Instituto Nacional de Investigacion Matematica e Informdatica (CWI) de
los Paises Bajos, en colaboracidn con la Universidad Tecnoldgica de Delft (TU Delft). Este
proyecto surgid6 como una iniciativa de cdédigo abierto para proporcionar una
herramienta flexible y accesible para la investigacion en gestion del trafico aéreo. Este
software permite recrear escenarios realistas de vuelo, simulando el comportamiento
de aeronaves, controladores aéreos y otros elementos clave del espacio aéreo. Su
flexibilidad y capacidad de personalizacion lo convierten en una herramienta invaluable
para investigadores, desarrolladores y profesionales de la aviacién que buscan optimizar
la eficiencia y seguridad en los cielos.

Una de las aplicaciones mas destacadas de BlueSky es su integracidn con sistemas de Al.
En este contexto, surge BlueSky-Gym, una plataforma que combina el simulador con
técnicas de RL para entrenar modelos de Al en la gestidn del trafico aéreo. BlueSky-Gym
permite a los investigadores desarrollar y probar algoritmos que optimicen rutas,
reduzcan demoras y mejoren la toma de decisiones en tiempo real, marcando un hito
en la modernizacion de la aviacion.

N Prompt feedback
Experimental procedure € — — — — — — — — — — — — — — — — — .

| |

Run Engine (bluesky) ——» “Documents” ————>» Streaming visualization

A & processing/reduction
A
v Documents

Python abstractions Serialization Access saved data
of hardware (ophyd) (suitcase) (databroker/intake)
A
Set value Read value SciPy/PyData
structures
4 Persistent storage
Control layer (e.g. EPICS) (Ordinary files on disk, v
A a Database, and/or the Clou;)\ Interactive
7 data analysis
/ . ® b :‘:(.
Large detectors Jupyter ‘

4
Hardware -
(e.g. motors, detectors)

» write directly to storage

Figura 5: Flujo de trabajo de BlueSky para la adquisicion, procesamiento y almacenamiento de datos experimentales. Incluye
interaccion con hardware, abstraccion en Python, serializacion, almacenamiento persistente y andlisis de datos en entornos
interactivos.

14

1.3. Motivacion

A medida que avanzaba en mis estudios en el grado en Gestidon Aeronautica, me ha
interesado mucho la evolucién de las tecnologias especialmente de las Al y de su
aplicacion al ATCy de cémo estas pueden mejorar la seguridad y eficiencia en la aviacion.
En un mundo donde el nimero de vuelos sigue en aumento y donde la automatizacion
desempeiia un papel cada vez mas relevante, considero que el RL representa una
oportunidad clave para optimizar la gestion del espacio aéreo y la toma de decisiones.

El trafico aéreo es un sistema altamente complejo, donde cada decisién puede afectar
la seguridad. Tradicionalmente, las estrategias de control se basan en reglas
predefinidas y en la experiencia de los controladores. Sin embargo, con el crecimiento
del trafico aéreo y la incorporacién de drones y aeronaves autdnomas, surgen desafios
que requieren soluciones mas dindmicas y adaptativas.

El uso de Al permite desarrollar sistemas que pueden aprender y mejorar
continuamente en la gestion del trafico aéreo. Con BlueSky-Gym, se pueden entrenar
modelos de RL en entornos simulados sin poner en riesgo operaciones reales.

Como estudiante, creo que este proyecto es una oportunidad Unica para combinar
conocimientos de gestion del trafico aéreo con herramientas tecnoldgicas avanzadas.
Explorar cémo los algoritmos de Al pueden integrarse en ATC no solo es un tema
innovador, sino que también tiene aplicaciones concretas en el sector aerondutico,
desde la automatizacion del control de trafico hasta la optimizaciéon de la capacidad
aeroportuaria.

En conclusion, este trabajo no solo representa una oportunidad para profundizar en un
tema innovador dentro de la gestidon aerondutica, sino que también contribuye al
desarrollo de nuevas estrategias para la optimizacién del trafico aéreo mediante
inteligencia artificial. A través de esta investigacidén, espero no solo aprender sobre
BlueSky-Gym vy el aprendizaje por refuerzo, sino también aportar soluciones practicas
gue puedan optimizar el trafico aéreo del futuro.

1.4. Objetivos

El objetivo general del trabajo es explorar el uso del aprendizaje por refuerzo en el
control aéreo, con un enfoque especifico en el estudio de las funcionalidades vy
aplicaciones potenciales del paquete BlueSky-Gym. Para alcanzar este objetivo general,
se han definido los siguientes objetivos especificos, que guiaran el desarrollo del trabajo:

1. Revisar la literatura existente acerca de aprendizaje por refuerzo y el simulador
BlueSky.

2. Estudiar el paquete BlueSky-Gym: caracteristicas y aplicaciones.

3. Escribir un tutorial BlueSky-Gym para no expertos.

4. Llevar a cabo simulaciones o experimentos computacionales con varios
escenarios y analizar resultados.

5. Estudiar limitaciones y posibles desarrollos del paquete.

15

1.5. Metodologia

Para abordar los objetivos planteados en el trabajo, se pueden combinar diversas
metodologias de investigacion, en funcidn de la naturaleza de cada objetivo. En primer
lugar, para revisar la literatura existente sobre aprendizaje por refuerzo y el simulador
BlueSky, se realizara una busqueda sistematica en bases de datos académicos como IEEE
Xplore y Google Scholar. Esta revisidn permitira identificar las aplicaciones mds comunes
del aprendizaje para reforzar el control de trafico aéreo y analizar las tendencias,
limitaciones y avances en el uso de BlueSky.

Posteriormente, el estudio del paquete BlueSky-Gym se llevara a cabo mediante un
analisis de datos y una verificacion técnica. Se examinara la documentacién oficial, el
codigo fuente y los ejemplos disponibles, con el fin de identificar sus caracteristicas
principales, las aplicaciones disponibles y practicas reportadas en la literatura o en
proyectos anteriores. Para ello, se utilizaran recursos como la documentacién de
BlueSky-Gym.

Una vez comprendido el funcionamiento del paquete, se disefara un tutorial dirigido a
usuarios sin experiencia en BlueSky-Gym. Este documento incluye instrucciones paso a
paso para la instalacién, configuracion y uso del simulador, complementadas con
ejemplos practicos y capturas de pantalla. Para la elaboracién del tutorial, se empleardn
herramientas de documentacion, asi como grabadoras de pantalla.

En la siguiente fase del trabajo, se llevardn a cabo simulaciones y experimentos
computacionales con diferentes escenarios dentro de BlueSky-Gym. Se evaluara el
algoritmo de aprendizaje por refuerzo, en tareas especificas como resoluciéon de
conflictos y fusion de tréafico. Los datos recopilados incluyen métricas de rendimiento
como la recompensa acumulada, el tiempo de convergencia y su eficiencia. Para el
analisis de los resultados, se utilizardn herramientas como Python [9] y bibliotecas de
aprendizaje.

Finalmente, se realizard un andlisis critico de BlueSky-Gym para identificar sus
limitaciones y proponer posibles mejoras. Se evaluara la falta de soporte para entornos
multiagente, la complejidad de los escenarios y la integracion con otras herramientas. A
partir de este diagndstico, se sugeriran desarrollos futuros, como la ampliacién a
entornos mas complejos o la mejora de la documentacién. Este proceso se
complementara con una revision de la literatura existente.

A través de esta metodologia estructurada, se espera lograr un andlisis completo del
paquete BlueSky-Gym, generar recursos accesibles para nuevos usuarios y aportar
conocimientos valiosos para su mejora y aplicacion en el control de trafico aéreo.

16

1.6. Anadlisis de viabilidad

El proyecto presenta una viabilidad técnica soélida, respaldada por los recursos
disponibles y las herramientas de software adecuadas. En primer lugar, se cuenta con
BlueSky, un simulador de trafico aéreo de cédigo abierto que permite personalizaciones
y es ampliamente utilizado en investigaciones académicas. Ademas, BlueSky-Gym, una
extension basada en Gymnasium, facilita la integracién con algoritmos de RL, lo que
agiliza el desarrollo de modelos avanzados. En cuanto al hardware, no se requiere un
equipo de alto rendimiento, aunque contar con una GPU podria acelerar el
entrenamiento de los modelos. Por otro lado, la documentacién disponible en GitHub,
junto con estudios previos y referencias académicas, proporciona una amplia base para
el desarrollo del proyecto.

En cuanto a la viabilidad legal y ética, el uso de software de cédigo abierto como BlueSky
y BlueSky-Gym no presenta restricciones significativas, ya que ambos estan disponibles
bajo licencias que permiten su uso en investigacién y desarrollo. En el caso de utilizar
datos de trafico aéreo real, como los proporcionados por Flightradar24[10] o eAIP [11],
es fundamental verificar sus términos de empleo. Desde una perspectiva ética, el
impacto en la seguridad aérea es un aspecto critico. Un modelo mal entrenado podria
generar recomendaciones errdneas.

La viabilidad econémica del proyecto también es favorable. Los costos de software son
bajos, ya que BlueSky y BlueSky-Gym son gratuitos y de cédigo abierto. En cuanto al
hardware, los costos pueden variar desde un nivel medio hasta uno mas elevado,
dependiendo de la capacidad de cémputo requerida.

1.7. Recursos necesarios

Recursos computacionales y de software

1. PC o portatil con capacidad suficiente para correr simulaciones.
2. Python 3.11 (lenguaje principal).

3. BlueSky-Gym (simulador)

4. Bibliotecas adicionales: NumPy 1.24, Matplotlib, Gym, etc.

Recursos Bibliograficos y Tedricos

1. Revisiones recientes sobre aprendizaje por refuerzo en simulaciones.
2. Aplicaciones del aprendizaje para refuerzo en trafico aéreo o simulaciones
similares.

17

1.8. Cronograma

Actividad

3-17 de
febrero

18-4 de
marzo

5-19 de
marzo

20-3 de abril

4-18 de abril

19-3 de
mayo

4-18 de
mayo

19-2 de junio

3-17 de junio

18-2 de julio

Revisar la literatura existente
acerca de aprendizaje por refuerzo
y el simulador Bluesky.

Estudiar el paquete Bluesky-gym:
caracteristicas y aplicaciones.

Llevar a cabo simulaciones o
experimentos computacionales
con escenarios basicos.

Iniciar la redaccion del tutorial
Bluesky-gym para no expertos.

Analizar resultados preliminares y
realizar ajustes en las simulaciones.

Estudiar limitaciones y posibles
desarrollos del paquete.

Refinar el tutorial Bluesky-gym con
base en retroalimentacion.

Ampliar simulaciones con
escenarios mas complejos.

Analizar resultados avanzados y
documentar hallazgos.

Finalizar el andlisis de limitaciones
y propuestas de mejora del
paquete.

Redaccion del informe y ajustes
finales en experimentos.

Revisién y edicidn del trabajo
completo.

Tabla 1: Cronograma de actividades.

18

1.9. Riesgos

La siguiente tabla muestra las principales fuentes de riesgos identificadas, asi como las
estrategias a seguir para prevenir, controlar o responder a los posibles problemas
antes de que afecten significativamente los objetivos.

Riesgo Impacto Estrategia de mitigacion
Falta de experiencia en Medio Realizar tutoriales y
BlueSky-Gym pruebas con ejemplos
basicos antes de los
experimentos principales.
Problemas de Medio Asegurarse que se usa la
compatibilidad entre versién compatible de los
BlueSky-Gym, Python y paquetes y revisar
bibliotecas documentacion y foros de
usuarios.
Tiempo de entrenamiento | Alto Realizar pruebas con
excesivo modelos mas simples
antes de ejecutar
experimentos complejos.
Falta de métricas claras Medio-Alto Definir métricas clave
para evaluar el como eficiencia del
rendimiento del modelo trafico, niumero de
conflictos resueltos y
tiempos de convergencia.
Dificultad en la validacion | Bajo Comparar los resultados
de los resultados con de la simulacién con
datos reales estudios previos o
modelos heuristicos de
control de trafico aéreo.
Limitaciones de tiempo Alto Establecer hitos
para cumplir con el intermedios y aplicar
cronograma metodologias agiles para
ajustar el plan de trabajo
segun los avances.

Tabla 2: Tabla de riesgos.

19

Estructura de la memoria

Capitulo 1: Introduccion

- Presentacién del tema: Aprendizaje por refuerzo (RL) y su aplicacion en la gestién
del trafico aéreo mediante BlueSky-Gym.

Capitulo 2: El aprendizaje por refuerzo (RL)

- Profundizar en el RL: Aprendizaje acumulado, generaciones, convergencia,
ventajas y desventajas, con ejemplos e imagenes.

Capitulo 3: Estudio de BlueSky y BlueSky-Gym

- Estudio del paquete BlueSky y BlueSky-Gym: Caracteristicas principales,
funcionalidades y aplicaciones existentes.

- Descripcidon de los escenarios bdsicos seleccionados para las simulaciones
iniciales.

- Anadlisis de resultados preliminares y ajustes en los parametros de las
simulaciones.

Capitulo 4: Tutorial de BlueSky-Gym

- Instalacién y configuracion del entorno. Descripcion de los mdédulos principales:
Simulador, entorno de RL y herramientas de visualizacién.

- Creacién de un escenario simple: Definicidn de aeronaves, rutas y condiciones
iniciales. Parametros clave: Velocidad, altitud, separacién entre aeronaves, etc.

- Ejecucidén de una simulacion basica y visualizacion de resultados.

Capitulo 5: Experimentos computacionales con BlueSky-Gym

- Disefio de escenarios mas complejos para evaluar el rendimiento de BlueSky-
Gym en condiciones desafiantes.

- Ejecucién de simulaciones avanzadas y recopilacion de datos. Analisis de
resultados avanzados: Eficiencia, limitaciones y posibles mejoras en el paquete.

Capitulo 6: Limitaciones y propuestas de mejora

- ldentificacién de las limitaciones actuales de BlueSky-Gym: Compatibilidad,
escalabilidad y usabilidad.

- Propuestas de desarrollo futuro: Mejoras en la documentacion, optimizacion del
codigo y ampliacién de funcionalidades.

- Discusidon sobre cdmo estas mejoras podrian impactar en la investigacién y
aplicaciones practicas.

Capitulo 7: Conclusién

- Resumen de los hallazgos principales del trabajo.
- Reflexiones sobre la importancia de las Al y a herramientas como BlueSky-Gym.
- Perspectivas futuras: Posibles lineas de investigacidn y desarrollo.

20

2. El aprendizaje por refuerzo

2.1 Introduccion

El aprendizaje por refuerzo es un tipo de aprendizaje automatico en el que un agente
aprende a tomar decisiones en un entorno interactivo mediante prueba y error. El
agente recibe recompensas o castigos por sus acciones, y su objetivo es maximizar la
recompensa total a lo largo del tiempo. A diferencia de otros enfoques de aprendizaje
automatico, como el aprendizaje supervisado, donde el agente aprende a partir de
ejemplos etiquetados, o el aprendizaje no supervisado, que busca patrones en datos no
estructurados, el RL se basa en la exploracion y explotacidn de acciones para maximizar
una recompensa acumulada a lo largo del tiempo [13]. Este enfoque lo convierte en una
herramienta poderosa para resolver problemas secuenciales y de toma de decisiones en
entornos dindmicos y complejos.

El aprendizaje por refuerzo tiene sus raices en la psicologia conductista, donde en 1855
Alexander Bain y posteriormente en 1898 Edward Thorndike estudiaron cémo los
organismos aprenden a través de la interaccidn con su entorno, finalmente sentando las
bases del aprendizaje por ensayo y error, e posteriormente en la década de 1927 Ivan
Pavlov contribuyd con sus estudios sobre el condicionamiento cldsico donde explora
como los animales pueden asociar estimulos para generar respuestas automaticas. En
el dmbito de la inteligencia artificial, el RL se formalizé en la década de 1980, con
contribuciones clave de investigadores como Richard Sutton y Andrew Barto, quienes
desarrollaron las bases tedricas y practicas del campo. Durante este periodo, se crearon
algoritmos como el Q-learning, que marcaron un avance significativo en el sector de las
Als, esta técnica de aprendizaje por refuerzo utilizada en el aprendizaje automatico ha
permitido hoy en dia realizar diagndsticos basado en imagenes en medicina igualando
el nivel de los profesionales del sector [14]. Otro ejemplo, fue la combinacién del RL con
redes neuronales profundas, ejemplificada por el éxito de DeepMind en dominar
videojuegos de Atariy el juego de Go [13].

Figura 6: Richard Sutton y Andrew Barto autores “Introduccion al aprendizaje por refuerzo”.

21

Uno de los aspectos mas destacados del RL es su capacidad para aprender de manera
auténoma, sin necesidad de supervisidn explicita. El agente interactua con el entorno,
observa los resultados de sus acciones y ajusta su comportamiento para maximizar las
recompensas futuras [13]. Este proceso de aprendizaje acumulado, donde el agente no
solo busca recompensas inmediatas sino también a largo plazo, es fundamental en
problemas como juegos, control de robots y optimizacién de recursos [15].

En los ultimos anos, el RL ha alcanzado hitos significativos gracias a la combinacién con
técnicas de aprendizaje profundo. Por ejemplo, el algoritmo Deep Q-Network (DQN)
permitid a un agente alcanzar un rendimiento a nivel humano en juegos de Atari,
utilizando redes neuronales profundas para aproximar la funcién de valor [15]. Otro
avance notable fue AlphaGo Zero, que aprendié a jugar Go a un nivel superhumano sin
datos de entrenamiento humanos, utilizando solo RLy busqueda de arboles Monte Carlo
[16]. Ademas, el algoritmo Deep Deterministic Policy Gradient (DDPG) extendid el RL a
entornos con acciones continuas, como el control de robots [17].

Figura 7: Estructura de la red neuronal utilizada para la Red de Aprendizaje por Refuerzo Profundo (Deep Q-learning Network).

2.2 Fundamentos Tedricos del Aprendizaje por Refuerzo

El aprendizaje por refuerzo (RL) se basa en un marco tedrico bien definido que permite
a un agente aprender a tomar decisiones éptimas mediante la interaccién con un
entorno. Este marco se compone de varios elementos clave y conceptos fundamentales
gue guian el proceso de aprendizaje.

2.2.1. Marco de Trabajo: Agente, Entorno, Estado, Accién y Recompensa

El RL se estructura en torno a la interaccidn entre un agente y un entorno. El agente es
la entidad que toma decisiones, mientras que el entorno representa el mundo externo
con el que el agente interactua. En cada paso de tiempo, el agente observa el estado
actual del entorno, selecciona una accidn y recibe una recompensa como
retroalimentacion. El objetivo del agente es aprender una politica que maximice la
recompensa acumulada a lo largo del tiempo [13].

22

Agente

estado recompensa accion
St "t 4
i Mt41
| & Ambiente e
' St

Figura 8: Diagrama simplificado de agente y entorno.
2.2.2. Conceptos Clave

e Politica: La politica es la estrategia que el agente utiliza para seleccionar acciones
en funcién del estado actual. Puede ser determinista (siempre selecciona la
misma accién para un estado dado) o estocastica (asigna probabilidades a las
acciones posibles) [13].

e Funcién de Valor: La funcién de valor estima la recompensa acumulada que el
agente puede esperar obtener a partir de un estado o accidn. Existen dos tipos
principales: la funcidn de valor de estado (que evalla cuan bueno es estar en un
estado) y la funcién de valor de accion (que evalia cuan buena es una accién en
un estado dado) [13].

e Aprendizaje Acumuladoy Recompensa Descontada: EI RL se enfoca en maximizar
la recompensa acumulada a largo plazo, no solo la recompensa inmediata. Para
ello, se introduce un factor de descuento que pondera la importancia de las
recompensas futuras. Este enfoque permite al agente priorizar acciones que
generen beneficios sostenidos en el tiempo [2,13].

2.2.3. Exploracion vs. Explotacion

Uno de los dilemas centrales en el RL es el balance entre exploracidn y explotacién. La
exploracién implica probar nuevas acciones para descubrir sus efectos, mientras que la
explotacién se refiere a utilizar acciones conocidas que han generado buenas
recompensas. Un agente debe equilibrar ambos aspectos para aprender
eficientemente: demasiada explotacion puede llevar a soluciones subdptimas, mientras
gue demasiada exploracién puede retrasar la convergencia a una politica éptima [2,13].

23

2.3. Algoritmos Clasicos de Aprendizaje por Refuerzo

El aprendizaje por refuerzo (RL) cuenta con una variedad de algoritmos que se clasifican
en tres categorias principales: métodos basados en valor, métodos basados en politicas
y métodos basados en modelos. Cada uno de estos enfoques tiene sus propias
caracteristicas y aplicaciones, lo que los hace adecuados para diferentes tipos de
problemas.

2.3.1. Métodos Basados en Valor

Estos métodos buscan calcular qué tan bueno es un estado o una accién en un problema
de toma de decisiones. Para hacerlo, intentan predecir la recompensa total que se
podria obtener en el futuro si se sigue una estrategia determinada. Dos de los algoritmos
mas representativos son:

Q-learning: Este algoritmo aprende a estimar qué tan buena es cada acciéon en un
determinado estado. Para ello, utiliza una funcién llamada "funcién Q", que asigna un
valor a cada accién segun las recompensas futuras esperadas. Q-learning es un método
off-policy, lo que significa que aprende “el camino” mads optimo independientemente de
las acciones que el agente esté tomando durante el aprendizaje [13].

™
]
’

o
»

Figura 9: Ejemplo visual de una Q-Table, donde el algoritmo deberia alcanzar el objetivo utilizando el camino mds corto.

Deep Q-Networks (DQN): DQN es una mejora del algoritmo Q-learning que usa redes
neuronales para tomar decisiones en entornos complejos, como videojuegos. En lugar
de almacenar todos los valores de las acciones en una tabla, la red neuronal aprende a
estimarlos, lo que permite manejar situaciones con muchas posibilidades. Ademas, usa
trucos como guardar experiencias pasadas y tener una red de referencia para hacer el
aprendizaje mas estable y efectivo [15]. DQN se ha utilizado en juegos de estrategia en
tiempo real, como StarCraft Il, para entrenar agentes que aprenden a tomar decisiones
complejas en entornos dindmicos.

24

2.3.2. Métodos Basados en Politicas

Estos métodos ensenan directamente al agente cdmo tomar decisiones. En lugar de
calcular el valor de cada accidn, ajustan la forma en que el agente elige sus acciones para
obtener la mayor recompensa posible. Dos algoritmos destacados son:

Policy Gradient: Es un método que ensefia al agente a mejorar sus decisiones ajustando
directamente la forma en que elige sus acciones. En lugar de calcular valores para cada
accion, el agente aprende probando diferentes estrategias y ajustandolas para
maximizar la recompensa. Aunque este método es flexible y funciona bien en
situaciones donde las acciones son aleatorias (estocasticas), puede necesitar muchas
pruebas para aprender correctamente [13]. Por ejemplo, un robot debe aprender a
lanzar una pelota a un objetivo. En lugar de calcular cual es el mejor dngulo y fuerza
exactos en cada intento, el robot prueba diferentes formas de lanzar la pelota, recibe
una puntuacién por cada intento y ajusta su estrategia hasta mejorar su precisién.

Deep Deterministic Policy Gradient (DDPG): DDPG es una extension de Policy Gradient
gue combina redes neuronales profundas con métodos basados en politicas para
manejar entornos con acciones continuas. Este algoritmo es especialmente util en
aplicaciones de control, como la robdtica, donde las acciones suelen ser continuas y de
alta dimensionalidad. DDPG utiliza un enfoque actor-critico, donde el actor decide que
accion tomar vy el critico que evalla las acciones tomadas [17]. En este caso imagina un
dron que debe aprender a volar suavemente para aterrizar en una plataforma. DDPG
permite que el dron ajuste gradualmente la potencia de sus motores en lugar de elegir
entre opciones fijas como "subir" o "bajar". Asi, puede realizar movimientos mas
precisos y eficientes.

2.3.3. Métodos Basados en Modelos

Finalmente, estos métodos utilizan una representacién del entorno para planificar antes
de actuar. En lugar de aprender solo a partir de la experiencia directa, el agente simula
diferentes escenarios para predecir los resultados de sus acciones y tomar mejores
decisiones. Un ejemplo destacado es:

Busqueda de Arboles Monte Carlo (MCTS): MCTS es un método que ayuda a tomar
decisiones explorando diferentes opciones de manera inteligente. En lugar de analizar
todas las posibilidades (lo que puede ser imposible en juegos complejos), prueba
algunas opciones al azar, construye un arbol con los mejores movimientos y se enfoca
en los mds prometedores [16].

25

2.4. Software y hardware que se utiliza actualmente en las
aplicaciones RL

El desarrollo de aplicaciones de aprendizaje por refuerzo (RL) como BlueSky-Gym se ve
impulsado por la sinergia software-hardware necesario para realizar simulaciones
eficientes y precisas. En el lado del software, herramientas como TensorFlow o PyTorch
constituyen la base sobre la que implementar las redes neuronales profundas que
resulta esencial en algoritmos como DQN o DDPG que el propio BlueSky-Gym aplica para
permitir entrenar a los agentes de gestion del trafico aéreo. Junto a estas bibliotecas
concretas, también se encuentran bibliotecas mds especializadas (Stable-Baselines3 o
Ray RLlib) que simplifican la experimentacidn con algoritmos clasicos (PPO o SAC) y que
permiten escalar el entrenamiento a entornos distribuidos, lo que resulta fundamental
para escenificar entornos complejos y realistas (con aeropuertos que tienen cientos de
vuelos simultaneos). Por otra parte, entornos como OpenAl Gym son los que
permitieron estandarizar la evaluacion de modelos, mientras que simuladores fisicos
(MuJoCo) o 3D (Unity ML-Agents) inspiraron el disefio de los entornos realistas en
BlueSky-Gym y su utilizacidén en variables extra como la meteoroldgica o la existencia de
rutas en funcion de la situacion.

Con respecto al hardware, las exigencias computacionales de BlueSky-Gym requieren
unos recursos potentes. Por ejemplo, las GPUs (NVIDIA Tesla, RTX) aceleran el
entrenamiento de modelos profundos mediante la ejecucién en paralelo de operaciones
matriciales, lo que permite reducir el tiempo requerido para simular miles de episodios.
Para proyectos extensos, como el optimizador de trafico aéreo global, se pueden
aprovechar las TPUs de Google, que destacan a nivel de rendimiento. Asimismo, la
computacioén distribuida (clusters y herramientas como Ray) permite dividir el trabajo
entre varios nodos, lo que resulta un enfoque determinante para el paso de BlueSky-
Gym hacia un simulador profesional. Ademas, el hardware especifico (placas NVIDIA
Jetson) se podria incorporar en las fases de produccién para realizar inferencias en
sistemas fisicos (torres de control automatizadas).

Para un mayor entendimiento se pasara a explicar los dos mayores componentes que
intervienen en una simulacién:

2.4.1. Software (Las "Herramientas Digitales")
Sin el software, BlueSky-Gym no tendria cerebro: no podria aprender ni simular.

e Frameworks de Aprendizaje Profundo y RL:

o TensorFlow y PyTorch: Son como los cuadernos de notas de la Al, como
los cuadros de una novela, permitiendo programar redes neuronales
(modelos matematicos inspirados en el cerebro humano) para que la
maquina aprenda de sus errores. Es decir, si BlueSky-Gym hace un error
dando las érdenes para dirigir un avion, estos programas se hacen cargo
de realizar correcciones en sus cdlculos para hacerlo mejor la préxima
vez.

26

o Stable-Baselines3: Es como el libro de recetas con algoritmos
predefinidos y que si quieres ensefiar a BlueSky-Gym a tomar decisiones,
aqui encuentras métodos que han sido probados, como el PPO (simula
un entrenador que da premios por buenas acciones) o el DQN (que
aprende por pruebay error).

o OpenAl Gym: Un entorno de desarrollo que ofrece una variedad de
entornos simulados para probar y evaluar algoritmos de RL, desde juegos
clasicos hasta problemas de control, pero los de BlueSky-Gym se usan
para simular aviones, rutas y emergencias.

o Ray RLlib: Hay que pensar en esto como en un equipo de trabajadores,
de tal forma que si BlueSky-Gym necesita ejecutar varios aviones,
entonces el RLIib divide el trabajo en varias maquinas para asi hacerlo lo
mas rapido posible.

Herramientas de Simulacién:

o Unity ML-Agents: Es como los estudios de cine que crean mundos
virtuales. Unity se usa para simulaciones en 3D (por ejemplo, un
aeropuerto con graficos realistas), y MuloCo es para simular las leyes
fisicas (como el viento afectando a un avidn).

2.4.2. Hardware (Los "Motores" que Hacen el Trabajo Pesado)

Sin el hardware, seria como un cerebro sin cuerpo: sabria qué hacer, pero no podria
hacerlo répido.

Unidades de Procesamiento Grafico (GPUs): Son tarjetas que ejecutan cdlculos
de forma muy rdpida. En BlueSky-Gym, una mejor GPU ayudard a acelerar el
entrenamiento de modo que simular cientos de aterrizajes lleve horas en vez de
dias.

Unidades de Procesamiento Tensor (TPUs): Desarrolladas por Google, las TPUs
estan optimizadas para operaciones de aprendizaje profundo y son utilizadas en
aplicaciones de RL que requieren un alto rendimiento computacional, como el
entrenamiento de modelos a gran escala. Podriamos pensar en ellos como
motores de Férmula 1. No son para uso doméstico, pero en el caso de proyectos
masivos (como el que trata de simular el tréfico aéreo de todo un pais) son
extremadamente rapidos.

Computacién Distribuida: Seria como si quisiéramos resolver un enorme
rompecabezas al contratar a un pool enorme de personas que lo hicieran. En vez
de usar una sola computadora instalada en una oficina, BlueSky-Gym podria usar
decenas conectadas en red (usando herramientas como Ray) para hacer el
trabajo repartiendo las tareas

Hardware Especializado: Es hardware que tiene una potencia enorme en
formatos muy pequefios: computadoras que usan drones o robots (en el caso
gue BlueSky-Gym quisiera controlar aviones). Esta opcién permitiria poder
ejecutar el modelo entrenado en tiempo real fuera de la oficina, por ejemplo, a
un avién que vuela por la costa incluso sin internet disponible.

27

‘,Aul G@*

._/ ,,." ‘ E

Figura 10: Ejemplo de elementos de hardware y de software.

2.5. Aplicaciones del Aprendizaje por Refuerzo
2.5.1. Juegos

Los juegos han sido un campo de pruebas ideal para el RL debido a su naturaleza
estructurada y la posibilidad de definir recompensas claras. Dos ejemplos emblematicos
son:

Aplicacién de DQN en juegos de Atari: El algoritmo Deep Q-Network (DQN) revoluciond
el campo del RL al combinar redes neuronales profundas con Q-learning. Este enfoque
permitid a un agente aprender a jugar directamente a partir de imagenes de pantalla,
alcanzando un rendimiento a nivel humano en varios juegos cldsicos de Atari, como
Breakout y Space Invaders. DQN demostré que el RL puede manejar entornos de alta
dimensionalidad y aprender politicas efectivas sin supervisién explicita [15].

AlphaGo Zero y su dominio del juego de Go: AlphaGo Zero es un hito en la historia del
RL. A diferencia de su predecesor, AlphaGo, que utilizaba datos de partidas humanas,
AlphaGo Zero aprendié a jugar Go desde cero, utilizando Unicamente RL y busqueda de
arboles Monte Carlo (MCTS). Este sistema no solo superd a los mejores jugadores
humanos, sino que también descubrid estrategias novedosas que revolucionaron la
comprensién del juego [16].

2.5.2. Robética

El RL ha encontrado aplicaciones significativas en robética, donde la capacidad de
aprender en entornos dindmicos y complejos es crucial. Un ejemplo destacado es:

Control de robots con DDPG: El algoritmo Deep Deterministic Policy Gradient (DDPG) ha
sido utilizado para controlar robots en tareas que requieren precisidon y coordinacion,
como la manipulacién de objetos y el movimiento auténomo. DDPG es especialmente
adecuado para entornos con acciones continuas, lo que lo convierte en una opcion ideal
para aplicaciones de control en robdtica. Este enfoque ha permitido a los robots
aprender tareas complejas de manera auténoma, sin necesidad de programacién
explicita [17].

28

2.5.3. Otras Aplicaciones

Investigaciones en el ambito del control del trafico aéreo han explorado el uso de
algoritmos de Reinforcement Learning (RL) para optimizar la gestién del espacio aéreo
en tiempo real. En particular, el proyecto Dynamic Airspace Configuration (DAC) de la
NASA ha demostrado mediante simulaciones sobre el espacio aéreo de Kansas City que
ciertas técnicas de reconfiguracién dinamica pueden reducir los retrasos promedio por
vuelo en escenarios de alta congestion en hasta un 15-20 % [18]. Estas simulaciones
consideraron multiples variables como restricciones operacionales, condiciones
meteoroldgicas y distribucion del trafico aéreo. Aunque en los documentos publicos del
proyecto DAC no se mencionan algoritmos especificos de aprendizaje profundo, otras
investigaciones han demostrado el potencial del enfoque Deep Deterministic Policy
Gradient (DDPG) en entornos aeronduticos. Este algoritmo de aprendizaje por refuerzo
profundo desarrollado por Google DeepMind en 2015. Esta disefiado para resolver
tareas de control continuo, donde las acciones no son discretas (como girar a la izquierda
o a laderecha), sino continuas (como ajustar gradualmente el angulo de vuelo, velocidad
o altitud). Gracias a este algoritmo, una tesis de la Universidad de Cranfield desarrollé
un sistema de control de vuelo auténomo basado en DDPG, capaz de operar en
condiciones de alta complejidad dindmica con seis grados de libertad [19].

Microsoft Flight Simulator incorpora avanzadas técnicas de inteligencia artificial
generativa, apoyadas en tecnologias de Azure y Blackshark.ai, que permiten reconstruir
de forma precisa y detallada el entorno global mediante el uso de datos satelitales y
fotogrametria [20,21]. Este sistema crea mas de 1,500 millones de edificaciones,
carreteras, vegetacién y otras estructuras, incluso rellenando automaticamente zonas
con datos escasos, como aeropuertos secundarios o extremos de paisaje, y reproduce
efectos meteorolégicos en tiempo real [20]. Ademas, integra tréfico aéreo real basado
en datos “live” de transpondedores, lo que contribuye a una simulacién altamente
inmersiva y realista [22]. Aunque no se ha confirmado el uso de algoritmos de
aprendizaje por refuerzo puro como Proximal Policy Optimization (PPO) en el sistema
de trafico, investigaciones académicas han aplicado PPO para el control auténomo de
trafico aéreo simulado, demostrando que estas técnicas permiten a las aeronaves tomar
decisiones auténomas, como cambiar rutas ante tormentas o mantener la separacién
entre aviones [1].

Investigadores del MIT Lincoln Laboratory han desarrollado avanzados sistemas de
evitacién de colisiones basados en aprendizaje profundo, tales como ACAS-X y su
variante para drones ACAS Xu, disefiados para operar en entornos mixtos de trafico
tripulado y no tripulado [23,24]. Estos sistemas han sido evaluados con millones de
simulaciones en entornos de encuentro entre vehiculos aéreos, utilizando técnicas de
Monte Carlo en simulaciones rapidas, evaluando maniobras evasivas como cambios de
altitud y trayectoria para aumentar la seguridad [25,26]. Los desarrollos de ACAS Xu han
sido distinguidos por su innovacién y estdn en proceso de ser integrados en sistemas
certificados para drones, lo que representa un paso clave hacia su eventual uso conjunto
con agencias como la FAA [24,27].

29

2.6. Desafios y Limitaciones del Aprendizaje por Refuerzo

A pesar de su potencial y versatilidad, el RL enfrenta varios desafios y limitaciones que
dificultan su aplicacién en problemas complejos y del mundo real. Estos desafios estan
relacionados con aspectos computacionales, de exploracién y de estabilidad en el
aprendizaje.

2.6.1. Alto Costo Computacional

Uno de los principales obstaculos del RL es su alto costo computacional. Los algoritmos
de RL requieren una gran cantidad de interacciones con el entorno para aprender
politicas efectivas, lo que puede ser extremadamente costoso en términos de tiempo y
recursos. Por ejemplo, en el caso de Deep Q-Networks (DQN), se necesitaron millones
de pasos de entrenamiento para alcanzar un rendimiento a nivel humano en juegos de
Atari. Ademas, muchos algoritmos de RL, especialmente aquellos que combinan RL con
redes neuronales profundas, requieren grandes cantidades de datos y potencia de
calculo, lo que limita su aplicabilidad en entornos donde los recursos son escasos [2].

2.6.2. Dificultad en la Exploracion en Entornos Grandes

La exploracion eficiente es un desafio fundamental en el RL, especialmente en entornos
grandes o con recompensas escasas. En estos casos, el agente puede tener dificultades
para encontrar acciones que generen recompensas significativas, lo que retrasa el
aprendizaje. El dilema de exploracién vs. explotacion es particularmente critico: si el
agente explota demasiado acciones conocidas, puede quedar atrapado en soluciones
subdptimas; si explora demasiado, puede tardar mucho tiempo en converger a una
politica efectiva [2,13]. Este problema se agrava en entornos con espacios de estado y
accién de alta dimensionalidad, donde la exploraciéon aleatoria no es viable.

2.6.3. Inestabilidad en la Convergencia de Algoritmos

La inestabilidad en la convergencia es otro desafio importante en el RL. Muchos
algoritmos, especialmente aquellos que combinan RL con redes neuronales profundas,
pueden ser inestables durante el entrenamiento. Por ejemplo, en el caso de Deep
Deterministic Policy Gradient (DDPG), pequeiios cambios en los hiperpardmetros o en
la inicializacién de los pesos de la red pueden llevar a resultados muy diferentes, lo que
dificulta la reproducibilidad y la confiabilidad del aprendizaje [17]. Ademas, la
convergencia a una politica éptima no estd garantizada en todos los casos,
especialmente en entornos no estacionarios o con recompensas ruidosas [2].

30

2.7. Ventajas y Desventajas del Aprendizaje por Refuerzo

El RL es un enfoque poderoso y versatil en el campo de la inteligencia artificial, pero
como cualquier técnica, tiene sus ventajas y desventajas. A continuacién, se describen
los aspectos mas destacados de ambas.

2.7.1. Ventajas

Aprendizaje Autonomo y Adaptabilidad a Entornos Dinamicos: Una de las principales
ventajas del RL es su capacidad para aprender de manera auténoma, sin necesidad de
supervisidon explicita. El agente interactua con el entorno y ajusta su comportamiento
en funcién de las recompensas obtenidas, lo que lo hace ideal para entornos dindmicos
y cambiantes donde las reglas no estan predefinidas [2,13].

Optimizaciéon a Largo Plazo en Problemas Secuenciales: El RL estd disefiado para
maximizar la recompensa acumulada a lo largo del tiempo, lo que lo hace especialmente
util en problemas secuenciales y de toma de decisiones a largo plazo. Esto contrasta con
otros enfoques que se centran en optimizar recompensas inmediatas. Ejemplos
notables incluyen el dominio de juegos como Go y Atari, donde el agente debe planificar
varias jugadas adelante para alcanzar el éxito [14,15].

2.7.2. Desventajas

Dificultad para Escalar a Problemas de Alta Dimensionalidad: Aunque el RL ha
demostrado su eficacia en problemas con espacios de estado y accién discretos o de
baja dimensionalidad, escalar a entornos de alta dimensionalidad sigue siendo un
desafio. Por ejemplo, en aplicaciones de control de robots o procesamiento de
imagenes, el alto costo computacional y la complejidad del espacio de busqueda pueden
dificultar el aprendizaje [2,16].

Dependencia de la Calidad de las Recompensas y la Exploracién: El rendimiento del RL
depende en gran medida de la definicion adecuada de las recompensas y de una
exploracidon eficiente. Si las recompensas no estan bien disefiadas, el agente puede
aprender politicas subdptimas o incluso contraproducentes. Ademas, el dilema de
exploracién vs. explotacién puede dificultar el aprendizaje en entornos donde las
recompensas son escasas o dificiles de obtener [2,13].

31

3. Estudio de BlueSky-Gym y BlueSky

3.1. Introduccion

El andlisis de herramientas de simulacidon en el campo aeronautico es esencial para
impulsar el desarrollo de ingenieria de sistemas que se utilizan en el control de trafico
aéreo y la gestion de flotas. En este sentido, BlueSky y su extensidon BlueSky-Gym se
presentan como unas plataformas de simulacidn de referencia en el campo de la
simulacién para entornos aeronduticos, asi como para la automatizaciéon y la
optimizacidn de tareas complejas, mediante la integracion de algoritmos de aprendizaje
por refuerzo (RL). Esta finalidad de este capitulo es presentar las principales
caracteristicas, las funcionalidades y las aplicaciones que tienen estas herramientas, asi
como dar a conocer los resultados preliminares obtenidos en simulaciones bdsicas con
escenarios escogidos.

BlueSky es un simulador especifico de trafico aéreo de cddigo abierto que ofrece un
entorno realista y altamente configurable para simular operaciones aéreas; en cambio,
BlueSky-Gym es una interfaz de software que permite la integracidn de BlueSky con el
ecosistema OpenAl Gym; lo que permite implementar y evaluar algoritmos RL en
entornos aeronduticos. Estas herramientas han sido empleadas en trabajos de
investigacion recientes para abordar problemas como la gestion del trafico aéreo, la
optimizacién de rutas y la minimizacion de colisiones, demostrando asi su versatilidad y
su propio potencial en el dmbito de la inteligencia artificial en la aviacién.

En este apartado, se hara una presentacién detallada de las caracteristicas vy
funcionalidades de BlueSky y BlueSky-Gym, de los escenarios bdasicos escogidos para las
simulaciones iniciales, asi como de los resultados preliminares analizados. Del mismo
modo, se discutirdn ajustes confeccionados en los pardmetros de las simulaciones para
su optimizacion. Este estudio puede considerarse como una base para los estudios
futuros que empleen estas herramientas en problemas mas complejos y escalables.

3.2. Estudio del Paquete BlueSky-Gym y BlueSky

En este apartado, se lleva a cabo un estudio en profundidad de las herramientas BlueSky
y BlueSky-Gym donde se presentan sus principales caracteristicas, funciones y
aplicaciones concretas dentro del ambito de la investigacion y de la simulacién
aeronautica. Estas herramientas han sido disefiadas para proporcionar un entorno de
simulacion adecuado y muy configurable que haga posible la conexién con
determinados algoritmos de aprendizaje por refuerzo (RL) asi como la simulacién de
situaciones complejas de trafico aéreo.

32

3.2.1. Principales caracteristicas

BlueSky es un simulador de trafico aéreo Open Source que destaca por su flexibilidad y
su capacidad para simular operaciones aéreas en tiempo real. Las principales
caracteristicas de BlueSky son:

» Simulacion en tiempo real: BlueSky es capaz de simular el comportamiento de
aeronaves, controladores aéreos y otros elementos del espacio aéreo con un
elevado grado de precision.

» Interfaz grafica y API: Proporciona una GUI intuitiva para la visualizacién de
simulaciones y una API robusta para la automatizacién de tareas y la integracion
con otras herramientas.

» Escalabilidad: Puede gestionar desde escenarios simples con pocas aeronaves
hasta entornos complejos con cientos de vuelos simultaneos.

Por otro lado, BlueSky-Gym es una extension de BlueSky que conecta el simulador con
el ecosistema OpenAl Gym, facilitando asi la implementacidn y evaluacién de algoritmos
de RL. Sus principales caracteristicas son:

» Compatibilidad con OpenAl Gym: Proporciona una interfaz estandar para definir
los entornos de RL con soporte para que los investigadores aplicen algoritmos ya
implementados y comparen resultados de forma consistente (Sun et al., 2020).

» Configuracidn flexible: Se pueden definir escenarios, recompensas y métricas de
evaluacién que se adapten a los objetivos de la investigacion.

3.2.2. Funcionalidades

Las funcionalidades de BlueSky y BlueSky-Gym las hacen herramientas muy adecuadas
para la investigacion en control del trafico aéreo y la gestién de flotas. Las
funcionalidades mas destacadas son las siguientes:

» Modelado de aeronaves: Incluir modelos de todo tipo de aeronaves comerciales
o privadas, definiendo parametros tales como la velocidad, la altitud o la ruta.

» Gestion del espacio aéreo: Permitir simular la interaccién entre aeronaves y
controladores aéreos, incluyendo gestidn de colisiones, desvios, retrasos, etc.

» Integracion con RL: BlueSky-Gym proporciona funciones para definir
recompensas, estados y acciones, lo que facilita el entrenamiento de agentes
para RL en escenarios de aviones.

33

3.2.3. Algoritmos

El paquete BlueSky-Gym integra cuatro distintos algoritmos que podemos utilizar al
momento de realizar los distintos entrenamientos, siendo estos DDPG, TD3, PPO y SAC.

> DDPG (Deep Deterministic Policy Gradient): Es el mas antiguo de los algoritmos
disponibles y predecesor de estos, se puede considerar una extensién del DQN
(Deep Q-Networks) pero aplicado a espacios de acciones continuos. Entre sus
principales caracteristicas se pueden considerar la utilizaciéon de dos redes
neuronales (Actor-Critico), es decir el actor toma una accién y el critico
determina que tan buena ha sido esa accién, mientras que es un algoritmo Off-
Policy que utiliza un replay buffer, una memoria que almacena transiciones
pasadas y de esta forma el algoritmo puede aprender experiencias antiguas.
Finalmente, su politica es determinista donde el actor produce una Unica accién
para un estado dado, en lugar de una distribucion de probabilidad sobre las
acciones.

» TD3 (Twin Delayed Deep Deterministic Policy Gradient): TD3 es el sucesor directo
de DDPG y fue disefiado para solucionar uno de sus mayores problemas
relacionados con la sobreestimacion del valor Q. Es decir, el algoritmo DDPG
suele ser “optimista” sobre las recompensas futuras, lo que ralentiza el
aprendizaje y da pie a soluciones subdptimas, para paliar esto el TD3 afadi6 tres
innovaciones claves:

o Criticos Gemelos (Twin Critics): Se entrenan dos redes de criticos en lugar
de una.

o Actualizaciones de Politica Retrasadas (Delayed Policy Updates): El actor
y las redes "objetivo" (target networks) se actualizan con menos
frecuencia que el critico.

o Suavizado del Ruido en el Objetivo (Target Noise Smoothing): Suaviza el
aprendizaje lo que evita picos y hace el aprendizaje mas robusto.

» PPO (Proximal Policy Optimization): PPO es un algoritmo on-policy de tipo actor-
critico. Es conocido por su robustez, debido a que a diferencia de los demas
algoritmos realiza actualizaciones de sus politicas de manera conservadora
limitando los cambios posibles entre entrenamientos, a su vez elimina el replay
buffer, lo que significa que después de cada interaccién descarta las experiencias
y usa unas nuevas. Finalmente, su politica es estocastica, lo que significa que,
para un estado dado, produce una distribucion de probabilidad sobre las
acciones.

» SAC (Soft Actor-Critic): SAC es un algoritmo off-policy y actor-critico que
introduce el concepto de maximizacién de la entropia. Es considerado uno de los
algoritmos mas eficientes y potentes para control continuo. El objetivo de SAC
no es solo maximizar la recompensa acumulada, sino hacerlo mientras se
mantiene la politica lo mas aleatoria posible (alta entropia). Al igual que el
algoritmo PPO utiliza una politica estocastica.

34

Tipo de politica Off-policy Off-policy On-policy Off-policy
Eficiencia Alta Alta Baja Muy alta
Politica Determinista Determinista Estocdstica Estocdstica

Exploracidn

Ruido afiadido

Ruido afiadido

Natural
(estocastica)

Maximizacién de
entropia

continuas

retrasadas

actualizaciones

Estabilidad Baja Media-Alta Muy alta Alta
Complejidad Media Media-Alta Baja Alta
Caracteristica Actor-Critico para | Criticos Gemelos | Objetivo Maximizacion de
clave acciones y actualizaciones | "recortado" para | la entropia

seguras

Tabla 3: Tabla comparativa de los distintos algoritmos de BlueSky.

3.2.1. Escenarios disponibles

BlueSky-Gym viene con siete entornos disefiados para facilitar la investigaciéon del
aprendizaje por refuerzo en la gestion del trafico aéreo, estos entornos se pueden dividir
en tres categorias principales:

» Control vertical: Estos escenarios se centran en el control vertical de la aeronave.
Los entornos dentro de esta categoria son:

o DescentEnv-v0: Este entorno estd preparado para ensefiar al agente a
realizar un descenso eficiente, donde el agente debe mantener el mayor
tiempo posible la velocidad crucero antes de antes de iniciar el descenso
a pista en el momento éptimo.

o VerticalCREnv-v0: En este caso el agente debe descender de manera
segura y controlada mientras evita a los intrusos y obstaculos que
aparecen en el escenario.

» Resolucién de Conflictos Horizontales: Estos escenarios se enfocan en evitar
colisiones modificando la ruta en el plano horizontal, es decir equivalente al
rumbo.

o HorizontalCREnv-v0: En este escenario el agente debe evitar las
colisiones con otras aeronaves manteniendo una distancia minima de
seguridad.

o SectorCREnv-v0: Este caso es similar pero centrado en un sector del
espacio aéreo. El agente controla una Unica aeronave que debe cruzar un
sector mientras otras aeronaves (no controladas) también lo atraviesan.

o MergeEnv-v0: En este escenario el agente controla el rumbo vy Ia
velocidad de las aeronaves en una de las corrientes de trafico para que
se incorporen a un punto de fusién (merge-point). Debe evitar en todo
momento la colisién y ademds conseguir que crucen todas las aeronaves
en el menor tiempo posible.

35

>

Control Horizontal: En esta categoria se incluyen aquellos escenarios
horizontales que se centran en otras tareas y no tanto en la resolucion de
conflictos.

o ObstacleAvoidanceEnv-v0: En este caso el agente debe llevar el avion de
un punto de inicio al otro evitando obstaculos fijos, por lo tanto, el agente
entrena para interpretar la ruta mas corta hasta su objetivo.

o MultiGoalEnv-v0: Aqui el agente debe pasar por unos waypoints (puntos
de ruta) de la manera mas eficiente, este escenario carece de obstaculos,
por lo tanto, el agente solo debe centrarse en encontrar el camino mas
corto que pase por todos los puntos de ruta.

3.2.2. Aplicaciones existentes

BlueSky y BlueSky-Gym son utilizados en muchos ambitos de la investigacion y
formacién de aeronautica. Algunos ejemplos donde se podrian aplicar son:

*
L X4

X/
L X4

X/
L X4

Control de trafico aéreo: Todo tipo de investigaciones que buscan optimizar las
rutas, minimizar el riesgo de colisiones y maximizar la gestion del espacio aéreo.
Formaciéon de controladores: Los simuladores son usados para entrenar
controladores aéreos en escenarios que son lo mas realistas y dindmicos posible.
Desarrollo de algoritmos de RL: Investigaciones que emplean BlueSky-Gym para
entrenar y evaluar agentes de RL en tareas como la gestiéon de flotas o la
planificacion de rutas.

3.3. Descripcion de los Escenarios Basicos Seleccionados

3.3.1. Criterios de Seleccion de Escenarios

PlanWaypointEnv-v0: Es un escenario de dificultad media, en él el agente
navegar tiene que ir navegando por una serie de waypoints sucesivamente, es
un escenario en el que planificar la ruta, y realizar parametros de rumbo. No
incluye el control en conflictos con otras aeronaves, lo que hace que sea un buen
punto de partida para empezar a aprender.
Representatividad: Representa un caso tipico de un tipo de tarea de la
navegacion aérea: navegar por una ruta determinada. Es algo habitual en la
navegacion de vuelos, dadas las operaciones de vuelo, tanto en vuelo para
control aéreo, como en vuelo libre.
Objetivos de aprendizaje:
» Desarrollar destrezas de
navegacion basica.
» Aprender a adaptar el rumbo
a waypoints determinados. ,/
» Familiarizarse con la dinamica
del entorno de simulacién.

Figura 11: Escenario PlanWaypointEnv-vO0.

36

Vertical CREnv-vO: Este escenario cuenta con un nivel de complejidad superior a
la anterior, ya que se requiere que el agente gestione conflictos verticales con
otras aeronaves. Ademas de mantener una altitud objetivo, el agente debe
localizar otras aeronaves para evitar posibles colisiones.
Representatividad: Representa una circunstancia que se puede dar en
coordinacion con otras aeronaves (la coordinacién de altitud y de velocidad
vertical), pero que es especialmente propio de situaciones en espacios aéreos
congestionados en los que la separacidn por el vertical es prioritaria.
Objetivos de aprendizaje:

» Desarrollar habilidades para mantener una altitud objetivo.

» Aprender a evitar conflictos verticales con otras aeronaves.

» Mejorar la toma de decisiones en situaciones no estacionarias y

potencialmente conflictivas.

Figura 12: Escenario Vertical CREnv-vO0.

HorizontalCREnv-v0: Este entorno es de la misma complejidad que
VerticalCREnv-v0, pero aqui se necesita controlar los conflictos horizontales. El
agente controlard su rumbo a partir del conflicto que debe evitar en el camino
para navegar hacia un waypoint especifico, lo que requerird cautela en la
planificacion y la realizacidon de las tareas.
Representatividad: Representa una situacidon habitual en el caso de Ia
navegacion aérea en la que se encuentra el agente evitando aeronaves en
conflicto mientras navega hacia un destino concreto. Se hace hincapié en este
objetivo también en los corredores aéreos congestionados o en los alrededores
de los aeropuertos.
Objetivos de aprendizaje:
» Desarrollar habilidades para ajustar el @
rumbo y evitar conflictos horizontales. @
» Aprender a navegar hacia waypoints en 5 @
presencia de otras aeronaves. @ \
» Mejorar la capacidad de anticipacién y
reaccidn ante situaciones dinamicas. @

Figura 13: Escenario HorizontalCREnv-vO.

37

3.3.2.

e Escenario 1: [PlanWaypointEnv-v0].

Descripcion de los Escenarios

Es un escenario de ejemplo disenado para demostrar la légica de control horizontal. El
objetivo del agente es aprender a planificar de manera eficiente una trayectoria que
visite una serie de waypoints (puntos de ruta) generados aleatoriamente. El agente
controla el rumbo de la aeronave para cumplir esta tarea.

n_updates 50000 100000 | 200000 | 300000 | 400000 | 500000 | 1000000 | 1500000 | 2000000
rollout
ep_len_mean 300 300 300 300 300 300 292 297 271
ep_rew_mean 1.25 2.46 2 1.35 1 1.7 2.78 2.57 4.13
time
episodes 4 168 164 164 4 164 1668 1668 1732
time_elapsed 74 3018 2791 2804 72 3464 30148 28252 30212
total_timesteps | 1200 49942 48934 49187 1200 49133 498896 | 499316 | 499651
train
actor_loss -3.36 -1.72 -5.52 -3.27 -5.93 -15.9 0.2 0.182 -0.217
critic_loss 0.0241 0.0223 0.261 0.0964 0.148 2.48 0.00316 | 0.00656 | 0.0211
ent_coef 0.00715 | 0.00894 | 0.0265 0.0186 0.0202 0.0507 0.000797 | 0.00116 | 0.00214
ent_coef_loss 0.529 0.144 0.0857 0.00477 | 0.746 0.0938 -0.968 -0.35 -0.696
learning_rate 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
Tabla 4: Resultados entrenamiento escenario PlanWaypointEnv-vO.
e Escenario 2: [Vertical CREnv-vO0].

Este es un escenario de control vertical para la resolucion de conflictos. El agente debe

mantener una altitud de crucero objetivo y descender a una pista, evitando colisiones

con otras aeronaves que se encuentran en trayectorias de crucero conflictivas. El agente

controla la velocidad vertical de la aeronave para lograrlo.
n_updates 50000 100000 | 200000 | 300000 | 400000 | 500000 | 1000000 | 1500000 | 2000000
rollout
ep_len_mean 39.8 39.9 40 40 40 40 40 40.2 40.1
ep_rew_mean -182 -97.9 -91.5 -77.3 -71.6 -65.4 -56.4 -49.8 -51.2
time
episodes 8 1256 3756 6256 8756 11256 11260 11244 11232
time_elapsed 40 5387 15728 25844 35994 46548 47349 45942 51088
total_timesteps | 318 50151 150095 | 250074 | 350151 | 450187 | 450291 | 450392 | 450428
train
actor_loss 73 62.7 59.4 56.2 52.4 48.3 47.4 43.6 42.8
critic_loss 33.9 13.4 14.9 18.2 11.2 39.7 7.92 5.47 4.83
ent_coef 0.114 0.0991 0.0888 0.0859 0.078 0.0765 0.073 0.0759 0.0686
ent_coef_loss 1.37 -0.157 -0.216 -0.25 0.178 -0.533 -0.298 -0.103 -0.537
learning_rate 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

Tabla 5: Resultados entrenamiento escenario Vertical CREnv-v0.

38

Escenario 3: [Horizontal CREnv-vO0].

En este entorno de resolucion de conflictos horizontales, el agente aprende a navegar
hacia un destino final mientras evita a otras aeronaves mediante cambios de rumbo. Las
otras aeronaves se generan inicialmente en trayectorias que entran en conflicto con la

del agente.
n_updates 50000 100000 200000 300000 400000 500000 1000000 | 1500000 | 2000000
rollout
ep_len_mean 150 150 150 150 150 150 149 148 146
ep_rew_mean -97.8 -103.1 -92 -86.3 -70.8 -68.9 61.6 -54.2 -53.1
time
episodes 7 1235 3693 6127 8533 10872 11009 11131 11126
time_elapsed 46 5387 15634 25823 35894 45936 46562 45629 46957
total_timesteps | 1376 6389 195490 311757 397263 501745 501381 501847 502008
train
actor_loss 94.4 87.7 76.7 71.3 64.9 61.5 58.7 54.6 52.9
critic_loss 49.8 41.3 29.7 28.9 24.3 27.1 21.4 15.9 13.4
ent_coef 0.271 0.141 0.0978 0.0917 0.0872 0.0811 0.0765 0.074 0.0691
ent_coef_loss 3.52 1.98 0.043 -0.092 -0.173 -0.297 -0.166 -0.209 -0.132
learning_rate 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

Tabla 6: Resultados entrenamiento escenario HorizontalCREnv-vO0.

3.4. Analisis de Resultados Preliminares

3.4.1. Metodologia de Evaluacién

Explicacidn de los parametros:

O

Recompensa media por episodio (ep_rew_mean): Indica cémo de bien estd
desempeiiando el agente su tarea.

Longitud media del episodio (ep_len_mean): Muestra si el agente estd
realizando los episodios de forma eficiente.

Pérdidas del actor y critico (actor_loss; critic_loss): Reflejan como esta
aprendiendo el agente respecto a maximizar la recompensa (actor_loss) y
predecir los valores de los estados (critic_loss). Estas métricas tienden a 0, siendo
qgue 0 indica una politica clara tomada por el agente y una prediccidn perfecta en
los valores de estado.

Coeficiente de entropia (ent_coef): Muestra el nivel de exploracién que tiene el
agente. Cuanto mas cercano a 0 es el coeficiente de entropia mas explotacién
realiza el agente y menor es la exploracion. Siendo la maxima exploracion el 1y
la maxima explotacion el 0.

Tiempo y pasos de entrenamiento (time_elapsed; total_timesteps): Muestra la
evolucidén del entrenamiento.

39

Métricas clave:

Para proceder con la valoraciéon de los resultados del entrenamiento, se ha realizado un
analisis de estos basado en diferentes técnicas. En primer lugar, se ha llevado a cabo un
analisis de tendencias en el que se han observado las evoluciones de las métricas clave
que nos interesan, es decir, la recompensa media, la longitud del episodio, las pérdidas,
el coeficiente de entropia, etc. En segundo lugar, se ha ejecutado un analisis por etapas,
comparando las métricas en los momentos iniciales, intermedios y finales del
entrenamiento, con el propdsito de ver cambios significativos y patrones claros.
También, se ha realizado un analisis del comportamiento de las métricas mencionadas,
entendiendo que las fluctuaciones son parte del proceso de exploracion y aprendizaje
en el marco del aprendizaje por refuerzo. Por ultimo, se ha realizado una evaluacion de
la convergencia, es decir, si las métricas clave, en especial las pérdidas del actor y del
critico, se estabilizan en valores similares, lo que implica que el agente ha sido capaz de
generar cierta politica mds o menos eficaz. Este andlisis en profundidad permite
entender lo que ha ido logrando el agente, pero también permite entender la eficacia
del propio proceso de entrenamiento.

3.4.2. Resultados Obtenidos

El estudio de los datos que se han generado a lo largo de las etapas de entrenamiento
del agente pone de manifiesto una progresion notoria en el aprendizaje que ha
adquirido durante la formaciéon del agente, ya que se ha producido también una
evolucidn bastante evidente en lo que respeta de su funcionamiento. En primer lugar,
la media de la recompensa del episodio concluye con una tendencia positiva (siendo la
primera de 1.25 y, al final del entrenamiento , de 4.13), lo que quiere decir que ha
mejorado su capacidad para maximizar el aprendizaje del agente. Sin embargo, en el
trascurso del entrenamiento han aparecido oscilaciones, como la caida a 1.0 en etapas
intermedias, lo que es normal por la exploracidn activa que estaba realizando el agente.
Por otro lado, la longitud media del episodio se ha mantenido constante en 300 pasos
en la mayoria del entrenamiento, aunque en el final ha disminuido levemente a 271
pasos, lo que sugiere que el agente también ha optimizado su eficiencia.

Recompensa

4,50

4,00 4,13
3,50
3,00
2,50
2,00
1,50 1,35

1,00 1,25 1,00
0,50

0,00

1,70

Q Q Q Q Q Q Q Q Q

S S & & & & S
S S S S S

S N 4 S RS

Figura 14: Recompensa escenario PlanWaypointEnv-v0 con linea de tendencia.

40

La pérdida del actor y la pérdida del critico que se han podido observar tendencia a
converger a valores mas estables en las etapas finales. La pérdida del actor, que
inicialmente fluctia entre -3.36 y -15.9, alcanzan unos valores iguales a cero en las
ultimas fases, es decir que da conformidad a una politica ya fijada. De forma similar, la
pérdida del critico, que arranca 0.0223 alcanzando picos de 2.48, se reduce hasta valores
de 0.00316, evidenciando una mejoria en la prediccién de los valores de los estados. Por
otra parte, el coeficiente de entropia que comienza con un valor de 0.00715 esta en
0.00214 al final del episodio, lo que también muestra una disminucion, que sefiala que
el agente estd pasando de una fase de exploracién a una fase de explotacién de lo que
ha aprendido.

Finalmente cabe resaltar que pese a que el aprendizaje del agente ha sido evidente ha
necesitado casi dos millones de actualizaciones para empezar aumentar la eficiencia y
reducir el tiempo que tarda en realizar la tarea lo cual indica que la eficiencia del
entrenamiento es reducida y podria significar que los hiperpardmetros no estan del todo
optimizados.

3.4.3. Ajustes en los Parametros de las Simulaciones

Con el fin de mejorar la velocidad y la eficiencia del entrenamiento del agente en el
codigo, se han modificado ciertos pardmetros de la configuracién del algoritmo y del
entorno.

Primero, se ha aumentado la tasa de aprendizaje (learning_rate=1e-3) para acelerar las
actualizaciones del modelo, de este modo, el agente puede aprender mas rapidamente
de cada una de las experiencias. Se ha incrementado el tamafio del lote
(batch_size=256), lo que permite que el entrenamiento sea mas estable, dado que se
obtendrdn mas muestras para calcular los gradientes en cada paso de optimizacion. Por
ultimo, se ha ampliado el tamafio del buffer de reproduccién (buffer_size=1_000_000);
en este caso se permite contar con un mayor niumero de experiencias pasadas,
favoreciendo un entrenamiento mas estable y diverso.

Adicionalmente, se ha ajustado el coeficiente de entropia (ent_coef=0.1), para
equilibrar la exploracidon y la explotacidn durante el aprendizaje del agente. Igualmente
se ha incrementado el pardmetro tau (tau=0.01), para acelerar la actualizacién de los
valores objetivo en los algoritmos de actores-criticos, permitiendo que el modelo se
adapte mas rapidamente.

En lo que respecta a la configuracion del entorno, se ha realizado paralelizacion del
entorno de entrenamiento mediante la funcién make_vec_env con varios entornos a la
vez (es decir, n_envs=4). Esta estrategia permite recolectar de forma mas répida
experiencias reformulando distintas copias del entorno simultaneamente, siendo el
método de entrenamiento mds efectivo en su funcionamiento.

Ademas, se ha afiadido la normalizacidon de observaciones y recompensas mediante el
uso de VecNormalize, que resulta en un entrenamiento mas estable puesto que no se
produciran entradas o salidas desbalanceadas o variables en el modelo.

41

Para salvaguardar el avance en el proceso del entrenamiento de posibles problemas, se
ha incluido una devolucién de llamada de checkpoints (CheckpointCallback) que guarda
regulamente el estado del modelo, lo que permitird continuar el entrenamiento desde
el Ultimo punto guardado sin perder informacién relevante.

Por ultimo, se ha adicionado una fase de evaluacién del agente justo después del
entrenamiento, en donde se medird la recompensa total obtenida en distintos
episodios, haciendo una salida de los resultados en formato CSV y graficando el
rendimiento, aportando en cierta forma unaimagen clara y cuantificada del rendimiento
del agente que aminora el andlisis y comparacion de diferentes versiones del modelo.

3.44. Resultados iniciales tras ajustes

Gracias a las modificaciones en el cédigo ahora disponemos de una carpeta de
resultados donde se guardan los historicos del entrenamiento, en este caso se puede
apreciar la media en intervalos de 40000 actualizaciones, lo que permite ver mejor la
evolucidn del agente, y evitar datos aislados que podrian falsear experimentos futuros.
Se ha decidido volver a entrenar al agente desde 0 en el escenario 1 (PlanWaypointEnv-
v0) dado que es el escenario menos complejo y se podran notar mayores diferencias
iniciales.

n_updates episodeslep_len_meanIep_rew_mean I time_elapsed Itotal_timestepsl actor_loss | critic_loss I ent_coef Ient_coef_losslIearning_rate| fps I timestamp

40000 100 300 0,949999988 -1,74416E+18 160000 -7,006715775 0,001744943 0,050295554 -4,91553688 0,0003 -2,29337E-14 2025-04-09 01:51:16

80000 100 300 15 -1,74416E+18 320000 -4,427482605 0,004698405 0,002755786 -6,277266502 0,0003 -4,58675E-14 2025-04-09 02:12:37
120000 100 298,24 1,629999995 -1,74416E+18 480000 -2,533821344 0,002091667 0,000454962 0,671323717 0,0003 -6,88012E-14 2025-04-09 02:32:40
160000 100 299,16 1,309999943 -1,74416E+18 640000 -1,603900433 0,009544099 0,000452502 1,154852986 0,0003 -9,1735E-14 2025-04-09 02:53:06
200000 100 298,32 1,460000038 -1,74416E+18 800000 -0,94804585 0,002141542 0,000449906 0,067853563 0,0003 -1,14669E-13 2025-04-09 03:13:29
240000 100 297,91 2,190000057 -1,74416E+18 960000 -0,570666909 0,004232383 0,000477243 0,766058564 0,0003 -1,37602E-13 2025-04-09 03:33:35
280000 100 299,71 2,230000019 -1,74416E+18 1120000 -0,328757197 0,003918371 0,000511667 -0,578528166 0,0003 -1,60536E-13 2025-04-09 03:53:53
320000 100 299,85 1,690000057 -1,74416E+18 1280000 -0,174185723 0,001835785 0,000406696 -1,118625164 0,0003 -1,8347E-13 2025-04-09 04:13:52
360000 100 298,81 1,629999995 -1,74416E+18 1440000 -0,124477297 0,007152225 0,00038733 0,187580675 0,0003 -2,06404E-13 2025-04-09 04:33:59
400000 100 297,45 1,789999962 -1,74416E+18 1600000 -0,032563914 0,00566678 0,00035912 0,943505049 0,0003 -2,29337E-13 2025-04-09 04:54:26
440000 100 300 1,870000005 -1,74416E+18 1760000 -0,00595837 0,00800099 0,000295775 0,48614943 0,0003 -2,52271E-13 2025-04-09 05:14:52
480000 100 296,65 1,730000019 -1,74416E+18 1920000 0,03705686 0,001997148 0,000298926 1,028913379 0,0003 -2,75205E-13 2025-04-09 05:35:29

Tabla 7: Resultados entrenamiento escenario PlanWaypointEnv-vO0 tras modificaciones iniciales.

Como se puede ver a partir de la tabla de aprendizaje del agente esta segunda vez
también genera unas primeras estimaciones que nos indican una mejoria en la
recompensa media por episodio (ep_rew_mean), la cual pasa de 0'95 a ~2'23, aunque
en un segundo momento se presentaron unas oscilaciones que nos pueden sugerir
inestabilidad o una exploracién activa. La duracién media de los episodios
(ep_len_mean) se estabilizé en torno a 300 pasos siendo el limite de tiempo establecido
por episodio, pero se puede notar una pequeiia reduccién en la etapa final. Las pérdidas
del actor (actor_loss) evolucionan de -7.0 a ~0.037, con lo que nos indicarian un proceso
de mejora de la politica, mientras que la del critico (critic_loss) se mantenia en cifras
bajas (0.001-0.008), si bien el bajo valor que nos ofrece podria sugerir incluso una
subestimacién de las recompensas. El coeficiente de entropia (ent_coef) pasé de 0.050
a 0.0003, con lo que nos podria indicar que la exploracidn se iria reduciendo con el paso
del tiempo. Sin embargo, hemos podido detectar algunas anomalias criticas, como
valores imposibles desde el punto de vista de la temporalidad, como el que nos arroja
el time_elapsed, que tiene el valor -1.7E+18, en el apartado de fps podemos ver que
dicho valor era de -2.29E-13, lo que nos puede indicar que existian fallas de registro.

42

En comparacion se puede apreciar como las primeras tablas muestran un
comportamiento mas volatil en relacion con la realizada tras los cambios en el cédigo,
asociado a caidas profundas en las recompensas (ep_rew_mean), oscilando entre 1.0 y
2.46, y sin que se pueda identificar una tendencia clara de mejora, a diferencia de lo
observado en el segundo experimento, donde el aumento progresivo (aunque inestable)
de la recompensa se dejaba ver en la media de las recompensas. Para esta segunda
tabla, el ep_len_mean se mantiene fijado en 300 (limite fijado por el entorno), al igual
que en la primera tabla. Pero las pérdidas del actor (actor_loss) son muy profundas (de
-3.36 a -15.9), lo que hace suponer inestabilidad, a diferencia de lo observado en la
primera tabla, donde convergian hacia cero; el critico (critic_loss) también presenta
valores peores, hasta 2.48 (vs. 0.008 en la primera tabla) lo que sugiere que es complejo
estimar el valor de los estados, y el coeficiente de entropia (ent_coef) es mas alto en la
segunda tabla (0.007—-0.0507 vs. 0.0003-0.050) lo que podria significar una mayor
exploracién pero menos eficiente.

Tabla comparativa (rew_mean)

2,5

2

1,5

1

0,5

0
QQQQ QQQQ QQQQ S QQQQ QQQQ QQQQ QQQQ QQQQ 0000 QQQQ QQQQ
L N L e | VN S N N S

Tras cambios Aprendizaje inicial

Figura 15: Grdfica comparativa PlanWaypointEnv-vO0.

3.5. Conclusiones del Capitulo

Los resultados del entrenamiento constituyen una demostraciéon de la capacidad del
aprendizaje por refuerzo (RL) para resolver el dominio del trafico aéreo, aunque con
divergencias importantes entre los distintos escenarios. Los experimentos evidencian
una clara evolucion en la consistencia del Escenario 1 (PlanWaypointEnv-v0) con una
mejoria en la recompensa media (de 1.25 a 4.13) v, la estabilizacidn progresiva de la
pérdida del actor y la pérdida del critico (significativas de cierta forma) sugiere una
politica de navegacion satisfactoria y una estimacion adecuada del valor de los estados.
Sin embargo, esta mejora requiere elevados tiempos de entrenamiento (cercanos a los
dos millones de actualizaciones), y ademas se han evidenciado la volatilidad entre unos
resultados y otros, pasando de maximos a minimos, lo que conlleva la necesidad de una
optimizacién de hiperparametros como el learning rate o el tamafio del batch con el
objetivo de acelerar la convergencia y adicionalmente mejorar la forma en que se
muestra los resultados para poder hacer mejores analisis en el futuro.

43

El Escenario 2 (Vertical CREnv-v0), por su parte, supone un entorno mas complejo, en el
que se aprecian recompensas negativas, métricas inestables y con grandes oscilaciones,
si bien existieron pequenas progresiones. En este caso, la oscilacion de las pérdidas del
critico, ademds del incremento de las pérdidas (hasta 2.48) no sélo indican que
existieron mejoras, pero, por otro lado, también ilustra el hecho de que, incluso en
entornos complejos, se pueden alcanzar dificultades de generalizacion. Este hecho pone
de manifiesto la importancia de crear un entorno especifico, del tipo:

v' Mayor exploracidn controlada (ajustar ent_coef).

v" Normalizacion robusta de observaciones y recompensas

v’ Paralelizacién de entornos (con make_vec_env) para incrementar la variedad
de experiencias.

Las mejoras implementadas para el modelo, como el incremento del buffer de
experiencias, la aplicacion de checkpoints y la evaluacion sistematica, fueron cruciales
para un aprendizaje de RL que fuera estable y recuperable, si bien el coste
computacional y la sensibilidad a los metaparametros subrayan la necesidad de mejorar
el modelo, sobre todo para entornos dindmicos con restricciones de operacion reales.

Por tanto, este trabajo muestra que el RL se puede aplicar a la gestion del trafico aéreo,
pero también sefiala los retos que le quedan por afrontar: la eficiencia del
entrenamiento en entornos complejos y la delicadeza de encontrar un equilibrio entre
la exploracién y la explotacidén. Los resultados apuntan hacia futuras lineas de
investigacion para reducir el coste computacional y aumentar la transferibilidad a
entornos reales, donde la robustez y la adaptacion son esenciales.

44

4. Tutorial de BlueSky-Gym

4.1. Instalacidn y configuracion del entorno

El dispositivo utilizado es un portatil matebookD15 con Windows 10, tiene un
procesador AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx 2.10 GHz con una RAM
de 8,00 GB (6,94 GB usable) y un sistema operativo de 64 bits.

1. Descargar e instalar Python 3.11
2. Agregar la Ruta de pip a las Variables de Entorno
- Agregar Python y pip al PATH

@)
©)

Presiona Win + R, escribe sysdm.cply presiona Enter.

Ve a la pestafia "Opciones avanzadas" y haz clic en "Variables de
entorno".

En la seccién "Variables del sistema", busca y selecciona la
variable Path y haz clic en Editar.

Haz «clic en Nuevo vy agrega las siguientes rutas:
C:\Users\franm\AppData\Local\Programs\Python\Python311\
C:\Users\franm\AppData\Local\Programs\Python\Python311\Sc
ripts\

Haz clic en Aceptar para guardar los cambios.

Compruebe si tiene pip instalado usando: py -m pip —version o
python -m pip —version

3. Instalar las dependencias del sistema (compiladores)

o

@)
@)

Ve a este enlace y descarga el instalador de Build Tools for Visual
Studio. (https://visualstudio.microsoft.com/es/downloads/)
Durante la instalacidon, seleccione la opciéon "Herramientas de
compilacién C++".

Asegurate de marcar la casilla de "Windows 10 SDK".

Haga clic en Instalar y espere a que termine el proceso.

4. A partir de Python 3.10, el paquete distutils fue descontinuado y no se incluye
por defecto en algunas distribuciones de Python. Este, es necesario para la
instalacidon de muchas bibliotecas que requieren compilacién (como numpy).

o

python -m pip install setuptools o py -m pip install setuptools

5. Para el programa Bluesky-gym es necesario descargar e instalar numpy 1.24

o

pip install numpy==1.24.0

6. Con todo ello ya deberia ser posible instalar el programa Bluesky-gym

o

pip install bluesky-gym

45

https://visualstudio.microsoft.com/es/downloads/

4.2. Descripcion de los mdédulos principales: Simulador,
entorno de RL y herramientas de visualizacion.

Posteriormente a la instalacién podremos ver una carpeta denominada bluesky-gym-
main donde se divide en otros sub ficheros. Inicialmente solo contara con las carpeta de
bluesky, bluesky_gym, docs/media y scrips, y después del primer entrenamiento se
generara la carpeta models. A continuacién analizaremos las principales carpetas y su
contenido.

| M < | bluesky-gym-main
Inicio Compartir Vista
« L > Esteequipo > Data(D:) > franm > bluesky-gym-main >
Nombre) Fecha de modificacion Tipo Tamafio
Acceso rapido
.github Carpeta de archivos
@ OneDrive - Personal bluesky_gym Carpeta de archivos
= Este equipo checkpoints Carpeta de archivos
& Descargas docs Carpeta de archivos
B Documentos experiments Carpeta de archivos
o logs Carpeta de archivos
I Escritorio logs_backup Carpeta de archivos
| Imagenes models Carpeta de archivos
b Misica models_backup Carpeta de archivos
Objetos 3D normalize Carpeta de archivos
¥ videos scripts Carpeta de archivos
. Windows (C2) venv Carpeta de archivos
- Data (D) =| .gitignore Documento de tex. 1KB
& Acceder a metricas.py Python File 17 KB
& Red =| installed_packages.txt Documento de tex. 1KB
|| LICENSE Archivo 35 KB
A mainpy Python File 3KB
& mainl.py Python File 8KB
}' mp_example.py Python File 3KB
& plot_testpy Python File 5KB
| pyprojecttoml Archiva TOML 2KB
| README.md 24/01/2025 16:47 Archivo MD 3KB
}' result_plotter.py 24/ 16:47 Python File 2 KB
=| rl_training.log 09/04/2025 5:45 Documento de tex. 15 KB
Figura 16: Contenido de la carpeta principal BlueSky-Gym.
4.2.1. El corazén del programa

El archivo de Python denominado “main” es el nucleo del programa, comienza
definiendo y llamando las variables del entorno. Es necesario definir el nombre del
entorno entre los siete distintos entornos existentes, ademas podemos elegir entre
cuatro distintos algoritmos descritos anteriormente en el punto 3 “estudio del paquete
BlueSky-Gym”. También se encarga de buscar un modelo existente pudiendo cambiar
entre distintos modelos para un mismo escenario, en caso de que no se haya entrenado
previamente ninglin modelo lo creard. Otro apartado importante es que podemos
definir el nimero de pasos que deseamos entrenar y una vez finalizado el
entrenamiento guardara el modelo y mostrara una simulacién de este.

46

SIT numpy as np
© gymnasium a5 gym
stable baselines3 import PPO, SAC, ID3, DDPG

ort bluesky:qym.envs
n bluesky gym.utils import logger

Registra los entornos de Bluesky
bluesky gym.register envs()

Define el nombre del entorno y el algoritmo
env name = 'HorizontalCREnv-v0'
algorithm = SAC

Inicializar el logger

log dir = f£'./logs/{env_name}/"

file_name = f'{env_name} {str(algor ithm._name_} }.csv!'
csv_logger_callback = logger.CSVLoggerCallback(log dir, file name)

Configuracidn de entrenamiento y evaluacidn

TRAIN = True # True comienza entrenamiento, False pasa a visualizacién de resultados
EVAL EPISODES = 10

Figura 17: Parte inicial del cédigo main.
4.2.2. Carpeta bluesky_gym

En esta carpeta se encuentra la carpeta “envs” donde se situan los 7 siete escenarios
gue podemos utilizar para las simulaciones.

__pycache__ 28/03/2025 11:38 Carpeta de archivos

envs 20/05/2025 15:54 Carpeta de archivos

utils 28/03/2025 11:38 Carpeta de archivos
A _init_.py 24/01/2025 16:47 Python File 2KB
~J README.md 24/01/2025 16:47 Archivo MD 1KB

En el interior de la carpeta “envs” ademas de los distintos escenarios encontramos la
carpeta “common”, en esta hay tres archivos de Python llamados “functions” (realiza las
operaciones necesarias para situar los waypoints y otros objetos de varios escenarios),
polygon_generator (se encarga de generar las formas de los obstaculos y otros objetos)
y finalmente screen_dummy (que permite la visualizacién de la simulacidn).

__pycache__ 23/05/2025 19:57 Carpeta de archivos

common 28/03/2025 11:38 Carpeta de archivos
A _init_py 24/01/2025 16:47 Python File 1KB
aircraft_data.csv 15/05/2025 19:47 Archivo de valores separados por comas de Microsoft Exce 1KB
aircraft_dataxlsx 15/05/2025 19:45 Hoja de calculo de Microsoft Exce 9 KB
} descent_env.py 24/01/2025 1647 Python File 9 KB
'A horizontal_cr_env real.py 22/05/2025 11:28 Python File 14 KB
}" horizontal_cr_env.py 23/05/2025 19:57 Python File 19 KB
}' merge_env.py 24/01/2025 16:47 Python File 17 KB
! MNuevoEscenario.py 30/04/2025 14:48 Python File 15 KB
= plan_waypoint_env.py 24/01/2025 16:47 Python File 10 KB
~) README.md 24/01/2025 16:47 Archivo MD 6 KB
} sector_cr_env.py 24/01/2025 1647 Python File 17 KB
A static_obstacle_env real.py 24/01/2025 16:47 Python File 17 KB
}" static_obstacle_env.py 17/05/2025 11:00 Python File 14 KB
}' vertical_cr_env.py 24/01/2025 16:47 Python File 16 KB

47

4.2.3. Carpeta bluesky

Aqui se encuentra el simulador, es decir el motor que permite simular distintos
escenarios y mover todo para que el agente pueda aprender y nosotros podamos
visualizarlo. Una vez instalado en mi caso aparecio la carpeta venv que posee la libreria
y el conjunto de recursos que utiliza el simulador.

Include Carpeta de archivos
Lib Carpeta de archivos
Scripts Carpeta de archivos
p
=| .gitignore Documento de tex... TKB
env.cf Archivo CFG 1KB
I pyv g

4.2.4. Docs/media

Esta carpeta posee gif que permiten visualizar como se comporta el agente en una
politica establecida en los escenarios DescentEnv-v0, HorizontalCREnv-v0 y
PlanWaypointEnv-v0 de un agente con una politica aun por definir.

Q
o]
/”/ & __
®©
@
trained_policy.gif untrained_policy.gif

Figura 18: Ejemplo del contenido de la carpeta media.

4.2.5. Scripts

Esta carpeta contiene bucles de entrenamiento de ejemplo para los diferentes
escenarios en bluesky_gym/envs creados por los autores del programa para facilitar su
entendimiento y uso.

common 28/03/2025 11:38 Carpeta de archivos
A descent_env_sac.py 24/01/2025 1647 Python File 1KB
| README.md 24/01/2025 16:47 Archivo MD 1KB
A vertical_cr_env_sac.py 2470172025 1647 Python File 1KB

4.2.6. Models

En esta carpeta se guardan los modelos por escenario, los modelos se guardan en un
archivo comprimido, podemos apreciar que ademas del escenario también genera una
carpeta distinta si el archivo tiene un algoritmo distinto a SAC, en este caso se ha
guardado el modelo de una prueba con el algoritmo PPO.

48

(]
o

DescentEnv-v0 28/03/2025 11:38 rpeta de archivos

(]
o

Horizontal CREnv-v0 23/05/202517:25 rpeta de archivos

Horizontal CREnv-v0_PPO f2025 17:54

(]
o

rpeta de archivos

(]
o

MergeEnv-v0 rpeta de archivos

(]
o

PlanWaypointEnv-v(0 rpeta de archivos
SectorCREnv-v0 28/03/2025 11:38
StaticObstacleEnv-v0

Vertical CREnv-v0

3
(]
o

rpeta de archivos

(]
o

rpeta de archivos

(]
o

)3/2025 11:38 rpeta de archivos

Al revisar los modelos creados podemos ver que guarda informacién como la politica,
el actor, critico y el coeficiente de entropia ademds de datos adicionales, como las
variables o el motor del simulador.

" Carpeta de archivos
| | data 14.890 14.890 Archivo 10/03/2025 9:10 201BBACB
| | _stable_baselines3_version 5 5 Archivo 10/03/2025 910 2018FC1E
=| system_info.txt 186 186 Documento de texto 10/03/2025 910 545CB486
| | pytorch_variables.pth 1.180 1.180 Archivo PTH 01/01/1980 0:00 25F8EB37
| | policy.pth 1.363.574 1.363.574 Archivo PTH 01/01/1980 0:00 96AEEC4B
| | actor.optimizer.pth 547.406 547406 Archivo PTH 01/01/1980 0:00 1BEQ1DYF
|_| criticoptimizer.pth 1.090.986 1.090.986 Archivo PTH 01/01/1980 0:00 6C2A2C49
| | ent_coef_optimizerpth 1.940 1.940 Archivo PTH 01/01/1980 0:00 108A6B20

4.2.7. Otras carpetas y afiadidos

Finalmente, encontramos otras carpetas como por ejemplo de log y algunas creadas al
realizar las pruebas para un mayor entendimiento y poder disponer de datos para
analizar los entrenamientos. En este caso la carpeta mds importante es la de
experimentos donde guarda el modelo (siendo redundante en este caso), los datos del
entrenamiento en formato Excel para poder generar graficas de aprendizaje,
checkpoints para evitar la pérdida del entrenamiento completo en caso de fallo
durante el entrenamiento y otros datos de interés.

| configjson Archivo JSON
results Carpeta de archivos
model Carpeta de archivos

[

checkpoints arpeta de archivos

(]

logs arpeta de archivos

[

arpeta de archivos

tensorboard

4.3. Ejecucion de simulaciones basicas y visualizacion de
resultados y evolucion en video.

En la finalizacion de los entrenamientos del agente, por defecto se muestra una
simulacidn de este para que el espectador pueda hacer un seguimiento de los avances,
hemos decidido realizar un video en el escenario PlanWaypointEnv-v0 que ejemplifique
las mejoras de manera visual que ha ido obteniendo durante el aprendizaje hasta un
limite de dos millones de pasos.

49

En este video: Video entrenamiento agente.mp4, se puede ver como el agente va
mejorando lentamente formando una politica adecuada, si bien al principio realiza una
fase de exploracion, va pasando a una fase de explotaciéon a medida que el agente va
obteniendo una politica mas definida, lo que permite que finalice la mayoria de
escenarios. Sin embargo, después de dos millones de pasos, aln es incapaz de encontrar
la ruta mads rdpida para conseguir sus objetivos y ademads los avances se vuelven mas
lentos debido a que el agente realiza una mayor explotacion que exploracién.

Figura 19: Captura de uno de los videos durante la simulacion.

50

https://uab-my.sharepoint.com/:v:/g/personal/1605990_uab_cat/EeTfdqTmf9ZHgF9ocH_cUdMBLTkGSSHQxXTVU1IVJNTV2Q?nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJPbmVEcml2ZUZvckJ1c2luZXNzIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXciLCJyZWZlcnJhbFZpZXciOiJNeUZpbGVzTGlua0NvcHkifX0&e=t8rneW

5. Experimentos computacionales con BlueSky-Gym

El objetivo de este apartado es ver hasta qué punto podemos utilizar el simulador
BlueSky-Gym para crear entornos mas realistas y de esta forma ver sus virtudes y
limitaciones.

5.1. Creacidn de un escenario simple: Definicion de
aeronaves, rutas y condiciones iniciales. Parametros
clave: Velocidad, altitud, separacion entre aeronaves,
etc.

Para crear un escenario primero debemos situarnos en la carpeta de escenarios
denominada en el archivo como “envs” mencionada anteriormente y seleccionar el
escenario que queremos modificar.

5.1.1. Configuracion y parametros globales
Para empezar, debes llamar a las bibliotecas necesarias:

numpy np
Pygame

bluesky bs
bluesky gym.envs.common.screen dummy ScreenDummy
bluesky gym.envs.common.functions fn

gymnasium gym
gymnasium spaces

Posteriormente se establecen las constantes o variables globales. Aqui es donde nos
permite modificar en numero de aeronaves intrusas que aparecen, también el numero
de puntos objetivos que debe pasar el agente, asi como velocidades y otras variables.
También se definen las recompensas y penalizaciones que ayudaran al agente a
conseguir una heuristica adecuada.

DISTANCE MARGIN = 5 # km
REACH REWARD = 1

DRIFT PENALTY = -0.1
INTRUSION PENALTY = -1

NUM INTRUDERS 5
NUM WAYPOINTS 1
INTRUSION DISTANCE = 5 # NM

100
150

WAYPOINT DISTANCE MIN
WAYPOINT DISTANCE MAX

D _HEADING = 45
AC SPD = 150
NM2KM = 1.852

ACTION FREQUENCY = 10

51

5.1.2. Funcion __init__(self, ...)

Este es el constructor, su principal funcion es crear el entorno de la simulacidn, destaca
el “bs.init(...):” pues se encarga de inicia el motor de simulacién de BlueSky y también
“self.observation_space:” donde se define todo lo que la Al puede "ver" o percibir del
mundo. En este caso, es un diccionario que contiene el estado de su propia aeronave
(rumbo y velocidad), el estado de los intrusos (distancia y rumbo relativo) y la ubicacién
de los waypoints. Finalmente tenemos “self.action_space:” que define lo que la Al
puede "hacer". En este caso, su Unica accion es decidir cuanto cambiar su rumbo (entre
-30 y +30 grados). Cada vez que un episodio termina se inicializan variables internas
como “self.intrusion = False” o “self.reward = 0” para empezar cada episodio desde cero.

class HorizontalCREnv(gym.Env):
Horizontal Conflict Resolution Environment

TODO:
- look at adding waypoints instead of staying straight

metadata = {"render_modes”: [“rgb_array”,”human”], “"render fps": 128}

def __init_ (self, render_mode=Nlone):
self.window_width = 512
self.window_height = 512

self.window_size = (self.window_width, self.window_height) # Size of the rendered environment

Observation space should include ownship and intruder info

Maybe later also have an option for CNN based intruder info, could be interesting

self.observation_space = spaces.Dict(

{

"intruder_distance": spaces.Box(-np.inf, np.inf, shape = (NUM_INTRUDERS,), dtype=np.float6d),
“cos_difference_pos”: spaces.Box(-np.inf, np.inf, shape = (NUM_INTRUDERS,), dtype=np.float64),
"sin_difference_pos": spaces.Box(-np.inf, np.inf, shape = (NUM_INTRUDERS,), dtype=np.float6d),
"x_difference_speed": spaces.Box(-np.inf, np.inf, shape = (NUM_INTRUDERS,), dtype=np.float64),
"y _difference speed": spaces.Box(-np.inf, np.inf, shape = (NUM_INTRUDERS,), dtype=np.float64),
"waypoint_distance": spaces.Box(-np.inf, np.inf, shape = (NUM_WAYPOINTS,), dtype-np.floatbd),
"cos_drift": spaces.Box(-np.inf, np.inf, shape = (NUM_WAYPOINTS,), dtype=np.float64),
"sin_drift": spaces.Box(-np.inf, np.inf, shape = (NUM_WAYPOINTS,), dtype=np.floatbd)

self.action_space = spaces.Box(-1, 1, shape=(1,), dtype=np.float64)

assert render_mode is None or render_mode in self.metadata["”render_modes"]

self.render_mode = render_mode

initialize bluesky as non-networked simulation node

bs.init({mode="sim", detached=True)

initialize dummy screen and set correct sim speed
bs.scr = ScreenDummy()

bs.stack.stack('DT 5;FF")

initialize values used for logging -> input in _get_info
self.total_reward = @
self.total_intrusions = @

self.average drift = np.array([])

self.window = None

self.clock = None

52

5.1.3. Funcion reset(self, ...)

Esta funcion tiene la tarea de reiniciar la simulacién, es decir limpia el escenario
utilizando bs.traf.reset() que elimina los componentes de la simulacién anterior, ademas
restablece las puntuaciones a 0 para posteriormente generar la aeronave principal

controlada por el agente, las naves intrusas y finalmente los waypoint.

def reset(self, seed=None, options=None):

super().reset(seed=sead)

bs.traf.reset()

self.total_reward = @

self.total_intrusions = @

self.average drift = np.array([])
bs.traf.cre('KLBO1' ,actype="A328",acspd=AC_SPD)
self._generate_conflicts()
self._generate_waypoint()

observation = self._get_obs()

info = self._get_info()

if self.render_mode == "human®:

self._render_frames()

return observation, info

5.1.4. Funcidn step(self, action)

Esta parte se dedica a hacer avanzar la simulacion, recibe la accidon del agente para
posteriormente aplicar la decisidon en el mundo y calcular una puntuacién obtenida en
ese paso. Devuelve el nuevo estado de la simulacién, la recompensa y “terminated” que

indica si el episodio ha finalizado.

def step(self, action):
self. get action(action)

action_frequency = ACTION FREQUENCY
for i in range(action_frequency):
bs.sim.step()
if self.render_mode == "human™:
observation = self. get obs()

self._render_frame()

observation = self._get obs()

reward, terminated = self. get reward()
info = self. get info()

bluesky reset?? bs.sim.reset()
if terminated:
for acid in bs.traf.id:
idx = bs.traf.id2idx(acid)
bs.traf.delete(idx)

return observation, reward, terminated, False, info

53

5.1.5. Funcion generate_conflicts y funcidn generate_waypoint (self, acid =
'KLOO1'):

Este segmento es uno de los mas interesantes porque la primera parte se encarga de
generar las naves intrusas u obstaculos y la segunda parte se encarga de generar los
waypoint que son los objetivos que debe alcanzar el agente. Permite afiadir dificultad a
al escenario como generar nuevos objetivos y normas al momento de realizar la
simulacidén y por lo tanto sera una de las partes modificadas mas adelante para intentar
hacer que se asemeje mas a una situacion real.

def _generate_conflicts(self, acid = "KLO@1'):
target_idx = bs.traf.id2idx(acid)
for i in range(NUM_INTRUDERS):
dpsi = np.random.randint(45,315)
cpa = np.random.randint(@,INTRUSION_DISTANCE)
tlosh = np.random.randint(10@,1000)
bs.traf.creconfs(acid=f'{i}",actype="A328",targetidx=target_idx,dpsi=dpsi,dcpa=cpa,tlosh=tlosh)

def _generate waypoint(self, acid = "KL801'):
self.wpt_lat = []
self.wpt_lon = []
self.wpt_reach = []
for i in range(NUM_WAYPOINTS):
wpt_dis_init = np.random.randint(WAYPOINT DISTANCE MIN, WAYPOINT DISTANCE MAX)
wpt_hdg_init = @

ac_idx = bs.traf.id2idx(acid)

wpt_lat, wpt_lon = fn.get point_at distance(bs.traf.lat[ac_idx], bs.traf.lon[ac_idx], wpt_dis_init, wpt_hdg_init)
self.wpt_lat.append(wpt_lat)

self.wpt_lon.append(wpt_lon)

self.wpt_reach.append(@)

5.1.6. Funcidn get_obs(self):

Se podria considerar los “sentidos” del agente, pues su funcion es traducir el estado en
"crudo" de la simulacién a la "percepcién” que la Al entiende. Para cada intruso y
waypoint, calcula la distancia y los angulos, posteriormente transforma estos datos al
formato definido en observation_space y normaliza los valores dividiendo las distancias
y velocidades por valores maximos (WAYPOINT_DISTANCE_MAX, AC_SPD). Esto
mantiene todos los datos de entrada en un rango similar entre 0 y 1 fundamental para
gue el algoritmo de aprendizaje funcione.

def _get_obs(self):
ac_idx = bs.traf.id2idx(KLB81")

self.intruder_distance = []
self.cos_bearing = []

self.sin_bearing = []

(1
self.y_difference_speed = []

self.x_difference_speed

self.waypoint_distance = []
self.wpt_gdr = []
self.cos_drift = []
self.sin_drift = []
self.drift = []

self.ac_hdg = bs.traf.hdg[ac_idx]

54

5.1.7. Funcion get_info, get_reward, check _waypoint, check_drift vy
check_intrusion (self):

Estas funciones sirven como el sistema de puntuacién, calculando aspectos como la
desviacion respecto al objetivo, si ha alcanzado un waypoint o si ha invadido el margen
de seguridad de una aeronave intrusa todas estas puntuaciones se suman dentro de
“get_reward” para obtener la puntuacién que ha obtenido en ese paso.

def _get_info(self):
Here you implement any additional info that you want to return after a step,
but that should not be used by the agent for decision making, so used for logging and debugging purposes
for now just have 18, because it crashed if I gave none for some reason.
return {
"total_reward': self.total_reward,
‘total_intrusions': self.total_intrusions,

'average_drift': self.average_drift.mean()

def _get_reward(self)

Always return done as false, as this is a non-ending scenario with

EE

new waypoints spawning continously

reach_reward = self._check_waypoint()
drift_reward = self._check_drift()

intrusion_reward = self._check_intrusion()

total_reward = reach_reward + drift_reward + intrusion_reward

self.total_reward += total_reward

if @ in self.wpt_reach:
return total_reward, @
else:

return total_reward, 1

5.1.8. Funcidn get_action(self,action):

Esta parte actia como un traductor entre la decisién abstracta de la Al y el comando
concreto que entiende el simulador de vuelo. Para ello lo hace de la siguiente manera,
toma la decisién normalizada de la Al (un valor entre -1y 1), la convierte en un cambio
de rumbo especifico en grados, calcula el nuevo rumbo absoluto y envia esta orden final
al simulador para que la aeronave la ejecute.

def get action(self,action):

action = self.ac _hdg + action * D HEADING

bs.stack.stack(f"HDG KL8@1 {action[©]}")

5.1.9. Funcion render_frame(self):

Render_frame se encarga de dibuja el estado actual de la simulacién en una ventana
para que podamos observarla, toma como referencia la aeronave controlada por el
agente situandola en el centro y moviéndose segin se mueva la aeronave.

55

5.2. Creacion de un escenario complejo

Si bien podemos modificar las variables de entorno de todos los escenarios para
nuestras simulaciones, también podemos crear escenarios complejos, o modificar las
bases de uno existente. En este caso se ha modificado el escenario “horizontal_cr_env”
anteriormente analizado, con el objetivo de asemejarlo mds al radar de un controlador
aéreo, en este caso no solo se ha modificado el apartado visual, sino que también se han
creado caminos “airway” que conectan los distintos puntos “waypoints”, al crear los
caminos también se debe crear un valor y unas condiciones, estos caminos no son
aleatorios sino que siempre deben estar conectados y hacer de enlace con los distintos
puntos, para calcular y crear estos caminos se ha tenido que crear una nueva funcién en
el archivo “functions” para que los “airway” no se crearan de manera aleatoria como si
fueran “waypoints”, ademas también se le debe asignar una recompensa para que el
agente identifique que debe ir por estas rutas establecidas, al mismo tiempo estan las
aeronaves intrusas que debe evitar, para evitar que el agente prefiera mantenerse por
la ruta por encima de evitar una colision con una aeronave ajena se ha decidido
aumentar la reduccién de puntos en caso de acercamiento y también en caso de colisidn,
también se ha decidido comenzar la simulacion fuera de una via aérea para que el
agente intente aproximarse lo mas rdpido posible a una. Para un mayor entendimiento
vamos a pasar a la explicacion del cédigo paso por paso.

5.2.1. Explicacion de los nuevos parametros globales y
recompensas/penalizaciones

Después de llamar las bibliotecas necesarias debemos definir los pardmetros principales
o también denominados parametros de entorno, estan conformado por constantes que
actian como reglas de la simulacidn, en nuestro caso hemos utilizado 14 parametros de
entorno, pero las principales son:

e NUM_INTRUDERS: Define cuantas otras aeronaves habra en el cielo junto a la
nuestra.

o NUM_WAYPOINTS: El nimero de puntos de referencia que conforman la ruta a
seguir.

e NUM_CONNECTIONS_PER_WAYPOINT: Indica cuantas aerovias (conexiones)
debe tener cada waypoint, creando una red de rutas.

e AC _SPDyINTRUDER_SPD RANGE: Definen las velocidades de nuestra aeronave
y de las demas.

e MIN_SEP_DISTANCE y COLLISION_DISTANCE: Son las distancias de seguridad. Si
un intruso se acerca mas que MIN_SEP_DISTANCE, es una infraccién. Si se acerca
mas que COLLISION_DISTANCE, se considera una colisién.

A su vez debemos definir las recompensas y penalizaciones siendo esta una de las partes
mas importantes debido a que afectan al aprendizaje de la Al diciéndole lo que hace mal
o bien. Como el objetivo es que el agente pase por los distintos waypoints en un tiempo

56

de 150 segundo he decidido otorgar al agente una recompensa de 10 puntos cada vez
que pase por algin nodo, siendo esta la recompensa mas alta, sin embargo es
recomendable que llegue a los nodos siguiendo las aerovias generadas, debido a que en
caso de no hacerlo tiene una resta de su puntuacién de -0,1 por cada paso que efectue
fuera de una aerovia, ademas para facilitar que el agente entienda que debe continuar
sobre estas vias se le ha puesto una penalizacidon al momento de salirse de una de -0,5,
por lo tanto el agente pasaria de sumar 0,5 puntos por cada paso que se mantenga
dentro de la aerovia a perder inmediatamente esa cantidad y posteriormente perder -
0,1 por cada paso que realice fuera de la misma. Finalmente hemos querido recalcar y
priorizar la seguridad, por lo tanto, si el agente no mantiene una distancia de seguridad
respecto al resto de aeronaves se le penalizara con -20 puntos vy si llega a colisionar
perdera -100 durante la simulacién, lo que facilitara que el agente priorice evitar
colisiones y romper la distancia de seguridad incluso si para ello debe salirse de la ruta
o debe esperar para pasar por uno de los nodos.

——— Environment Parameters ———

WINDOW SIZE = 512 # Size of the display window

NUM INTRUDERS = 4 # Number of intruder aircraft

NUM WAYPOINTS = 6 # Number of waypoints defining the main airway

MIN SEP_DISTANCE = 5 # Minimum separation distance (NM) for intrusion

INTRUSION DISTANCE = 5 # NM

ACTION FREQUENCY = 10 # Frequency of action updates (Bluesky simulation steps per agent step)
AC_SPD = 500 % Rircraft speed (kt) for ownship (RUMENTADO)

INTRUDER_SPD RANGE = (400, 600) # Speed range for intruders (RUMENTADO)

HEADING CHANGE MAX = 30 # Maximum heading change allowed (degrees)

AIRWAY SEGMENT LENGTH MIN 15 # Minimum length of an airway segment (NM)

AIRWAY SEGMENT LENGTH MARX 50 # Maximum length of an airway segment (NM)
COLLISION DISTANCE = 2 # Distance for a "crash" (NM)

NUM CONNECTIONS PER WAYPOINT = 3 #Controla cuédntas aerovias tiene cada waypoint.

NM2KM = 1.852 # Nautical miles to kilometers conversion

——— Rewards and Penalties --—-

REWARD REACH WAYPOINT = 10.0

PENALTY_ INTRUSION = -20.0 # Increased penalty for penalty intrusion
PENALTY DRIFT = -0.1 # Penalty for drifting off the airway (se mantiene)

PENALTY CRASH = -100.0 # High penalty for collision

REWARD ON AIRWAY = 0.5 # Recompensa por mantenerse en la aerovia
PENALTY OFF AIRWAY = -0.5 # Penalizacidn por salirse de la aerovia

AIRWAY WIDTH NM = 5 # Bncho de la aerovia para considerar si el avidn esta

5.2.2. Primer prototipo

Para este primer prototipo aparte de modificar y afiadir valores de entorno vamos a
definir el concepto de aerovia, en este caso hemos modificado la funcién
“generate_waypoint”, para que cree lineas que seran airway, la forma mas facil de
generar estas vias es guardando las coordenadas del ultimo waypoint generado para
posteriormente compararla con el nuevo waypoint y de esta forma crear una linea recta
de punto a punto, de esta manera nos aseguramos que cada nodo este conectado con
otro y permite formar una aerovia que conecta todos los puntos que el agente debe
intentar seguir.

Guardar el segmento de aerovia (del punto anterior al actual)

o 7521?iairway_segments.append(

((self.waypoint_coords[_ - 1][@], self.waypoint_coords[_ - 1][1]), # lat, lon del punto anterior
(next_lat, next_lon)) # lat, lon del punto actual

)

last_lat, last_lon = next_lat, next_lon

57

También debemos modificar el sistema de recompensas y penalizadores, en mi caso he
decidido centralizar todo en la funcién “calculate_reward” y generar mediante
condicionantes si el agente recibe recompensa o penalizacién.

def calculate reward(self):
reward = @
ownship_lat
ownship_lon

= bs.traf.lat[self.ownship_idx]
= bs.traf.lon[self.ownship_idx]
Recompensa/Penalizacion por mantenerse en la aerovia
if self.airway_segments:
min_dist_to_airway = float('inf")
for segment_start, segment_end in self.airway_segments:
dist_km_to_segment = fn.distance_point_to_segment(
np.array([ownship lat, ownship lon]),
np.array(segment_start),
np.array(segment_end)

)

min_dist to_airway = min(min_dist_to_airway, dist_km_to_segment / NM2KM) # Convertir a NM

if min_dist _to_airway <= AIRWAY_WIDTH_NM / 2: # Dentro de la mitad del ancho de la aerovia
reward += REWARD_ON_AIRWAY

else:
reward += PENALTY OFF AIRWAY * (min dist to airway - AIRWAY WIDTH NM / 2) # Penalizacidn creciente

Sin embargo, este método no nos sirve al momento de escalar a mas de una aerovia,
debido a que la forma de crearlas es en base al punto anterior y al actuar y por lo tanto
no tiene en cuenta otros puntos ya creados.

Figura 20: Captura de la simulacion del primer prototipo.

58

5.2.3. Segundo prototipo (Mas complejo)

En este segundo escenario se ha vuelto a modificar totalmente la funcién
“generate_waypoint” y la hemos renombrado, esta vez la funcién crea primero una
nube de puntos, es decir, primero genera las coordenadas de todos los waypoints de la
simulacion.

def generate waypoints and airways(self):

Self.waypoint_coords = [1
self.airway_segments = [1
if self.ownship idx != -1:

last_lat, last lon = bs.traf.lat[self.ownship idx], bs.traf.lon[self.ownship idx]

last_lat, last_lon = 0.0, 0.0

1. Generar todas las coordenadas de los waypoints primeroc

current lat, current lon = last lat, last lon

for _ in range (NUM _WAYPOINTS) :
distance_nm = random.uniform(AIRWAY SEGMENT LENGTH MIN, AIRWAY SEGMENT_LENGTH_ MAX)
bearing deg = random.uniform(0, 36€0)

next lat, next lon = fn.get point at distance(current lat, current lon, distance nm * NM2KM, bearing dey)
self.waypoint_coords.append((next_lat, next_lon))

current_lat, current_lon = next_lat, next_lon
2. Generar la red de aerovias usando la nueva funcién externa
if self.waypoint coords:

self.airway_segments = fn.generate airway_network(

self.waypoint coords,
self.num_connections

Una vez tiene esas coordenadas las pasa a una funcién externa que he creado dentro
del archivo “functions”, esta funcién toma todos los waypoints generados y los conecta
para formar una red. Lo hace en dos fases, la primera calcula todas las posibles
conexiones, toma un punto y comienza a crear caminos con los puntos mas cercanos
hasta alcanzar el limite de caminos previamente indicado, momento que pasara al
siguiente punto y asi hasta finalizar con todos.

def generate_airway_network(waypoints: list, num connections_per_waypoint: int) -> list:

vias conectando los waypoints mas

lista de tuplas, don
aypoint (int):

rovia. Cada segmento es una tupla con las coordenadas
, lonl), (lat2, lon2)),

mn

num_waypoints = len(waypoints)

if num connections_per waypoint == 0 or num waypoints < 2:

return []

1. Calcular todas las posibles aristas (conexiones) y sus distancias

possible _edges = []
for i in range(num_waypoints):
for j in range(i + 1, num waypoints)

point_i = waypoints[i]
point_j = waypoints[j]
distance = haversine distance(point_i[0], point_i[1], point_3j[0], point_j[11])
possible_edges.append((i, j, distance))
Ordenar las aristas de la mas corta a la mas larga

possibleiedges.sort(keyzl da x: x[2])

2. Construir las aerovias

airway segments = []

airway indices = set() # Usamos un set de tuplas ordenadas para evitar duplicados (i, j)
connection_counts = np.zeros(num waypoints, dtype=int)

--—— Fase 1: Conectar los waypoints mé&s cercanos hasta alcanzar el limite deseado ---
for i, j, distance in possible edges:
if connection_counts[i] < num_connections_per waypoint and \

connection_counts[j] < num connections_per waypoint:

connection _counts[i] += 1
connectionicounts[j] += 1

segment = (waypoints[i], waypoints([j])
airway segments.append (segment)

airway indices.add(tuple(sorted((i, 3))))

59

La segunda fase de creacion de la red de caminos se basa en buscar si existen puntos
aislados, si localiza alglin punto sin conexiones creara una conexién con el punto mas
cercano a este, durante este proceso elimina el camino mas lejano que tuviera el punto
y afiade el nuevo camino, una vez resuelta la incidencia buscard mas puntos aislados
hasta que no haya ninguno y devolvera el mapa de puntos y aerovias. Cabe destacar que
el cddigo intenta que siempre se cumpla la condicion de caminos que se haya
especificado, sin embargo, hay situaciones donde la combinacidon de puntos y la
exigencia de aerovias hace que esta tarea sea imposible, por ejemplo 3 carriles por
punto y una generacién de 5 puntos, en estos casos el programa intentara cumplir con
el maximo de puntos posibles y aquellos que no sea posible intentara acercarse a lo
estipulado.

--- Fase 2: I e no gueden waypoints aislad
Un waypoint podric 2dar aislado si 05 sus vecinos va alcanzaron su limite de conexiones.
isolated waypoints_indices = np.where(connection_counts == 0) [0]

idx isolated waypoints_indices:
Encontrar el vecino mi&s cercano para este waypoint aislado, sin importar si el vecino va estd lleno
closest neighbor found =
i neighbor, j neighbor, dist possible edges:
i_neighbor == idx:
Comprobar si esta conexidn ya existe

tuple (sorted((idx, j_neighbor))) airway_indices:

connection counts[idx] += 1

connection counts[j neighbor] += 1

segment = (waypoints[idx], waypoints([j neighbor])

airway segments.append (segment)

airway_indices.add(tuple(sorted((idx, j_neighbor))))

Closest_neighbor_found =

Conectar y pasar al siguiente aislado
j_neighbor idx:

tuple (sorted((idx, i_neighbor))) airway_indices:

connection counts[idx] += 1

connection counts[i neighbor] += 1

segment = (waypoints[idx], waypoints[i_neighbor])

airway_segments.append(segment)

airway_indices.add (tuple(sorted((idx, i neighbor))))

closest_neighbor_ found =

Conectar y pasar al siguiente aislado

airwayiseqmentﬂ

En estas imagenes de ejemplo se puede apreciar el resultado, situandose la nave que
controla el agente en el centro con forma de flecha verde, la de intrusos con forma de
flecha amarilla, los puntos como circulos verdes y las aerovias como lineas blencas.

60

61

6. Limitaciones y propuestas de mejora

Si bien este proyecto demuestra el enorme potencial de la inteligencia artificial en el
ambito aeronautico, su aplicacién practica en el control de trafico aéreo (ATC) no esta
exenta de limitaciones criticas que, hoy en dia, comprometen la viabilidad de un
despliegue auténomo.

Es fundamental matizar que el siguiente analisis se centra especificamente en la
metodologia de Aprendizaje por Refuerzo (RL), utilizada en el entorno de simulacidn
BlueSky-Gym, sin profundizar en otros paradigmas de Al que podrian ofrecer soluciones
diferentes.

A continuacién, se detallan las limitaciones observadas y se expande el andlisis a otros
desafios inherentes a esta tecnologia.

1. Generalizacion ante Escenarios Inéditos (Falta de Improvisacion)

Un agente entrenado con RL se vuelve extraordinariamente eficiente en la gestion de
configuraciones de trafico para las que ha sido entrenado. Sin embargo, su rendimiento
se degrada drasticamente ante eventos imprevistos o no incluidos en su set de
entrenamiento (lo que se conoce como out-of-distribution data). Esto puede incluir:

» Un tipo de aeronave con un rendimiento de ascenso/descenso no visto antes.
» Una condicidn meteoroldgica adversa y localizada que aparece subitamente.
» El comportamiento inesperado de un piloto (ej. una desviacién no comunicada).

El agente no "improvisa", simplemente carece del modelo aprendido para gestionar una
situacidon que no ha experimentado, lo que en un entorno real es inaceptable.

Propuestas de Mejora:

Domain Randomization (Aleatorizacion del Dominio): Entrenar al agente no en un Unico
escenario estatico, sino en miles de simulaciones donde los pardmetros (meteorologia,
rendimiento de las aeronaves, densidad del trafico, etc.) varian constantemente y de
forma aleatoria. Esto fuerza al agente a aprender politicas de decisién mas robustas y
generalizables [28].

Curriculum Learning (Aprendizaje Curricular): Exponer al agente a escenarios de
complejidad creciente. Se empieza con problemas sencillos (dos aviones, sin viento) y, a
medida que el agente los domina, se introduce gradualmente mas dificultad vy
variabilidad [28].

Transfer Learning: Pre-entrenar modelos en un vasto conjunto de datos de trafico aéreo
general (incluso de otros sectores o aeropuertos) y luego afinarlos (fine-tuning) para el
sector especifico en el que operaran [29].

2. El Equilibrio entre Exploracién y Explotacion

Un agente que rdpidamente encuentra una estrategia "suficientemente buena"
(explotacion) dejard de buscar alternativas que podrian ser éptimas a largo plazo

62

(exploracion). En el control aéreo, esto es peligroso. Una solucion que parece eficiente
puede ser fragil y fallar ante una pequefia perturbacién que no fue explorada durante el
entrenamiento. Forzar una exploracién exhaustiva en un espacio de estados tan vasto
como el del trafico aéreo puede Illevar a tiempos de entrenamiento
computacionalmente prohibitivos.

Propuestas de Mejora:

Algoritmos de Exploracion Avanzados: Utilizar técnicas como Intrinsic Curiosity
Motivation, donde el agente recibe una recompensa adicional no solo por cumplir el
objetivo, sino por visitar estados nuevos y desconocidos. Esto incentiva una exploracién
mas sistematica [30].

Ensembles de Agentes: Entrenar a multiples agentes de forma independiente. Durante
la operacién, sus decisiones pueden ser promediadas o sometidas a un sistema de
votacién, reduciendo el riesgo de que una Unica politica subdptima tome el control [30].

3. El Problema de la "Caja Negra" (Explainability) y la Certificacion de Seguridad

Las redes neuronales profundas, que son el cerebro de los agentes de RL modernos,
operan como ‘"cajas negras". Pueden tomar una decision O&ptima, pero es
extremadamente dificil (a veces imposible) trazar el razonamiento exacto que los llevd
a ella. En aviacion, toda decisién critica debe ser auditable y explicable. éPor qué el
agente decidié desviar el avidon A en lugar del B? Sin una respuesta clara, es imposible
certificar el sistema bajo los estrictos estandares de la aviacién (como DO-178C).

Propuestas de Mejora:

Al Explicable (XAl - Explainable Al): Desarrollar e integrar herramientas que "traduzcan"
las decisiones del agente a un formato comprensible para un humano. Por ejemplo,
mediante mapas de atencidn que resalten qué aviones o datos fueron mas influyentes
para una decision concreta [31].

Modelos Hibridos: Combinar el RL con sistemas basados en reglas o ldgicas simbdlicas.
El agente de RL puede proponer una estrategia, pero esta debe ser validada por un
"guardian" basado en reglas (por ejemplo, "nunca violar la separacion minima de 5
millas nduticas"). Esto crea una red de seguridad verificable [31].

Verificacién Formal: Utilizar métodos matematicos para probar formalmente que, bajo
cualquier circunstancia dentro de un conjunto definido, el agente nunca tomara una
accién que lleve a un estado inseguro [31]

4. Escalabilidad y Complejidad del Espacio Aéreo Real

Un simulador como BlueSky-Gym, aunque avanzado, simplifica la realidad. El espacio
aéreo real es un sistema multi-agente masivo. No se trata solo de gestionar un sector,
sino de coordinar traspasos fluidos con docenas de sectores adyacentes, cada uno con
su propio controlador (o agente). La complejidad computacional (el "curse of
dimensionality") crece exponencialmente con cada avion y cada agente afiadido.

63

Propuestas de Mejora:

Aprendizaje por Refuerzo Jerdrquico (HRL): Disefiar una estructura de agentes de varios
niveles. Un "meta-agente" de alto nivel podria tomar decisiones estratégicas (e;j.
gestionar el flujo general de un corredor aéreo), mientras que agentes de bajo nivel se
encargarian de tareas tdcticas (ej. mantener la separacidén entre un par de aviones) [33].

Aprendizaje Multi-Agente (MARL): En lugar de un Unico agente omnisciente, entrenar a
multiples agentes que aprendan a cooperar y comunicarse entre si, imitando la
estructura de los centros de control del mundo real [33].

5. Disefio de la Funcidon de Recompensa (Reward Hacking)

Definir qué es una "buena" gestion del trafico aéreo en una formula matematica (la
funcién de recompensa) es increiblemente dificil. Un agente de RL es un optimizador
implacable y podria encontrar lagunas o atajos para maximizar su recompensa de
maneras no deseadas (reward hacking). Por ejemplo, si la recompensa se basa
Unicamente en la eficiencia del combustible, el agente podria guiar a los aviones por
rutas muy juntas, justo en el limite legal de separacidon, aumentando el riesgo para
maximizar su puntuacion.

Propuestas de Mejora:

Aprendizaje por Refuerzo Inverso (IRL - Inverse Reinforcement Learning): En lugar de
definir manualmente la recompensa, el agente la aprende observando a controladores
aéreos humanos expertos. Intenta deducir cudl es la funcién de recompensa implicita
gue guia las decisiones humanas [28].

Funciones de Recompensa Multiobjetivo: Crear una funcién de recompensa que
equilibre multiples objetivos, a menudo contrapuestos: seguridad (maxima separacion),
eficiencia (rutas directas), puntualidad, y confort del pasajero (evitar virajes bruscos).
Asignar penalizaciones severas por cualquier accion que se acerque a un limite de
seguridad [28].

64

7. Conclusion

A lo largo de este trabajo, se ha profundizado en los fundamentos tedricos del
Aprendizaje por Refuerzo (RL), sentando las bases para su aplicaciéon practica en la
gestidon del trafico aéreo. La revision de la literatura y el estudio de algoritmos clave
como PPO o SAC fueron pasos indispensables para abordar el nucleo del proyecto: la
exploracion del simulador BlueSky-Gym. Para facilitar su adopcién por parte de otros
investigadores y estudiantes, se desarrollé un pequefio tutorial, cumpliendo con uno de
los objetivos clave de este trabajo y contribuyendo a hacer esta herramienta un poquito
mas accesible.

La fase experimental no solo se limitd a evaluar los escenarios predefinidos, sino que se
extendio al disefio y creacidn de un entorno de simulacién propio y mas complejo, que
modela una red de aerovias para reflejar condiciones mas realistas. Los resultados de
los experimentos muestran tanto las oportunidades como los retos que presenta el
aprendizaje por refuerzo (RL) en este campo. En situaciones simples como
PlanWaypointEnv-v0, se evidencid que el agente puede aprender politicas de
navegacion efectivas, aunque esto viene con un alto costo computacional y una notable
sensibilidad a los hiperparametros. La complejidad aumentd en los escenarios de
resolucién de conflictos y en nuestro entorno personalizado, donde la inestabilidad de
las métricas destacd la dificultad del agente para generalizar su aprendizaje en
condiciones cambiantes. Estos hallazgos confirman que, aunque el RL es funcional, su
eficiencia depende en gran medida de una configuracién cuidadosa y de la complejidad
del entorno.

De cara al futuro, la aplicacion de inteligencias artificiales como las exploradas en este
proyecto se pueden considerar mas una herramienta de asistencia mas que como un
sustituto auténomo del controlador humano. Las limitaciones observadas,
especialmente la falta de capacidad para improvisar ante escenarios no previstos y la
naturaleza de "caja negra" de las redes neuronales, representan barreras significativas
para su certificacion en un entorno donde la seguridad es innegociable. La viabilidad de
una implementacion real dependera de superar estos escollos, posiblemente a través
de arquitecturas hibridas que combinen el RL con sistemas basados en reglas y el
desarrollo de la IA Explicable (XAl). Sin embargo, su aplicacién se podria aplicar como un
asistente para el controlador, de forma que facilite y agilice las operaciones aéreas. Por
tanto, aunque la visidon de un ATC totalmente automatizado sigue siendo un horizonte
lejano, este trabajo confirma que BlueSky-Gym es un paso mas y una plataforma de
investigacion necesaria para instar a los estudiantes a forjar los sistemas inteligentes
gue haran de la aviacidon del mafiana un espacio mas seguro y eficiente.

65

Anexo
Codigo inicial:
gymnasium as gym
stable_baselines3 PPO, SAC, TD3, DDPG
numpy as np
bluesky _gym
bluesky_gym.envs
bluesky gym.utils logger
bluesky_gym.register_envs()
env_name = 'StaticObstacleEnv-v0'
algorithm = SAC
Initialize logger
log_dir =f'./logs/{env_name}/'
file_name = f'{env_name} {str(algorithm.__name__)}.csv'
csv_logger_callback = logger.CSVLoggerCallback(log_dir, file_name)
TRAIN =

EVAL_EPISODES = 10

__hame__=="_main__":
env = gym.make(env_name, render_mode=)

obs, info = env.reset()

model = algorithm("MultilnputPolicy", env, verbose=1,learning_rate=3e-4)

TRAIN:

model.learn(total_timesteps=2e6, callback=csv_logger_callback)

model.save(f"models/{env_name}/{env_name} {str(algorithm.__name__)}/model")
del model

env.close()

66

Test the trained model

model =

algorithm.load(f"models/{env_name}/{env_name} {str(algorithm.__name__)}/model",

env=env)
env = gym.make(env_name, render_mode="human")
for i in range(EVAL_EPISODES):
done = truncated = False
obs, info = env.reset()
tot_rew=0
while not (done or truncated):
action = np.array(np.random.randint(-100,100,size=(2))/100)
action = np.array([0,-1])
action, _states = model.predict(obs, deterministic=True)
obs, reward, done, truncated, info = env.step(action[()])
tot_rew += reward
print(tot_rew)

env.close()

67

Codigo tras primera revision:

import gymnasium as gym

from stable_baselines3 import SAC

from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.vec_env import VecNormalize
from stable_baselines3.common.callbacks import CheckpointCallback
import numpy as np

import bluesky gym

import bluesky_gym.envs

from bluesky_gym.utils import logger

Registrar los entornos de Bluesky

bluesky gym.register_envs()

Definir el nombre del entorno y el algoritmo

env_name = 'PlanWaypointEnv-v0'

algorithm = SAC

Crear multiples entornos en paralelo

n_envs =4

env = make_vec_env(env_name, n_envs=n_envs, seed=0)

Normalizar las observaciones y recompensas

env = VecNormalize(env, norm_obs=True, norm_reward=True)

Inicializar el logger

log_dir =f'./logs/{env_name}/'

file_name = f'{env_name} {str(algorithm.__name__)}.csv'
csv_logger_callback = logger.CSVLoggerCallback(log_dir, file_name)
Configuracion de entrenamiento y evaluacion

TRAIN =True # Cambia a False si no deseas entrenar
EVAL_EPISODES =10

if name__ ==" main__ "

Cargar o crear el modelo

68

model_path =
f"models/{env_name}/{env_name} {str(algorithm.__name__)}/model"

if TRAIN:
try:
Intentar cargar el modelo previamente entrenado
model = algorithm.load(model_path, env=env)
print("Modelo cargado exitosamente.")
except:
Si no existe, crear un nuevo modelo
model = algorithm(
"MultilnputPolicy",
env,
verbose=1,
learning_rate=1e-3, # Aumentar la tasa de aprendizaje
buffer_size=1_000_000, # Aumentar el tamafo del buffer
batch_size=256, # Aumentar el tamafio del batch
ent_coef=0.1, # Ajustar el coeficiente de entropia
tau=0.01) # Aumentar tau para actualizar el target network mas rapido
print("Nuevo modelo creado.")
Callback para guardar el modelo periédicamente
checkpoint_callback = CheckpointCallback(
save_freq=10_000,
save_path="./checkpoints/",
name_prefix=f"{env_name} {str(algorithm.__name__)}")
Entrenar el modelo

model.learn(total_timesteps=500000, callback=[csv_logger_callback,
checkpoint_callback], log_interval=10)

Guardar el modelo entrenado
model.save(model_path)

print("Modelo guardado exitosamente.")

69

Cerrar el entorno de entrenamiento
env.close()
Evaluar el modelo entrenado

env = gym.make(env_name, render_mode="human")

model = algorithm.load(model_path, env=env) # Cargar el modelo para evaluacion

foriin range(EVAL_EPISODES):
done = truncated = False
obs, info = env.reset()
tot_rew=0
while not (done or truncated):
action, _states = model.predict(obs, deterministic=True)
obs, reward, done, truncated, info = env.step(action[()])
tot_rew += reward
print(f"Episodio {i+1}: Recompensa total = {tot_rew}")
Cerrar el entorno de evaluacion

env.close()

Fichero de BlueSky-Gym utilizado durante los experimentos

bluesky-gym-main

70

https://uab-my.sharepoint.com/:f:/g/personal/1605990_uab_cat/ElPOMblFv_BLg-0PVcC7YN4BT19U06EXJnlKkrBDVtBMYw?e=aIwzuU

Bibliografia

[1] M. Brittain, and P. Wei, “Autonomous Air Traffic Controller: A Deep Multi-Agent
Reinforcement Learning Approach”, arXiv, 10.48550/arXiv.1905.01303, 2019.

[2] L. Lascorz, “Aprendizaje por Refuerzo: Elementos basicos y algoritmos”, Universidad
de Zaragoza, TAZ-TFG-2018-2390, 2018.

[3] J. Groot, G. Leto, A. Vlaskin, A. Moec, and J. Ellerbroek, “BlueSky-gym:
Reinforcement learning environments for air traffic applications”, SESAR,
10.61009/S1D.2024.1.10, 2024.

[4] BlueSky, “User Documentation”, BlueSky Data Collection Framework,
https://blueskyproject.io/, consultado el 19 de febrero de 2025.

[5] M. A. S. B. Affridi, and S. M. Abdul Rahman, “BlueSky simulator for air traffic control
training platform”, Universiti Teknologi MARA, elSSN 2773-5494, 2020.

[6] Farama Foundation, “Documentacién del gimnasio”, Gymnasium,
https://gymnasium.farama.org/, consultado el 04 de marzo de 2025.

[7] W. Wu, H. Wu, and H. Zhao, “Self-Directed Turing Test for Large Language Models”,
arXiv, 10.48550/arXiv.2408.09853, 2024.

[8] AENA, “Fechas e Informes Estadisticos”, Estadisticas de trafico aéreo,
https://www.aena.es/es/estadisticas/inicio.html, consultado el 17 de febrero de 2025.

[9] Python Software Foundation, “Python documentation”, https://www.python.org/,
consultado el 19 de febrero de 2025.

[10] Flightradar24.com, “Aviation data”, https://www.flightradar24.com, consultado el
04 de marzo de 2025.

[11] ENAIRE, “Servicio de Informacidn Aeronautica”, AIP, https://aip.enaire.es/AlIP/,
consultado el 17 de febrero de 2025.

[12] H. Shum, X. He, and D. Li, “From Eliza to Xiaolce: Challenges and opportunities
with social chatbots”, Frontiers of Information Technology & Electronic Engineering,
vol. 19, pp. 10-26, 2018, doi: 10.1631/FITEE.1700826.

[13] K. H. Yu, A. L. Beam, and I. S. Kohane, “Artificial Intelligence in Healthcare”, Nature
Biomedical Engineering, vol. 2, pp. 719-731, 2018, doi: 10.1038/s41551-018-0305-z.

[14] R. S. Sutton, and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed.,
MIT Press, 2018.

[15] V. Mnih, et al., “Human-level control through deep reinforcement learning”,
Nature, vol. 518, no. 7540, pp. 529-533, 2015.

[16] D. Silver, et al., “Mastering the game of Go without human knowledge”, Nature,
vol. 550, no. 7676, pp. 354—359, 2017.

71

https://blueskyproject.io/
https://gymnasium.farama.org/
https://www.aena.es/es/estadisticas/inicio.html
https://www.python.org/
https://www.flightradar24.com/
https://aip.enaire.es/AIP/

[17] T. P. Lillicrap, et al., “Continuous control with deep reinforcement learning”, arXiv,
10.48550/arXiv.1509.02971, 2015.

[18] S. Zelinski, “NextGen Simulation Technologies”, NASA,
https://aviationsystems.arc.nasa.gov/publications/2011/DASC2011 Zelinski.pdf,
consultado el 25 de junio de 2025.

[19] A. T. Budiarti, “Development of model-free flight control system using Deep
Deterministic Policy Gradient (DDPG)”, Cranfield University, tesis de maestria, 2019.
Disponible en: https://dspace.lib.cranfield.ac.uk/handle/1826/14798

[20] Microsoft, “How Microsoft Flight Simulator uses Al to create its world”, Microsoft
Flight Simulator Official Blog, 2020. https://news.xbox.com/en-us/2020/08/19/how-
microsoft-flight-simulator-uses-ai-to-create-its-world/

[21] Blackshark.ai, “Al at the core of Microsoft Flight Simulator”, 2020.
https://www.blackshark.ai/microsoft-flight-simulator

[22] Reddit.com, “Discusidn sobre trafico aéreo y simulacion”, Comunidad de usuarios
Microsoft Flight Simulator, 2023. https://www.reddit.com/r/MicrosoftFlightSim/

[23] MIT Lincoln Laboratory, “ACAS Xu for Unmanned Aircraft Systems”, 2020.
https://www.ll.mit.edu/r-d/projects/acas-xu-unmanned-aircraft-systems

[24] NASA, “UAS Traffic Management (UTM) Project”, Aeronautics Research Mission
Directorate, 2020. https://www.nasa.gov/ames/utm

[25] E. R. Mueller, and M. J. Kochenderfer, “Challenges in aircraft collision avoidance”,
IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 6, pp. 1551-1559,
2016. https://doi.org/10.1109/TITS.2016.2603007

[26] MIT Lincoln Laboratory, “Fast-time Monte Carlo Simulations for Collision
Avoidance Systems”, 2021. https://www.ll.mit.edu/publications/fast-time-monte-
carlo-simulations

[27] FAA, “FAA Exploring Collision Avoidance Algorithms for UAS Integration”, Federal
Aviation Administration, 2022.
https://www.faa.gov/uas/research development/traffic_ management

[28] S. Ghosh, et al., “Deep Ensemble Multi-Agent Reinforcement Learning for Air
Traffic Control”, arXiv, 10.48550/arXiv.2004.01387, 2020.

[29] L. D. Avila, D. Aguirre, J. V. Martel, and I. Pérez, “Air Traffic Control Using Deep
Reinforcement Learning: A Review”, Expert Systems with Applications, vol. 240, 2024,
https://doi.org/10.1016/j.eswa.2024.122776

[30] A. Vouros, et al., “Automating the Resolution of Flight Conflicts: Deep
Reinforcement Learning in Service of Air Traffic Controllers”, ResearchGate, 2022.
https://www.researchgate.net/publication/362184328

72

https://aviationsystems.arc.nasa.gov/publications/2011/DASC2011_Zelinski.pdf
https://dspace.lib.cranfield.ac.uk/handle/1826/14798
https://news.xbox.com/en-us/2020/08/19/how-microsoft-flight-simulator-uses-ai-to-create-its-world/
https://news.xbox.com/en-us/2020/08/19/how-microsoft-flight-simulator-uses-ai-to-create-its-world/
https://www.blackshark.ai/microsoft-flight-simulator
https://www.reddit.com/r/MicrosoftFlightSim/
https://www.ll.mit.edu/r-d/projects/acas-xu-unmanned-aircraft-systems
https://www.nasa.gov/ames/utm
https://doi.org/10.1109/TITS.2016.2603007
https://www.ll.mit.edu/publications/fast-time-monte-carlo-simulations
https://www.ll.mit.edu/publications/fast-time-monte-carlo-simulations
https://www.faa.gov/uas/research_development/traffic_management
https://doi.org/10.1016/j.eswa.2024.122776
https://www.researchgate.net/publication/362184328

[31] H. Wang, et al., “Safe and Explainable Reinforcement Learning for Autonomous Air
Mobility”, arXiv, 10.48550/arXiv.2211.13474, 2022.

73

