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0 INTRODUCCIÓN 
 

La historia de la ciencia está hecha a partir de las grandes figuras. Galileo, Huygens, 

Newton, Leibniz, Euler, …, constituyen los hitos a partir de los que se traza la 

evolución de las ideas científicas. Son los que han producido las “mutaciones” 

conceptuales y metodológicas que permiten “saltar” a un estadio diferente el 

conocimiento científico, o para decirlo con Patricia Radelet1, son los personajes que 

han sabido “anudar” en un discurso organizado los diferentes “hilos” que constituyen 

los desarrollos de otros autores, creando una nueva forma de ver en un campo del 

conocimiento.  

 

Hermann no representa ninguna figura principal en la historia de la ciencia, es un 

personaje secundario. Sin embargo, el estudio de estos “secundarios”, nos permite 

seguir el trazado de algunos de estos “hilos” que constituyen la historia.  Nos ayudan 

a comprender mejor los problemas, los temas, las dificultades de un momento 

histórico, sin descartar retrospectivamente su trabajo por irrelevante, por no haber 

llegado a las grandes construcciones que figuran en nuestros textos científicos.  

 

La obra principal de Hermann, la Phoronomia (1716), es particularmente interesante, 

porque es la primera mecánica racional escrita tras los Principia (1687). Representa, 

por tanto, un intento de exposición organizada de la primera ciencia matematizada en 

la historia de la ciencia, después de la magna obra de Newton. La reciente creación 

del cálculo diferencial- integral, sobretodo en la versión de Leibniz, estaba 

produciendo una gran cantidad de nuevos resultados en el estudio de los problemas 

mecánicos, además de una reelaboración de los resultados conocidos, todo ello 

mezclado con las polémicas sobre sus fundamentos. En este contexto se escribe la 

obra de Hermann.   

 

                                         
1 [RADELET-DE GRAVE P. 1998. p. 457] “Il me semble préférable de parler des continuités parce que je 
vois les grands progrès chez les auteurs que nouent dans un discours organiséles diffèrents fils qui se 
présentent à eux. “ 
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La organización de esta monografía trata de responder a los objetivos siguientes: por 

un lado dar a conocer los contenidos de la obra, que salvo algunas catas importantes 

que comentaremos en el primer capítulo, carece de un estudio global. Por otro, 

proceder a un análisis en relación a la ciencia del momento y en contraste con otros 

autores, de los siguientes aspectos: 

 

• Métodos: organización de los conocimientos, estructuración y definición de 

las leyes básicas, tipología de los problemas analizados, relaciones de sus 

desarrollos teóricos con experiencias prácticas, algoritmos del cálculo 

diferencial e integral y su uso.     

• Conceptos: elaboración explícita e implícita, jerarquía y uso de los mismos en 

la elaboración de leyes, discusiones en torno a la estructura de la materia.  

• Estilo: geometría versus álgebra en el uso del cálculo diferencial e integral.  

 

Veremos fundamentalmente como en la Phoronomia se procede a reorganizar y 

ampliar los conocimientos dispersos acumulados desde la publicación de los Principia, 

dándoles un tratamiento unificado. Se introducen leyes que a modo de algoritmos 

proporcionan modos genéricos de acceso a los distintos campos de la mecánica. 

Veremos que esto se hace con una orientación diferente a la emprendidad unos años 

antes por Varignon, privilegiando un modo de hacer que después se reconocerá como 

“energético”, y que tendrá en Lagrange su máximo exponente.  

 

Agradezco la paciencia y sabiduría de la tutoría del profesor Antoni Malet a lo largo 

de la elaboración del trabajo, así como los comentarios sugerentes del profesor 

Marco Panza con ocasión del workshop, en el que presenté algunas de las ideas 

contenidas en esta monografía. El trabajo de amigos como Gabriel Almirante y Paco 

Gurrea ha sido determinante para acabar de entender el texto latino. 
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1  HERMANN EN LA HISTORIOGRAFÍA    

 

Tras la publicación en 1684 y 1686 por Leibniz de los dos artículos que se consideran 

fundadores del cálculo infinitesimal2, Jacob Bernoulli, desde Basel, junto con su 

hermano Johann, trece años más joven que él, consiguen asimilar esos textos 

esquemáticos y en ocasiones deliberadamente oscuros. A partir de 1690, los 

hermanos Bernoulli y Leibniz comienzan a publicar artículos en Acta Eruditorum con 

aplicaciones del nuevo cálculo a problemas nuevos y a algunos ya resueltos con éxito 

por otros procedimientos. Johann viaja a París en 1690 donde consigue interesar en 

los nuevos métodos al marqués de l’Hôpital, quien acuerda con Johann la recepción de 

lecciones en exclusiva a cambio de una renta entre 1691-92. Fruto de estas 

enseñanzas, l’Hopital escribe en 1696 el primer tratado en el que se expone con 

claridad el cálculo infinitesimal3.  

 

Cercano el final de siglo, se dispone, por un lado, de un buen manual de cálculo 

diferencial, y por otro de una colección de artículos en los que el cálculo se aplica con 

éxito a una variedad de problemas cada vez más amplia. En el texto de l’Hôpital la 

exposición del nuevo cálculo se aplica a problemas puramente matemáticos, tales 

como el trazado de tangentes de cónicas o espirales. Sin embargo, los artículos de AE 

tratan también de matemáticas mixtas, en los que el objetivo es aplicar los métodos a 

curvas que representan movimientos o situaciones estáticas de objetos (son las 

llamadas curvas mecánicas), y que eran muy difíciles de resolver con los métodos 

tradicionales. 

 

En este contexto, que caracteriza las preocupaciones matemáticas en la última 

década del s. XVII, aparece  Hermann (Basel 1678-1733) quien, mientras estudia 

teología en la universidad de su ciudad natal, se forma matemáticamente con  

                                         
2 LEIBNIZ, G. W.  1684  y  1686   
3 L’HOPITAL 1696  
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Bernoulli en los últimos años del siglo. Sobre la biografía de Hermann tenemos los 

obituarios [Bourguet 1733], [Scheuchzer JJ 1735], [Herzog 1778] y el artículo 

correspondiente de Dictionary of Scientific Biography (DSB en adelante) [Fellmann 

1981].  

 

En 1997 aparece el  único libro publicado hasta ahora sobre la figura y la obra de 

Hermann,  Hermann and the diffusion of the Leibnizian Calculus in Italy  [Mazzone S. 

y Roero C.S. 1997]. Contiene dos capítulos y un apéndice: a partir de correspondencia 

y de manuscritos inéditos  reproducidos en el apéndice, en el primer capítulo se 

estudia la estancia de Hermann en Padua (1707-1713), las negociaciones previas a su 

llegada, su enseñanza privada y pública y un análisis de sus principales obras; en el 

segundo capítulo se estudia su relación con los estudiosos y matemáticos italianos del 

momento. Esta monografía está dedicada fundamentalmente a mostrar la influencia 

de Hermann en la difusión del cálculo diferencial en Italia.   

 

Fritz Nagel ha realizado un catálogo los trabajos  escritos de Hermann [Nagel F. 

1991], que incluye tres categorías: publicaciones de contenido científico (59 

entradas), manuscritos de contenido científico (17 entradas), y publicaciones de 

contenido no científico (15 entradas). La correspondencia relacionada con Hermann 

se encuentra en parte en la edición de Gerhardt de los escritos de Leibniz [Gerhardt. 

C.J. ed. 1859]. Posteriormente Robinet ha publicado la relativa a la introducción de 

Hermann en la cátedra de Padua [Robinet A. 1991 a]. Mazzone y Roero, en el contexto 

de sus estudios sobre la introducción del cálculo en Italia, han publicado la 

correspondencia con Guido Grandi [Mazzone S. y Roero C.S. eds. 1992] y, en el citado 

texto sobre Hermann [Mazzone S. y Roero C.S. 1997], una amplia correspondencia 

entre Hermann y otros intelectuales italianos.4  

 

Analizaremos el tratamiento dado a la obra y figura de Hermann en la historiografía, 

tomando como hilo conductor la cronología del personaje. 
                                         
4 Estudia en concreto la relación con: M. Fardella, A. Conti, B. Zendrini, J. Riccati, G. Poleni, S. Checoxxi, 
P. A. Michelotti, D. Guglielmini, V. F. Stancari, G. Manfredi, G. S. Verzaglia, G. Grandi y C. Galiani. 
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La primera intervención de Hermann, con motivo de su graduación pública como 

Master of Arts en 1696, es para defender la teoría de series de  Jacob Bernoulli 

(Disertación titulada: Positionum de seriebus infinitis pars tertia, publicada como 

apéndice en Ars Conjectandi de Jacob Bernoulli en 1713), donde ya incluye el uso 

explícito del cálculo diferencial e integral.  

 

El nacimiento y desarrollo del cálculo diferencial se hace de forma polémica. Desde 

su comienzo, quienes lo reciben perciben que el tratamiento de las cantidades 

infinitamente grandes o pequeñas no está suficientemente claro para eliminar 

inconsistencias, y que, por lo tanto, su uso es, en sentido lógico, peligroso, ya que 

puede conducir a resultados erróneos. La pérdida de la evidencia visual que 

proporcionan los diagramas geométricos provoca inseguridad y hace que algunos 

críticos recomienden confrontar los nuevos métodos con los de la geometría 

ordinaria.  

 

Las primeras críticas5 provienen de Detlef Clüver en un artículo publicado en AE, en 

fecha tan temprana como 1687, y en la correspondencia con Leibniz. El mismo año La 

Hire muestra ejemplos del mal uso del nuevo cálculo en la Academia de París. El 

segundo momento polémico procede del matemático holandés Bernhard Nieuwentijt, 

buen conocedor del cálculo en sus dos versiones newtoniana y leibniziana, que entre 

1694 y 1695 publica dos artículos, Considerationes primae y Analisis Infinitorum, 

contestados por Leibniz en su Responsio y Adendae de 1695.  

 

No satisfecho con estas respuestas, Nieuwentijt publica sus Considerationes 

secundas en 1696, donde reitera algunas de sus principales críticas. Las ocupaciones 

de Leibniz le impiden contestar, y es Hermann, en este caso, quien escribe un artículo 

en 1700 titulado Responsio ad Cl. Nieuwentijt Consideraciones secundas6. Los 

                                         
5  Ver el artículo de Pasini  E.  Segni e algoritmo nell’analisi leibniziana  pp. 347-351, en [Panza M. y Roero 
S. (ed.) 1995].  
6 [Hermann J. 1700] 
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artículos del holandés y la respuesta de Hermann son analizados en el artículo que ha 

publicado Palladino [Palladino 1995], en el que se anuncia la edición crítica, en 

colaboración con R. Gatto, del texto de Hermann junto con el original latino.  

 

La respuesta de Hermann mezcla argumentos usados por Leibniz en su primera 

respuesta con nuevos ejemplos que ilustran el uso correcto del cálculo. Consta de seis 

capítulos; en los cinco primeros  revisa las objeciones de Nieuwentijt, a saber: los 

diferenciales pueden despreciarse si se comparan con las cantidades finitas 

inhomogéneas con ellos, tiene sentido considerar la iteración de la diferencial, es 

necesario introducir una constante al realizar la sumación como inversa de la 

diferenciación (muestra como Nieuwentijt llega a resultados ilógicos por no hacerlo 

así), el infinito admite potencias, y finalmente aplica el cálculo a las escalas 

exponenciales. 

 

La sexta parte tiene un carácter especial ya que intenta establecer una base 

axiomática para el cálculo. Retrospectivamente es evidentemente que esto constituye 

un intento ingenuo en ese momento histórico, tal como se afirma en [Mazzone S. y 

Roero C.S. 1997; pp. 31], pero indica en qué dirección es impulsada la búsqueda de 

fundamentos como consecuencia de una polémica en la que Nieuwentijt pide, 

cartesianamente, claridad lógica. 

 

Según Palladino [Palladino 1995; 414, 423], a finales del siglo XVII se produce un 

desplazamiento en el valor de verdad que afecta a los fundamentos del cálculo. Para 

sus defensores: Leibniz, los hermanos Bernoulli y Hermann en el ámbito germánico, y 

para los franceses L’Hôpital y Varignon, es válido un algoritmo que produce 

resultados correctos, tal como declara Hermann al final de su Responsio, pero para 

Nieuwentijt, los objetos y sus reglas deben responder a la ideación geométrica 

tradicional. Palladino [ibid. pp. 403-408] añade un segundo desplazamiento, esta vez 

ontológico, que habría tenido lugar a lo largo del siglo XVII, producido por la 

irrupción de nuevos objetos: el vacío y los números imaginarios, y de nuevos métodos: 
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la formulación de la cinemática galileana, en la que se introducen conceptos de 

filosofía natural en el formato de la geometría euclidiana. Palladino señala, cómo 

Leibniz compara los números imaginarios, en tanto “ficciones útiles”, con sus 

diferenciales, ambos sin una representación geométrica fiable en ese momento. 

 

Hermann señala, en una carta a G. Grandi de 17097, que no da a su Responsio  gran 

valor ya que, aunque los resultados son válidos, fue escrita cuando todavía no había 

completado su aprendizaje y sin tener experiencia en la escritura de textos 

científicos. Señala, así mismo, errores en las demostraciones. Por otro lado, Leibniz 

declara, en una carta a M. Dangicourt de 17168, que no está contento con las 

expresiones de Hermann en su respuesta ni con la de sus otros amigos en relación con 

las polémicas. Parece evidente que los defensores tampoco están totalmente 

satisfechos con sus propios argumentos.  

 

En 17009, la Academia francesa abre un debate sobre los infinitamente pequeños 

cuyo principal crítico es Rolle, siendo los defensores Varignon y L’Hôpital. Desde 

Inglaterra, Berkeley publica sobre 1707-09 un pequeño artículo crítico, Of 

Infinities, y aún, tras casi 30 años de éxitos del cálculo, escribe en 1734 L’analyste, 

donde critica la base inconsistente de los principios del cálculo, argumentando que 

dan lugar a resultados correctos sólo por compensación de errores. Los esfuerzos 

para fundamentar sobre base sólida el cálculo diferencial, tendrían que esperar al 

uso de la derivada como concepto central y, por tanto, a la formalización del concepto 

de límite en Cauchy10.  

 

Entre 1701-1702, Hermann emprende un viaje en el que entra en contacto con 

personas significativas en la creación científica de Holanda, Inglaterra y Francia. 

Entre 1702 y 1706, Hermann publica trabajos en: AE, Nouvelles de la Republique des  

                                         
7 La traducción inglesa está en la nota 9  p. 31 de [Mazzone S. Roero C. S. 1997] 
8 El fragmento citado está en la nota 20 p. 402 de [Palladino F. 1995] 
9 Sobre el debate en Francia e Inglaterra ver Blay M 1992 pp.  y  Blay M. 1986 
10 Se hizo necesario  establecer el concepto de función y sobre él, el de la derivada.  Sobre la evolución del 
cálculo desde su invención por Leibniz hasta la formalización, ver [Bos 1974-75] 
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Lettres y en Nova Literaria Helvetica11, relativos al cálculo del radio del arco iris y al 

radio del círculo oscilador de curvas. En ellos sigue defiendo el cálculo diferencial, en 

este caso, contra los ataques de miembros de la Academia francesa.  

 

La cátedra de matemáticas de la universidad de Padua había quedado vacante en 

1700 y en años sucesivos se encuentran, impartiendo clases en ella, Ramazzini, 

Fardella y Guglielmini, tres de los amigos que había hecho Leibniz durante su estancia 

en Italia entre 1689-90. André Robinet ha reconstruido en su Iter Italicum [Robinet 

A. 1988] la estancia de Leibniz en Italia. Describe cómo Leibniz, al comprobar que los 

avances matemáticos se habían estancado en las universidades italianas, introduce en 

el nuevo cálculo a los amigos eruditos que hace durante sus viajes. Éstos se dan 

cuenta de la importancia de los nuevos métodos y se convierten en sus defensores, 

pero no se dedican a desarrollarlos. Robinet, en otro de sus textos [Robinet A. 1991 

a], ha estudiado a partir de correspondencia inédita, los movimientos y las 

negociaciones del grupo de Leibniz y de sus amigos italianos para proponer a alguien 

que pudiera difundir el nuevo cálculo en Italia. En 1704, Fardella12 advierte a Leibniz 

de la vacante y éste pide opinión a Johann Bernoulli quien propone a Hermann. Leibniz 

apoya su candidatura señalando en carta a Fardella que, “Hermann de Basel, que ha 

publicado un número de artículos sobre el cálculo diferencial (el sublime nuevo 

método matemático) será quizá la persona adecuada para enseñar matemáticas y 

difundir el nuevo análisis en su región”13.  Finalmente, Hermann llega a Padua para 

hacerse cargo de la cátedra de matemáticas en 1707 y permanece allí, según el 

contrato firmado, hasta 1713, en que, de nuevo por influencia de Leibniz, se traslada 

a Francfort-on-the-Oder para ocupar allí la cátedra vacante de matemáticas. El 

grupo leibniziano conseguirá que el sustituto de Hermann en Padua entre 1716-19 sea 

                                         
11 Ver el catálogo de Nagel F. 1991 y los comentarios sobre la significación de esos trabajos en [Mazzone S. 
Roero C. S. 1997; pp 31-23] 
12 Es interesante señalar, por cuanto pudiera ser motivo de investigación, que M. Fardella se traslada a 
Barcelona entre 1709-12 acompañando a la corte del rey Carlos III. Declara en correspondencia que una de 
sus intenciones es enseñar el nuevo cálculo, aprendido de Hermann, en España. Las referencias están en 
[Mazzone S.y  Roero C.S.  1997; pp.104-109]  
13 Traducción mía de la carta de Leibniz a Fardella 12.7.1704 en [Robinet A. 1991a, p.87] 
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Nicolás I Bernoulli, sobrino de  Johann Bernoulli, continuando así la difusión del nuevo 

cálculo. 

 

La estancia de Hermann en Padua ha sido reconstruida en el primer capítulo de 

[Mazzone S. y Roero C.S. 1997], a partir de correspondencia y de los manuscritos 

supervivientes en las bibliotecas de Venecia y Ginebra de algunas de sus conferencias 

públicas. La citada monografía detalla cómo Hermann decide enseñar el nuevo cálculo 

en sus clases privadas ya que el nivel existente en la universidad hace que sus 

alumnos no estén en condiciones de recibirlas. Así mismo, expone y analiza algunos 

manuscritos de Hermann guardados en Venecia sobre cálculo diferencial e integral. 

Sus enseñanzas públicas, fijadas por la estructura universitaria, son: el primer año 

geometría clásica (Euclides completado con Arquímedes) de la que se conservan la 

lección inaugural, manuscritos de las cuatro conferencias preliminares, y láminas con 

las ilustraciones usadas en las clases; el segundo año enseña mecánica de la que se 

conservan manuscritos de algunas lecciones y de notas del curso; de los tres años 

siguientes, en los que trata de hidráulica, óptica y gnomónica respectivamente, se 

conservan muy pocos documentos, tan solo las lecciones inaugurales y datos extraídos 

de la biografía de Antonio Conti, uno de sus alumnos; en el último año, Hermann vuelve 

a tratar la mecánica tal como indican los rotuli de la universidad de Padua.  Mazzone – 

Roero [op. cit. p. 53] concluyen la exposición de las enseñanzas de Hermann 

afirmando que: “However, we believe that, we may assume that, Hermann had 

introduced the modern methods and the first rudiments of infinitesimal calculus in 

his public lectures too”. Apoyan esta afirmación citando una carta de Hermann a 

Johan BERNOULLI de 1709 en la que explica cómo ha expuesto en sus clases un 

problema relativo a ángulos de contacto para fuerzas centrales, asunto polémico en 

ese momento y que se maneja usando ampliamente el nuevo cálculo.  

 

Las lecciones en Padua son la base para la escritura del principal trabajo de Hermann, 

la Phoronomia [Hermann J. 1716], impresa como tarde en el verano de 1715, ya que 

Leibniz recibe una copia a primeros de septiembre de ese año, tal como se indica en 
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Mazzone – Roero [op. Cit. nota 116.  pp. 69]. Según declara en el prólogo14, Hermann 

comienza a escribir tras decidir enseñar hidráulica durante su segundo curso en 

Padua. El libro está terminado en 1712, ya que en dicho año explica en 

correspondencia cómo está intentando que el libro se imprima primero en Venecia y 

después en Basel [op. Cit. pp. 80-82]. El objetivo inicial era escribir una obra sobre 

mecánica de fluidos pero decide comenzar con la mecánica de cuerpos sólidos para 

hacer, declara en el prólogo citado, más comprensible la obra. Mazzone-Roero, en su 

monografía sobre Hermann, detallan la distribución del libro entre los amigos 

italianos de Hermann, destacando la influencia de la obra en Italia. Así mismo, 

comentan las declaraciones de Hermann en el prólogo y la correspondencia sobre el 

estilo matemático de la obra y la polémica15 surgida tras la publicación. Las 

intenciones de Hermann son meridianamente claras en una carta escrita en 17.8.1709 

a Johann  Scheuchzer:   

 

“Ahora estoy totalmente ocupado con la escritura de la Mecánica de 

fluidos o Hidráulica. En esta obra intentaré demostrar todos los 

resultados de mayor importancia en el contexto de la Filosofía natural o 

de las Matemáticas y otros, descubiertos con un método nuevo y evidente, 

con un método geométrico sin cálculo algebraico, a menos que sea 

completamente necesario para las expresiones analíticas, de modo que sea 

comprendido incluso por aquellos que sólo estudiaron demostraciones 

lineales.”16 

 

En otra carta dirigida a Leibniz en 28.11.170917, declara que el método geométrico 

hará la obra más comprensible para los italianos poco avezados “… en los misterios del 

                                         
14  Ad Benevolum Lectorem [Hermann J. 1716] 
15 [Mazzone S.y  Roero C.S.  1997 pp. 69-75] 
16 Traducción mía a partir del original latino p. 72 de [Mazzone S.y  Roero C.S.  1997] (“Nunc totus 
occupatus sum in conscribenda Mechanic fluidorum seu Hydraulica, in qua opera omnia in hac maximi 
momenti Philosophiae naturalis sive Matheseos partis inventa aliaque perspicua et nova methodo 
demonstrare conabor geometrico more absque algebraicis calculis nisi ubi summa necessitate urgente 
analiticis expressionibus opus erit, ut ab iis etiam intelligi queat, qui tantum in demonstrationibus linearibus 
nonnihil studii posuerunt.”) 
17 Transcrita en la nota 126 p. 72 de [Mazzone S.y  Roero C.S.  1997] 
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análisis diferencial…”. Hermann, en correspondencia analizada por Mazzone – Roero 

[Ibídem p. 74], declara una segunda razón para elegir un estilo geométrico, y es que, 

a veces, se obtienen resultados más elegantes y simples que con el método 

algebraico.  

 

El análisis de la recepción de la obra describe el debate generado por el estilo 

matemático en que ha sido escrita. Leibniz, que en carta a Johann BERNOULLI de 

10.2.1711 se había mostrado comprensivo con el plan de Hermann, declara en la 

reseña de la obra publicada en AE en 1716 y en cartas a Johann BERNOULLI y 

Bourge que ha sido demasiado deferente con los ingleses. Johann Bernoulli y 

Christian Wolf, que son de la misma opinión, añaden que los métodos analíticos, en los 

que reconocen a Hermann experto, habrían abreviado y hecho menos pesado el texto.  

 

El cálculo diferencial es utilizado solamente en los corolarios de los teoremas 

principales, pero sin que el autor exponga los algoritmos en los que se basa. En 

relación al cálculo integral, se da la traducción inglesa de la exposición que hace 

Hermann de su versión del teorema principal del cálculo integral, junto con los tres 

ejemplos en los que muestra cómo hacer uso de él para calcular integrales [op. Cit. pp. 

77-80].  

 

Anteriormente a la citada monografía sobre Hermann de 1997, la Phoronomia, fue 

objeto de atención en un corto artículo publicado por W. E. Knowles Middleton en 

1965 titulado  Hermann and the kinetic theory [Middleton W. E. 1965].  Middleton 

presenta la traducción de las dos últimas páginas de la Phoronomia previas al 

apéndice, que constituyen el capítulo XXIV y último de la obra, titulado De motu 

intestino fluidorum. En él Hermann expone, mediante una definición y un teorema, la 

relación entre el calor y la velocidad cuadrática media de las partículas de un fluido. 

Middleton destaca que este capítulo de la Phoronomia constituye el primer intento de 

tratar matemáticamente la relación entre calor y movimiento interno del fluido. 

Además expresa su extrañeza por la ausencia de referencias a Hermann en los 
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textos que tratan del comienzo de la teoría cinética de gases y que siempre lo 

refieren a la Hydrodynamica de Daniel Bernoulli de 1738 

 

C. Truesdell hace una afirmación similar, cuando en 1968 publica sus Essays in the 

History of Mechanics [Truesdell C. 1968]. En la parte correspondiente al siglo XVIII 

del capítulo titulado “Early kinetic theories of gases ”18, y sin referencias a 

Middleton, Truesdell comienza trazando la historia de la teoría cinética de gases a 

partir del citado capítulo final de la Phoronomia.  

 

Por su interés historiográfico discutiremos este último capítulo del libro de 

Hermann, en el apartado 5.6 de esta monografía.  

 

Mientras está realizando su docencia en Padua y elaborando su mecánica,  Hermann 

publica en italiano entre 1710 y 1713 cinco artículos en Giornale de’ Letterati d’Italia 

(en adelante GLI) sobre las fuerzas centrales, un tema polémico en ese momento 

porque algunos matemáticos consideran que no ha sido resuelto por Newton en los 

Principia. Estos artículos y la polémica entre Hermann y Verzaglia son analizados en 

[Mazzone S. 1996] y en [Mazzone S. y Roero C.S. 1997; pp. 100-101] 

 

A comienzos del siglo XVIII los leibnizianos intentan traducir en términos de cálculo 

diferencial importantes resultados de los Principia. Uno de los problemas importantes 

tratados por Newton es el relativo al estudio de las fuerzas centrales en relación con 

las leyes de Kepler. Los Principia contienen la demostración del problema directo de 

las fuerzas centrales, a saber: si las órbitas son cónicas entonces la ley de fuerzas 

es como la inversa del cuadrado de la distancia, pero, en la primera edición de los 

Principia, Newton da por evidente sin demostración la afirmación inversa19. Johann 

Bernoulli, que había llamado la atención de Varignon sobre el llamado problema 

                                         
18 [TRUESDELL  C. 1968. pp. 272-304] 
19 [Newton I. 1687b. Lib. I, Sect. III. Prop. XIII. Corol. I. p. 467.] Newton añadiría un texto explicativo al 
corolario  en la segunda edición de los Principia de 1713.  
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inverso de las fuerzas centrales, le comunica en 1709 que ha resuelto el problema 

completamente. Su solución se publica en Memoires de la Academia de París en 1710.  

 

Hermann, independientemente de Johann BERNOULLI, da la solución analítica del 

problema inverso, de forma directa y especialmente simple, en el primer artículo del 

Giornale [Hermann J. 1710] 20, sin recurrir, como hace Johann BERNOULLI a radios 

de curvatura. Johann BERNOULLI critica por carta a Hermann en dos aspectos, ha 

integrado la ecuación porque ya sabía de antemano el tipo de solución y ha olvidado 

añadir una constante en la primera integración. Hermann responde dando por carta la 

sustitución empleada en la integración y publica un artículo en GLI [Hermann J. 1711 

b] en el que muestra que una transformación conveniente de coordenadas permite 

tomar como constante de integración cero. En el número anterior de GLI, Hermann 

había publicado otro artículo [Hermann J. 1711 a] en el que resolvía el problema más 

general, propuesto por Johann BERNOULLI en una carta dirigida a él en diciembre 

de 1710. En este caso el cuerpo se movería en un medio resistente y estaría sometido 

a dos fuerzas centrales distintas.  

 

Entretanto, Giuseppe Verzaglia, uno de los tres intelectuales italianos que desde 

Bolonia habían comenzado a estudiar el cálculo leibniziano21 a principios de siglo, 

escribe un escrito crítico con Hermann en 1710 [Verzaglia G.S. 1710], indicando cómo 

la solución del problema inverso se puede hacer usando el teorema XLI de los 

Principia y ciertos procedimientos utilizados por Varignon en un artículo de 1701 

publicado en Mémoires. El objetivo declarado de Verzaglia, tal como se explica en el 

artículo de Silvia Mazzone que analiza la polémica, es mostrar que el problema inverso 

ha sido completamente resuelto por Newton para cualquier fuerza central y que no 

vale la pena dar el caso particular para fuerzas newtonianas, ya obtenida, por otra 

parte, por Johann Bernoulli mediante otro procedimiento. Hermann responde con el 

ya citado segundo artículo publicado en GLI [Hermann J. 1711 a], donde después de 

                                         
20 La solución de Hermann de 1710 es expuesta en  [Aiton 1989] y [Grugnetti  1992] 
21 La biografía de Verzaglia y el análisis de la controversia con Hermann está tratado en el artículo de 
[Mazzone S. 1996] de forma monográfica y en el libro [Mazzone S. y Roero C.S. 1997; pp. 217-240 y pp.  
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dar la solución general, particulariza para fuerzas newtonianas obteniendo cónicas 

como solución.  

 

En [Mazzone S. y Roero C.S. 1997; pp. 100-101], se describen los últimos artículos de 

Hermann en GLI22 y su influencia en la formación analítica de los eruditos italianos. 

Estos artículos están dedicados a refutar las acusaciones de Verzaglia de 

superficialidad y paralogismo. Hermann sigue pensando que Newton no ha mostrado 

cómo a partir de la solución general que supone el teorema XLI, las cónicas son las 

“únicas” soluciones admisibles, y que su contribución ha sido completar el tratamiento 

de Newton.   

 

Silvia Mazzone dice en su artículo, que en la Phoronomia, Hermann retoma y 

reelabora analíticamente la demostración de la proposición XLI de los Principia. 

Concluye, diciendo que las soluciones newtoniana y analítica no sólo se diferencian en 

la simbología empleada ya que “La soluzione newtoniana individua la posizione del 

mobile sulla trajettoria punto per punto, lascindome in ombra le propietà globali e 

qualitativa. …… , e le trattazione di Hermann del problema inverso nel vuoto ne è un 

esempio significativo. (…) Ma el cambiamento di simboli è ricco di conseguenze … ”23. 

Es el cambio de lenguaje el que permite un tratamiento global del problema.  

 

Las soluciones al problema inverso de las fuerzas centrales de Johann Bernoulli, 

Hermann y Varignon se publican juntas en 1710 en Mèmoires de l’Acadèmie de Paris. 

Forman parte, tal como hemos dicho, del proceso nada trivial emprendido por los 

leibnizianos de aplicar el cálculo a los problemas mecánicos, comenzando por los 

contenidos en los Principia. N. Guicciardini analiza en un artículo [Guicciardini N. 

1996] un episodio de este proceso que culminará en los años treinta con Euler: en la 

Phoronomia encontramos la primera demostración usando el cálculo diferencial del 

teorema de las áreas (para toda fuerza central se cumple que la velocidad areolar es 

constante) realizada en estilo geométrico, es decir donde se razona a partir de 
                                         
22 [Hermann J. 1711 c] y [Hermann J. 1711 d]  
23 [Mazzone S. 1996; pp. 168-169] 
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valores como pares de puntos en un gráfico. Trataremos estos resultados de 

Hermann en el marco de la exposición de las leyes mecánicas, en el capítulo 5.2 de 

esta monografía.  La misma demostración, pero esta vez en lenguaje algebraico 

diferencial, es comunicada por carta a J. Keill y se publica en Journal Literaire en 

1717. La demostración es significativa ya que todas las pruebas de la ley inversa de 

las fuerzas centrales se habían basado en ella. El artículo compara las 

demostraciones de Newton y Hermann y destaca que tras los Principia, la ley de las 

àreas Kepleriana demostrada mediante procedimientos intuitivos de límites en las 

proposiciones 1 y 2 del Libro I, no se considera firmemente establecida hasta que se 

hace la prueba analítica. La prueba de Hermann en su forma algebraica se mantiene 

en la Mechanica de Euler de 1736.  

 

Tal como hemos explicado, Hermann acaba la docencia en Padua en 1713 para 

trasladarse, por influencia de Leibniz, a la cátedra de matemáticas de Frankfurt,  

donde enseña hasta 1725. En 1724 Pedro el Grande le llama para fundar la Academia 

Científica de S. Petesburgo. Hermann acepta, viviendo allí entre 1725 y 1731. En 1726 

escribe Oratio de ortu et progressu geometriae, primera publicación en la historia de 

la ciencia en Rusia24. Siempre echó de menos su tierra y desde su salida para Padua 

intentó conseguir un puesto universitario en Basel. Finalmente se traslada a su ciudad 

natal en 1731, dos años antes de morir, para hacerse cargo de la cátedra de ética y 

ley natural conseguida en 1722.  

 

No hay estudios sobre las publicaciones y escritos de Hermann hechos durante su 

estancia en Frankfurt o sobre las que hizo desde S. Pertesburgo. Sólo se cita en las 

biografías como importante, la escritura de los tomos I y III dedicados a 

matemáticas y fortificación, del libro de texto Abrégé des mathèmatiques pour 

l’Usage de sa Majesté Imperiale de toutes les Russies. El tomo II sobre astronomía y 

geografía fue escrito por De L’isle25.  

 
                                         
24 Código del catálogo Nagel Na. 045 [Nagel F. 1991; p.47]  
25 Op. cit. p. 48 
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La importancia de Hermann como miembro destacado del círculo de los Bernoulli, y 

por tanto como defensor-difusor-desarrollador de los métodos que puso en marcha 

Leibniz, se pone de manifiesto en la decisión, por parte los encargados de la edición 

en marcha de la obra de la familia Bernoulli26, de publicar en la segunda etapa del 

proyecto la principal obra de J. Hermann la Phoronomia. En la tercera etapa se 

reunirá la correspondencia.  

 

Podemos decir, a la vista de lo afirmado en este capítulo, que se han estudiado 

aspectos concretos de la obra de Hermann ligados a polémicas como la del problema 

inverso de las fuerzas centrales o la fundamentación del cálculo. En los años sesenta 

se destacó sin mucho éxito su aportación como iniciador de la teoría cinética de 

gases.  También ha sido estudiada su etapa como introductor-difusor del nuevo 

cálculo en Italia. 

 

A comienzos del siglo XVIII Hermann junto con los Bernoulli y Varignon [Blay M. 

1992] están desarrollando una visión analítica de la mecánica newtoniana, pero 

también tratando de establecer los principios básicos de esa ciencia que pretenden 

sea deductiva. Por tanto, pensamos que se hace necesario un estudio  panorámico de 

la principal obra de Hermann, la Phoronomia, objetivo de este trabajo, que nos 

muestre de qué modo Hermann intentó dar una visión integrada de la mecánica del 

momento usando el cálculo diferencial e integral. Desarrollos parciales como los 

citados llevarían no mucho después a las formulaciones plenamente analíticas de Euler 

y Lagrange. 

  

                                         
26 The Bernoulli Edition. Editor general: D. Speiser. Colaboración entre el Forschungsstelle Basel (F. Nagel) 
y Unité de Recherches Louvain (P. Radelet-de Grave). Birkhäuser Verlag AG. Basel-Boston-Berlin..  
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2 ESTRUCTURA GENERAL Y OBJETIVOS DE LA OBRA (“simple, 

directo y elegante”) 

 

La Phoronomia, escrita en latín, consta de 401 páginas más 20 iniciales sin numerar 

que incluyen: el frontispicio de la portada, los datos del autor, la dedicatoria de la 

obra a Leibniz, el prefacio Ad benevolum lectorem, un poema escrito por Nicolaus 

Westerman de homenaje al autor y su obra, como era costumbre en la época, y el 

índice.  
  

La obra está dividida en dos libros: el primero trata sobre los cuerpos sólidos (de 

corporibus solidis)  y el segundo sobre los fluidos (de corporibus fluidis). Antes de 

comenzar el primer libro incluye 5 páginas de “nociones previas” (Praenotanda). Tras 

el último capítulo añade un Apéndice de 23 páginas, y doce páginas adicionales con 

numeración independiente que contienen 160 ilustraciones.  
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Sobre la elección de la palabra Phoronomia no disponemos de comentarios de 

Hermann, aunque, podemos suponer la influencia de Leibniz. Éste había escrito, 

durante su estancia en Italia entre 1689-1690, un proyecto de mecánica titulado 

Phoranomus seu Potentia et Legibus naturae que, según ha estudiado A. Robinet27, 

habría sido el germen del manuscrito Dynamica escrito al final de su estancia en 

Italia. Será esta última palabra inventada por Leibniz, la que prevalecerá hasta hoy 

como “estudio de las causas del movimiento”28. 

 

Leibniz, tal como explica en carta a M. Foucher en 169029,  deja en Florencia en 

manos de su amigo Bodenhusen el manuscrito de la dinámica a la espera de enviarle el 

final para ser editado. Nunca se publicará porque, afirma Leibniz en la carta citada, 

cada vez que intenta acabar el trabajo se le ocurren múltiples modificaciones y no 

tiene tiempo de digerirlas.   

 

La palabra Phoronomia está compuesta de dos raíces de origen griego: phérō (φέρω) 

‘llevar’ y nomoi “leyes”30. Aristóteles en la Physica31 divide el cambio en cuatro 

categorías: según la esencia, según la cantidad, según la calidad y según el lugar 

(kinêsis kata topon). Ésta última es la definición que da Aristóteles de pheromai. Si 

entendemos el cambio de lugar como movimiento, podemos concluir dando como 

significado de Phoronomia: leyes de los movimientos.    

 

Todos los resultados del libro, proposiciones, definiciones, lemas, etc., salvo alguna 

introducción explicativa de algún capítulo y el apéndice, están numerados. Así, la 

Phoronomia consta de 660 resultados. De modo que en esta monografía citaremos 

                                         
27 ROBINET A. 1991 b  
28 D’Alembert en el artículo dynamique de la Encyclopédie declara: “El Sr. Leibniz es el primero que se ha 
servido de este término para designar la parte más trascendente de la mecánica, que trata del movimiento de 
los cuerpos, en tanto que causado por fuerzas motrices actual y continuamente actuantes.” Encyclopedie, 
Vol. V. p. 174.  
29 Traducción de la carta en [LEIBNIZ  G.W. 1991] pp. XI-XII.  
30 Henry George Liddell, Robert Scott, A Greek-English Lexicon. Oxford University Press. 9th Rev edition 
(July 1, 1996).  
31 Aristóteles. Physica (III, 1, 200b26-27) 
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indicando además de la página el número correspondiente (p. ej.  Phoronomia p. 369 

(nº643).  

 

La estructura de los libros es la siguiente: 

 

El primer libro (124 pp.) está dividido en dos secciones: 

 

• Sección primera: (50 pp.) expone la estática de sólidos rígidos y flexibles; 

(sobre las solicitaciones y sus direcciones medias aplicadas de cualquier forma 

en los equilibrios). Está dividida en 3 capítulos: 

 

o Capítulo I: sobre la proporción entre las Solicitaciones de la gravedad, 

o peso de los cuerpos, y sus masas. 

o Capítulo II: sobre las solicitaciones y sus direcciones medias aplicadas 

a cuerpos rígidos o inflexibles. 

o Capítulo III: sobre las formas que los cuerpos flexibles adoptan a 

partir de las potencias aplicadas, y sobre las direcciones medias de 

esas potencias. 

 

• Sección segunda: (74 pp.) expone la dinámica de los cuerpos sólidos y consta 

de 6 capítulos: 

 

o Capítulo I: sobre las solicitaciones generales aplicadas continuamente y 

el movimiento que éstas originan. 

o Capítulo II: sobre el movimiento curvo en el vacío para cualquier 

hipótesis de gravedad variable. 

o Capítulo III: sobre el movimiento de los péndulos; y sobre el 

movimiento isócrono de cuerpos descendiendo en curvas para cualquier 

hipótesis de gravedad variable. 
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o Capítulo IV: sobre las solicitaciones centrales que mantienen 

moviéndose en las órbitas a los cuerpos, y sobre el movimiento de los 

ápsides. 

o Capítulo V: sobre el movimiento de los péndulos compuestos y su centro 

de oscilación en cualquier hipótesis de gravedad. 

o Capítulo VI: sobre las leyes del movimiento en la colisión de los 

cuerpos. 

 

El segundo libro (253 pp.) dedicado a los fluidos está dividido en cinco secciones: 

 

• Sección primera: (88 pp.) expone la estática de los fluidos; (sobre la fuerza de 

los fluidos por la gravedad). Consta de 8 capítulos: 

 

o Capítulo I: sobre las leyes generales de la gravitación de los Líquidos 

sobre su base plana. 

o Capítulo II: sobre la gravitación de líquidos en los laterales de 

recipientes, y sobre la firmeza de tubos requerida para soportar la 

presión de los líquidos. 

o Capítulo III: sobre el equilibrio de cuerpos sólidos sumergidos total o 

parcialmente en fluidos. 

o Capítulo IV: sobre las figuras que deben adquirir los cuerpos flexibles 

bajo algún fluido.  

o Capítulo V: sobre la presión del aire a causa de la gravedad. 

o Capítulo VI: sobre la fuerza elástica del aire. 

o Capítulo VII: sobre la fuerza elástica del aire comparada con su 

densidad. 

o Capítulo VIII: sobre la densidad del aire en diversos puntos de la 

atmósfera in todas las posibles hipótesis de elasticidad.  
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• Sección segunda: (22 pp.) trata del movimiento del agua y consta de 2 

capítulos: 

 

o Capítulo IX: sobre el movimiento de los fluidos que salen por pequeños 

orificios. 

o Capítulo X: sobre el curso de los ríos. 

 

•  Sección tercera: (42 pp.) estudia los efectos de la percusión de los fluidos y 

consta de 3 capítulos 

 

o Capítulo XI: sobre los efectos percusivos de los fluidos 

o Capítulo XII: sobre las resistencias de las formas en fluidos en 

movimiento. 

o Capítulo XIII: sobre las formas que deben adoptar las superficies 

flexibles expuestos directamente al viento, o sobre la curva Velaria. 

 

• Sección cuarta: (84 pp.) trata del movimiento de cuerpos en medios 

resistentes y consta de 8 capítulos: 

 

o Capítulo XIV: teoría general del movimiento de cuerpos en medios 

resistentes. 

o Capítulo XV: sobre el movimiento de cuerpos que resisten al aire en 

razón de la velocidad del móvil. 

o Capítulo XVI: sobre el movimiento de cuerpos que resisten al aire en 

razón duplicada de la velocidad del móvil 

o Capítulo XVII: sobre el movimiento de cuerpos que resisten al aire en 

parte en razón de la velocidad del móvil y en parte en razón duplicada 

de la misma velocidad. 
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o Capítulo XVIII: encontrar métodos para el movimiento de los cuerpos 

en cualquier medio resistente, y con la densidad variable de cualquier 

forma. 

o Capítulo XIX: sobre el descenso y ascenso de graves por cualquier línea 

curva, dada una resistencia del medio proporcional al cuadrado de la 

velocidad. 

o Capítulo XX: sobre el movimiento de los proyectiles en el aire, en que el 

proyectil resiste en razón duplicada de la velocidad, cuando el cuerpo 

es empujado por la solicitación de la gravedad no hacia algún centro 

dado con una posición, como hasta ahora solían considerar, dirigido, 

sino según la dirección de cualquier línea en posición dada 

o Capítulo XXI: sobre el movimiento de los navíos impulsados por el 

viento. 

 

• Sección quinta: (17 pp.) contiene una miscelánea en 3 capítulos: 

 

o Capítulo XXII: sobre el movimiento circular de fluidos. 

o Capítulo XXIII: sobre la agitación del aire al producir sonido. 

o Capítulo XXIV: sobre el movimiento interno de los fluidos. 

 

Hermann hace una descripción de la obra y de sus intenciones en el prólogo Ad 

benevolum lectorem. Comienza explicando que el origen del proyecto fue su 

compromiso cuatro años antes de explicar la Hidrostática a los alumnos de la 

Universidad (“Liceo”) de Padua. La atención que  Herman dedica a la ciencia de la 

hidráulica tiene que ver con el interés que la República Veneciana había mostrado por 

el estudio y control de las aguas. Presentarse como conocedor de la mecánica de las 

aguas fue siempre importante para ocupar la cátedra de matemáticas de Padua, para 

el propio Hermann, para sus antecesores (G. Montanari y D. Guglielmini), y para su 

sustituto, Nicolaus I Bernoulli32.  

                                         
32 Ver correspondencia al respecto en [MAZZONE S. y ROERO C.S.  1997] pp. 70-71 
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Demuestra conocer el desarrollo de la mecánica de los fluidos a través de la sucinta 

historia que traza de la hidráulica. Comenzando con Arquímedes pasa a Galileo con el 

que de nuevo se producen especulaciones de interés. Cita como autores de los 

sucesivos avances a Torricelli, posteriormente llevados a Francia y mejorados por 

Pascal, sucesivamente llevados a Inglaterra y ampliados por Boyle. Cita como autores 

de estudios a Borelli y Mariotte, y los trabajos sobre el movimiento de las aguas de 

Guglielmini33. Finalmente, alaba los resultados más modernos: de Newton sobre el 

movimiento de cuerpos en medios resistentes; de Varignon mejorando los de Newton 

y produciendo estudios como el de las clepsidras; y de los hermanos Bernoulli con sus 

estudios de las formas que adoptan superficies flexibles por la acción de fluidos 

como el agua o el aire.  

 

A continuación, Hermann explicita de forma elocuente el objetivo principal y la 

filosofía desde la que ha escrito el libro: 

 

“Pero, como estos extraordinarios hallazgos se hallan dispersos en varios Diarios y otros libros y a veces 

sacados de diferentes principios, he pensado que lo agradecerán aquellos que se deleitan con estos 

asuntos, si expongo todo a la luz pública reunido en uno según un orden de principios, deducido y 

desarrollado desde muy pocos y simples elementos. Pero habiendo entrado apenas en este campo, me he 

dado cuenta enseguida de que este propósito no lo cumpliré con éxito, me elevo a una mayor altura, y 

tomo muchas cosas de la Mecánica de cuerpos sólidos, a fin de que los principiantes puedan ir leyendo el 

opúsculo sin llegar a molestarse, ni sea necesario para su comprensión buscar ayudas en otra parte. Pero 

como en estos asuntos subsidiarios que hay que explicar, la materia ha crecido tanto que no es fácil 

decidir qué parte del opúsculo debe incluirse, aparece finalmente el presente tratado, cuyo título 

general es Phoronomia, o Sobre las fuerzas y movimientos de los cuerpos sólidos y fluidos, dividido en 

dos libros, tratando el primero sobre fuerzas y movimientos de cuerpos sólidos, y sobre fluidos el 

otro.”34 

                                         
33 Autor de trabajos sobre hidráulica. Amigo de Leibniz y contacto importante en Italia para conseguir que 
Hermann ocupe la cátedra. Para una rápida biografía y resumen de los intereses de Guglielmini ver Ibid.  Pp. 
183-188  
34  “Sed, quia eximia haec inventa in variis Diariis aliisque libris dispersa et ex diversis saepe principiis 
elicita sunt, gratum est me iis factorum, qui hisce rebus delectantur, existimavi, si omnia juxta genuinum 
ordinem in unum collecta, ex paucis iisque simplicibus principiis deducta et aucta publicae luci siterem. 
Verum hunc vix ingressus campum illico perspexi, propositum istud me nunquam feliciter ad exitum 
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Hermann emprende la tarea de sistematizar la mecánica de fluidos basándola en la de 

los sólidos a partir de principios simples, reuniendo los resultados dispersos y a 

menudo demostrados con métodos heterogéneos. Pretende hacer un libro de 

mecánica autosuficiente y completo. Para apreciar el valor de este proyecto, tenemos 

que señalar que desde los Principia de Newton no se había editado ningún libro 

importante de mecánica; la Phoronomia es el primero, que pretende además, seguir un 

método deductivo en el que a partir de principios generales se obtengan, entre otros, 

los resultados ya conocidos. 

 

Seguidamente, da una rápida visión de los temas que tratará, destacando los 

siguientes resultados del primer libro: 

 

• A partir de dos teoremas generales, “potentes” y “elegantes” obtiene como 

corolarios las diferentes curvas estáticas: catenaria, velaria y lintearia.  

• Estudia los movimientos provocados por la gravedad, incluido el de la isocronía 

de péndulos, y los generados por colisión; todo de forma suficientemente 

general para poder encontrar las curvas a partir de las fuerzas.  

• Anuncia una nueva teoría de los centros de oscilación usando un principio 

simplificador que puede resolver distintas situaciones, y reduciendo el péndulo 

compuesto al simple equivalente. 

• Declara que va ha presentar nuevas reglas del movimiento en la percusión de 

los cuerpos elásticos a partir de un principio sobre centros de gravedad.  

 

Enumera, a continuación, los temas tratados en el segundo libro, insistiendo siempre 

en que, “para abreviar”, ha tratado de establecer teoremas generales a partir de los 

                                                                                                                           
deducturum, nisi omnia altius repeterem, pluraque ex Mechanica corporum solidorum mutuarer, ad id ut 
tyrones opusculum citra ossensionem percurrere possent, nec ad ejus intelligentiam auxilia aliunde 
conquirere necessum haberent. Cum vero in rebus hisce subsidiariis explicandis materia in tantum 
excreverit, ut non contemnendam opusculi partem constitueret, natus demum est praesens tractatus, quem 
generaliori titulo Phoronomia,  De Viribus et Motibus Corporum solidorum et fluidorum, insigniendum et in 
duos libros dividendum duxi, quorum prior vires et motus corporum solidorum, fluidorum vero alter, 
evolverer.”     HERMANN  J. 1716  pp. 3 y 4 del prólogo: “Ad benevolum lectorem” 
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que deducir de forma “simple” en los corolarios los casos particulares. En este 

sentido, resalta que ha establecido primero las leyes de los fluidos heterogéneos 

para deducir como caso particular las de los homogéneos. 

 

Comenta que, de nuevo en este segundo libro, deduce la forma de las curvas 

catenaria, velaria, lintearia, etc., en esta ocasión, a partir de una propiedad general 

de los centros de gravedad. Afirma haber pensado que era el primero en llegar a 

estos resultados pero que, antes de que su libro apareciera, los ha encontrado en el 

de Johann Bernoulli: Essay d’une Theorie de la Manoeuvre des Vaisseaux35 que, por 

otro lado, afirma Hermann, había visto su manuscrito antes de ser editado.    

 

A continuación alaba la “simplicidad” y la “elegancia” como principios que ha tratado 

de seguir en su exposición. Se dirige, afirma, a los “Geómetras” avezados y también a 

los “Principiantes”. Hermann da a su obra una clara orientación didáctica, motivada 

por su interés en extender los nuevos métodos en Italia. La Phoronomia está 

salpicada de alusiones a los “Tyrones” o Novatos en aquellos puntos en que, estos, 

debido a su inexperiencia, pueden cometer errores conceptuales. Por ejemplo, en un 

texto en el que previene contra una mala interpretación de un término recién 

definido: 

 

“Por otra parte debe enseñarse a los novatos, que las potencias o solicitaciones, que se llaman 

equipolentes, no deben suponerse por consiguiente como iguales; en efecto tener la misma potencia 

[aequipolere] y ser iguales no son en Mecánica frases sinónimas.”36 

 

Declara que ha “preferido” las demostraciones lineales, es decir geométricas, a las 

algebraicas ya que: 

 

                                         
35 Único libro publicado por Johann Bernoulli. Essay d'une nouvelle Theorie de la Manoeuvre des 
Vaisseaux, avec quelques Lettres sur le même Sujet, Basle 1714, pp.1-144 (UB Basel Ko VI 11) - Opera II, 
pp.1-96.  
36 “Caeterum monendus est tyro, quod potentia vel solicitatio, quae reliquis aequipolere dicitur, ipsis ideo 
aequalis censenda non sit; etenim aequipolere et aequale esse in Mechanicis non sunt phrases synonimae.” 
[Phoronomia. p. 10 (nº36)].  
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“... la experiencia me ha enseñado que la contemplación de las figuras proporciona abundantemente 

soluciones y construcciones sumamente más simples y más elegantes que el Análisis especioso. Y digo 

especioso, para diferenciarlo del análisis geométrico o lineal que opera sin los símbolos algebraicos, del 

que se obtienen muchas cosas de forma más elegante que con los cálculos analíticos, aunque no 

siempre.”37 

 

Declara su gran aprecio por los métodos usados por Euclides, Apolonio, y por los 

utilizados por Newton en sus Principia, pero afirma que usará el método algebraico en 

la aplicación de los teoremas generales a casos particulares por considerar que es 

éste el lugar más idóneo.  

 

Hermann destaca además de la simplicidad y la elegancia, el valor visual, la 

“contemplación” de las figuras, para preferir el método geométrico al algebraico, 

obtenidas de su propia experiencia. 

 

Finalmente, explica el artefacto geométrico que usará para representar las 

proporciones entre fuerzas, tiempos, velocidades, etc. Serán unas curvas que llama 

Escalas cuyo uso retrotrae hasta Cavalieri y Viviani. Estas escalas, dice, imitan a los 

arquitectos que representan modelos en los que las líneas son proporcionales a las 

obras imaginadas. Destaca de nuevo su valor “visual” en las demostraciones y su 

“adecuación a los fenómenos” . A lo largo de la monografía dibujamos muchos 

ejemplos de escalas usasdas por Hermann. Ver por ejemplo la fig. 18 p. 73. 

 

Las escalas son para Hermann curvas que representan “geométricamente” la 

correspondencia entre dos cantidades variables sin distinción. Tal como iremos 

mostrando, las utiliza en las demostraciones, combinándolas entre sí para obtener 

relaciones entre distintas variables o ecuaciones diferenciales.  

 

                                         
37 “..., experientia multiplici edoctum, meditationem figurarum simplissime simpliciores et elegantiores 
suppeditare solutiones ac consructiones, quam Analysim speciosam. Speciosam dico, nam subinde utor 
analysi geometrica, seu lineari absque symbolis algebraicis procendente, cujus beneficio multa elegantius 
obtinentur quam calculis analyticis, etsi non semper.” Phoronomia.  Praefatio p. 7. 
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Como primera obra de mecánica general tras los Principia, parece natural comparar la 

estructura de la Phoronomia con esta obra de Newton, que sigue siendo la referencia 

principal a partir de la que los matemáticos de la época desarrollan su trabajo. Como 

es bien conocido, los Principia comienzan con ocho definiciones en las que Newton 

delimita los conceptos que considera básicos: cantidad de materia, cantidad de 

movimiento, vis insita (asimilable a nuestra fuerza de inercia), la fuerza centrípeta y 

sus cantidades absoluta, aceleratriz, y motriz. Podemos ver en la obra de Newton el 

modelo que sigue Hermann, por cuanto da al comienzo las definiciones que de forma 

general usará en el transcurso de su obra. 

 

Newton prosigue dando las tres famosas leyes del movimiento, sin embargo, la 

Phoronomia no establece leyes generales al comienzo, sino que las tratará en el 

contexto de cada una de las ramas en la que divide la mecánica en su obra. A lo largo 

del trabajo mostraremos de qué modo Hermann elabora lo que considera las leyes de 

la estática y las del movimiento. 

 

Los Principia constan de tres libros, los dos primeros puramente matemáticos sin 

referencia a los fenómenos físicos. En el primero estudia las fuerzas centrales y en 

el segundo el movimiento en medios resistentes. El tercer libro aplica los resultados 

anteriores al sistema del mundo. Newton desarrolla considerablemente el estudio del 

movimiento y salvo alguna proposición sobre el peso de fluidos no trata problemas 

estáticos. 

 

Entre 1687 y 1716 se van acumulando resultados y métodos diversos, de forma que 

Hermann organiza su libro con las dos ramas de la mecánica en proceso de 

construcción en ese momento: la de los sólidos y la de los fluidos. Ambas tratadas en 

sus dos aspectos estático y móvil. Da, pues, su visión global y sistemática de la 

mecánica del momento, lo que constituye ya un mérito de su obra. 
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Para Hermann lo “simple” y “elegante” tal como repite en múltiples lugares, equivale a 

demostrar teoremas de alcance muy general para después, en los corolarios, 

particularizarlos en casos que se relacionan con problemas prácticos concretos.  

 

Hasta aquí hemos presentado lo que el propio Hermann destaca de su obra, las 

justificaciones que da de los métodos elegidos, lo que considera que son sus 

aportaciones, sus objetivos y la organización de sus contenidos. En los siguientes 

capítulos ilustraremos cómo desarrolla estos aspectos, tratando sus dimensiones 

metodológicas y conceptuales en relación con otros autores de su época. La discusión 

en torno al uso del cálculo infinitesimal y al estilo será tratada en el apartado 6 de 

esta monografía.   

 

3 LOS CONCEPTOS BÁSICOS DE LA PHORONOMIA 

 

Como la intención de Hermann es hacer un manual de mecánica, la Phoronomia 

comienza definiendo los términos que se consideran de uso generalizad en la obra. 

Así, empieza con una serie de 25 nociones previas que titula De viribus et motibus 

corporum praenotanda, en las que se definen los conceptos básicos que se usarán 

profusamente en la obra: espacio y tiempo, velocidad, fuerza, masa, cuerpo sólido y 

fluido. Aparte, a lo largo de la obra, introducirá nuevos conceptos cada vez que los 

necesite para los distintos apartados de la mecánica.   

 

Ya en sus definiciones previas veremos la particular mezcla que hace Hermann de las 

concepciones mecánicas más influyentes en su época, las de Newton y Leibniz. 

Asimismo, veremos cómo su definición original de masa inaugura una tradición 

consistente con la “filosofía mecánica” que se acerca a los actuales intentos por 

definir el kilogramo patrón a partir de elementos atómicos repetidos, y cómo su vacío 

se define a partir de negar cualquier influencia mecánica del mismo.  
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3.1 MOVIMIENTO, ESPACIO Y TIEMPO 

 

Define, como primer concepto, Movimiento absoluto (Motus), que es el cambio de 

contigüidad con respecto al Espacio absoluto infinito e inmóvil, “... spatii infiniti et

immobilis...”, siendo éste último objeto de la segunda definición.  

 

                                        

 

En la definición tres señala como evidente que los cambios de contigüidad tienen que 

realizarse en la progresión del Tiempo, que es definido en la definición cuatro como: 

“flujo regular” de un indivisible llamado Momento o instante (Momentum o instans). 

Análogamente a como, dice Hermann, los Geómetras generan un línea por el 

movimiento del punto, pero con la diferencia de que en el tiempo el movimiento de los 

instantes es siempre regular. 

 

“Porque, el cambio de contigüidad no puede hacerse sin la progresión del tiempo, implica en efecto que 

las diversas partes de uno y el mismo cuerpo son contiguas al mismo tiempo, esto es, existen en diversos 

lugares; por esta razón todo movimiento implica el tiempo”38 

 

En el punto cinco explica que la “medida sensible” del tiempo en astronomía sólo da el 

tiempo “aparente” o “medio” ya que no hay regularidad en el movimiento de los astros. 

Habla de los relojes precisos desarrollados a partir de las teorías de Huygens, pero 

que tampoco pueden considerarse medida perfecta del tiempo a causa de las 

imperfecciones técnicas implicadas ineludiblemente en su construcción.    

 

Las definiciones de Hermann de movimiento, espacio y tiempo absoluto coinciden con 

las que Newton incluye en el escolio general que acompaña las definiciones iniciales de 

los Principia. Ambos conciben el espacio absoluto como el receptáculo absoluto e 

independiente de las cosas. El tiempo para Hermann está ligado al movimiento pero 

 
i38 “Quia, contiguitatis mutat o non nisi tractu temporis fieri potest, implicat enim ut unum idemque corpus simul et 

eodem tempore diversis spatii partibus contiguum sit, id est, in diversis locis existat; ideo omnis motus tempus 
involvit“  Phoronomia  p.1 
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fluye regular e independientemente de los objetos que se mueven. Newton define el 

tiempo absoluto sin asociarlo al movimiento. 

 

El escolio general de los Principia distingue el espacio y tiempo absoluto del relativo. 

Este último es para Newton la medida sensible del absoluto. Hermann considera 

suficiente definir las ideas absolutas, indicando, tal como hace Newton, la dificultad 

de medir el tiempo absoluto por la irregularidad de los movimientos planetarios y por 

la imperfección constructiva de los péndulos isócronos que había desarrollado 

Huygens. 

3.2 VELOCIDAD 

 

En el punto seis la Phoronomia define Celeridad o Velocidad39 (Celeritas vel 

Velocitas), para un movimiento uniforme (uniformi), como el cociente entre la longitud 

regularmente recorrida por el cuerpo y el tiempo que fluye siempre de forma regular.  

 

Ni Galileo en su Discorsi de 1638 fundador de la “nueva ciencia del movimiento”, ni 

Newton en los Principia dan una definición explícita de velocidad. Galileo establece en 

los axiomas iniciales de la Tercera Jornada40, las proporciones simples entre espacio, 

velocidad y tiempo para un movimiento uniforme. Ambos autores se basan en el uso 

geométrico de velocidad como segmento de longitud variable en la demostración de 

sus teoremas. Hermann no lo asocia a elementos geométricos en su definición. 

 

Hermann, por un lado, da la definición explícita de velocidad como cociente en un 

movimiento uniforme, que funciona como concepto general básico en su obra. Por otro 

lado, Hermann no hace mención de la inhomogeneidad de las magnitudes divididas, 

problema que impedía en ocasiones avanzar hacia la conceptualización en mecánica.  

                                         
39 “ Si fluens nostrum punctum, aut etiam corpus quodvis, uniformi passu incedit, perinde ac momentum 
temporis uniformiter fluere intelligitur, tunc motus puncti vel corporis aequabilis vocatur. Et iter seu 
longitudo, quae etiam spatium vocari solet motu corporis descriptum, ad tractum temporis à fluente 
momento interea confectum, hoc est, ad tempus lationis applicatum seu divisum Celeritas vel Velocitas, 
appellatur. “ Phoronomia. Praenotanda  p. 3 
40 GALILEO G. 1988. pp. 34-35 
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A partir de la obra de M. Blay La naissance de la mecanique analitique41, sabemos que 

Varignon había definido la velocidad en un instante como cociente, en una sesión leída 

en l’Académie el 5 de julio de 1698, y que en otra memoria de 1707 escribe que no 

son propiamente las magnitudes heterogéneas espacio y tiempo las que se comparan 

en la definición de velocidad, sino las magnitudes homogéneas que las representan. No 

sabemos si Hermann conoce estas memorias de Varignon previas a su trabajo. 

Podemos suponer que no, ya que Hermann, tal como iremos viendo, da referencias 

continuas en su obra a autores relacionados con las materias o problemas que trata. 

Por otro lado, tal como veremos en el apartado 5.1. (Las leyes generales del 

movimiento y sus aplicaciones)  de esta monografía, Hermann no define 

“explícitamente” al “velocidad en un instante” como cociente dx:dt, aunque usa esta 

relación en sus otras variantes, es decir, cuando calcula el tiempo  dt=vdx, o la 

distancia recorrida dx = v:dt. Funciona en Hermann, tal como veremos en la dinámica, 

como una extensión natural de su definición para movimiento uniforme, en este caso 

para un fragmento infinitesimal de espacio y de tiempo en el que cabe considerar que 

el movimiento es uniforme. Así es también en Newton, pero a diferencia de éste, 

Hermann hace uso explícito de los símbolos algebraicos diferenciales de Leibniz. 

 

En el análisis de la dinámica contenida en la Phoronomia, trataremos la 

conceptualización de las magnitudes instantáneas (velocidad, fuerza), y las 

compararemos con las elaboradas por Varignon y estudiadas por M. Blay en el citado 

texto.  

3.3 SOLICITACIONES Y FUERZAS 

 

A finales del siglo XVII Newton y Leibniz elaboran simultáneamente dos modelos 

conceptuales de fuerza. Expondremos un resumen de cada uno de ellos para después 

compararlos con el propuesto en la Phoronomia.  

                                         
41 BLAY M.  1992. pp. 152-159 
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El modelo de Newton está incluido en las definiciones y en las tres leyes que las 

acompañan al comienzo de los Principia.  Newton, tras la definición de cantidad de 

movimiento (mv), define las siguientes fuerzas: Vis insita (def. III) o Vis inertiae 

como el poder de resistencia de los cuerpos que les hace perseverar en su estado de 

reposo o movimiento. Se manifiesta cuando otra fuerza trata de alterar su estado, y 

es proporcional a su masa. Vis impresa (def. IV): la acción ejercida sobre un cuerpo 

para alterar su estado, y puede ser por impacto, presión o centrípeta. Vis centrípeta 

(def. V): fuerzas dirigidas hacia un centro que apartan de la línea recta a los cuerpos 

en movimiento. Esta última puede ser medida según tres cantidades: la “absoluta” que 

depende de la eficacia de la fuerza en su propagación (en el caso del peso depende de 

la masa del cuerpo, pero en el caso de un imán puede depender de la forma y 

tamaño)42, la “acelerativa” proporcional a la velocidad generada en un tiempo dado 

(equivalente a la aceleración), y la “motriz” proporcional al movimiento (equivalente a 

la cantidad de movimiento) generado en un tiempo dado (esta fuerza anticipa la 

segunda ley). En la segunda ley declara que el cambio de movimiento es proporcional a 

la fuerza motriz impresa.  

 

Vemos que Newton define dos tipos fundamentales de fuerza, la interna o inercial del 

cuerpo, y la impresa o externa, que puede ser de cualquier tipo: impacto (choques), 

presión (continuamente aplicada) o centrípeta (dirigida hacia un punto).  

 

Sin embargo, como se ha hecho notar en varios estudios43, Newton define la fuerza 

impresa de dos formas: en la definición la fuerza motriz se mide por el cambio de 

movimiento en un tiempo dado [en notación actual (ma)], y en la segunda ley como 

cambio de movimiento [en notación actual (∆mv)]. La explicación de los estudios 

citados es que la segunda ley se refiere a fuerzas de impacto que ocurren en tiempos 

muy pequeños. De hecho, Newton trabaja con la segunda ley considerando la fuerza 

en intervalos de tiempo iguales.  
                                         
42 Ver p. 102 y 104 de la introducción de I.B. Cohen a su edición de los Principia [NEWTON  I.  1687 b] 
43 HANKINS T. L. 1990. pp. 180-183. y    WESTFALL R.S.  1971. pp. 436-438 y 432 
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Podemos esquematizar el modelo de Newton del siguiente modo: 

F. impacto  F. ínsita (inercial) 
(Interna) 

 

Veamos ahora el modelo leibniziano. Leibniz en su crítica de las concepciones de 

Descartes (Brevis erroris memorabilis Cartesii. 1686), distingue entre “fuerza 

Motriz” y “cantidad de movimiento”, declarando que la primera no puede medirse por 

la segunda. Para Leibniz la cantidad conservada en la naturaleza no es la cartesiana 

cantidad de movimiento (mv) sino la vis viva (mv2). La posterior discusión da lugar a la 

conocida “controversia de las fuerzas vivas” que recorrerá el siglo XVIII, hasta que 

aparezca la distinción entre fuerza y energía, conceptos que permanecían mezclados 

en la controversia44.    

 

Podemos tomar su Specimen Dynamicum45 publicado en Acta Eruditorum en 1695 

como la expresión madura de su ciencia dinámica. En ella Leibniz rechaza por 

incompleta la concepción cartesiana de la naturaleza como extensión y movimiento. 

Piensa que debe haber algo más allá del tamaño y la velocidad que le dé al cuerpo 

capacidad para actuar. Propone el concepto de fuerza como principio que caracteriza 

la sustancia de las cosas. Leibniz elabora sus conceptos dinámicos en relación con la 

teoría de la sustancia de su sistema metafísico (escribe su Discourse on Metaphysics 

en 1686), considerando que la extensión no puede ser esencia de nada.  

 

En la obra citada (Ibid. pp. 58-65) expone las distinciones que conviene hacer sobre 

el concepto de fuerza. Distingue entre fuerza primitiva y derivada; la primera 

caracteriza a la sustancia o esencia de los cuerpos, mientras que la segunda sería su 

manifestación fenoménica. Ambas fuerzas primitiva y derivada pueden ser a su vez 

                                         
44 Discutiremos la posición de Hermann en esta controversia en el apartado 5.3 de este trabajo 
45 Traducción castellana en LEIBNIZ  G.W.  1991. pp. 55-99.  

F. impresa   (puede ser) 
(Externa) 

Fuerza F. presión 

F. centrípeta  
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activas o pasivas, según den cuenta de los cambios de movimiento o de la inercia e 

impenetrabilidad de los cuerpos.  

 

Por último Leibniz divide la fuerza derivada activa en: viva (vis viva) “... es la fuerza 

ordinaria, asociada al movimiento actual.” (Ibid. p. 64) y muerta (vis mortua) “... una 

elemental,....., puesto que en ella aún no existe el movimiento sino tan sólo la 

instigación al mismo.” (Ibid. p. 63). Traslada a la dinámica la idea de diferencial de su 

nueva matemática y considera la fuerza muerta o solicitación como un elemento de 

fuerza. Al igual que sus diferenciales, no considera, en este texto, a las solicitaciones 

como realmente existentes sino como artificios matemáticos46. Sin embargo las 

fuerzas tienen para él una realidad substancial. A continuación ofrece como ejemplos 

de fuerzas vivas la centrifuga y la centrípeta o gravitatoria.  

 

 Podemos esquematizar las fuerzas en Leibniz del modo siguiente: 

Fuerza viva 
F. primitiva activa 

 

La terminología, clasificación y definiciones que hace Hermann de las fuerzas, están 

claramente relacionadas con las correspondientes elaboradas por Leibniz, pero con 

matices importantes.  

Hermann define Fuerza motriz (Vis motrix), en el punto siete de las Praenotanda:  

“Esto, que lleva al cuerpo al movimiento, o sea de lo que resulta el movimiento del cuerpo, esto es, 

dispuesto lo cual se pone en movimiento el cuerpo, se llama Fuerza motriz, que puede dividirse en Viva y 

Muerta”. 47 

                                         
46 “De aquí se deduce que es doble el esfuerzo, a saber, elemental o infinitamente pequeño, al que llamo 
solicitación, y el formado por la continuación o repetición de los esfuerzos elementales, esto es, el propio 
ímpetu, aunque no quiera por ello que estos Entes Matemáticos se encuentren exactamente así en la 
naturaleza, sino que sirven tan sólo para hacer cuidadosas evaluaciones por abstracción del pensamiento.” 
(Ibid. p. 63) 
47  “Id, quod corpus ad motum concitat, seu ex quo motus corporis resultat, id est quo posito ponitur motus 
corporis, vocatur Vis motrix, quae dividi potest, in Vivam et Mortuam. “ 

(Forma sustancial) 

F. primitiva pasiva 
(Substrato) 

Fuerza Muerta = 
Solicitación 

F. derivada 
activa 

Fuerza 

F. derivada pasiva (inercia e 
impenetrabilidad) 
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Notemos que la fuerza motriz no es la causa que hace “variar” el movimiento de los 

cuerpos, sino sólo la causa que “inicia” su movimiento. 

 

En las definiciones ocho y nueve define fuerza viva y muerta.  

 

“La Vis viva es la que está asociada con el movimiento activo. Así se dice que un cuerpo, que en un tiempo 

dado avanza una distancia dada, está dotado de fuerza viva”48 

 

Notemos que la fuerza viva, se asocia al movimiento pero no a su variación. Para 

Hermann cualquier cuerpo en movimiento tiene Vis viva. Este punto de vista 

correspondería a nuestra “energía cinética”. 

 

“La Vis Mortua sin embargo es, de la que ningún movimiento activo resulta, a no ser que estuviera 

continuada o repetida durante algún tiempo en le cuerpo. Tal fuerza sería solamente el impulso único de 

la gravedad no recibiendo ningún otro, y en efecto, el cuerpo sólo se pone en movimiento, después de 

infinitos golpes de la gravedad indefinidamente repetidos o continuamente sucedidos unos a otros. Así 

también el esfuerzo centrífugo originado en el movimiento circular, del mismo modo que el impulso de la 

gravedad, proporciona un ejemplo de fuerza muerta.”49 

 

Concibe la fuerza muerta (Vis Mortua) como un impulso mínimo y único que aún no 

provoca movimiento. El movimiento (o vis viva) surge de la repetición continua de la 

fuerza muerta. Ejemplos de fuerza muerta serían la gravitatoria y la centrífuga.  

 

En la definición diez declara que para simplificar llamará a la Fuerza Viva 

simplemente Fuerza (Vi), y a la muerta en general Solicitación (Solicitationem). Llama 

                                                                                                                           
 HERMANN  J. 1716 Praenotanda p. 3 (Def. 7) 
48 “Vis viva est, quae cum motu actuali conjuncta est. Sic corpus, quod dato tempore datam lineam 
transmittit, vi viva praeditum est.” (Ibid. Def. 8) 
49 “Vis mortua verò est, ex qua nullus motus actualis resultat, nisi aliquamdiu in corpore continuata vel 
replicata fuerit. Talis vis foret unicus tantum gravitatis impulsus nullis aliis ei cuccedentibus, etenim non, 
nisi post infinitos demum gravitatis ictus indefinenter replicatos seu unos aliis  continue succedentes, motus 
sensibilis gravi acquiritur. Sic etiam conatus centrifugi ex circulari motu oriundi, perinde ac gravitatis 
impulsus, sistunt exemplum vis mortuae. ” (Ibid. Def. 9) 
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a todas las fuerzas motrices Fuerzas Activas de los cuerpos, en contraposición con 

las fuerzas Pasivas (Vis passiva) que definirá en el siguiente punto.  

 

Define la Fuerza Pasiva como una resistencia de los cuerpos a cualquier fuerza 

externa que intente cambiar su estado de movimiento o de reposo. (“... sed consistit 

in Renixu illo, quo cuilibet vim externae mutationem status, id est motus vel quietis, 

corporibus inducere conanti reluctatur.”). Llama a la fuerza pasiva Fuerza de inercia 

(Vis inertiae), declarando que esta denominación procede de Kepler. Esta fuerza 

equivale a la vis insita que hemos visto define Newton50.  

 

Destaquemos que en esta definición, Hermann asigna a la fuerza externa la capacidad 

de cambiar el estatus de reposo o movimiento, mientras que en la definición general 

sólo tenían capacidad para modificar el reposo. Es claro, tal como veremos en el 

desarrollo de la dinámica de la Phoronomia, que Hermann confiere a las fuerzas la 

capacidad de cambiar el movimiento además del reposo, aunque su definición al 

comienzo de la obra mantiene una ambigüedad deudora de las concepciones 

leibnizianas.  

 

Prosigue explicando que la fuerza de inercia está en los cuerpos quietos y lo 

argumenta a partir del impacto de un cuerpo móvil A sobre otro en reposo B. Como B 

se pone en movimiento disminuyendo el de A, significa que el cuerpo parado B tenía 

alguna Fuerza Pasiva que era necesario vencer por la fuerza del que le impacta A, tal 

como, dice, está de acuerdo con los fenómenos.  

 

Durante su argumentación Hermann dice “... A perderá algo de su fuerza y 

movimiento (vi et motu) y B ganará algo de fuerza y movimiento a partir de A.” (ibid.) 

Vemos que aquí hace equivalentes fuerza y variación de movimiento ya que al perder o 

ganar una también lo hace el otro.  

 
                                         
50 El grado de originalidad de Newton respecto de los predecesores que usaron esta denominación (Kepler, 
Descartes, Huygens) está analizado por Cohen en su Introducción a [NEWTON  I.  1687 b. pp. 96-101]  
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Podemos esquematizar las distinciones así: 

Fuerza viva = Fuerza 
Fuerza Activa = F. Motriz 

 

Podemos caracterizar el concepto de fuerza en Hermann del modo siguiente: 

 

• Causa de que un cuerpo cambie su estatus de reposo (o movimiento) (F. 

motriz = F. activa).  

• Es algo que tienen los cuerpos por el hecho de estar en movimiento (F. viva 

= fuerza). 

• Si la fuerza viva se da en un instante no causa aún movimiento (F. muerta = 

solicitación).  

• Es algo que tienen los cuerpos en reposo (F. pasiva).  

 

Para Hermann la fuerza tiene dos características en la definición general de la 

Phoronomia: por un lado es causa del movimiento (fuerza motriz), y por otro, es algo 

que tiene el propio movimiento (fuerza viva) o el cuerpo en reposo (fuerza de inercia). 

Es curioso notar que Hermnan, tal como hace Leibniz, cuado usa en los choques la vis 

viva le da otro nombre “fuerza absoluta” (ver apartado 5.3), ditinción verbal que no 

llega a la disociación conceptual. 

 

De Leibniz conserva: la distinción de entre fuerza instantánea y continuamente 

aplicada común en la época, y la idea de fuerza como algo inscrito (substancial) en los 

cuerpos, que a su vez influiría en el encuentro con otros cuerpos. Sin embargo, 

Hermann, como hacen otros leibnizianos como Johann Bernoulli o Varignon, abandona 

la distinción entre fuerzas primarias y derivadas, núcleo de la metafísica de Leibniz. 

Fuerza Pasiva = Fuerza de Inercia 

Fuerza Muerta = Solicitación 
Fuerza 
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Tal como dice Harman, usar el concepto de vis viva no supone seguir las concepciones 

metafísicas de Leibniz.51 

 

Hermann, de hecho, usará profusamente el término “solicitación” para referirse a las 

fuerzas en la Phoronomia (en la estática identificará “solicitación” con “potencia” 

para “seguir a los antiguos”, nos dirá). Considerará solicitaciones continuamente 

aplicadas y así serán también fuerzas vivas o simplemente fuerzas. De este modo, en 

la práctica, se van difuminando las distinciones leibnizianas y newtonianas de fuerza 

como causa de variación del movimiento- Aunque Hermann, con Leibniz, mantiene una 

segunda acepción en la que un cuerpo tiene “fuerza viva” por el solo hecho de estar en 

movimiento. Esta ambigüedad y su discusión durante todo el s. XVIII dará lugar a los 

conceptos separados de fuerza y energía cinética. 

 

En su acepción de solicitatio sigue a Leibniz, quien en 1693 en Le Journal de Savants 

da la siguiente explicación: 

 

“J’appelle sollicitations les efforts infiniment petits ou conatus, par lesquels le 

mobile est sollicité ou invité, pour ainsi dire, au mouvement, comme est par exemple 

l’action de la pesanteur, ou de la tendance centrifuge, dont il en faut une infinité 

pour composer le mouvement ordinaire … “52 

 

Pero Hermann, al igual que Newton y Leibniz, mantiene una fuerza pasiva o inercial, 

que los tres autores asignan al cuerpo en sí, y que se mostrará inútil cuando se vea la 

ley de inercia (primera de Newton) como un caso especial de la segunda.   

 

Notemos también que Hermann no hace distinción entre fuerzas por contacto 

(choques) y a distancia (gravedad), siguiendo en este caso el modelo newtoniano. Esta 

distinción dará lugar a un debate importante sobre el estatuto de “fuerza”, ya que no 
                                         
51 Tal como dice F.M. Harman “..., but the acceptance and use of the vis viva concept by eighteenth 
scientists did not entail a commitment to Leibniz’s natural philosophy.”  [. HARMAN F.M 1993 p.2] 
52 Aparece en la monografía titulada “Deux problèmes construits par G.W. Leibniz en employant sa règle 
générale de la composition des mouvements” citado en n. 130 de [BLAY  M.   1992 p. 145] 
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cabe, dentro de la filosofía mecánico- corpuscular de la época, la acción sin contacto. 

Hermann no entra en reflexiones sobre fuerzas a distancia en la Phoronomia. 

Recordemos que tanto Leibniz como Huygens critican el carácter “oculto” de la 

fuerza gravitatoria, reelaborando distintas teorías de vórtices. Sin embargo, 

Hermann como Varignon mantienen “a species of agnosticism about underlying 

physical causes ”53 posición del propio Newton cuando insiste en el carácter 

matemático de su obra, que le lleva a declarar en el famoso scolio a la tercera edición 

de los Principia: “hypotheses non fingo”.  

 

Por ejemplo, cuando Hermann establece la continuidad entre los métodos y los 

conceptos que le permitán estudiar el movimiento en medios resistentes [Phoronomia  

p. 281 ; nº 484], asimilándolos a los que estableció para solicitaciones centrales, trata 

con fuerzas que provienen de la composición de las gravitatorias y de las de colisión, 

considerándolas de la misma forma.  

 

Serán necesarios debates y polémicas como la de las fuerzas vivas, para que a lo 

largo del siglo XVIII se separaren las dos características citadas de la fuerza en 

sendos conceptos de “fuerza” y “energía cinética”.    

 

Las praenotanda continúan con lo que Hermann llama una Ley de la Naturaleza basada 

en la Fuerza de inercia de la materia: para cualquier acción hay una reacción igual y 

contraria (“In hac Vi inertiae materiae fundata est Naturae Lex, qua cuilibet actioni 

aequalis et contraria est reactio.”  Praenotanda. Def. 12)). Esta ley, dice, se deduce 

de considerar la resistencia que tiene cada cuerpo en la acción mutua, y se basa en el 

principio de correspondencia entre causa y efecto54. Ahora identificamos esta ley 

como la tercera de Newton, pero durante el siglo XVIII, las tres leyes que figuran en 

                                         
53 Para una discusión de las posiciones después de la publicación de los Principia ver  [GRAY  J.  (ed.)   
1987] 
54 Leibniz establece su “ley de causalidad” como ley de la naturaleza, en su texto de respuesta a Catelan 
(Nouvelles de la république des lettres, 1687, 9, 131-144). Traducido en LEIBNIZ  G.W. 1991 p.     
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el comienzo de los Principia, se consideran leyes naturales ya conocidas, tal como 

manifiesta el propio Newton55. 

 

A continuación, Hermann, establece el carácter aditivo de las fuerzas, de modo que 

“la fuerza de cualquier cuerpo es la que resulta de todas las fuerzas parciales, de las 

que gozan cada uno de sus elementos o partículas mínimas del cuerpo.” Y si estas son 

de la misma dirección y sentido (conspirantes) la fuerza total será su suma.  

 

Los últimos apartados de las praenotanda establecen el carácter direccional de las 

fuerzas y del movimiento, definiendo dirección (Directio), igual sentido 

(conspirantes), sentido opuesto (contrarii). “Directio de cualquier fuerza motriz es la 

línea hacia la que la fuerza empuja al cuerpo, y es esa recta, producida por esa fuerza 

la que el móvil describe en su movimiento o bien al menos intenta describir.” 

(Praenotanda. Def. 21). “Vires et Motus conspirantes son, aquellos en que sus 

direcciones concuerdan, o son paralelas, y tienden hacia las mismas partes.” 

(Praenotanda. Def. 22). “Vires et motus Contrarii esto es, directamente opuestos, 

son aquellas que concuerda, o son paralelas, pero que están vueltas hacia partes 

opuestas.” (Praenotanda. Def. 22) 

 

3.4 MATERIA Y VACÍO 

 

Después de tratar los tipos de fuerzas, la Phoronomia prosigue definiendo en el punto 

catorce la Cantidad de materia o Masa (Quantitas materiae, Massam), como el 

agregado de partículas del cuerpo a las que llama Elementos (Elementa).  

 

La definición que hace Hermann de masa está dentro de la llamada “filosofía 

mecánica” de la naturaleza que durante el siglo XVII se había ido estableciendo por 

parte de los “nuevos filósofos”56.  

                                         
55 “Hitherto I have laid down such principles as have been received by mathematicians, and are confirmed 
by abundance of experiment”. [NEWTON  I.  1687 b. p. 150] 
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Estos luchan por eliminar las cualidades ocultas de los aristotélicos y establecer las 

causas eficientes que provocan los fenómenos. Combinaban el método experimental 

con la filosofía natural mecánico-matemática. Descartes, importante promotor de 

estas nuevas ideas, concibe la naturaleza como un mecanismo de relojería que tiene 

sus propias leyes de funcionamiento. Los mecanismos tienen que ver con los 

elementos o partículas que constituyen la materia, sean estos los átomos en el vacío 

de Gassendi o Boyle, o el plenum de partículas de Descartes. La discusión se 

establece entonces, en cómo concebir esos elementos y sus mecanismos asociados.  

 

Hermann es un seguidor entusiasta del modelo mecánico-corpuscular de la “nueva 

filosofía” ya ampliamente consensuada en 1716. En noviembre de 1707 escribe una 

carta a Johann Scheuchzer57 donde le explica que a su llegada a Padua ha escuchado 

conferencias públicas de varios oradores; algunos profesando la filosofía escolástica, 

que opone a la de los Modernis. Confiesa que sus bárbaras distinciones le producen 

dolor de estómago.    

 

La definición de masa se completa aclarando que la posible materia contenida entre 

los poros no cuenta:  

 

“la materia fluida que puede estar oculta en los intersticios de los cuerpos no pertenece a su masa, del 

mismo modo que el agua contenida en los poros de las esponjas no pertenece a su masa.”58 

 

Concibe la materia formada por elementos últimos iguales, pero en el caso en que 

hubiera que considerar algún fluido entre ellos (el éter cartesiano por ejemplo), éste 

no contribuiría a la masa. Por el momento se deja en suspenso la decisión sobre la 

existencia del vacío.  

                                                                                                                           
56 [DIJKSTERJHUIS E.J. 1961] 
57 Carta traducida en MAZZONE S. y ROERO C.S. 1997. p. 39 
58 “Idcirco materia fluida, quae in corporum meatibus latere potest, ad corporis substantiam pertinere non 
censetur, perinde ac aqua in spongiae poris delitescens ad spongiae substantiam non refertur.” Phoronomia  
p.4  
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La primera definición de los Principia se refiere a la cantidad de materia que también 

llama masa o cuerpo, como el producto de la densidad por el volumen. Hermann, sin 

embargo, fundamenta su definición en los elementos más pequeños de masa, las 

partículas, que para poder ser agregadas tienen que considerarse iguales. 

 

E. Mach59 señaló que la definición de Newton es circular ya que la densidad se define 

a su vez como masa entre volumen, en el corol. IV de la prop. VI del libro III de los 

Principia. En ese mismo corolario, Newton hace una aclaración parcial, que indica que 

está pensando la masa como agregado de partículas y defiende la existencia del vacío. 

 

“Si todas las partículas sólidas de todo cuerpo son de la misma densidad y no pueden enrarecerse a no 

ser por sus poros, hay que aceptar un espacio o vacío. Al decir cuerpos de la misma densidad me refiero 

a aquellos cuyas inercias son proporcionales a sus volúmenes”.  

 

Thomas L. Hankins en su obra sobre D’Alembert60 afirma que: “Hermann took density 

for the fundamental notion.” De este modo emparenta la definición de Hermann con 

la de Newton. Sin embargo, en la Phoronomia se definen, primero la cantidad de 

materia tal como se ha indicado, después el volumen en la definición quince, como el 

espacio que ocupa la materia con sus poros, y en la siguiente definición la Densidad 

(Densitas) del siguiente modo: 

 

“Densitas, es la razón que hay entre la cantidad de materia en cualquier cuerpo con el volumen del 

mismo.”61 

 

La definición prosigue explicando que si variamos la amplitud de los poros en un mismo 

cuerpo su densidad cambia.  

 

                                         
59 [MACH  E.  1949]  
60 HANKINS T. L. 1990 p. 163 
61 “Densitas, quae est ratio quam materiae quantitas in quolibet corpore habet ad corporis Volumen.”  Phoronomia  p.5 
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Sin embargo, tanto la crítica de  circularidad de Mach de la que se hace eco Hankins, 

como la opionión de éste último en cuanto a que Newton toma la densidad por 

fundamental, son rebatidas en el análisis detallado que hace I. Bernard Cohen en la 

introducción a su edición de los Principia62. Cohen muestra el anacronismo implícito en 

las anteriores consideraciones. La definición de masa contenida en los Principia como 

“orta ex illius densitate e  magnitudine conjunctim” no es una definición al uso como 

las que le siguen en los Principia, ya que éstas comienzan por la partícula “es”: p. ej. la 

cantidad acelerativa de la fuerza centrípeta es …, o un fluido es… Sin embargo el uso 

del verbo deponente oriri indica “surge” o “resulta de” la densidad y el tamaño. Por 

otro lado, Newton no define densidad, lo que indicaría su consideración como 

magnitud primaria.  

t

 

                                        

 

“In the Principia, Newton does not in general determine masses by finding densities and volumen, but by 

diynamical (inertial and gravitational) considerations.” [Ibídem p.91] 

 

Siguiendo el texto citado de T. L. Hankins, encontramos definiciones de masa 

similares a la que figura en la Phoronomia, en la Mechanica de Euler (1736), que es el 

siguiente texto importante de mecánica editado tras el de Hermann:  

 

“It is necessary to consider the number of points [punctorum] which the body being moved contains and 

the mass of the body ought to be considered proportional to this number.”63 

 

Así mismo, en el texto de Laplace Exposition du système du monde: “The mass of a 

body is the sum of its material points”64 

 

 Tal como afirma Hankins (Ibid.): “si toda la materia se concibe como uniforme y 

homogénea, y las diferencias de densidad proceden sólo de los espacios vacíos 

incluidos en sus volúmenes, la definición de masa aparece como simple, casi obvia.” 

Este es el procedimiento que se encuentra a partir de Hermann y que se prolonga 

 
62 A guide to Newton’s Principia [NEWTON  I.  1687 b p. 85] 
63 Euleri opera omnia, ser. 2, I, 51. Traducido por Hankins Ibid. 
64 P. S. Laplace Exposition du système du monde. 5ª ed. (París 1824) p. 158. Traducido por Hankins. Ibid. 
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hasta la actualidad. Cita Hankins (ibid. Nota 3 p. 164), un artículo de Scientific 

American donde se discute cómo el U.S. Natinal Bureau of Standards en 1968, 

propone la construcción de un prototipo de masa como una estructura que contenga 

un número concreto de una clase de átomos. Digamos por nuestra parte que éste es 

uno de los 2 proyectos actualmente en estudio para sustituir el artefacto que 

representa el kg65.  

 

Después de definir la densidad a partir de la masa y el volumen, Hermann define la 

Raridad (Raritas) como el inverso de la densidad. Este concepto le será útil para el 

estudio de la creación de “rarefacción” mediante las máquinas neumáticas, que 

tratará en la primera sección del Libro II.  

 

Tras estas definiciones obtiene las relaciones mutuas que podemos deducir hoy a 

partir de la definición de densidad D = M: V.  

 

La lista de nociones previas acaba con las definiciones de cuerpo sólido y de fluido. 

En los sólidos existe una cohesión tal entre sus elementos, que sólo se mueven si lo 

hacen todas sus partes. Aclara que el fenómeno, observado por Cassini, del cambio de 

tamaño de los metales por efecto de la temperatura no contradice en su definición; 

sólo implica que la cohesión de los cuerpos no es perfecta. En los fluidos las 

partículas también tienen ligadura en alguna medida, pero ésta no les impide un 

movimiento interno independiente del externo. La conepción microscópica  contenida 

en la Phoronomia se completa al comenzar el libro II relativo a los fluidos. Allí 

comenta que no investigará las múltiples formas y tamaños que pueden adoptar las 

partículas o moléculas que forman los cuerpos sino su movimiento no condicionado por 

sus distintas formas [Phoronomia.  nº239]  .  

                                         
65 In one type of experiment, the number of atoms in a weighed quantity of matter is determined (Avogadro 
project, ion accumulation), thus establishing a relationship between the kilogram and an atomic mass. A 
second class of electro-mechanical experiments (watt balance, magnetic levitation) links the kilogram to the 
Planck constant h. 
Bureau International des Poids et Mesures [ http://www.bipm.fr/en/scientific/elec/watt_balance/ ]  
Ver también: http://www.nist.gov/public_affairs/newsfromnist_beyond_the_kilogram.htm [National Institute 
of Standards and technology] 
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El vacío se define explícitamente en la primera definición del cap. I de la secc. II del 

primer libro dedicada a exponer la dinámica de cuerpos sólidos.  

 

“Designamos vacío a todo medi, que los cuerpos pueden atravesar libremente sin impedimento ni ayuda, 

...” [Phoronomia. p. 51 nº 114]66 

 

La posibilidad de que en lugar de vacuum pudiera haber algún tipo de fluido sutil al 

modo cartesiano es criticada por Hermann, tal como veremos en el capítulo 4.4.2 

sobre “La elasticidad del aire”. Allí mostraremos cómo las propiedades conocidas de 

los fluidos llevan a Hermann a contradecir la teoría de A. Parent, según la cual el 

movimiento del éter provoca la elasticidad del aire.  

 

Por otro lado hemos citado en este mismo capítulo cómo Hermann define la masa a 

partir de los corpúsculos eliminando cualquier contribución de materia entre sus 

poros. La posición de Hermann es clara en la Phoronomia; por un lado define el vacío 

explícitamente, y por otro niega los posibles usos del éter como explicación de 

propiedades mecánicas.  

 

3.5 RELACIÓN MASA-PESO 

 

La Phoronomia se abre con un pequeño capítulo dedicado a demostrar la 

proporcionalidad entre masa y peso. Hermann declara que esta propiedad ha sido 

considerada de gran importancia por Filósofos y Geómetras, y ha sido demostrada 

por Newton a partir de cuidadosos experimentos con péndulos (corol. I de la prop. 

XXIV L. II de los Principia), y por Huygens a partir de leyes del movimiento 

(Diatribae De Caussa Gravitatis). Hermann intentará también su demostración 

admitiendo como hipótesis que la gravedad es uniforme. 

                                         
66 “Per vacuum designatur omne medium, quod corpora absque impemento aut adjumento libere trajicere 
possunt, ...”  
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“Permaneciendo igual la cantidad de materia y siendo las direcciones de la gravedad paralelas, o sea 

convergentes hacia un Centro infinitamente alejado, los pesos de los cuerpos no cambian, cuando varía su 

forma y su posición respecto del horizonte.” [Phoronomia. p. 7 (nº27)]  

 

Teniendo en cuenta esta hipótesis, demuestra por reducción al absurdo un lema: “La 

gravedad, sea cual sea su causa, no sólo actúa en las partes externas del cuerpo sino 

también en las internas.” [Phoronomia. p. 7 (nº28)]. Y un corolario que afirma que 

todos los elementos iguales de los cuerpos reciben iguales impulsos de la gravedad 

(pesan lo mismo).  

 

Tras lo que demuestra el primer teorema de su obra: “El peso de los cuerpos es 

proporcional a su cantidad de materia o masa” [Phoronomia. p. 7 (nº30)]. Llama C,c a 

los cuerpos; N, n al número de sus elementos; M, m a sus masas; a cada elemento, e; 

al peso de cada elemento, i; pC y pc son los pesos de los cuerpos. Demuestra el 

teorema haciendo proporciones que relacionan el cuerpo con el agregado de 

elementos:  

m
M

en 
e N

in 
i N

pc
pC

===  

 

En consonancia con su definición de masa, considera que todo cuerpo está compuesto 

de elementos iguales del mismo peso, y deduce lógicamente que el peso de N 

elementos es proporcional a su masa, si la gravedad es uniforme.   

 

En los corolarios siguientes define, en forma de igualdad y no de proporción, varios 

conceptos derivados, que corresponden a magnitudes intensivas67:  

 

Solicitación de la gravedad (G) que recibe cada elemento: “solicitationem qua unum 

corporis elementum urgetur”: la define como la que recibe cada elemento del cuerpo. 

                                         
67 Se llaman magnitudes intensivas, por oposición a las extensivas, a la que se definen por unidad de espacio, 
superficie o volumen. Serían intensivas la densidad y la intensidad luminos por ejemplo.  
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Le sirve para expresar el “peso absoluto” del cuerpo pC como producto de su masa C y 

G. (pC = C.G). G equivale al peso por unidad de masa (para nosotros sería g, intensidad 

de la fuerza gravitatoria).  

 

También expresa pC = G.D.V ya que M (masa) es D.V (densidad por volumen).  

En sus definiciones, Hermann usa como símbolo de masa indistintamente M o 

simplemente el que representa al cuerpo C, en coherencia con su definición de masa.  

 

Gravedad específica (S): equivalente a nuestro peso específico o masa por unidad de 

volumen. (S=D.G, siendo D la densidad).  

 

Hermann indica en el escolio final que demostrará a partir de las leyes del 

movimiento de graves la proporcionalidad masa-peso, al igual que hizo Newton a 

partir de la dinámica de péndulos. Comentaremos su demostración en el apartado “Los 

pesos y las masas son proporcionales” del capítulo 5 de este trabajo.  

 

4 DESDE LA ESTÁTICA DE LOS SÓLIDOS A LA DE LOS FLUIDOS: 

LA ORGANIZACIÓN DE LA ESTÁTICA 

 

La Phoronomia contiene una exposición sistemática de la Estática, que se reconoce 

como uno de los campos en los que se divide la entonces naciente ciencia de la 

Mecánica. Veamos en qué sentido es una elaboración original. 

 

Podemos hablar de confección moderna de la estática a partir de la obra de Simon 

Stevin. Su Estática The elements of the art of weighing, y su anexo The elements of 

hydrostatics, aparece primero en flamenco en 1586 aunque es a partir de su 

traducción al francés en 1634 que se difunde por toda Europa. Es una referencia 

importante en la elaboración de la ciencia mecánica durante el siglo XVII, ya que en 

ella, Stevin elabora de forma axiomático-geométrica a la manera de Euclides e 
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inspirándose en Arquímedes, cuestiones no sólo relativas al equilibrio de cuerpos 

sólidos ejemplificados en las máquinas simples, y a la descomposición de fuerzas, sino 

que también detalla y amplía la hidrostática arquimediana68. Muestra cómo la presión 

en un líquido sobre una superficie depende de la altura del líquido y del área de la 

superficie independientemente de la forma del recipiente. 

 

La segunda referencia importante en relación a la elaboración de la estática, en este 

caso de fluidos, es la obra de Pascal. La expresión  más acabada de sus principios se 

encuentre en sus dos Traites de l’Equilibre des Liqueurs et de la Pesenteur de la 

Masse de l’Air publicados póstumamente en 166369.  

    

Durante el s. XVII diversos autores tratan problemas estáticos: así Galileo estudia la 

forma de una viga sujeta por uno de sus extremos y cargada en el otro con un peso, o 

la forma de una “cadeneta” sujeta por sus extremos, a la que atribuye erróneamente 

la forma parabólica.  

 

Wallis escribe su Mechanica, sive de motu tractatus gometricus en 166970. En el cap. 

III (De libra) de la primera parte [Ibíd. pp. 570-642] estudia el equilibrio de 

sistemas discretos de fuerzas, en la segunda parte [Ibíd. pp. 645-938]  estudia el 

cálculo de centros de gravedad, y en la tercera la hidrostática [Ibíd. pp. 1032-1055]. 

Constituye pues el tratado más completo de estática anterior a la Phoronomia. Wallis 

recoge los resultados de Stevin y Pascal, extendiéndolos al estudio de figuras de 

revolución (como la recién descubierta cicloide) usando los indivisibles de Cavalieri71.  

 

Se resuelven en esa época algunos problemas singulares estáticos usando el nuevo 

cálculo infinitesimal, como los de las curvas catenaria, velaria y lintearia, planteados 

                                         
68 Ver [DUGAS  R.  1954  pp. 54-60] y  [DIJKSTERJHUIS E.J. 1970. cap. III-IV] 
69 Ibid. pp. 203-241 
70 [WALLIS  JOHN 1972; Vol. I;  pp. 570-1073] 
71 [MAIERU  L.    2001; pp. 246-256]  
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como retos por Leibniz y por los hermanos Bernoulli72. Sin embargo los Principia 

fundan la nueva ciencia de la dinámica pero trata los problemas estáticos de forma 

anecdótica.  

 

En este contexto aparece la exposición de la Estática contenida en la Phoronomia. 

Hermann procede a una reorganización de los resultados conocidos, completándolos 

con sus propias aportaciones y demostraciones, que utilizan el cálculo diferencial e 

integral. El planteamiento general de Hermann es fundar la estática de los fluidos 

sobre resultados más básicos referidos a estática de sólidos estableciendo una 

continuidad metodológica y conceptual. En sus palabras: 

 

“Ciertamente, además de que tales principios [de Pascal y otros] son indirectos, estos con o sin 

dificultad y mediante largos detalles parece que puede aplicarse a los fluidos heterogéneos en la 

universalidad, con la que hemos deducido en las precedentes proposiciones directamente a partir de sus 

principios inmediatamente precedentes; preferí insistir en los fundamentos y métodos aplicados sobre 

las potencias en cada punto de cualquier cuerpo, que expuse en el primer libro, ya que suministra un 

modo elegante de reducir las presiones de los fluidos heterogéneos a las presiones equivalentes de 

fluidos homogéneos..”73 

 

Hermann organiza la Estática del modo siguiente: 

 

• Estática de sólidos rígidos general, de la que extrae resultados para el caso 

de cuerpos sumergidos total o parcialmente en fluidos heterogéneos y 

homogéneos.  

• Estática de líneas flexibles general, de la que se obtienen entre otros los 

casos particulares de las curvas catenaria, lintearia y velaria, tratados así 

mismo en la estática de fluidos.  

                                         
72 En el capítulo 4.2 relativo a la estática flexible se dan más detalles. Ver RADELET-DE GRAVE P. 1998  
pp. 469-470 sobre el planteamiento de estos problemas y su resolución. 
73 “Verum, praeterquam quod talia principia indirecta sunt, ea vix ac ne vix quidem absque lingis ambigibus, 
fluidis heterogenesis appñicari posse videntur in ea universalitate, in qua praecedentes propositiones ex 
principiis suis proximis directe deduximus; malui methodo et fundamentis circa potentias singulis punctis, 
cujusque orporis applicatis, quae in primo libro exposuimos, insistere, utpote quae modum non inelegantem 
subministrarunt pressiones fluidorum heterogeneorum ad aequivalentes pressiones fluidorum 
homogeneorum reducendi.” [Phoronomia. p. 157 (nº 297)] 
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• Hidrostática general en la que establece las leyes básicas para fluidos 

heterogéneos, y se prolonga con el estudio de la resistencia de tubos llenos de 

fluido.  

• Estudio de la presión del aire.  

 

Trataremos a continuación separadamente cada una, destacando sus características.  

4.1 ESTÁTICA DE CUERPOS RÍGIDOS 

 

La estática rígida utiliza un procedimiento que podríamos denominar “progresivo”, 

consistente en extender los resultados básicos para casos sencillos hasta llegar a los 

más complejos. Esto contrasta, tal como mostraremos, con el tratamiento deductivo 

de la estática flexible y de la dinámica. Las leyes estáticas requieren saber cómo 

“sumar” fuerzas en casos progresivamente más complejos, y éste será el objetivo de 

Hermann. 

 

Muchos problemas en fluidos se refieren al cálculo de la fuerza total a la que está 

sometido un cuerpo completa o parcialmente sumergido (ver cap. III del libro II de 

la Phoronomia). Esto supone el estudio de sistemas “continuos” de fuerzas para 

conocer el estado de equilibrio del cuerpo y deducir su posible movimiento. El 

objetivo de la estática rígida en la Phoronomia es, pues, obtener un procedimiento 

que permita calcular la fuerza resultante sobre un cuerpo sometido a fuerzas en 

todos sus puntos. Es decir, Hermann construye una estática de “medios continuos” 

que partiendo del estudio de cuerpos sometidos a sistemas discretos de fuerzas de 

formas diversas, se extiende a sistemas continuos de fuerzas sobre un objeto 

extenso tridimensional. 

 

La estrategia general se basará en plantear situaciones de equilibrio usando la 

igualdad de momentos, tanto para calcular resultantes de fuerzas como para 

encontrar centros de gravedad. Estrategia que desarrolla en tres direcciones:  
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• Extendiendo la aplicación de fuerzas sobre una la línea recta hasta líneas 

curvas cualesquiera. 

• Ampliando las dimensiones de estudio hasta llegar a tres. 

• Pasando de sistemas de fuerzas discretos a continuos. Paso que requiere el 

uso del cálculo diferencial e integral. El estilo geométrico preponderante dará 

lugar en ocasiones al algebraico.  

 

El capitulo II del libro I está dedicado por 

completo a exponer la estática de cuerpos 

rígidos. Comienza con las definiciones que 

caracterizan a las fuerzas como lo que en 

lenguaje moderno llamamos vectores y da el 

concepto de fuerzas equipolentes o de igual 

potencia. La Fig. 2 nos da una idea del tipo de 

ilustraciones que acompañan las explicaciones de Hermann:  

Fig. 2 Ilustración nº 1de la 
Phoronomia 

 

• Las “fuerzas”, “solicitaciones” o “potencias”74 son del género cuantitativo, y 

por tanto pueden representarse por líneas rectas con dos letras, cuyo orden 

indica su dirección y cuya longitud es proporcional a su valor.   

• Si varias fuerzas están en equilibrio, las que están a un lado del cuerpo se dice 

que son “equipolentes” (aequipollere) a las que caen del otro lado. De este 

modo define la fuerza equilibrante o resultante de un conjunto. 

• La prolongación de la fuerza equipolente de un conjunto se llama “dirección 

media” o “eje de equilibrio” del conjunto. Y al punto donde se aplica la fuerza 

equipolente se le llama fulcro (hypomoclium) o “centro de equilibrio”.  

 

Comienza considerando como axioma que la resultante de fuerzas paralelas es como 

la suma o la diferencia según tengan el mismo sentido (conspirantibus)  o no. Para 

fuerzas no paralelas demuestra como teorema lo que en lenguaje actual llamamos 
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trabajo. 



regla del paralelogramo75. La demostración se basa en considerar movimientos en un 

tiempo muy pequeño (virtuale)76, tal como hace Newton en los Principia.77. 

 

En la proposición IV (ver Fig. 3)78, Hermann muestra cómo calcular el Centro de 

Gravedad E (c. de g. en adelante) 

de un conjunto de masas (A,B,C y 

D) respecto de dos líneas rectas 

perpendiculares (PQ, y ad). 

Utiliza la igualdad de momentos 

(producto de la magnitud por la 

distancia a una referencia común) 

de larga tradición arquimediana. 

El c. de g. sería el punto cuyo 

“momento” equivale a la suma de “momentos” de todas las masas. Encuentra el c. de g. 

como resultado de resolver un problema de equilibrio.  

Fig. 3 

 

Hermann traslada el resultado del lema que sirve para calcular c. de g. en el caso 

discreto, al caso continuo engendrado por revolución de una magnitud cualquiera 

sobre un eje. Es el llamado teorema de Guldin79, que Hermann demuestra como 

escolio I del lema anterior:  

 

“La figura formada por el giro de una magnitud alrededor de un eje dado, es igual al producto de la 

magnitud generatriz por la circunferencia que tiene por radio la distancia desde el centro de gravedad 

de la magnitud al eje.”80  

                                         
75 La resultante de dos fuerzas no paralelas es la diagonal del paralelogramo formado con ellas. Ver la 
historia de sus demostraciones en [INDORATO L. NASTASI P.  1991] 
76 usa el término leibniziano conatus para referirse a un movimiento infinitesimal) 
77 Principia L. I corol. I y II de las leyes del movimiento. [NEWTON  I.  1687 b pp. 417-420] 
78 Cuando utilicemos ilustraciones incluidas en la Phoronomia, superpondremos a las letras difícilmente 
legibles del original, sus equivalentes.  
79 Hoy conocemos este teorema como “teorema de Pappus Gulin”. Fue formulado por P. Guldin en su 
Centrobarica (1635-1641a, vol. 2, 147). Se encuentra también en el libro VII de las Colecciones de Pappus. 
[I. Grattan-G. 1984. p. 66] 
80 “Figuram ex conversione cujuslibet magnitudinis circa aliquam rectam positione datam oriundam, aequari 
facto ex Magnitudine generatrice in viam centri ejus gravitatis.” [Phoronomia. p. 15 (nº47)] 
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Vamos a ver cómo Hermann aplica de forma simple el álgebra diferencial e integral al 

comienzo de su obra, haciendo las deducciones en un lenguaje completamente actual, 

sin referencia a figuras geométricas. El problema es tratado de modo general, ya que 

considera una magnitud generatriz cualquiera.  

 

Con sus propias palabras y símbolos (ver 

fig. 4): sea F la magnitud que gira (puede 

ser  masa, superficie, etc.), S la figura 

formada por revolución cuyo elemento es 

dS, D la distancia desde el c. de g. hasta el 

eje, y la ordenada al eje de giro (es la 

coordenada horizontal para nosotros), dx 

un elemento de eje x.  El momento de cada 

elemento de F es su valor ydx por la 

distancia de su c. de g. al eje (½ y), es decir: ½ yydx. 

Fig. 4. Ilustración del 
teorema de Guldin.  

F 

dx c.de g 
F 

y 

 

Según el lema demostrado para encontrar c. de g., el producto de la magnitud F por la 

distancia desde su c. de g. hasta el eje, es igual a la suma de todos los momentos 

elementales anteriores. Es decir tenemos: D.F = ∫½yydx. Multiplicado por p, que 

Hermann define como la circunferencia de radio uno, queda     pD.F = ∫p½yydx.  

 

Como, dice Hermann, pD es la circunferencia de radio D y py la circunferencia de 

radio y, (p½yydx) es un elemento de la magnitud engendrada por revolución (= dS), y 

por tanto:               pD.F = ∫p½yydx = ∫dS = S.       QED. 

 

Finalmente, Hermann explica que en la relación de momentos obtenida para calcular el 

c. de g., se puede usar indistintamente la masa o el peso ya que son proporcionales en 

gravedad uniforme. Aclara que en el caso de gravedad no uniforme, cada peso se 

sustituye por el producto de la masa por la gravedad específica correspondiente.  
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Como veremos a continuación, el teorema del c. de g. le permitirá a Hermann obtener 

la resultante de sistemas de fuerzas progresivamente más complejos. 

 

La proposición V demuestra 

un teorema que, dice 

Hermann, Leibniz había 

comunicado por carta81 a 

Wallis sin demostrar. Este 

teorema (ver fig. 5) nos 

indica cómo calcular la 

resultante en valor y 

dirección de un conjunto de 

fuerzas concurrentes 

aplicadas sobre un punto P: 

a b P e c d 

D 
C 

R S 
Fig. 5 

E 

B 

L A 

 

“Las solicitaciones PA, PB, PC, PD etc. aplicadas sobre el mismo móvil P tienen por dirección media PE, 

recta que une el centro de  gravedad del móvil P y el centro de gravedad E de todos los puntos A, B, C, 

D, etc. en que terminan las rectas que representan las solicitaciones;  y la solicitación resultante de 

todas será un múltiplo de la recta PE, según el número de solicitaciones” 82 

 

Ahora, el c. de g. (E) de los extremos de las fuerzas dará la dirección de la 

resultante (PE). El valor de la resultante será el múltiplo de la distancia al c. de g. 

según el número de fuerzas presentes N, que en este caso sería 4.   

      N · PE    FT =  

 

                                         
81 La referencia que da Hermann es:[Tomo III. Oper. Wallisii fol. 687]. Ver la carta de Leibniz a Wallis de 
28 sept. 1697 en [JOHN WALLIS 1972. pp. 685-687] 
82 “Solicitationum quarumlibet PA, PB, PC, PD, etc. eidem mobili P impressorum media directio PE est 
recta jungens centrum gravitatis mobilis P et centrum gravitatis E omnium punctorum A,  B, C, D et c. 
quibusrectae solicitatiomum representatrices terminantur ; et solicitatio ex omnibus corpori impressis 
resultans expni debet multiplo rectae PE, secundum punctorum seu solicitationem impressorum numerum.” 
[Phoronomia. p. 16 (nº 53)] 
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La estrategia de Hermann consiste en seguir usando el equilibrio de momentos para 

las componentes, que ya había utilizado antes para calcular centros de gravedad. Este 

método equivale al posterior uso de la trigonometría para calcular la dirección de la 

resultante. Es decir: si tenemos que sumar dos vectores 21 Vy  V
rr

 de los que 

conocemos sus módulos y su dirección, actualmente los descomponemos 

cartesianamente V1 = (V1x, V1y), V2 = (V2x, V2y) mediante las relaciones trigonométricas 

Vx = V cos α y  Vy = V sen α, después sumamos componentes para obtener la resultante 

V = (Vx, Vy) y su dirección β será la tangente (tg β = Vy:Vx).  

 

Este teorema representa el resultado básico que Hermann extenderá 

progresivamente a situaciones de mayor complejidad tales como: 

 

• Un problema que propuso Torricelli: encontrar la resultante de cuatro 

fuerzas concurrentes en equilibrio en tres dimensiones. 

• Un sistema de fuerzas continuo, concurrente y en tres dimensiones (Ver Fig. 

6). Si sobre P actúan fuerzas cuyos extremos están en la superficie ABC (la 

figura sólo muestra uno de los contornos de la superficie), su resultante es el 

producto de la superficie (que equivale a contar el número de fuerzas) por la 

distancia desde el móvil P hasta el c. de g. E de la los puntos de la superficie.  

• Un sistema de fuerzas oblicuas no concurrentes sobre una línea recta, que 

reduce a un sistema concurrente.  

 

Hasta ahora siempre ha trabajado separadamente con 

las componentes ortogonales de las fuerzas, pero en un 

corolario [Phoronomia. p. 21 (nº 55)] demuestra que la 

igualdad de momentos respecto del punto de equilibrio 

para un sistema de fuerzas oblicuas, puede hacerse 

directamente sin recurrir a las componentes (ver Fig. 7). 

Basta considerar el momento como el producto de la 

fuerza por la distancia perpendicular a la dirección de la fuerza desde el punto de 

Fig. 6 
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equilibrio. Siguiendo la Fig. 7 tenemos: momento de la fuerza oblicua AG = AG. EP, 

siendo E el fulcro del sistema.  

 

En lenguaje actual equivale a 

definir el momento como el 

producto vectorial de la fuerza por 

la distancia F  M
rrr

= , cuyo 

módulo es M = F· r sen (F,r). Vemos 

que la perpendicular EP equivale a  

r·sen (F,r) siendo (F,r) es el ángulo 

que forman los vectores F y r). 
Fig. 7 

 r x 

 

Hermann destaca el hecho de haber llegado “inopinadamente a la demostración de 

forma directa e inmediata”83 del teorema de Arquímedes de igualdad de momentos 

respecto del punto de equilibrio, “que de diversas maneras personas variadas han 

intentado demostrar”.  

 

El resultado más ambicioso de Hermann en la estática de sólidos rígidos, consiste en 

establecer un método de cálculo para la fuerza que resulta de la aplicación de un 

sistema continuo de fuerzas sobre un sólido. Este será el caso si pensamos en 

cuerpos sumergidos en fluidos, o de fuerzas sobre el 

timón de un barco, que será objeto de estudia en tomo II 

de su obra.  
 

 
Cuerpo paciente 

La estrategia general consiste en separar el cálculo de la 

fuerza total en dos partes, proyectadas sobre planos 

horizontal y vertical respectivamente. Para llegar a esto, 

Fig.  8 

                                         
83 “atqui sic inopinato incidimus in demonstrationem directam et immediatam principii Archimedei de 
aequalitate momentorum, in casu aequilibri potentiarum inter. se commissarum, quod varii varie 
demoonstrare conati sunt.” [Phoronomia p. 21 nª56]  
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Hermann establece una secuencia de teoremas que atañen a casos progresivamente 

más complejos.  

 

A 

Dando marcha atrás en la secuencia de Hermann, pensemos en un cuerpo sólido sobre 

el que actúan fuerzas en todos sus puntos. Podemos partir el cuerpo en cuatro partes 

mediante dos planos perpendiculares (fig. 8) y estudiar cada fragmento. Cartando una 

de las cuatro partes por planos horizontales obtenemos curvas en las que podemos 

estudiar la resultante de un sistema continuo de fuerzas iguales y perpendiculares. 

Esta es el tipo de fuerzas actuantes sobre un cuerpo sumergido en un fluido donde la 

presión depende de la profundidad. Iremos mostrando gráficamente la construcción 

de Hermann. La secuencia progresiva de resultados 

es la siguiente: 

 

• Primero [Phoronomia p. 23 nª58] calcula la 

resultante de una serie discreta de fuerzas 

F, f etc. actuando sobre una curva regualar 

AB cualquiera84. La construcción geométrica 

(ver Fig. 9) consiste en encontrar primero 

la resultante de las componentes de cada 

fuerza proyectadas sobre dos ejes 

ortogonales, para después obtener la 

resultante total (en rojo en el dibujo) 

en valor y dirección a partir de la 

igualdad de momentos anterior.  

Varignon ha llegado a parecidos 

resultados, dice Hermann, pero su 

construcción puede extenderse al caso 

continuo, tal como mostrará a 

continuació. 

F 

f 

B 

Fig.  9 

A 

S1 

B 
S2 

Fig.  10 

                                         
84 para que pueda aplicarse a “ruedas u otros dispositivos mecánicos” nos dice Hermann. [Ibídem] 
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• Hermann demuestra en la proposición VIII un potente teorema [Phoronomia p. 

24 nª59], que reduce el cálculo de la resultante de un sistema continuo de 

fuerzas actuando sobre una curva regular cualquiera AB (ver Fig. 10), a la 

evaluación de dos áreas S1 y S2 proyectadas sobre dos ejes ortogonales. El 

punto de aplicación se hace, tal como demostró para el caso discreto, 

mediante la localización de c. de g. de las 

figuras laterales. Para su demostración, 

Hermann usa la “geometría diferencial” que 

consiste en razonar con diferenciales a partir 

de las líneas en una figura geométrica. 

 

A continuación particulariza el resultado para 

fuerzas iguales y perpendiculares a la curva. En 

este caso las figuras mixtilíneas  S1 y S2  se 

convierten en rectángulos.   

 

• Extiende el resultado anterior, completando la 

curva sobre la que actúan las fuerzas a su parte 

simétrica (ver Fig. 11) [Phoronomia pp. 26 nª62-63].  En este caso las 

componentes verticales se anulan y la resultante para el caso de fuerzas 

perpendiculares a la curva e iguales es el rectángulo cuya base es el valor de la 

fuerza y cuya altura es la proyección de la curva sobre un plano vertical. Si la 

curva se desplaza formando un cilindro la resultante será un paralelepípedo tal 

como muestra la ilustración del propio Hermann.  

Fig.  11 

 

• Si ahora [Phoronomia pp. 30-31 nª79] la figura sobre la que actúan fuerzas 

iguales y perpendiculares es la mitad de un tronco de cono (Fig. 12), la 

resultante equivale a la fuerza sobre el cilindro que resulta de la proyección 

sobre un plano vertical (en rojo), y la fuerza sobre el anillo (en verde) que 
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resulta de la proyección sobre un plano horizontal.  Hagamos notar que un 

tronco de cono tal, es el corte infinitesimal de una capa horizontal de un 

cuerpo cualquiera, tal como considerará 

en el siguiente teorema.  

 

• Con estos resultados ataca el cálculo de 

la resultante sobre la superficie que 

representa un cuarto del cuerpo total 

[Phoronomia pp. 31-34 nª80]. Demuestra 

que se compone de la pseudo-cuña 

formada por la escala de fuerzas (equivalente a una función fuerza– 

profundidad) con la proyección del cuerpo sobre un plano vertical, y del 

“cuerpo análogo extendido” que en la fig. 13 es el verde más todo el espacio 

entre el verde y el negro. Los c. de g. de estos volúmenes nos dan el punto de 

aplicación de la resultante.  

Fig.  12 

 

Repite el proceso para un cuerpo paciente invertido. Las diferencias fundamentales 

son dos: la componente vertical es ahora solamente el espacio que queda entre el 

“cuerpo paciente análogo” (en verde en la ilustración) y el “cuerpo paciente” (en 

negro), y la componente vertical es ahora dirigida hacia abajo. 

 

• Finalmente obtiene en un corolario [Phoronomia p. 24 nº 59] la resultante 

sobre el cuerpo entero. Como las componentes horizontales (pseudo-cuñas) se 

anulan entre sí al actuar en sentidos opuestos, queda como resultante la 

diferencia entre el “sólido paciente análogo extendido” y su “extensión”. Esta 

diferencia es el “sólido paciente análogo” (verde).   
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Escala de potencias que 
actúan sobre el cuerpo 

Pseudo-cuña formada por la 
escala y la proyección del 
sólido  

Cuerpo análogo paciente (verde) 

Fig.  13 

Hermann ha llegado a un resultado general que usará en el cap. III del libro II 

dedicado a los fluidos [Phoronomia p. 152 ], y que  trata sobre “El equilibrio de 

cuerpos sólidos sumergidos o flotando en cualquier fluido”. En el teorema XII 

[Phoronomia p. 152  nº 290] afirma que “… este teorema no es diferente del 

83 tomado en un caso concreto; … poniendo ahora la línea OLQ, que 

llamábamos escala de potencias aplicadas al sólido paciente, como escala de 

presiones o gravitaciones del fluido heterogéneo.”   

 

Este es el teorema que conocemos como de Arquímedes, que en la Phoronomia se 

demuestra para fluidos heterogéneos y que dice: “Todo cuerpo sumergido en un 

fluido heterogéneo, o flotando en él, empuja hacia arriba con tanta fuerza, como el 

peso de la masa de cierto líquido homogéneo cuyo volumen es la del cuerpo del sólido 

análogo sumergido o a su parte sumergida, cuya densidad es la densidad media del 

líquido heterogéneo, según la dirección normal a la superficie del fluido pasando por 

el centro de gravedad del sólido análogo.” [Ibid.]   
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Continúa estudiando el equilibrio de cuerpos sumergidos como consecuencia del 

balance entre el empuje del fluido y el peso del cuerpo. Destaquemos resumiendo que: 

 

• Hermann hace la demostración para fluidos heterogéneos en general. Para 

fluidos homogéneos muestra que el sólido análogo coincide con el paciente con 

lo que tenemos el teorema de Arquímedes habitual.  

• La demostración es una aplicación al caso de fluidos, de teoremas generales 

establecidos en la estática de sólidos rígidos del libro I. 

• Establece una continuidad basada en resultados generales.  

• Usa el cálculo diferencial e integral en su forma “geométrica” y en su forma 

“algebraica” (ver teorema de Guldin) para los casos de sistemas de fuerzas 

continuos.    

4.2 ESTÁTICA DE SÓLIDOS FLEXIBLES: paradigma de método en la 

Phoronomia.  

 

Dentro de la sección I del libro I dedicada a la estática, el capítulo III trata “de las 

figuras que pueden adoptar los cuerpos flexibles por la aplicación de potencias 

cualesquiera; y sobre las direcciones medias de esas potencias.” [Phoronomia pp. 36-

50]   

 

Hermann incluye por primera y única vez en su obra, un apartado matemático en el 

que explica la relación mutua entre diferenciales e integrales, además de mostrar un 

algoritmo para hacer integraciones. Hermann usará el cálculo integral y diferencial 

profusamente en la deducción de las ecuaciones generales para una línea flexible 

sometida a fuerzas de modo continuo, por lo que comienza exponiendo en un lema y un 

escolio el cálculo integral. Añade tres ejemplos como ilustración. Analizaremos más 

adelante la exposición que hace Hermann del cálculo integral y de su teorema 

principal, en el capítulo 6 (“El cálculo diferencial e integral: entre la geometría y el 

álgebra”).  
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La novedad y la virtud del método de Hermann consisten en que obtiene un conjunto 

de ecuaciones generales integro-diferenciales relativas a un problema genérico (en 

este caso para un cuerpo lineal elástico sometido a fuerzas externas) que, 

particularizando, pueden ser usadas para “deducir” los casos de interés (curvas 

velaria, lintearia, catenaria, etc.). Los problemas relativos a cada curva se habían 

tratado independientente, y hasta 1744 no se conseguirá con Euler una formulación 

genérica de todos ellos como curvas isoperímetricas (ver nota 87). Este proceso, que 

se repite los distintos apartados de la Phoronomia, puede caracterizar el modo de 

proceder de Hemann en la Phoronomia como una algoritmización, que contiene las 

siguientes características:  

 

• Obtiene un conjunto de relaciones generales entre variables de forma 

diferencial e/o integral, a partir de razonamientos geométrico - diferenciales 

referidos a líneas de una ilustración. La expresión de estas relaciones 

fundamentales es geométrica, es decir, los valores se simbolizan con dos 

letras (AB por ejemplo) que representan los extremos de un segmento sobre 

la figura. No se hace distinción simbólica entre valores infinitésimos o finitos, 

aunque sí se usa en ocasiones el símbolo integral de dos modos: omnes AB = 

∫AB. 

 

• Estas relaciones fundamentales son rescritas en forma diferencial algebraica, 

quedando preparadas para ser aplicadas a casos particulares, teniendo en 

cuenta las condiciones pertinentes.  

 

Veamos primero en qué consiste el teorema principal. La proposición XII [Phoronomia 

p. 40  nº 93] considera el hilo flexible e inextensible ZBABX (ver Fig. 14 que 

corresponde a la Fig. 29 de la Phoronomia) ligado en sus extremos Z, X y sometido en 

cada punto B, β, etc. a las potencias BH, βh, etc. Estas potencias son genéricas y 

serán particularizadas más adelante por Hermann para significar pesos o presiones.  
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 La tenacidad o firmeza (tenacitas o firmitas) del hilo se define como la fuerza que 

nace en el hilo por las potencias externas aplicadas. Es la resistencia del hilo, que 

equivale a las fuerzas externas cuando consideramos la situación de equilibrio. 

 

Llama a las tenacidades (tensiones diríamos ahora) en dos puntos B y β contiguos T y 

t, a las potencias aplicadas en un elemento Bb del hilo (diferencial en el lenguaje de 

Hermann) pBb. La potencia en el punto inferior A se simboliza como A y es un dato 

constante ya que depende del equilibro de fuerzas en el otro lado del hilo AX. Los 

ejes son AC para las abscisas y BC para las ordenadas. 

t 

T 

n 

G 

b 

f m 
h 

l 

M 

H 
D 

I 

g 

B 

K 

E 

F 

N 

β 

Fig.  14 (A la derecha detalle del elemento diferencial ampliado) 

 

Ampliamos en la figura la zona del hilo que corresponde a dos elementos diferenciales 

contiguos Bb y βB (zona roja de la fig. 14). Las tensiones se descomponen 

ortogonalmente; para T son BM y Mb; y la potencia externa aplicada BH se 

descompone de dos formas: BF y HF según  los ejes perpendiculares del sistema 

(Coordenadas cartesianas) y según las direcciones tangencial GH y perpendicular a la 

curva BG (coordenadas intrínsecas) 

 

El teorema deduce dos resultados en una situación de equilibrio: 

63 



 

I. Para las componentes tangenciales T = A + ∫GH.    (1) 

 

La tensión T del hilo en un punto cualquiera B, es igual a la suma de todas las 

componentes tangenciales de las fuerzas externas, más el valor de la tensión en el 

punto más bajo A. 

 

II. El cociente entre cualesquiera dos líneas homólogas de los cuadriláteros BGHF y 

bghf, es igual al cociente entre T y Bb.  

 

En el lenguaje geométrico de Hermann, por ejemplo:   
Bb
T  

bf
BF

=     (2) 

La demostración maneja símbolos geométrico-diferenciales y relaciones geométricas 

en la figura. Podemos interpretar el resultado en términos diferenciales de la 

siguiente manera: las líneas en el triángulo pequeño bghf son las diferenciales 

segundas y las del grande BGHF las primeras diferenciales. Considerando los ejes a la 

manera de la época, es decir, intercambiados con los actuales, tenemos: 

 

bf = Mm = BM – Bk = dx2 – dx1 = d2x 

hf = nN = BN – Bl = dy2 – dy1 = d2y 

Bb = ds (elemento de arco en el que trabaja) 

 

Así, el conjunto de relaciones deducidas en (2) son ecuaciones diferenciales de la 

forma:   dF 2
x x

 

T
= A 

s d
 donde x puede 

intercambiarse por y.  

l primer corolario añade una figura 

a O 

n Q 

m p 
E

P 
auxiliar al hilo (Fig. 15). Traza desde A 

una línea de magnitud arbitraria AO 

horizontal, y con ella como diámetro un 

Fig.  15 
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semicírculo, tal como se ve en la figura. A partir de A traza dos segmentos AP y Ap 

que son paralelos a los dos elementos de hilo Bb y βB considerados. Usando la 

similaridad de los triángulos Bbg y APQ de la figura auxiliar, demuestra una relación 

entre fuerzas y lados del triángulo auxiliar: 
APT
PQBG

=         (3) 

 

 partir de la relación (1) estudia el caso en que las fuerzas BH son perpendiculares a 

ambién deduce la ecuación integral correspondiente a (2) suponiendo todos los 

A

la curva. En este caso GH = 0 y por tanto  en (1) T = A. La tensión en cualquier punto 

es igual al valor en A dado.  

 

T

arcos Bb iguales y fuerzas perpendiculares a la curva:  

    

Bb
A    

BM

BF
    

bM-Bb

FH
== ∫∫             (4) 

 

Que transcrita con nuestros símbolos queda:  
ds
A    

dx

F
    

dy-ds

F XY
== ∫∫  

 

considera el caso en que las fuerzas son paralelas al eje vertical (sería el caso de un C

hilo cuya fuerza exterior es su peso). La ecuación (2) quedaría: 

 

bM
A 

BM

BE
   

BM

BF
 == ∫∫           (5) 

 

lamando F a la suma de todas las fuerzas o peso y siendo A el valor de la tensión en L

el punto más bajo, la ecuación (4) se puede transcribir: 

A F  =              (6) 
dydx

Preparado el teorema general y sus corolarios, Hermann nos indica que: 
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 “A partir de los corolarios añadidos a nuestro teorema puede ser establecido, como se desprende 

85

 continuación Hermann traduce a lenguaje algebraico sus resultados y obtiene dos 

ea por tanto AC=x, CB=y, BM= dx, bM= dy, Bb= ds, AO=a, AP=m y PO=n = √ (aa - 

Sustituyendo sus valores en la proporci n (3) BG:T= PQ:AP, obtenemos lo que 

BG:T = dn:m    (9) 

 

oma como segunda fórmula general la relación integral (1) que correspondiente a las 

 partir de las ecuaciones integral (1) y de la ecuación diferencial (9) Hermann 

aso 1

ampliamente de su uso, que verdaderamente éste contiene las soluciones de infinitos problemas, de los 

que los Problemas de la Catenaria, Velaria, y las formas del lienzo curvado por el líquido contenido, no 

son sino casos especialísimos de nuestro teorema.”    

 

A

reglas para transformar diferenciales y poder deducir los casos particulares: 

 

“S

mm). De aquí PQ = dn, y Qp = dm. Establecido esto, de los triángulos similares BbM, y 

OAP obtiene las relaciones” [Phoronomia p. 44  nº 101]:  

ds = adx:n        (7) 

dy = mdx:n       (8) 

 

ó

Hermann llama “primera regla” (primus Canon) para las componentes normales BG: 

 

T

componentes tangenciales GH:     T = A + ∫ GH   

 

A

obtendrá para los casos particulares las correspondientes curvas y=f(x) en nuestro 

lenguaje, transformando variables mediante las relaciones (7) y (8). Veamos cómo. 

 

C : la circunferencia [Phoronomia p. 44  nº 102]. Condiciones del problema: 

                                        

 

 
85 “Ex Coroariis theoremati nostro adjectis fatis constare potest quam late pateat ejes usus, revera enim 
infinitorum id problematum solutionem continet, quórum problemata Catenaria, Velariae, et figurae lintei 
ab incumbene liquore inflexi nonnisi casus sunt specialissimi nostri theorematis.” [Phoronomia p. 44  nº 
100] 
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 Fuerzas externas perpendiculares a la curva:  BG = BH y GH = 0 

 

ante que no 

 

a ecuación (9) queda:  

  Fuerzas proporcionales a la longitud del hilo:  BG = b ds  (b=cte.)

 Supone que la fuerza en el punto inferior A = a·b (parámetro const

da las condiciones de contorno) 

m
dn

ba
dsb

= ; 
m
dn

a
ds

=L ;    

Por (7) pasamos de ds a dx  
m
dn

n
dx

=  ;  dmmdnndxm −== ;  integrando queda 

xam −=  Como 22 man −=  obtenem  función de x:  os ahora n como

2x−  2axn =

 

a estrategia general será siempre obtener las relaciones de n y m con x y L

constantes, de modo que aplicando la relación (8) obtiene la ecuación diferencial de la 

curva buscada: 

22 22

)(

xax

xdxdxa

xax

dxxadx
n
mdy

−

−
=

−

−
==  

Este es el único caso que Hermann integra dando la ecuación de una circunferencia: 

s en la que vemos 

22 xaxy −=  

Usará este resultado en la mecánica de fluido una vez más la 

o

n dicho capítulo estudia por otros métodos dos problemas que ya ha resuelto a 

ste problema tiene que ver, dice Hermann, con el interés que puede tener en el 

estudio de la forma adoptada por los vasos sanguíneos de los animales, tal como ya 

continuidad de los métodos usados en la Phoronomia, cuando en el capítulo IV del 

libro II (estática de fluidos) estudia “Sobre las f rmas que fluidos envasados en 

cuerpos flexibles inducen en estos cuerpos” [Phoronomia pp. 162-169].  

 

E

partir de las ecuaciones generales del capítulo sobre estática de medios flexibles: el 

primero es el del recipiente flexible cilíndrico lleno de líquido cuya forma es circular. 

 

E
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habían hecho “Johann Bernoulli en su texto sobre Fuerzas y Movimientos de los 

músculos disertación contenida en Act. Lips. 1694 p. 200 seq., Y También el insigne 

ecocés Archibald Pitcairne en su Physiologia,”86. [Phoronomia pp. 162-163]   

 

El segundo problema que estudia es el de la lintearia o curva que adopta una tela que 

ontiene líquido, y que también había resuelto en la estática flexible del libro I. Su 

 fijos está embalsado cualquier líquido heterogéneo cuya 

scala de gravedad es la curva ROS, encontrar la forma de la tela” [Phoronomia p. 166  nº 307] 

c

enunciado en la estática de fluidos es: 

 

“Si en el lienzo (lintei) ZDAX con extremos Z, X

e

 

Su solución siguiendo el método general de la estática flexible es: 

 

Caso 2: la lintearia [Phoronomia p. 45  nº 104]. Las condiciones son: 

 

 Fuerza externa BG perpendicular a la curva: BG = BD y T = A  

 Fuerza BD función de la distancia x y del arco ds: BD = k ds siendo k una 

 

Est , que como mostrará en la 

idrostática, dependen de la altura x, y de la superficie sobre la que se aplica ds.  

expresión de x y constantes. 

 Valor de la tensión en el punto inferior A = ½ a2  

as condiciones corresponden al peso de un líquido

h

 

La ecuación (9) queda ahora:  dndsk
=

2 , aplicando (7) para cambiar ds por d
ma 2

man
= ; y teniendo en cue  antes que dmmdnndxm −=

dndxk2 nta como =  queda: 

dmadxk −=2 , con el cambio de variable du = -dx y m=p ente 

sustituyendo en (8) los valores de m y n encontrados queda:   

                                        

y n se obtiene de; finalm

x:  

 
86 PITCAIRNE, ARCHIBALD. Edinburgo (1652-1713).  Publica en 1701 (2ª ed. 1713) Dissertationes 
medicae, donde discute la aplicación de la geometría a la medicina.  
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22 pan −

dxpdxmdy ==  

Que es, dice, la ecuación diferencial de la lintearia encontrada por los Bernoulli por 

otros métodos. Con el cambio de variable  k = u = b-x que representa medir las 

alturas desde la parte superior, queda que u2 = ap, y sustituyendo en la ecuación 

diferencial queda la ecuación de la lintearia en la forma encontrada por  Bernoulli: 

 
2 dxudy −

=  
44 ua −

 

Caso 3: la velaria [Phoronomia p. 44  nº 103]. Las condiciones son ahora: 

 0 

 Fuerza igual a dy2/ds  

 

Tra  

 

 Fuerza perpendicular a la curva: BH = BG = BD y T=A ya que GH =

 Fuerza dada en el punto más bajo A = a 

nsformando la expresión de BD tenemos:
na
dxm

ds
dy 22

=  La ecuación (9) queda 

ahora: 
nam

= , y teniendo en cuenta casos anteriores que 

ndxm =  integrando queda:  

dxmdna 2

dmmdn −=  e

 como en 

ax
m

+
=  el valor de n se obtiene como a 2

siempre de 22 man −= . Finalmente encontramos la ecuación diferencial de la 

Velaria (curva producida por la presión del viento) sustituyendo m y n en (8): 

 

dxadxmdy ==  
22 xaxn +

 

Caso 4: las catenarias [Phoronomia p. 45  nº 105]. Las condiciones son: 
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da ds 

 Pesos proporcional a la longitud del hilo: BE = dq. Siendo q el peso total.  

 

Her neral 

e las anteriores, y en la segunda, mucho más corta, obtiene la ecuación diferencial a 

relación (5)

 Fuerzas verticales BH = BE como corresponden a los pesos de ca

mann hace en esta ocasión dos demostraciones: la primera usa el método ge

d

partir de un corolario general para fuerzas verticales en el que había obtenido la 

bM
A

BM

BF∫      = ; transcrita algebraicamente queda: 
dy
a

dx
q

Teniendo en cuenta que el peso q es proporcional a l

     =  , que 

contiene, nos dice, todos los géneros de catenarias. 

 

a longitud del hilo s, es decir que 

E = dq = ds, podemos desarrollar la expresión general encontrada usando las B

relaciones entre variables hasta encontrar la ecuación diferencial de la catenaria 

(cuerda o catena que cuelga libremente de sus extremos): 

22 xax

dxadx
n
mdy

+
==  

 

 Bernoulli había propuesto el problema de la catenaria en el primer artículo de 

plicación del cálculo diferencial-integral de 1690, tras los artículos fundadores de 

 1692 y Johann BERNOULLI el 

e la lintearia. Euler en su obra de 174487 agrupará todos estos problemas, más el de 

la curva elástica (curva sujeta por un extremo teniendo un peso en el otro), en las 

                                        

a

Leibniz. Éste era ya un viejo problema que, por ejemplo, había tratado Galileo 

llegando a la conclusión equivocada de que la curva era una parábola. El problema es 

resuelto por Huygens mediante procedimientos geométricos y por Johann 

BERNOULLI y Leibniz usando el cálculo infinitesimal. 

 

El mismo  había planteado el problema de la velaria en

d

 
87  Methodus inveniendi lineas curvas maximi minimive propietate gaudentes, sive solutio problematis 
isoperimetrici altísimo sensu accepti. Euler L.  

70 



isoperimétricas o curvas de longitud fija que satisfacen una cierta condición de 

máximo o mínimo88.  

 

La virtud del trabajo de Hermann consiste en agrupar todos los casos bajo un mismo 

sistema de ecuaciones diferenciales generales, que como hemos dicho, conseguirá 

uler mediante principios variacionales en 1744.  

4.3 HIDROSTÁTICA  

Expondremos los principios de la hidrostática contenida en la Phoronomia ya que 

 de esta parte de la mecánica en sus vertientes teóricas y 

rácticas. Hermann recoge y amplía los resultados conocidos organizándolos y 

s” 

Phoronomia pp. 128-138]. Previamente hace varias definiciones y distinciones: 

E

 

 

suponen una estructuración

p

dándoles un nivel mayor de generalidad, e introduciendo explicaciones originales.    

 

El capítulo I de la segunda sección (estática) del segundo libro (fluidos) trata “Sobre 

las leyes generales de la gravedad de los fluidos que reposan sobre plano

[

 

• Fluido en contraposición con sólido es aquel cuerpo cuyas partes pueden 

moverse sin que se mueva todo él.  

• Distingue entre fluido y líquido como género y especie, definiendo líquido 

128 nº 241]. 

como: “Los líquidos son de hecho, los que fluyen hasta que sus superficies se 

hacen horizontales” [Phoronomia p. 

• Fluido homogéneo o de densidad uniforme, y heterogéneo o de densidad 

variable. Da como ejemplo del primero los líquidos conocidos y del segundo la 

atmósfera. 

• Escala de densidad: tal como hace por doquier, define la relación de variables 

geométricamente al modo de la época. En este caso los valores de la densidad 

                                         
88 Ver RADELET-DE GRAVE P. 1998  pp. 469-470  
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para cada distancia a un punto de referencia en el que se cruzan 

perpendicularmente los ejes.  

Densidad me• dia en un fluido heterogéneo: equivale a la densidad de un fluido 

homogéneo que para la misma altura ejerce una presión igual sobre una 

superficie horizontal. La descripción verbal de Hermann equivale con nuestra 

notación a: 

dh
H

∫0 ρ

Hm =ρ  

Define  punto o partícula como un plano infinitesimal. 

Presión o gravitaci

 

• 

• ón (pressio vel gravitationis) como fuerza sobre una 

superficie. 

 

A ntinuación el capítulo expone de forma particularmente simple todos los 

res a sión estática de fluidos 

sob  s

 

 Las presiones que se ejercen mutuamente sólidos o fluidos están en dirección 

roblema de la forma de la Tierra, 

indicando que debe ser un elipsoide con el eje mayor en el ecuador por efecto 

 

Her a

“eleme

del rec

          

co

ult dos fundamentales y las paradojas referidas a la pre

re uperficies. Tras unos resultados básicos: 

•

perpendicular al plano de contacto entre sus superficies. 

• Un líquido en un recipiente alcanza el equilibrio cuando su superficie es 

horizontal. En un corolario comenta el p

de su movimiento diurno89.  

m nn demuestra en la proposición III [Phoronomia p. 130  nº 252] que cualquier 

nto” de una superficie horizontal de un líquido en equilibrio o de los laterales 

ipiente, soportan la misma presión. El razonamiento se basa en que, si no 

                               
89 Hermann sigue la teoría de Newton. La polémica sobre la forma de la tierra estalla en 1722 cuando J. 
Cassini  publica De la grandeur et de la figure de la terre, donde expone cómo a partir de sus mediciones de 
1718 se desprende la mayor elongación en los polos, que Maupertuis contesta. Ver sobre la polémica y sobre 
los recursos usados: Terrall, Mary, ‘Representing the earth’s shape: the polemics surrounding Maupertuis’s 
expedition to Lapland’, Isis 83 (1992), 218-237. 
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soportaran la misma presión habría un desequilibrio que provocaría movimiento, en 

du

nte, cosa que 

arece paradójica “quod haud dubie non paucis 

                                        

contradicción con la hipótesis.  

En la siguiente proposición [Phoronomia pp. 131-132  nº 253] tenemos el resultado 

principal de la hidrostática: “la presión de 

cualquier líquido homogéneo sobre un plano 

horizontal es proporcional a la altura del 

líquido sobre ese plano”. El razonamiento sigue 

usando la re

O
A 

cción al absurdo con la hipótesis 

de equilibrio. Razonando sobre una figura 

similar a la de Hermann (Fig. 16), la presión en 

el punto A se debe al peso de la columna que 

tiene encima OA. Cualquier punto de la 

superficie AB tiene la misma presión tal como 

demostró antes. El punto C y cualquier punto 

de su superficie DC, tienen una presión que depende de la cantidad de líquido sobre él 

BC, más la presión del punto B. Es decir la presión en C depende de la altura de 

líquido desde C hasta la superficie O. Las fuerzas en las paredes son perpendiculares 

a la superficie del recipiente e iguales a cualquier 

punto que esté a la misma altura respecto de la 

superficie del líquido. 

 

En un escolio y dos corolarios [Phoronomia pp. 132-

134  nº 254-256], Hermann explica que la ley es 

independiente de la forma del recipie

p

paradoxum videbitur.”, pero cuya verdad se 

comprueba con experimentos para después ser 

probada90. 

 
90 “Ejus tamen veritas ipsa experimenta comprobata est, atque deinceps probari potest.”  [Ibídem] 

”.  
Trataremos las relaciones entre la mecánica racional y las experiencias en el apartado 7 “Experimentación e 
instrumentos: la razón práctica en la Phoronomia

D 

B H 1 A 

H 2 C 

Fig.  16 

Fig.  17 

73 



 

La experiencia, siguiendo la figura 60 de Hermann (Fig. 17), consiste en una balanza 

DO que equilibra mediante el peso P, el fondo aBCf sujeto en Q. En este pequeño 

do es distinta, prosigue Hermann, la ley hidrostática 

arece contraria a los fenómenos: “… atque adeo regula nosta hydrostatica 

ades para 

ualquier fluido

 homólogas de la 

escala de densidades (escala roja). En su lenguaje:  

M

fondo se pueden encajar dos tipos de recipientes, el cilindro BIKC y el recipiente 

puntiagudo ABC. Si la altura del líquido es la misma en ambos recipientes, la balanza 

queda igualmente equilibrada.  

 

Pero como la cantidad de líqui

p

phaenomenis adversari videtur.”. La explicación de Hermann, completamente actual, 

es que sobre las paredes del recipiente puntiagudo se ejerce una fuerza 

perpendicular, que las paredes también ejercen hacia el líquido, incrementando la 

presión del mismo en la misma proporción que el líquido que hay entre ambos 

recipientes.  

 

A continuación 

demuestra un resultado 

genérico de gran 

potencia que relaciona la 

escala de presiones con 

la de densid

 

D E 
H 

F G S K 
I 

c C T 

heterogéneo. 

[Phoronomia pp. 135-136  

nº 258] 

Las presiones (escala azul de la fig. 18) son proporcionales a las áreas

B X 
N 

Fig.  18 

ETNKH
ESKH

BCpr 
FGpr 

==
TX
SI . Para 

nosotros: ∫=
FG

0
dhFGpr ρ

 donde h es la altura y ρ la densidad.  
∫

BC

0
dhBCpr ρ
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Seguidamente reduce el teorema, para un líquido h  igual omogéneo de densidad a la 

media del heterogéneo, con la hipótesis TX = TE, que supone tomar un sistema de 

unidades en el que una presión TX equivale a una altura TE. Con estas premisas: “la 

presión en cualquier partícula del plano FG es igual al peso de una columna de líquido 

on densidad la media del heterogéneo y como altura la presión SI correspondiente a 

s alturas desde la superficie del líquido.  

• Estudia los vasos comunicantes con líquidos de distinta densidad. En este caso 

a sus densidades. 

Este resultado lo utilizará cuando estudie el fundamento de los barómetros, 

 

En el 

sobre l

La pre

curva re un 

lano vertical, es igual al peso de la  

 

 

c

esa profundidad” [ibid.].  

 

Estudia en corolarios dos casos particulares [Ibid. pp.136-138]:  

 

• En el caso homogéneo la escala de densidades es una recta y las presiones son 

proporcionales a la

las alturas de los líquidos son inversamente proporcionales 

considerados vasos comunicantes con un 

líquido en una rama y un gas en la otra. 

Fig. 19 

capítulo II del libro II estudia la presión 

os laterales de tubos que contienen líquidos. 

sión de un líquido heterogéneo sobre la cara 

de un tubo o sobre su proyección sob

p cuña de líquido homogéneo correspondiente,

a proyección del tubo sobre un

nido entro de presiones”

formada por la escala de presiones (ver Fig. 19) y l

plano vertical.  

 

El centro de gravedad de la figura será el punto defi

del líquido heterogéneo. Aquí vuelve a aplicar los resultados generales de la estática 

rígida para encontrar el punto de aplicación de las fuerzas sobre una superficie.  

 

 como “c

75 



Finalmente estudia la resistencia de los materiales de los tubos. El teorema VIII 

o la 

esistencia de una fibra del tubo), del grosor C del tubo y de la altura del mismo A: 

[Phoronomia p. 143  nº 272] demuestra que la Resistencia o Firmeza F (conceptos ya 

definidos para hilos en la estática flexible) de los tubos rígidos que contienen 

líquidos está en razón compuesta de la Tenacidad T de la materia (que define com

r

act 
A C T

f
F
=  

 

Como había demostrado que la fuerza del líquido en el tubo era el peso de una 

columna de líquido con la densidad media del líquido heterogéneo S, de altura igual a 

la presión M, y superficie igual al producto del diámetro del tubo D y de su sección A; 

la expresión anterior queda: 
act 
A C T

mads
MADS

= , que simplificada es: 
ct 

 C T
mds
MDS

= . La 

particulariza en corolarios para: 

 

• Líquidos homogéneos (S=s):  C TMD
=  

 C MD

ct md

or su diámetro D.  

cmd
=  • Líquidos homogéneos del mismo material (T=t):  

 

Por tanto, concluye, el grosor de los tubos C es proporcional al producto de su altura 

M p  

 

Como aplicación de las relaciones obtenidas da en un escolio [Phoronomia p. 145  nº 

77] dos ejemplos tomados de referencias inscritas en Divers Ouvrages de 

 

2

Mathematique et de Physique de Metiseurs de l’Academie Royale des Sciences de la 

Academia de París: 
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Ejemplo 1: tomado de la disertación del danés Ole Roemer91 (inscrita en la obra 

 partir de experiencias sabemos que un  tubo de plomo de 16 pulgadas (pollicum) de 

anterior fol. 517) sobre los grosores y las fuerzas de tubos en conductos de agua, 

según las diversas alturas de la fuente, y de los distintos diámetros de los tubos.   

 

A

diámetro D, con un espesor C de 6 ½ líneas (linearum) resiste una presión de agua M 

de 50 pies de altura (un pie de París contiene 144 líneas y una pulgada 12). Se busca 

qué grueso c ha de tener otro tubo de plomo de 10 dedos (digitorum equivalente a 

pulgada) de diámetro d, para transportar una presión m de 40 pies. Con las relaciones 

anteriores obtiene: 216 · 50
10·40md

MDC
===  de donde: c = C/2 = 3¼ líneas.  

c

 

ste resultado difiere de las aproximadas 4 ½ líneas que da Romerus, suponiendo 

jemplo II:

E

equivocadamente que las resistencias están en razón doble del grueso de los tubos92. 

 

E  dado por Mariotte en la misma obra folio 513. Supone un tubo de cobre 

de 5 pulgadas de diámetro d, con media línea de grosor c y llevando agua con una 

presión de 30 pies de altura m. Queremos buscar la relación entre las tenacidades 

(resistencias) del plomo y del cobre supuestos los datos anteriores del tubo de plomo.  

Aplicando 
3c :m
1

d
C : MDT
≅= , deducimos que la tenacidad del cobre es un poco superior 

 

t

a 3 veces la del plomo, “juxta has observaciones”.  

emos en el desarrollo de la hidrostática que Hermann atiende a los cálculos 

                                        

V

prácticos después de exponer su mecánica racional, contrastando sus cálculos con 

otros autores como en el primer ejemplo, o llegando a resultados que coinciden con 

las observaciones como en el segundo ejemplo.  

 

 
91 Ole Christensen Roemer (1644-1710). Científico danés. Se traslada a París trabajando en su observatorio 
durante nueve años. Conocido por hacer la primera medida de la velocidad de la luz y por desarrollar un 
termómetro con dos puntos fijos.  
92 “quia resistentias tuborum statuit esse in duplicata ratione crassitierum caeteris existentibus paribus, 
quas supra in propositione apparet esse in simplice non duplicata illa ratione.” [Ibid.]  
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Toda la Phoronomia está llena de referencias y cálculos a experiencias y al diseño de 

4.4 EL ESTUDIO MECÁNICO DEL AIRE 

n los capítulos V, VI, VII y VIII, Hermann organiza y sistematiza los conocimientos 

odo el estudio está salpicado de experiencias, que serán analizadas con detalle a 

4.4.1 El peso del aire                    

l capítulo V del segundo libro está dedicado a estudiar: “la presión del aire causada 

aparatos de medida. Analizaremos con más detalle la relación mecánica racional–

experiencias en el capítulo 7, “Experimentación e instrumentos”.  

 

 

E

sobre el aire, aplicando los resultados de la estática de fluidos general, y tratando 

aspectos peculiares asociados a las características del aire como gas. El primer 

capítulo tratará del peso del aire, establecido a partir de las experiencias de 

Torricelli y la posterior discusión de Pascal. El capítulo siguiente discutirá otro 

aspecto del aire puesto al descubierto también en el siglo XVII por las 

investigaciones de Boyle: la elasticidad. Finalmente, otro capítulo desarrollará las 

relaciones mecáncias que permiten, considerando ciertas hipótesis, asociar una escala 

de densidades con la altura atmosférica (ecuación barométrica).  

 

T

partir de la mecánica racional que desarrolla; su objetivo será dejar claro que los 

fenómenos del peso del aire y de su elasticidad están bien establecidos. Después se 

puede ir más allá, estudiando las consecuencias de esas propiedades del aire, por 

ejemplo para analizar la estructura de la atmósfera.  

 

 

E

por la gravedad”. Hermann comienza afirmando que los resultados obtenidos para los 

fluidos pueden ser aplicados al caso del aire, ya que éste es una especie del género 

fluido. Pasa seguidamente a tratar el problema del peso del aire, considerándolo una 
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evidencia más allá de cualquier duda, como han mostrado, dice, las experiencias de 

Galileo, Boyle, Mariotte y Borelli.  

 

Con todo, al principio discute las experiencias que muestran el peso del aire. 

Comienza comentando la falacia que Hermann atribuye a Aristóteles y que, dice, 

había puesto al descubierto Jacob Bernoulli en un texto de Actas de Leipzig de 1685. 

Tal falacia consiste en afirmar que una vesícula pesa más llena de aire que vacía. Para 

Hermann el razonamiento es simple, y le sorprende que no haya sido descubierto 

antes: la vesícula llena o vacía soporta sobre sí la misma columna de aire, por tanto su 

peso es el mismo en ambos casos. Detallaremos su razonamiento en el apartado 7. 

 

Hermann explica que Johann Bernoulli había medido la densidad relativa agua/aire 

dando un valor de 740, que mejoró en experiencias más cuidadosas hasta obtener el 

valor 77493. Él, dice, usará por comodidad en los cálculos el valor 800. 

 

Aclarada la falsedad de la experiencia anterior, Hermann justifica el desarrollo que 

dará al capítulo. Ya que el fenómeno del barómetro explica el peso del aire, primero 

demostrará una serie de proposiciones de las que deducir su funcionamiento, así como 

el de otros artilugios, tales como bombas de succión y sifones. Acabará con la 

descripción de un modelo nuevo de barómetro más sensible, ideado por Johann 

Bernoulli y aún no dado a conocer.  

 

Primero demuestra la proposición principal [Phoronomia p. 171 nº 315] de la que 

extraerá en corolarios la explicación del funcionamiento de barómetros, bombas de 

agua y sifones. La demostración es inmediata ya que se basa en un resultado 

previamente demostrado en la estática de fluidos general [Corolario IV de la 

proposición V. Libro II]. Dicho resultado afirma que: las alturas que alcanzan dos 

líquidos distintos no miscibles en las ramas de dos vasos comunicantes, es 

inversamente proporcional a sus densidades. Lo aplica del modo siguiente: 

                                         
93 El valor de la Phoronomia  contiene una fracción ilegible añadida al entero 774.  El valor actual es 769,2.  
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Supone un sistema de vasos comunicantes que no es el habitual (Fig. 20). Tiene un 

tubo A abierto en sus extremos e introducido en el recipiente B abierto. Ambos 

están en el interior de un gran vaso C. Supone que A y B tienen mercurio y que en C 

hay agua hasta el nivel MN. Teniendo en cuenta, nos dice, que la densidad del 

mercurio es 14 veces la del agua, la relación de sus a

 

lturas será 1/14.  

ontinúa [Phoronomia p. 172 nº 316], sustituyendo 

a experiencia de Torricelli queda pues explicada mecánicamente, mediante su 

n corolario posterior [Phoronomia pp. 172-173 nº 317]  calcula la altura de la 

                                        

C

el agua contenida en C por el aire de la atmósfera. 

El tubo A estaría abierto fuera de la atmósfera 

que llegaría hasta MN, pero como esto no es 

posible podemos suponer, lo que es equivalente, 

dice, que el tubo A está cerrado superiormente. 

Como por experiencias se sabe que la altura que 

alcanza el mercurio es de 28 dedos de pie de 

París94, el peso de la atmósfera equivale al peso de esa columna de mercurio.   

 

C A 

M N 

D 

B 

Fig.  20 

L

asimilación a los vasos comunicantes para dos fluidos diferentes. De este modo 

abstrae y generaliza la experiencia del barómetro. 

 

U

columna de agua que equilibraría a la atmósfera. Encuentra que como el mercurio es 

14 veces más pesado que el agua, ésta alcanzará una altura 14 veces superior, es 

decir: h agua = 14 h mercurio = 14 · 28 dedos = 392 dedos = 392 pulgadas = 33 pies de 

París95.  

 

 
94 (28 digitorum pedis Parisensis). Si 28 dedos equivalen a la medida actual de 760 mm de mercurio. La 
relación sería aproximadamente 27 mm/dedo.  
95 Si 392 dedos equivalen a 392 pulgadas = 33 pies. Podemos deducir la relación aproximada 11,88 
dedos/pie de París. Teniendo en cuenta la equivalencia anterior de 27 mm/dedo, obtenemos 320,76 mm/pie 
de París.   
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Esto le permite a Hermann estimar la altura mínima de la atmósfera en 26.400 pies, 

a altura del agua le sirve para tratar en el siguiente corolario 

 

e

Como el peso de la atmósfera equilibra el 

l siguiente corolario [Phoronomia p. 174 nº 319] lo dedica a 

d

comúnmente que cuan

que tal dispositivo no es otra cosa que un barómetro doble. La 

xplicación se basa pues en la del barómetro ya descrito. Al ser la rama AB menor 

supuesta uniforme la densidad del aire. Añade que será mucho mayor ya que el aire se 

reconoce menos denso con la altura.  

 

L

[Phoronomia pp. 173-174 nº 318], las bombas elevadoras de agua 

(antilae suctoria vel aspirans). Describe cómo es y de qué  

materiales está hecha la bomba (ver fig. 21), y explica que la 

fuerza que eleva el agua es la misma que mantiene al mercurio, 

en el tubo comunicado con la atmósfera: pressio scilicet 

atmospherae. Retrayendo, dice, el émbolo (hecho de cuero que

ncaja en el tubo AB de forma que el aire no pueda pasar desde 

la cavidad superior a la inferior), desde CD hasta mn el agua 

entrará por B impulsada por la presión atmosférica.  

 

del agua, tal como ha mostrado en la 

proposición, el agua podrá subir hasta la 

altura máxima de 33 pies, fenómeno 

ampliamente conocido. Aunque estiremos más

permanecerá a 33 pies, tal como Galileo consideró, nos dice 

Hermann. 

 

 el émbolo, el agua 

 

Fig.  21 

E

explicar el fenómeno del sifón (siphones). Consiste en un tubo 

o en forma de U invertida con brazos desiguales. Se observa 

do el tubo está lleno, el agua circula del depósito A al C.  

 

Hermann explica 

ABC (fig. 22) dobla

A 

C 

               Fig. 22 

B 

e
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que la CB, la presión en A es mayor que en C, lo que hace que el agua circule desde A 

hasta C hasta acabar el agua del recipiente A. La diferencia de alturas CB-AB define 

lo que Hermann llama vim motricem, y de ella depende la rapidez de vaciado.  

 

En otro corolario [ibid. nº 320]  Hermann define las condiciones de funcionamiento 

el sifón; no fluirá si:  

riz es cero, es decir, si  CB-AB = 0 

• Si la longitud de la rama corta iguala o excede los 33 pies, que equivalen al 

olumna AB equilibraría o 

 

Un cor ora la formación de vacío (vacuum) en el 

terior del tubo ABC. Ocurrirá en el caso en que la rama AB es menor de 33 pies y la 

omia el vacío como tal. Hermann 

o hace de él un asunto de discusión, como lo fue en el siglo XVII96, sino que lo 

pulgadas que 

lcanza el mercurio varía a menudo, obteniéndose de este modo la variación en la 

presión atmosférica, si el instrumento es lo suficientemente sensible para apreciar 
                                        

d

 

• Si la fuerza mot

peso de la atmósfera. En este el peso de la c

superaría el peso de la atmósfera.  

olario posterior [ibid. nº 321] expl

in

rama BC mucho mayor de 33 pies. La presión de la rama BC sería mucho mayor que la 

atmosférica en C, produciendo un movimiento de agua que crearía un vacío en B, 

mayor cuanto más sobrepase  BC el valor de 33 pies.  

 

Señalemos que por primera vez aparece en la Phoron

n

incluye de forma natural en sus explicaciones, incluso describe la forma de producirlo 

mediante el sifón. En un corolario [ibid. nº 322], resuelve el problema de encontrar la 

longitud del brazo largo BC, conocida la del corto AB, para que conseguir un grado de 

vacío determinado, dado como la longitud de tubo que no contiene agua. 

 

En el escolio final [ibid. nº 323] explica que la medida de 27 o 28 

a

 
96 A partir de las experiencias italianas del tubo de mercurio de Torricelli y de su repetición en Francia por 
Pascal, se produce una discusión sobre si el espacio que queda en la parte superior del tubo está vacío, como 
piensan Torricelli y Pascal, o lleno de partículas sutiles como piensan Descartes y sus seguidores. Para una 
exposición de las ideas sobre lo vacío y lo pleno desde la antigüedad hasta el s. XVII ver [Waard C. 1936] 
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dichas variaciones. Reservará el nombre de barómetro (barometri) al que pueda 

mostrar las variaciones de presión atmosférica con precisión, llamando al resto 

baroscopios (baroscopii). 

 

Señala los intentos por diseñar barómetros más precisos por parte de: 

 

• Huygens97 (descrito en Ephemeridibus Gallicis) 

de marzo de 

1708) 

Deb evo barómetro inédito ideado 

por o

comuni  privado.  

la que reposa el 

ubo cerrado vertical tradicional. Dicha 

izontal. Como este último tiene un diámetro 4 veces 

                                        

• De Hire98  (descrito en Actis Academiae Regiae Paris del 21 

ido a su simplicidad, acaba con la descripción del nu

 J hann Bernoulli, y que éste le ha 

cado en

 

La mejora en sensibilidad procede del 

diseño de la cubeta en 

t

cubeta es sustituida por la prolongación 

en ángulo recto del tubo vertical AHB en 

otro más delgado BC (ver fig. 23). El 

barómetro se llena de mercurio desde A 

hasta E, permaneciendo el extremo C 

abierto al aire. Las dimensiones deberían s

pulgadas, longitud de la rama horizontal B

líneas99, diámetro de BC, 1 línea. 

 

El descenso del mercurio en el tubo vertical supone un desplazamiento de igual 

volumen en el líquido del tubo hor

er: altura de la rama vertical AB, 30 o 31 

C, 3 pies como mínimo, diámetro de AB 4 

Fig.  23 

 
97 Extrait d’une lettre de M. Huygens touchant une nouvelle maniere de Barometre, qu’il a inventée (1672), 
en [HUYGENS C. 1888-1950]  T. VII. Correspondance, 1670-1675. pp. 238-241.  
98 Sur un nouveau baromètre.  Histoire de L’académie Royale des Sciences. 1708. p. 3  
99 Da el valor de 1/12 pie de París como equivalente a 1 línea, por tanto, tendremos aproximadamente 26,73 
mm/línea.  
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inferior, el mercurio alcanzará en el tubo horizontal una longitud inversamente 

de la 

ama horizontal, propone troquelar 

4.4.2 La elasticidad del aire                                     

l capítulo VI del segundo libro trata de “la fuerza elástica del aire en general” (“De 

vi elastica aeris in genere” [Phoronomia pp. 180-189].  En él Hermann sigue el mismo 

ico ya que se 

t

uamente 

proporcional al cuadrado del radio, es decir, 16 veces más que en el vertical. La 

sensibilidad por tanto aumenta 16 veces respecto del diseño habitual en el que los 

tubos tienen igual diámetro.  

 

Para resolver problemas prácticos 

como la excesiva longitud 

r

en espiral la rama horizontal. 

Además coloca una entrada 

superior obturable para poder 

rellenarlo con mercurio fácilmente, 

y un depósito más ancho en la parte 

superior del tubo vertical que toma 

del diseño ya citado de Huygens. 

Una ligera curvatura en la parte infe

entre por el tubo horizontal al proce

fig. 24 los diversos diseños propuesto

 

rior del tubo vertical hace, dice, que el aire no 

der al llenado del o. Podemos ver en la 

s. 

Fig.  24 

 barómetr

E

planteamiento de los Principia que supone un tratamiento tautológ

pretende deducir la relación de Boyle (densidad proporcional a la presión) a partir de 

omar como hipótesis que la presión depende de la distancia intermolecular.  

 

El aire para Hermann tiene una propiedad peculiar, quantum experimentis constat, 

que lo distingue del resto de fluidos líquidos: tiende a expansionarse contin
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si no se lo impide algún cuerpo. A esta propiedad le llama “fuerza elás ica” (Elater seu 

vis elastica)100.  

 

ita varios 

t

C es que han descrito experiencias que prueban tal propiedad: Boyle, 

ariotte, Jacob Bernoulli, y la Aerometria de Wolff. Resume tres de estas 

s teorías 

ue han intentado explicarla. Expone la teoría que sobre la elasticidad del aire había 

tículo superficialmente, parece que Parent duda de 

 elasticidad del aire, sin embargo, dice, no es así, ya que Parent sólo niega que las 

consiste en explicar la tendencia al mutuo 

lejamiento, como producida por la cantidad y velocidad de las partículas de éter que 

pasan por los espacios que hay entre las moléculas de aire.  

                                        

autor

M

experiencias que considera inequívocas: dos de ellas se basan en introducir objetos 

en una bomba pneumática; primero considera una vejiga cerrada con un poco de aire 

en su interior que se hinchará al extraer el aire de la campana de cristal en la que se 

encuentra encerrada; después explica que si introducimos en la campana de la bomba 

un recipiente de cristal fino cerrado que contiene aire, al vaciar la campana el 

recipiente interior a veces se rompe. La tercera experiencia compara el esfuerzo 

necesario para separar dos hemisferios metálicos vaciados de aire y llenos.  

 

Establecida la realidad de esta nueva propiedad del aire, Hermann discute la

q

expuesto Parent101 y que se encuentra en el artículo Elasticitatem aeris de L’Histoire 

de l’Académie royale de 1708102.  

 

Hermann explica que si se lee el ar

la

partículas de aire puedan ser consideradas al modo de laminillas dobladas o 

filamentos enmarañados en espiras, etc.  

 

La teoría de Parent, nos dice Hermann, 

a

 
100 Estos términos son introducidos por Jean Pecquet (1622-1674) en Experimenta Nova Anatomica (París 
1651), para nombrar la tendencia de las partículas de aire al mutuo alejamiento. Esta obra se considera la 
introductora de las experiencias de Torricelli, Pascal, y Roberval en Inglaterra, donde serán conocidas por 
Boyle. [WEBSTER C.  1965; pp. 451-454]  
101 Antoine Parent (1666-1716) [DSB, X, 319-320] 
102 En la p. 17 del texto “Sur la dilatation de l’aire” [Histoire de L’académie Royale des Sciences. 1708 pp. 
11-19], se describe la teoría de Parent citada por Hermann. 
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“Idcirco juxta laudatum Autorem moleculae aerae tanto magis a se invicem recedere conantur, quo 

abundantior fuerit aetherea materia meatus aeris transfluens, et quo pernicios ejus motus. Ab hac enim 

materia aetherea vim omnem derivandam esse putat, qua aeris moleculae in alia corpora agere possunt.”  

[Phoronomia p. 181 nº 326] 

 

Esta teoría de Parent es refutada por Hermann de la siguiente forma. Es sabido, 

luyen por lugares estrechos con una velocidad inversamente 

roporcional a la sección del conducto. Como los líquidos tienen mayor densidad que el 

r qué, pregunta Hermann, 

l agua no tiene elasticidad? Mucha mayor elasticidad (elasticitas) aún tendría el 

s suficiente saber que existe, por los experimentos 

itados103 realizados con la bomba pneumática (Autlia Pneumatica) de Guericke 

bargo usa los resultados de la mecánica racional para 

emostrar la imposibilidad de usar tales partículas etéreas para explicar una 

                                        

dice, que los fluidos f

p

aire, la velocidad de las partículas etéreas por entre los conductos de sus moléculas 

será mayor que en el aire, lo que producirá una mayor fuerza sobre las moléculas de 

líquido, ya que, tal como demostrará, nos dice, la fuerza de un flujo de partículas está 

en razón del cuadrado de la velocidad de dichas partículas. 

 

Concluye que, en los líquidos, siguiendo la teoría de Parent, la fuerza elástica es 

mayor que en el aire, cosa que contradice lo observado. ¿Po

e

mercurio, acaba afirmando.  

 

Hermann no propone una teoría de la elasticidad alternativa. Afirma que cualquiera 

que sea su causa física, e

c

perfeccionada por Boyle.  

 

Notemos la prudencia de Hermann que no niega explícitamente la existencia del éter 

en toda su obra, sin em

d

propiedad del aire. El éter es sencillamente innecesario en su obra. 

 

 
103 “Verum quicquid sit de causa physica elateris aeris, ad institutum nostrum sufficit aeri vim elasticam 
inesse, quod praeter experimenta ab initio hujus capitis relata, etiam probari potest effectibus antilae 
Guerikianae a Roberto Boylio postea magis perfectae,…”  [Phoronomia p. 183 nº 327] 
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Pasa a describir las partes de la bomba pneumática (ver fig. 25 ) cuya razón de ser es 

poder extraer el aire del recipiente superior M a través de las sucesivas emboladas 

, s, r, q etc.) en el tubo AG104 o comprimirlo en la secuencia inversa (T, S, R, etc.). La 

uación, basándose 

n que las raridades

(t

válvula IK (spiraculo) permite cerrar la comunicación entre el tubo del émbolo AG y la 

campana M. El plato CD contiene agua para evitar indeseadas entradas o salidas de 

aire.  

 

Hermann demuestra a 

contin

 

obtiene la siguiente relación que sirve tanto para 

ndensaciones del aire: 

Z

Fig.  25 

e

sucesivas siguen una 

progresión geométrica, la 

relación fundamental de 

la bomba de aire. 

Recordando la definición 

de raridad como el 

inverso de la densidad, 

rarefacciones como para co

P
Q
P  n =  

 Log

 Log

Donde: 

• n es el número de emboladas realizadas en la máquina 

• Z la raridad final tras las n emboladas 

d inicial o natural antes de hacer funcionar la máquina 

 

Her n por Jacob 

Ber l ica su demostración en las Actas de la 
                                        

• P  la rarida

• Q la raridad tras la primera embolada 

ma n afirma que tal relación fue establecida sin demostración 

nou li en 1693 y que en 1705 Varignon publ
 

104 Para una breve historia de la bomba pneumática y sus diferentes diseños ver [WEBSTER C.  1965; pp. 
464-465] 
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Academia de París. La memoria de Varignon que contiene la demostración, que 

 

b atis” [Phoronomia pp. 189- 

97]. Hermann nos dice que los “filósofos” han notado que la fuerza elástica crece 

 elasticidad de las partículas. Ya que la elasticidad consiste en 

l empuje de las moléculas del aire en su intento de alejamiento mutuo, la presión 

Muestra que, tomando como 

ipótesis que la fuerza elástica es proporcional a la potencia n de la distancia de 

básicamente es la de Hermann, es  “Manometre ou machine pour trouver le raport 

des raretés ou rarefactions de l’air naturel  ... “ [Histoire de L’académie Royale des 

Sciences. 1705 pp. 300-331]. Varignon indica en la memoria que fue  Bernoulli quien 

da la regla sin demostrar en de seriebus infinitis de 1692. 

Dedica el capítulo VII a estudiar la relación entre la fuerza elástica y la densidad 

(“De viribus elasticis aeris cum densitati us ejus compar

1

cuando lo hace la densidad del aire, pero que habrá que examinar si la proporción es 

simple o compuesta.  

 

A continuación, explica que la presión sobre las paredes que contienen el aire, es un 

efecto colectivo de la

e

sobre la pared que intenta impedir su expansión, será la resultante de las fuerzas que 

ejercen todas las partículas [Phoronomia p. 189 nº 339]. 

 

El teorema principal [Phoronomia pp. 189-190 nº 340] supone la expansión en una 

dimensión de un recipiente prismático que contiene aire. 

h

separación entre dos partículas contiguas, esta misma fuerza elástica es proporcional 

a la potencia n de la densidad. En nuestra notación:  nD F∝ .  

 

El siguiente teorema extiende la demostración anterior para un recipiente que se 

expande en tres dimensiones. En este caso obtiene que la fuerza elástica sobre una 

uperficie igual en el recipiente original y expansionado es en nuestra notación: s

3 2nD   F +∝ . Evidentemente en el caso simple en que n=1, es decir suponiendo que la 

elasticidad es simplemente proporcional a la distancia entre partículas, la fuerza 

elástica queda proporcional a la densidad del aire.  
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ho, la figura y los razonamientos 

ue acompaña la demostración de Hermann son similares a los empleados por Newton.  

stadística, dejando indeterminada la potencia n de dicha proporcionalidad. Con esto, 

c ibe a continuación la experiencia que usa tubos 

n forma de J para comprobar la relación inversa entre volumen y presión. 

4.4.3 Modelos atmosféricos         

 

El capítulo VIII de la sección primera del segundo libro trata del estudio de la 

densidad del aire a diferentes alturas atmosféricas, y esto para cualquier hipótesis 

                                        

Tal como afirma Hermann, éste es el resultado contenido en el escolio de la prop. 

XXIII del segundo libro de los Principia105. De hec

q

 

En ambos casos se parte de la hipótesis de que la presión es inversa a la distancia 

intermolecular, que se toma como constante para todas las moléculas y no de forma 

e

se demuestra la proporcionalidad directa entre presión y densidad según el 

exponente n. Como la distancia intermolecular es inversamente proporcional a la 

densidad, estas demostraciones tienen un carácter tautológico. La primera deducción 

de la ley de Boyle a partir de la teoría cinética de las partículas, se encuentra en al 

Hydrodynamica de Daniel Bernoulli.  

 

En la proposición XXIII establece que la relación entre presión y volumen 

orresponde a una hipérbola, y descr

e

Experiencias, nos dice, ya realizadas cuidadosamente por Boyle106, Mariotte, Bernoulli 

entre otros.  Finalmente resuelve problemas en los que obtiene la altura del mercurio 

en un tubo de Torricelli que contiene aire encerrado junto con el mercurio y que, tal 

como muestra Hermann, equivalen a las encontradas por Jacob Bernoulli en su De 

gravitate Aetheris (Ámsterdam 1683).   

 
105 Este teorema es el último de la sección V del segundo libro de los Principia que trata “Sobre la densidad 
y compresión de los fluidos: hidrostática”. Newton llama a la elasticidad fuerza centrífuga. [NEWTON  I.  
1687 b. pp. 694-699] 
106 Ver el cap. X. Boyle’s Experiments on the Compression and Dilatation of Air [WEBSTER C.  1965; pp. 
484-487] 
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sobre su elasticidad (“De densitatibus aeris in diversis Atmosferae locis in omni 

li elasticitatum hypothesi.”) [Phoronomia pp. 197-212]. Destaquemos como de 

N d a

107.  

ente obtener, como casos particulares, resultados ya 

onocidos y otros de su propia cosecha. Hacemos a continuación un resumen de sus 

 

possibi

nuevo el teorema principal consiste en un principio energético (trabajos virtuales) en 

una situación estática.  

 

os in ica nad  más comenzar que sólo considerará el peso como causa de los 

cambios de densidad del aire, y no tendrá en cuenta el efecto que sobre la misma 

inducen el calor o el frío

 

Esta sección ilustra de nuevo el método general que sigue Hermann en su obra; 

desarrolla teoremas generales que usan el cálculo diferencial e integral en forma 

geométrica, para posteriorm

c

resultados. Construye un gráfico (fig. 26) con 5 variables interconectadas: 

c 

 

b 

 

T 
a 

  Pesos vs r 
vs  r 

                                         

1C 

C 

1B 

  B 
 d  

 
 1D 

 D  E 

 1E 
 2E

 e 

 1A

  

ω Elasticidades    
(presiones) vs 

densidades Inversa de
densidad vs  
presiones 

Fig.  26 

K 

2C 2B 

α

 2A 

β Densidades 

 

A 
o 

δ  f 2D 

107 Tal como sabemos, el problema del estudio del aire requiere considerar la ecuación de estado de los  
gases que contiene las variables: presión, volumen, densidad y temperatura. Hermann hace su estudio sin 
tener en cuenta las variaciones de temperatura, es decir a T=cte. 

  O 

 1O 
 2O 

 la 
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• El eje vertical AT representa las alturas atmosféricas consideradas A, 1A, 

• itatis variabilis) expresa los valores de los pesos del 

• sidad atmosférica 

• is aeris) representa los valores A1O, A2O, etc. de 

•  valores EO, 1E1O, 

 

stablece un axioma [Phoronomia p. 198 nº 358] que expresa la condición de 

 

etc (que llamaremos r). 

La curva C (Scala grav

aire 1A1C, etc. para cada altura de la atmósfera A, 1A, etc. 

La curva B (Scala densitatum) representa el valor de la den

para cada altura A, 1A, etc.  

La curva D (Scala elasticitat

la elasticidad del aire para cada densidad OD= , 1OD, etc.  

La curva E (Reciprocam scala elasticitatis) representa los

etc. recíprocos de cada elasticidad OD, 1O1D, etc. De forma que el producto 

EO.OD =  1E1O.1O1D = etc.  

E

equilibrio atmosférico, es decir, que el peso (p) de la atmósfera es en cualquier lugar 

equivalente a la elasticidad del aire (P) en ese lugar. Es decir P  =p  
∆S

 

 partir del axioma y con la construcción anterior demuestra el teorema principal 

n nuestro lenguaje constituye un “teorema energético virtual” (el trabajo del peso 

equivale al trabajo de compresión del aire):    

A

[Phoronomia p. 199 nº 359]. Considera primero un cambio diferencial de altura aα (en 

rojo en el dibujo), para después integrar, llegando al siguiente resultado de igualdad 

de áreas:  ACca = OEeo. Y Esto para cualquier ca y eo. 

 

E

dP   
0 P0

∫ ∫=pdr
ρ

 1PH

Donde p es el peso, r la altura, P la presión y la ρ densidad. 

n el corolario I [Phoronomia p. 199 nº 360] supone que la curva de densidad es una 

Escribimos las hipótesis así: 

 

E

parábola general de grado m, y que la del peso es una hipérbola general de grado n; 

esto implica que la curva inversa de la densidad es una hipérbola de grado m. 
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n - 

m 

r    
P

∝p
ρ  

r

m 1    1    P  ∝⇒∝ρ

De este modo Hermann deja abierta en su demost ación la posibilidad de que la 

proporcionalidad entre densidad y presión, así como entre peso y distancia al centro 

es de su teorema general siguiendo el algoritmo 

 explicado por él108, y obtiene una expresión que da la densidad en función de la 

altura r:                            

de fuerzas, sea simple o compuesta.  

  

A continuación realiza las integracion

ya

       1  - mr    ∝ρ  
m -n  m

El interés de Hermann es mostr

 

ar que tanto los casos demostrados, como los citados 

 no demostrados por Newton en el escolio posterior a la proposición XXII del libro 

n (la 

urva de presiones es una recta), para el que la expresión anterior no es válida [Ibíd. 

so 

general en que 

y

II de los Principia109, se deducen como casos particulares de su teorema general. Para 

ello, particulariza la ecuación con n =2 (que corresponde a la ley newtoniana del 

inverso del cuadrado para el peso) y m variando según: m = ¾; m = 3/5; m = 3/2.  

 

Estudia el caso m=1, que implica la proporcionalidad de la densidad con la presió

c

nº 361], llegando a la conclusión de que la densidad forma una progresión continua. 

  

Hermann deduce en un corolario posterior [Ibíd. nº 362], que con m=1 y en el ca

nr
1    p ∝ , las densidades forman también una proporción continua.  

De nuevo particulariza obteniendo los casos que corresponden a los estudiados o 

citados por Newton:  

                                         
108 Ver la exposición y discusión del algoritmo de integración en el capítulo dedicado al cálculo diferencial e 
integral.  
109 Newton trata la variación de la densidad del aire con la altura en ciertos casos en la sección V de segundo 
libro de los Principia dedicado a la Hidrostática [NEWTON  I.  1687 b; pp. 687-699] 
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• n =1 [Ibíd. nº 363] que corresponde, nos dice, a la proposición XXI 

demostrada en los Principia110.  

 a la prop. XXII citada.  

aso deduce que la ley de densidad es 

logarítmica con el inverso de la altura r: 

• n = 2 [Ibíd. nº 364]. Corresponde a la demostración de la proposición XXII de 

los Principia111.  

• n = - 1 [Ibíd. nº 365]. Corresponde al caso citado sin demostración en el 

escolio posterior

• n = 0 [Ibíd. nº 366]. Corresponde a considerar que el peso es constante, lo que 

es cierto para pequeñas alturas. En este c

ρ
1

Halley112, pero no dice que es también un caso citado por Newton sin 

demostración en el escolio posterior a la prop. XXII mencionada.  

nte, Hermann llega a la llamada fórmula barométrica [Ibíd. nº 3

 log r ∝ . En su lenguaje, la 

densidad decrece en progresión geométrica cuando la altura crece en 

progresión aritmética. Hermann nos indica que fue el caso estudiado por 

 

Finalme 69]  para el 

ltimo caso, es decir considerando el peso del aire constante con la altura (n=0) y su ú

densidad proporcional a la presión o elasticidad (m=1).  

En nuestro lenguaje la relación es:   1

0

1

 log
  r ρ

ρ

= . Her

2

02  logr
ρ
ρ

las alturas barométricas en tres luga y  ρ2  y la altura r1 entre las dos 

370] lo aplica a un ejemplo numérico que extrae de la obra Tentamine De Natura 

Aeris de Mariotte (pp. 194-195).  

mann explica cómo, conocidas 

res ρ0, ρ1 

primeras, la proporción permite calcular la otra altura r2. En un escolio final [Ibíd. nº 

 

                                         
110 [NEWTON  I. b 1687; p. 692] 
111 [Ibid.  p. 694] 
112 Halley publica su fórmula barométrica en 1686. Halley, Edmund, “On the height of the mercury in the 
barometer at di.erent elevations above the surface of the earth: and the rising and falling of the mercury on 
the change of weather”, Phil. Trans. Royal Soc. of London 16, 104-116. Ver [BERBERAN N.M. (et al) 
1997] 
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5 LA DINÁMICA EN LA FORONOMIA 

 

a sección segunda del primer libro está dedicada al estudio del movimiento de 

uas.  

 

Hermann hace un estudio deductivo de la dinámica, mostrando primero unos 

principios generales o leyes, de los que obtendrá muchos de los resultados ya 

conocidos, pero deducidos de forma diferencial. Para ello hace primero un trabajo de 

construcción conceptual que tal como veremos es de gran riqueza, a pesar de que no 

establecerá nombres explícitos para algunos de los conceptos que maneja con 

profusión.  

 

Las demostraciones de los principios generales son realizadas en referencia a 

construcciones geométricas, usando lo que caracterizamos como “geometría 

diferencial”. Esta es la etapa previa al “álgebra diferencial” que caracteriza la 

“mecánica analítica” de Lagrange de 1788, que históricamente va desarrollándose 

hasta hacerse independiente de la geometría. Es interesante destacar que en 

Hermann se da una mezcla de ambas técnicas; veremos cómo algunas de las 

deducciones de Hermann son puramente algebraicas, lo que nos indica de qué modo se 

está produciendo la transición metodológica y conceptual hacia una mecánica analítica 

independiente de la referencia geométrica.  

 

Hermann consigue en su exposición dinámica fundamentalmente tres cosas: definir 

conceptos mecánicos en su forma diferencial, establecer deductivamente los 

resultados sobre unos principios generales, y mostrar caminos de aplicación del 

cálculo diferencial a la mecánica. Mostraremos de qué modo lo consigue.  

 

Veremos cómo Hermann procede a una reestructuración de los principios dinámicos 

en relación a los resultados representados en los Principia, y cómo muchos de los 

resultados dinámicos de la Phoronomia suponen una reformulación diferencial, pero 

L

cuerpos sólidos sometidos a solicitaciones contin
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también un intento de demostración más sólida, de problemas inaugurados por 

Newton. Estas tareas constituyen también objetivos de los principales actores de la 

reformulación mecánica, principalmente los hermanos Bernoulli y Varignon a 

comienzos del s. XVIII.  

 

Compararemos el trabajo de construcción conceptual y metodológica de Hermann, con 

el que Varignon había realizado unos años antes. Para ello usaremos el análisis que 

ace  M. Blay de las memorias de Varignon de 1689 y 1700 en su obra: La naissance 

M on

a i e Varignon, aunque ambos persiguen  el objetivo de 

undar una mecánica sobre las bases del cálculo diferencial leibniziano. Ambos 

h

de la mecanique analitique. La science du mouvement au tournant des XVIIe et 

XVIIIe siècles. [BLAY M. 1992].  

 

ostraremos cómo Hermann realiza una c ceptualización y una construcción 

lgorít mica independiente de la d

f

desarrollan las imprescindibles herramientas conceptuales infinitesimales (fuerza y 

velocidad instantáneas). Será Hermann quien escriba la ley fundamental de la 

dinámica en la forma que adopta en nuestros libros de texto por primera vez. Y quien 

también por primera vez demuestre el teorema de las áreas usando el nuevo cálculo, y 

utilizando, como actualmente, la conservación del momento angular. Pero la diferencia 

que creemos fundamental con el trabajo de Varignon consiste para Hermann en 

considerar como fundamental un enfoque que ahora identificamos como “energético” 

(teorema trabajo-energía), y que él llama  principio general de de igualdad de 

momentos. Los trabajos de ambos contienen los dos enfoques que adoptará la 

mecánica más elaborada, el que usa la segunda ley de Newton y el que utiliza la 

relación trabajo – energía. Herman usará ambos, pero haciendo hincapié en la 

potencia de uso del segundo en muchos de los temas tratados en este capítulo. Nos 

quedará por saber hasta qué punto ambos enfoques (y autores) sirven de inspiración a 

Euler y después a Lagrange en sus magnas construcciones.  
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Hemos dividido este capítulo de la monografía en dos apartados principales en los que 

Hermann establece las leyes generales del movimiento y las leyes básicas específicas 

e las fuerzas centrales. Hermann en los últimos capítulos de su dinámica se ocupará 

5.1 LAS LEYES GENERALES DEL MOVIMIENTO Y SUS APLICACIONES  

El capítulo I de esta segunda sección trata sobre las solicitaciones generales 

inámica general comienza con 12 definiciones [Phoronomia pp. 51-55], un postulado y 

d

también de otros temas dinámicos, como la caracterización de las fuerzas centrales 

en órbitas móviles, las leyes del movimiento pendular y las leyes de los choques, así 

como el movimiento en medios resistentes, todos ellos tópicos del momento, pero que, 

dada la extensión de esta monografía, trataremos de modo esquemático, en espera 

de una mayor concreción. 

 

 

aplicadas continuamente, y del movimiento que estas originan en el vacío113. La 

d

un lema. En las primeras 7 definiciones establece la descomposición de fuerzas que 

usará en los estudios dinámicos, así como las escalas geométricas asociadas: 

 

I. Define el vacío (vacuum) como el medio que no afecta al movimiento de los 

cuerpos. Ver el apartado 3.5 de este trabajo para una discusión del concepto de 

vacío y materia y la posición de Hermann sobre el éter. 

II. 

 

Solicitaciones centrales o de gravedad variable (Solicitationes centralis o 

solicitationes gravitatis variabilis): aquellas concurrentes en un punto llamado 

“centro de solicitaciones”. Nos dice, también llamadas por Newton “fuerzas 

l

                                        

centrípetas”. Vemos aquí como la terminología de de Hermann hace converger 

as de Newton y la de Leibniz114. Solicitación (Leibniz) equivale a fuerza 

(Newton), eliminando las distinciones poco prácticas de Leibniz.  

 
113 De generalibus solicitationum continuatarum affectionibus, et de motibus in vacuo inde oriundur. 
114 Ver el apartado 3.3 de este trabajo, en el que se discuten las interpretaciones de Newton, Leibniz y 
Hermann del concepto de fuerza. 
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III. Solicitaciones continuas (Solicitationes continuari): aquellas continuamente 

aplicadas al cuerpo durante todo su trayecto. Se consideraba en el s. XVII y en 

 

IV.  solicitaciones centrales

la mitad del XVIII que la fuerza actuaba por impulsos repetidos sobre el 

móvil115.  

Escala de  o de gravedad variable: en este caso y por 

primera vez usa las coordenadas polares para representar el valor de la fuerza 

 

V. 

central en cada punto de la trayectoria seguida por el móvil. 

Solicitación tangencial: aquella parte de la fuerza central que empuja en la 

dirección tangencial en el punto de la curva que representa la trayectoria. 

 

VI. Solicitación perpendicular: aquella parte de la fuerza central perpendicular a la 

tangente en cada punto de la trayectoria. Esta fuerza es la que desvía 

VII.  tangenciales:

continuamente al cuerpo de la dirección tangente que describiría si no actuara 

la fuerza central. Es de hecho, nos dice, opuesta al impulso que intenta separar 

al cuerpo de la curva en cada punto. Así mismo, explica que no será necesaria 

una escala para estas fuerzas, ya que se equilibran en todo momento con el 

impulso de alejamiento. 

 

Escala de solicitaciones  curva que representa en coordenadas 

olares la fuerza tangencial en cada punto de la trayectoria.  

 

p

                                        
115 Ver la nota anterior. 
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A continuación, representa las escalas en un diagrama múltiple (fig. 27), de forma 

que: 

 

h 
H 

A R A G g 

B S E  F 

b s e a  f 
N 

c n 

β α 
q 

D 

Fig. 27 

• ANn (línea negra de la figura) es la trayectoria del móvil en la que se 

consideran dos puntos infinitamente próximos N y n cuyas distancias al 

centro de fuerzas D son ED = ND y eD = nD respectivamente.  

• Nα = EB es la solicitación central en el punto N respecto del centro D. 

Igualmente eb representa la solicitación en n. La escala ABbc es la de 

fuerzas centrales para cada distancia a D representada en el eje 

vertical AO.  

• Nα tiene las componentes: tangencial Nβ  y perpendicular αβ 

• La componente tangencial Nβ = ES y la que corresponde a nα = es. Por 

lo que la curva RSs es la escala de fuerzas tangenciales. 

 

En las siguientes definiciones conceptualiza una serie de magnitudes asociadas a la 

aplicación de fuerzas y que necesitará para demostrar los principios generales de su 

dinámica: 
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VIII. Solicitación acelerante o retardante según el cuerpo descienda acercándose al 

centro O, o ascienda alejándose de O. 

 

IX. Momento de una solicitación: producto de la fuerza por la distancia infinitesimal 

recorrida Nn. En el diagrama el momento de EB será BE.Ee (rectángulo BEe) y el 

momento de ES será ES.Ee (rectángulo SEe). La nueva magnitud definida por 

Hermann supone considerar el momento diferencial de una fuerza. 

 

X. Escala de celeridades: curva AFf asociada a la de solicitaciones en cada punto N 

de la trayectoria. 

 

XI. Momento de la celeridad: producto de la velocidad en un punto N por la 

variación infinitesimal de velocidad af entre dos puntos próximos N y n de la 

trayectoria. Este es un concepto original de Hermann que representa para 

nosotros un diferencial de energía cinética. Lo usará para la demostración de 

uno de sus teoremas principales, el que en lenguaje actual llamamos “de las 

fuerzas vivas”, y que exponendremos enseguida. 

 

XII. Representación algebraica del tiempo transcurrido: usa la simbología tAE para 

indicar el tiempo transcurrido desde que el móvil está en A hasta que llega a E, 

etc. Veremos a continuación que representa una variación infinitesimal de 

tiempo como dT y también como tNn, lo que nos indica una vez más la mezcla de 

símbolos geométricos y algebraicos que usa Hermann en toda su obra. 

 

La representación del diferencial de tiempo como dt, ausente en la obra de 

Newton, aparece con Leibniz, tal como vemos por ejemplo en la demostración 

del problema de la curva isócrona planteada como reto a los cartesianos en el 

texto: “Reponse de M. L. à la remarque de M. l’abbé D. C. contenue…” que Leibniz 
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publica en 1687 en Nouvelles de la République des Lettres116. También Varignon 

desde los artículos de 1698 representa un instante como dz117.   

 

Tal como explica M. Blay en la obra citada118, la expresión algebraica del tiempo 

permitirá resolver cuestiones relativas a este parámetro físico básico, como los 

conceptos que aparecen como consecuencia de considerar sus variaciones 

temporales: la velocidad en un instante, la aceleración y la fuerza. El trabajo de 

Hermann está pues en la línea de estas avances conceptuales.  

 

Tras la definición de magnitudes y escalas establece el postulado siguiente: podemos 

considerar que el movimiento es uniforme en un “elemento” (diferencial) de espacio 

Ee o Nn. Hermann explica que el movimiento no es de velocidad constante sino que 

sufre un incremento (o decremento) de velocidad infinitesimal, pero como este 

diferencial se puede suprimir al ser sumado (o restado) a una cantidad finita, 

podemos tomar la velocidad como constante. En símbolos diferenciales diríamos que: 

v + dv = v. Esta era una suposición común en la época, basada en la algoritmización 

diferencial de Leibniz.  

 

Un corolario [Phoronomia  p. 55 nº 128] establece las relaciones cinemáticas en un 

elemento de distancia donde el movimiento, como ha postulado, puede considerarse 

uniforme. Con sus símbolos (EF representa la velocidad) queda: tEe = Ee:EF y tNn = 

Nn.EF de donde Ee = EF. tEe y Nn = EF.TNn. Equivale a escribir tal como hace 

Hermann un poco más adelante  de modo algebraico [Phoronomia  pp. 64-65 nº 145]:  

 

  dt = dr:v   y   dr = v dt        5-a 

 

                                         
116 Ver [BLAY  M.   1992 pp 123-125] 
117 Blay Op. Cit. p. 156 
118 Ibíd. p. 112 
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Hermann está dando implícitamente la expresión de la velocidad en un instante119 v o 

velocidad cuando se recorre un dr en un dt. Esto le permitirá escribir por primera 

vez en la historia la segunda ley de Newton en su forma diferencial idéntica a la 

actual. 

 

Si comparamos el trabajo conceptual de Hermann con el que realizó Varignon en la 

memoria presentada a l’Académie en 1698 120, en la que define  explícitamente la 

velocidad instantánea como cociente de diferenciales  v = dr:dt, vemos que Hermann 

dispone de las relaciones para la velocidad instantánea, ya que aunque no expresa en 

este capítulo la tercera expresión en la que la velocidad está aislada, sí la ha dado en 

su definición de velocidad (ver 3.2).   

 

La inclusión de estas relaciones cinemáticas por parte de Hermann en el corolario de 

un postulado, permite pensar que para Hermann las relaciones diferenciales en un 

elemento de distancia se dan de forma natural. Varignon sin embargo convierte la 

definición explícita de velocidad instantánea en una de sus reglas básicas de cálculo.  

 

Para Hermann no hay problema de homogeneidad de magnitudes en este caso, ya que 

Hermann había definido la velocidad en un movimiento uniforme como cociente entre 

espacio y tiempo en las definiciones preliminares de la Phoronomia121

                                        

. Su extensión 

para un diferencial es inmediata.  

 

Blay en la obra citada122, ha analizado manuscritos de Leibniz relacionados con una 

memoria de 1689. En ellos Leibniz enuncia un “principio general” (principium generale) 

que expresa la relación diferencial dr = v dt que supone, en palabras de Blay, una 

definición operativa no explícita de la velocidad instantánea, y que supone “sólo” una 

 
119 Afirmamos que es “implícita” porque Hermann no usa los términos “velocidad instantánea”, o como 
veremos a continuación en el caso de la fuerza, no usa la expresión “fuerza instantánea” pero sí sus 
expresiones algebraicas. 
120 La construcción del concepto de velocidad instantánea por Varignon ha sido analizado en la obra de M. 
Blay [BLAY  M.   1992 pp. 153-179] 
121 Ver el apartado 3.2 de esta monografía donde se analiza el concepto de velocidad en Hermann. 
122 Ibíd. pp. 126-132 
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transposición algebraica y diferencial de las relaciones geométricas con las que 

trabajaron Galileo y Newton.  Hermann establece en la Phoronomia una relación 

similar a la de Leibniz, añadiendo la expresión para dt = dr:v, aunque fue Varigon, 

unos años antes, quien explicita el concepto de velocidad instantánea y quien 

desarrolla algoritmos para obtener una de las magnitudes cinemáticas conociendo las 

otras, como analiza la obra de Blay. 

 

Podemos esquematizar lo establecido por Hermann diciendo que: 

 

• Descompone la fuerza central en tangencial y perpendicular123.  

• Usa la representación polar para las escalas: de la fuerza central, de su 

componente tangencial y de la velocidad en cada punto.  

• Conceptualiza dos nuevas magnitudes: el momento de una fuerza (F.dr) y el de 

la velocidad (vdv) para un elemento de movimiento.  

• Extiende la descripción a cualquier movimiento acelerante o retardante y a 

movimientos en línea recta AO o en una curva ANn. 

• Establece algebraicamente la relación: espacio = velocidad · tiempo en un 

elemento de distancia recorrido y tiempo = espacio : velocidad, es decir, puede 

manejar la velocidad en un instante, sin explicitar su definición. 

 

Un lema establece la relación entre las coordenadas polares, distancia r al centro de 

fuerzas D y el ángulo α, con el arco correspondiente. Diríamos con símbolos distintos 

de los de Hermann, que cualquier ángulo α puede ser expresado por el cociente entre 

el arco s y el radio r correspondiente (α= s:r).  

 

 Primera formulación histórica de la “ley fundamental de la dinámica” en su forma 

diferencial actual 

 

                                         
123 Euler usará en su mechanica de 1736 la descomposición en coordenadas cartesianas, con la que resultará 
más fácil resolver problemas de cualquier tipo, al aplicar en cada eje, la que hoy conocemos como ley 
fundamental de la dinámica Fneta = m. a. 
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La proposición XVI y el escolio que le sigue constituyen la expresión detallada dada 

en lenguaje equivalente al actual, de la que hoy conocemos como segunda ley de 

Newton o ley fundamental de la dinámica. La proposición dice: “Toda solicitación 

actuando uniformemente, equivale al movimiento generado, divido por el tiempo en el 

que el movimiento mismo se produce.”124 Con los símbolos de Hermann:  
T

M.V    =G  

(Ibídem) donde T es el tiempo durante el que actúa la fuerza y: 

 

• G es la solicitación continuamente replicada que nosotros llamaríamos “fuerza 

instantánea”. Aquí Hermann indica que de no ser repetida sería una “fuerza 

muerta”125 que no produciría movimiento.  

• M.V es el producto de la masa por la velocidad del móvil, o “movimiento 

generado” (“motus generandus”) que Hermann llama también “cantidad de 

movimiento” (“motus quantitates”)  

 

Supone la algebrización de la segunda ley de Newton presente en los Principia de 

forma retórica y ambigua, ya que en la definición de fuerza motriz es el cambio de 

movimiento en un tiempo dado y en la segunda ley como cambio de movimiento 

(movimiento equivale a cantidad de movimiento). Hermann tiene en cuenta la masa en 

el movimiento generado y considera el tiempo en el que se produce el cambio. 

 

En el escolio posterior, Hermann generaliza el resultado anterior estableciendo la 

ecuación en su forma diferencial, válida para cualquier fuerza G126 en un intervalo de 

tiempo dT. El razonamiento es el siguiente: supongamos que G es variable de cualquier 

modo; si consideramos su acción durante un intervalo infinitesimal de tiempo dT, el 

móvil adquiere una velocidad dV que al ser en un intervalo infinitesimal podemos 

suponer uniforme, por lo que tenemos la relación general: 

                                         
124 “Omnis solicitatio uniformiter agens aequivalet motui genito, applicato ad tempus, quo motus iste 
producitur.” [Phoronomia  p. 56 nº 130] 
125 Para Hermann como para Leibniz, si la fuerza actúa sólo en un instante no produce movimiento, se trata 
de fuerzas muertas. Ver el capítulo 3.3 de este trabajo donde se discute el concepto de fuerza.  
126 Hermann llama a G indistintamente: “solicitación central”, “peso” (pondus) o “gravedad” (gravitatem), 
pero al generar cualquier movimiento rectilíneo o curvilíneo, puede ser cualquier tipo de fuerza.  
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dT
dV M G =       5-b 

Hermann expresa por primera vez después de los Principia de Newton, la ecuación 

fundamental de la dinámica en la forma general en que podemos encontrarla en los 

textos de física actuales. Recordemos Newton describe la segunda ley en los 

Principia  verbalmente sin introducir símbolos algebraicos.  

 

En este punto tenemos que comparar una vez más el esfuerzo de Hermann con el que 

unos años antes ha realizado Varignon, y que ha sido expuesto y analizado en la 

monografía de M. Blay [BLAY M. 1992]. Varignon y Hermann se proponen traducir en 

lenguaje diferencial los resultados de la dinámica de su época, en especial los 

resultados de los Principia, pero tenemos que resaltar que estos autores se 

esfuerzan también por encontrar principios generales a partir de los que poder 

deducir la mayor parte de resultados dinámicos.  

 

Varignon presenta en 1700 dos memorias en l’Académie127 que se publican en 1703. La 

primera, que integra los resultados de la memoria cinemática de 1698, y de la que 

hemos hablado a propósito del concepto de velocidad en un instante, estudia las 

fuerzas centrales para establecer un conjunto de relaciones entre las magnitudes: 

velocidad, espacio, tiempo y fuerza, de forma que puedan ser determinadas a partir 

del conocimiento de una de ellas. En este trabajo Varignon define a partir de la 

“velocidad en un instante”, la variación de velocidad dv como ddx:dt2 para dt 

constante. A partir de esta última expresión y apoyándose en el modelo galileano de 

caída de cuerpos, llega a la expresión de “fuerza en un instante” como: F = dv : dt = 

ddx : dt2 [Ibíd. p. 185] que usará como una de las sus “Règles générales des 

mouvemens.” para estudiar movimientos en línea recta y en curvas en su segunda 

memoria de 1700.  

 

                                         
127 [BLAY M. 1992 pp. 180-221] 
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Notemos que ni Hermann ni Varignon poseen como concepto diferenciado de la 

aceleración o variación de velocidad con el tiempo, aunque trabajen con la variación 

de velocidad. En [Phoronomia p. 102 nº 200] cuando hace el estudio del movimiento de 

los péndulos compuestos da la siguiente definición:  

 

“Se dice que los péndulos compuesto CPQ o el simple CN aceleran igualmente, cuando la celeridad se 

incrementa infinitesimalmente por la solicitación central de la gravedad en cualquier pequeño tiempo 

mínimo ...”128 

 

Desde Galileo se usa verbalmente aceleratio129 como cambio de velocidad, pero sin 

que existan definiciones explícitas y sobre todo, sin que aparezca un símbolo 

algebraico diferenciado, señal de su conceptualización como objeto separado en la 

formulación mecánica.  

 

Es evidente que Hermann sigue su propio modo de construcción deductiva de la 

dinámica independiente de la de Varignon, aunque éste último al disponer del 

concepto explícito de velocidad instantánea, puede dar una expresión de la fuerza 

con la diferencial segunda del espacio.  

 

Hermann posee, así mismo, una expresión no explícita de la fuerza instantánea con la 

relación 5-b. Dispone pues de las relaciones para trabajar con la fuerza y la velocidad 

en un instante que, tal como veremos a continuación, le permitirán obtener resultados 

de forma diferencial muy potentes en el estudio dinámico de las fuerzas centrales. 

Exponemos a continuación los principales. 

 

                                         
128 “Motus penduli composti CPQ et simplicis CN similiter accelerari dicuntur, cum celeritastis incrementa 
infinitesima a solicitationibus gravitatis centralibus quolibet tempusculo minimo ...” 
129  [GALILEO G. 1988  p. 16] 
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 Teorema diferencial de las “fuerzas vivas”130: El momento de una fuerza 

cualquiera es igual al momento de la velocidad por la masa del cuerpo [Phoronomia  

p. 57 nº 132].  

 

Hermann no le da ningún nombre, pero equivale al teorema que hoy conocemos 

como “de las fuerzas vivas” (o teorema trabajo-energía en otra denominación 

actual) en su forma diferencial: el trabajo realizado por la componente tangencial 

de la fuerza en un desplazamiento diferencial ds sobre cualquier curva, equivale al 

producto de la masa por vdv, que corresponde a nuestra conservación de la 

energía. Recordemos que las fuerzas perpendiculares a la trayectoria no hacen 

trabajo. Con símbolos actuales:                 Ft ds = m v dv                  (5-c) 

 

Consideramos significativo dar aquí la demostración de Hermann, ya que, aunque 

toma como referencia la figura, se realiza de modo puramente algebraico. Este 

teorema es una consecuencia directa de la ley fundamental establecida antes 

(para nosotros 2ª ley de Newton). Usaremos la simbología actual para facilitar la 

comprensión. 

 

Parte de la ley fundamental que ha establecido (ver 5-b), y que es la segunda ley 

de Newton:   F = m dv:dt.  

 

La rescribe teniendo en cuenta que la componente tangencial Ft de la fuerza 

central es la única que interviene en la variación del movimiento, esto es:     

Ft dt = m dv 

Multiplica ambos lados por la velocidad v supuesta constante en un diferencial de 

tiempo, tal como justificó en el postulado inicial del capítulo:            

                                         
130 La denominación corresponde a la actual y está relacionada con la polémica de las “fuerzas vivas” que se 
desarrolla a finales del s. XVII, a partir de la crítica que hace Leibniz de la dinámica cartesiana. Leibniz 
llamará “fuerza viva” a lo que conocemos hoy por energía cinética. El debate, reavivado a partir de la 
publicación de la correspondencia Leibniz-Clarke en 1717, se extenderá a lo largo del s. XVIII. Su 
resolución será posible cuando se puedan construir los conceptos diferenciados de fuerza y de energía que 
permanecían mezclados en la polémica. Ver sobre la polémica: [DUGAS R.1954 pp. 466-483] y 
[HANKINS T. L.  1965] 
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Ft vdt = m vdv 

Finalmente usa la relación en la que introdujo la velocidad en un instante (5-a) y 

llega a la expresión final:         Ft ds = m v dv   

 

Hermann identifica al final el producto vdv con un fragmento del área del 

triángulo auxiliar que construye sobre la figura (fig. 27). Para representar el área 

que corresponde al momento de velocidad construye el triángulo auxiliar AGH, de 

modo que vdv = GHgh. Hermann necesitará esta asociación con una figura para 

hacer la integración, que en este caso sí será puramente geométrica.   

 

Si la trayectoria es la recta AD, la fuerza central no tiene componentes, en este 

caso es la fuerza total la que hay que considerar en la ecuación. Con esto quedan 

cubiertas todas las opciones, tanto si las fuerzas centrales actúan en 

trayectorias curvas cualesquiera como si actúan en una misma dirección.  

 

Señalemos que Varignon en la memoria de 1700 citada131 muestra cómo, a partir 

de sus dos reglas en las que ha definido la velocidad y la fuerza en cada instante, 

puede deducir resultados de la cinemática galileana y de la dinámica newtoniana. 

En particular deduce la relación 5-c.  

 

La diferencia con Hermann es que éste destaca como principio, tal como veremos 

un poco más adelante, la conservación de la energía, cuya potencia deductiva 

resulta más fácil en muchas situaciones en las que la segunda ley de Newton sería 

farragosa.  

 

 Teorema integral de las “fuerzas vivas”:  

En el teorema de la prop. XIX [Phoronomia  p. 57 nº 132] Hermann hace la 

integración del resultado diferencial anterior, llegando a las siguientes dos 

resultados: 

                                         
131 [BLAY  M.   1992 pp. 153-179] 
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1º.  Si dos móviles iguales sometidos a las mismas fuerzas centradas en D, pero 

uno de ellos moviéndose por o por la curva AN o cayendo por la recta AD, 

adquieren la misma velocidad si han recorrido la misma distancia r (equidistantes 

de D, nos indica Hermann) partiendo del reposo; En nuestro lenguaje, demuestra 

que dos móviles que caen desde la misma altura por distintos caminos alcanzan la 

misma velocidad.  

 

2º.  El cuadrado de la velocidad de cada uno de los  móviles es igual al doble del 

área AZBEA para masa unidad.  Es decir, en nuestro lenguaje:  

v2 = 2W                  (5- d) 

 

(Siendo W el trabajo necesario para alcanzar la velocidad v desde el reposo, que 

es la integral de Fdr, o área AZBEA). O como escribimos hoy: W = ½ m v2 = ∆ 

EC (el trabajo realizado por las fuerzas es igual a la variación de la energía 

cinética EC). Observemos que Hermann ha tomado el valor unitario para las masas.  

 

La demostración integral es puramente geométrica. Trabaja ampliando las áreas 

diferenciales en la figura, hasta obtener igualdad entre dos áreas finitas. No usa 

el algoritmo integral algebraico que desarrolló cuando se proponía estudiar las 

formas que adopta una cuerda sometida a fuerzas cualesquiera132.  

 

Estas relaciones están contenidas en los Principia en las proposiciones 39 y 40 del 

libro I [NEWTON 1687 pp. 122-127], donde Newton demuestra respectivamente 

que: la velocidad en un punto de la trayectoria es como la raíz cuadrada del la 

superficie que forma en la fuerza con el desplazamiento radial, y que las 

                                         
132 Ver en este trabajo el apartado “El cálculo diferencial e integral: entre la geometría y el álgebra” 
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velocidades de caída por distintas trayectorias serán iguales si los móviles 

recorren la misma altura133.  

 

La aportación de Hermann consiste en considerar está ecuación, tal como veremos 

a continuación,  como una de las dos ecuaciones básicas de su modelo deductivo de 

la dinámica. Por un lado Hermann usa el nuevo concepto de “momento de 

velocidad” junto con el de “momento de fuerza” para las demostraciones que, por 

otro lado realiza en lenguaje diferencial.    

 

Seguidamente expande los resultados para hacerlos completamente generales, ya 

que no dependen de la ley de fuerzas centrales supuesta, extendiendo todos los 

resultados a movimientos retardantes y al caso en que los móviles no partan del 

reposo.  

 

Haciendo reversible el movimiento acelerado, nos indica en un corolario 

[Phoronomia  p. 62 nº 141], que los cuerpos ascienden hasta la misma altura si 

parten de la misma velocidad tanto por la recta AD como por curva AN.  

 

En otro corolario [Phoronomia  pp. 62-63 nº 142] explica que la velocidad de caída 

es igual para móviles que caen desde la misma altura, también si estos distan 

infinitamente del centro de atracción. Sería el caso de gravedad constante en que 

podemos considerar el centro de la Tierra infinitamente alejado de nosotros.  

 

Hermann explica que Galileo había postulado este último resultado como evidente 

en sus Diálogos. Después fue demostrado por Torricelli, y más tarde por Huygens 

en la prop. VI de la segunda parte de su Horologium oscillatorium134, pero ambos 

de modo indirecto y sólo en la hipótesis de gravedad uniforme de Galileo.   

 
                                         
133 Estos resultados serán usados para demostrar en la proposición 41 [NEWTON 1687 b, pp. 127-129] que: 
dada cualquier ley de fuerzas centrales, y supuesta la cuadratura de las figuras curvilíneas se puede encontrar 
las curvas de la trayectoria seguida por el móvil  
134 Horologium oscillatorium. (F. Muguet, Paris, 1673) p. 31  
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 Los pesos y las masas son proporcionales 

 

En el largo escolio I [Phoronomia  pp. 63-64 nº 143-144] Hermann, explica que en 

las demostraciones anteriores ha supuesto masas M y A iguales. Demostrará que 

para que las velocidades sean iguales en la caída de dos móviles A y M por dos 

caminos distintos, las masas y los pesos tienen que ser proporcionales.  Hermann 

nos dice que si las masas no fueran proporcionales a los pesos, las  velocidades de 

caída en el vacío no serían iguales. Esta demostración completa la realizada por 

Hermann al comenzar su obra para gravedad constante, y que hemos analizado en 

el apartado 3.5 de este trabajo. 

 

 Trascripción algebraico-diferencial de las ecuaciones generales: 

 

En el escolio II [Phoronomia  pp. 64-65 nº 145] Hermann traslada al lenguaje 

algebraico-diferencial los principios generales demostrados, estableciendo lo que 

él llama la primera y la segunda regla. Llamando g a la fuerza variable de la 

gravedad, dx el camino diferencial recorrido, u la velocidad durante ese trayecto 

infinitesimal y du a su diferencial, tenemos las dos fórmulas fundamentales de la 

dinámica siguientes: 

 

o “Primera regla” (prima formula) equivalente a (5-c):   g dx=u du    (5-e)   

(Equivale al teorema de la energía cinética o “ley de las fuerzas vivas” actual). 

Digamos que esta relación, como queda claro de su demostración, se deduce de ley 

fundamental de la dinámica, que Hermann considera como segunda ley en su 

exposición mecánica. Durante toda la obra señalará la potencia deductiva de esta 

regla prima.  

  

o “Segunda regla” (seconda formula) equivalente a (5-b): dt=m du:g  (5-f)   

(Equivale a lo que llamamos ahora “segunda ley de Newton”) 
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Tal como hemos comentado, Varignon había considerado como “reglas generales” 

la expresión de la velocidad instantánea (v = dx : dt) y la expresión de la fuerza 

instantánea (2ª ley de Newton), en tanto que Hermann considera que sus reglas 

generales son: también la segunda ley de Newton y la expresión de ley de la 

energía cinética que hoy también llamamos ley de las fuerzas vivas, y que 

representa la conservación de la energía, en tanto que toma la expresión 

diferencial de la velocidad (que para él no es velocidad instantánea de modo 

explícito) como un postulado.  

 

Vemos pues que ambas algorizmaciones son independientes, lo que nos puede 

hacer pensar que Hermann no conocía las memorias en las que Varignon construye 

sus reglas básicas, o simplemente elebora las suyas. 

 

Destaquemos que las reglas de Herman contienen las dos aproximaciones a la 

mecánica que se darán en años sucesivos; con Lagrange tendremos la aproximación 

energética, que se añadirá a la aproximación mediante el análisis de las fuerzas 

que a partir de la segunda ley de Newton había hecho Euler. La ley de las fuerzas 

requiere el tratamiento vectorial y la energética no, por lo que podemos afirmar 

que las leyes de Hermann represntan un planteamiento más completo y moderno 

que las de Varignon.  

 

Tal como iremos mostrando, Hermann hace uso intensivo de la ley energética para 

resolver muchos de los problemas mecánicos que habían sido ya resueltos. Re-

construye muchas demostraciones y elabora algunas nuevas a partir de este 

principio, germen de lo que será la mecánica energética de Lagrange.  

 

 Ejemplos de aplicación de las leyes generales del movimiento: 

 

Hermann es explícito en cuanto a la generalidad de los principios y en cuanto al 

alcance que pueden tener: 
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“Hasta aquí se han presentado, acerca de los movimientos de cuerpos pesados, unos principios tan 

generales, que éstos no sólo atañen a todo lo que pueda descubrirse acerca de los movimientos de 

cualquier modo acelerados, sino que también evidencian mediante una actividad fácil qué hipótesis 

son posibles, y cuáles, por el contrario, la naturaleza rechaza que sean inferidas .”135 

 

Hermann ilustra su afirmación considerando la hipótesis de Baliani136 que supone 

que la velocidad es como el espacio recorrido [Phoronomia  p. 65 nº 146], es decir 

u=x. Hermann demuestra que entonces uu = xx  y diferenciando udu=xdx, por lo 

que aplicando su primera regla queda que g = x, esto es, si x = 0 entonces g = 0; 

por consiguiente si la gravedad es nula al principio, entonces su movimiento 

también es nulo; aplicando su segunda regla obtiene que dt = dx : x; cuya integral 

vale t = log x, de donde deduce que si x = 0 el valor de t se hace infinito (∞). Es 

decir, se requiere un tiempo infinito para recorrer en el comienzo un espacio nulo, 

por tanto el móvil quedará quieto para siempre, “consequenter Baliani hypothesis 

impossibilis & imaginaria est.”137  

 

A continuación [Phoronomia  p. 65 nº 147], analiza el caso más general en que la 

velocidad adquirida varía con la potencia n del espacio x (u = xn siendo n natural), 

llegando a la misma conclusión del caso anterior. Las leyes del movimiento 

muestran la imposibilidad de tales suposiciones para la variación de velocidad.  

 

A continuación Hermann analiza dos hipótesis referentes a las leyes de variación 

de la fuerza central.  

                                         
135 “Hactenus ostensa circa motus gravium adeo generalia sunt, ut ea non solum omnia, quae circa motus 
quomodocumque acceleratos excogitari possunt, attingunt, sed etiam facili negotio ostendant quaenam 
hypotheses possibiles sunt, et quas vice versa natura ferre recuset.” [Phoronomia  p. 64 nº 145] 
136  Baliani ( Génoa 1582 – 1666) ver DSB I pp 424-5; Baliani publica De motu naturali gravium solidorum 
el mismo año 1638 en que Galileo publica sus Discorsi. En 1646 publica otra una revisión de su obra 
anterior titulada De motu naturali gravium solidorum et liquidorum. Para ver las diferencias y semejanzas 
entre las deducciones de Galileo y Baliani de las leyes de caída de graves ver el capítulo La loi de Galilée et 
celle de Baliani en [MOSCOVICI SERGE 1967, p 32]. 
137 La hipótesis analizada analíticamente por Hermann, y que éste asocia a Baliani, equivale a la demostrada 
por Galileo en sus Discorsi de 1638. Galileo muestra por reducción al absurdo que la propuesta de que la 
velocidad en la caída libre crezca como el espacio recorrido, que pone en boca de Simplicio, es “falsa e 
imposible” [GALILEO G. 1988, pp. 57-59].  
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La primera [Phoronomia  p. 66 nº 148-149] se refiere al caso en que la gravedad 

es como la distancia al centro de fuerzas D (g = kx, siendo k una constante). En 

esta hipótesis, demuestra que la escala de velocidades es una elipse (kx2 = v2). 

 

El segundo caso [Phoronomia  pp. 67 nº 150-152] es más interesante, ya que 

supone que la gravedad es uniforme, es decir, nos movemos cerca de la superficie 

terrestre. Es, tal como dice Hermann, el caso estudiado por Galileo, la caída libre 

en el vacío. Deduce en pocas líneas de sus principios generales los siguientes 

resultados galileanos: 

 

• Dependencia velocidad – distancia. Demuestra que la curva de la velocidad 

es una parábola. Es decir: v2 = k x, donde k es la constante de 

proporcionalidad o parámetro de la parábola que vale según Hermann 2 

p/m, siendo p el peso y m la masa del cuerpo138: 

 

p
 x2m  v2 =

 

• El tiempo de caída es el doble del espacio dividido por la velocidad 

adquirida durante ese tiempo (t = 2x/v).  

 

Este resultado es el teorema de la velocidad media139 para un móvil que 

parte del reposo: podemos asimilar un movimiento acelerado a un 

movimiento de velocidad uniforme tomando como v la media es decir v/2, 

siendo v la v final del recorrido; así, vm = x/t, de donde v:2 = x/t, y por 

tanto t = 2x/v.  

 

                                         
138 Corresponde a un resultado adicional del teorema II de los Discorsi de Galileo, en el que había 
demostrado la dependencia cuadrática del espacio con el tiempo en la caída libre. [GALILEO G. 1988, pp. 
66-69]. 
139 Corresponde al teorema I de los Discorsi de Galileo por el que éste reduce el estudio de un movimiento 
uniformemente acelerado al de uno uniforme equivalente [GALILEO G. 1988, pp. 64-66]. 
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• Dependencia del tiempo con la distancia: el tiempo de caída es 

la raíz cuadrada del doble del espacio recorrido por la masa 

dividido por el peso del cuerpo140: p
m2x  t =

(m y p son la masa y el peso respectivamente) 

 

• Dependencia del tiempo con la velocidad: el tiempo de caída es 

como la masa por la velocidad dividido entre el peso del cuerpo.  
p
 vm t =

 

Hermann con sus dos principios generales, una combinación de los que llamaríamos en 

lenguaje actual la segunda ley de Newton y la ley energética que puede obtenerse de 

ella, deduce toda la cinemática galileana de forma simple y directa, analiza la 

imposibilidad de ciertas hipótesis como la de Baliani, y además muestra cómo derivar 

otros sistemas dinámicos a partir de considerar distintas hipótesis para las fuerzas.  

 

Construye un sistema deductivo para la dinámica que supone además una 

reformulación diferencial de los conocimientos dinámicos. Es una etapa en la 

búsqueda de principios generales que permitan hacer una exposición deductiva de la 

creciente cantidad de resultados mecánicos.  

 

5.2 LAS LEYES GENERALES DEL MOVIMIENTO CURVILÍNEO 

GENERADO POR FUERZAS CENTRALES Y SUS CONSECUENCIAS. 

 

Después de exponer las dos reglas válidas para cualquier movimiento, dedica el 

capítulo II a demostrar las leyes que son aplicables a “Los movimientos curvilíneos en 

el vacío, para cualquier hipótesis de gravedad variable”141. Demuestra dos principios 

generales:  

 

                                         
140 Corresponde al teorema II de los Discorsi de Galileo, demostrado por éste en forma de proporción 
[GALILEO G. 1988, pp. 66-69]. 
141 “De motibus curvilineis in Vacuo, in quacumque gravitatis variabilis Hypothesi.”  [Phoronomia  p. 68] 
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• La fuerza centrípeta en un punto de la trayectoria es el cociente entre el 

cuadrado de la velocidad y el radio de curvatura en ese punto. 

• Si consideramos dos puntos cualesquiera de la trayectoria, el producto de 

la velocidad por la perpendicular a la tangente desde el centro de fuerzas, 

tiene el mismo valor en ambos puntos142. 

 

A partir de estos principios, y de los generales para cualquier movimiento del capítulo 

anterior, Hermann obtendrá los siguientes resultados: 

 

• La igualdad de velocidad para dos cuerpos que caen desde la misma altura por 

la curva AN o la recta AE (ver fig. 28), como consecuencia de la segunda ley o 

relación energía-trabajo.  

• La ley de las áreas o segunda ley de Kepler. 

• Resuelve el problema directo de las fuerzas centrales. Dada la forma cónica 

de la trayectoria, deducir que la fuerza es inversamente proporcional al 

cuadrado de la distancia al centro.  

• La expresión general diferencial del radio de curvatura en un punto de la 

trayectoria en coordenadas polares. 

• La demostración analítica del problema inverso de las fuerzas centrales. Dada 

la expresión de la fuerza deducir la forma de las trayectorias.  

 

Construye una figura que muestra la trayectoria ANn (ver fig. 28 ) de un móvil en una 

curva cualquiera sometida en todo momento a una fuerza central en D de valor Nα, 

cuyas componentes tangencial y perpendicular son Nβ y αβ respectivamente.  

 

En la figura incluye dos escalas de variables: escala de solicitaciones centrales GBb, y 

escala de velocidades HIFf. El valor EB=Nα representa por tanto la fuerza en N, y 

EF la velocidad en ese mismo punto. Las demostraciones de las relaciones que 

                                         
142 Tal principio, como veremos a continuación, equivale a la constancia de la magnitud que llamamos 
actualmente “momento angular”, fundamental para tratar problemas de fuerzas centrales. 
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describiremos a continuación se realizan, como es costumbre en la obra, a partir de 

segmentos diferenciales sobre la figura.  

 

Se supone que el móvil está inicialmente en A moviéndose según la dirección AR 

(tangente a la trayectoria) con velocidad AI; velocidad producida la caer desde el 

reposo en H hasta A. 

 

 Valor de la fuerza centrípeta en un punto: 

 

La proposición XXI [Phoronomia  pp. 68-69 nº 154] demuestra (fig. 28) que el 

cuadrado de la velocidad EF adquirida por un móvil de masa uno, en un punto N de su 

trayectoria y sometido a una fuerza central Nα, es igual al producto de la 
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componente perpendicular αβ de la fuerza central por el radio nZ del círculo 

osculador entre n y N. Es decir:  

 

EF2 = nZ .  αβ            (5-g) 

Con símbolos actuales ha demostrado que: m V2 = R · Fn (para m=1, siendo Fn la fuerza 

perpendicular o normal a la trayectoria en el punto N considerado y R el radio de 

curvatura en el punto considerado). 

 

Para la demostración toma dos puntos de la curva infinitamente próximos N y n, 

cuyas tangentes son Nq y ns. Su demostración es geométrico diferencial, ya que 

trabaja con triángulos semejantes y desprecia los diferenciales de orden superior. 

Utiliza para la demostración el postulado de la velocidad en un instante (dt = dt:v) y 

su segunda regla (F = m dv:dt). 

 

Este resultado es enunciado por primera vez sin demostración, para movimientos 

circulares, en la quinta parte del Horologium Oscillatorium (F. Muguet, Paris, 1673) 

de Huygens, concretamente en los tres primeros teoremas relativos a la fuerza 

centrífuga143. Posteriormente Newton hace la demostración en la proposición IV del 

libro I de los Principia 144 también en el caso de circunferencias. La demostración de 

Hermann es más general ya que se refiere a la caracterización de la fuerza 

centrípeta en cualquier curva. Da la expresión diferencial en cada punto o momento 

de la trayectoria.   

 

 Ley de constancia del “momento angular”145: 

 

Teniendo en cuenta que en la figura anterior, DR y Dq son las perpendiculares desde 

el origen de fuerzas centrales D a las tangentes AR y Nq, que representan 

respectivamente las direcciones en las que el cuerpo se mueve en cada instante, 
                                         
143 [HUYGENS  C. 1888-1950;  XVIII  p. 361] 
144 [NEWTON I 1987b  p. 178-180] 
145 El título corresponde a nuestra interpretación actual. Hermann no asigna nombre alguno en su 
demostración a la  cantidad que demuestra permanece constante.   
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Hermann demuestra en el teorema XXII [Phoronomia  pp. 69-70 nº 155] que para 

cualquier punto N de la curva del movimiento ANn se verifica la relación siguiente: 

AI.DR = EF.Dq   (5-h) 

 

Hermann  usa para la demostración dos de sus principios generales: el resultado del 

teorema anterior (5-g) que proporciona la expresión para calcular la fuerza 

perpendicular o centrípeta, y su primera regla general (5-f) demostrado en el 

capítulo anterior, que representa para nosotros el “teorema de las fuerzas vivas”  o 

conservación de la energía, en su forma diferencial. 

 

Si llamamos d a la perpendicular a la tangente desde el centro de fuerzas, podemos 

traducir algebraicamente la expresión de Hermann como:  v0 · d0 = v · d 

 

La interpretación actual sería la siguiente: podemos ver fácilmente que d se puede 

escribir como r · sen (r,v), siendo r la distancia desde el centro de fuerzas D hasta el 

punto considerado de la curva A o N, y (r,v) el ángulo que forman ambos segmentos. 

Así, La relación v·r sen (r,v) equivale pues a nuestro producto vectorial de vectores:  

 
v)(r, sen vr   v =×

rrr
 

Hermann, por tanto, ha demostrado que para cualesquiera dos puntos de la curva se 

verifica que el producto vectorial de r y v tiene el mismo valor:    

 v  r    v 0
rrrr

×=×0r
 

Que corresponde, tomando para la masa del cuerpo la unidad, a la conservación del 

momento angular L, vector que definimos en física actual como: 

   
vr m    L rrr

×=
 

Newton demuestra este resultado en el corolario 1 de la proposición 1 del libro I de 

los Principia con este enunciado146: 
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“La velocidad de un cuerpo atraído hacia un centro inmóvil en un espacio no resistente es inversamente 

como la perpendicular trazada desde el centro a la tangente de la curva”.  

 

Hermann sigue un procedimiento inverso al de Newton. El resultado en Newton es un 

corolario al teorema I en el que demuestra la ley de las áreas, sin embargo Hermann 

lo obtiene a partir de los dos principios generales para fuerzas centrípetas citados, 

para deducir de él la ley de las áreas tal como veremos a continuación. Este 

desplazamiento en la secuencia de resultados es interesante por cuanto establece 

qué principios pueden ser considerados más potentes en un sistema deductivo de la 

dinámica. 

 

 Ley de las áreas (2ª ley de Kepler): 

 

En el corolario II [Phoronomia  pp. 70-71 nº 157] del teorema anteriormente descrito 

deduce la ley de las áreas o segunda ley de Kepler.  

 

Como ha mostrado Guicciardini [GUICCIARDINI N. 1996], la demostración de 

Hermann constituye la primera que se hace analíticamente, ya que la de Newton en la 

prop. I, libro I de los Principia., usa un modelo geométrico discreto (la curva es una 

serie de segmentos), para después hacer el tiempo infinitamente pequeño y obtener 

la curva147, en un procedimiento que podríamos asimilar al del paso al límite de una 

sucesión. Tal como comenta Eloy Rada en la nota correspondiente a su traducción de 

la tercera edición de los Principia: “Pero esto comportaba, de paso, asimilar a la 

fuerza continua, la fuerza discreta compuesta de impulsos sucesivos. Quizá ahí 

estuviera la razón de los repetidos ensayos revisionistas de esta sección.”148  

 

                                         
147 Hermann nos dice al final de la demostración que Newton ya lo demostró en la prop. I del lib. I, pero por 
métodos muy distintos. “... sed ex diversissimo fundamento.” [Phoronomia  p. 71 nº 157]. 
148 [NEWTON I 1987a. n. 17 p. 174] 
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Tal como destaca Guicciardini [Ibidem p. 174], la demostración analítica es 

significativa ya que en ella se habían basado las demostraciones analíticas del llamado 

“problema inverso de las fuerzas centrales”149, publicadas por el propio Hermann, por 

Johann Bernoulli y por P. Varignon en 1710150. Este es el argumento que da el propio 

Hermann en la carta citada en la discusión historiográfica (cap. 1)151, que nace como 

respuesta a la acusación de plagio por parte de Keill sobre la demostración del 

problema inverso. Para una discusión del estilo usado en la Phoronomia, es 

significativo señalar que en la citada carta, Hermann reconstruye analíticamente en 

estilo algebraico-diferencial los resultados principales que conducen a la ley de las 

áreas, comenzando desde sus dos principios generales analizados en el cap. 5.1 

(ecuaciones 5-3; 5-f). Haremos en el cap. 6 de esta monografía una discusión en 

relación con esta carta y los estilos de la obra, álgebra vs. geometría. 

 

La demostración de Hermann en la Phoronomia se basa en los dos principios generales 

ya establecidos por él: el que ha tomado como postulado, la velocidad en un 

diferencial de tiempo (ec. 5-a), y el principio de conservación del producto de la 

velocidad por la perpendicular a la tangente (conservación del momento angular para 

fuerzas centrales para nosotros) (ec. 5-h).  

 

De ellos deduce en pocas líneas la siguiente relación diferencial para un arco 

infinitesimal Nn (fig. 28):  AI.DR. tNn = 2 NDn (recordemos que AI es la velocidad 

inicial y DR la perpendicular inicial a la tangente AR). Integrando en la figura, llega a 

la expresión que da el tiempo consumido en recorrer el arco AN:  

 

DRAI.
2
1

ADN  tAN =
 

 

                                         
149 Dada una ley inversa para la fuerza central, determinar las trayectorias posibles. 
150 J. Hermann Mémoires de l’Académie des Sciences (1710), 519-521. Johann Bernoulli Mémoires de 
l’Académie des Sciences (1710), 521-533. P. Varignon Mémoires de l’Académie des Sciences (1710), 533-
544. Johann Bernoulli Mémoires de l’Académie des Sciences (1710), 521-533.  
151 Journal Literaire 9 (1717) p. 408 
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Como ½AI.DR corresponde a un producto de valores iniciales  y por tanto constantes 

en la expresión, concluye que el tiempo en recorrer un arco es proporcional al área 

ADN barrida por el radio vector DA (radium vectorem en palabras de Hermann) en 

ese tiempo.  

 

Guicciardini nos indica en el texto citado, que Hermann reescribe la demostración de 

la Phoronomia en una carta a J. Keill que publica en 1717 en Journal Literaire152, 

sustituyendo por diferenciales los símbolos que indican parejas de puntos en una 

figura (por ejemplo Nn = ds etc.). 

 

La demostración de Hermann es un corolario de la conservación que expresa la 

ecuación general 5-h. Este hecho, no explicitado en el citado artículo de Guicciardini 

seguramente por seguir en su exposición la versión de la carta a Keill, coincide con el 

modo en que se demuestra en los libros actuales de física, donde la ley de las áreas 

es una consecuencia directa de la conservación del momento angular. Por ejemplo, en 

uno de los manuales de física más usados internacionalmente [P. A. TIPLER  1988, T 

I, p. 352] tenemos la siguiente ilustración (fig. 29) y demostración: 

 
 vdt  

 
r 

 
Sol  

 

 
Fig. 29 

 

El área A barrida por el radio vector r en un dt es la mitad del paralelogramo 

definido por el producto de r y ds (= vdt):   

 
dt L 

2m
1 dt   v m rdt v  r 

2
1  A =×=×=

rrrr

m2
1

 

121 

                                         
152 Journal Literaire 9 (1717), 406-415 



Siendo L el momento angular del planeta. Obtenemos que:   
2m
L  

dt
dA

=
 

Como L es constante en un sistema aislado, es decir, sin fuerzas externas, la 

variación de A con el tiempo es constante, es decir, la variación de A es proporcional 

a la variación temporal (dA = k dt). 

 

 Problema directo de las fuerzas centrales: 

 

El problema directo de las fuerzas centrales consiste en encontrar la ley de fuerzas 

a partir de la forma de las órbitas. Este problema está resuelto en los Principia en las 

proposiciones 11-13 de la sección III del primer libro [Newton 1687 pp. 53-55] en las 

que, una por una, demuestra qué solución corresponde a cada una de las cónicas. El 

planteamiento de Hermann es más global en el sentido de que busca primero una 

forma de expresar la fuerza central en función del radio vector y de la perpendicular 

a la tangente, para después introducir en ella la expresión de las cónicas y deducir la 

ley de fuerzas resultante.  

 

La demostración de Hermann [Phoronomia  p. 71 nº 158] parte de considerar el 

principio de conservación del momento angular (ec. 5-h). Traduce la ecuación al 

lenguaje algebraico llamando u a la velocidad y p a la perpendicular desde el centro a 

la tangente (recordemos que equivale a nuestro producto vectorial del radio vector z 

y de la velocidad u).  

 

De 5-h tenemos: u·p = 1 (toma la constante igual a 1). De donde u2 = 1/p2 y 

diferenciando se tiene que:  u du = - dp/ p3.  

 

A continuación Hermann aplica sus segunda principios generales, el que hemos llamado 

con su nombre actual de “las fuerzas vivas”, es decir: u du = g dz, donde g es la 

fuerza central y z el radio vector, o expresado con sus palabras, el momento de la 
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velocidad equivale al momento de la fuerza. Teniendo en cuenta que la variación de u 

es de signo contrario a la de z, obtiene la ecuación diferencial:  

        g  = dp/p3dz          (5-i) 

 

Esta relación general permite, en palabras de Hermann153, obtener el valor de la 

fuerza central g si conocemos la variación de p con z, es decir si conocemos la forma 

de la trayectoria del móvil. Lo ejemplifica así: 

 

Exempli gratia: cuando la trayectoria es una hipérbola o elipse se verifica la relación  

p2 = c2 z /2a ± z, siendo a el semilado transverso, y cumpliendo  c2 = ± (b2 - a2) con el 

signo superior para la hipérbola y el inferior para la elipse. 

 

Rescribe la ecuación de las cónicas de modo que 1/p2 = 2a ± z / c2 z; diferenciando 

queda  dp/p3 = 2a dz / c2 z2 , de donde por identificación con la ec. 5-i resulta:                               

 g = a/c2 z2  

 

Dicho con sus palabras: “hoc est solicitatio centralis, ad focum sec ionum Conicarum 

directa, est ubique ut quadratum distantia mobilis ad foco inverse, quod jam passim 

constat ex aliis.” [Ibíd.].

t

  

                                        

 

 

Hermann da a continuación [Phoronomia  pp. 71-72 nº 160] una expresión alternativa 

de la expresión de la fuerza central, transforma la ecuación 5-i realizando un cambio 

de variables, de modo que en lugar de p y dp aparezcan los diferenciales del arco s, 

del ángulo t y del radio vector z: Nn = ds, y Pn = dt y dz = PN. Es decir, expresa la 

fuerza en coordenadas polares. 

 

 
153 “Usus hujus formalae fatis expeditus est, nam ex equatione curvae datae quaeritur valor ipsus p in z & 
constantibus, cujusmodi determinatione etiam opus est in formula supra laudata.”  [Phoronomia  p. 71 nº 
159] 
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Recordemos que en la figura Nn son dos puntos próximos de la trayectoria, con sus 

respectivos radios vectores DN y Dn, y que la perpendicular a la tangente Ng es Dq 

que Hermann ha llamado p.  

 

Despreciando diferenciales de tercer orden y usando la semejanza de triángulos Nnp 

y NDq obtiene el siguiente cambio de variable p/z = dt/ds (ver fig. 30). De este modo 

llega a la expresión final equivalente a 5-i: 

 

dz dt z
dds dsdt  z -ddt  ds z dt ds dz  g 33

22 +
= 

Hermann resalta que ha 

deducido de sus principios 

generales esta expresión que no 

difiere salvo por el nombre con 

la que publicó Varignon154 en su 

memoria de 1706. Ambos casos, 

dice Hermann, son 

completamente generales sin 

presuponer la constancia de las 

diferenciales dz, dt, ds. 

   N 
  dz 

  b ds   P 
  g 

dt   q   n 

D 
Fig. 30 

 

 El problema inverso de las fuerzas centrales: 

 

Tal como hemos indicado, el problema inverso trata de encontrar la forma de las 

trayectorias posibles de un móvil a partir de la ley de fuerzas y de datos iniciales.  

 

Johann Bernoulli y Hermann plantean dudas a comienzos de s. XVIII sobre si Newton 

ha demostrado el problema inverso de forma satisfactoria en los Principia155. 

                                         
154 P. Varignon : Comparaison des forces centrales avec le Pesanteurs Absolues des corps mus de vitesses 
variés a discrétion le long de telles courbes q’on voudra. Mémoires de l’Académie des Sciences (1706), 178-
235.  
155 Ver sobre las posiciones críticas independientes de Johann BERNOULLI y de Hermann la n. 35 en 
[MAZZONE S.  1996. p. 150] 
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Emprenden pues la demostración usando las nuevas técnicas diferenciales y Johann 

Bernoulli y Varignon, publican sus soluciones analíticas simultáneamente con la de 

Hermann en 1710156. Previamente y coincidiendo con el comienzo de su estancia en 

Italia, Hermann había enviado en carta a Zendrini (22-12-1707) una formulación 

diferencial del problema inverso157.  

 

De hecho, mientras está trabajando en la Phoronomia en Padua, Hermann escribe  

entre 1710 y 1713 y en italiano, cinco artículos sobre el problema inverso en la revista 

Giornale de’ Letterati d’ Italia (GLI). Hemos tratado en el capítulo “Jakob Hermann 

en la Historiografía” de esta monografía, el contenido de los artículos y la polémica 

que entabla Giuseppe Verzaglia con Hermann tras la publicación por parte de éste 

último del primer artículo en GLI

 

                                        

158.   

 

Veamos cuál es la situación del problema inverso en los Principia  y sus posteriores 

vicisitudes, tal como han sido analizadas en la historiografía reciente159. Nos servirá 

de contexto para analizar la formulación presente en la Phoronomia. 

 

En la primera edición de los Principia, Newton trata el problema de Kepler en las 

secciones III y VIII. En la III demuestra en las proposiciones XI, XII y XIII que si 

la trayectoria de un cuerpo es una elipse, hipérbola o parábola respectivamente, 

entonces la ley de fuerzas ha de ser inversamente proporcional al cuadrado de la 

distancia. A continuación el corolario I160 afirma que se puede deducir de las 

anteriores proposiciones, que si la ley es inversa del cuadrado de la distancia y dadas 

unas condiciones iniciales, se puede afirmar que las trayectorias son secciones 
 

156 Ver ref. en n. 19. El interés de Vargnon se suscita por dos cartas que recibe de Johann Bernoulli y de 
Hermann en 1710.  
157 La carta está transcrita en el apéndice 14-1 de [MAZZONE S. y ROERO C.S. 1997] Hermann la 
publicará en [HERMANN  J. 1711 c]  
158 Los estudios sobre la polémica con el análisis de las demostraciones de los artículos de Hermann y 
Verzaglia se encuentran en [Mazzone S. 1996] y [Mazzone S. y Roero C.S. 1997; pp. 100-101; 228-241] 
159 Sobre la historia del problema de Kepler y en particular sobre el debate en torno a la demostración de la 
ley inversa y a las polémicas generadas tras los Principia ver: [AITON 1964]; [De GRAND 1987]; [AITON 
1989]; [BRAKENRIDGE 1989]; [POURCIAU 1991]; [WHITESIDE 1991]; [BLAY  M.   1992 pp 216-
221]; [BERTOLONI MELI 1993; pp. 208-216]; [GUICCIARDINI 1995]; [SPEISER 1996]; [MAZZONE 
1996] y [MAZZONE S. Y ROERO C.S. 1997; pp. 100-101; 228-241] 
160 Primera edición. Londres  [NEWTON 1687. p. 55] 
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cónicas. Falta pues por probar la unicidad de tales soluciones, por lo que la crítica de 

Hermann en su primer articulo de 1710 parece consistente.  

 

En 1708 J. Keill, que pertenece al primer grupo de newtonianos, publica en la Royal 

Society  el primer artículo161 en el que se da la solución del problema inverso de las 

fuerzas centrales aplicando el cálculo diferencial.  La solución de Keill usando 

geometría fluxional no muestra la unicidad de las soluciones cónicas, aunque como ha 

analizado Guicciardini en el artículo citado, esto no era un requerimiento habitual en 

las matemáticas del s. XVIII. Keill y Johann Bernoulli mantendrán una polémica entre 

1714 y 1719. Keill proclama ser el primero en haber hecho la demostración del 

problema inverso contra la reclamación de Johann, pero además afirma que Newton 

ya lo había demostrado en la proposición 41 y en el corolario I de la segunda edición 

de los Principia., siendo la demostración de Johann diferente en cuanto a la 

simbología162.  

 

Newton mismo, independientemente de las críticas de Hermann y Johann Bernoulli, 

pero después de la publicación de Keill, se había dado cuenta de la insuficiencia lógica 

del corolario. Informa en 1709 a Cotes163 de la oportunidad de hacer algunos añadidos 

al corolario I, de forma que en la segunda edición de los Principia de 1713164, el 

corolario contiene unas indicaciones más detalladas de cómo construir las soluciones 

cónicas. A partir de la posición del foco, de un punto de contacto y de la tangente se 

obtiene la curvatura que corresponde a las cónicas, teniendo en cuenta la ley inversa 

del cuadrado para la fuerza central.  

 

El artículo de Pourciau citado analiza el nuevo corolario de Newton y argumenta que 

las indicaciones de Newton son suficientes para construir las cónicas como solución 

única concluyendo que: 

                                         
161 El artículo de Keill está analizado en [GUICCIARDINI 1995]. Este artículo es famoso porque en él Keill 
acusa a Leibniz por haber plagiado el cálculo de Newton.  
162 La polémica está analizada en [GUICCIARDINI 1995 pp. 561- 566] 
163 Publicada en [POURCIAU B. H. 1991] 
164 Segunda edición. Cambridge  [NEWTON 1713. p. 53]. Ver p. 467 de [NEWTON  I. 1687b] 
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“We find that his argument does indeed contain a flaw, it is a minor omission rather than a serious 

logical error. Having rectified this omission, we show how Newton’s outline expands into a convincing 

proof that inverse-square orbits must be conics.” [POURCIAU B. H. 1991. p. 159] 

 

En el mismo artículo, Pourciau se pregunta Could Newton have proved this 

proposition?, refiriéndose a la unicidad de las soluciones cónicas. Su respuesta es 

Definitely. How do we know? Because Book I of the Principia contains the proof of an 

even stronger result!  Pouciau se refiere a la prop. XLII de la sección VIII del 

primer libro, donde Newton encuentra la ecuación de la curva que verifica unas 

condiciones iniciales de la posición y de la velocidad en una dirección dada, para 

cualquier ley de fuerzas centrales conocida.  

 

La primera de las demostraciones en el artículo de Johann Bernoulli de 1710165 parte 

de la proposición 41 de la sección VIII de los Principia, en la que Newton estudia de 

un modo más general el problema inverso. En dicha proposición, Newton obtiene una 

ecuación de las curvas que sigue el móvil, supuesta un fuerza centrípeta de cualquier 

clase y estando garantizada la cuadratura de figuras curvilíneas. Reduce pues el 

problema inverso a cuadraturas de unas figuras auxiliares, pero no explica cómo 

realizarlas, a pesar de que, tal como indica Guicciardini en el artículo citado, Newton 

posee las técnicas del cálculo fluxional necesarias para cuadrar muchos tipos de 

curvas166. Johann BERNOULLI traduce en términos diferenciales la pop. 41, y 

particularizando para fuerzas que son como el inverso del cuadrado de la distancia, 

obtiene las ecuaciones de las cónicas.  

 

En su artículo, Johann Bernoulli además de criticar la insuficiencia de la 

demostración de Newton, critica la solución que Hermann le ha enviado, por ser 

                                         
165 Johann Bernoulli hace en el mismo artículo una segunda demostración. Ambas analizadas en 
[GUICCIARDINI 1995 pp. 551-554] 
166 Entre 1691-1693 Newton compone el tratado de cálculo fluxional De quadratura curvarum que aparecerá 
en 1704 como apéndice de su Opticks.  
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complicada de integrar sin conocer las soluciones y por haber omitido la constante de 

integración.  

 

Por tanto, la primera demostración de Hermann es criticada, por un lado, por Johann 

Bernoulli a quien responde en el tercer artículo de GLI, y por carta167 explicitando la 

sustitución realizada y la posibilidad de anular la constante de integración con un 

sistema adecuado de coordenadas. Por otro lado, tal como hemos dicho, es criticado 

por Verzaglia. 

 

La crítica de Verzaglia se basa en afirmar que el problema inverso ha sido totalmente 

resuelto en los Principia, ya que, tal como muestra en su artículo de 1710168, la 

solución analítica que él hace y la construcción newtoniana contenida en la prop. 41 

llevan a la misma ecuación diferencial para una fuerza arbitraria.  

 

Hermann publica un segundo artículo en GLI169 donde además de dar solución a un 

problema más general planteado por Johann BERNOULLI sobre fuerzas centrales en 

medios resistentes, vuelve a la solución newtoniana. Esta vez obtiene la solución 

considerando una fuerza central arbitraria, llegando a una expresión de las curvas 

equivalente a la de la proposición 41 de Newton, para después particularizar para 

fuerzas inversas del cuadrado de la distancia y obtener las cónicas. En el resto de 

artículos en GLI, Hermann defiende de las acusaciones de paralogismo y 

superficialidad.  

 

Según los estudios historiográficos citados, podemos decir que las indicaciones de 

Newton en la segunda edición habrían sido fundamentalmente correctas para 

demostrar el problema inverso; aunque a las instrucciones del nuevo corolario habría 

que añadir la proposición 41 de los  Principia donde se deduce la ecuación de las 

curvas que corresponden a una fuerza centrípeta general. Pero para los actores del 

                                         
167 [Hermann 1711 b] y traducción de la carta en n. 168 [MAZZONE S. Y ROERO C.S. 1997 p.88] 
168 [VERZAGLIA G. 1710]  
169 [Hermann 1711 a] Ver la demostración de Hermann en [MAZZONE S. Y ROERO C.S. 1997 pp. 94-98] 
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debate a comienzos del s. XVIII, por un lado las explicaciones del corolario de la 

primera edición fallan lógicamente, y por otro el resultado del teorema 41 depende 

de su particularización para fuerzas que son como el inverso del cuadrado y de su 

cuadratura.  

 

El debate planteado entre los defensores de la suficiencia de Newton en sus 

demostraciones, como Verzaglia o J. Keill, y los que como Johann Bernoulli y 

Hermann, consideran que es necesario completarlas, aunque nunca se plantean que sus 

resultados sean incorrectos, impulsa la aplicación del nuevo cálculo a los problemas 

mecánicos. Esos debates contribuyen a crear nuevos métodos de cálculo diferencial e 

integral, así como a debatir en qué consiste el rigor matemático.  

 

En lo que respecta a Hermann, podemos considerar que su posición final sobre el 

problema inverso es el tratamiento que de él hace en la Phoronomia.  

 

La primera demostración que hace Hermann del problema inverso en la Phoronomia 

corresponde a la proposición 23, que plantea el mismo problema que figura en la prop. 

41 de los Principia.: “dadas la solicitación central, la velocidad i la dirección inicial del 

móvil, definir y construir la curva describirá en el vacío el proyectil, supuesta la 

cuadratura de las figuras”. [Phoronomia  pp. 72 – 73, nº 162].   

 

La demostración de esta proposición sigue la pauta de la contenida en la que le envió a 

Zendrini por carta en 1708, y ambas se parecen a la proposición 41 de los Principia. 

En ambas, Hermann comienza trabajando con segmentos de un gráfico representados 

por pares de puntos, y acaba expresando en un corolario mediante el álgebra 

diferencial [Phoronomia  p. 73, nº 163] la ecuación diferencial de la curva (aequatio 

differentialis curvae) buscada.  

 

En un escolio posterior, Hermann afirma que este problema fue resuelto primero por 

Newton en su proposición 41 y después por Johann Bernoulli de dos formas, por 
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Varignon y por él mismo. También declara que su demostración no difiere de la de 

Newton “nisi in levibus nec essentialibus circumstantiis” [Ibíd.].   

 

Pero en el párrafo final del escolio explica qué queda por hacer y anuncia que será el 

quien primero lo resuelva, para dar con las soluciones algebraicas que corresponden a 

ciertas leyes de fuerza. Leamos sus palabras:  

 

“Por lo demás, puesto que esta solución general presupone las cuadraturas también de esas curvas que no 

son cuadrables, por esta razón ese problema es en general trascendente, y no es algebraico, salvo por 

ciertas leyes de atracciones centrales. Cuáles, en verdad, deban ser en general estas leyes de gravedad 

variable, para que, una vez planteadas, resulten las curvas algebraicas de los proyectiles, el problema es, 

según se dice, minucioso y elegante pero a primera vista muy difícil, acerca del cual, que yo sepa, nadie 

hasta ahora ha reflexionado. Cómo deba ciertamente explicarse, ello se evidenciará con la siguiente 

proposición, tras el lema que enseguida se aportará.”170 

 

Hermann tratará el problema inverso de las fuerzas centrales en un contexto muy 

amplio; obtendrá una expresión de las fuerzas en función de coeficientes 

diferenciales que representan las diferenciales sucesivas como funciones del radio 

vector z y de ciertos parámetros. También obtendrá como serie de potencias la 

expresión general de las curvas, en función también del radio vector y de 

parámetros. Después, tras particularizar parámetros, obtendrá distintas leyes de 

fuerzas, no sólo las inversas del cuadrado, para finalmente obtener las ecuaciones de 

las curvas.  

 

Esta estrategia generaliza el procedimiento usado en otras demostraciones del 

problema inverso no sólo las realizadas por él en los artículos de GLI citados sino las 

realizadas por Johann Bernoulli y Varignon. Un procedimiento general generará las 

curvas para las distintas hipótesis de fuerza. A continuación expondremos 

                                         
170 “Caeterum, quia generalis haec solutio quadraturas praesupponit earum etiam curvarum quae 
quadrabiles non sunt, ideo problema istud generaliter suntum est trascendens, nec algebraicum sit, nisi pro 
certis legibus solicitationum centralium. Quae nam vero debeant esse in genere hae leges gravitatis 
variabilis, ut illis positis cuvae projectorum algebraicae evadant, problema est fatis curiosum et elegans sed 
prima fronte admodum difficile, de quo, sciam, nemo adhuc cogitavit. Quomodo vero debeat expediri, id i 
sequenti apparebit propositione, post lemma mox afferendum. “  [Phoronomia  p. 74 , nº 164]   
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esquemáticamente cómo generaliza la resolución del problema inverso para llegar a 

las soluciones algebraicas.  

 

Hermann construye en la proposición XXV [Phoronomia  pp. 74 – 76, nº 167]  una 

nueva figura asociada a la que representaba la trayectoria ANn (fig. 31 izquierda) de 

un móvil sometido a una fuerza con centro en D (EF era la velocidad en un punto N). 

DA es el eje vertical en ambas figuras. Construye (fig. 31 derecha) un cuadrante Θml, 

de forma que el ángulo MAL está relacionado con el ángulo ADN que da la posición 

angular del móvil sobre la trayectoria Ann, mediante la relación ADN : MAL = 1/n 

donde n es cualquier número racional positivo. DE representa el radio vector desde D 

en ambas figuras. De este modo queda definida la curva LHh a partir de un radio AL 

constante y de las dos coordenadas polares MAL y DE. 

θ 
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Fig. 31 

 

Para cada punto H de la curva LHh representa la tangente Hh∆ cuya subtangente es 

E∆. Prolongando EH construye la curva ΛX haciendo que la subtangente E∆ = EΛ para 

cada radio vector DE.  
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Omitiendo los laboriosos detalles de la demostración, diremos que Hermann obtiene, 

usando lemas matemáticos auxiliares, una expresión de la velocidad EF en función de 

la subtangente E∆ de la curva  LHh, de la tangente SL del semicírculo, del parámetro 

n y del radio vector DE.  

 

242

222
2

DE
1   

DEAL
SL E n  EF +

∆
= 5 - j 

 

 

Diferenciando esta expresión de la velocidad en un punto de la trayectoria obtiene 

una expresión con 2 EF. d(EF), o según su notación 2 EF.af (ver fig. 31 ).  A 

continuación usa su teorema general de igualdad de momentos de velocidad y fuerza 

(que hemos llamado de “las fuerzas vivas” para seguir la nomenclatura actual), y llega 

a una expresión general de la fuerza central G como función de los parámetros de la 

trayectoria del móvil. Dado que  EF.af = G. Ee  (en símbolos actuales v.dv = F.dr) y 

diferenciando la expresión 5 – j se obtiene171:  
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 En un corolario posterior [Phoronomia  pp. 77 – 78, nº 169] supone que la ordenada 

EH = ± (e – A) donde e es una constante, y A una cantidad compuesta de cualquier 

forma de constantes y del radio vector z. De este modo toma dA = B dz, y dB = C dz, 

es decir las diferenciales sucesivas de A.   

 

Algebriza la expresión anterior, usando los símbolos siguientes DE=z, AL = r 

(parámetro del cuadrante circular) y r2 – e2 = c2. Sustituyendo los valores de la 

expresión anterior de la fuerza G por los correspondientes A, B y C queda: 

[ ]
53

22222222

3 zB
   z C  A- B  A2 - z B  A z C  Ae 2  B Ae 4  z B e  z C s  B 2s  n  

z
1 G +±±+
+=

m

 

(5 – k)  
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171 Los signos negativos que se obtienen al diferenciar son en Hermann positivos.  



Vemos cómo Hermann usa aquí lo que Euler llamará, en su obra Textos sobre el 

cálculo diferencial de 1755 “coeficientes diferenciales”, que tendrán un papel 

preponderante en su formulación  de las diferenciales de orden superior, y que a 

decir de H. J. M. Bos [BOS  H. J. M.  1984 p. 106], por ser implícitamente las 

derivadas de orden superior, prepararán el terreno para la sustitución de la 

diferencial por la derivada como concepto fundamental del cálculo. 

 

Hermann ha llegado a una expresión de la fuerza central G en función del radio 

vector z, del parámetro n racional positivo que representa la relación entre el ángulo 

de posición ADN y el de la figura auxiliar MAL, de una función de z y constantes que 

ha llamado A, y de sus diferenciales sucesivas.  

 

Particularizando A podemos obtener las distintas expresiones para la fuerza G que 

queramos considerar. No se limita a trabajar con G inversamente proporcional al 

cuadrado u otra hipótesis, sino que consigue una expresión válida en cualquier caso.  

 

En otro corolario [Phoronomia  pp. 77, nº 168], Hermann obtiene la relación que le 

permitirá deducir la ecuación de la trayectoria del móvil, a partir de las hipótesis 

particulares consideradas para la fuerza G. Veamos en qué consiste esta expresión 

que utiliza los desarrollos en serie de potencias de expresiones trigonométricas. 

 

Establece las siguientes relaciones en las figuras anteriores: llama T = tg MAL y S = 

sec MAL; z2 = x2 + y2 (coordenadas cartesianas de la posición z del móvil); por tanto  

tg ADN = r y:x; sec ADN = r z:x. 

 

Toma como hipótesis que la relación entre los ángulos ADN y MAL, que había tomado 

como 1/n, es en general la siguiente:   ADN : MAL = 1: n = µ:ν.  
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A continuación escribe el desarrollo en serie de potencias para sec [ν.ADN] y para la 

sec [µ.MAL], remitiendo a un artículo suyo publicado en Actas Eruditorum en 1706 p. 

263172. Las expresiones son: 

 

sec [ν.ADN] = r zv : [ xv – o2 ν x v – 2 + 04 ν x v – 4 - ... ] 

 

sec [µ.MAL] = Sµ : [ rµ -1 – o2 µ rµ – 2 + 04 µ rµ – 4 - ...] 

 

Donde los números o2ν, 04ν,... y los de µ, o2 µ, 04 µ, etc. son los coeficientes 

binomiales correspondientes ( p. ej. 02 ν = ν (ν – 1) : 2! Etc.) 

 

Como ha supuesto que ADN : MAL = 1: n = µ:ν, implica que [ν.ADN] = [µ.MAL] y por 

tanto sus secantes también son iguales, de donde se deduce la siguiente ecuación 

general algebraica de la curva  ANn: 

 

Sµ [xv – o2 ν x v – 2 + 04 ν x v – 4 - ...] = r zv [rµ -1 – o2 µ rµ – 2 + 04 µ rµ – 4 - ...] 

           (5 – l) 

Introduce el escolio final [Phoronomia  pp. 78 – 81, nº 170] de este capítulo del modo 

siguiente: 

 

“Para que destaque con claridad el uso de nuestra fórmula, la aplicaremos a un ejemplo particular. ... 

Estos valores, reemplazados en la fórmula del Coralario superior, darán una fórmula que, aun siendo 

particular con respecto a la otra, de la cual fue deducida, no obstante puede procurar en abundancia 

infinitas diversas curvas algebraicas, incluso, infinitas veces infinitas.” 173 

 

Indica cómo las expresiones generales para la fuerza (5-k) y para la curva (5-l), 

pueden aplicarse para encontrar, a partir de una hipótesis particular para la fuerza 

                                         
172 Disquisitio diptrica de curvatura Radiorum visivorum atmosphaeram trajicientium, cui accedit indefinita 
Sectio angularis ope Tangentium et secantium. Actas Eruditorum (junio 1706 pp. 256-263) 
173 Introduce el escolio con estas palabras “Ut appareat usus insignis nostrae formulae, exemplo cuidam 
particulari eandem applicare libet. .... Qui valores, in formula superioris Corolarii substituti, dabunt 
formulam quae etsi particularis est alterius respectu, ex qua deducta est, infinitas tamen diversas curvas 
algebraicas suppeditare potest, immo infiniteies infinitas.” [Ibid.] 
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G, la ecuación de la trayectoria del móvil.  Da varios ejemplos entre los que 

destacaremos el que corresponde a la hipótesis de una fuerza inversamente 

proporcional al cuadrado de la distancia. 

 

Está interesado en encontrar soluciones algebraicas y supone el grupo de casos para 

los que (z es el radio vector y a un parámetro): 

 
1 - m

m

a
z  A =

 

Como las diferenciales sucesivas de A son de la forma: dA = B dz y que dB = C dz, 

obtiene:                 B = m z m-1 : a m-1;     C = m (m-1) z m-2 : a m-1 

 

De donde la expresión general de la fuerza central G (5-k) queda: 
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A partir de aquí, tomando valores para m y n, obtiene las distintas hipótesis para las 

fuerzas y de ellas la ecuación de la trayectoria correspondiente. 

 

El primer caso que analiza es para m = - 1 y n = 1.  Sustituyendo en 5-m obtiene que es 

G = ± e : a 2 z 2 , es decir, una fuerza inversa con el cuadrado de la distancia z al 

origen D.  

 

Para estudiar la ecuación de la trayectoria, vemos que como 1: n = µ:ν, en este caso 

toma µ = ν = 1. Sustituyendo los valores en la ecuación general algebraica de la curva 

(5-l), tenemos que los términos binomiales desaparecen quedando: 

S x = r z                          (5 – n) 

 

Como A = (z m : a m – 1 )=  a 2: z, y como habíamos tomado EH  = ± (e – A) tenemos ahora  

EH = ± ( ez – a2) : z.   
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Como había supuesto en su construcción que la secante del ángulo MAL es tercera 

proporcional de EH y del radio del cuadrante circular AL = r, nos queda: S : r = r : EH  

y de aquí   S = r 2 z : ez – a2. Sustituyendo en (5-n) queda: e z = a 2 ± r x,  que es la 

ecuación de las secciones cónicas. Hermann analiza otras opciones tales como: 

 

• m = - 2 y n = 2 en que G = - s 2 z : a 6; cuyas trayectorias son cónicas 

• m = 1 = n =  µ = ν  en que G = 2 s 2 : z 3; trayectorias circulares 

• m = -1 y e = 0 en que G = 1 – n 2 : z 3; trayectorias espirales que pueden ser 

algebraicas o trascendentes.  

 

Señalemos que el último caso en el que la ley de fuerzas varía como el inverso del 

cubo, es analizado por Newton en el corolario III de la prop. 41 (1687) 174 donde 

obtiene ciertas soluciones del problema en un caso en que las condiciones iniciales 

están restringidas. Es evidente que no da la solución completa en éste tipo de 

problema inverso, ya que en la proposición 9 del libro I había encontrado que una 

órbita espiral equiangular corresponde a una fuerza inversa del cubo. Johann 

Bernoulli en su texto de 1710 había aducido este ejemplo mostrar que la generalidad 

de las soluciones no estaba garantizada en la primera redacción del corolario I de 

Newton.  

 

El final del largo escolio de Hermann es elocuente sobre la potencia de su 

procedimiento: 

 

“Y sin duda baste con haber citado estos pocos ejemplos para ilustrar la fórmula aducida desde el 

principio de este artículo; a partir de estos hechos el lector perspicaz ya puede advertir de cuánta 

inmensa utilidad es la solución general del problema propuesto y resuelto según el artículo 167 [nuestra 

ec. 5-k], puesto que una sola fórmula particular para el artículo 170 [nuestra ec. 5-l], poco antes citada, 

podía suministrar abundante materia para redactar un tratado razonable.”175 

                                         
174 Ver sobre esto  [GUICCIARDINI 1995 pp. 546 y 560]  
175 “Et quidem haec pauca exempla ad illustrationem formulae ab initio hujus articuli allatae adduxisse 
sufficiat; ex quibus factis jam perspicax Lector animadvertere potest, quam immensi pene usus sit generalis 
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5.3 LAS LEYES GENERALES DE LAS COLISIONES  

 

El capítulo VI del primer libro de la Phoronomia trata de las “leyes del movimiento en 

la colisión de los cuerpos” [Phoronomia  pp. 110-124]. En él Hermann seguirá los 

planteamientos de Leibniz organizándolos a partír de un solo principio (de nuevo 

energético) y ampliándolos a casos de choques oblícuos e inelásticos. 

 

El estudio de las leyes de los choques es un centro de interés a partir de la teoría 

que expone Descartes en los Principes de Philosophie de 1644. En esta obra 

Descartes aplica al choque su principio general de conservación de la cantidad de 

movimiento (mv) y da las siete reglas que explican todos los casos de choque directo 

entre cuerpos. Este trabajo deja insatisfechos a muchos de sus lectores, ya que no 

concuerda con las experiencias conocidas. La importancia  del problema se pone de 

manifiesto en que en 1668 la Royal Society pide a Huygens, Wren. Wallis y otros que 

aporten soluciones. Huygens envía ese año su solución al problema176 considerando la 

conservación de la cantidad de movimiento pero teniendo en cuenta, a diferencia de 

Descartes, la direccionalidad de los movimientos. Establece que ha de conservarse 

también la cantidad mv2 durante el choque para cuerpos elásticos, es decir aquellos 

que recuperan su estructura tras al choque.  

 

Leibniz con el texto “Brevis Demonstratio Erroris memorabilis Cartesii et aliorum 

circa legem Naturalem” publicado en Actas Eruditorum en 1686 expone su crítica del 

sistema cartesiano177. En este texto Leibniz defiende la idea de que la ley cartesiana 

de conservación de la cantidad de movimiento (mv) es falsa y conduce a paradojas. 

Propone medir la fuerza que posee un cuerpo por los efectos que produce, por 

ejemplo al convertir un movimiento horizontal en ascensión libre vertical. En este 

                                                                                                                           
solutio problematis articulo 167 propositi et soluti, quandoquidem sola formula particularis articulo 170 
paulo ante memorata justo tractatui conscribendo abundantem materiam subministrare posset.” [Ibidem] 
176 Extrait d’une lettre de M. Huygens à l’auteur du journal sur les règles du mouvement dans la rencontre 
des corps. Journal des Savants. 1699. 
177 Para un análsis de la posición cartesiana y de la crítica de Leibniz ver el apartado 4.3 The laws of motion 
en [GARBER  D.  1995, p. 309] 
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caso muestra cómo el efecto de la fuerza de un cuerpo en movimiento depende de la 

altura alcanzada, que a su vez es, por las leyes de Galileo de caída libre, como el 

cuadrado de la velocidad. Argumenta, seguramente inspirado por las leyes de choque 

de Huygens, que la cantidad conservada es la que llama “fuerza viva” (vis viva), dada 

por mv2. Muestra, así mismo, cómo en este caso, la cantidad de movimiento no se 

conserva, ya que dos cuerpos de valor 1 y 4 alcanzarían alturas de 4 y 1 

respectivamente teniendo la misma vis viva, sin embargo tendrían velocidades de 2 y 

1 respectivamente. La crítica leibniziana y la correspondiente “medida de la fuerza” 

da lugar a la polémica llamada de “las fuerzas vivas” que recorrerá todo el s. XVIII. 

La polémica de las “fuerzas vivas” se establece en un primer momento entre los 

cartesianos y Leibniz, para reactivarse tras la publicación de la correspondencia 

Leibniz – Clarke en 1717178, un año después de que se edite la Phoronomia.  

 

La exposición leibnizina de las leyes de los choques se encuentra en el ensayo “Essay 

de dynamique sur les loix du Mouvement …” escrito en la década de 1690 y publicado 

por primera vez por C.I. Gerhardt en 1860179. En este manuscrito Leibniz expone las 

tres leyes de conservación en línea recta siguientes180:  

 

• Se conserva la “Fuerza absoluta”181 en las colisiones elásticas, esto es, la suma 

de mv2 antes y después del choque. Enfatiza que dichos valores son absolutos 

ya que no dependen de la direccionalidad de las velocidades, y que en los 

choques inelásticos una parte de la fuerza absoluta inicial se pierde en las 

partes internas de los cuerpos, aunque se conserva en conjunto.  

 

• Para los choque elásticos se conserva la “Fuerza respectiva” o “Velocidad 

Relativa” de los cuerpos que colisionan en la misma dirección. Es decir, siendo 

(v, x) las velocidades de un cuerpo A antes y después del choque, y (y, z) las 

                                         
178 Ver para una historia de la polémica en el s. XVIII [HANKINS T. L.  1965] 
179 Traducción castellana en [LEIBNIZ  G.W.  1991 pp. 99-125] 
180 Ibíd. pp. 117-120 
181 Leibniz llama aquí “Fuerza Absoluta” a lo que ha llamado “Fuerza Viva” (vis viva) o incluso “Fuerza 
Viva Absoluta” en otros textos como SpecimenDyinamicum publicado en AE en 1695. 
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velocidades antes y después del segundo cuerpo B, se cumple durante el 

choque que:  v – y = z – x.  

 

• Se conserva el “Progreso común” o “cantidad de movimiento” de los cuerpos 

durante cualquier tipo de choque teniendo en cuenta la direccionalidad de los 

movimientos.  

 

Finalmente Leibniz muestra de forma algebraica cómo cualquiera de las tres leyes 

puede obtenerse de las otras dos, por lo que para resolver el problema del cálculo de 

la velocidad después del choque bastaría usar dos de ellas.  

 

Veamos ahora cuál es el planteamiento del problema de los choques en la Phoronomia. 

Como hemos dicho, Hermann no interviene directamente en la polémica de las vis viva, 

pero en su dinámica de choques fija su posición y demuestra conocer los textos del 

debate.  

 

Como ya es habitual, introduce una serie de definiciones relativas al problema 

tratado. En este caso, amplía la definición de colisión para el caso oblicuo (in 

directionius obliquis) y define los conceptos de velocidad propia y relativa así como el 

de fuerza absoluta: 

 

• velocidad propia (velocitates propiae) la que tienen los cuerpos. Velocidad 

relativa (velocitas relativa) la que tienen al acercarse mutuamente y que será 

la suma de las propias si se acercan en sentido opuesto y la diferencia si se 

persiguen. Establece el sentido de las velocidades como positivo o negativo 

para tener en cuenta su dirección, propiedad que también indica, como en 

otros lugares, por el orden de los dos puntos que representan las velocidades 

(AD = - DA). 
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• Define la velocidad de los cuerpos antes del choque como la que habrían 

adquirido en caída libre por gravedad, y la de después como la velocidad inicial 

que tendrían al ascender verticalmente por gravedad (ver fig. 32).  

 

• “Fuerza absoluta” (vis absoluta) de un cuerpo es la “altura” que alcanzarían en 

movimiento libre, al caer (antes de chocar) o al subir (después del choque). Ya 

hemos indicado que la “fuerza absoluta” equivale a la vis viva y ambas a lo que 

será la “energía cinética” del cuerpo, ya que la altura alcanzada en caída libre 

es proporcional al cuadrado de la velocidad.  

 

Recordemos que Leibniz justifica la denominación “absoluta” por cuanto esta 

cantidad se conserva en el universo, independientemente de la dirección de los 

cuerpos, en sustitución de la cartesiana “cantidad de movimiento” que, en su 

opinión, se conservaría en los choques pero no en general.  

 

Hermann, nunca usa la denominación vis viva en relación con la altura que 

virtualmente alcanzarían los cuerpos en su libre ascenso o descenso. 

Recordemos que en las definiciones que encabezan la obra que estamos 

analizando, nos dice que llamará simplemente fuerza (vis) a la fuerza viva (vis 

viva) productora de cambios en la velocidad182. Sigue pues la mencionada 

denominación de Leibniz que permite introducir con el lenguaje una distinción 

entre “fuerza” (vis) que incluye la vis viva y “fuerza absoluta” que se mediría 

de otro modo.  

 

• Diagrama de fuerzas absolutas: Hermann representa mediante segmentos 

verticales las alturas equivalentes a cada “fuerza absoluta” del modo que 

indica la fig. 32. Antes de chocar EA representa la fuerza absoluta del cuerpo 

A, BF la del B. Después del choque las fuerzas absolutas son ea y fb. Estas 

verticales son para nosotros las energías cinéticas. 

                                         
182 Ver el apartado 3.3 de esta monografía. 
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• Cuerpos elásticos o activos (corpora elastica aut actuosa) como aquellos que 

poseen una fuerza activa o impulsora. Y cuerpos inertes o no elásticos 

(corpora non elastica aut inertia) que sólo son afectados por la fuerza de 

inercia.  

 

Como vemos, las definiciones responden a una explicitación de la conceptualización 

leibniziana de las colisiones. Podemos considerar en los cuerpos elásticos o no, su 

“velocidad propia” y “relativa”, y además su “fuerza absoluta” representable mediante 

un diagrama de alturas. 

 

El estudio de los choques elásticos se basa para Hermann en la deducción de sus 

leyes a partir de un único principio o hipótesis que anuncia a continuación: “Cuando los 

cuerpos activos chocan entre sí, su fuerza absoluta tras la colisión es la misma que 

antes de chocar.” [Phoronomia  p. 112 nº 218]. Nos indica que esta hipótesis significa 

que las alturas del centro de gravedad (c. de g.) son la misma antes y después del 

choque. En el diagrama de fuerzas absolutas CG = cg.  

 

En el largo comentario que sigue a de las definiciones y a la hipótesis expone sus 

ideas en relación a la polémica de las fuerzas vivas y a su propio planteamiento. 

 

A B a C 
b 

c 

Fig. 32 
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Nos dice que su hipótesis fue enunciada sin demostración por Leibniz, pero que puede 

demostrarse y que él mismo lo hará quizás en otra ocasión183. No ignora, afirma, que 

muchos hombres insignes han considerado que la medida de la fuerza ha de hacerse 

por la cantidad de movimiento. Se refiere explícitamente a Papin, que en su polémica 

con Leibniz afirma que la fuerza debe medirse por el tiempo y no por la altura 

alcanzada. 184. También afirma que Huygens también adoptó en cierta medida su 

hipótesis. 

 

Afirma sucintamente que el principio cartesiano es falso, ya que pretende que 

cuerpos con distintas velocidades ascenderán lo mismo por los impulsos de la 

gravedad producidos en tiempos iguales. Se refiere sin duda a razonamientos 

expuestos por Leibniz en su polémica. Si la “fuerza” se mide por la cantidad de 

movimiento, dos cuerpos que teniendo distintas velocidades tienen igual cantidad de 

movimiento, producirían el mismo efecto o altura en su ascensión libre.  

 

Demuestra la ley de conservación de mv para choques inelásticos oblicuos y la 

conservación de la velocidad del centro de masas en cantidad y dirección [Phoronomia  

pp. 114-115 nº 220-221]. Muestra que para cuerpos elásticos su hipótesis equivale a la 

conservación de la cantidad mv2 [Phoronomia  pp. 115-116 nº 222].  

 

A partir de la siguiente expresión: A.AC.AB + C. CD2 = A. ac. Ab + C.Dc2 [Phoronomia  

p. 116 nº 223], y considerando una variación de velocidad virtual infinitesimal durante 

el choque, demuestra que en la colisión elástica se conserva la velocidad del centro de 

gravedad y la velocidad relativa de los móviles.  

 

                                         
183 “… etsi apodictice demonstrari potest, ut forte alia id occasione ostendemus.” [Phoronomia p. 113 nº 
219] 
184 Recordemos que tras el citado artículo sobre los errores de Descartes que publica Leibniz, en 1686, los 
cartesianos Catelan y Papin intervienen defendiendo las posiciones cartesianas protagonizando las primeras 
escaramuzas de la polémica. 
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En el corolario IV [Phoronomia  p. 119 nº 229], como aplicación de las dos leyes 

anteriores, da la expresión general que permite calcular las velocidades finales de los 

cuerpos en colisión a partir de sus masas m, n y de sus velocidades iniciales u y r:  

 

nm
ruu
+

−
+=

n 2 )(   vA      
nm

rur
+

−
+=

m 2 )(   vB  

 

Una vez más, Hermann expone un tema mecánico de forma deductiva, a partir de la 

menor cantidad de principios, o con sus palabras de forma “simple y elegante”. La 

diferencia con Leibniz es que, adoptando sus conceptos y sus leyes, contribuye a 

construir un sistema deductivo con ellas, ampliándolo además a los choques 

inelásticos y oblicuos.  

 

Ha expuesto la teoría de los choques tomando para cuerpos elásticos una de las leyes 

de Leibniz como hipótesis. Esta ley equivale a la conservación de lo que será para 

nosotros la energía cinética, y para ellos la “fuerza absoluta” medida como una altura 

virtual. A partir de ella demuestra la conservación de la cantidad de movimiento y de 

la velocidad relativa, y estas dos ecuaciones bastan para obtener las soluciones en los 

choques. Hoy resolvemos este tipo de problemas con el par de ecuaciones de 

Hermann, ya que es más sencillo usar la conservación de la velocidad relativa, que la 

conservación de la energía cinética que contiene potencias185.  

 

5.4 EL DESCENSO DE CUERPOS POR CURVAS Y LOS PÉNDULOS 

 

Hermann plantea el estudio del movimiento por curvas isócronas para cualquier 

hipótesis de fuerzas centrales y el movimiento de péndulos en el capítulo III de su 

obra [Phoronomia  p. 81]. Su originalidad consiste, de nuevo, en el uso la primera regla 

dinámica general establecida por él (ver 5.1), es decir la conservación de la energía. 

                                         
185 Ver [TIPLER  P. A. 1988  t. I pp.265-285 ] 
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Recordemos que está será una de las aproximaciones al estudio mecánico que 

culminará con Lagrange en s. XVIII:  Reseñaremos sus principales resultados. 

 

El teorema principal [Phoronomia  pp. 81-84 nº 172] consiste en una caracterización 

de las curvas de descenso isócronas, es decir, curvas por las que un cuerpo desciende 

en igual tiempo para cualquier arco que se considere. El planteamiento de Hermann es 

el siguiente (ver fig. 33 ):  

 

Sea BEA la curva isócrona por la que se mueve el cuerpo desde el reposo sometida a 

las fuerzas centrales, representadas por la escala (cha) según las distancias radiales 

BC, HE, Ve, etc. al centro de fuerzas O. Define una segunda escala ARD cuyas 

ordenadas HR se definen de modo que cada HR = √(2 HAah) correspondiente. 

Establecido esto, demuestra que: “Si AE = N·HR  entonces la curva BEA es isócrona. 

Siendo N una constante.”  
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Si analizamos el teorema vemos que la escala ARD es una curva que expresa el 

incremento de energía cinética entre los puntos de la curva H y el final A. Es decir, 

HR = √(2 HAah) = √(2 WHA) donde WHA representa en notación actual el trabajo de la 

fuerza central para ir desde H hasta A o desde E hasta A. Hermann construye la 

curva de energías correspondiente a la isócrona, siguiendo una vez más el teorema de 

la energía cinética que ha considerado como la primera de sus dos reglas 

fundamentales (ver ec. 5-e del apartado 5.1 de esta monografía). La curvas isócronas 

quedan pues caracterizadas por la condición de que un fragmento de arco AE es 

proporcional a la variación de energía cinética correspondiente HR. 

 

Sin entrar en detalle en la demostración, podemos decir que usando teoremas 

energéticos del modo que acabamos de explicar, llega a la conclusión de que el tiempo 

dt de caída por un diferencial de curva Ee y que es ds/v, depende sólo de constantes 

y del ángulo iCI del cuadrante KCD asociado a la curva energética ARD. Haciendo la 

correspondiente integración, el tiempo t para recorrer toda la curva BEA es 

proporcional al ángulo del cuadrante KCD completo (diríamos hoy que vale π/2 

radianes). El argumento final de Hermann es que si lo hiciéramos para otro fragmento 

de curva, por ejemplo para FEA, el resultado sería también el ángulo correspondiente 

a un cuadrante completo (de nuevo π/2 radianes), ahora para un radio más pequeño 

MCN.  

 

El corolario I [Phoronomia  p. 84 nº 173] considera un pequeño arco cercano al punto 

A inferior de la curva isócrona. En este corolario obtiene la expresión de la constante 

N usada en la demostración general citada pero ahora para pequeñas oscilaciones. N 

queda como función del radio de curvatura θA en A (para nosotros R) y del radio 

vector r o distancia al centro de fuerzas O. Si pA es el peso del cuerpo en el punto 

más bajo A,  N queda como: 

Ap r)(R
Rr  N
+

=  
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Un segundo corolario [Phoronomia  pp. 84-85 nº 174] particulariza el problema 

tomando el radio de curvatura θA igual a la longitud del péndulo correspondiente 

colgado de θ. De este modo su teorema general de descenso por curvas isócronas 

sirve ahora para péndulos de longitud R= θA.  

 

Razona del modo siguiente (actualizamos su notación ligeramente): si el teorema 

muestra que tBEA = N √m · (un cuadrante KCD), una oscilación completa sería T = 4 

tBEA = N √m (2 π)186. Sustituye el valor de N obtenido en el corolario I, llegando a la 

expresión general para el periodo de un péndulo isócrono o para cualquier péndulo con 

oscilaciones pequeñas, en cualquier hipótesis de gravedad central: 

 

AA

A

p)r(l
r l m

  2  T
+

= π  

 

m es la masa, l la longitud del péndulo o radio de curvatura R, rA el radio vector desde 

A al centro de fuerzas O, y pA el peso del cuerpo en A.  

 

El tercer corolario [Phoronomia  p. 85 nº 175] particulariza para gravedad constante 

en el que podemos considerar r como infinito en comparación con la longitud del 

péndulo l. Dado que ahora l+rA = rA el periodo es en este caso, similar al que 

encontramos en nuestros textos: 

Ap
 l m  2  T π=  

 

Aquí refiere Hermann que su resultado está de acuerdo con el de la prop. L II del 

libro I de los Principia187. En este teorema Newton deduce la proporcionalidad directa 

del periodo de un péndulo con la raíz de su longitud, e inversa con el peso y la suma de 

longitud y radio para cualquier fuerza central. En los corolarios Newton particulariza 

                                         
186 En su notación 2 π es la longitud de la circunferencia dividida por el radio.  
187 [NEWTON  I. b 1687 p. 553 ] 
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para el caso de gravedad constante estudiado por Wren y por Huygens, tal como hace 

Hermann.  

 

Igualmente, Hermann expone en el mismo corolario III, cómo de la expresión del 

periodo para gravedad constante, pueden deducirse los resultados que Newton da en 

la prop. XXIV y sus corolarios, referidos a las proporciones entre las diversas 

magnitudes, longitud, masa, peso, al comparar dos péndulos.  

 

La novedad es que Hermann ha obtenido las constantes de proporcionalidad y ha 

resuelto el problema usando su teorema energético. Este cambio es importante por 

cuanto marca un camino en el que los teoremas energéticos permiten resolver de 

modo más directo muchos de los problemas dinámicos. Este será el método que 

generalizará Lagrange.      

 

El teorema energético le permite a Hermann resolver también el problema de 

Huygens [Phoronomia  pp. 89-91 nº 179]. A saber, si la gravedad es uniforme la 

isócrona es la cicloide.  

 

En este caso, la escala de fuerzas cha (ver fig. 33 ) es una recta vertical, y la escala 

que representa la variación de energía cinética del móvil que baja por la curva 

isócrona BEA, se convierte en una parábola. Recordemos que en su teorema principal 

HR = √(2 HAah) y por tanto en este caso HR2 = 2 p hA, siendo p el peso constante del 

móvil y hA la altura desde la que cae. Hoy diríamos que se trata de la expresión para 

gravedad constante de la igualdad entre energía cinética y potencial en la caída.  
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A continuación, en un escolio [Phoronomia  pp. 91-93] Hermann resuelve algunos de los 

trece problemas planteados por Huygens en su Horologium Oscillatorium (Paris, 

1673). Los cuatro primeros de Huygens corresponden, como es sabido, a la medida de 

la fuerza centrípeta como v2/r (ver ec. 5-g) que demostró Hermann, y que ya 

comentamos en la sección 5.2. El 

quinto teorema de Huygens 

consiste en encontrar la 

relación entre la fuerza 

centrípeta y el peso. Hermann 

considera el movimiento circular 

generado en un péndulo cónico 

(fig. 34 ).  C es la fuerza 

centípeta, G el peso, R el radio 

de giro, M la masa, v la 

velocidad equivalente a la caída libre desde la altura h = DM, T es el periodo o tiempo 

de una vuelta y p es el cociente entre la longitud de la circunferencia L y el radio R, 

que es el modo en el que se expresaba 2π.  

D 
l 

M 
C R 

Fig. 34 

 

Con estas definiciones y teniendo en cuenta como ecuación I la expresión que 

demostró para la fuerza centrípeta: C R = v2, como ecuación II el periodo T= p R/ v, y 

como ecuación III la velocidad en caída libre de Galileo v2 = 2G h, obtiene con poco 

esfuerzo: 

 

• Con las ec. I y III el teorema V de Huygens: C/G = 2h/R 

• Con las ec. I y II y si T1 = T2:  C1/C2 = R1/R2 (las fuerzas centrípetas son 

proporcionales a los radios) 

• Con las ec. I y II y si T es proporcional a Rn tenemos que C = p R1 – 2n Si además 

consideramos que, como en el caso de la gravedad, C es proporcional a R-2 

queda que R2 = R2n - 1  de donde n= 3/2 y por tanto T es proporcional a R 3/2 que 

es la tercera ley de Kepler.  
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Tal como declara el propio Hermann, después de Huygens, L’Hospital da la 

demostración de estos teoremas en la memoria entregada a la Académie en 1700188 

de modo diferente a él. Podemos ver la solución de L’Hospital en [BLAY M. 1992, pp. 

103-107]. La solución de Hermann difiere en cuanto que parte de una demostración 

general de la ley de la fuerza centrípeta (ec. 5-g) en cada punto de la curva, 

demostrada a partir de su segunda regla general (segunda ley de Newton). Basta 

después particularizar para obtener las reglas de Huygens de modo sencillo. El 

procedimiento de Hermann tiene el interés de contribuir a una algoritmización de la 

mecánica, es decir, resolver problemas a partir de principios generales, que en la 

solución de L’Hospital no está presente.   

 

Otro trabajo de L’Hospital tiene que ver con un problema que había planteado Johann 

BERNOULLI públicamente en Acta Eruditorum en 1695. El problema se conoce como 

de la curva de igual presión o de la curva centrífuga, y consiste en encontrar la curva 

que cumple que en cada punto son iguales el peso del cuerpo que cae y la fuerza 

centrífuga o presión del mismo sobre la curva. Como de costumbre y según el 

contrato firmado con L’Hospital, Johann le había explicado por correspondencia al 

matemático francés los detalles físicos del problema, como el significado de la 

fuerza centrípeta, para que L’Hospital pudiera dedicarse a su resolución.  

 

Hermann resuelve también este problema en [Phoronomia  pp. 94-95; nº 185] de modo 

parecido al de L’Hopital, pero sin usar la expresión del radio de curvatura presente 

en L’Analyse des infiniment petits (París 1696).  

 

En el capítulo V Hermann realiza el estudio del péndulo compuesto consistente en 

varios cuerpos conectados entre sí y oscilando. El objetivo es encontrar a partir del 

péndulo compuesto el “centro de oscilación” o punto del péndulo simple sincrónico del 

compuesto.  

                                         
188 Solution d’un problème physico- mathématique. Histoire de l’Académie 1700 (1703) 9-21 
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Tal como explica Hermann, el primero en tratar estos problemas fue Huygens en la 

cuarta parte de su obra sobre el reloj de péndulo, ya varias veces citada en este 

apartado. Huygens se basa en la hipótesis que dice que la altura del centro de 

gravedad de los diversos cuerpos que forman un péndulo compuesto es la misma al 

descender que al subir por el impulso de la gravedad. Johann Bernoulli escribe un 

trabajo relativo al péndulo compuesto en 1703189, que también cita Hermann, en el 

que llega a calcular el centro de oscilación de un péndulo compuesto para gravedad 

uniforme a partir de considerar a las distintas partes del péndulo como una balanza.  

 

Hermann demuestra en su teorema principal [Phoronomia pp. 105-106; nº 205] la 

hipótesis de Huygens relativa a la constancia de altura del centro de gravedad al 

subir y bajar en cualquier péndulo. Utiliza una vez más, además de lemas geométricos, 

los resultados obtenidos en su dinámica a partir de la conservación de la energía: 

igualdad de velocidad para cuerpos que caen desde la misma altura pero por distintos 

senderos, y relación entre la velocidad adquirida y la altura de partida. Usa así mismo 

los 
 C 

P M 

                                         
189  “Démonstration générale du centre de Balancement & d'Oscillation, tirée de la nature du Levier“. Pa 
r M. BERNOULLI, Professeur à Bâle. Lettre du 13. Mars 1703 
Histoire de l'Académie royale (1720) pp. 78-84 
 

N 

G 

E R 
F 

S 
Q e f 

n 

V 
Fig. 35 

150 



teoremas relativos a la caracterización de los centros de gravedad de sistemas de 

cuerpos, que ha expuesto en su estática. 

 

Obtiene después como corolario [Phoronomia  p. 106; nº 206], la posición CN (fig.   

35) del centro de oscilación N del péndulo simple, equivalente al péndulo compuesto 

para dos masas P y Q conectadas mediante PQ. Toma E y F como  los pesos 

específicos de cada masa P y Q. La masa total es M = E.P + F.Q, y G el peso del 

péndulo equivalente: 

MCM.
G )QC Q.  (P.PC  NC

22 +
=  

El siguiente corolario [Phoronomia  p. 106 ; nº 207] considera el caso particular de 

gravedad constante (pesos específicos iguales E = F = G) obteniendo (con M = P + Q):  

MCM.
 )QC Q.  (P.PC  NC

22 +
=  

 

El corolario posterior [Phoronomia  p. 107 ; nº 208] extiende la relación al caso 

contínuo tomando como diferencial de masa dp = P = Q = … , obteniendo la ecuación de 

posición del centro de oscilación para un cuerpo sólido, que en la notación algebraica 

de Hermann y Johann Bernoulli (tomando x = CM; MP= MQ = … = y) es: 

 

xdp

dp )y  (x
  NC

22

∫
∫ +

=  

 

Expresión que coincide con la de Johann BERNOULLI en el artículo citado. Hermann, 

sin embargo, extiende la demostración al caso en que la gravedad no es constante, 

llega a ella mediante la demostración previa del teorema del centro de gravedad 

tomado por Huygens como postulado, y usa, una vez más, los resultados generales 

relativos a la conservación de la energía. Supone, tal como hemos dicho en otros 

apartados, un planteamiento basado en teoremas generales, una búsqueda de 

jerarquía en los principios mecánicos históricamente significativa.  
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5.5 EL MOVIMIENTO EN MEDIOS RESISTENTES 

 

Como ilustración final de las aportaciones algorítmicas y conceptuales que hace 

Hermann en la Phoronomia, comentaremos sucintamente el largo estudio que hace del 

tema del movimiento de cuerpos en medios resistentes. Corresponde a la sección IV y 

penúltima del libro y consta de 84 páginas y 8 capítulos.  

 

En la introducción [Phoronomia  pp. 277-278], Hermann cita a los autores que han 

hecho aportaciones al tema, sin citar sus trabajos. Desde los orígenes de Galileo y 

Torricelli, hasta los desarrollos de Newton, Leibniz, Huygens y Wallis que son según 

Hermann parciales y a veces sin demostración, por lo que resultan difíciles para los 

novatos (Tyrones). Por último cita los trabajos de Varignon que en sus memorias 

presentadas a la Académie de París entre 1707 y 1710 parecen, dice, la culminación 

del tema. Sin embargo, nos dice Hermann, él persigue la brevedad y la claridad y para 

ello usará los principios establecidos en su dinámica general. Principalmente uno que 

permite simplificar y unificar las demostraciones y que no ha sido usado por otros 

autores: para Hermann se trata de la “ley de igualdad de momentos”, para nosotros 

es el teorema diferencial de conservación de la energía o teorema trabajo-energía. 

Recordemos que se trata de (Ft ds = m v dv), considerada por Hermann como una de 

las dos leyes mecánicas principales, tal como hemos analizado en apartado 5.1 de esta 

monografía.  

 

En el capítulo XIV, que trata “La teoría general del movimiento de cuerpos en medios 

resistentes”, Hermann establece las definiciones necesarias: 

 

• Distingue las dos clases de resistencia [Phoronomia  p. 279 ; nº 477-478]: 

absoluta que es independiente de la velocidad de los cuerpos y que depende de 

la adherencia de las superficies en contacto, y relativa (respectiva) que 

proviene de los impactos de las partículas de fluido sobre el cuerpo en 

movimiento y que depende de la densidad y de la velocidad relativa.  
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• Define el movimiento primitivo como el que tendría el móvil sin tener en 

cuenta la resistencia. [Phoronomia  p. 280 ; nº 480] 

• Solicitación acelerante (solicitatio acceleratrix) es la suma o diferencia entre 

el peso y la resistencia, según el cuerpo ascienda o descienda. Equivale a la 

fuerza total que provoca el cambio de movimiento en cada caso.  

• Define la velocidad terminal (velocitas terminalis) como la que alcanza un 

cuerpo en caída libre cuando se ha extinguido su fuerza acelerante, cuando la 

resistencia que crece con la velocidad iguala al peso.  

• Distingue entre movimiento ordinario o general (motus communis) que tiene el 

móvil en su avance con su movimiento primitivo (sin considerar resistencia), el 

movimiento propio (motus propius) que será generado por la resistencia, y el 

movimiento absoluto (motus absolutus) que corresponde a la composición de 

los dos anteriores. Estudiará el movimiento mediante el análisis separado del 

general y del propio.  

 

En el lema de la proposición LIV extiende la ley de igualdad de momentos (para 

nosotros de conservación de la energía), que estableció en el estudio de la dinámica 

general, al análisis dinámico en medios resistentes, “por lo que no se necesitan nueva 

demostración”: 

 

“Haec proposito eadem est cum prop. XVII Lib. I -132, ut adeao nova demonstratione non indigeat, nam

solicitationibus nomine quacumque vires mortuae, sed continue appicatae, intelligi queunt. Propterea, s

solicitatis gratia corpus in linia verticali moveri ponatur, spatiaque transmissa dicantur x, gravitas, g, 

resistentia aeris r, velocitas acquisita corpori decidenti vel resigua ascendentes u;…” [Phoronomia  p. 

281 ; nº 484]  

  

i 

 

Hermann expresa el su principio de igualdad del momento de la fuerza aceleradora 

(g±r) y de la velocidad u como:   

duu  dx r  dx  g =m       (5-5–a). 
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 Los signos corresponden respectivamente al ascenso o descenso vertical del cuerpo, 

considerando para el ascenso que el espacio no es el recorrido sino el complementario 

hasta la máxima altura.  

 

Tal como mostraremos, Hermann usará el principio de conservación de la energía 

como ley básica para caracterizar las relaciones principales en el estudio del 

movimiento resistente.  

 

Combinando esta ecuación (5-5–a) con la segunda ley de Newton (para él segunda 

regla principal, ver apartado 5.1) 
r  g

du  dt 
m

=  y con su lema para la velocidad en un 

instante dt = dx : u, obtiene por integración, el tiempo correspondiente a cada 

movimiento en función de las fuerzas: 

r  g
du   t 
m∫=  

 

Tal como nos indica el propio Hermann, éstas son las relaciones generales en las que 

basará el estudio de los distintos casos, ya que no se ha especificado ninguna 

hipótesis para las fuerzas de resistencia r.  

 

Para calcular el espacio recorrido, Hermann recurre al siguiente esquema: el espacio 

realmente recorrido (movimiento absoluto) es el que resulta de calcular el que habría 

recorrido sin resistencia (movimiento general), para después restarle el que 

corresponde a la disminución de velocidad debida a la resistencia del medio 

(movimiento propio) [Phoronomia  pp. 282-284 ; nº 487-488-489].  

 

En el escolio general final del capítulo introductorio [Phoronomia  p. 286 ; nº 494], 

Hermann señala que, una vez establecidos los principios generales (“ratadis jam 

generalibus principiis”) y algunos lemas matemáticos referentes a propiedades de la 

curva logarítmica y de la hiperbólica, queda su aplicación a los distintos casos 
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particulares. Comienza por considerar la “resistencia absoluta” (independiente de la 

velocidad). Este caso está resuelto, dice, trivialmente ya que es equivalente al de 

gravedad constante, tratado en los parágrafos 150-151 del cap. I de su dinámica.  

 

Hermann estudia a continuación, en sucesivos capítulos, los movimientos 

correspondientes a cada una de las hipótesis de dependencia de la resistencia r con 

la velocidad u: 

 

• Cap. XV: con la hipótesis de r = k u estudia los movimientos primitivos:  

o Uniforme 

o Ascenso y descenso vertical por gravedad 

o Movimiento oblicuo (como compuesto de los dos anteriores) 

• Cap. XVI: con la hipótesis de r = k u2 estudia los movimientos primitivos: 

o Uniforme 

o Ascenso y descenso vertical por gravedad 

• Cap. XVII: con la hipótesis de r = ku + k’ u2 estudia los movimientos primitivos: 

o Uniforme 

o Ascenso y descenso vertical por gravedad 

 

El siguiente capítulo estudia el movimiento general en un medio con densidad ∆ 

variable para cualquier hipótesis sobre la dependencia con la velocidad u.  

 

• Cap. XVIII: con la hipótesis de r = (ku m + k’ u m + 1).∆,  estudia los movimientos 

primitivos: 

o Uniforme 

o Ascenso y descenso vertical por gravedad 

 

Aborda en el siguiente capítulo el estudio del movimiento ascendente o descendente 

por cualesquiera líneas curvas:  
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• Cap. XIX: leyes generales para el ascenso o descenso por curvas, con la 

particularización para las hipótesis: r = k u2; r = k u; r = k; curva cicloide 

(equivalente a la prop. XXX del L. II de los Principia) 

 

Finalmente, en el capítulo XX trata del movimiento por cualquier curva, con la 

resistencia proporcional al cuadrado de la velocidad, pero considerando que el centro 

de fuerzas de gravedad está situado sobre una curva determinada, particularizando 

para gravedad con un único centro y para gravedad constante.  

 

Para ilustrar el modo en que Hermann construye las demostraciones a partir del 

principio de conservación de la energía, expondremos el teorema que corresponde a la 

proposición LVIII [Phoronomia  pp. 287-288 ; nº 495].  

 

El objetivo es encontrar el tiempo y el espacio recorrido por un móvil que teniendo 

movimiento primitivo uniforme se mueve por el aire con una resistencia proporcional a 

la velocidad. 

 

En la figura 36 suponemos que un móvil M se mueve en la dirección Q con velocidad 

uniforme NA. Sin embargo, como consecuencia de la resistencia del aire, esta 

velocidad NA disminuirá después de un tiempo en una cantidad DE para llegar a ser 

BD. El espacio “perdido” en ese mismo tiempo será NE. 
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La curva NDO representa por tanto las velocidades “propias” o “perdidas” ED, ed, 

etc. y también las velocidades efectivas DB = NA - ED, db, etc. La curva PFO 

representa las solicitaciones acelerantes FE, fe, etc. responsables de la disminución 

de la velocidad, en este caso debidas sólo a la resistencia del aire.  

 

Como según la hipótesis, las resistencias y las velocidades son proporcionales, las 

curvas NDO y PFO son similares y BD. Bb = EF. Ee. Aplicando el teorema de igualdad 

de momentos F. dr = vdv (conservación de la energía) tenemos que  EF. Ee = ED. ad. 

Por tanto: EF. Ee = ED. ad = BD. Bb. (ad es el incremento de velocidad dv y Ee el de 

espacio dr) 

 

Se construye desde N la curva logarítmica NHT de forma que para la tangente NK la 

subtangente constante sea AK = AN (e igual a IR) y su ordenada IH = BD. Se traza la 

horizontal HCD que corta a la tangente NK en G, de forma que CD = EN = GH.  

 

Trazamos HI paralela a la tangente NK. Como por construcción NE = GH y Ne = gh, 

restando ambas queda que Ee = nh (ver detalle en la fig. 37) 
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Demuestra que se 

verifica la igualdad 

de momentos, para la 

construcción de la 

logarítmica realizada: 

EF. Ee = ED. ad = EF. 

Nh 

n h m g 

G 
H 

Fig. 37 

 

Por semejanza de triángulos, nh: LR = mh: IR donde HR es la tangente en H. Como 

además (dt = dr:v =) Ee: De = nh : LR, el diferencial del tiempo queda dt = mh: IR, y 

por tanto, el tiempo para recorrer NE es: 

   

 ∫ ∫ =
====

AN)( IR
HI
AN log

IR
AI   Ii 

IR
1  

IR
mh  t  NE  

 

Que equivale con nuestros símbolos a:   
0

0

  NE v
v
v

 log
  t =  

Finalmente obtiene el espacio recorrido (∆x) como diferencia del que habría 

recorrido con movimiento uniforme AN.tNE  menos el perdido por resistencia NE.   

 

∆x = AN. tNE – NE = AN (AI: AN) – NE = AI – NE = CH-GH = CG = NC = DE 

 

El espacio es pues como la velocidad perdida DE, es decir: ∆x = (v0 – v).  

 

Hermann usa la conservación de la energía para la construcción geométrica de la 

logarítmica y con ella obtiene la expresión del tiempo en función de la velocidad en 

cada instante y de la velocidad de partida v0. Éste es el procedimiento general que 
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usa en cada caso, lo que constituye una forma de construcción de algoritmos, en base 

al principio de conservación de la energía.  

 

Para nosotros bastaría con sustituir la hipótesis correspondiente a la fuerza de 

resistencia F, que en el caso que hemos expuesto es F = k v, y realizar la integración: 

∫ ==
v

v

0

0
v
v

ln  
k
1  

k v -
dv t  

 

Y el espacio sería  ∫ ==
v

v
0

0

 v)- (v 
k
1  

k v -
vdv x ∆  tal como ha encontrado Hermann por 

procedimientos geométricos-diferenciales.  

 

¿Qué representa este trabajo de Hermann en 1716?  

 

Las 3 primeras secciones del Libro II de los Principia están consagradas a analizar el 

movimiento en medios resistentes teniendo en cuenta las tres hipótesis para la 

resistencia y para los distintos movimientos primitivos. 

 

Varignon publica entre 1707 y 1711 en L’Académie Royal una serie de 12 memorias 

relativas al movimiento en medios resistentes. En estas memorias Varignon aplica el 

nuevo cálculo a los resultados obtenidos por Newton, Huygens, Leibniz y Wallis190.   

 

Los artículos de Varignon y su comparación con los anteriores, especialmente los 

contenidos en los Principia, han sido analizados por M. Blay en [BLAY M. 1992. pp. 

251-330]191. Su estudio muestra cómo Newton construye las soluciones teniendo en 

cuenta las particularidades de cada caso, “coup par coup” dice Blay, sin embargo, 

Varignon en su primera memoria construye un procedimiento general que aplicará a 

                                         
190 Huygens : Discourse de la cause de la pesanteur des corps. p. 168. Wallis Opera Mathematica. T. II cap. 
101. Leibniz : Acta Eruditorum. p. 39 1689.  
191 Podemos ver la lista de las memorias de Varignon en las pp 277-279 de la citada monografía de Blay. 
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los distintos casos. Establece la ecuación diferencial general del movimiento a partir 

de la segunda ley de Newton [Ibíd. pp. 280-289].  

 

Sólo, nos dice Blay, “l’introduction du calcul différentiel et intégral et a fortiori une 

conceptualisation différentielle de la science du mouvement permettront 

véritablement de mettre en place les équations générales du mouvement, et 

finalement, de résoudre par des procédu es algorithmiques  bien réglées de 

differèntiation et d’intégration les problèmes du mouvement dans les milieux 

résistants. “ [Ibíd. p. 277]  

r

 

El trabajo de Hermann es también algorítmico diferencial. Pero la diferencia con 

Varignon es que mientras éste utiliza la segunda ley para trabajar cada situación, 

Hermann usa la conservación de la energía para las construcciones de cada caso, 

usando después la segunda ley de Newton (5-5–b) para calcular el tiempo. Es un 

trabajo paralelo al de Varignon que pone énfasis en el uso de la conservación de la 

energía. Este es su valor, ya que la búsqueda posterior de algoritmos, desembocará 

en los  trabajos de Euler y de Lagrange y su uso de la energía por parte del último 

para replantear toda la mecánica.  

 

5.6 EL CAPÍTULO FINAL DE LA PHORONOMIA Y LA TEORÍA 

CINÉTICA DE LOS GASES. 

 

El último capítulo de la Phoronomia previo al apéndice se titula De motu intestino 

fluidorum [Phoronomia  pp. 376-377], y constituye la primera enunciación histórica 

de la relación entre el calor y la velocidad de las partículas que constituyen el gas 

calentado. Esto fue señalado primero por Knowles Middleton en 1965 y después por 

C. Truesdell en 1968, sin que tuviera consecuencias en los textos científicos o 
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históricos posteriores192. Ambos autores destacan la ausencia de referencias previas 

a esta importante contribución de Hermann. El corto capítulo consta de un párrafo 

introductorio, un teorema y un escolio:  

 

• Un comentario inicial donde Hermann explica qué entiende por “movimiento 

interno”, el producido en las partículas de los fluidos por causas externas y 

accidentales, como el calor en particular (… sed is particularum motus, qui in

fluidis a causis externis et accidentalibus excitari solet, quo calor praesertim 

est referendus,…).    

 

 

• El teorema principal donde establece que, en cuerpos con la misma 

composición, el calor está en razón compuesta de la densidad del cuerpo 

caliente y del cuadrado de la agitación de sus partículas, que llama D y V 

respectivamente.  

 

“Calor, caeteris paribus, est in composita ratione ex densitate corporis calidi, et duplicata 

ratione agitationis particularum ejusdem “ 

 

La demostración que le acompaña es de hecho un desarrollo detallado del 

enunciado. Así, entiende por “agitación” de las partículas la “velocidad media” 

de las mismas (celeritas media inter celeritates particulares).  

 

Vale la pena traducir las explicaciones de Hermann: “Como el calor consiste en un 

mayor movimiento de las partículas, será como  los impulsos de las partículas del 

cuerpo caliente sobre el otro cuerpo que recibe el calor. Pero estos impulsos están en 

razón compuesta del cuadrado de las velocidades y simple de la densidad, o como 

D.V2” 193.   

                                         
192 Ver, por ejemplo el capítulo “La física de los gases” del texto “Introducción a los coneptos y teorías de 
las ciencias físicas” [HOLTON  G.  1973, p. 460] o el capítulo “Bernoulli: genios without a gadfly” de The 
Kinetic Theory of Gases. An anthology of classic papers with historical commentary. [BRUSH S. G. 2003. 
p. 424-427] 
193 “Jam, quia calor consistit in concitatiore particularum motu, calor erit, ut impressiones particularum 
corporis calidi in quopiam objecto corpore calorem excipiente, sed hae impressiones sunt in composita 
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Truesdell194 considera que Hermann al plantear que la presión es proporcional al calor 

y hablar de “impulsos”, está estableciendo una ecuación para la “presión”, tal como p = 

K D.V2 siendo k una constante. Sin embargo Hermann no establece una igualdad, sino 

que habla de proporciones, afirmando que el calor es proporcional a D.V2.  

 

A partir del bosquejo de la teoría cinética de Hermann, Truesdell analiza la teoría de 

Euler de 1729195, basada en una modificación de los vórtices de Descartes elaborada 

por Johann Bernoulli, y que llega a los mismos resultados. Truesdell la califica de 

teoría cinética pero no de estadística, ya que Euler considera que todas las partículas 

tienen la misma velocidad. A continuación, analiza la teoría cinética de Daniel 

Bernoulli expuesta en su Hydrodynamica de 1738196. Truesdell afirma que tanto 

“Hermann y Bernoulli concebían a las moléculas y sus velocidades de traslación como 

infinitamente diversas;”197 Sin embargo, en la traducción inglesa del capítulo X (“De 

affectionibus atque motibus fluidorum elasticorum, praecipue autem aëris.”) de la 

Hydrodynamica  de D. Bernoulli198 [BRUSH S. G. 2003. pp. 57-65], y en la exposición 

que del mismo capítulo hace Truesdell en [TRUESDELL C. 1968. pp. 272-282], 

observamos que Bernoulli considera que todas las partículas tienen la misma 

velocidad, por lo que la afirmación estadística previa de Hermann es particularmente 

valiosa.  

 

Sin embargo, Daniel BERNOULLI deducirá a partir del movimiento de las partículas, 

no sólo la relación con el calor, sino también con la presión (ley de Boyle) que, sin 

embargo, Hermann, siguiendo el procedimiento de Newton en los Principia, había 

relacionado con una fuerza entre partículas que crece son su proximidad (ver 4.4.2 

de esta monografía). Truesdell termina su artículo diciendo:  

                                                                                                                           
ratione ex duplicata celeritatum et simpla densitatum, se ut D.V2. Ergo etiam calor est ut D.V2. QED.”  
[Phoronomia  p. 376] 
194 [TRUESDELL  C.  1968. p. 252] 
195 L. Euler. “Tentamen explicationis phaenomenorum aeris”, Comm. Acad. Sci. Petrop. 2(1727), 347-368.  
196  [Bernoulli  D. 1738, secc. 10] 
197 Op. Cit. p. 281 
198 [BERNOULLI  D. 1738. pp. 200-204] 
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“Tus by 1738 three members of the Basel school of mathematicians, all of them working in 

Petrograd, had laid out in mathematical form the elements of the modern moecular concept of

the gaseous s ate and had derived eqiations of state.”

 

t 199 

 

Después de la lectura atenta de la Phoronomia que hemos realizado, podemos 

interpretar que Hermann “mide” los “impulsos” de las partículas, en relación a lo que 

él ha considerado la relación fundamental cuando ha estudiado los choques elásticos, 

es decir lo que llamó siguiendo a Leibniz conservación de la “fuerza absoluta”200, o sea 

mv2, o en el caso de las muchas partículas de los gases DV2. Además introduce por 

primera vez en al historia de la mecánica un planteamiento estadístico, al considerar 

que las velocidades de las partículas en un gas no tienen porqué ser iguales.    

 

Los desarrollos de Hermann o los posteriores más completos de Daniel Bernoulli, 

permanecerán ignorados, en favor de la teoría que hace del calor un fluido material 

de partículas sutiles (el calórico), algo así como el eter cartesiano. Es interesante 

señalar a este respecto, que Hermann ya había criticado la necesidad del eter como 

causa de la elasticidad del aire (ver el apartado 4.4.2 de esta monografía donde 

critica la teoría de A. Parent). 

 

• En el escolio, Hermann aplica el teorema a un dispositivo que permitiría 

“medir” la velocidad media de las partículas. Describe cómo construir tal 

dispositivo, con un tubo lleno de mercurio hasta F, a la manera de un 

barómetro de Torricelli, pero cerrando el depósito del aire AB después (Fig. 

38).  

 

Tal artilugio le permitiría relacionar el calor adicional del aire calentado del 

depósito (proporcional a la velocidad cuadrática media y a la densidad), con la 

nueva altura I que alcanza el mercurio que estaba en H, cuando el aire se 
                                         
199 de [Truesdell D. 1968, p. 282] 
200 Ver el apartado 5.1 de esta monografía, donde se expone la formalización que hace Hermann de los 
choques.  
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expansiona desde F hasta E. El objetivo de Hermann es relacionar la velocidad 

media de las partículas de aire con la altura del mercurio a partir de su teorema. 

Hermann da una igualdad que expresa tal relación, 

pero tal como señala Middleton en su artículo201, tal 

igualdad es sólo una proporción, ya que sería 

necesaria una constante de proporcionalidad. Por 

otro lado, tal como afirma Middleton, creemos que 

no podemos considerar este dispositivo como una 

mejora en el termómetro de aire de Guillaume 

Amontons202 de 1702, tal como se ha interpretdo 

en algún texto203 

M 

I 

H 

A 

F 
E 

B 
D 

                  Fig.  38 

Hermann ha establecido pues las ideas principales 

de lo que será la teoría cinética de gases como mecánica estadística, al considerar 

la energía cinética como principio básico, tal como, según hemos comentado en 

otros apartados, ha hecho en otros problemas mecánicos.  

                                         
201 [MIDDLETON W. E. 1965. p. 249] 
202   Guillaume Amontons, Mem. Anal. Roy. Sci. Paris, 1702, pp. 155-174 
203 La referencia de Middleton es: Geschichte der Physik Edmund Hoppe.  Braunschweig 1926. p. 176 
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6 EL CÁLCULO DIFERENCIAL E INTEGRAL: ENTRE LA GOMETRÍA Y 

EL ÁLGEBRA. 

 

La Phoronomia no contiene una exposición de los algoritmos del cálculo diferencial, 

pero sí un algoritmo del cálculo integral que incluye la interconexión entre ambos 

cálculos y ejemplos de aplicación matemática.  

 

Parece razonable suponer que no incluyera las definiciones y algoritmos del cálculo 

diferencial, a pesar de hacer un uso extenso del mismo, ya que en 1716 existía un 

conocimiento amplio del mismo a partir del manual de cálculo diferencial, fruto de las 

enseñanzas remuneradas que recibe de Johann Bernoulli, publicado por De L’Hôpital 

en 1696.  

 

Johann Bernoulli es el autor, así mismo, del tratado más completo de cálculo integral 

en ese momento Lectiones mathematicae de método integralium aliisque204, objeto de 

sus enseñanzas al Marques de l’Hôpital. Sin embargo, dicho material compuesto en su 

mayor parte alrededor de 1700, no fue publicado hasta la edición de sus trabajos 

escogidos en 1742, ya que el contrato con l’Hôpital le obligaba a no publicar lo que le 

estaba enseñando. Sabemos, sin embargo, que este texto era uno de los que llevaba 

Hermann cuando se trasladó a Padua205.  

 

Entre tanto, y dado el carácter heurístico y complejo de la integración, se suceden 

artículos publicados por los mejores matemáticos de la época, como los hermanos 

Bernoulli, Leibniz, L’Hôpital, Riccatti, etc. donde se exponen métodos adaptados a la 

resolución de clases especiales de ecuaciones diferenciales conectados con 

problemas mecánicos concretos.  

 

                                         
204 Johann Bernoulli. Opera 3, pp. 385-558 
205 [MAZZONE S. y ROERO  C. S.  1997. p. 52] 
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Es significativo que Hermann exponga por primera vez, en un texto de mecánica 

racional, el teorema fundamental del cálculo en su expresión leibniziana y que dé 

ejemplos de su uso para el cálculo de integrales.   

 

La exposición del cálculo integral de Hermann se hace en el cap. III de la sección I 

(estática) del libro I (mecánica de sólidos). Señalemos que la exposición se realiza de 

forma puramente algebraica sin referencia a figura alguna.  

 

El lema básico dice: “Dadas cualesquiera fuerzas decrecientes A, B, C, D, E, se 

cumple que A-B + B - C + C - D + D - E = A - E, de donde si E = 0 la suma será igual a 

A, valor máximo de la serie”. [Phoronomia p. 37 Nº 87] 

 

Continúa con un largo escolio, donde Hermann expone el teorema fundamental del 

cálculo, añadiendo que “por brevedad ilustraremos el Cálculo integral con algunos 

ejemplos”. Afirma así mismo que “El Cálculo integral o sumatorio es inverso del 

calculo diferencial” 206. Podemos resumir el escolio en los siguientes términos: 

 

Si en la curva que queremos cuadrar indicamos los ejes con x e y la cantidad ydx es 

un elemento de área. El área se encontrará si existe la cantidad A compuesta por la 

indeterminada x y constantes, tal que sustituyendo x sucesivamente por x-dx, x-2dx, 

x-3dx, etc. se forma una serie decreciente A, B, C, etc. tal que su primera diferencia 

A-B = y dx. La suma de todas las diferencias (A-B)+ (B-C) + … es el agregado de todas 

las ydx contenidas en el área y por tanto es el área total. Si la cantidad mínima de la 

serie es M, el área será igual a A-M. Podemos encontrar el mínimo de la serie 

sustituyendo x en A por x- n dx que cuando n se hace infinito nos dará cero. Por 

tanto para encontrar M bastará hacer x = 0. 

 

                                         
206 “Calculus integralis vel summatorius est inversus calculi differentialis, …” [Phoronomia p. 38 Nº 88] 
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Explica que de igual manera en el caso en que la sucesión A, B, C, etc. sea creciente, 

la integral o suma de diferencias B-A + C-B + D-C + … es igual a M-A siendo ahora M 

el valor máximo de la serie y A el mínimo.  

 

Así  mismo, dice, que lo que se ha explicado para el caso de cuadratura de área, vale 

para dimensiones sólidas. A continuación, Hermann desarrolla tres ejemplos; 

expondremos el primero para mostrar cómo opera el método de integración; los otros 

dos ejemplos integran la irracional 
2222

2

a) xa(
 xdxa

x++
 las hipérbolas   dxx  a -

Ejemplo I: 

Queremos “sumar” 
22a

dxx 
x+

 

Sea A = 22a x+ .  Sustituyendo x por x-dx, queda: B = 
22

22

a
dxx a

x
x

+
−+  

Se forma la serie A, B, C, etc. de manera que A-B coincide con ydx que es igual a un 

elemento del área que queremos cuadrar. Su suma será A-M siendo M el valor más 

pequeño de la serie, que encontramos haciendo x=0. M= a, de este modo el área 

queda:  

∫(A-B) = ∫ y dx = aaM-A 
a

dxx 22

22
−+==

+
∫ x

x
  

 

La heurística necesaria para hacer integrales consiste en ser capaz de poner la 

expresión a integrar como diferencia de dos términos A-B, de forma que 

sustituyendo x por x-dx en A, nos dé B. De este modo tenemos A como resultado de 

la integral, salvo la constante de integración que sería el menor de los términos de la 

serie formada, o el mayor para una serie creciente.  

 

El método que nos enseña Hermann sigue las ideas iniciales que guiaron a Leibniz en la 

invención del cálculo. Tal como explica H. J. M. Bos en [BOS  H. J. M.  1984, pp. 83-

86], del estudio de los manuscritos de 1675 se desprende que el estudio de las series 
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numéricas, lleva a Leibniz al descubrimiento de que sumar series era fácil si se sabe 

cómo poner sus términos como diferencias. H. Bos cita el siguiente caso resulto por 

Leibniz: “Leibniz resuelve el problema planteado por Huygens en 1672 de sumar la 

serie 1/1, 1/3, 1/6, 1/10, 1/15. etc. donde los denominadores son los términos 

triangulares r(r+1)/2. Descubre que los términos de la serie pueden escribirse como 

diferencias” [Ibídem]:  

1
22

)1(
2

+
−=

+ rrrr
 

 

De donde la suma de los n primeros términos es la diferencia entre el primero y el 

último 
1

22
)1(

2
+

−=
+∑ nrr

. En particular, la serie infinita suma 2. 

 

Leibniz aplica a la geometría de las curvas la idea, ya conocida, de que las sucesiones 

de diferencias y de sumas están íntimamente relacionadas. La diferencia de dos 

ordenadas sucesivas daría la tangente y la suma de ordenadas el área bajo la curva. 

Así pues, según H. Bos: 

 

“La segunda idea principal de Leibniz, a pesar de lo imprecisa que era hacia 1673, sugería ya un cálculo 

infinitesimal de sumas y diferencias de ordenadas mediante el cual podrían ser determinadas 

cuadraturas y tangentes y en el que estas determinaciones aparecían como procesos inversos. La idea 

hacía asimismo plausible que, de la misma manera que en las sucesiones, las diferencias son siempre 

posibles, pero no las sumas, en las curvas las tangentes son siempre fáciles, pero no así las cuadraturas.” 

[Ibid. p. 86]  

 

Hermann usa su algoritmo de integración en varios lugares, por ejemplo cuando 

deduce las ecuaciones generales para un objeto flexible colgado por sus extremos y 

sometido a fuerzas de cualquier forma [Ver el apartado 4.2 de esta monografía], o en 

la deducción de la cicloide como curva isócrona en la hipótesis de gravedad constante 

[ver apartado 5.4 de esta monografía].  
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Sin embargo Hermann ha dado suficientes pruebas de dominio del nuevo cálculo tal 

como demuestran sus manuscritos sobre métodos de integración207. Recordemos que 

escribe en Padua mientras enseña allí pública y privadamente el nuevo cálculo.  

 

 M. Blay [BLAY M. 1992] ha estudiado la evolución matemática en el estudio de 

problemas mecánicos a finales del s. XVII, observando tres etapas hasta llegar a los 

textos de Varignon de 1698, que suponen un cambio conceptual y metodológico: 

 

• Los problemas se resuelven (analiza textos de los Bernoulli y de l’Hôpital) en 

dos etapas: primero se trasladan los problemas de la ciencia del movimiento a 

cuestiones de “geometría pura”, a decir de los autores, para después 

resolverlos usando cuando sea necesario conceptos del cálculo leibniziano. 

[Ibid. pp. 63-107].  

 

• Método de transposición de Leibniz (en trabajos alrededor de 1690): consiste 

en plantear el problema geométricamente para después “transponer” los 

incrementos infinitesimales en elementos diferenciales de primer orden. Por 

ejemplo usa una “transposition sous une forme diffèrentielle, plus facilment 

maniable, de la définition opérante non explicite galiléo-newtonienne de la 

« vitesse instantanée. “ [Ibid. p. 137], pero no posee aún una definición 

explícita y matemáticamente manejable de velocidad instantánea.   

 

• Varios textos de Varignon publicados en la Académie de París entre 1698 y 

1700 elaboran un procedimiento algorítmico para la resolución de los 

problemas del estudio del movimiento, a través de la conceptualización de los 

conceptos de velocidad en cada instante y de fuerza aceleradora en cada 

instante. Usa el formalismo del cálculo leibniziano. Para lo que discutimos es 

destacable, como indica Blay, que los gráficos de Varignon son sólo grafos 

ilustrativos del uso de sus algoritmos.   

                                         
207 Ver Hermann manuscripts preserved in Venice, en [MAZZONE S. y ROERO  C. S.  1997. p. 54] 
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Tal como hemos mostrado en la exposición de los distintos temas mecánicos tratados 

por Hermann, en la Phoronomia se dan en general dos momentos o estilos distintos:    

 

• El geometrico-diferencial: razonamientos usando pares de letras que 

representan segmentos finitos o infinitesimales sobre una figura geométrica 

referencial. Las integrales son áreas sobre la figura, aunque en ocasiones usa 

el símbolo de la integral.  

• El algebraico-diferencial: trascripción en el lenguaje diferencial de las 

relaciones obtenidas geométricamente. Las integrales son tratadas 

algebraicamente como en el ejemplo que hemos trascrito al exponer su teoría 

de la integración.  

 

Hermann ha buscado deliberadamente, tal como afirma en el prólogo208, demostrar 

los principales resultados mediante la referencia a figuras por razones pedagógicas y 

por considerarlas más simples y elegantes “casi siempre”. En las demostraciones de 

teoremas no se da una mezcla de geometría y álgebra diferencial como en los 

trabajos de Leibniz o los Bernoulli, analizados por M. Blay. La demostración de los 

resultados “principales” en la Phoronomia es puramente geométrico-diferencial, ya 

que busca construir desde la figura, relaciones diferenciales entre variables sin usar 

el formalismo leibniziano.  

 

Hemos mostrado como en la Phoronomia se da una dependencia jerárquica entre 

ambos estilos. Después de extraer las relaciones principales de la incrementada 

evidencia que proporcionan las figuras geométricas, las traslada al lenguaje 

“algebraico-diferencial” para particularizarlas donde convenga. Podemos ver este 

tratamiento por ejemplo en la estática de objetos flexibles (ver 4.2) y en el estudio 

de los problemas de Kepler directo e inverso (ver 5.2) entre los tratados en esta 

monografía.  

                                         
208 Ver los comentarios al prefacio de la Phoronomia en el apartado 2 de esta monografía. 
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Esta opción será objeto de críticas por parte de Leibniz, Wolf y Johann Bernoulli. 

Este último entiende en carta a Leibniz (1717) que Hermann se muestra: “demasiado 

deferente con los ingleses, hasta el punto de que prácticamente a lo largo de todo el 

libro usa el estilo de demostración de Newton. El resultado es que las 

demostraciones que llama lineales muy a menudo requieren varias páginas, demasiadas 

para el cansancio y molestia del lector. Mientras que si hubiera usado el Análisis, 

podría haberlas resuelto en 3 o 4 líneas cada vez.”209. El estilo se convierte en esos 

momentos en un arma entre distintos grupos en competencia, introduciendo factores 

externos en el desarrollo de la mecánica y de la matemática asociada. El estilo 

geométrico es visto no sólo como ligado a la tradición, o como más farragoso en 

ocasiones, sino como algo a evitar en tanto que es reivindicado por los newtonianos, 

que buscan además de la prioridad en la invención del nuevo cálculo (ver nota 140), 

legitimar el modo que le ha dado Newton.  

 

Hasta entonces, como ha mostrado A. Malet en el caso de Wallis210, el estilo 

algebraico se había observado como una taquigrafía que abreviaba las manipulaciones 

geométricas, representando “rather than two conflicting views about the purpose 

and the actual working of 17-century mathematics, geometry and algebraic analysis 

were two layers of the mathematical discourse.” [Ibid. p. 6]. La consideración del 

álgebra como un lenguaje autónomo y más adecuado en la ciencia, será un 

desplazamiento que se producirá con el trabajo de Euler (Mechanica 1736), 

D’Alembert (Encyclopédie 1750) y con los cambios en la filosofía del lenguaje de 

Condillac [Ibid. pp. 7-8], que culminarán en la Méchanique Analitique de Lagrange en 

1788211.  

 

                                         
209 “Etiam mihi videtur Hermanus in Libro suo nimium Anglis deferre, adeo quidem ut Newtoni morem 
demonstrandi affectet per torius fere Libri decursus: unde sit ut demonstratines, quas vocat lineares, 
saepissime magno legentium fastidio et fatigatione plures occupent paginas, cum si Analysi uti voluisset, eas 
quandoque 3 aut 4 lineis absolvere potuisset.”  En [MAZZONE S. y ROERO  C. S.  1997. p. 75] 
210 [MALET  A.  2002-03] 
211 [PANZA  M.  2003] 
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Podemos preguntarnos: ¿las demostraciones geométricas de Hermann pueden ser 

trasladadas fácilmente al lenguaje algebraico? ¿Son estos “estilos” fácilmente 

intercambiables? La respuesta no es simple, ya que cada estilo crea sus propias 

necesidades expresivas, haciendo que “visualicemos” o “prioricemos” aspectos 

distintos. Es evidente que podemos a posteriori hacer una correspondencia entre los 

“objetos expresivos” de cada estilo. Pero, a comienzos del s. XVIII el bagaje de 

resultados acreditados en estilo geométrico es enorme, lo que hace que sea visto 

como más sencillo o más didáctico, si esta es la intención, como en Hermann.  

 

La demostración de la ley de las áreas de Kepler que hace Hermann,  primera que se 

hace analíticamente (ver el apartado 5.2), es realizada en la Phoronomia de modo 

geométrico-diferencial. Sin embargo, tal como hemos explicado, un año más tarde 

Hermann envía una demostración en estilo algebraico-diferencial en carta a Keill 

publicada en Journal Literaire212. La carta es una respuesta a la acusación de plagio 

por parte de Keill en relación a la resolución del problema inverso de las fuerzas 

centrales. La respuesta de Hermann consiste en demostrar que su procedimiento es 

diferente, en tanto él basa su demostración en la deducción analítica previa de la ley 

de las áreas que Keill había tomado por demostrada.  

 

Lo más interesante, en cuanto a considerar la transducción entre estilos, es que en 

este corto artículo dirigido esta vez solamente a intelectuales, expresa los 

desarrollos geométricos importantes de la Phoronomia en lenguaje algebraico-

diferencial: ”Mais comme je n’ai presque donné que des démonstrations Synthetiques 

dans mon libre, en voici présentement l’analyse.”213 Ya no necesita que su texto sea 

comprensible también por los novatos, haciendo inecesarias ciertas alusiones 

geométricas.  

 

                                         
212 Lettre de M. Hermann. Journal Literaire. 9 (1717), 406-415. Analizada en [GUICCIARDINI N. 1996, 
pp. 175-178] 
213 Ibíd. p. 411 
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La secuencia demostrativa de la segunda ley de Kepler en el artículo de 1717 es la 

misma que podemos seguir en la Phoronomia: 

 

o Establece sus dos principios dinámicos generales: Fds= vdv (ver 5-e), la 

conservación de momentos de fuerza y velocidad (relación trabajo-energia) y 

la, para nosotros, ley fundamental de Newton (ver 5-f); esta segunda 

integrada para fuerzas uniformes. 

o Aplica estas leyes a las componentes intrínsecas de una fuerza central. La  

primera a la componente tangencial Ft ds = vdv. La segunda al movimiento de 

caída según la componente normal llegando a la expresión Fn = v2 : r (siendo r 

el radio de curvatura).  

o Finalmente combinando las expresiones de las fuerzas tangencial y normal 

llega a la conservación de momento angular. De aquí tal como hemos explicado 

en la seccion 5.2 deduce la segunda ley de Kepler. 

 

Sin embargo, las características que hacen interesante el artículo de 1717, es que en 

él Hermann procede a tres desplazamientos estilísticos en relación con la 

Phoronomia: los segmentos representados por pares de puntos son ahora símbolos 

algebraicos, además las integrales se “hacen” sin razonar sobre áreas en la figura 

(ver fig. 27) y, finalmente, construye algebraicamente las ecuaciones diferenciales 

que permiten obtener la expresión de la componenete normal de la fuerza, y la que 

por integración da la conservación del momento angular.  

 

Para ilustrar estos desplazamientos de estilo expondremos la deducción de la 

conservación del momento angular en el texto de 1717 comparándola con la de la 

Phoronomia: Podemos observar que nuestra fig. 39, que corresponde al artículo de 

1717, no contiene las escalas de variables que usa en la Phoronomia (ver fig. 28).   

 

Parte de las dos expresiones para las componentes intrínsecas de la fuerza central 

que ha deducido (usaremos símbolos actualizados): - Ft ds = vdv  y  Fc = v2: r; 
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dividiendo obtiene  dv: v = - Ft ds : r Fc que como Ft: Fn = q:p (siendo p = DC y q = NC 

fig. 39) queda:    dv: v = - q ds : r p     (6-a) 

 

Por la semejanza de los triángulos Cec y NOn (despreciando diferenciales de orden 

superior) qds = rdp; que puede escribirse también como – q ds /rp = - rdp/rp = - dp/p, 

que sustituyendo en la ecuación anterior 6-a desemboca en la ecuación diferencial: 

dv/v = - dp/p. Escrita como pdv + udp = 0 se integra dando pu = cte (Hermann toma la 

constante como 1). Es decir, el momento angular o producto de la velocidad por la 

proyección del radio vector sobre la tangente (p=DC) es constante. De cuya 

constancia deduce con poco esfuerzo la ley de las áreas de Kepler (ver sección 5.2 

para más detalles). 

 

 

 

 

 

 

 

 

 

 

 

 
                 Fig.  39 

 

Sin embargo, en la Phoronomia la descripción de la ecuación diferencial final es 

geométrica y también su integración basada en un lema geométrico que Hermann 

había demostrado previamente [Phoronomia p. 68 nº 153]. El lema muestra que si el 

cociente del incremento de una variable entre el decremento de otra es como el 

cociente entre esas variables, la relación entre las variables tiene las propiedades de 
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la curva hipérbola analizada por Apolonio. Así se llega en la Phoronomia a la relación 

hiperbólica pu = cte.  

 

El texto de 1717 nos indica la dirección en la que se está produciendo la algebrización 

como simplificación de procesos numéricos; se trata de buscar las ecuaciones 

diferenciales y de integrarlas directamente tomando como únicas referencias 

geométricas las relaciones de cantidades obtenidas por semejanza de triángulos 

(como en la fig. 39).  

 

Hay algunas resultados importantes en la Phoronomia que Hermann expresa 

algebraicamente: la demostración del teorema de Guldin (ver 4.1), o la deducción de 

lo que Hermann considera su primera regla dinámica diferencial (Fdr = vdv) a partir 

de la segunda (F = m dv: dt) (ver 5.1).  

 

En contraste con esto, la demostración del teorema integral de la energía en la 

Phoronomia, la realiza geométricamente (ver 5.1), mientras le habría bastado, de 

forma más abreviada, integrar directamente el teorema diferencial obtenido, 

integral trivial para Hermann, es decir: 

 

∫ =⇒=
2

v dr  F          dv  vdr  · F
2

,  tomando v0 = 0 

  

El significado de la integral indicada es incierto conceptualmente (trabajo de F para 

nosotros), pero puede representarse geométricamente mediante un área en la escala 

de fuerzas que es lo que hace Hermann. Vemos que es la conceptualización física la 

que permite avanzar en la algebrización ya que singulariza un “objeto” nuevo.  

 

Podemos ver en la elección de estilo de la Phoronomia el tipo de dificultades 

existentes a comienzos del s. XVIII para desarrollar la mecánica analítica sin que la 

referencia a figuras sea determinante.  
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Existen pautas geométricas como la “observación” de la semejanza de triángulos o la 

construcción de figuras auxiliares que permiten avanzar en las demostraciones 

geométricas, sean estas finitas o infinitesimales, y que equivalen en algunos casos a 

cambios de variable. Sin embargo la algebrización, cuando no es simple, requiere el 

concepto fundamental de “función”, ausente en el momento en que Hermann escribe, 

y la consideración concomitante de variables dependientes e independientes. 

Interconectando funciones algebraicamente y desarrollando las semejanzas de 

triángulos y las figuras auxiliares, como relaciones entre variables en distintos 

sistemas de coordenadas (cambios de variable), se puede dar la autonomía respecto 

de las figuras, para construir las ecuaciones diferenciales correspondientes, tal como 

acabamos de ver que Hermann hace un año después de publicada la Phoronomia. 

 

Podemos ilustrar este razonamiento extraido del análisis de la Phoronomia, con un 

ejemplo muy simple presente en los textos fundadores del nuevo cálculo: 

 

Geométricamente “vemos” por semejanza de triángulos, la relación entre el triángulo 

diferencial y el que forma la subtangente ∆x de una curva en un punto (x,y):                       

dy: dx = y: ∆x  

 

Algebraicamente, escribimos la ecuación de la recta tangente y = m x + b siendo m la 

pendiente y b la ordenada en el origen. Podemos tomar la pendiente de la recta como 

dy:dx, ya que coincide con la de la curva en el punto de contacto. Si escribimos ahora 

la ecuación de la recta para y = 0, restando con la anterior tenemos:  

 
       

com

 

En 

rel
y = dy:dx · x +b  

0 = dy:dx · x’ +b 

 

o (x – x’) es la subtangente, nos qu

este caso, la algebrización depend

ación funcional. También es evide
y = dy:dx · (x – x’)
eda que dy:dx = y:∆x.  

e de considerar la recta como una ecuación o 

nte, que la consideración algebraica funcional 
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hace innecesaria la búsqueda de la subtangente, fundamental en el tratamiento 

prefuncional geométrico. El desarrollo de un estilo distinto requiere unas 

herramientas conceptuales diferentes (función) y lleva a focalizar los desarrollos 

sobre aspectos distintos, aunque finalmente traducibles.  

 

Recordemos [BOS  H. J. M.  1974-75; pp. 9-10] que la primera definición moderna de 

“función” se debe a Johann Bernoulli (1718), como “cantidad variable compuesta de 

cualquier modo de cantidades variables y constantes”; aunque la palabra “función” 

(functionem) había aparecido primero en un texto publicado por Leibniz en 1692 

referido a las cantidades geométricas en una curva. Después Johann Bernoulli la usa 

para indicar las potencias de una variable o cualquier otra función en general en 1698. 

Es Euler quien extiende, usa y generaliza el concepto de función a partir de su 

primera definición de 1748. Tal como dice H. Bos, con Euler “[function] became a 

concept connected with formulas rather than with figures” [Ibid.].   Hermann no usa 

la palabra función, sólo en ocasiones enuncia que cierta variable está compuesta de 

constante y variables de modo diverso. Por ejemplo cuando trata el problema inverso 

de las fuerzas centrales [Phoronomia p. 77 nº 169]: 

 

“Si in Canone articuli 167 loco ordinatae EH ponatur ...e …A, quaelibet quantitas composita ex data seu 

constante e, et variabile A, data tamen utlibet in x et quantitatibus constantibus,…  “

 

 

 

Hermann describe las relaciones entre variables a partir de la construcción de lo que 

llama “Escalas” (Scala). Las escalas son para Hermann curvas que representan 

“geométricamente” la correspondencia entre dos cantidades variables sin distinción. 

Tal como hemos mostrado en los temas tratados, utiliza las scalas en las 

demostraciones, combinándolas entre sí para obtener relaciones entre distintas 

variables o ecuaciones diferenciales.  

 

Tal como hemos visto, Hermann usa tanto coordenadas cartesianas como intrínsecas 

al tratar el problema de la forma de un objeto flexible sujeto por sus extremos (ver 
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4.2). En los tratamientos dinámicos (ver 5.2 y 5.4) usa coordenadas polares214 para las 

trayectorias y descomposición intrínseca de fuerzas.  

 

Hermann sigue la pauta general de su época, al considerar que las cantidades 

presentes en sus ecuaciones tienen que ser homogéneas dimensionalmente, es decir, 

todos los términos han de ser de la misma dimensión, el producto de dos líneas ha de 

dar una superficie, etc. Esto es una consecuencia de pensar las cantidades 

geométricamente como líneas, áreas o volúmenes. Como ejemplo de la persistencia del 

requerimiento de homogeneidad dimensional, H. Bos cita una carta de reproche de 

Johann Bernoulli a otro matemático en 1720 [Ibid. p. 7 nota 6]215.  

 

Por otro lado en la Phoronomia están presentes las relaciones entre variables como 

proporciones, pero también como “leyes relacionales” cuya expresión ya no es una 

proporción sino una ecuación (ver por ejemplo las dos reglas principales mecánicas o 

las leyes de caída libre en 5.1. o la definición de velocidad en 3.2, etc.). Recordemos 

que el paso de proporciones a ecuaciones cuando no sirven de definición para una 

magnitud derivada (p. ej. v= x:t), requiere el uso de constantes de proporcionalidad 

que indican las unidades de medida de las magnitudes relacionadas. Esta 

consideración surgirá con Euler en su Mechanica de 1736 tal como se analiza en 

[GONZÁLEZ REDONDO F. A.  2003] 

 

7 EXPERIMENTACIÓN E INSTRUMENTOS. La razón práctica en al 

Phoronomia. 

 

La Phoronomia consiste en un intento de elaboración de una mecánica racional, basada 

en principios suficientemente generales para poder deducir una gran variedad de 

situaciones. Además, muchos de los capítulos contienen análisis de situaciones que 

                                         
214 El primero en usarlas fue Jacob Bernoulli a finales del s. XVII. Ver [BLAY M. 1992. p. 195] 
215 Para un análisis de las ventajas de este requerimiento que lo hicieron duradero, y para la justificación de 
su violación a partir de Descartes, en la resolución algebraica de ecuaciones, ver [BOS  H. J. M.  1974-75; 
pp. 6-7] 
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atañen a experiencias, dispositivos e instrumentos. El análisis parte de considerar las 

situaciones prácticas como correlato del análisis mecánico general ya establecido. En 

ocasiones es crítico, modificando argumentaciones de otros autores. A veces es 

informativo, dando a conocer las últimas novedades en aparatos de medida. O 

creativo, aportando diseños originales. Veamos de qué modo Hermann disemina sus 

análisis prácticos, qué usos les da y qué papel tienen en la elaboración de su mecánica. 

 

1.  La mecánica racional confirmada por experiencias 

 

Hermann demuestra al comienzo del cap. I, secc. I, libro II, tal como hemos 

explicado en el apartado dedicado a la hidrostática, que la presión sobre el fondo de 

un recipiente sólo depende (supuesto el mismo líquido) de la profundidad desde la 

superficie del líquido, y es por tanto independiente de la forma del recipiente. A 

continuación, en un escolio [Phoronomia p. 133 nº 256] señala que esta propiedad de 

los fluidos lleva a una paradoja: una pequeña cantidad de líquido gravita tanto, como 

otra masa del mismo líquido cientos o miles de veces mayor, para la misma altura. 

 

Hermann, afirma a continuación: “Sin embargo esta verdad puede confirmarse por 

experiencias, para después ser probada;” (“Ejus tamen veritas ipsa experimentia 

comprobata est, atque deinceps probari potest;” 

[Phoronomia p. 134 nº 256].  

 

Para Hermann el principio demostrado (una 

veritas), puede ser confirmado mediante una 

experiencia, que él analizará después usando sus 

principios para mostrar cómo se desvanece la 

aparente paradoja. La experiencia tiene aquí un 

valor demostrativo e ilustrativo de un principio que 

va contra la intuición inmediata. Fig. 40 
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El experimento anunciado consiste en considerar una balanza, en la que un plato P 

equilibra un recipiente que puede adoptar dos formas muy distintas, el cilindro  IBCK 

y el puntiagudo ABC (ver Fig. 40). Hermann describe algunos detalles constructivos, 

como el cuidado necesario para realizar el dispositivo, de modo que en la misma base 

aBCf puedan encajar dos recipientes distintos, el cilíndrico IBCK y el conoide 

puntiagudo ABC, sin que perdamos líquido; una cuerda une el centro de la base aBCf 

con el brazo MD de la balanza, que es igual al otro brazo DO.  

 

2.  La mecánica racional explica el diseño de instrumentos de medida: 

 

En el cap. III de la secc. I del segundo libro trata, como ya se ha dicho, del equilibrio 

de cuerpos sumergidos total o parcialmente. Recordemos que: demuestra el teorema 

de Arquímedes para fluidos heterogéneos, estudia el equilibrio resultante entre la 

fuerza ascensional y el peso del cuerpo sumergido. En el corolario V [Phoronomia p. 

155 nº 295] muestra como consecuencia del principio de Arquímedes, la relación 

inversamente proporcional entre la parte sumergida de un 

cuerpo y la densidad del líquido en el que está sumergido.  

 

En el escolio [Phoronomia pp. 155-157 nº 296] que sigue a los 

desarrollos teóricos citados, Hermann nos anuncia el interés 

que dichos resultados tienen, en concreto el último corolario 

citado, para “fundamentar” dispositivos que sirven para 

comparar pesos específicos:  

 

“Los corolarios anteriores contienen los fundamentos de diversas máquinas 

hidrostáticas, con los que se suelen explorar las gravedades específicas de 

los diversos líquidos.”216  

Fig. 41  
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216 “Corollarium praecedens fundamentun continet diversarum machinularum hygrostathmicarum, quibus 
diversorum liquorum specificae gravitates explorari solent.” [Phoronomia p. 155 nº 256] 



Pasa a describir, nos dice, un aparato “familiar” (Fig. 41) (equivalente a un tipo de 

densímetro que aún se usa), que consta de un bulbo M prolongado en un tubo delgado 

MA. El bulbo acaba en un pequeño saquito N que contiene un poco de mercurio cuya 

finalidad es que la máquina se mantenga vertical.  

 

Describe con detalle el procedimiento para construir una tabla de valores usando un 

mismo líquido pero distintos pesos de mercurio en el bulbo M. Construye una tabla de 

dos entradas: el peso del mercurio introducido en M, y la marca en el tubo MA 

correspondiente a ese peso. De este modo, cuando se introduce la máquina en dos 

líquidos distintos A y O,  ésta se hundirá hasta, por ejemplo, las marcas B y C. Como 

consecuencia del corolario V citado, podremos concluir que las densidades de los 

líquidos están en razón inversa de los pesos correspondientes a las marcas B y C, que 

tenemos en la tabla elaborada previamente.  

 

Hagamos notar que Hermann, como se hacía en la época, establece relaciones entre 

dos medidas, y no una ecuación o relación directa entre la densidad y la parte 

sumergida de la máquina, ya que para esto necesitaría establecer un sistema de 

unidades, cosa que hasta Euler no se comenzará a hacer217.  

 

Posteriormente [Phoronomia pp. 

159-160 nº 300], resuelve el 

problema de determinar la parte 

sumergida CB de una barra AB 

(ver fig. 42), que pende 

suspendida del extremo opuesto 

A al inmerso en el líquido B, 

conocida la relación de gravedades específicas entre el líquido y la barra. Y el 

problema inverso [Phoronomia p. 160 nº 301: dadas la longitud de la barra AB y la 

parte sumergida BC, podemos obtener la gravedad específica relativa barra- líquido. 

A 

O 

E C F 

Fig. 42 
B 

181 

                                         
217 Para un estudio del paso de las proporciones a las ecuaciones que incluyen medidas en Euler, ver el 
trabajo: GONZÁLEZ REDONDO F. A.  2003 



De modo que puede ser usada, dice, como instrumento hidrostático, que los franceses 

llaman pese –liquen, para medir gravedades específicas relativas de líquidos 

dividiendo la barra adecuadamente para líquidos distintos. 

La mecánica racional proporciona para Hermann los fundamentos de aparatos de 

medida ya conocidos. El procedimiento para establecer las escalas de los 

instrumentos es experimental, pero los principios demostrados justifican ese 

procedimiento. En el caso del barómetro (cap. IV del segundo libro), que Hermann usa 

como experiencia decisiva que muestra que el aire pesa, deduce su funcionamiento del 

estudio del comportamiento de dos vasos comunicantes, que ha realizado en la 

estática general de fluidos, (ver apartado 4.4.1). Es la mecánica racional la que 

explica el funcionamiento del barómetro, como equilibrio de pesos.  

 

3.  La mecánica racional explica la imposibilidad práctica de ciertas máquinas: 

 

Seguimos en el cap. III de la secc. I del 

segundo libro. Hermann resuelve el 

siguiente problema [Phoronomia pp. 157-

158 nº 298], como aplicación del principio 

de flotabilidad de Arquímedes 

demostrado: 

G 

M 
N 

I L A K E BD 

H 

F 

Fig. 43  

Dados: (Fig. 43) el diámetro (FM = a) de una esfera metálica hueca que flota en un 

líquido hasta el nivel (AB), y la razón (n) entre las gravedades específicas del metal y 

del líquido homogéneo, determinar el diámetro interior (HN = x) requerido para que 

la esfera quede sumergida a una determinada profundidad (LM = c). La solución que 

obtiene Hermann tomando c=a:m, donde m es un número dado, es: 

                                         3 33 m : 2n) n  3m -(m  a x +=  

 

En el corolario posterior reduce la relación encontrada al caso en que la esfera hueca 

esté sumergida totalmente en el líquido homogéneo. En este caso:  3 n) - (1  a x =  
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Finalmente, en el mismo corolario, aplica la relación al caso en que la esfera esté 

sumergida en el aire. Como el aire, nos dice Hermann, es 800 veces más ligero que el 

agua y 7200 veces más ligero que el cobre218, sustituyendo en la ecuación anterior:  

3
7200
7199  a x = , y tomando logaritmos obtenemos un valor de x comprendido entre 

(0,99995 a) y (0,99996 a). Es decir el grosor FH del 

bronce igual a (a-x)/2 debería ser menor que 

0,000025 veces el diámetro (a) de la esfera de 

bronce. Por tanto, dice Hermann, para por ejemplo 

una esfera de bronce de 1/114 partes de pie de 

grosor, necesitaríamos que tuviera un diámetro de 

277 pies. 

 

Termina discutiendo el proyecto del Padre Francesco 

Lana219 (ver fig. 44) para construir un globo de cobre 

con el que navegar por el aire, basándose en el 

principio de Arquímedes. Lana propone en Magisterii 

Naturae et Artis Tomo II. fol. 291,  nos dice Hermann, un globo metálico de 25 pies 

de diámetro, lo que supondría un espesor del metal de 1/1600 partes de pie. Hermann 

explica que Leibniz en la p. 127 del tomo I de Miscellaneorum berolinensium ya 

analizó ejemplos similares y “demostró abundantemente, que debían abandonarse de 

antemano, todos los intentos de aceptar como exitosa la navegación con cobre, que 

había propuesto el egregio Lana.” [Phoronomia p. 159 nº 299].  

Fig. 44 

                                         
218 Podemos considerar actualmente la densidad media del cobre 8,93 g/cm3, y la densidad del aire seco a 
15° C a la presión atmosférica estándar al nivel del mar 0,0013 g/cm3, por lo que la densidad relativa aire-
bronce nos daría un valor aproximado actual de 1/6869, que se aproxima al considerado por Hermann con un 
error de casi el 5%. 
219 Francesco Lana- Terzi. S.J. (Brescia 1631-1687). Magisterium Naturae et Artis. Volume II  (Brescia 1684 
y 1686. vol I y II; Parma 1692 vol. III). El título completo de la obra es: Magisterium Naturae, Et Artis. 
Opus Physico-Mathematicum... In Quo Occultiora Naturalis Philosophiae Principia Manifestantur, 
Et Multiplici Tum Experimentorum, Tum Demonstationum Serie Comprobantur... Obra que en nueve 
volúmenes, aunque sólo publicó tres, pretendía ser una enciclopedia de los conocimientos de las ciencias 
naturales de la época. Lana está considerado en las historia del vuelo, como el primer precursor que se 
plantea seriamente la posibilidad de construir una máquina voladora. Ver [Catholic Encyclopedia: 
http://www.newadvent.org/cathen/08772c.htm] 
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4. Mecánica racional y experimentos demostrativos falaces: 

 

Las primeras reflexiones en el capítulo V del segundo libro, dedicado a estudiar el 

peso del aire, son para demostrar la falacia de un experimento, que Hermann 

retrotrae hasta Aristóteles, y que nadie anteriormente al trabajo de Jacob Bernoulli 

publicado en Actas de Leipzig en 1685 (p. 436) habría descubierto. El Filósofo, y sus 

comentadores posteriores, habían afirmado, en opinión de Hermann, que una piel pesa 

más cuando está inflada que cuando está flácida220. Esta sería la prueba de que el 

aire pesa. 

 

Hermann nos dice que Jacob B ha deducido de los principios de la hidrostática que: 

“La piel o vejiga inflada no pesa más, que aplastada, aunque se suponga que el aire no 

ha sido privado de gravedad”221, y nos anuncia que puede ser explicado en pocas 

palabras del siguiente modo:   

 

Cuando pesamos una vesícula hinchada con aire dentro, se alza en contacto con ella 

una columna de aire determinada, de forma que el peso que actúa en un plato de la 

balanza es el del aire y el de la vesícula; si después expulso el aire y la peso de nuevo, 

el plato tendrá encima la misma columna de aire de antes, de forma que en todos los 

casos el peso que actúa sobre el plato tiene que ser el de la primera columna de aire y 

el de la vesícula.  

 

El esfuerza didáctico de Hermann se amplía con la siguiente analogía: si pesamos un 

recipiente con agua, y después pesamos el recipiente vacío pero echando el agua que 

antes estaba en el recipiente en el plato de la balanza, pregunta Hermann, ¿no 

afirmaría todo el mundo que el peso no ha cambiado? Del mismo modo el peso de la 

vesícula vacía no difiere del de la hinchada con aire. Cualquier cambio de peso, nos 

                                         
220 “Utrem inflatum plus trahere quam compressum et flaccidum existimavit ” [Phoronomia p. 170 nº 313] 
221 “Utrem seu vesicam inflatam non esse gravioris ponderis, quam complicatam, licet aerem gravitate hand 
destitui praesupponas.”  Ibid.  
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dice Hermann, debe atribuirse a que en las operaciones de hinchado y deshinchado la 

vesícula ha perdido partículas, y no al cambio de peso por ausencia de aire, como 

demuestra el razonamiento a partir de la hidrostática.  

 

Señalemos como curiosidad no exenta de enseñanzas, que aún hoy, hay libros de 

física y química para escolares que proponen realizar esta experiencia para 

“demostrar” que el aire pesa. 

 

“L’aire és un gas i també es pot pesar. Agafem, per exemple, una pilota desinflada i la pesem. A 

continuació la inflem i la tornem a pesar. Observem que pesa més que abans. La diferencia entre els dos 

pesos serà el pes de l’aire que hi ha dins la pilota.” 222 

 

La falacia en este caso consiste en afirmar que de la diferencia de pesos obtenemos 

el peso del aire que hay en el interior. Sólo sería el aire correspondiente al exceso de 

presión que pudiera haber en la pelota o globo. 

 

5. Experiencias que establecen nuevas propiedades que serán explotadas por la 

mecánica racional: 

 

En este caso, las experiencias analizadas encabezan la mecánica racional, como 

fundamentos experimentales que ponen al descubierto nuevas propiedades de la 

materia. Propiedades que surgen en este caso de las nuevas preguntas que plantean 

las experiencias novedosas. Será la mecánica racional en un segundo momento quien 

tratará de responderlas, estableciendo modelos explicativos, y explotando sus 

consecuencias.   

 

En el comienzo del capítulo V del segundo libro, dedicado a la fuerza elástica del aire, 

Hermann nos explica que esta nueva propiedad llamada Elater223 o fuerza elástica, se 

                                         
222 A continuación el texto propone hacer una investigación con una balanza y globos. Química. Ciències de 
la naturalesa. 1r cicle d’ESO; ed. Teide (2002) p. 21 
223 Ver nota 8 
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desprende ocularmente de ciertas experiencias. Son para Hermann las pruebas 

evidentes de la nueva característica del aire.  

 

“Inter haec experimenta unum alterumve hoc loco recensebo, quod aeris elasticans ad oculum 

demosntrare existimo”  [Phoronomia p. 180 nº 325] 

 

Las experiencias son tres [ibid. pp. 180-181]. Hermann las describe de forma 

simplificada, ya que eran bien conocidas:  

 

• La vesícula de buey o porcina flácida atada por su extremo, que es introducida 

en una máquina pneumática, se hincha debido a la elasticidad del poco aire que 

hay en su interior224. 

• Un recipiente cerrado de finas paredes de cristal introducido en otro del que 

se ha extraído el aire, se rompe a menudo en múltiples fragmentos por la 

elasticidad del aire que hay en su interior. 

• Dos semiesferas de las que se ha extraído el aire se separan con mucha 

dificultad, sin embargo pueden ser separadas fácilmente cuando contienen 

aire.  

 

Boyle había usado la experiencia de la vejiga en la parte superior de un tubo de 

Torricelli como demostrativa de la elasticidad del aire, en su obra Experiments 

Physico-Mechanical, Touching the Spring of the Aire. Oxford 1660 [Works, vol. 1, p 

13]. A continuación Boyle señala en la obra citada, que el resultado sería el mismo 

colocando la vejiga dentro del globo de cristal de la bomba pneumática.  

 

La bomba pneumática (Antlia Pneumatica) es para Hermann la máquina fundamental 

que permite explorar la elasticidad del aire, tal como lo declara al comenzar su 

estudio del Elater del aire. La describe con detalle tal como se ha explicado en el 

                                         
224 Experiencia realizada por primera vez por Roberval en 1647 introduciendo una vesícula animal cerrada, 
en la parte superior de un tubo de Torricelli. [WEBSTER C.  1965; p. 449] 
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apartado 4.4.2 para después establecer la relación que permita obtener el número de 

emboladas necesarias para enrarecer el aire en un grado determinado. 
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8 CONCLUSIONES 

 
Hermann decide escribir un tratado de hidraúlica en 1709 mientras está comenzando 

su enseñanza pública y privada en Padua, trabajo que concluye en 1712 con la 

Phoronomia. Su objetivo explícito es escribir un texto sobre hidráulica (tema de 

larga tradición e interés en Padua), pero para hacerlo comprensible por los novatos 

considera necesario exponer en él los fundamentos de sus deducciones. Su texto se 

convierte pues en un tratado general de mecánica racional, uno de cuyos centros de 

interés está, tal como hemos mostrado, en la exposición secuenciada y estructurada 

de los conocimientos mecánicos dispersos en muchos textos de distintos autores (ver 

cap. 2). 

 

En primer lugar procede a estructurar la estática de fluidos en continuidad con la de 

los sólidos rígidos y flexibles. Así puede calcular la fuerza y el momento de cualquier 

sistema de fuerzas actuante sobre objetos de cualquier forma (ver cap. 4), 

extendiendo su uso al estudio de las presiones en un líquido o sobre un objeto 

sumergido y acabando con el estudio del aire. Mientras en el anterior tratado de 

estática [ver Mechanica (1669) de Wallis en la introducción al cap. 4], Wallis estudia 

superficies de revolución, la aplicación por parte de Hermann de los métodos del 

nuevo cálculo diferencial e integral en ambos estilos, geométrico y algebraico, le 

permiten tratar casos más generales (ver cap. 4.1) 

 

La estructuración de la estática, junto con la demostración de sus principales 

principios, basados en la consideración del equilibrio de fuerzas, supone en 1716, 

fecha de la publicación de la obra, una contribución a la visión unitaria de distintos 

campos como la hidrostática, el estudio del aire, y el equilibrio de sistemas de 

fuerzas en sólidos. Particularmente destacable es su estudio de sólidos flexibles 

sujetos por extremos (ver 4.2), para los que elabora una serie de ecuaciones 

diferenciales generales a partir de las que “deduce” los casos particulares de la 
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catenaria, velaria, lintearia, y otros, es una agrupación de una clase de problemas 

previa a la que realizará Euler cuando los considere tipos de isoperimétricas. En la 

hidrostática, estudia el caso general de fluidos heterogéneos, particularizable para 

homogéneos (4.3). 

 

Considerada globalmente, la estática de Hermann, sin embargo, no aparece aún como 

caso particular de leyes dinámicas generales, como será el caso de los principios 

variacionales que desarrollarán D’Alembert, Maupertuis y finalmente Lagrange 

durante el s. XVIII [PANZA  M.  2003].  

 

Merece una atención destacada la estructuración de la dinámica en la Phoronomia, ya 

que constituye un intento por establecer un conjunto de conceptos y de leyes 

relacionales, que proporcionan un tratamiento algorítmico de resolución de problemas 

mecánicos. Mientras la estática rígida se estructura en orden creciente de 

complejidad, desde conjuntos discretos a continuos de fuerzas, o desde sistemas 

planos a sólidos, la dinámica comienza estableciendo las leyes generales (5.1), para 

desplegarse después en el estudio de tipos de problemas mecánicos, como el estudio 

de fuerzas centrales o la caída libre (5.2), el movimiento de los ápsides en órbitas, 

las colisiones (5.3), el movimiento de cuerpos por curvas o el problema equivalente de 

los péndulos (5.4), o el movimiento en medios resistentes (5.5) y la cinemática de 

flujo de líquidos, en la parte de fluidos.  

 

Su dinámica general se organiza a partir de dos principios y un postulado (5,1). El 

primer principio que hoy conocemos como segunda ley de Newton y que Hermann 

escribe por primera vez en su forma actual F = m dv:dt. El segundo es el que Hermann 

llama “principio de igualdad de momentos”, que constituye para nosotros la 

conservación de la energía o teorema energía trabajo Fds = vdv; del que obtiene por 

integración  ∫Fds = ½ m v2. El postulado particulariza su definición de velocidad 

uniforme para un diferencial de tiempo dt = dx:v.   
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Es significativa la consideración del principio energético en Hermann, primero por que 

la distingue y la hace independiente de la formulación algorítmica que ha realizado 

Varignon unos años antes (ver discusión en 5.1), basada, la de Varignon, en la segunda 

ley de Newton y en la definición de velocidad en un instante. Por otro lado, este 

principio energético se convierte en su obra, en la prima formula (5.1), fundamental 

en su planteamiento de problemas analizados en esta monografía, como movimientos 

por fuerzas centrales, descenso por curvas, péndulos, o la muy completa serie de 

capítulos dedicados al movimiento en medios resistentes (5.5). También se usa en el 

estudio de la ecuación barométrica que relaciona presión con altura atmosférica (ver 

4.4.3 Modelos atmosféricos). 

 

Aunque la expresión de su primera fórmula general (∫Fds = ½ m v2), y la conservación 

de la “fuerza absoluta”225 (mv2) en los choques, contienen la misma cantidad, Hermann 

no las asocia; son vistos como contextos mecánicos distintos. En el estudio de los 

choques, Hermann hace referencia a la polémica de las fuerzas vivas defendiendo la 

posición de Leibniz.  

 

Es destacable, en el contexto energético (vis viva) con el que trabaja, su hipótesis 

mecánico-estadística (5.6) en la que se postula por primera vez que la presión y la 

temperatura son proporcionales al cuadrado de la “velocidad media” y la “densidad” 

de las partículas de un gas. Hipótesis ignorada en los textos históricos de mecánica o 

de teoría cinética. 

 

La Phoronomia es de principio a fin una mecánica racional escrita en el nuevo lenguaje 

del cálculo diferencial e integral. Hermann da incluso una versión del que llamamos 

“teorema fundamental del cálculo” y un algoritmo de cálculo integral (ver 6). Es más, 

el nuevo cálculo es la condición de posibilidad del nuevo desarrollo conceptual de la 

mecánica. Permite la creación de conceptos diferenciales como velocidad y fuerza en 

un instante dt, que Hermann usa sin darles nombre específico, y que permiten 

                                         
225 Recordemos que “fuerza absoluta” es otro nombre para Vis viva, ambos procedentes de Leibniz (ver 5.3) 
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desarrollar a partir de las leyes generales, las ecuaciones diferenciales de los temas 

tratados (hay múltiples ejemplos en el cap. 6).  

 

Es un proceso de construcción algoritmico-diferencial emprendido de forma distinta 

por Varignon y por Hermann, en el que se incluyen resultados de los Bernoulli, de 

Leibniz, de Huygens y de L’Hopital.  Varignon con el mérito de haber explicitado la 

velocidad y la fuerza en un instante y Hermann destacando el principio que después 

llamaríamos energético.  Todos ellos pendientes del desafío de reescribir y completar 

los resultados de los Principia  usando los nuevos métodos matemáticos de análisis 

local, pero también de enfrentar nuevos problemas impulsados por la potencia de los 

nuevos métodos; ésta será para ellos la mejor prueba de la validez de unos métodos 

que, por otro lado, estaban siendo puestos en cuestión.  

 

Es en este proceso donde Hermann desarrolla nuevas demostraciones diferenciales, 

como la unificación de problemas de curvas flexibles sujetas por los extremos (4.2), 

la ley de las áreas, o el problema inverso de las fuerzas centrales (5.2) que desarrolla 

en toda su generalidad después de haber tratado el problema en una serie de 

artículos publicados en Italia. También hace un estudio general del problema de 

movimiento oblicuo en medio resistente valioso históricamente por su dificultad (5.5). 

 

Otra dimensión importante que recorre la obra de Hermann, es su trabajo conceptual 

(ver cap. 3), ya mencionado al hablar de sus conceptos diferenciales, pero presente 

también en sus definiciones de las clases de fuerzas (ver la comparación conceptual 

entre Newton, Leibniz y Hermann en 3.3). Mantiene algunas de las distinciones 

verbales procedentes de la metafísica leibniziana y de la creencia de la época de que 

la fuerza actúa por impulsos continuados. Así, considera con distinto nombre a las 

fuerzas en un instante que aún no producen movimiento (vis morta o solicitatio), y a 

estas mismas repetidas continuamente (vis viva o simplemente vis, o en contextos 

estáticos potentia). Sin embargo vemos cómo en su propia obra se pierden en la 

práctica estas distinciones. No encontramos en la Phoronomia reflexiones sobre el 
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debate de las fuerzas a distancia, su actitud sigue la de Newton sin hacerse eco de 

las críticas de Leibniz o Huygens.  

 

Son valiosas, así mismo, las reflexiones presentes en la obra sobre la estructura de la 

materia en el contexto de la filosofía mecánica. Así, su moderna definición de masa 

como agregado de partículas (3.4) (éste es uno de los proyectos actuales 

considerados para sustituir al prototipo de kg; ver nota 65), sus distinciones entre: 

masa y peso (3.5 y 5.1), sólido (y su grado de resistencia frente a la rotura) y fluido 

(4.3), líquido y gas (4.4.1), la afirmación del vacío y la cuantificación de su grado 

(4.4.2), el razonamiento por el que considera que el movimiento del éter no tiene 

ningún papel para explicar la elasticidad del aire (4.4.1), y la ya citada relación entre 

el calor y la energía cinética media de las partículas del gas.  

 

En la última década del s. XVII la elaboración de la mecánica por parte de los autores 

ya citados, se hace con una mezcla de estilos (ver 6). La presentación de los 

algoritmos fundadores del nuevo cálculo por Leibniz, favorece que se busque el estilo 

algebraico en el continente, mientras que el estilo de Newton hará que sus seguidores 

defiendan el estilo geométrico cuando elaboren mecánicas fluxionales. La polémica 

sobre la prioridad hará que las opciones sobre el estilo a usar, se conviertan además 

en una cuestión de pertenencia a bandos (ver comentario de Johann Bernoulli en 6), 

debate en el que Hermann no entra.  

 

Hermann declara en el prefacio su intención de escribir la Phoronomia mezclando los 

estilos geométrico o “lineal” (en las demostraciones principales) y “especioso” (en la 

posterior particularización). Considera las construcciones geométricas más “simples” 

y “elegantes”, además de ser más claras para los novatos. Es, sim embargo, muy 

significativa la reescritura algebracica que hace de sus principales resultados 

dinámicos en un artículo de 1717 (analizado en el apartado 6) porque nos permite 

comparlos con los contenidos en la Phoronomia. Es un escrito para defenderse de un 

plagio y por tanto, en esta ocasión, dirigido a intelectuales; por tanto no necesita 
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hacer desarrollos geométricos detallados y puede ir directamente a las ecuaciones 

diferenciales y proceder a su integración.  

 

Se da pues en su obra una mezcla de los estilos, newtoniano y leibniziano, tributaria 

de la tradición geométrica. Depender de los diagramas específicos de cada tipo de 

problemas, dificulta ir avanzar en la generalilzación de algoritmos. Por otro lado, es 

necesario desarrollar herramientas coneptuales nuevas, como la de “función” y la de 

variable dependiente, para una algebrización efectiva. Por esto, a pesar de contener 

la Phoronomia un grado de estructuración y algoritmación superior a los textos 

mecánicos anteriores, salvo el caso similar de Varignon ya citado, el joven Euler ve en 

1736 que cada resultado parece responder sólo al problema planteado, dificultando 

su generalización. El título de su obra, Mechanica, sive motus scientia analytice 

exposita, y sus palabras son elocuentes del programa emprendido: 

 

“De hecho, el lector aún persuadido de la verdad de las cosas demostradas, no las puede comprender 

clara y distintamente. Así es difícil poder resolver los mismos problemas cuando han cambiado sólo un 

poquito, si uno no los examina con la ayuda del análisis y si no desarrolla las proporciones según el 

método analítico. Esto es exactamente lo que me pasó a mí, cuando comencé a estudiar en detalle los 

Principia de Newton y la Phoronomía de Hermann. De hecho, a pesar de haber comprendido bien las 

soluciones de numerosos problemas, no pude resolver problemas que eran un poco diferentes. Por tanto 

estudié el análisis presente detrás de esos métodos sintéticos para tratar las proposiciones en términos 

del análisis, para mis propósitos”. 226[  

 

La Phoronomia es pues representativa del proceso que conduce desde la magna obra 

de Newton hasta la expresión analítica de Euler, con sus dificultades y sus hallazgos 

parciales.  

 
                                         
226 “Lectore, etiamsi de veritate eorum, quae proferuntur, conuincatur, tamen non fatis claram et distinctam 
eorum congnitionem assequatur, ita ut easdem quaestiones, si tantillum immutentur, propio marte vix 
resolvere valeat, nisi ipse in analysin inquirat, easdemque propositiones analytica methodo evoluat. Idem 
omnino mihi cum Newtoni Principia et Hermanni Phoronomiam perlustrare coepissem, usu venit, ut 
quamquis plurium problematum soluciones fatis percepisse mihi viderer, tamen parum tantum discrepatia 
problemata resoluere non potuerim. Illo igitur iam tempore, quantum potui, conatus sum analysin ex 
synthetica illa methodo elicere, easdemque propositiones at meam utilitatem analytice pertractare, quo 
negotio insigne cognitionis meae augmentum percepi.” Praefatio de la Mechanica  [Euler 1736] 
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Para terminar me gustaría citar tres posibles extensiones de esta monografía: por un 

lado, estudiar las relaciones epistolares entre Hermann y Varignon para comprobar la 

influencia de éste último en la construcción conceptual y algorítmica de Hermann. Así 

mismo, sería interesante estudiar la difusión e influencia de la Phoronomia en autores 

como Daniel Bernoulli o Euler que coincidieron en S. Petesburgo con Hermann 

[Hermann entre 1724-1731 (ver cap. 1). Daniel BERNOULLI 1725-1733, y Euler 1727-

1741], o en König, que formula en 1751 la ley de la energía cinética de un sistema de 

masas puntuales, y es discípulo de Hermann en Basel desde 1731 [DSB].  Finalmente, 

el uso de principios “energéticos” de Hermann ¿tiene alguna influencia en la mecánica 

de Lagrange que se construye con este mismo enfoque? 
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