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0 INTRODUCCION

La historia de la ciencia estd hecha a partir de las grandes figuras. Galileo, Huygens,
Newton, Leibniz, Euler, .., constituyen los hitos a partir de los que se traza la
evolucion de las ideas cientificas. Son los que han producido las “mutaciones”
conceptuales y metodoldgicas que permiten “saltar” a un estadio diferente el
conocimiento cientifico, o para decirlo con Patricia Radelet!, son los personajes que
han sabido “"anudar” en un discurso organizado los diferentes “hilos” que constituyen
los desarrollos de otros autores, creando una nueva forma de ver en un campo del

conocimiento.

Hermann no representa ninguna figura principal en la historia de la ciencia, es un
personaje secundario. Sin embargo, el estudio de estos “"secundarios”, nos permite
seguir el trazado de algunos de estos “hilos” que constituyen la historia. Nos ayudan
a comprender mejor los problemas, los temas, las dificultades de un momento
histérico, sin descartar retrospectivamente su trabajo por irrelevante, por no haber

llegado a las grandes construcciones que figuran en nuestros textos cientificos.

La obra principal de Hermann, la Phoronomia (1716), es particularmente interesante,
porque es la primera mecdnica racional escrita tras los Principia (1687). Representa,
por tanto, un intento de exposicion organizada de la primera ciencia matematizada en
la historia de la ciencia, después de la magna obra de Newton. La reciente creacion
del cdlculo diferencial- integral, sobretodo en la version de Leibniz, estaba
produciendo una gran cantidad de nuevos resultados en el estudio de los problemas
mecdnicos, ademds de una reelaboracién de los resultados conocidos, todo ello
mezclado con las polémicas sobre sus fundamentos. En este contexto se escribe la

obra de Hermann.

" [RADELET-DE GRAVE P. 1998. p. 457] “Il me semble préférable de parler des continuités parce que je
vois les grands progrés chez les auteurs que nouent dans un discours organiséles differents fils qui se
présentent a eux.



La organizacién de esta monografia trata de responder a los objetivos siguientes: por
un lado dar a conocer los contenidos de la obra, que salvo algunas catas importantes
que comentaremos en el primer capitulo, carece de un estudio global. Por otro,
proceder a un andlisis en relacién a la ciencia del momento y en contraste con otros

autores, de los siguientes aspectos:

e Métodos: organizacién de los conocimientos, estructuracién y definicién de
las leyes bdsicas, tipologia de los problemas analizados, relaciones de sus
desarrollos tedricos con experiencias prdcticas, algoritmos del cdlculo
diferencial e integral y su uso.

e Conceptos: elaboracién explicita e implicita, jerarquia y uso de los mismos en
la elaboracidn de leyes, discusiones en torno a la estructura de la materia.

e Estilo: geometria versus dlgebra en el uso del cdlculo diferencial e integral.

Veremos fundamentalmente como en la Phoronomia se procede a reorganizar y
ampliar los conocimientos dispersos acumulados desde la publicacién de los Principia,
ddndoles un tratamiento unificado. Se introducen leyes que a modo de algoritmos
proporcionan modos genéricos de acceso a los distintos campos de la mecdnica.
Veremos que esto se hace con una orientacion diferente a la emprendidad unos afios
antes por Varignon, privilegiando un modo de hacer que después se reconocerd como

“energético”, y que tendrd en Lagrange su mdximo exponente.

Agradezco la paciencia y sabiduria de la tutoria del profesor Antoni Malet a lo largo
de la elaboracién del trabajo, asi como los comentarios sugerentes del profesor
Marco Panza con ocasién del workshop, en el que presenté algunas de las ideas
contenidas en esta monografia. El trabajo de amigos como Gabriel Almirante y Paco

Gurrea ha sido determinante para acabar de entender el texto latino.



1  HERMANN EN LA HISTORIOGRAFIA

Tras la publicacién en 1684 y 1686 por Leibniz de los dos articulos que se consideran
fundadores del cdlculo infinitesimal?, Jacob Bernoulli, desde Basel, junto con su
hermano Johann, trece afios mds joven que él, consiguen asimilar esos textos
esquemdticos y en ocasiones deliberadamente oscuros. A partir de 1690, los
hermanos Bernoulli y Leibniz comienzan a publicar articulos en Acta Eruditorum con
aplicaciones del nuevo cdlculo a problemas nuevos y a algunos ya resueltos con éxito
por otros procedimientos. Johann viaja a Paris en 1690 donde consigue interesar en
los nuevos métodos al marqués de |'Hépital, quien acuerda con Johann la recepcién de
lecciones en exclusiva a cambio de una renta entre 1691-92. Fruto de estas
ensefianzas, |'Hopital escribe en 1696 el primer fratado en el que se expone con

claridad el cdlculo infinitesimal®.

Cercano el final de siglo, se dispone, por un lado, de un buen manual de cdlculo
diferencial, y por otro de una coleccién de articulos en los que el cdlculo se aplica con
éxito a una variedad de problemas cada vez mds amplia. En el texto de I'Hopital la
exposicion del nuevo cdlculo se aplica a problemas puramente matemdticos, tales
como el trazado de tangentes de cénicas o espirales. Sin embargo, los articulos de AE
tratan también de matemadticas mixtas, en los que el objetivo es aplicar los métodos a
curvas que representan movimientos o situaciones estdticas de objetos (son las
llamadas curvas mecdnicas), y que eran muy dificiles de resolver con los métodos

tradicionales.

En este contexto, que caracteriza las preocupaciones matemdticas en la Ultima
década del s. XVII, aparece Hermann (Basel 1678-1733) quien, mientras estudia

teologia en la universidad de su ciudad natal, se forma matemdticamente con

>LEIBNIZ, G. W. 1684 y 1686
3 L’HOPITAL 1696



Bernoulli en los dltimos afios del siglo. Sobre la biografia de Hermann tenemos los
obituarios [Bourguet 1733], [Scheuchzer JJ 1735], [Herzog 1778] y el articulo
correspondiente de Dictionary of Scientific Biography (DSB en adelante) [Fellmann

1981].

En 1997 aparece el (Unico libro publicado hasta ahora sobre la figura y la obra de
Hermann, Hermann and the diffusion of the Leibnizian Calculus in I'taly [Mazzone S.
y Roero C.S. 1997]. Contiene dos capitulos y un apéndice: a partir de correspondencia
y de manuscritos inéditos reproducidos en el apéndice, en el primer capitulo se
estudia la estancia de Hermann en Padua (1707-1713), las negociaciones previas a su
llegada, su ensefianza privada y publica y un andlisis de sus principales obras; en el
segundo capitulo se estudia su relacién con los estudiosos y matemdticos italianos del
momento. Esta monografia estd dedicada fundamentalmente a mostrar la influencia

de Hermann en la difusidn del cdlculo diferencial en Italia.

Fritz Nagel ha realizado un catdlogo los trabajos escritos de Hermann [Nagel F.
1991], que incluye tres categorias: publicaciones de contenido cientifico (59
entradas), manuscritos de contenido cientifico (17 entradas), y publicaciones de
contenido ho cientifico (15 entradas). La correspondencia relacionada con Hermann
se encuentra en parte en la edicién de Gerhardt de los escritos de Leibniz [Gerhardt.
C.J. ed. 1859]. Posteriormente Robinet ha publicado la relativa a la introduccion de
Hermann en la cdtedra de Padua [Robinet A. 1991 a]. Mazzone y Roero, en el contexto
de sus estudios sobre la introduccién del cdlculo en Italia, han publicado la
correspondencia con Guido Grandi [Mazzone S. y Roero C.S. eds. 1992]y, en el citado
texto sobre Hermann [Mazzone S. y Roero C.S. 1997], una amplia correspondencia

entre Hermann y ofros intelectuales italianos.*

Analizaremos el tratamiento dado a la obra y figura de Hermann en la historiografia,

tomando como hilo conductor la cronologia del personaje.

* Estudia en concreto la relacion con: M. Fardella, A. Conti, B. Zendrini, J. Riccati, G. Poleni, S. Checoxxi,
P. A. Michelotti, D. Guglielmini, V. F. Stancari, G. Manfredi, G. S. Verzaglia, G. Grandi y C. Galiani.
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La primera intervencion de Hermann, con motivo de su graduacién piblica como
Master of Arts en 1696, es para defender la teoria de series de Jacob Bernoulli
(Disertacion titulada: Positionum de seriebus infinitis pars tertia, publicada como
apéndice en Ars Conjectandi de Jacob Bernoulli en 1713), donde ya incluye el uso

explicito del cdlculo diferencial e integral.

El nacimiento y desarrollo del cdlculo diferencial se hace de forma polémica. Desde
su comienzo, quienes lo reciben perciben que el tratamiento de las cantidades
infinitamente grandes o pequefias ho estd suficientemente claro para eliminar
inconsistencias, y que, por lo tanto, su uso es, en sentido légico, peligroso, ya que
puede conducir a resultados errdneos. La pérdida de la evidencia visual que
proporcionan los diagramas geométricos provoca inseguridad y hace que algunos
criticos recomienden confrontar los nuevos métodos con los de la geometria

ordinaria.

Las primeras criticas® provienen de Detlef Cliiver en un articulo publicado en AE, en
fecha tan femprana como 1687, y en la correspondencia con Leibniz. El mismo afio La
Hire muestra ejemplos del mal uso del nuevo cdlculo en la Academia de Paris. El
segundo momento polémico procede del matemdtico holandés Bernhard Nieuwentijt,
buen conocedor del cdlculo en sus dos versiones newtoniana y leibniziana, que entre
1694 y 1695 publica dos articulos, Considerationes primae'y Analisis Infinitorum,

contestados por Leibniz en su Responsioy Adendae de 1695.

No satisfecho con estas respuestas, Nieuwentijt publica sus Considerationes
secundas en 1696, donde reitera algunas de sus principales criticas. Las ocupaciones
de Leibniz le impiden contestar, y es Hermann, en este caso, quien escribe un articulo

en 1700 titulado Responsio ad Cl. Nieuwentijt Consideraciones secundas’. Los

> Ver el articulo de Pasini E. Segni e algoritmo nell analisi leibniziana pp. 347-351, en [Panza M. y Roero
S. (ed.) 1995].
% [Hermann J. 1700]



articulos del holandés y la respuesta de Hermann son analizados en el articulo que ha
publicado Palladino [Palladino 1995], en el que se anuncia la edicién critica, en

colaboracion con R. Gatto, del texto de Hermann junto con el original latino.

La respuesta de Hermann mezcla argumentos usados por Leibniz en su primera
respuesta con nuevos ejemplos que ilustran el uso correcto del cdlculo. Consta de seis
capitulos; en los cinco primeros revisa las objeciones de Nieuwentijt, a saber: los
diferenciales pueden despreciarse si se comparan con las cantidades finitas
inhomogéneas con ellos, tiene sentido considerar la iteracion de la diferencial, es
necesario introducir una constante al realizar la sumacién como inversa de la
diferenciacion (muestra como Nieuwentijt llega a resultados ilégicos por no hacerlo
asi), el infinito admite potencias, y finalmente aplica el cdlculo a las escalas

exponenciales.

La sexta parte tiene un cardcter especial ya que intenta establecer una base
axiomdtica para el cdlculo. Retrospectivamente es evidentemente que esto constituye
un intento ingenuo en ese momento histérico, tal como se afirma en [Mazzone S. y
Roero C.S. 1997; pp. 31], pero indica en qué direccién es impulsada la bisqueda de
fundamentos como consecuencia de una polémica en la que Nieuwentijt pide,

cartesianamente, claridad légica.

Segln Palladino [Palladino 1995; 414, 423], a finales del siglo XVII se produce un
desplazamiento en el valor de verdad que afecta a los fundamentos del cdlculo. Para
sus defensores: Leibniz, los hermanos Bernoulli y Hermann en el dmbito germanico, y
para los franceses L'Hopital y Varignon, es vdlido un algoritmo que produce
resultados correctos, tal como declara Hermann al final de su Responsio, pero para
Nieuwentijt, los objetos y sus reglas deben responder a la ideacion geométrica
tradicional. Palladino [ibid. pp. 403-408] afiade un segundo desplazamiento, esta vez
ontoldgico, que habria tenido lugar a lo largo del siglo XVII, producido por la

irrupcién de nuevos objetos: el vacio y los nimeros imaginarios, y de nuevos métodos:



la formulacién de la cinemdtica galileana, en la que se introducen conceptos de
filosofia natural en el formato de la geometria euclidiana. Palladino sefiala, cémo
Leibniz compara los nimeros imaginarios, en tanto “ficciones Utiles”, con sus

diferenciales, ambos sin una representacion geométrica fiable en ese momento.

Hermann sefiala, en una carta a 6. Grandi de 17097, que no da a su Responsio gran
valor ya que, aunque los resultados son vdlidos, fue escrita cuando todavia no habia
completado su aprendizaje y sin tener experiencia en la escritura de textos
cientificos. Sefala, asi mismo, errores en las demostraciones. Por otro lado, Leibniz
declara, en una carta a M. Dangicourt de 17168, que no estd contento con las
expresiones de Hermann en su respuesta ni con la de sus otros amigos en relacion con
las polémicas. Parece evidente que los defensores tampoco estdn totalmente

satisfechos con sus propios argumentos.

En 1700°, la Academia francesa abre un debate sobre los infinitamente pequefios
cuyo principal critico es Rolle, siendo los defensores Varignon y L'Hopital. Desde
Inglaterra, Berkeley publica sobre 1707-09 un pequefio articulo critico, OF
Infinities, y aun, tras casi 30 afios de éxitos del cdlculo, escribe en 1734 Lanalyste,
donde critica la base inconsistente de los principios del cdlculo, argumentando que
dan lugar a resultados correctos sélo por compensacion de errores. Los esfuerzos
para fundamentar sobre base sélida el cdlculo diferencial, tendrian que esperar al
uso de la derivada como concepto central y, por tanto, a la formalizacion del concepto

de limite en Cauchy™.

Entre 1701-1702, Hermann emprende un viaje en el que entra en contacto con
personas significativas en la creacion cientifica de Holanda, Inglaterra y Francia.

Entre 1702 y 1706, Hermann publica trabajos en: AE, Nouvelles de la Republigue des

7 La traduccién inglesa esta en lanota 9 p. 31 de [Mazzone S. Roero C. S. 1997]

¥ El fragmento citado esta en la nota 20 p. 402 de [Palladino F. 1995]

? Sobre el debate en Francia e Inglaterra ver Blay M 1992 pp. y Blay M. 1986

19 Se hizo necesario establecer el concepto de funcidn y sobre él, el de la derivada. Sobre la evolucion del
calculo desde su invencion por Leibniz hasta la formalizacion, ver [Bos 1974-75]
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Lettresy en Nova Literaria Helvetica”, relativos al cdlculo del radio del arco iris y al
radio del circulo oscilador de curvas. En ellos sigue defiendo el cdlculo diferencial, en

este caso, contra los ataques de miembros de la Academia francesa.

La cdtedra de matemdticas de la universidad de Padua habia quedado vacante en
1700 y en afios sucesivos se encuentran, impartiendo clases en ella, Ramazzini,
Fardella y Guglielmini, tres de los amigos que habia hecho Leibniz durante su estancia
en Italia entre 1689-90. André Robinet ha reconstruido en su Iter Italicum [Robinet
A. 1988] la estancia de Leibniz en Italia. Describe cémo Leibniz, al comprobar que los
avances matematicos se habian estancado en las universidades italianas, introduce en
el nuevo cdlculo a los amigos eruditos que hace durante sus viajes. Estos se dan
cuenta de la importancia de los nuevos métodos y se convierten en sus defensores,
pero no se dedican a desarrollarlos. Robinet, en otro de sus textos [Robinet A. 1991
al], ha estudiado a partir de correspondencia inédita, los movimientos y las
negociaciones del grupo de Leibniz y de sus amigos italianos para proponer a alguien
que pudiera difundir el nuevo cdlculo en Italia. En 1704, Fardella!? advierte a Leibniz
de la vacante y éste pide opinién a Johann Bernoulli quien propone a Hermann. Leibniz
apoya su candidatura sefialando en carta a Fardella que, "Hermann de Basel, que ha
publicado un ndmero de articulos sobre el cdlculo diferencial (el sublime nuevo
método matemdtico) serd quizd la persona adecuada para ensefiar matemdticas y

difundir el nuevo andlisis en su regién"*>.

Finalmente, Hermann llega a Padua para
hacerse cargo de la cdtedra de matemdticas en 1707 y permanece alli, segin el
contrato firmado, hasta 1713, en que, de nuevo por influencia de Leibniz, se traslada
a Francfort-on-the-Oder para ocupar alli la catedra vacante de matemdticas. El

grupo leibniziano consequird que el sustituto de Hermann en Padua entre 1716-19 sea

""'Ver el catalogo de Nagel F. 1991 y los comentarios sobre la significacion de esos trabajos en [Mazzone S.
Roero C. S. 1997; pp 31-23]

"2 Es interesante sefialar, por cuanto pudiera ser motivo de investigacion, que M. Fardella se traslada a
Barcelona entre 1709-12 acompafiando a la corte del rey Carlos III. Declara en correspondencia que una de
sus intenciones es enseflar el nuevo calculo, aprendido de Hermann, en Espafia. Las referencias estan en
[Mazzone S.y Roero C.S. 1997; pp.104-109]

" Traduccion mia de la carta de Leibniz a Fardella 12.7.1704 en [Robinet A. 1991a, p.87]
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Nicoldas I Bernoulli, sobrino de Johann Bernoulli, continuando asi la difusién del nuevo

cdlculo.

La estancia de Hermann en Padua ha sido reconstruida en el primer capitulo de
[Mazzone S. y Roero C.S. 1997], a partir de correspondencia y de los manuscritos
supervivientes en las bibliotecas de Venecia y Ginebra de algunas de sus conferencias
publicas. La citada monografia detalla como Hermann decide ensefiar el nuevo cdlculo
en sus clases privadas ya que el nivel existente en la universidad hace que sus
alumnos no estén en condiciones de recibirlas. Asi mismo, expone y analiza algunos
manuscritos de Hermann guardados en Venecia sobre cdlculo diferencial e integral.
Sus ensefianzas publicas, fijadas por la estructura universitaria, son: el primer afio
geometria cldsica (Euclides completado con Arquimedes) de la que se conservan la
leccion inaugural, manuscritos de las cuatro conferencias preliminares, y ldminas con
las ilustraciones usadas en las clases; el segundo afio ensefia mecdnica de la que se
conservan manuscritos de algunas lecciones y de notas del curso; de los fres afios
siguientes, en los que trata de hidrdulica, éptica y gnomdnica respectivamente, se
conservan muy pocos documentos, tan solo las lecciones inaugurales y datos extraidos
de la biografia de Antonio Conti, uno de sus alumnos; en el Ultimo afio, Hermann vuelve
a tratar la mecdnica tal como indican los rotul/i de la universidad de Padua. Mazzone -
Roero [op. cit. p. 53] concluyen la exposicion de las ensefianzas de Hermann
afirmando que: “"However, we believe that, we may assume that, Hermann had
introduced the modern methods and the first rudiments of infinitesimal calculus in
his public lectures too". Apoyan esta afirmacién citando una carta de Hermann a
Johan BERNOULLI de 1709 en la que explica como ha expuesto en sus clases un
problema relativo a dngulos de contacto para fuerzas centrales, asunto polémico en

ese momento y que se maneja usando ampliamente el nuevo cdlculo.

Las lecciones en Padua son la base para la escritura del principal trabajo de Hermann,
la Phoronomia [Hermann J. 1716], impresa como tarde en el verano de 1715, ya que

Leibniz recibe una copia a primeros de septiembre de ese afio, tal como se indica en



Mazzone - Roero [op. Cit. hota 116. pp. 69]. Segiin declara en el prélogo™, Hermann
comienza a escribir tras decidir ensefiar hidrdulica durante su segundo curso en
Padua. El libro estd terminado en 1712, ya que en dicho afio explica en
correspondencia cémo estd intentando que el libro se imprima primero en Venecia y
después en Basel [op. Cit. pp. 80-82]. El objetivo inicial era escribir una obra sobre
mecdnica de fluidos pero decide comenzar con la mecdnica de cuerpos sélidos para
hacer, declara en el prélogo citado, mds comprensible la obra. Mazzone-Roero, en su
monografia sobre Hermann, detallan la distribucion del libro entre los amigos
italianos de Hermann, destacando la influencia de la obra en Italia. Asi mismo,
comentan las declaraciones de Hermann en el prologo y la correspondencia sobre el
estilo matemdtico de la obra y la polémica™ surgida tras la publicacién. Las
intenciones de Hermann son meridianamente claras en una carta escrita en 17.8.1709

a Johann Scheuchzer:

"Ahora estoy totalmente ocupado con la escritura de la Mecdnica de
fluidos o Hidrdulica. En esta obra intentaré demostrar todos los
resultados de mayor importancia en el contexto de la Filosofia natural o
de las Matemdticas y otros, descubiertos con un método nuevo y evidente,
con un método geométrico sin cdlculo algebraico, a menos que sea
completamente necesario para las expresiones analiticas, de modo que sea
comprendido incluso por aquellos que sélo estudiaron demostraciones

lineales."'

En otra carta dirigida a Leibniz en 28.11.1709", declara que el método geométrico

hard la obra mds comprensible para los italianos poco avezados “... en los misterios del

%" A4d Benevolum Lectorem [Hermann J. 1716]

!> [Mazzone S.y Roero C.S. 1997 pp. 69-75]

' Traduccion mia a partir del original latino p. 72 de [Mazzone S.y Roero C.S. 1997] (“Nunc totus
occupatus sum in conscribenda Mechanic fluidorum seu Hydraulica, in qua opera omnia in hac maximi
momenti Philosophiaec naturalis sive Matheseos partis inventa aliaque perspicua et nova methodo
demonstrare conabor geometrico more absque algebraicis calculis nisi ubi summa necessitate urgente
analiticis expressionibus opus erit, ut ab iis etiam intelligi queat, qui tantum in demonstrationibus linearibus
nonnihil studii posuerunt.”)

' Transcrita en la nota 126 p. 72 de [Mazzone S.y Roero C.S. 1997]
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andlisis diferencial..". Hermann, en correspondencia analizada por Mazzone - Roero
[Ibidem p. 74], declara una segunda razén para elegir un estilo geométrico, y es que,
a veces, se obtienen resultados mds elegantes y simples que con el método

algebraico.

El andlisis de la recepcion de la obra describe el debate generado por el estilo
matemdtico en que ha sido escrita. Leibniz, que en carta a Johann BERNOULLI de
10.2.1711 se habia mostrado comprensivo con el plan de Hermann, declara en la
resefia de la obra publicada en AE en 1716 y en cartas a Johann BERNOULLI y
Bourge que ha sido demasiado deferente con los ingleses. Johann Bernoulli y
Christian Wolf, que son de la misma opinidn, afiaden que los métodos analiticos, en los

que reconocen a Hermann experto, habrian abreviado y hecho menos pesado el texto.

El cdlculo diferencial es utilizado solamente en los corolarios de los teoremas
principales, pero sin que el autor exponga los algoritmos en los que se basa. En
relacién al cdlculo integral, se da la traduccién inglesa de la exposicion que hace
Hermann de su versién del teorema principal del cdlculo integral, junto con los tres
ejemplos en los que muestra cémo hacer uso de él para calcular integrales [op. Cit. pp.

77-80].

Anteriormente a la citada monografia sobre Hermann de 1997, la Phoronomia, fue
objeto de atencién en un corto articulo publicado por W. E. Knowles Middleton en
1965 titulado Hermann and the kinetic theory [Middleton W. E. 1965]. Middleton
presenta la traduccién de las dos dltimas pdginas de la Phoronomia previas al
apéndice, que constituyen el capitulo XXIV y dltimo de la obra, titulado De motu
intestino fluidorum. En él Hermann expone, mediante una definicion y un teorema, la
relacion entre el calor y la velocidad cuadrdtica media de las particulas de un fluido.
Middleton destaca que este capitulo de la Phoronomia constituye el primer intento de
tratar matemdticamente la relacién entre calor y movimiento interno del fluido.

Ademds expresa su extrafieza por la ausencia de referencias a Hermann en los

1



textos que tratan del comienzo de la teoria cinética de gases y que siempre lo

refieren a la Hydrodynamica de Daniel Bernoulli de 1738

C. Truesdell hace una afirmacion similar, cuando en 1968 publica sus Essays in the
History of Mechanics [Truesdell C. 1968]. En la parte correspondiente al siglo XVIII

del capitulo titulado “Early kinetic theories of gases "

, Y sin referencias a
Middleton, Truesdell comienza trazando la historia de la teoria cinética de gases a

partir del citado capitulo final de la Phoronomia.

Por su interés historiogrdfico discutiremos este Ultimo capitulo del libro de

Hermann, en el apartado 5.6 de esta monografia.

Mientras estd realizando su docencia en Padua y elaborando su mecdnica, Hermann
publica en italiano entre 1710 y 1713 cinco articulos en Giornale de’ Letterati dTtalia
(en adelante GLI) sobre las fuerzas centrales, un tema polémico en ese momento
porque algunos matemdticos consideran que no ha sido resuelto por Newton en los
Principia. Estos articulos y la polémica entre Hermann y Verzaglia son analizados en

[Mazzone S. 1996] y en [Mazzone S. y Roero C.S. 1997; pp. 100-101]

A comienzos del siglo XVIII los leibnizianos intentan traducir en términos de cdlculo
diferencial importantes resultados de los Principia. Uno de los problemas importantes
tratados por Newton es el relativo al estudio de las fuerzas centrales en relacién con
las leyes de Kepler. Los Principia contienen la demostracién del problema directo de
las fuerzas centrales, a saber: si las drbitas son cénicas entonces la ley de fuerzas
es como la inversa del cuadrado de la distancia, pero, en la primera edicién de los
Principia, Newton da por evidente sin demostracién la afirmacién inversa’. Johann

Bernoulli, que habia llamado la atencion de Varignon sobre el llamado problema

'8 ITRUESDELL C. 1968. pp. 272-304]
19 [Newton 1. 1687b. Lib. I, Sect. III. Prop. XIII. Corol. I. p. 467.] Newton afiadiria un texto explicativo al
corolario en la segunda edicion de los Principia de 1713.
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inverso de las fuerzas centrales, le comunica en 1709 que ha resuelto el problema

completamente. Su solucién se publica en Memoires de la Academia de Paris en 1710.

Hermann, independientemente de Johann BERNOULLI, da la solucién analitica del
problema inverso, de forma directa y especialmente simple, en el primer articulo del
Giornale [Hermann J. 17101 %, sin recurrir, como hace Johann BERNOULLT a radios
de curvatura. Johann BERNOULLT critica por carta a Hermann en dos aspectos, ha
integrado la ecuacién porque ya sabia de antemano el tipo de solucion y ha olvidado
afiadir una constante en la primera integracion. Hermann responde dando por carta la
sustitucion empleada en la integracién y publica un articulo en GLI [Hermann J. 1711
b] en el que muestra que una transformacién conveniente de coordenadas permite
tomar como constante de integracion cero. En el nimero anterior de GLI, Hermann
habia publicado otro articulo [Hermann J. 1711 a] en el que resolvia el problema mds
general, propuesto por Johann BERNOULLI en una carta dirigida a él en diciembre
de 1710. En este caso el cuerpo se moveria en un medio resistente y estaria sometido

a dos fuerzas centrales distintas.

Entretanto, Giuseppe Verzaglia, uno de los tres intelectuales italianos que desde
Bolonia habian comenzado a estudiar el cdlculo leibniziano® a principios de siglo,
escribe un escrito critico con Hermann en 1710 [Verzaglia 6.S. 1710], indicando cémo
la solucion del problema inverso se puede hacer usando el teorema XLI de los
Principia y ciertos procedimientos utilizados por Varignon en un articulo de 1701
publicado en Mémoires. El objetivo declarado de Verzaglia, tal como se explica en el
articulo de Silvia Mazzone que analiza la polémica, es mostrar que el problema inverso
ha sido completamente resuelto por Newton para cualquier fuerza central y que no
vale la pena dar el caso particular para fuerzas newtonianas, ya obtenida, por otra
parte, por Johann Bernoulli mediante otro procedimiento. Hermann responde con el

ya citado segundo articulo publicado en GLI [Hermann J. 1711 a], donde después de

2 La solucion de Hermann de 1710 es expuesta en [Aiton 1989] y [Grugnetti 1992]
?! La biografia de Verzaglia y el analisis de la controversia con Hermann esta tratado en el articulo de
[Mazzone S. 1996] de forma monografica y en el libro [Mazzone S. y Roero C.S. 1997; pp. 217-240 y pp.

13



dar la solucién general, particulariza para fuerzas newtonianas obteniendo cénicas

como solucién.

En [Mazzone S.y Roero C.S. 1997; pp. 100-101], se describen los dltimos articulos de
Hermann en GLI# y su influencia en la formacién analitica de los eruditos italianos.
Estos articulos estdn dedicados a refutar las acusaciones de Verzaglia de
superficialidad y paralogismo. Hermann sigue pensando que Newton no ha mostrado
cémo a partir de la solucién general que supone el teorema XLI, las cdnicas son las
“Unicas"” soluciones admisibles, y que su contribucién ha sido completar el tratamiento

de Newton.

Silvia Mazzone dice en su articulo, que en la Phoronomia, Hermann retoma y
reelabora analiticamente la demostracién de la proposicion XLI de los Principia.
Concluye, diciendo que las soluciones newtoniana y analitica no sélo se diferencian en
la simbologia empleada ya que "La soluzione newtoniana individua la posizione del
mobile sulla trajettoria punto per punto, lascindome in ombra le propieta globali e
qualitativa. ..... , e le trattazione di Hermann del problema inverso nel vuoto ne & un
n23

esempio significativo. (..) Ma el cambiamento di simboli & ricco di conseguenze ...

Es el cambio de lenguaje el que permite un tratamiento global del problema.

Las soluciones al problema inverso de las fuerzas centrales de Johann Bernoulli,
Hermann y Varignon se publican juntas en 1710 en Mémoires de /'Académie de Paris.
Forman parte, tal como hemos dicho, del proceso nada trivial emprendido por los
leibnizianos de aplicar el cdlculo a los problemas mecdnicos, comenzando por los
contenidos en los Principia. N. Guicciardini analiza en un articulo [Guicciardini N.
1996] un episodio de este proceso que culminard en los afios treinta con Euler: en la
Phoronomia encontramos la primera demostracion usando el cdlculo diferencial del
teorema de las dreas (para toda fuerza central se cumple que la velocidad areolar es

constante) realizada en estilo geométrico, es decir donde se razona a partir de

2 [Hermann J. 1711 ¢] y [Hermann J. 1711 d]
# [Mazzone S. 1996; pp. 168-169]
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valores como pares de puntos en un grdfico. Trataremos estos resultados de
Hermann en el marco de la exposicion de las leyes mecdnicas, en el capitulo 5.2 de
esta monografia. La misma demostracién, pero esta vez en lenguaje algebraico
diferencial, es comunicada por carta a J. Keill y se publica en Journal Literaire en
1717. La demostracion es significativa ya que todas las pruebas de la ley inversa de
las fuerzas centrales se habian basado en ella. El articulo compara las
demostraciones de Newton y Hermann y destaca que tras los Principia, la ley de las
areas Kepleriana demostrada mediante procedimientos intuitivos de limites en las
proposiciones 1y 2 del Libro I, no se considera firmemente establecida hasta que se
hace la prueba analitica. La prueba de Hermann en su forma algebraica se mantiene

en la Mechanica de Euler de 1736.

Tal como hemos explicado, Hermann acaba la docencia en Padua en 1713 para
trasladarse, por influencia de Leibniz, a la cdtedra de matemdticas de Frankfurt,
donde ensefia hasta 1725. En 1724 Pedro el Grande le llama para fundar la Academia
Cientifica de S. Petesburgo. Hermann acepta, viviendo alli entre 1725y 1731. En 1726
escribe Oratio de ortu et progressu geometriae, primera publicacién en la historia de
la ciencia en Rusia®®. Siempre eché de menos su tierra y desde su salida para Padua
intenté conseguir un puesto universitario en Basel. Finalmente se traslada a su ciudad
natal en 1731, dos afios antes de morir, para hacerse cargo de la cdtedra de ética y

ley natural conseguida en 1722.

No hay estudios sobre las publicaciones y escritos de Hermann hechos durante su
estancia en Frankfurt o sobre las que hizo desde S. Pertesburgo. Sélo se cita en las
biografias como importante, la escritura de los tomos I y III dedicados a
matemdticas y fortificacién, del libro de texto Abrégé des mathématigues pour
I'Usage de sa Majesté Imperiale de toutes les Russies. El tomo IT sobre astronomiay

geografia fue escrito por De L'isle®.

2 Codigo del catalogo Nagel Na. 045 [Nagel F. 1991; p.47]
% Op. cit. p. 48
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La importancia de Hermann como miembro destacado del circulo de los Bernoulli, y
por tanto como defensor-difusor-desarrollador de los métodos que puso en marcha
Leibniz, se pone de manifiesto en la decisidn, por parte los encargados de la edicién
en marcha de la obra de la familia Bernoulli®®, de publicar en la segunda etapa del
proyecto la principal obra de J. Hermann la Phoronomia. En la tercera etapa se

reunird la correspondencia.

Podemos decir, a la vista de lo afirmado en este capitulo, que se han estudiado
aspectos concretos de la obra de Hermann ligados a polémicas como la del problema
inverso de las fuerzas centrales o la fundamentacion del cdlculo. En los afios sesenta
se destacé sin mucho éxito su aportacién como iniciador de la teoria cinética de
gases. También ha sido estudiada su etapa como introductor-difusor del nuevo

cdlculo en Italia.

A comienzos del siglo XVIII Hermann junto con los Bernoulli y Varignon [Blay M.
1992] estdn desarrollando una visién analitica de la mecdnica newtoniana, pero
también tratando de establecer los principios bdsicos de esa ciencia que pretenden
sea deductiva. Por tanto, pensamos que se hace necesario un estudio panordmico de
la principal obra de Hermann, la Phoronomia, objetivo de este trabajo, que nos
muestre de qué modo Hermann intenté dar una vision integrada de la mecdnica del
momento usando el cdlculo diferencial e integral. Desarrollos parciales como los
citados llevarian no mucho después a las formulaciones plenamente analiticas de Euler

y Lagrange.

26 The Bernoulli Edition. Editor general: D. Speiser. Colaboracién entre el Forschungsstelle Basel (F. Nagel)
y Unite de Recherches Louvain (P. Radelet-de Grave). Birkhduser Verlag AG. Basel-Boston-Berlin..

16



2 ESTRUCTURA GENERAL Y OBJETIVOS DE LA OBRA ("simple,

directo y elegante”)

La Phoronomia, escrita en latin, consta de 401 pdginas mds 20 iniciales sin numerar
que incluyen: el frontispicio de la portada, los datos del autor, la dedicatoria de la
obra a Leibniz, el prefacio Ad benevolum lectorem, un poema escrito por Nicolaus
Westerman de homenaje al autor y su obra, como era costumbre en la época, y el

indice.

La obra estd dividida en dos libros: el primero trata sobre los cuerpos sélidos (de
corporibus solidis) y el segundo sobre los fluidos (de corporibus fluidis). Antes de
comenzar el primer libro incluye 5 pdginas de “nociones previas" (Praenotanda). Tras
el dltimo capitulo afiade un Apéndice de 23 pdginas, y doce pdginas adicionales con

numeracién independiente que contienen 160 ilustraciones.

17



Sobre la eleccion de la palabra Phoronomia no disponemos de comentarios de
Hermann, aunque, podemos suponer la influencia de Leibniz. Este habfa escrito,
durante su estancia en Italia entre 1689-1690, un proyecto de mecdnica titulado
Phoranomus seu Potentia et Legibus naturae que, seqin ha estudiado A. Robinet®’,
habria sido el germen del manuscrito Dynamica escrito al final de su estancia en
Ttalia. Serd esta Gltima palabra inventada por Leibniz, la que prevalecerd hasta hoy

como “estudio de las causas del movimiento"?.

Leibniz, tal como explica en carta a M. Foucher en 1690*, deja en Florencia en
manos de su amigo Bodenhusen el manuscrito de la dindmica a la espera de enviarle el
final para ser editado. Nunca se publicard porque, afirma Leibniz en la carta citada,
cada vez que intenta acabar el trabajo se le ocurren mdltiples modificaciones y no

tiene tiempo de digerirlas.

La palabra Phoronomia esta compuesta de dos raices de origen griego: phérd (¢épw)
'llevar’ y nomoi ‘leyes™°. Aristételes en la Physica® divide el cambio en cuatro
categorias: segln la esencia, segln la cantidad, segin la calidad y segin el lugar

(kinésis kata topon). Esta (ltima es la definicién que da Aristételes de pheromar. Si

entendemos el cambio de lugar como movimiento, podemos concluir dando como

significado de Phoronomia. leyes de los movimientos.

Todos los resultados del libro, proposiciones, definiciones, lemas, etc., salvo alguna
introduccidn explicativa de alglin capitulo y el apéndice, estdn numerados. Asi, la

Phoronomia consta de 660 resultados. De modo que en esta monografia citaremos

“ROBINET A. 1991 b

* D’ Alembert en el articulo dynamique de la Encyclopédie declara: “El Sr. Leibniz es el primero que se ha
servido de este término para designar la parte mas trascendente de la mecanica, que trata del movimiento de
los cuerpos, en tanto que causado por fuerzas motrices actual y continuamente actuantes.” Encyclopedie,
Vol. V. p. 174.

2% Traduccion de la carta en [LEIBNIZ G.W. 1991] pp. XI-XII.

3% Henry George Liddell, Robert Scott, A Greek-English Lexicon. Oxford University Press. 9th Rev edition
(July 1, 1996).

3! Aristoteles. Physica (111, 1, 200b26-27)
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indicando ademds de la pdgina el nimero correspondiente (p. ej. Phoronomia p. 369

(n°643).

La estructura de los libros es la siguiente:

El primer libro (124 pp.) estd dividido en dos secciones:

e Seccion primera: (50 pp.) expone la estdtica de sélidos rigidos y flexibles;

(sobre las solicitaciones y sus direcciones medias aplicadas de cualquier forma

en los equilibrios). Estd dividida en 3 capitulos:

o Capitulo I: sobre la proporcion entre las Solicitaciones de la gravedad,

o peso de los cuerpos, y sus masas.

Capitulo ITI: sobre las solicitaciones y sus direcciones medias aplicadas
a cuerpos rigidos o inflexibles.

Capitulo IIT: sobre las formas que los cuerpos flexibles adoptan a
partir de las potencias aplicadas, y sobre las direcciones medias de

esas potencias.

e Seccidn segunda: (74 pp.) expone la dindmica de los cuerpos sélidos y consta

de 6 capitulos:

o Capitulo I: sobre las solicitaciones generales aplicadas continuamente y

el movimiento que éstas originan.

Capitulo II: sobre el movimiento curvo en el vacio para cualquier
hipétesis de gravedad variable.

Capitulo IIT: sobre el movimiento de los péndulos; y sobre el
movimiento isécrono de cuerpos descendiendo en curvas para cualquier

hipétesis de gravedad variable.
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o Capitulo IV: sobre las solicitaciones centrales que mantienen
moviéndose en las drbitas a los cuerpos, y sobre el movimiento de los
dpsides.

o Capitulo V: sobre el movimiento de los péndulos compuestos y su centro
de oscilacién en cualquier hipdtesis de gravedad.

o Capitulo VI: sobre las leyes del movimiento en la colisién de los

cuerpos.

El segundo libro (253 pp.) dedicado a los fluidos estd dividido en cinco secciones:

e Seccidn primera: (88 pp.) expone la estdtica de los fluidos; (sobre la fuerza de

los fluidos por la gravedad). Consta de 8 capitulos:

o Capitulo I: sobre las leyes generales de la gravitacion de los Liquidos
sobre su base plana.

o Capitulo II: sobre la gravitacién de liquidos en los laterales de
recipientes, y sobre la firmeza de tubos requerida para soportar la
presion de los liquidos.

o Capitulo III: sobre el equilibrio de cuerpos sélidos sumergidos total o
parcialmente en fluidos.

o Capitulo IV: sobre las figuras que deben adquirir los cuerpos flexibles
bajo algtn fluido.

o Capitulo V: sobre la presién del aire a causa de la gravedad.

o Capitulo VI: sobre la fuerza eldstica del aire.

o Capitulo VII: sobre la fuerza eldstica del aire comparada con su
densidad.

o Capitulo VIII: sobre la densidad del aire en diversos puntos de la

atmdsfera in todas las posibles hipétesis de elasticidad.
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Seccidén segunda: (22 pp.) trata del movimiento del agua y consta de 2

capitulos:
o Capitulo IX: sobre el movimiento de los fluidos que salen por pequefios
orificios.

o Capitulo X: sobre el curso de los rios.

Seccidn tercera: (42 pp.) estudia los efectos de la percusion de los fluidos y

consta de 3 capitulos

o Capitulo XTI: sobre los efectos percusivos de los fluidos

o Capitulo XII: sobre las resistencias de las formas en fluidos en
movimiento.

o Capitulo XIII: sobre las formas que deben adoptar las superficies

flexibles expuestos directamente al viento, o sobre la curva Velaria.

Seccidn cuarta: (84 pp.) trata del movimiento de cuerpos en medios

resistentes y consta de 8 capitulos:

o Capitulo XIV: teoria general del movimiento de cuerpos en medios
resistentes.

o Capitulo XV: sobre el movimiento de cuerpos que resisten al aire en
razon de la velocidad del mavil.

o Capitulo XVI: sobre el movimiento de cuerpos que resisten al aire en
razon duplicada de la velocidad del movil

o Capitulo XVII: sobre el movimiento de cuerpos que resisten al aire en
parte en razon de la velocidad del mévil y en parte en razén duplicada

de la misma velocidad.

21



O

Capitulo XVIII: encontrar métodos para el movimiento de los cuerpos
en cualquier medio resistente, y con la densidad variable de cualquier
forma.

Capitulo XIX: sobre el descenso y ascenso de graves por cualquier linea
curva, dada una resistencia del medio proporcional al cuadrado de la
velocidad.

Capitulo XX: sobre el movimiento de los proyectiles en el aire, en que el
proyectil resiste en razon duplicada de la velocidad, cuando el cuerpo
es empujado por la solicitaciéon de la gravedad no hacia algln centro
dado con una posicién, como hasta ahora solian considerar, dirigido,
sino segun la direccién de cualquier linea en posicién dada

Capitulo XXI: sobre el movimiento de los navios impulsados por el

viento.

e Seccion quinta: (17 pp.) contiene una misceldnea en 3 capitulos:

O

O

O

Capitulo XXII: sobre el movimiento circular de fluidos.
Capitulo XXIITI: sobre la agitacién del aire al producir sonido.

Capitulo XXIV: sobre el movimiento interno de los fluidos.

Hermann hace una descripcién de la obra y de sus intenciones en el prologo Ad

benevolum lectorem. Comienza explicando que el origen del proyecto fue su

compromiso cuatro afios antes de explicar la Hidrostdtica a los alumnos de la

Universidad (“Liceo") de Padua. La atencion que Herman dedica a la ciencia de la

hidrdulica tiene que ver con el interés que la Repiblica Veneciana habia mostrado por

el estudio y control de las aguas. Presentarse como conocedor de la mecdnica de las

aguas fue siempre importante para ocupar la cdtedra de matemdticas de Padua, para

el propio Hermann, para sus antecesores (6. Montanari y D. Guglielmini), y para su

sustituto, Nicolaus I Bernoulli®?,

32 Ver correspondencia al respecto en [MAZZONE S. y ROERO C.S. 1997] pp. 70-71
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Demuestra conocer el desarrollo de la mecdnica de los fluidos a través de la sucinta
historia que traza de la hidrdulica. Comenzando con Arquimedes pasa a Galileo con el
que de nuevo se producen especulaciones de interés. Cita como autores de los
sucesivos avances a Torricelli, posteriormente llevados a Francia y mejorados por
Pascal, sucesivamente llevados a Inglaterra y ampliados por Boyle. Cita como autores
de estudios a Borelli y Mariotte, y los trabajos sobre el movimiento de las aguas de
Guglielmini**. Finalmente, alaba los resultados mds modernos: de Newton sobre el
movimiento de cuerpos en medios resistentes; de Varignon mejorando los de Newton
y produciendo estudios como el de las clepsidras; y de los hermanos Bernoulli con sus
estudios de las formas que adoptan superficies flexibles por la accion de fluidos

como el agua o el aire.

A continuacion, Hermann explicita de forma elocuente el objetivo principal y la

filosofia desde la que ha escrito el libro:

"Pero, como estos extraordinarios hallazgos se hallan dispersos en varios Diarios y otros libros y a veces
sacados de diferentes principios, he pensado que lo agradecerdn aquellos que se deleitan con estos
asuntos, si expongo todo a la luz publica reunido en uno segln un orden de principios, deducido y
desarrollado desde muy pocos y simples elementos. Pero habiendo entrado apenas en este campo, me he
dado cuenta ensequida de que este propdsito no lo cumpliré con éxito, me elevo a una mayor altura, y
tomo muchas cosas de la Mecdnica de cuerpos sélidos, a fin de que los principiantes puedan ir leyendo el
opusculo sin llegar a molestarse, ni sea necesario para su comprensién buscar ayudas en otra parte. Pero
como en estos asuntos subsidiarios que hay que explicar, la materia ha crecido tanto que no es fdcil
decidir qué parte del oplsculo debe incluirse, aparece finalmente el presente tratado, cuyo titulo
general es Phoronomia, o Sobre las fuerzas y movimientos de los cuerpos sdlidos y fluidos, dividido en

dos libros, tratando el primero sobre fuerzas y movimientos de cuerpos sdlidos, y sobre fluidos el

o’rr'o."34

33 Autor de trabajos sobre hidraulica. Amigo de Leibniz y contacto importante en Italia para conseguir que
Hermann ocupe la catedra. Para una rapida biografia y resumen de los intereses de Guglielmini ver Ibid. Pp.
183-188

3 “Sed, quia eximia haec inventa in variis Diariis aliisque libris dispersa et ex diversis saepe principiis
elicita sunt, gratum est me iis factorum, qui hisce rebus delectantur, existimavi, si omnia juxta genuinum
ordinem in unum collecta, ex paucis iisque simplicibus principiis deducta et aucta publicae luci siterem.
Verum hunc vix ingressus campum illico perspexi, propositum istud me nunquam feliciter ad exitum
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Hermann emprende la tarea de sistematizar la mecdnica de fluidos basdndola en la de
los sélidos a partir de principios simples, reuniendo los resultados dispersos y a
menudo demostrados con métodos heterogéneos. Pretende hacer un libro de
mecdnica autosuficiente y completo. Para apreciar el valor de este proyecto, fenemos
que sefialar que desde los Principia de Newton no se habia editado ningln libro
importante de mecadnica; la Phoronomia es el primero, que pretende ademds, seguir un
método deductivo en el que a partir de principios generales se obtengan, entre otros,

los resultados ya conocidos.

Seguidamente, da una rdpida visiéon de los temas que tratard, destacando los

siguientes resultados del primer libro:

A partir de dos teoremas generales, "potentes” y “elegantes” obtiene como

corolarios las diferentes curvas estdticas: catenaria, velaria y lintearia.

o Estudia los movimientos provocados por la gravedad, incluido el de la isocronia
de péndulos, y los generados por colisién; todo de forma suficientemente
general para poder encontrar las curvas a partir de las fuerzas.

e Anuncia una nueva teoria de los centros de oscilacion usando un principio
simplificador que puede resolver distintas situaciones, y reduciendo el péndulo
compuesto al simple equivalente.

o Declara que va ha presentar nuevas reglas del movimiento en la percusién de

los cuerpos eldsticos a partir de un principio sobre centros de gravedad.

Enumera, a continuacidn, los temas tratados en el segundo libro, insistiendo siempre

en que, “para abreviar”, ha tratado de establecer teoremas generales a partir de los

deducturum, nisi omnia altius repeterem, pluraque ex Mechanica corporum solidorum mutuarer, ad id ut
tyrones opusculum citra ossensionem percurrere possent, nec ad ejus intelligentiam auxilia aliunde
conquirere necessum haberent. Cum vero in rebus hisce subsidiariis explicandis materia in tantum
excreverit, ut non contemnendam opusculi partem constitueret, natus demum est praesens tractatus, quem
generaliori titulo Phoronomia, De Viribus et Motibus Corporum solidorum et fluidorum, insigniendum et in
duos libros dividendum duxi, quorum prior vires et motus corporum solidorum, fluidorum vero alter,
evolverer.” HERMANN J. 1716 pp. 3 y 4 del prologo: “Ad benevolum lectorem”
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que deducir de forma “simple” en los corolarios los casos particulares. En este
sentido, resalta que ha establecido primero las leyes de los fluidos heterogéneos

para deducir como caso particular las de los homogéneos.

Comenta que, de nuevo en este segundo libro, deduce la forma de las curvas
catenaria, velaria, lintearia, etc., en esta ocasion, a partir de una propiedad general
de los centros de gravedad. Afirma haber pensado que era el primero en llegar a
estos resultados pero que, antes de que su libro apareciera, los ha encontrado en el
de Johann Bernoulli: Essay d'une Theorie de la Manoeuvre des Vaisseaux™ que, por

otro lado, afirma Hermann, habia visto su manuscrito antes de ser editado.

A continuacion alaba la "simplicidad” y la “elegancia” como principios que ha tratado
de seguir en su exposicion. Se dirige, afirma, a los "Gedmetras" avezados y también a
los "Principiantes”. Hermann da a su obra una clara orientacién diddctica, motivada
por su interés en extender los nuevos métodos en Italia. La Phoronomia estd
salpicada de alusiones a los " Tyrones" o Novatos en aquellos puntos en que, estos,
debido a su inexperiencia, pueden cometer errores conceptuales. Por ejemplo, en un
texto en el que previene contra una mala interpretacién de un término recién

definido:

"Por otra parte debe ensefiarse a los novatos, que las potencias o solicitaciones, que se llaman

equipolentes, no deben suponerse por consiguiente como iguales; en efecto tener la misma potencia

. . s . e 3
[aequipolere] y ser iguales no son en Mecdnica frases sindnimas.” 6

Declara que ha “preferido” las demostraciones lineales, es decir geométricas, a las

algebraicas ya que:

33 Unico libro publicado por Johann Bernoulli. Essay d'une nouvelle Theorie de la Manoeuvre des
Vaisseaux, avec quelques Lettres sur le méme Sujet, Basle 1714, pp.1-144 (UB Basel Ko VI 11) - Opera 11,
pp.1-96.

36 «“Caeterum monendus est tyro, quod potentia vel solicitatio, quae reliquis aequipolere dicitur, ipsis ideo
aequalis censenda non sit; etenim aequipolere et aequale esse in Mechanicis non sunt phrases synonimae.”
[Phoronomia. p. 10 (n°36)].
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"... la experiencia me ha ensefiado que la contemplacion de las figuras proporciona abundantemente
soluciones y construcciones sumamente mds simples y mds elegantes que el Andlisis especioso. Y digo
especioso, para diferenciarlo del andlisis geométrico o lineal que opera sin los simbolos algebraicos, del

que se obtienen muchas cosas de forma mds elegante que con los cdlculos andliticos, aunque ho

siempre."®’

Declara su gran aprecio por los métodos usados por Euclides, Apolonio, y por los
utilizados por Newton en sus Principia, pero afirma que usard el método algebraico en
la aplicacion de los teoremas generales a casos particulares por considerar que es

éste el lugar mds idéneo.

Hermann destaca ademds de la simplicidad y la elegancia, el valor visual, la
"contemplacion” de las figuras, para preferir el método geométrico al algebraico,

obtenidas de su propia experiencia.

Finalmente, explica el artefacto geométrico que usard para representar las
proporciones entre fuerzas, tiempos, velocidades, etc. Serdn unas curvas que llama
Escalas cuyo uso retrotrae hasta Cavalieri y Viviani. Estas escalas, dice, imitan a los
arquitectos que representan modelos en los que las lineas son proporcionales a las
obras imaginadas. Destaca de nuevo su valor “visual” en las demostraciones y su
"adecuacion a los fenémenos” . A lo largo de la monografia dibujamos muchos

ejemplos de escalas usasdas por Hermann. Ver por ejemplo la fig. 18 p. 73.

Las escalas son para Hermann curvas que representan “geométricamente” la
correspondencia entre dos cantidades variables sin distincién. Tal como iremos
mostrando, las utiliza en las demostraciones, combindndolas entre si para obtener

relaciones entre distintas variables o ecuaciones diferenciales.

“.., experientia multiplici edoctum, meditationem figurarum simplissime simpliciores et elegantiores

suppeditare solutiones ac consructiones, quam Analysim speciosam. Speciosam dico, nam subinde utor
analysi geometrica, seu lineari absque symbolis algebraicis procendente, cujus beneficio multa elegantius
obtinentur quam calculis analyticis, etsi non semper.” Phoronomia. Praefatio p. 7.
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Como primera obra de mecdnica general tras los Principia, parece natural comparar la
estructura de la Phoronomia con esta obra de Newton, que sigue siendo la referencia
principal a partir de la que los matemdticos de la época desarrollan su trabajo. Como
es bien conocido, los Principia comienzan con ocho definiciones en las que Newton
delimita los conceptos que considera bdsicos: cantidad de materia, cantidad de
movimiento, vis insita (asimilable a nuestra fuerza de inercia), la fuerza centripetay
sus cantidades absoluta, aceleratriz, y motriz. Podemos ver en la obra de Newton el
modelo que sigue Hermann, por cuanto da al comienzo las definiciones que de forma

general usard en el franscurso de su obra.

Newton prosigue dando las tres famosas leyes del movimiento, sin embargo, la
Phoronomia no establece leyes generales al comienzo, sino que las tratard en el
contexto de cada una de las ramas en la que divide la mecdnica en su obra. A lo largo
del trabajo mostraremos de qué modo Hermann elabora lo que considera las leyes de

la estdtica y las del movimiento.

Los Principia constan de tres libros, los dos primeros puramente matemdticos sin
referencia a los fenémenos fisicos. En el primero estudia las fuerzas centrales y en
el segundo el movimiento en medios resistentes. El tercer libro aplica los resultados
anteriores al sistema del mundo. Newton desarrolla considerablemente el estudio del
movimiento y salvo alguna proposicion sobre el peso de fluidos no trata problemas

estdticos.

Entre 1687 y 1716 se van acumulando resultados y métodos diversos, de forma que
Hermann organiza su libro con las dos ramas de la mecdnica en proceso de
construccién en ese momento: la de los sdlidos y la de los fluidos. Ambas tratadas en
sus dos aspectos estdtico y mdvil. Da, pues, su visién global y sistemdtica de la

mecdnica del momento, lo que constituye ya un mérito de su obra.
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Para Hermann lo "simple” y “"elegante” tal como repite en miltiples lugares, equivale a
demostrar teoremas de alcance muy general para después, en los corolarios,

particularizarlos en casos que se relacionan con problemas prdcticos concretos.

Hasta aqui hemos presentado lo que el propio Hermann destaca de su obra, las
justificaciones que da de los métodos elegidos, lo que considera que son sus
aportaciones, sus objetivos y la organizacion de sus contenidos. En los siguientes
capitulos ilustraremos cémo desarrolla estos aspectos, tratando sus dimensiones
metodoldgicas y conceptuales en relacién con otros autores de su época. La discusién
en torno al uso del cdlculo infinitesimal y al estilo serd tratada en el apartado 6 de

esta monografia.

3 LOS CONCEPTOS BASICOS DE LA PHORONOMIA

Como la intencion de Hermann es hacer un manual de mecdnica, la Phoronomia
comienza definiendo los términos que se consideran de uso generalizad en la obra.
Asi, empieza con una serie de 25 nociones previas que titula De viribus et motibus
corporum praenotanda, en las que se definen los conceptos bdsicos que se usardn
profusamente en la obra: espacio y tiempo, velocidad, fuerza, masa, cuerpo sélido y
fluido. Aparte, a lo largo de la obra, introducird nuevos conceptos cada vez que los

necesite para los distintos apartados de la mecdnica.

Ya en sus definiciones previas veremos la particular mezcla que hace Hermann de las
concepciones mecdnicas mds influyentes en su época, las de Newton y Leibniz.
Asimismo, veremos cémo su definicién original de masa inaugura una tradicién
consistente con la “filosofia mecdnica” que se acerca a los actuales intentos por
definir el kilogramo patrdn a partir de elementos atémicos repetidos, y como su vacio

se define a partir de negar cualquier influencia mecdnica del mismo.
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3.1 MOVIMIENTO, ESPACIO Y TIEMPO

Define, como primer concepto, Movimiento absoluto (Motus), que es el cambio de
contigiiidad con respecto al Espacio absoluto infinito e inmévil, “... spatii infiniti et

immobilis...", siendo éste (ltimo objeto de la segunda definicidn.

En la definicion tres sefiala como evidente que los cambios de contigiiidad tienen que
realizarse en la progresién del Tiempo, que es definido en la definicién cuatro como:
"flujo regular” de un indivisible llamado Momento o instante (Momentum o instans).
Andlogamente a como, dice Hermann, los Gedmetras generan un linea por el
movimiento del punto, pero con la diferencia de que en el tiempo el movimiento de los

instantes es siempre regular.

"Porque, el cambio de contigiiidad no puede hacerse sin la progresién del tiempo, implica en efecto que

las diversas partes de uno y el mismo cuerpo son contiguas al mismo tiempo, esto es, existen en diversos

lugares; por esta razén todo movimiento implica el tiempo"*®

En el punto cinco explica que la "medida sensible” del tiempo en astronomia sélo da el
tiempo “aparente” o "medio” ya que no hay regularidad en el movimiento de los astros.
Habla de los relojes precisos desarrollados a partir de las teorias de Huygens, pero
que tampoco pueden considerarse medida perfecta del tiempo a causa de las

imperfecciones técnicas implicadas ineludiblemente en su construccion.

Las definiciones de Hermann de movimiento, espacio y tiempo absoluto coinciden con
las que Newton incluye en el escolio general que acompafiia las definiciones iniciales de
los Principia. Ambos conciben el espacio absoluto como el receptdculo absoluto e

independiente de las cosas. El tiempo para Hermann estd ligado al movimiento pero

“Quia, contiguitatis mutatio non nisi tractu temporis fieri potest, implicat enim ut unum idemque corpus simul et

eodem tempore diversis spatii partibus contiguum sit, id est, in diversis locis existat; ideo omnis motus tempus
involvit* Phoronomia p.1
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fluye regular e independientemente de los objetos que se mueven. Newton define el

tiempo absoluto sin asociarlo al movimiento.

El escolio general de los Principia distingue el espacio y tiempo absoluto del relativo.
Este dltimo es para Newton la medida sensible del absoluto. Hermann considera
suficiente definir las ideas absolutas, indicando, tal como hace Newton, la dificultad
de medir el tiempo absoluto por la irregularidad de los movimientos planetarios y por
la imperfeccién constructiva de los péndulos isécronos que habia desarrollado

Huygens.

3.2 VELOCIDAD

En el punto seis la Phoronomia define Celeridad o Velocidad®® (Celeritas vel
Velocitas), para un movimiento uniforme (uniformi), como el cociente entre la longitud

regularmente recorrida por el cuerpo y el tiempo que fluye siempre de forma regular.

Ni Galileo en su Discorsi de 1638 fundador de la “nueva ciencia del movimiento”, ni
Newton en los Princijpia dan una definicién explicita de velocidad. Galileo establece en
los axiomas iniciales de la Tercera Jornada®, las proporciones simples entre espacio,
velocidad y tiempo para un movimiento uniforme. Ambos autores se basan en el uso
geométrico de velocidad como segmento de longitud variable en la demostracion de

sus teoremas. Hermann no lo asocia a elementos geométricos en su definicion.

Hermann, por un lado, da la definicién explicita de velocidad como cociente en un
movimiento uniforme, que funciona como concepto general bdsico en su obra. Por otro
lado, Hermann no hace mencién de la inhomogeneidad de las magnitudes divididas,

problema que impedia en ocasiones avanzar hacia la conceptualizacion en mecdnica.

3%« §j fluens nostrum punctum, aut etiam corpus quodvis, uniformi passu incedit, perinde ac momentum
temporis uniformiter fluere intelligitur, tunc motus puncti vel corporis aequabilis vocatur. Et iter seu
longitudo, quae etiam spatium vocari solet motu corporis descriptum, ad tractum temporis a fluente
momento interea confectum, hoc est, ad tempus lationis applicatum seu divisum Celeritas vel Velocitas,
appellatur. “ Phoronomia. Praenotanda p. 3

* GALILEO G. 1988. pp. 34-35
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A partir de la obra de M. Blay La naissance de la mecanique analitigue®, sabemos que
Varignon habia definido la velocidad en un instante como cociente, en una sesién leida
en /Académie el 5 de julio de 1698, y que en otra memoria de 1707 escribe que no
son propiamente las maghitudes heterogéneas espacio y tiempo las que se comparan
en la definicion de velocidad, sino las magnitudes homogéneas que las representan. No
sabemos si Hermann conoce estas memorias de Varignon previas a su trabajo.
Podemos suponer que no, ya que Hermann, tal como iremos viendo, da referencias
continuas en su obra a autores relacionados con las materias o problemas que trata.
Por otro lado, tal como veremos en el apartado 5.1. (Las leyes generales del
movimiento y sus aplicaciones) de esta monografia, Hermann no define
“explicitamente” al “velocidad en un instante” como cociente dx:dt, aunque usa esta
relacién en sus otras variantes, es decir, cuando calcula el tiempo dt=vdx, o la
distancia recorrida dx = v:dt. Funciona en Hermann, tal como veremos en la dindmica,
como una extensién natural de su definicién para movimiento uniforme, en este caso
para un fragmento infinitesimal de espacio y de tiempo en el que cabe considerar que
el movimiento es uniforme. Asi es también en Newton, pero a diferencia de éste,

Hermann hace uso explicito de los simbolos algebraicos diferenciales de Leibniz.

En el andlisis de la dindmica contenida en la Phoronomia, trataremos la
conceptualizacion de las magnitudes instantdneas (velocidad, fuerza), y las
compararemos con las elaboradas por Varignon y estudiadas por M. Blay en el citado

texto.

3.3 SOLICITACIONES Y FUERZAS

A finales del siglo XVII Newton y Leibniz elaboran simultdneamente dos modelos
conceptuales de fuerza. Expondremos un resumen de cada uno de ellos para después

compararlos con el propuesto en la Phoronomia.

' BLAY M. 1992. pp. 152-159
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El modelo de Newton estd incluido en las definiciones y en las tres leyes que las
acompafian al comienzo de los Principia. Newton, tras la definiciéon de cantidad de
movimiento (mv), define las siguientes fuerzas: Vis insita (def. III) o Vis inertiae
como el poder de resistencia de los cuerpos que les hace perseverar en su estado de
reposo o movimiento. Se manifiesta cuando otra fuerza trata de alterar su estado, y
es proporcional a su masa. Vis impresa (def. IV): la accién ejercida sobre un cuerpo

para alterar su estado, y puede ser por impacto, presién o centripeta. Vis centripeta

(def. V): fuerzas dirigidas hacia un centro que apartan de la linea recta a los cuerpos
en movimiento. Esta dltima puede ser medida segln tres cantidades: la “"absoluta” que
depende de la eficacia de la fuerza en su propagacion (en el caso del peso depende de
la masa del cuerpo, pero en el caso de un imdn puede depender de la forma y

tamario)*?

, la "acelerativa” proporcional a la velocidad generada en un tiempo dado
(equivalente a la aceleracidn), y la "motriz” proporcional al movimiento (equivalente a
la cantidad de movimiento) generado en un tiempo dado (esta fuerza anticipa la
segunda ley). En la segunda ley declara que el cambio de movimiento es proporcional a

la fuerza motriz impresa.

Vemos que Newton define dos tipos fundamentales de fuerza, la interna o inercial del
cuerpo, y la impresa o externa, que puede ser de cualquier tipo: impacto (choques),

presion (continuamente aplicada) o centripeta (dirigida hacia un punto).

Sin embargo, como se ha hecho notar en varios estudios®®, Newton define la fuerza
impresa de dos formas: en la definicién la fuerza motriz se mide por el cambio de
movimiento en un tiempo dado [en notacién actual (ma)], y en la segunda ley como
cambio de movimiento [en notacion actual (Amv)]. La explicacién de los estudios
citados es que la segunda ley se refiere a fuerzas de impacto que ocurren en tiempos
muy pequeiios. De hecho, Newton trabaja con la segunda ley considerando la fuerza

en intervalos de tiempo iguales.

2 Ver p. 102 y 104 de la introduccion de I.B. Cohen a su edicién de los Principia NEWTON 1. 1687 b]
# HANKINS T. L. 1990. pp. 180-183.y WESTFALL R.S. 1971. pp. 436-438 y 432
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Podemos esquematizar el modelo de Newton del siguiente modo:
F. insita (inercial) — F.impacto
(Interna)

Fuerza ~ F. presién

F. impresa (puede ser)
(Externa) L F. centripeta

Veamos ahora el modelo leibniziano. Leibniz en su critica de las concepciones de
Descartes (Brevis erroris memorabilis Cartesii 1686), distingue entre “fuerza
Motriz" y "cantidad de movimiento”, declarando que la primera no puede medirse por
la segunda. Para Leibniz la cantidad conservada en la naturaleza no es la cartesiana
cantidad de movimiento (mv) sino la vis viva (mv®). La posterior discusién da lugar a la
conocida "controversia de las fuerzas vivas" que recorrerd el siglo XVIII, hasta que
aparezca la distincién entre fuerza y energia, conceptos que permanecian mezclados

en la controversia**.

Podemos tomar su Specimen Dynamicum®™ publicado en Acta Eruditorum en 1695
como la expresion madura de su ciencia dindmica. En ella Leibniz rechaza por
incompleta la concepcidn cartesiana de la naturaleza como extensién y movimiento.
Piensa que debe haber algo mds alld del tamafio y la velocidad que le dé al cuerpo
capacidad para actuar. Propone el concepto de fuerza como principio que caracteriza
la sustancia de las cosas. Leibniz elabora sus conceptos dindmicos en relacion con la
teoria de la sustancia de su sistema metafisico (escribe su Discourse on Metaphysics

en 1686), considerando que la extension no puede ser esencia de nada.

En la obra citada (Ibid. pp. 58-65) expone las distinciones que conviene hacer sobre
el concepto de fuerza. Distingue entre fuerza primitiva y derivada; la primera
caracteriza a la sustancia o esencia de los cuerpos, mientras que la segunda seria su

manifestacion fenoménica. Ambas fuerzas primitiva y derivada pueden ser a su vez

* Discutiremos la posicion de Hermann en esta controversia en el apartado 5.3 de este trabajo
* Traduccion castellana en LEIBNIZ G.W. 1991. pp. 55-99.
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activas o pasivas, segln den cuenta de los cambios de movimiento o de la inercia e

impenetrabilidad de los cuerpos.

Por (ltimo Leibniz divide la fuerza derivada activa en: viva (vis viva) “... es la fuerza
ordinaria, asociada al movimiento actual.” (Ibid. p. 64) y muerta (vis mortua) *... una
elemental,....., puesto que en ella ain no existe el movimiento sino tan sélo la
instigacién al mismo."” (Ibid. p. 63). Traslada a la dindmica la idea de diferencial de su
nueva matemdtica y considera la fuerza muerta o solicitacién como un elemento de
fuerza. Al igual que sus diferenciales, no considera, en este texto, a las solicitaciones
como realmente existentes sino como artificios matemdticos*. Sin embargo las
fuerzas tienen para él una realidad substancial. A continuacion ofrece como ejemplos

de fuerzas vivas la centrifuga y la centripeta o gravitatoria.

Podemos esquematizar las fuerzas en Leibniz del modo siguiente:

Fuerza viva
F. primitiva activa F. derivada |
. /' . -]
(Forma sustancial) activa

Fuerza Muerta =

Fuerza Solicitacion
F. primitiva pasiva . F. derivada pasiva (inercia e
(Substrato) g impenetrabilidad)

La terminologia, clasificacién y definiciones que hace Hermann de las fuerzas, estdn
claramente relacionadas con las correspondientes elaboradas por Leibniz, pero con
matices importantes.

Hermann define Fuerza motriz (Vis motrix), en el punto siete de las Praenotanda:

"Esto, que lleva al cuerpo al movimiento, o sea de lo que resulta el movimiento del cuerpo, esto es,

dispuesto lo cual se pone en movimiento el cuerpo, se llama Fuerza motriz, que puede dividirse en Viva'y

Muerta”. 4

* «“De aqui se deduce que es doble el esfuerzo, a saber, elemental o infinitamente pequefio, al que llamo
solicitacion, y el formado por la continuacion o repeticion de los esfuerzos elementales, esto es, el propio
impetu, aunque no quiera por ello que estos Entes Matematicos se encuentren exactamente asi en la
naturaleza, sino que sirven tan solo para hacer cuidadosas evaluaciones por abstraccion del pensamiento.”
(Ibid. p. 63)

7 “Id, quod corpus ad motum concitat, seu ex quo motus corporis resultat, id est quo posito ponitur motus
corporis, vocatur Vis motrix, quae dividi potest, in Vivam et Mortuam. “
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Notemos que la fuerza motriz no es la causa que hace "variar” el movimiento de los

cuerpos, sino sélo la causa que “inicia” su movimiento.

En las definiciones ocho y nueve define fuerza viva y muerta.

"La Vis viva es la que estd asociada con el movimiento activo. Asi se dice que un cuerpo, que en un tiempo

dado avanza una distancia dada, estd dotado de fuerza viva"*®

Notemos que la fuerza viva, se asocia al movimiento pero no a su variacién. Para
Hermann cualquier cuerpo en movimiento tiene Vis viva. Este punto de vista

corresponderia a nuestra “energia cinética”.

"La Vis Mortua sin embargo es, de la que ningln movimiento activo resulta, a no ser que estuviera
continuada o repetida durante algln tiempo en le cuerpo. Tal fuerza seria solamente el impulso Unico de
la gravedad no recibiendo ningln otro, y en efecto, el cuerpo sélo se pone en movimiento, después de
infinitos golpes de la gravedad indefinidamente repetidos o continuamente sucedidos unos a otfros. Asi
también el esfuerzo centrifugo originado en el movimiento circular, del mismo modo que el impulso de la

gravedad, proporciona un ejemplo de fuerza muerta."*

Concibe la fuerza muerta (Vis Mortua) como un impulso minimo y Unico que adn ho

provoca movimiento. El movimiento (o vis viva) surge de la repeticion continua de la

fuerza muerta. Ejemplos de fuerza muerta serian la gravitatoria y la centrifuga.

En la definicion diez declara que para simplificar llamard a la Fuerza Viva

simplemente Fuerza (V4), y a la muerta en general Solicitacién (Solicitationem). Llama

HERMANN 1J. 1716 Praenotanda p. 3 (Def. 7)

* “Vis viva est, quae cum motu actuali conjuncta est. Sic corpus, quod dato tempore datam lineam
transmittit, vi viva praeditum est.” (Ibid. Def. 8)

¥ “Vis mortua verd est, ex qua nullus motus actualis resultat, nisi aliquamdiu in corpore continuata vel
replicata fuerit. Talis vis foret unicus tantum gravitatis impulsus nullis aliis ei cuccedentibus, etenim non,
nisi post infinitos demum gravitatis ictus indefinenter replicatos seu unos aliis continue succedentes, motus
sensibilis gravi acquiritur. Sic etiam conatus centrifugi ex circulari motu oriundi, perinde ac gravitatis
impulsus, sistunt exemplum vis mortuae. ” (Ibid. Def. 9)
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a todas las fuerzas motrices Fuerzas Activas de los cuerpos, en contraposicion con

las fuerzas Pasivas (Vis passiva) que definird en el siguiente punto.

Define la Fuerza Pasiva como una resistencia de los cuerpos a cualquier fuerza

externa que intente cambiar su estado de movimiento o de reposo. (*... sed consistit
in Renixu iflo, gquo cuilibet vim externae mutationem status, id est motus vel quietis,

corporibus inducere conanti reluctatur."). Llama a la fuerza pasiva Fuerza de inercia

(Vis inertiae), declarando que esta denominacién procede de Kepler. Esta fuerza

equivale a la vis insita que hemos visto define Newton™.

Destaquemos que en esta definicion, Hermann asigna a la fuerza externa la capacidad
de cambiar el estatus de reposo o movimiento, mientras que en la definicién general
sélo tenian capacidad para modificar el reposo. Es claro, tal como veremos en el
desarrollo de la dindmica de la Phoronomia, que Hermann confiere a las fuerzas la
capacidad de cambiar el movimiento ademds del reposo, aunque su definicién al
comienzo de la obra mantiene una ambigiiedad deudora de las concepciones

leibnizianas.

Prosigue explicando que la fuerza de inercia estd en los cuerpos quietos y lo
argumenta a partir del impacto de un cuerpo movil A sobre otro en reposo B. Como B
se pone en movimiento disminuyendo el de A, significa que el cuerpo parado B tenia
alguna Fuerza Pasiva que era necesario vencer por la fuerza del que le impacta A, tal

como, dice, estd de acuerdo con los fendmenos.

Durante su argumentacion Hermann dice ".. A perderd algo de su fuerza y
movimiento (v/' et motu) y B ganara algo de fuerzay movimiento a partir de A." (ibid.)
Vemos que aqui hace equivalentes fuerza y variacién de movimiento ya que al perder o

ganar una también lo hace el otro.

%0 El grado de originalidad de Newton respecto de los predecesores que usaron esta denominacién (Kepler,
Descartes, Huygens) esta analizado por Cohen en su Introduccion a [NEWTON 1. 1687 b. pp. 96-101]
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Podemos esquematizar las distinciones ast:

. _ — Fuerza viva = Fuerza
Fuerza Activa = F. Motriz ——

— Fuerza Muerta = Solicitacién
Fuerza

Fuerza Pasiva = Fuerza de Inercia

Podemos caracterizar el concepto de fuerza en Hermann del modo siguiente:

e Causa de que un cuerpo cambie su estatus de reposo (o movimiento) (F.
motriz = F. activa).

e Es algo que tienen los cuerpos por el hecho de estar en movimiento (F. viva
= fuerza).

e Sila fuerza viva se da en un instante no causa adn movimiento (F. muerta =

solicitacién).

e Es algo que tienen los cuerpos en reposo (F. pasiva).

Para Hermann la fuerza tiene dos caracteristicas en la definicion general de la
Phoronomia. por un lado es causa del movimiento (fuerza motriz), y por otro, es algo
que tiene el propio movimiento (fuerza viva) o el cuerpo en reposo (fuerza de inercia).
Es curioso notar que Hermnan, tal como hace Leibniz, cuado usa en los choques la vis
viva le da otro nombre “fuerza absoluta” (ver apartado 5.3), ditincién verbal que no

llega a la disociacién conceptual.

De Leibniz conserva: la distincién de entre fuerza instantdnea y continuamente
aplicada comin en la época, y la idea de fuerza como algo inscrito (substancial) en los
cuerpos, que a su vez influiria en el encuentro con otros cuerpos. Sin embargo,
Hermann, como hacen otros leibnizianos como Johann Bernoulli o Varignon, abandona

la distincion entre fuerzas primarias y derivadas, ndcleo de la metafisica de Leibniz.
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Tal como dice Harman, usar el concepto de vis viva no supone seguir las concepciones

metafisicas de Leibniz.>!

Hermann, de hecho, usard profusamente el término “solicitacién” para referirse a las
fuerzas en la Phoronomia (en la estdtica identificard “solicitacion” con “potencia”
para “seguir a los antiguos”, nos dird). Considerard solicitaciones continuamente
aplicadas y asi serdn también fuerzas vivas o simplemente fuerzas. De este modo, en
la prdctica, se van difuminando las distinciones leibnizianas y newtonianas de fuerza
como causa de variaciéon del movimiento- Aunque Hermann, con Leibniz, mantiene una
segunda acepcidn en la que un cuerpo tiene "fuerza viva" por el solo hecho de estar en
movimiento. Esta ambigiiedad y su discusién durante todo el s. XVIIT dard lugar a los

conceptos separados de fuerzay energia cinética.

En su acepcién de solicitatio sigue a Leibniz, quien en 1693 en Le Journal de Savants

da la siguiente explicacién:

"J'appelle sollicitations les efforts infiniment petits ou conatus, par lesquels le
mobile est sollicité ou invité, pour ainsi dire, au mouvement, comme est par exemple
l'action de la pesanteur, ou de la tendance centrifuge, dont il en faut une infinité

pour composer le mouvement ordinaire ... “%?

Pero Hermann, al igual que Newton y Leibniz, mantiene una fuerza pasiva o inercial,
que los tres autores asignan al cuerpo en si, y que se mostrard indtil cuando se vea la

ley de inercia (primera de Newton) como un caso especial de la segunda.

Notemos también que Hermann no hace distincién entre fuerzas por contacto
(choques) y a distancia (gravedad), siguiendo en este caso el modelo newtoniano. Esta

distincion dard lugar a un debate importante sobre el estatuto de “fuerza”, ya que no

13

! Tal como dice F.M. Harman .., but the acceptance and use of the vis viva concept by eighteenth
scientists did not entail a commitment to Leibniz’s natural philosophy.” [. HARMAN F.M 1993 p.2]

52 Aparece en la monografia titulada “Deux problémes construits par G.W. Leibniz en employant sa régle
générale de la composition des mouvements” citado en n. 130 de [BLAY M. 1992 p. 145]
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cabe, dentro de la filosofia mecdnico- corpuscular de la época, la accién sin contacto.
Hermann no enfra en reflexiones sobre fuerzas a distancia en la Phoronomia.
Recordemos que tanto Leibniz como Huygens critican el cardcter “oculto” de la
fuerza gravitatoria, reelaborando distintas teorias de vértices. Sin embargo,
Hermann como Varignon mantienen “a species of agnosticism about underlying

physical causes "

posicion del propio Newton cuando insiste en el cardcter
matemdtico de su obra, que le lleva a declarar en el famoso scolio a la tercera edicién

de los Principia. " hypotheses non fingo".

Por ejemplo, cuando Hermann establece la continuidad entre los métodos y los
conceptos que le permitdn estudiar el movimiento en medios resistentes [Phoronomia
p. 281 ; n°® 484], asimildndolos a los que establecié para solicitaciones centrales, trata
con fuerzas que provienen de la composicién de las gravitatorias y de las de colisidn,

considerdndolas de la misma forma.

Serdn necesarios debates y polémicas como la de las fuerzas vivas, para que a lo
largo del siglo XVIII se separaren las dos caracteristicas citadas de la fuerza en

sendos conceptos de “fuerza” y “energia cinética”.

Las praenotanda contindan con lo que Hermann llama una Ley de la Naturaleza basada
en la Fuerza de inercia de la materia: para cualquier accién hay una reaccién igual y
contraria ("In hac Vi inertiae materiae fundata est Naturae Lex, qua cuilibet actioni
aegualis et contraria est reactio.” Praenotanda. Def. 12)). Esta ley, dice, se deduce
de considerar la resistencia que tiene cada cuerpo en la accién mutua, y se basa en el
principio de correspondencia entre causa y efecto®. Ahora identificamos esta ley

como la tercera de Newton, pero durante el siglo XVIII, las fres leyes que figuran en

>3 Para una discusion de las posiciones después de la publicacion de los Principia ver [GRAY J. (ed.)
1987]

> Leibniz establece su “ley de causalidad” como ley de la naturaleza, en su texto de respuesta a Catelan
(Nouvelles de la république des lettres, 1687, 9, 131-144). Traducido en LEIBNIZ G.W. 1991 p.
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el comienzo de los Principia, se consideran leyes naturales ya conocidas, tal como

manifiesta el propio Newton™.

A continuacion, Hermann, establece el cardcter aditivo de las fuerzas, de modo que
"la fuerza de cualquier cuerpo es la que resulta de todas las fuerzas parciales, de las
que gozan cada uno de sus elementos o particulas minimas del cuerpo.” Y si estas son

de la misma direcciéon y sentido (conspirantes) la fuerza total serd su suma.

Los dltimos apartados de las praenotanda establecen el cardcter direccional de las
fuerzas y del movimiento, definiendo direccion (Directio), igual sentido
(conspirantes), sentido opuesto (contrarii). "Directio de cualquier fuerza motriz es la
linea hacia la que la fuerza empuja al cuerpo, y es esa recta, producida por esa fuerza
la que el movil describe en su movimiento o bien al menos intenta describir.”
(Praenotanda. Def. 21). “Vires et Motus conspirantes son, aquellos en que sus
direcciones concuerdan, o son paralelas, y fienden hacia las mismas partes.”
(Praenotanda. Def. 22). “Vires et motus Contrarii esto es, directamente opuestos,
son aquellas que concuerda, o son paralelas, pero que estdn vueltas hacia partes

opuestas." (Praenotanda. Def. 22)

3.4 MATERIA Y VACIiO

Después de tratar los tipos de fuerzas, la Phoronomia prosigue definiendo en el punto
catorce la Cantidad de materia o Masa (Quantitas materiae, Massam), como el

agregado de particulas del cuerpo a las que llama Elementos (E/ementa).

La definicion que hace Hermann de masa estd dentro de la llamada “filosofia

mecdnica” de la naturaleza que durante el siglo XVII se habia ido estableciendo por

parte de los “nuevos fildsofos"®.

> “Hitherto I have laid down such principles as have been received by mathematicians, and are confirmed

by abundance of experiment”. NEWTON 1. 1687 b. p. 150]
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Estos luchan por eliminar las cualidades ocultas de los aristotélicos y establecer las
causas eficientes que provocan los fenémenos. Combinaban el método experimental
con la filosofia natural mecdnico-matemdtica. Descartes, importante promotor de
estas nuevas ideas, concibe la naturaleza como un mecanismo de relojeria que tiene
sus propias leyes de funcionamiento. Los mecanismos tienen que ver con los
elementos o particulas que constituyen la materia, sean estos los dtomos en el vacio
de Gassendi o Boyle, o el plenum de particulas de Descartes. La discusion se

establece entonces, en como concebir esos elementos y sus mecanismos asociados.

Hermann es un seguidor entusiasta del modelo mecdnico-corpuscular de la "nueva
filosofia" ya ampliamente consensuada en 1716. En noviembre de 1707 escribe una
carta a Johann Scheuchzer® donde le explica que a su llegada a Padua ha escuchado
conferencias publicas de varios oradores; algunos profesando la filosofia escoldstica,
que opone a la de los Modernis. Confiesa que sus bdrbaras distinciones le producen

dolor de estémago.

La definicién de masa se completa aclarando que la posible materia contenida entre

los poros no cuenta:

“la materia fluida que puede estar oculta en los intersticios de los cuerpos no pertenece a su masa, del

mismo modo que el agua contenida en los poros de las esponjas no pertenece a su masa."®

Concibe la materia formada por elementos Ultimos iguales, pero en el caso en que
hubiera que considerar algin fluido entre ellos (el éter cartesiano por ejemplo), éste
no contribuiria a la masa. Por el momento se deja en suspenso la decisién sobre la

existencia del vacio.

> [IDIJKSTERJHUIS E.J. 1961]

°7 Carta traducida en MAZZONE S. y ROERO C.S. 1997. p. 39

¥ “Idcirco materia fluida, quae in corporum meatibus latere potest, ad corporis substantiam pertinere non
censetur, perinde ac aqua in spongiae poris delitescens ad spongiae substantiam non refertur.” Phoronomia

p4
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La primera definicion de los Principia se refiere a la cantidad de materia que también
llama masa o cuerpo, como el producto de la densidad por el volumen. Hermann, sin
embargo, fundamenta su definicion en los elementos mds pequefios de masa, las

particulas, que para poder ser agregadas tienen que considerarse iguales.

E. Mach® sefialé que la definicién de Newton es circular ya que la densidad se define
a su vez como masa entre volumen, en el corol. IV de la prop. VI del libro III de los
Principia. En ese mismo corolario, Newton hace una aclaracion parcial, que indica que

estd pensando la masa como agregado de particulas y defiende la existencia del vacio.

"Si todas las particulas sélidas de todo cuerpo son de la misma densidad y no pueden enrarecerse a ho
ser por sus poros, hay que aceptar un espacio o vacio. Al decir cuerpos de la misma densidad me refiero

a aquellos cuyas inercias son proporcionales a sus volimenes".

Thomas L. Hankins en su obra sobre D'Alembert® afirma que: "Hermann took density
for the fundamental notion." De este modo emparenta la definicién de Hermann con
la de Newton. Sin embargo, en la Phoronomia se definen, primero la cantidad de
materia tal como se ha indicado, después el volumen en la definicién quince, como el
espacio que ocupa la materia con sus poros, y en la siguiente definicién la Densidad

(Densitas) del siguiente modo:

“Densitas, es la razén que hay entre la cantidad de materia en cualquier cuerpo con el volumen del

mismo."!

La definicidn prosigue explicando que si variamos la amplitud de los poros en un mismo

cuerpo su densidad cambia.

*IMACH E. 1949]
S HANKINS T. L. 1990 p. 163
o “Densitas, quae est ratio quam materiae quantitas in quolibet corpore habet ad corporis Volumen.” Phoronomia p.5
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Sin embargo, tanto la critica de circularidad de Mach de la que se hace eco Hankins,
como la opionién de éste dltimo en cuanto a que Newton toma la densidad por
fundamental, son rebatidas en el andlisis detallado que hace I. Bernard Cohen en la
introduccién a su edicién de los Principia®’. Cohen muestra el anacronismo implicito en
las anteriores consideraciones. La definicién de masa contenida en los Princijpia como
“orta ex illius densitate et magnitudine conjunctim”no es una definicion al uso como
las que le siguen en los Principia, ya que éstas comienzan por la particula “es": p. ej. la
cantidad acelerativa de la fuerza centripeta es ..., o un fluido es... Sin embargo el uso
del verbo deponente oriri indica “surge” o “resulta de" la densidad y el tamafio. Por
otro lado, Newton no define densidad, lo que indicaria su consideracién como

magnitud primaria.

"In the Principia, Newton does not in general determine masses by finding densities and volumen, but by

diynamical (inertial and gravitational) considerations.” [Ibidem p.91]

Siguiendo el fexto citado de T. L. Hankins, encontramos definiciones de masa
similares a la que figura en la Phoronomia, en la Mechanica de Euler (1736), que es el

siguiente texto importante de mecdnica editado tras el de Hermann:

"It is necessary to consider the number of points [punctorum] which the body being moved contains and

the mass of the body ought to be considered proportional to this number."®®

Asi mismo, en el texto de Laplace Exposition du systéme du monde: * The mass of a

body is the sum of its material points"®*

Tal como afirma Hankins (Ibid.): "si toda la materia se concibe como uniforme y
homogénea, y las diferencias de densidad proceden sélo de los espacios vacios
incluidos en sus volimenes, la definicion de masa aparece como simple, casi obvia."

Este es el procedimiento que se encuentra a partir de Hermann y que se prolonga

52 4 guide to Newton’s Principia NEWTON 1. 1687 b p. 85]
5 Buleri opera omnia, ser. 2, I, 51. Traducido por Hankins Ibid.
64 P. S. Laplace Exposition du systéme du monde. 5* ed. (Paris 1824) p. 158. Traducido por Hankins. Ibid.
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hasta la actualidad. Cita Hankins (ibid. Nota 3 p. 164), un articulo de Scientific
American donde se discute cémo el U.S. Natinal Bureau of Standards en 1968,
propone la construccién de un prototipo de masa como una estructura que contenga
un nimero concreto de una clase de dtomos. Digamos por nuestra parte que éste es
uno de los 2 proyectos actualmente en estudio para sustituir el artefacto que

representa el kg®°.

Después de definir la densidad a partir de la masa y el volumen, Hermann define la
Raridad (Raritas) como el inverso de la densidad. Este concepto le serd Gtil para el
estudio de la creacién de “rarefaccion” mediante las mdquinas neumdticas, que

tratard en la primera seccion del Libro IT.

Tras estas definiciones obtiene las relaciones mutuas que podemos deducir hoy a

partir de la definicién de densidad D = M: V.

La lista de nociones previas acaba con las definiciones de cuerpo sélido y de fluido.
En los sdlidos existe una cohesion tal entre sus elementos, que sélo se mueven si lo
hacen todas sus partes. Aclara que el fenémeno, observado por Cassini, del cambio de
tamafio de los metales por efecto de la temperatura no contradice en su definicion;
sélo implica que la cohesion de los cuerpos no es perfecta. En los fluidos las
particulas tfambién tienen ligadura en alguna medida, pero ésta no les impide un
movimiento interno independiente del externo. La conepcion microscépica contenida
en la Phoronomia se completa al comenzar el libro II relativo a los fluidos. Alli
comenta que no investigard las mdltiples formas y tamafios que pueden adoptar las
particulas o moléculas que forman los cuerpos sino su movimiento no condicionado por

sus distintas formas [Phoronomia. n°239] .

% In one type of experiment, the number of atoms in a weighed quantity of matter is determined (Avogadro
project, ion accumulation), thus establishing a relationship between the kilogram and an atomic mass. A
second class of electro-mechanical experiments (watt balance, magnetic levitation) links the kilogram to the
Planck constant 4.

Bureau International des Poids et Mesures [ http://www.bipm.fr/en/scientific/elec/watt balance/ |

Ver también: http://www.nist.gov/public_affairs/newsfromnist_beyond the kilogram.htm [National Institute
of Standards and technology]
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El vacio se define explicitamente en la primera definicion del cap. I de la secc. IT del

primer libro dedicada a exponer la dindmica de cuerpos sélidos.

"Designamos vacio a todo medi, que los cuerpos pueden atravesar libremente sin impedimento ni ayuda,

." [Phoronomia. p. 51 n° 1141%

La posibilidad de que en lugar de vacuum pudiera haber algln tipo de fluido sutil al
modo cartesiano es criticada por Hermann, tal como veremos en el capitulo 4.4.2
sobre "La elasticidad del aire”. Alli mostraremos cémo las propiedades conocidas de
los fluidos llevan a Hermann a contradecir la teoria de A. Parent, seguin la cual el

movimiento del éter provoca la elasticidad del aire.

Por otro lado hemos citado en este mismo capitulo como Hermann define la masa a
partir de los corplsculos eliminando cualquier contribucién de materia entre sus
poros. La posicién de Hermann es clara en la Phoronomia; por un lado define el vacio
explicitamente, y por otro niega los posibles usos del éter como explicacién de

propiedades mecdnicas.

3.5 RELACION MASA-PESO

La Phoronomia se abre con un pequeiio capitulo dedicado a demostrar Ila
proporcionalidad entre masa y peso. Hermann declara que esta propiedad ha sido
considerada de gran importancia por Filésofos y Geémetras, y ha sido demostrada
por Newton a partir de cuidadosos experimentos con péndulos (corol. I de la prop.
XXIV L. IT de los Principia), y por Huygens a partir de leyes del movimiento
(Diatribae De Caussa Gravitatis). Hermann intentard también su demostracion

admitiendo como hipétesis que la gravedad es uniforme.

66 . . . . . ..
“Per vacuum designatur omne medium, quod corpora absque impemento aut adjumento libere trajicere
possunt, ...”
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"Permaneciendo igual la cantidad de materia y siendo las direcciones de la gravedad paralelas, o sea

convergentes hacia un Centro infinitamente alejado, los pesos de los cuerpos ho cambian, cuando varia su

forma y su posicién respecto del horizonte." [ Phoronomia. p. 7 (n°27)]

Teniendo en cuenta esta hipétesis, demuestra por reduccién al absurdo un lema: “La
gravedad, sea cual sea su causa, no sélo actia en las partes externas del cuerpo sino
también en las internas." [Phoronomia. p. 7 (n°28)]. Y un corolario que afirma que
todos los elementos iguales de los cuerpos reciben iguales impulsos de la gravedad

(pesan lo mismo).

Tras lo que demuestra el primer teorema de su obra: "El peso de los cuerpos es
proporcional a su cantidad de materia o masa" [Phoronomia. p. 7 (n°30)]. Llama C,c a
los cuerpos; N, n al nimero de sus elementos; M, m a sus masas; a cada elemento, e;
al peso de cada elemento, i; pC y pc son los pesos de los cuerpos. Demuestra el
teorema haciendo proporciones que relacionan el cuerpo con el agregado de
elementos:

pC_Ni_Ne M

pc ni ne m

En consonancia con su definicion de masa, considera que todo cuerpo estd compuesto
de elementos iguales del mismo peso, y deduce légicamente que el peso de N

elementos es proporcional a su masa, si la gravedad es uniforme.

En los corolarios siguientes define, en forma de igualdad y no de proporcion, varios

conceptos derivados, que corresponden a magnitudes intensivas®’:

Solicitacidon de la gravedad (G) que recibe cada elemento: “solicitationem gua unum

corporis elementum urgetur” la define como la que recibe cada elemento del cuerpo.

67 Se 1laman magnitudes intensivas, por oposicion a las extensivas, a la que se definen por unidad de espacio,
superficie o volumen. Serian intensivas la densidad y la intensidad luminos por ejemplo.
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Le sirve para expresar el "peso absoluto” del cuerpo pC como producto de sumasa Cy
6. (pC = C.6). G equivale al peso por unidad de masa (para hosotros seria g, intensidad

de la fuerza gravitatoria).
También expresa pC = 6.D.V ya que M (masa) es D.V (densidad por volumen).
En sus definiciones, Hermann usa como simbolo de masa indistintamente M o

simplemente el que representa al cuerpo C, en coherencia con su definicién de masa.

Gravedad especifica (S): equivalente a nuestro peso especifico o masa por unidad de

volumen. (5=D.6, siendo D la densidad).

Hermann indica en el escolio final que demostrard a partir de las leyes del
movimiento de graves la proporcionalidad masa-peso, al igual que hizo Newton a
partir de la dindmica de péndulos. Comentaremos su demostracién en el apartado “Los

pesos y las masas sonh proporcionales” del capitulo 5 de este trabajo.

4 DESDE LA ESTATICA DE LOS SOLIDOS A LA DE LOS FLUIDOS:
LA ORGANIZACION DE LA ESTATICA

La Phoronomia contiene una exposicién sistemdtica de la Estdtica, que se reconoce
como uno de los campos en los que se divide la entonces naciente ciencia de la

Mecdnica. Veamos en qué sentido es una elaboracién original.

Podemos hablar de confeccién moderna de la estdtica a partir de la obra de Simon
Stevin. Su Estdtica The elements of the art of weighing, y su anexo The elements of
hydrostatics, aparece primero en flamenco en 1586 aunque es a partir de su
traduccion al francés en 1634 que se difunde por toda Europa. Es una referencia
importante en la elaboracién de la ciencia mecdnica durante el siglo XVII, ya que en

ella, Stevin elabora de forma axiomdtico-geométrica a la manera de Euclides e
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inspirandose en Arquimedes, cuestiones no sélo relativas al equilibrio de cuerpos
sélidos ejemplificados en las mdquinas simples, y a la descomposicion de fuerzas, sino
que también detalla y amplia la hidrostdtica arquimediana®®. Muestra cémo la presién
en un liquido sobre una superficie depende de la altura del liquido y del drea de la

superficie independientemente de la forma del recipiente.

La segunda referencia importante en relacién a la elaboracion de la estdtica, en este
caso de fluidos, es la obra de Pascal. La expresion mds acabada de sus principios se
encuentre en sus dos Traites de [Equilibre des Ligueurs et de la Pesenteur de Ja

Masse de |'Air publicados péstumamente en 1663

Durante el s. XVII diversos autores tratan problemas estdticos: asi Galileo estudia la
forma de una viga sujeta por uno de sus extremos y cargada en el ofro con un peso, o
la forma de una “cadeneta” sujeta por sus extremos, a la que atribuye erréneamente

la forma parabdlica.

Wallis escribe su Mechanica, sive de motu tractatus gometricus en 16697°. En el cap.
IIT (De /ibra) de la primera parte [Ibid. pp. 570-642] estudia el equilibrio de
sistemas discretos de fuerzas, en la segunda parte [Ibid. pp. 645-938] estudia el
cdlculo de centros de gravedad, y en la tercera la hidrostdtica [Ibid. pp. 1032-1055].
Constituye pues el tratado mds completo de estdtica anterior a la Phoronomia. Wallis
recoge los resultados de Stevin y Pascal, extendiéndolos al estudio de figuras de

revolucién (como la recién descubierta cicloide) usando los indivisibles de Cavalieri’’.

Se resuelven en esa época algunos problemas singulares estdticos usando el nuevo

cdlculo infinitesimal, como los de las curvas catenaria, velaria y lintearia, planteados

% Ver [DUGAS R. 1954 pp. 54-60]y [DIJKSTERJHUIS E.J. 1970. cap. III-1V]
% Ibid. pp. 203-241

ITWALLIS JOHN 1972; Vol. I; pp. 570-1073]

""[MAIERU L. 2001; pp. 246-256]
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como retos por Leibniz y por los hermanos Bernoulli’®. Sin embargo los Principia
fundan la nueva ciencia de la dindmica pero trata los problemas estdticos de forma

anecddtica.

En este contexto aparece la exposicion de la Estdtica contenida en la Phoronomia.
Hermann procede a una reorganizacién de los resultados conocidos, completdndolos
con sus propias aportaciones y demostraciones, que utilizan el cdlculo diferencial e
integral. El planteamiento general de Hermann es fundar la estdtica de los fluidos
sobre resultados mds bdsicos referidos a estdtica de sdlidos estableciendo una

continuidad metodoldgica y conceptual. En sus palabras:

"Ciertamente, ademds de que tales principios [de Pascal y otros] son indirectos, estos con o sin
dificultad y mediante largos detalles parece que puede aplicarse a los fluidos heterogéneos en la
universalidad, con la que hemos deducido en las precedentes proposiciones directamente a partir de sus
principios inmediatamente precedentes; preferi insistir en los fundamentos y métodos aplicados sobre
las potencias en cada punto de cualquier cuerpo, que expuse en el primer libro, ya que suministra un
modo elegante de reducir las presiones de los fluidos heterogéneos a las presiones equivalentes de

fluidos homogéneos.."”

Hermann organiza la Estdtica del modo siguiente:

o Estdtica de sélidos rigidos general, de la que extrae resultados para el caso

de cuerpos sumergidos total o parcialmente en fluidos heterogéneos y
homogéneos.

e Estdtica de lineas flexibles general, de la que se obtienen entre otros los

casos particulares de las curvas catenaria, lintearia y velaria, tratados asi

mismo en la estatica de fluidos.

72 En el capitulo 4.2 relativo a la estatica flexible se dan mas detalles. Ver RADELET-DE GRAVE P. 1998
pp- 469-470 sobre el planteamiento de estos problemas y su resolucion.

3 “Verum, praeterquam quod talia principia indirecta sunt, ea vix ac ne vix quidem absque lingis ambigibus,
fluidis heterogenesis appilicari posse videntur in ea universalitate, in qua praecedentes propositiones ex
principiis suis proximis directe deduximus; malui methodo et fundamentis circa potentias singulis punctis,
cujusque orporis applicatis, quae in primo libro exposuimos, insistere, utpote quae modum non inelegantem
subministrarunt  pressiones fluidorum heterogeneorum ad aequivalentes pressiones fluidorum

homogeneorum reducendi.” [Phoronomia. p. 157 (n° 297)]
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e Hidrostdtica general en la que establece las leyes bdsicas para fluidos
heterogéneos, y se prolonga con el estudio de la resistencia de tubos llenos de
fluido.

e Estudio de la presién del aire.

Trataremos a continuacién separadamente cada una, destacando sus caracteristicas.

4.1 ESTATICA DE CUERPOS RIGIDOS

La estdtica rigida utiliza un procedimiento que podriamos denominar “progresivo”,
consistente en extender los resultados bdsicos para casos sencillos hasta llegar a los
mds complejos. Esto contrasta, tal como mostraremos, con el tratamiento deductivo
de la estdtica flexible y de la dindmica. Las leyes estdticas requieren saber como
"sumar” fuerzas en casos progresivamente mds complejos, y éste serd el objetivo de

Hermann.

Muchos problemas en fluidos se refieren al cdlculo de la fuerza total a la que estd
sometido un cuerpo completa o parcialmente sumergido (ver cap. III del libro IT de
la Phoronomia). Esto supone el estudio de sistemas “continuos” de fuerzas para
conocer el estado de equilibrio del cuerpo y deducir su posible movimiento. El
objetivo de la estdtica rigida en la Phoronomia es, pues, obtener un procedimiento
que permita calcular la fuerza resultante sobre un cuerpo sometido a fuerzas en
todos sus puntos. Es decir, Hermann construye una estdtica de "medios continuos”
que partiendo del estudio de cuerpos sometidos a sistemas discretos de fuerzas de
formas diversas, se extiende a sistemas continuos de fuerzas sobre un objeto

extenso tridimensional.
La estrategia general se basard en plantear situaciones de equilibrio usando la

igualdad de momentos, fanto para calcular resultantes de fuerzas como para

encontrar centros de gravedad. Estrategia que desarrolla en tres direcciones:
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Extendiendo la aplicacion de fuerzas sobre una la linea recta hasta lineas
curvas cualesquiera.

Ampliando las dimensiones de estudio hasta llegar a tres.

Pasando de sistemas de fuerzas discretos a continuos. Paso que requiere el
uso del cdlculo diferencial e integral. El estilo geométrico preponderante dara

lugar en ocasiones al algebraico.

El capitulo IT del libro I estd dedicado por

completo a exponer la estdtica de cuerpos
rigidos. Comienza con las definiciones que
caracterizan a las fuerzas como lo que en
lenguaje moderno llamamos vectores y da el /
concepto de fuerzas equipolentes o de igual

potencia. La Fig. 2 nos da una idea del tipo de

= 5
Fig. 2 Ilustracién n° 1de la
Phoronomia

ilustraciones que acompatian las explicaciones de Hermann:

u74

Las “fuerzas”, “solicitaciones” o “potencias”’® son del género cuantitativo, y

por tanto pueden representarse por lineas rectas con dos letras, cuyo orden

indica su direccion y cuya longitud es proporcional a su valor.

Si varias fuerzas estdn en equilibrio, las que estdn a un lado del cuerpo se dice
que son “equipolentes” (aeguipollere) a las que caen del otro lado. De este
modo define la fuerza equilibrante o resultante de un conjunto.

La prolongacion de la fuerza equipolente de un conjunto se llama “direccién
media” o “eje de equilibrio” del conjunto. Y al punto donde se aplica la fuerza

equipolente se le llama fulcro (Aypomoc/ium) o “centro de equilibrio”.

Comienza considerando como axioma que la resultante de fuerzas paralelas es como

la suma o la diferencia seglin tengan el mismo sentido (conspirantibus) o no. Para

fuerzas no paralelas demuestra como teorema lo que en lenguaje actual llamamos

™ Ver para una discusion de la terminologia aplicada al concepto de fuerza ver el apartado 3.3 de este

trabajo.
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regla del paralelogramo’®. La demostracién se basa en considerar movimientos en un

tiempo muy pequefio (virtuale)’®, tal como hace Newton en los Principia.”’.

En la proposicién IV (ver Fig. 3)"®, Hermann muestra cémo calcular el Centro de
4+
r | |
o B |
=

Utiliza la igualdad de momentos == ‘ o ) "_'! . 1
E C

Gravedad E (c. de g. en adelante)

de un conjunto de masas (A,B,Cy
D) respecto de dos lineas rectas

perpendiculares (PQ, y ad).

A r—‘”’—]n

(producto de la magnitud por la
L |
distancia a una referencia comin) B B Q
de larga tradicién arquimediana. _
Fig. 3
El c. de g. seria el punto cuyo
"momento” equivale a la suma de "momentos” de todas las masas. Encuentra el c. de g.

como resultado de resolver un problema de equilibrio.

Hermann traslada el resultado del lema que sirve para calcular c. de g. en el caso
discreto, al caso continuo engendrado por revolucién de una magnitud cualquiera

sobre un eje. Es el llamado teorema de Guldin”®, que Hermann demuestra como

escolio T del lema anterior:

"La figura formada por el giro de una magnitud alrededor de un eje dado, es igual al producto de la

magnitud generatriz por la circunferencia que tiene por radio la distancia desde el centro de gravedad

de la magnitud al eje."®

7 La resultante de dos fuerzas no paralelas es la diagonal del paralelogramo formado con ellas. Ver la
historia de sus demostraciones en [[INDORATO L. NASTASI P. 1991]

76 usa el término leibniziano conatus para referirse a un movimiento infinitesimal)

77 Principia L. 1 corol. I y II de las leyes del movimiento. [NEWTON 1. 1687 b pp. 417-420]

8 Cuando utilicemos ilustraciones incluidas en la Phoronomia, superpondremos a las letras dificilmente
legibles del original, sus equivalentes.

" Hoy conocemos este teorema como “teorema de Pappus Gulin”. Fue formulado por P. Guldin en su
Centrobarica (1635-1641a, vol. 2, 147). Se encuentra también en el libro VII de las Colecciones de Pappus.
[I. Grattan-G. 1984. p. 66]

%0 “Figuram ex conversione cujuslibet magnitudinis circa aliquam rectam positione datam oriundam, aequari

facto ex Magnitudine generatrice in viam centri ejus gravitatis.” [Phoronomia. p. 15 (n°47)]
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Vamos a ver como Hermann aplica de forma simple el dlgebra diferencial e integral al
comienzo de su obra, haciendo las deducciones en un lenguaje completamente actual,
sin referencia a figuras geométricas. El problema es tratado de modo general, ya que

considera una magnitud generatriz cualquiera.

Con sus propias palabras y simbolos (ver

fig. 4): sea F la magnitud que gira (puede )

ser masa, superficie, etc.), S la figura F /

formada por revolucién cuyo elemento es /c.de g [dx—

dS, D la distancia desde el c. de g. hasta el / F

un elemento de eje x. El momento de cada Fig. 4. [ILlustracién del
teorema de Guldin.

Y

eje, y la ordenada al eje de giro (es la

coordenada horizontal para nosotros), dx

elemento de F es su valor ydx por la

distancia de su c. de g. al eje (3 y), es decir:  yydx.

Segun el lema demostrado para encontrar c. de g., el producto de la magnitud F por la
distancia desde su c. de g. hasta el eje, es igual a la suma de todos los momentos
elementales anteriores. Es decir tenemos: D.F = [3yydx. Multiplicado por p, que

Hermann define como la circunferencia de radio uno, queda  pD.F = [p3yydx.

Como, dice Hermann, pD es la circunferencia de radio D y py la circunferencia de
radio y, (pzyydx) es un elemento de la magnitud engendrada por revolucién (= dS), y

por tanto: pD.F = [pzyydx=JdS=S.  QED.

Finalmente, Hermann explica que en la relacion de momentos obtenida para calcular el
c. de g., se puede usar indistintamente la masa o el peso ya que son proporcionales en
gravedad uniforme. Aclara que en el caso de gravedad no uniforme, cada peso se

sustituye por el producto de la masa por la gravedad especifica correspondiente.
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Como veremos a continuacion, el teorema del c. de g. le permitird a Hermann obtener

la resultante de sistemas de fuerzas progresivamente mds complejos.

La proposicién V demuestra

un teorema que, dice
Hermann, Leibniz  habia

comunicado por carta® a

Wallis sin demostrar. Este

teorema (ver fig. 5) nos

indica cémo calcular la

resultante en valor vy

direccién de un conjunto de
fuerzas concurrentes

aplicadas sobre un punto P:

"Las solicitaciones PA, PB, PC, PD etc. aplicadas sobre el mismo mévil P tienen por direccién media PE,
recta que une el centro de gravedad del mévil P y el centro de gravedad E de todos los puntos A, B, C,

D, efc. en que terminan las rectas que representan las solicitaciones; y la solicitacion resultante de

todas serd un mdltiplo de la recta PE, segtin el ndmero de solicitaciones"”

Ahora, el c. de g. (E) de los extremos de las fuerzas dard la direccion de la
resultante (PE). El valor de la resultante serd el mdltiplo de la distancia al c. de g.
segun el nimero de fuerzas presentes N, que en este caso seria 4.

F, = PE-N

81 La referencia que da Hermann es:[Tomo III. Oper. Wallisii fol. 687]. Ver la carta de Leibniz a Wallis de
28 sept. 1697 en [JOHN WALLIS 1972. pp. 685-687]

82 «Solicitationum quarumlibet PA, PB, PC, PD, etc. eidem mobili P impressorum media directio PE est
recta jungens centrum gravitatis mobilis P et centrum gravitatis E omnium punctorum A, B, C, D et c.
quibusrectae solicitatiomum representatrices terminantur; et solicitatio ex omnibus corpori impressis
resultans expni debet multiplo rectae PE, secundum punctorum seu solicitationem impressorum numerum.”
[Phoronomia. p. 16 (n° 53)]
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La estrategia de Hermann consiste en seguir usando el equilibrio de momentos para
las componentes, que ya habia utilizado antes para calcular centros de gravedad. Este
método equivale al posterior uso de la trigonometria para calcular la direccién de la
resultante. Es decir: si tenemos que sumar dos vectores V,yV, de los que
conocemos sus modulos y su direccién, actualmente los descomponemos
cartesianamente Vi = (Vix, Vi), Vz = (Vax, Vzy) mediante las relaciones trigonométricas
Vi=Vcosay V=V sena, después sumamos componentes para obtener la resultante

V = (Vx, Vy) y su direccién p serd la tangente (tg p = V,:V,).

Este teorema representa el resultado bdsico que Hermann extenderd

progresivamente a situaciones de mayor complejidad tales como:

e Un problema que propuso Torricelli: encontrar la resultante de cuatro

fuerzas concurrentes en equilibrio en tres dimensiones.

e Un sistema de fuerzas continuo, concurrente y en tres dimensiones (Ver Fig.

6). Si sobre P actdan fuerzas cuyos extremos estdn en la superficie ABC (la
figura solo muestra uno de los contornos de la superficie), su resultante es el
producto de la superficie (que equivale a contar el nimero de fuerzas) por la
distancia desde el mévil P hasta el c. de g. E de la los puntos de la superficie.

e Un sistema de fuerzas oblicuas no concurrentes sobre una linea recta, que

reduce a un sistema concurrente.

Hasta ahora siempre ha trabajado separadamente con f
Fd |
las componentes ortogonales de las fuerzas, pero en un / { \

/
corolario [Phoronomia. p. 21 (n° 55)] demuestra que la p .'ﬁ./!
igualdad de momentos respecto del punto de equilibrio / } \

. e
para un sistema de fuerzas oblicuas, puede hacerse L\..E_-'
directamente sin recurrir a las componentes (ver Fig. 7). Fig. 6

Basta considerar el momento como el producto de la

fuerza por la distancia perpendicular a la direccién de la fuerza desde el punto de
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equilibrio. Siguiendo la Fig. 7 tenemos: momento de la fuerza oblicua AG = AG. EP,

siendo E el fulcro del sistema.

En lenguaje actual equivale a
definir el momento como el \

producto vectorial de la fuerza por

la distancia M:IEXF, cuyo A

médulo es M = F- r sen (F,r). Vemos / ' / ' Ty o3 * \\_
que la perpendicular EP equivale a celHE - i i \‘L—‘“
o—-mu : \
r-sen (F,r) siendo (F,r) es el dngulo . Fia 7 o
ig.

que forman los vectores Fy r).

Hermann destaca el hecho de haber llegado “inopinadamente a la demostracién de
forma directa e inmediata"® del teorema de Arquimedes de igualdad de momentos
respecto del punto de equilibrio, "que de diversas maneras personas variadas han

intentado demostrar”.

El resultado mds ambicioso de Hermann en la estdtica de sélidos rigidos, consiste en
establecer un método de cdlculo para la fuerza que resulta de la aplicacién de un

sistema continuo de fuerzas sobre un sélido. Este serd el caso si pensamos en
cuerpos sumergidos en fluidos, o de fuerzas sobre el O@

timén de un barco, que serd objeto de estudia en tomo II

de su obra. @

. . ) Cuerpo paciente
La estrategia general consiste en separar el cdlculo de la

fuerza total en dos partes, proyectadas sobre planos Fig. 8

horizontal y vertical respectivamente. Para llegar a esto,

8 “atqui sic inopinato incidimus in demonstrationem directam et immediatam principii Archimedei de

aequalitate momentorum, in casu aequilibri potentiarum inter. se commissarum, quod varii varie
demoonstrare conati sunt.” [Phoronomia p. 21 n°56]
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Hermann establece una secuencia de teoremas que atafien a casos progresivamente

mds complejos.

Dando marcha atrds en la secuencia de Hermann, pensemos en un cuerpo sélido sobre
el que actlan fuerzas en todos sus puntos. Podemos partir el cuerpo en cuatro partes
mediante dos planos perpendiculares (fig. 8) y estudiar cada fragmento. Cartando una
de las cuatro partes por planos horizontales obtenemos curvas en las que podemos
estudiar la resultante de un sistema continuo de fuerzas iguales y perpendiculares.
Esta es el tipo de fuerzas actuantes sobre un cuerpo sumergido en un fluido donde la
presion depende de la profundidad. Iremos mostrando grdficamente la construccién

de Hermann. La secuencia progresiva de resultados

es la siguiente: A
—»

e Primero [Phoronomia p. 23 n®58] calcula la V >
resultante de una serie discreta de fuerzas ‘ >
F, f etc. actuando sobre una curva regualar b —
AB cualquiera®®. La construccién geométrica l l ¢ g
(ver Fig. 9) consiste en encontrar primero
la resultante de las componentes de cada Fig. 9
fuerza proyectadas sobre dos ejes
ortogonales, para después obtener la
resultante total (en rojo en el dibujo) A i
en valor y direccién a partir de la y St
igualdad de momentos anterior. g
Varignon ha llegado a parecidos . d
resultados, dice Hermann, pero su Sz g
construccion puede extenderse al caso
continuo, tal como mostrard a Fig. 10

continuacid.

4 . . .. , . . ,
% para que pueda aplicarse a “ruedas u otros dispositivos mecanicos” nos dice Hermann. [Ibidem]

57



Hermann demuestra en la proposicién VIII un potente teorema [Phoronomia p.
24 n?59], que reduce el cdlculo de la resultante de un sistema continuo de
fuerzas actuando sobre una curva regular cualquiera AB (ver Fig. 10), a la
evaluacion de dos dreas S; y S; proyectadas sobre dos ejes ortogonales. El
punto de aplicacién se hace, tal como demostré para el caso discreto,
mediante la localizacién de c. de g. de las
figuras laterales. Para su demostracidn,
Hermann usa la “geometria diferencial” que
consiste en razonar con diferenciales a partir

de las lineas en una figura geométrica.

A continuacién particulariza el resultado para
fuerzas iguales y perpendiculares a la curva. En
este caso las figuras mixtilineas S;y S; se

convierten en rectdngulos.

Extiende el resultado anterior, completando la Fig. 11

curva sobre la que actdan las fuerzas a su parte

simétrica (ver Fig. 11) [Phoronomia pp. 26 n®62-63]. En este caso las
componentes verticales se anulan y la resultante para el caso de fuerzas

perpendiculares a la curva e iguales es el rectdngulo cuya base es el valor de la

fuerza y cuya altura es la proyeccién de la curva sobre un plano vertical. Si la
curva se desplaza formando un cilindro la resultante serd un paralelepipedo tal

como muestra la ilustracién del propio Hermann.

Si ahora [Phoronomia pp. 30-31 n®79] la figura sobre la que actian fuerzas
iguales y perpendiculares es la mitad de un tronco de cono (Fig. 12), la
resultante equivale a la fuerza sobre el cilindro que resulta de la proyeccién

sobre un plano vertical (en rojo), y la fuerza sobre el anillo (en verde) que
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resulta de la proyeccion sobre un plano horizontal. Hagamos notar que un
tronco de cono tal, es el corte infinitesimal de una capa horizontal de un
cuerpo cualquiera, tal como considerard

en el siguiente teorema.

Con estos resultados ataca el cdlculo de
la resultante sobre la superficie que

representa un cuarto del cuerpo total

[Phoronomia pp. 31-34 n®80]. Demuestra Fig. 12

que se compone de la pseudo-cuiia

formada por la escala de fuerzas (equivalente a una funcién fuerza-
profundidad) con la proyeccion del cuerpo sobre un plano vertical, y del
“cuerpo andlogo extendido” que en la fig. 13 es el verde mds todo el espacio
entre el verde y el negro. Los c. de g. de estos volimenes nos dan el punto de

aplicacion de la resultante.

Repite el proceso para un cuerpo paciente invertido. Las diferencias fundamentales

son dos: la componente vertical es ahora solamente el espacio que queda entre el

“cuerpo paciente andlogo” (en verde en la ilustracidn) y el “cuerpo paciente” (en

negro), y la componente vertical es ahora dirigida hacia abajo.

Finalmente obtiene en un corolario [Phoronomia p. 24 n° 59] la resultante
sobre el cuerpo entero. Como las componentes horizontales (pseudo-cufias) se
anulan entre si al actuar en sentidos opuestos, queda como resultante la
diferencia entre el "sélido paciente andlogo extendido” y su “"extension”. Esta

diferencia es el "sélido paciente andlogo” (verde).
9
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Escala de potencias que
actdan sobre el cuerpo

Pseudo-cufia formada por la
escala y la proyeccién del
sélido

Cuerpo andlogo paciente (verde)

Fig. 13
Hermann ha llegado a un resultado general que usard en el cap. ITI del libro IT
dedicado a los fluidos [Phoronomia p. 152 ],y que trata sobre “El equilibrio de
cuerpos sélidos sumergidos o flotando en cualquier fluido”. En el teorema XII

[Phoronomia p. 152 n° 290] afirma que "... este teorema no es diferente del
83 tomado en un caso concreto; .. poniendo ahora la linea OLQ, que
llamdbamos escala de potencias aplicadas al sélido paciente, como escala de

presiones o gravitaciones del fluido heterogéneo."

Este es el teorema que conocemos como de Arquimedes, que en la Phoronomia se
demuestra para fluidos heterogéneos y que dice: “"Todo cuerpo sumergido en un
fluido heterogéneo, o flotando en él, empuja hacia arriba con tanta fuerza, como el
peso de la masa de cierto liquido homogéneo cuyo volumen es la del cuerpo del sélido
andlogo sumergido o a su parte sumergida, cuya densidad es la densidad media del
liquido heterogéneo, segln la direccion normal a la superficie del fluido pasando por

el centro de gravedad del sélido andlogo.” [Ibid.]
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Continda estudiando el equilibrio de cuerpos sumergidos como consecuencia del

balance entre el empuje del fluido y el peso del cuerpo. Destaquemos resumiendo que:

e Hermann hace la demostracién para fluidos heterogéneos en general. Para
fluidos homogéneos muestra que el sélido andlogo coincide con el paciente con
lo que tenemos el teorema de Arquimedes habitual.

e La demostracion es una aplicacion al caso de fluidos, de teoremas generales
establecidos en la estdtica de sélidos rigidos del libro I.

e Establece una continuidad basada en resultados generales.

e Usa el cdlculo diferencial e integral en su forma “geométrica” y en su forma
"algebraica” (ver teorema de Guldin) para los casos de sistemas de fuerzas

continuos.

4.2 ESTATICA DE SOLIDOS FLEXIBLES: paradigma de método en la

Phoronomia.

Dentro de la seccién I del libro I dedicada a la estdtica, el capitulo IITI trata “de las
figuras que pueden adoptar los cuerpos flexibles por la aplicacion de potencias
cualesquiera; y sobre las direcciones medias de esas potencias.” [Phoronomia pp. 36-

50]

Hermann incluye por primera y Unica vez en su obra, un apartado matemdtico en el
que explica la relacion mutua entre diferenciales e integrales, ademds de mostrar un
algoritmo para hacer integraciones. Hermann usard el cdlculo integral y diferencial
profusamente en la deduccién de las ecuaciones generales para una linea flexible
sometida a fuerzas de modo continuo, por lo que comienza exponiendo en un lema y un
escolio el cdlculo integral. Afiade tres ejemplos como ilustracion. Analizaremos mds
adelante la exposicion que hace Hermann del cdlculo integral y de su teorema
principal, en el capitulo 6 ("El cdlculo diferencial e integral: entre la geometria y el

dlgebra”).

61



La novedad y la virtud del método de Hermann consisten en que obtiene un conjunto
de ecuaciones generales integro-diferenciales relativas a un problema genérico (en
este caso para un cuerpo lineal eldstico sometido a fuerzas externas) que,
particularizando, pueden ser usadas para “deducir” los casos de interés (curvas
velaria, lintearia, catenaria, etc.). Los problemas relativos a cada curva se habian
tratado independientente, y hasta 1744 no se consequird con Euler una formulacién
genérica de todos ellos como curvas isoperimetricas (ver nota 87). Este proceso, que
se repite los distintos apartados de la Phoronomia, puede caracterizar el modo de
proceder de Hemann en la Phoronomia como una algoritmizacion, que contiene las

siguientes caracteristicas:

e Obtiene un conjunto de relaciones generales entre variables de forma
diferencial e/o integral, a partir de razonamientos geométrico - diferenciales
referidos a lineas de una ilustracién. La expresion de estas relaciones
fundamentales es geométrica, es decir, los valores se simbolizan con dos
letras (AB por ejemplo) que representan los extremos de un segmento sobre
la figura. No se hace distincion simbélica entre valores infinitésimos o finitos,
aunque si se usa en ocasiones el simbolo integral de dos modos: omnes AB =

JAB.

o Estas relaciones fundamentales son rescritas en forma diferencial algebraica,
quedando preparadas para ser aplicadas a casos particulares, teniendo en

cuenta las condiciones pertinentes.

Veamos primero en qué consiste el teorema principal. La proposicion XII [Phoronomia
p. 40 n°® 93] considera el hilo flexible e inextensible ZBABX (ver Fig. 14 que
corresponde a la Fig. 29 de la Phoronomia) ligado en sus extremos Z, X y sometido en
cada punto B, p, efc. a las potencias BH, ph, etc. Estas potencias son genéricas y

serdn particularizadas mds adelante por Hermann para significar pesos o presiones.
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La tenacidad o firmeza (tenacitas o firmitas) del hilo se define como la fuerza que
nace en el hilo por las potencias externas aplicadas. Es la resistencia del hilo, que

equivale a las fuerzas externas cuando consideramos la situacién de equilibrio.

Llama a las tenacidades (tensiones diriamos ahora) en dos puntos By p contiguos Ty

t, a las potencias aplicadas en un elemento Bb del hilo (diferencial en el lenguaje de

& b M
T
9
~o f m
h ::: ---------
A\ B n
|
1
K
I
G \\\
D/--NU/" F
HooT
E

Fig. 14 (A la derecha detalle del elemento diferencial ampliado)
Hermann) pBb. La potencia en el punto inferior A se simboliza como A y es un dato
constante ya que depende del equilibro de fuerzas en el otro lado del hilo AX. Los

ejes son AC para las abscisas y BC para las ordenadas.

Ampliamos en la figura la zona del hilo que corresponde a dos elementos diferenciales
contiguos Bb y PB (zona roja de la fig. 14). Las tensiones se descomponen
ortogonalmente; para T son BM y Mb; y la potencia externa aplicada BH se
descompone de dos formas: BF y HF segln los ejes perpendiculares del sistema
(Coordenadas cartesianas) y segun las direcciones tangencial GH y perpendicular a la

curva BG (coordenadas intrinsecas)

El teorema deduce dos resultados en una situacién de equilibrio:
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I. Para las componentes tangenciales T= A+ fGH. (1)

La tensién T del hilo en un punto cualquiera B, es igual a la suma de todas las
componentes tangenciales de las fuerzas externas, mds el valor de la tension en el

punto mds bajo A.

IT. El cociente entre cualesquiera dos lineas homdélogas de los cuadrilateros BGHF y

bghf, es igual al cociente entre Ty Bb.

En el lenguaje geométrico de Hermann, por ejemplo: % - Blb (@)

La demostraciéon maneja simbolos geométrico-diferenciales y relaciones geométricas
en la figura. Podemos interpretar el resultado en términos diferenciales de la
siguiente manera: las lineas en el tridngulo pequefio bghf son las diferenciales
segundas y las del grande BGHF las primeras diferenciales. Considerando los ejes a la

manera de la época, es decir, intercambiados con los actuales, tenemos:

bf = Mm = BM - Bk = dx; - dx; = d®x
hf = nN = BN - Bl = dy, - dy; = d%

Bb = ds (elemento de arco en el que trabaja)

Asi, el conjunto de relaciones deducidas en (2) son ecuaciones diferenciales de la

2
forma: B X donde x puede A a O
T ds
intercambiarse por y. Q
P

El primer corolario afiade una figura
auxiliar al hilo (Fig. 15). Traza desde A
una linea de magnitud arbitraria AO Fig. 15

horizontal, y con ella como didmetro un
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semicirculo, tal como se ve en la figura. A partir de A traza dos segmentos AP y Ap
que son paralelos a los dos elementos de hilo Bb y pB considerados. Usando la
similaridad de los tridngulos Bbg y APQ de la figura auxiliar, demuestra una relacion

PQ

.y - BG
entre fuerzas y lados del tridngulo auxiliar: T= P 3)

A partir de la relacion (1) estudia el caso en que las fuerzas BH son perpendiculares a
la curva. En este caso GH = O y por tanto en (1) T = A. La tensidn en cualquier punto

es igual al valor en A dado.

También deduce la ecuacién integral correspondiente a (2) suponiendo todos los

arcos Bb iguales y fuerzas perpendiculares a la curva:

jFH :J-BFZA @
Bb-bM BM  Bb

F F
Que transcrita con nuestros simbolos queda: j LA I x_A
ds-dy dx ds

Cconsidera el caso en que las fuerzas son paralelas al eje vertical (seria el caso de un

hilo cuya fuerza exterior es su peso). La ecuacion (2) quedaria:

[BF [BE A
BM BM bM

(3)

Llamando F a la suma de todas las fuerzas o peso y siendo A el valor de la tensién en
el punto mds bajo, la ecuacion (4) se puede transcribir:

F A

ey (6)

Preparado el teorema general y sus corolarios, Hermann nos indica que:
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"A partir de los corolarios afiadidos a nuestro teorema puede ser establecido, como se desprende
ampliamente de su uso, que verdaderamente éste contiene las soluciones de infinitos problemas, de los

que los Problemas de la Catenaria, Velaria, y las formas del lienzo curvado por el liquido contenido, no

son sino casos especialisimos de nuestro teorema."®

A continuacion Hermann traduce a lenguaje algebraico sus resultados y obtiene dos

reglas para transformar diferenciales y poder deducir los casos particulares:

“Sea por tanto AC=x, CB=y, BM= dx, bM= dy, Bb= ds, AO=a, AP=m y PO=n =  (aa -
mm). De aqui PQ = dn, y Qp = dm. Establecido esto, de los tridngulos similares BbM, y
OAP obtiene las relaciones” [Phoronomia p. 44 n° 101]:

ds = adx:n 7
mdx:n (8)

dy

Sustituyendo sus valores en la proporcién (3) BG:T= PQ:AP, obtenemos lo que

Hermann llama “primera regla” (primus Canon) para las componentes normales BG:

BG:T = dnim (9)

Toma como segunda férmula general la relacién integral (1) que correspondiente a las

componentes tangenciales GH: T = A + | GH
A partir de las ecuaciones integral (1) y de la ecuacion diferencial (9) Hermann
obtendrd para los casos particulares las correspondientes curvas y=f(x) en nuestro

lenguaje, transformando variables mediante las relaciones (7) y (8). Veamos cémo.

Caso 1: la circunferencia [Phoronomia p. 44 n° 102]. Condiciones del problema:

% “Ex Coroariis theoremati nostro adjectis fatis constare potest quam late pateat ejes usus, revera enim
infinitorum id problematum solutionem continet, quérum problemata Catenaria, Velariae, et figurae lintei

ab incumbene liquore inflexi nonnisi casus sunt specialissimi nostri theorematis.” [Phoronomia p. 44 n°

100]
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v" Fuerzas externas perpendiculares a la curva: B6=BHYy G6H =0
v Fuerzas proporcionales a la longitud del hilo: BG = b ds (b=cte.)
v' Supohe que la fuerza en el punto inferior A = a-b (pardmetro constante que ho

da las condiciones de contorno)

La ecuacién (9) queda: %: @; ﬁ= @:
ab m a m

Por (7) pasamos de ds a dx dx_dn . mdx=ndn=—mdm; integrando queda

m=a—-x Como n=-a’>—m> obtenemos ahora n como funcién de x:

n=+2ax — x*

La estrategia general serd siempre obtener las relaciones de ny m con x vy
constantes, de modo que aplicando la relacién (8) obtiene la ecuacion diferencial de la
curva buscada:

m . (a—x)dx _ adx—xdx

dx = -
n ) \/Za)c—x2 \/2ax—x2

dy =

Este es el (nico caso que Hermann integra dando la ecuacién de una circunferencia:

y=+2ax—x"

Usard este resultado en la mecdnica de fluidos en la que vemos una vez mds la
continuidad de los métodos usados en la Phoronomia, cuando en el capitulo IV del
libro IT (estdtica de fluidos) estudia “"Sobre las formas que fluidos envasados en

cuerpos flexibles inducen en estos cuerpos” [Phoronomia pp. 162-169].

En dicho capitulo estudia por otros métodos dos problemas que ya ha resuelto a
partir de las ecuaciones generales del capitulo sobre estdtica de medios flexibles: el

primero es el del recipiente flexible cilindrico lleno de liquido cuya forma es circular.

Este problema tiene que ver, dice Hermann, con el interés que puede tener en el

estudio de la forma adoptada por los vasos sanguineos de los animales, tal como ya
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habian hecho “"Johann Bernoulli en su texto sobre Fuerzas y Movimientos de los
musculos disertacion contenida en Act. Lips. 1694 p. 200 seq., Y También el insigne

ecocés Archibald Pitcairne en su Physiologia,"®. [ Phoronomia pp. 162-163]

El segundo problema que estudia es el de la /intearia o curva que adopta una tela que
contiene liquido, y que también habia resuelto en la estdtica flexible del libro I. Su

enunciado en la estdtica de fluidos es:

"Si en el lienzo (/inte/) ZDAX con extremos Z, X fijos estd embalsado cualquier liquido heterogéneo cuya

escala de gravedad es la curva ROS, encontrar la forma de la tela” [Phoronomia p. 166 n° 307]

Su solucidn siguiendo el método general de la estdtica flexible es:

Caso 2: la /intearia [Phoronomia p. 45 n° 104]. Las condiciones son:

v Fuerza externa BG perpendicular a la curva: B6=BDy T= A
v" Fuerza BD funcidn de la distancia x y del arco ds: BD = k ds siendo k una
expresion de x y constantes.

v Valor de la tensién en el punto inferior A = % a°

Estas condiciones corresponden al peso de un liquido, que como mostrard en la

hidrostdtica, dependen de la altura x, y de la superficie sobre la que se aplica ds.

2
La ecuacién (9) queda ahora: kzdsz @ aplicando (7) para cambiar ds por dx:
a m
2kdx=@: y teniendo en cuenta como antes que mdx=ndn=—mdm queda:
na m

2k dx=—adm, con el cambio de variable du = -dx y m=p y n se obtiene de; finalmente

sustituyendo en (8) los valores de m y n encontrados queda:

% PITCAIRNE, ARCHIBALD. Edinburgo (1652-1713). Publica en 1701 (2* ed. 1713) Dissertationes
medicae, donde discute la aplicacion de la geometria a la medicina.
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dy:ﬁdx:p—dx

n a2 _p2

Que es, dice, la ecuacién diferencial de la lintearia encontrada por los Bernoulli por
otros métodos. Con el cambio de variable k = u = b-x que representa medir las
alturas desde la parte superior, queda que u® = ap, y sustituyendo en la ecuacién

diferencial queda la ecuacién de la lintearia en la forma encontrada por Bernoulli:

Caso 3: la velaria [Phoronomiap. 44 n° 103]. Las condiciones son ahora:

v" Fuerza perpendicular a la curva: BH =BG = BDy T=A ya que GH =0
v Fuerza igual a dy®/ds

v" Fuerza dada en el punto mds bajo A = a

. dy* m’dx .,
Transformando la expresion de BD tenemos: sz La ecuacién (9) queda
s an
adn m’dx . .
ahora: ——= , Y teniendo en cuenta como en casos anteriores que

m an

2

, a :
mdx=ndn=—mdm e integrando queda: m= el valor de n se obtiene como

X+a

siempre de n =+a’ —m’ . Finalmente encontramos la ecuacién diferencial de la

Velaria (curva producida por la presion del viento) sustituyendo my n en (8):

dy:ﬂdx: adx

n A 2ax+ x?

Caso 4: las catenarias [Phoronomia p. 45 n° 105]. Las condiciones son:
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v" Fuerzas verticales BH = BE como corresponden a los pesos de cada ds

v" Pesos proporcional a la longitud del hilo: BE = dq. Siendo q el peso total.

Hermann hace en esta ocasion dos demostraciones: la primera usa el método general
de las anteriores, y en la segunda, mucho mds corta, obtiene la ecuacién diferencial a

partir de un corolario general para fuerzas verticales en el que habia obtenido la

[BF A
relacion (B) =— = ——; transcrita algebraicamente queda: — =— , que
BM bM dx dy

contiene, nos dice, todos los géneros de catenarias.

Teniendo en cuenta que el peso q es proporcional a la longitud del hilo s, es decir que
BE = dq = ds, podemos desarrollar la expresion general encontrada usando las
relaciones entre variables hasta encontrar la ecuacién diferencial de la catenaria
(cuerda o catena que cuelga libremente de sus extremos):

dy:ﬂdx: adx

n A 2ax+ x?

Bernoulli habia propuesto el problema de la catenaria en el primer articulo de
aplicacién del cdlculo diferencial-integral de 1690, tras los articulos fundadores de
Leibniz. Este era ya un viejo problema que, por ejemplo, habia tratado Galileo
llegando a la conclusién equivocada de que la curva era una pardbola. El problema es
resuelto por Huygens mediante procedimientos geométricos y por Johann

BERNOULLTI y Leibniz usando el cdlculo infinitesimal.

El mismo habia planteado el problema de la velaria en 1692 y Johann BERNOULLT el
de la lintearia. Euler en su obra de 1744% agrupard todos estos problemas, mds el de

la curva eldstica (curva sujeta por un extremo teniendo un peso en el otro), en las

Methodus inveniendi lineas curvas maximi minimive propietate gaudentes, sive solutio problematis
isoperimetrici altisimo sensu accepti. Euler L.
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isoperimétricas o curvas de longitud fija que satisfacen una cierta condicion de

mdximo o minimo®.

La virtud del tfrabajo de Hermann consiste en agrupar todos los casos bajo un mismo
sistema de ecuaciones diferenciales generales, que como hemos dicho, conseguird

Euler mediante principios variacionales en 1744,

4.3 HIDROSTATICA

Expondremos los principios de la hidrostdtica contenida en la Phoronomia ya que
suponen una estructuracion de esta parte de la mecdnica en sus vertientes tedricas y
prdcticas. Hermann recoge y amplia los resultados conocidos organizandolos y

ddndoles un nivel mayor de generalidad, e introduciendo explicaciones originales.

El capitulo I de la segunda seccion (estdtica) del segundo libro (fluidos) trata "Sobre
las leyes generales de la gravedad de los fluidos que reposan sobre planos”

[Phoronomia pp. 128-138]. Previamente hace varias definiciones y distinciones:

e Fluido en contraposicién con sélido es aquel cuerpo cuyas partes pueden
moverse sin que se mueva todo él.

e Distingue entre fluido y liquido como género y especie, definiendo liquido

como: “Los liquidos son de hecho, los que fluyen hasta que sus superficies se
hacen horizontales" [Phoronomia p. 128 n° 241].

e Fluido homogéneo o de densidad uniforme, y heterogéneo o de densidad
variable. Da como ejemplo del primero los liquidos conocidos y del segundo la
atmésfera.

e Escala de densidad: tal como hace por doquier, define la relacion de variables

geométricamente al modo de la época. En este caso los valores de la densidad

% Ver RADELET-DE GRAVE P. 1998 pp. 469-470
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para cada distancia a un punto de referencia en el que se cruzan
perpendicularmente los ejes.

Densidad media en un fluido heterogéneo: equivale a la densidad de un fluido

homogéneo que para la misma altura ejerce una presion igual sobre una
superficie horizontal. La descripcion verbal de Hermann equivale con nuestra
notacion a:

:fpﬁ

pm H

Define punto o particula como un plano infinitesimal.

Presion o gravitacion (pressio vel gravitationis) como fuerza sobre una

superficie.

A continuacion el capitulo expone de forma particularmente simple todos los

resultados fundamentales y las paradojas referidas a la presion estdtica de fluidos

sobre superficies. Tras unos resultados bdsicos:

Las presiones que se ejercen mutuamente sélidos o fluidos estdn en direccion
perpendicular al plano de contacto entre sus superficies.

Un liquido en un recipiente alcanza el equilibrio cuando su superficie es
horizontal. En un corolario comenta el problema de la forma de la Tierra,
indicando que debe ser un elipsoide con el eje mayor en el ecuador por efecto

de su movimiento diurno®.

Hermann demuestra en la proposicién III [Phoronomia p. 130 n° 252] que cualquier

"elemento” de una superficie horizontal de un liquido en equilibrio o de los laterales

del recipiente, soportan la misma presion. El razonamiento se basa en que, si no

% Hermann sigue la teoria de Newton. La polémica sobre la forma de la tierra estalla en 1722 cuando J.
Cassini publica De la grandeur et de la figure de la terre, donde expone como a partir de sus mediciones de
1718 se desprende la mayor elongacion en los polos, que Maupertuis contesta. Ver sobre la polémica y sobre
los recursos usados: Terrall, Mary, ‘Representing the earth’s shape: the polemics surrounding Maupertuis’s
expedition to Lapland’, Isis 83 (1992), 218-237.
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soportaran la misma presion habria un desequilibrio que provocaria movimiento, en

contradiccion con la hipétesis.

En la siguiente proposicién [Phoronomia pp. 131-132 n°® 253] tenemos el resultado

0

Fig. 16

principal de la hidrostdtica: “la presién de
cualquier liquido homogéneo sobre un plano

horizontal es proporcional a la altura del

H 1
liquido sobre ese plano”. El razonamiento sigue
usando la reduccién al absurdo con la hipétesis
de equilibrio. Razonando sobre una figura
H>

similar a la de Hermann (Fig. 16), la presidn en

el punto A se debe al peso de la columna que
tiene encima OA. Cualquier punto de la
superficie AB tiene la misma presion tal como

demostré antes. El punto C y cualquier punto

de su superficie DC, tienen una presién que depende de la cantidad de liquido sobre él

BC, mds la presion del punto B. Es decir la presion en C depende de la altura de

liquido desde C hasta la superficie O. Las fuerzas en las paredes son perpendiculares

a la superficie del recipiente e iguales a cualquier
punto que esté a la misma altura respecto de la

superficie del liquido.

En un escolio y dos corolarios [Phoronomia pp. 132-
134 n° 254-256], Hermann explica que la ley es
independiente de la forma del recipiente, cosa que
parece paraddjica “quod haud dubie non paucis
paradoxum videbitur.", pero cuya verdad se
comprueba con experimentos para después ser

probada®.

!
Ry |

o/ | \s

Fig. 17

? “Ejus tamen veritas ipsa experimenta comprobata est, atque deinceps probari potest.” [Ibidem]
Trataremos las relaciones entre la mecanica racional y las experiencias en el apartado 7 “Experimentacion e

instrumentos: la razon practica en la Phoronomia”.
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La experiencia, siguiendo la figura 60 de Hermann (Fig. 17), consiste en una balanza
MDO que equilibra mediante el peso P, el fondo aBCf sujeto en Q. En este pequefio
fondo se pueden encajar dos tipos de recipientes, el cilindro BIKC y el recipiente
puntiagudo ABC. Si la altura del liquido es la misma en ambos recipientes, la balanza

queda igualmente equilibrada.

Pero como la cantidad de liquido es distinta, prosigue Hermann, la ley hidrostdtica
parece contraria a los fendmenos: “.. atque adeo regula nosta hydrostatica
phaenomenis adversari videtur.". La explicacion de Hermann, completamente actual,
es que sobre las paredes del recipiente puntiagudo se ejerce una fuerza
perpendicular, que las paredes también ejercen hacia el liquido, incrementando la
presion del mismo en la misma proporcién que el liquido que hay entre ambos

recipientes.

A continuacion H
demuestra un resultado
genérico de gran

potencia que relaciona la

escala de presiones con F 6 S K
la de densidades para

cualquier fluido c T

heterogéneo. Fig. 18
[Phoronomia pp. 135-136

n® 258]

Las presiones (escala azul de la fig. 18) son proporcionales a las dreas homélogas de la

prFG _ SI _ ESKH

escala de densidades (escala roja). En su lenguaje: = . Para
prBC T7X ETNKH

FG
erG_J.O p dh
pr BC J'OBC pdh

nosotros: donde h es la alturay p la densidad.
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Seguidamente reduce el teorema, para un liquido homogéneo de densidad igual a la
media del heterogéneo, con la hipétesis TX = TE, que supone tomar un sistema de
unidades en el que una presién TX equivale a una altura TE. Con estas premisas: “la
presion en cualquier particula del plano FG es igual al peso de una columna de liquido
con densidad la media del heterogéneo y como altura la presién SI correspondiente a

esa profundidad” [ibid.].

Estudia en corolarios dos casos particulares [Ibid. pp.136-138]:

e En el caso homogéneo la escala de densidades es una recta y las presiones son
proporcionales a las alturas desde la superficie del liquido.

e Estudia los vasos comunicantes con liquidos de distinta densidad. En este caso
las alturas de los liquidos son inversamente proporcionales a sus densidades.
Este resultado lo utilizard cuando estudie el fundamento de los barémetros,
considerados vasos comunicantes con un

liquido en una rama y un gas en la otra.

En el capitulo IT del libro IT estudia la presion

sobre los laterales de tubos que contienen liquidos.

La presidn de un liquido heterogéneo sobre la cara ~
curva de un tubo o sobre su proyeccién sobre un Fig. 19

plano vertical, es igual al peso de la cufia de liquido homogéneo correspondiente,
formada por la escala de presiones (ver Fig. 19) y la proyeccion del tubo sobre un

plano vertical.
El centro de gravedad de la figura serd el punto definido como “centro de presiones”

del liquido heterogéneo. Aqui vuelve a aplicar los resultados generales de la estdtica

rigida para encontrar el punto de aplicacién de las fuerzas sobre una superficie.
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Finalmente estudia la resistencia de los materiales de los tubos. El teorema VIII
[Phoronomia p. 143 n° 272] demuestra que la Resistencia o Firmeza F (conceptos ya
definidos para hilos en la estdtica flexible) de los tubos rigidos que contienen
liquidos estd en razén compuesta de la Tenacidad T de la materia (que define como la
resistencia de una fibra del tubo), del grosor C del tubo y de la altura del mismo A:

E_TCA
f tca

Como habia demostrado que la fuerza del liquido en el tubo era el peso de una
columna de liquido con la densidad media del liquido heterogéneo S, de altura igual a
la presion M, y superficie igual al producto del didmetro del tubo D y de su seccion A;

MADS TCA g MDS TC
= , que simplificada es: =——~  La
mads tca mds tc

la expresion anterior queda:

particulariza en corolarios para:

e Liquidos homogéneos (S=s): MD_TC
md tc

- . . . MD
¢ Liquidos homogéneos del mismo material (T=1): —d:£
m

Por tanto, concluye, el grosor de los tubos C es proporcional al producto de su altura

M por su didmetro D.

Como aplicacién de las relaciones obtenidas da en un escolio [Phoronomia p. 145 n°
277] dos ejemplos tomados de referencias inscritas en ODivers Ouvrages de
Mathematigue et de Physigue de Metiseurs de I'Academie Royale des Sciences de la

Academia de Paris:
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Ejemplo 1: tomado de la disertacién del danés Ole Roemer®! (inscrita en la obra
anterior fol. 517) sobre los grosores y las fuerzas de fubos en conductos de agua,

segln las diversas alturas de la fuente, y de los distintos didmetros de los tubos.

A partir de experiencias sabemos que un tubo de plomo de 16 pulgadas (po//icum) de
didmetro D, con un espesor C de 6 3 lineas (/inearum) resiste una presién de agua M
de 50 pies de altura (un pie de Paris contiene 144 lineas y una pulgada 12). Se busca
qué grueso ¢ ha de tener otro tubo de plomo de 10 dedos (dig/forum equivalente a
pulgada) de didmetro d, para transportar una presion m de 40 pies. Con las relaciones

anteriores obtiene: g = @:M:Z de donde: ¢ = €/2 = 3% lineas.
c md 40-10

Este resultado difiere de las aproximadas 4 3 lineas que da Romerus, suponiendo

equivocadamente que las resistencias estdn en razén doble del grueso de los tubos®.

Ejemplo IT: dado por Mariotte en la misma obra folio 513. Supone un tubo de cobre
de 5 pulgadas de didmetro d, con media linea de grosor c y llevando agua con una
presion de 30 pies de altura m. Queremos buscar la relacién entre las tenacidades
(resistencias) del plomo y del cobre supuestos los datos anteriores del fubo de plomo.

Aplicando % = M; !

3 3 deducimos que la tenacidad del cobre es un poco superior
md:c

a 3 veces la del plomo, * juxta has observaciones".

Vemos en el desarrollo de la hidrostdtica que Hermann atiende a los cdlculos
prdcticos después de exponer su mecdnica racional, contrastando sus cdlculos con
otros autores como en el primer ejemplo, o llegando a resultados que coinciden con

las observaciones como en el segundo ejemplo.

° Ole Christensen Roemer (1644-1710). Cientifico danés. Se traslada a Paris trabajando en su observatorio
durante nueve afios. Conocido por hacer la primera medida de la velocidad de la luz y por desarrollar un
termometro con dos puntos fijos.

2 “quia resistentias tuborum statuit esse in duplicata ratione crassitierum caeteris existentibus paribus,
quas supra in propositione apparet esse in simplice non duplicata illa ratione.” [1bid.]
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Toda la Phoronomia esta llena de referencias y cdlculos a experiencias y al disefio de
aparatos de medida. Analizaremos con mds detalle la relacién mecdnica racional-

experiencias en el capitulo 7, "Experimentacidn e instrumentos”.

4.4 EL ESTUDIO MECANICO DEL AIRE

En los capitulos V, VI, VIT y VIII, Hermann organiza y sistematiza los conocimientos
sobre el aire, aplicando los resultados de la estdtica de fluidos general, y tratando
aspectos peculiares asociados a las caracteristicas del aire como gas. El primer
capitulo tratard del peso del aire, establecido a partir de las experiencias de
Torricelli y la posterior discusion de Pascal. El capitulo siguiente discutird otro
aspecto del aire puesto al descubierto también en el siglo XVII por las
investigaciones de Boyle: la elasticidad. Finalmente, otro capitulo desarrollard las
relaciones mecdncias que permiten, considerando ciertas hipétesis, asociar una escala

de densidades con la altura atmosférica (ecuacion barométrica).

Todo el estudio estd salpicado de experiencias, que serdn analizadas con detalle a
partir de la mecdnica racional que desarrolla; su objetivo serd dejar claro que los
fendmenos del peso del aire y de su elasticidad estdn bien establecidos. Después se
puede ir mds alld, estudiando las consecuencias de esas propiedades del aire, por

ejemplo para analizar la estructura de la atmésfera.

4.4.1 El peso del aire

El capitulo V del segundo libro estd dedicado a estudiar: “la presién del aire causada
por la gravedad”. Hermann comienza afirmando que los resultados obtenidos para los
fluidos pueden ser aplicados al caso del aire, ya que éste es una especie del género

fluido. Pasa seguidamente a tratar el problema del peso del aire, considerdndolo una
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evidencia mds alld de cualquier duda, como han mostrado, dice, las experiencias de

Galileo, Boyle, Mariotte y Borelli.

Con todo, al principio discute las experiencias que muestran el peso del aire.
Comienza comentando la falacia que Hermann atribuye a Aristoteles y que, dice,
habia puesto al descubierto Jacob Bernoulli en un texto de Actas de Leipzig de 1685.
Tal falacia consiste en afirmar que una vesicula pesa mds llena de aire que vacia. Para
Hermann el razonamiento es simple, y le sorprende que no haya sido descubierto
antes: la vesicula llena o vacia soporta sobre si la misma columna de aire, por tanto su

peso es el mismo en ambos casos. Detallaremos su razonamiento en el apartado 7.

Hermann explica que Johann Bernoulli habia medido la densidad relativa agua/aire
dando un valor de 740, que mejoré en experiencias mds cuidadosas hasta obtener el

valor 7743 El, dice, usard por comodidad en los cdlculos el valor 800.

Aclarada la falsedad de la experiencia anterior, Hermann justifica el desarrollo que
dard al capitulo. Ya que el fenémeno del barémetro explica el peso del aire, primero
demostrard una serie de proposiciones de las que deducir su funcionamiento, asi como
el de otros artilugios, tales como bombas de succién y sifones. Acabard con la
descripcion de un modelo nuevo de barémetro mds sensible, ideado por Johann

Bernoulli y ain no dado a conocer.

Primero demuestra la proposicién principal [Phoronomia p. 171 n°® 315] de la que
extraerd en corolarios la explicacién del funcionamiento de barémetros, bombas de
agua y sifones. La demostracion es inmediata ya que se basa en un resultado
previamente demostrado en la estdtica de fluidos general [Corolario IV de la
proposicién V. Libro IT]. Dicho resultado afirma que: las alturas que alcanzan dos
liquidos distinfos no miscibles en las ramas de dos vasos comunicantes, es

inversamente proporcional a sus densidades. Lo aplica del modo siguiente:

% El valor de la Phoronomia contiene una fraccién ilegible afiadida al entero 774. El valor actual es 769,2.
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Supone un sistema de vasos comunicantes que no es el habitual (Fig. 20). Tiene un
tubo A abierto en sus extremos e introducido en el recipiente B abierto. Ambos
estdn en el interior de un gran vaso C. Supone que A y B tienen mercurio y que en C
hay agua hasta el nivel MN. Teniendo en cuenta, nos dice, que la densidad del

mercurio es 14 veces la del agua, la relacién de sus alturas serd 1/14.

Continla [Phoronomia p. 172 n° 316], sustituyendo \

el agua contenida en C por el aire de la atmésfera.

El tubo A estaria abierto fuera de la atmésfera — N

que llegaria hasta MN, pero como esto no es
posible podemos suponer, lo que es equivalente,

dice, que el tubo A estd cerrado superiormente. \@w/

Como por experiencias se sabe que la altura que .
P P 9 9 Fig. 20

alcanza el mercurio es de 28 dedos de pie de

Paris™, el peso de la atmésfera equivale al peso de esa columna de mercurio.

La experiencia de Torricelli queda pues explicada mecdnicamente, mediante su
asimilacién a los vasos comunicantes para dos fluidos diferentes. De este modo

abstrae y generaliza la experiencia del barémetro.

Un corolario posterior [Phoronomia pp. 172-173 n°® 317] calcula la altura de la
columna de agua que equilibraria a la atmésfera. Encuentra que como el mercurio es
14 veces mds pesado que el agua, ésta alcanzard una altura 14 veces superior, es
decir: h ogua = 14 h mercuric = 14 - 28 dedos = 392 dedos = 392 pulgadas = 33 pies de

Paris®.

% (28 digitorum pedis Parisensis). Si 28 dedos equivalen a la medida actual de 760 mm de mercurio. La
relacion seria aproximadamente 27 mm/dedo.

% Si 392 dedos equivalen a 392 pulgadas = 33 pies. Podemos deducir la relacién aproximada 11,88
dedos/pie de Paris. Teniendo en cuenta la equivalencia anterior de 27 mm/dedo, obtenemos 320,76 mm/pie
de Paris.
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Esto le permite a Hermann estimar la altura minima de la atmésfera en 26.400 pies,

supuesta uniforme la densidad del aire. Afiade que serd mucho mayor ya que el aire se

reconoce menos denso con la altura.

La altura del agua le sirve para tratar en el siguiente corolario
[Phoronomia pp. 173-174 n° 318], las bombas elevadoras de agua
(antilae suctoria vel aspirans). Describe como es y de qué
materiales estd hecha la bomba (ver fig. 21), y explica que la
fuerza que eleva el agua es la misma que mantiene al mercurio,
en el tubo comunicado con la atmdsfera: pressio scilicet
atmospherae. Retrayendo, dice, el émbolo (hecho de cuero que
encaja en el fubo AB de forma que el aire no pueda pasar desde
la cavidad superior a la inferior), desde CD hasta mn el agua

entrard por B impulsada por la presion atmosférica.

Como el peso de la atmdsfera equilibra el

B del agua, tal como ha mostrado en la

proposicién, el agua podrd subir hasta la

altura mdxima de 33 pies, fendémeno

s

Hermann.

\__‘c

Fig. 21

ampliamente conocido. Aunque estiremos mds el émbolo, el agua

permanecerd a 33 pies, tal como Galileo considerd, nos dice

El siguiente corolario [Phoronomia p. 174 n° 319] lo dedica a

Fig. 22 explicar el fenémeno del sifén (siphones). Consiste en un tubo

ABC (fig. 22) doblado en forma de U invertida con brazos desiguales. Se observa

comlnmente que cuando el tubo estd lleno, el agua circula del depésito A al C.

Hermann explica que tal dispositivo no es ofra cosa que un barémetro doble. La

explicacion se basa pues en la del barémetro ya descrito. Al ser la rama AB menor
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que la CB, la presién en A es mayor que en C, lo que hace que el agua circule desde A
hasta C hasta acabar el agua del recipiente A. La diferencia de alturas CB-AB define

lo que Hermann llama vim motricem, y de ella depende la rapidez de vaciado.

En otro corolario [ibid. n°® 320] Hermann define las condiciones de funcionamiento

del sifén; no fluird si:

e Sila fuerza motriz es cero, es decir, si CB-AB=0
e Si la longitud de la rama corta iguala o excede los 33 pies, que equivalen al
peso de la atmosfera. En este el peso de la columna AB equilibraria o

superaria el peso de la atmésfera.

Un corolario posterior [ibid. n° 321] explora la formacién de vacio (vacuum) en el
interior del tubo ABC. Ocurrird en el caso en que la rama AB es menor de 33 piesy la
rama BC mucho mayor de 33 pies. La presién de la rama BC seria mucho mayor que la
atmosférica en C, produciendo un movimiento de agua que crearia un vacio en B,

mayor cuanto mds sobrepase BC el valor de 33 pies.

Sefialemos que por primera vez aparece en la Phoronomia el vacio como tal. Hermann
no hace de él un asunto de discusién, como lo fue en el siglo XVII®, sino que lo
incluye de forma natural en sus explicaciones, incluso describe la forma de producirlo
mediante el sifon. En un corolario [ibid. n® 322], resuelve el problema de encontrar la
longitud del brazo largo BC, conocida la del corto AB, para que conseguir un grado de

vacio determinado, dado como la longitud de tubo que no contiene agua.

En el escolio final [ibid. n°® 323] explica que la medida de 27 o 28 pulgadas que
alcanza el mercurio varia a menudo, obteniéndose de este modo la variacién en la

presion atmosférica, si el instrumento es lo suficientemente sensible para apreciar

% A partir de las experiencias italianas del tubo de mercurio de Torricelli y de su repeticion en Francia por
Pascal, se produce una discusion sobre si el espacio que queda en la parte superior del tubo esta vacio, como
piensan Torricelli y Pascal, o lleno de particulas sutiles como piensan Descartes y sus seguidores. Para una
exposicion de las ideas sobre lo vacio y lo pleno desde la antigiiedad hasta el s. XVII ver [Waard C. 1936]
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dichas variaciones. Reservard el nombre de barémetro (barometri) al que pueda
mostrar las variaciones de presion atmosférica con precision, llamando al resto

baroscopios (baroscopir).
Sefiala los intentos por disefiar bardmetros mds precisos por parte de:

o Huygens® (descrito en Ephemeridibus Gallicis)
o De Hire® (descrito en Actis Academiae Regiae Paris del 21 de marzo de
1708)
Debido a su simplicidad, acaba con la descripcion del nuevo barémetro inédito ideado
por Johann Bernoulli, y que éste le ha

comunicado en privado.

La mejora en sensibilidad procede del
disefio de la cubeta en la que reposa el
tubo cerrado vertical tradicional. Dicha
cubeta es sustituida por la prolongacién
en dngulo recto del tubo vertical AHB en

otro mds delgado BC (ver fig. 23). El Ii“w/._—_;;_.__“—'_--‘
B

barémetro se llena de mercurio desde A

e,
o s
&

Fig. 23
hasta E, permaneciendo el extremo C

abierto al aire. Las dimensiones deberian ser: altura de la rama vertical AB, 30 o 31
pulgadas, longitud de la rama horizontal BC, 3 pies como minimo, didmetro de AB 4

lineas®®, didmetro de BC, 1 linea.

El descenso del mercurio en el tubo vertical supone un desplazamiento de igual

volumen en el liquido del tubo horizontal. Como este ltimo tiene un didmetro 4 veces

7 Extrait d’une lettre de M. Huygens touchant une nouvelle maniere de Barometre, qu’il a inventée (1672),
en [HUYGENS C. 1888-1950] T. VII. Correspondance, 1670-1675. pp. 238-241.
% Sur un nouveau barométre. Histoire de L’académie Royale des Sciences. 1708. p. 3

% Da el valor de 1/12 pie de Paris como equivalente a 1 linea, por tanto, tendremos aproximadamente 26,73
mm/linea.
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inferior, el mercurio alcanzard en el tubo horizontal una longitud inversamente
proporcional al cuadrado del radio, es decir, 16 veces mds que en el vertical. La
sensibilidad por tanto aumenta 16 veces respecto del disefio habitual en el que los

tubos tienen igual didmetro.

Para resolver problemas prdcticos

como la excesiva longitud de la

rama horizontal, propone troquelar
en espiral la rama horizontal.
Ademds coloca una entrada
superior obturable para poder

rellenarlo con mercurio fdcilmente, A~ % :
7 ’ u e — s
y un depdsito mds ancho en la parte ] o ¥ T ’

e
Fig. 24 -

superior del tubo vertical que toma
del disefio ya citado de Huygens.
Una ligera curvatura en la parte inferior del tubo vertical hace, dice, que el aire no
entre por el tubo horizontal al proceder al llenado del barémetro. Podemos ver en la

fig. 24 los diversos disefios propuestos.

4 .4 2 La elasticidad del aire

El capitulo VI del segundo libro trata de “la fuerza eldstica del aire en general” (*De
vi elastica aeris in genere” [ Phoronomia pp. 180-189]. En él Hermann sigue el mismo
planteamiento de los Principia que supone un tratamiento tautoldgico ya que se
pretende deducir la relacion de Boyle (densidad proporcional a la presién) a partir de

tomar como hipétesis que la presion depende de la distancia intermolecular.

El aire para Hermann tiene una propiedad peculiar, guantum experimentis constat,

que lo distingue del resto de fluidos liquidos: tiende a expansionarse continuamente
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si no se lo impide algln cuerpo. A esta propiedad le llama “fuerza eldstica” (Elater seu

vis elastica)'®.

Cita varios autores que han descrito experiencias que prueban tal propiedad: Boyle,
Mariotte, Jacob Bernoulli, y la Aerometria de Wolff. Resume tres de estas
experiencias que considera inequivocas: dos de ellas se basan en introducir objetos
en una bomba pneumdtica; primero considera una vejiga cerrada con un poco de aire
en su interior que se hinchard al extraer el aire de la campana de cristal en la que se
encuentra encerrada; después explica que si introducimos en la campana de la bomba
un recipiente de cristal fino cerrado que contiene aire, al vaciar la campana el
recipiente interior a veces se rompe. La tercera experiencia compara el esfuerzo

necesario para separar dos hemisferios metdlicos vaciados de aire y llenos.

Establecida la realidad de esta nueva propiedad del aire, Hermann discute las teorias
que han intentado explicarla. Expone la teoria que sobre la elasticidad del aire habia
expuesto Parent’® y que se encuentra en el articulo Elasticitatem aeris de L'Histoire

de I'Académie royale de 1708'%

Hermann explica que si se lee el articulo superficialmente, parece que Parent duda de
la elasticidad del aire, sin embargo, dice, no es asi, ya que Parent sdlo niega que las
particulas de aire puedan ser consideradas al modo de laminillas dobladas o

filamentos enmarafiados en espiras, etc.

La teoria de Parent, nos dice Hermann, consiste en explicar la tendencia al mutuo
alejamiento, como producida por la cantidad y velocidad de las particulas de éter que

pasan por los espacios que hay entre las moléculas de aire.

1% Estos términos son introducidos por Jean Pecquet (1622-1674) en Experimenta Nova Anatomica (Paris
1651), para nombrar la tendencia de las particulas de aire al mutuo alejamiento. Esta obra se considera la
introductora de las experiencias de Torricelli, Pascal, y Roberval en Inglaterra, donde seran conocidas por
Boyle. [WEBSTER C. 1965; pp. 451-454]

1% Antoine Parent (1666-1716) [DSB, X, 319-320]

2 En la p. 17 del texto “Sur la dilatation de I'aire” [Histoire de L’académie Royale des Sciences. 1708 pp.
11-19], se describe la teoria de Parent citada por Hermann.
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“Idcirco juxta laudatum Autorem moleculae aerae tanto magis a se invicem recedere conantur, guo

abundantior fuerit aetherea materia meatus aeris transfiuens, et guo pernicios ejus motus. Ab hac enim

”

materia aetherea vim omnem derivandam esse putat, qua aeris moleculae in alia corpora agere possunt.

[Phoronomia p. 181 n°® 326]

Esta teoria de Parent es refutada por Hermann de la siguiente forma. Es sabido,
dice, que los fluidos fluyen por lugares estrechos con una velocidad inversamente
proporcional a la seccién del conducto. Como los liquidos tienen mayor densidad que el
aire, la velocidad de las particulas etéreas por entre los conductos de sus moléculas
serd mayor que en el aire, lo que producird una mayor fuerza sobre las moléculas de
liquido, ya que, tal como demostrard, nos dice, la fuerza de un flujo de particulas estd

en razon del cuadrado de la velocidad de dichas particulas.

Concluye que, en los liquidos, siguiendo la teoria de Parent, la fuerza eldstica es
mayor que en el aire, cosa que contradice lo observado. ¢Por qué, pregunta Hermann,
el agua no tiene elasticidad? Mucha mayor elasticidad (elasticitas) adn tendria el

mercurio, acaba afirmando.

Hermann no propone una teoria de la elasticidad alternativa. Afirma que cualquiera
que sea su causa fisica, es suficiente saber que existe, por los experimentos
citados'® realizados con la bomba pneumdtica (Autlia Pneumatica) de Guericke

perfeccionada por Boyle.

Notemos la prudencia de Hermann que ho niega explicitamente la existencia del éter
en toda su obra, sin embargo usa los resultados de la mecdnica racional para
demostrar la imposibilidad de usar tales particulas etéreas para explicar una

propiedad del aire. El éter es sencillamente innecesario en su obra.

103« S . . ) L . . .
“Verum quicquid sit de causa physica elateris aeris, ad institutum nostrum sufficit aeri vim elasticam

inesse, quod praeter experimenta ab initio hujus capitis relata, etiam probari potest effectibus antilae
Guerikianae a Roberto Boylio postea magis perfectae,...” [Phoronomia p. 183 n° 327]
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Pasa a describir las partes de la bomba pneumdtica (ver fig. 25 ) cuya razén de ser es

poder extraer el aire del recipiente superior M a través de las sucesivas emboladas

(t,s, r, qetc.) en el tubo AG™* o comprimirlo en la secuencia inversa (T, S, R, etc.). La

valvula IK (spiraculo) permite cerrar la comunicacién entre el tubo del émbolo AG y la

campana M. El plato CD contiene agua para evitar indeseadas entradas o salidas de

aire.

Hermann demuestra a
continuacién, basdndose
en que las raridades
sucesivas siguen una
progresion geométrica, la
relacion fundamental de
la bomba de aire.
Recordando la definicidn

de raridad como el

|

b= |

i

1

Fig. 25

inverso de la densidad, obtiene la siguiente relacién que sirve tanto para

rarefacciones como para condensaciones del aire:

Donde:

Z
Log —
gP

Q
Log —
gP

n=

e nes el nimero de emboladas realizadas en la maquina

e Zlararidad final tras las n emboladas

e P lararidad inicial o natural antes de hacer funcionar la mdquina

¢ Qlararidad tras la primera embolada

Hermann afirma que tal relacién fue establecida sin demostracion por Jacob

Bernoulli en 1693 y que en 1705 Varignon publica su demostracion en las Actas de la

1% Para una breve historia de la bomba pneumética y sus diferentes disefios ver [WEBSTER C. 1965; pp.

464-465]
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Academia de Paris. La memoria de Varignon que contiene la demostracion, que
bdsicamente es la de Hermann, es “Manometre ou machine pour trouver le raport
des raretés ou rarefactions de lair nature/ ..." [Histoire de L'académie Royale des
Sciences. 1705 pp. 300-331]. Varignon indica en la memoria que fue Bernoulli quien

da la regla sin demostrar en de seriebus infinitis de 1692.

Dedica el capitulo VII a estudiar la relacién entre la fuerza eldstica y la densidad
("De viribus elasticis aeris cum densitatibus ejus comparatis' [Phoronomia pp. 189-
197]. Hermann nos dice que los “filésofos” han notado que la fuerza eldstica crece
cuando lo hace la densidad del aire, pero que habrd que examinar si la proporcién es

simple o compuesta.

A continuacidn, explica que la presién sobre las paredes que contienen el aire, es un
efecto colectivo de la elasticidad de las particulas. Ya que la elasticidad consiste en
el empuje de las moléculas del aire en su intento de alejamiento mutuo, la presién
sobre la pared que intenta impedir su expansion, serd la resultante de las fuerzas que

ejercen todas las particulas [Phoronomia p. 189 n°® 3391].

El teorema principal [Phoronomia pp. 189-190 n° 340] supone la expansién en una
dimensién de un recipiente prismdtico que contiene aire. Muestra que, tomando como
hipotesis que la fuerza eldstica es proporcional a la potencia n de la distancia de
separacion entre dos particulas contiguas, esta misma fuerza eldstica es proporcional

a la potencia n de la densidad. En nuestra notacién: Foc D".

El siguiente teorema extiende la demostracién anterior para un recipiente que se
expande en tres dimensiones. En este caso obtiene que la fuerza eldstica sobre una

superficie igual en el recipiente original y expansionado es en nuestra notacién:

Foc D" . Evidentemente en el caso simple en que n=1, es decir suponiendo que la
elasticidad es simplemente proporcional a la distancia entre particulas, la fuerza

eldstica queda proporcional a la densidad del aire.
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Tal como afirma Hermann, éste es el resultado contenido en el escolio de la prop.
XXIII del segundo libro de los Principia®. De hecho, la figura y los razonamientos

que acompaiia la demostracion de Hermann son similares a los empleados por Newton.

En ambos casos se parte de la hipétesis de que la presién es inversa a la distancia
intermolecular, que se toma como constante para todas las moléculas y no de forma
estadistica, dejando indeterminada la potencia n de dicha proporcionalidad. Con esto,
se demuestra la proporcionalidad directa entre presién y densidad segin el
exponente n. Como la distancia intermolecular es inversamente proporcional a la
densidad, estas demostraciones tienen un cardcter tautoldgico. La primera deduccién
de la ley de Boyle a partir de la teoria cinética de las particulas, se encuentra en al

Hydrodynamica de Daniel Bernoulli.

En la proposicion XXIII establece que la relacién entre presion y volumen
corresponde a una hipérbola, y describe a continuacion la experiencia que usa tubos
en forma de J para comprobar la relacién inversa entre volumen y presién.

106 Mariotte, Bernoulli

Experiencias, nos dice, ya realizadas cuidadosamente por Boyle
entre otros. Finalmente resuelve problemas en los que obtiene la altura del mercurio
en un fubo de Torricelli que contiene aire encerrado junto con el mercurio y que, tal
como muestra Hermann, equivalen a las encontradas por Jacob Bernoulli en su De

gravitate Aetheris (Amsterdam 1683).

4 4 3 Modelos atmosféricos

El capitulo VIIT de la seccidén primera del segundo libro trata del estudio de la

densidad del aire a diferentes alturas atmosféricas, y esto para cualquier hipdtesis

1% Este teorema es el ultimo de la seccion V del segundo libro de los Principia que trata “Sobre la densidad
y compresion de los fluidos: hidrostatica”. Newton llama a la elasticidad fuerza centrifuga. [NEWTON 1.
1687 b. pp. 694-699]

1% Ver el cap. X. Boyle’s Experiments on the Compression and Dilatation of Air [NEBSTER C. 1965; pp.
484-487]
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sobre su elasticidad ("De densitatibus aeris in diversis Atmosferae locis in omni
possibili elasticitatum hypothesi") [Phoronomia pp. 197-212]. Destaquemos como de
nuevo el teorema principal consiste en un principio energético (trabajos virtuales) en

una situacion estdtica.

Nos indica nada mds comenzar que sélo considerard el peso como causa de los
cambios de densidad del aire, y no tendrd en cuenta el efecto que sobre la misma

inducen el calor o el frio'?’.

Esta seccion ilustra de nuevo el método general que sigue Hermann en su obra;
desarrolla teoremas generales que usan el cdlculo diferencial e integral en forma
geométrica, para posteriormente obtener, como casos particulares, resultados ya
conocidos y otros de su propia cosecha. Hacemos a continuacién un resumen de sus

resultados. Construye un grdfico (fig. 26) con 5 variables interconectadas:

T
1 | a b
Pesos vs 1 ; a B Densidades
2c 2A 2B ver
1c / 1A 18
C / A . B
—e\ ° d6
f \ w b EIasT.icidades
2[:\ 20 1D (presiones) vs
Inversadela 1E 10 densidades
densidad vs
presiones E o) D
Fig. 26

197 Tal como sabemos, el problema del estudio del aire requiere considerar la ecuacién de estado de los
gases que contiene las variables: presion, volumen, densidad y temperatura. Hermann hace su estudio sin
tener en cuenta las variaciones de temperatura, es decir a T=cte.
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o El eje vertical AT representa las alturas atmosféricas consideradas A, 1A,
etc (que llamaremos r).

e La curva C (Scala gravitatis variabilis) expresa los valores de los pesos del
aire 1A1C, etc. para cada altura de la atmésfera A, 1A, etc.

e La curva B (Scala densitatum) representa el valor de la densidad atmosférica
para cada altura A, 1A, etc.

e La curva D (Scala elasticitatis aeris) representa los valores A10, A20, etc. de
la elasticidad del aire para cada densidad OD=, 10D, etc.

o La curva E (Reciprocam scala elasticitatis) representa los valores EO, 1E10,
etc. reciprocos de cada elasticidad OD, 101D, etc. De forma que el producto

EO.OD = 1E10.101D = efc.

Establece un axioma [Phoronomia p. 198 n° 358] que expresa la condicién de

equilibrio atmosférico, es decir, que el peso (p) de la atmésfera es en cualquier lugar

equivalente a la elasticidad del aire (P) en ese lugar. Es decir %z P

A partir del axioma y con la construccion anterior demuestra el teorema principal
[Phoronomia p. 199 n° 359]. Considera primero un cambio diferencial de altura aa (en
rojo en el dibujo), para después integrar, llegando al siguiente resultado de igualdad

de dreas: ACca = OEeo. Y Esto para cualquier cay eo.

En nuestro lenguaje constituye un “teorema energético virtual” (el trabajo del peso
H P 1

equivale al trabajo de compresion del aire): jpdl’ = I—dP
0 P,

Donde p es el peso, r la altura, P la presion y la p densidad.

En el corolario I [Phoronomia p. 199 n° 360] supone que la curva de densidad es una
pardbola general de grado m, y que la del peso es una hipérbola general de grado n;
esto implica que la curva inversa de la densidad es una hipérbola de grado m.

Escribimos las hipdtesis asi:
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De este modo Hermann deja abierta en su demostracion la posibilidad de que la
proporcionalidad entre densidad y presion, asi como entre peso y distancia al centro

de fuerzas, sea simple o compuesta.

A continuacidn realiza las integraciones de su teorema general siguiendo el algoritmo

|108

ya explicado por éI"°, y obtiene una expresién que da la densidad en funcién de la

mn-m

altura r: p ocr Ml

El interés de Hermann es mostrar que tanto los casos demostrados, como los citados
y no demostrados por Newton en el escolio posterior a la proposicion XXII del libro
IT de los Principia®, se deducen como casos particulares de su teorema general. Para
ello, particulariza la ecuacién con n =2 (que corresponde a la ley newtoniana del

inverso del cuadrado para el peso) y m variando segtn: m = ; m = 3/5; m = 3/2.

Estudia el caso m=1, que implica la proporcionalidad de la densidad con la presién (la
curva de presiones es una recta), para el que la expresion anterior no es vdlida [Ibid.

n® 361], llegando a la conclusién de que la densidad forma una progresién continua.

Hermann deduce en un corolario posterior [Ibid. n® 362], que con m=1y en el caso

general en que P r_“ las densidades forman también una proporcién continua.

De nuevo particulariza obteniendo los casos que corresponden a los estudiados o

citados por Newton:

1% Ver la exposicion y discusién del algoritmo de integracién en el capitulo dedicado al calculo diferencial e
integral.

1% Newton trata la variacion de la densidad del aire con la altura en ciertos casos en la seccion V de segundo
libro de los Principia dedicado a la Hidrostatica NEWTON 1. 1687 b; pp. 687-699]
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n =1 [Ibid. n° 363] que corresponde, nos dice, a la proposicion XXI

demostrada en los Principia™.

e n=2[Ibid. n° 364)]. Corresponde a la demostracién de la proposicién XXII de
los Principia™.

e n = -1 [Ibid. n° 365]. Corresponde al caso citado sin demostracién en el
escolio posterior a la prop. XXII citada.

e n=0[Ibid. n° 366]. Corresponde a considerar que el peso es constante, lo que

es cierto para pequefias alturas. En este caso deduce que la ley de densidad es

logaritmica con el inverso de la altura r: roclog—. En su lenguaje, la

densidad decrece en progresién geométrica cuando la altura crece en
g 9

progresién aritmética. Hermann nos indica que fue el caso estudiado por

Halley'?, pero no dice que es también un caso citado por Newton sin

demostracion en el escolio posterior a la prop. XXII mencionada.

Finalmente, Hermann llega a la llamada férmula barométrica [Ibid. n® 369] para el
dltimo caso, es decir considerando el peso del aire constante con la altura (n=0) y su

densidad proporcional a la presién o elasticidad (m=1).

log 0
: . T, , . .
En nuestro lenguaje la relacién es: Lo P Hermann explica cémo, conocidas
r
P>

las alturas barométricas en tres lugares py, piy p. Yy la altura ri entre las dos
primeras, la proporcién permite calcular la otra altura rz. En un escolio final [Ibid. n°
370] lo aplica a un ejemplo numérico que extrae de la obra Tentamine De Natura

Aeris de Mariotte (pp. 194-195).

"0 INEWTON 1. b 1687; p. 692]

U Ibid. p. 694]

"2 Halley publica su formula barométrica en 1686. Halley, Edmund, “On the height of the mercury in the
barometer at di.erent elevations above the surface of the earth: and the rising and falling of the mercury on
the change of weather”, Phil. Trans. Royal Soc. of London 16, 104-116. Ver [BERBERAN N.M. (et al)
1997]
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5 LA DINAMICA EN LA FORONOMIA

La seccién segunda del primer libro estd dedicada al estudio del movimiento de

cuerpos sélidos sometidos a solicitaciones continuas.

Hermann hace un estudio deductivo de la dindmica, mostrando primero unos
principios generales o leyes, de los que obtendrd muchos de los resultados ya
conocidos, pero deducidos de forma diferencial. Para ello hace primero un trabajo de
construccion conceptual que tal como veremos es de gran riqueza, a pesar de que no
establecerd nombres explicitos para algunos de los conceptos que maneja con

profusién.

Las demostraciones de los principios generales son realizadas en referencia a
construcciones geométricas, usando lo que caracterizamos como ‘“geometria
diferencial”. Esta es la etapa previa al “dlgebra diferencial” que caracteriza la
"mecdnica analitica” de Lagrange de 1788, que historicamente va desarrolldndose
hasta hacerse independiente de la geometria. Es interesante destacar que en
Hermann se da una mezcla de ambas técnicas; veremos como algunas de las
deducciones de Hermann son puramente algebraicas, lo que nos indica de qué modo se
estd produciendo la transicién metodoldgica y conceptual hacia una mecdnica analitica

independiente de la referencia geométrica.

Hermann consigue en su exposicion dindmica fundamentalmente tres cosas: definir
conceptos mecdnicos en su forma diferencial, establecer deductivamente los
resultados sobre unos principios generales, y mostrar caminos de aplicacion del

cdlculo diferencial a la mecdnica. Mostraremos de qué modo lo consigue.
Veremos cémo Hermann procede a una reestructuracién de los principios dindmicos

en relacién a los resultados representados en los Principia, y cémo muchos de los

resultados dindmicos de la Phoronomia suponen una reformulacién diferencial, pero

94



también un intento de demostracion mds sélida, de problemas inaugurados por
Newton. Estas tareas constituyen también objetivos de los principales actores de la
reformulacion mecdnica, principalmente los hermanos Bernoulli y Varignon a

comienzos del s. XVIII.

Compararemos el trabajo de construccion conceptual y metodolégica de Hermann, con
el que Varignon habia realizado unos afos antes. Para ello usaremos el andlisis que
hace M. Blay de las memorias de Varignon de 1689 y 1700 en su obra: La naissance
de la mecanique analitigue. La science du mouvement au tournant des XVIIe et

XVIIIe siécles. [BLAY M. 1992].

Mostraremos cémo Hermann realiza una conceptualizacién y una construccién
algoritimica independiente de la de Varignhon, aunque ambos persiguen el objetivo de
fundar una mecdnica sobre las bases del cdlculo diferencial leibniziano. Ambos
desarrollan las imprescindibles herramientas conceptuales infinitesimales (fuerza y
velocidad instantdneas). Serd Hermann quien escriba la ley fundamental de Ila
dindmica en la forma que adopta en nuestros libros de texto por primera vez. Y quien
también por primera vez demuestre el teorema de las dreas usando el nuevo cdlculo, y
utilizando, como actualmente, la conservacién del momento angular. Pero la diferencia
que creemos fundamental con el trabajo de Varignon consiste para Hermann en
considerar como fundamental un enfoque que ahora identificamos como “energético”
(teorema trabajo-energia), y que él llama principio general de de igualdad de
momentos. Los trabajos de ambos contienen los dos enfoques que adoptard la
mecdnica mds elaborada, el que usa la segunda ley de Newton y el que utiliza la
relacion trabajo - energia. Herman usard ambos, pero haciendo hincapié en la
potencia de uso del segundo en muchos de los temas tratados en este capitulo. Nos
quedard por saber hasta qué punto ambos enfoques (y autores) sirven de inspiracion a

Euler y después a Lagrange en sus magnas construcciones.
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Hemos dividido este capitulo de la monografia en dos apartados principales en los que
Hermann establece las leyes generales del movimiento y las leyes bdsicas especificas
de las fuerzas centrales. Hermann en los Ultimos capitulos de su dindmica se ocupard
también de otros temas dindmicos, como la caracterizacién de las fuerzas centrales
en drbitas moviles, las leyes del movimiento pendular y las leyes de los choques, asi
como el movimiento en medios resistentes, todos ellos topicos del momento, pero que,
dada la extensién de esta monografia, trataremos de modo esquemdtico, en espera

de una mayor concrecion.

5.1 LAS LEYES GENERALES DEL MOVIMIENTO Y SUS APLICACIONES

El capitulo T de esta segunda seccién trata sobre las solicitaciones generales
aplicadas continuamente, y del movimiento que estas originan en el vacio'®. La
dindmica general comienza con 12 definiciones [Phoronomia pp. 51-55], un postulado y
un lema. En las primeras 7 definiciones establece la descomposicion de fuerzas que

usard en los estudios dindmicos, asi como las escalas geométricas asociadas:
I. Define el vacio (vacuum) como el medio que ho afecta al movimiento de los
cuerpos. Ver el apartado 3.5 de este trabajo para una discusion del concepto de

vacio y materia y la posicién de Hermann sobre el éter.

IT. Solicitaciones centrales o de gravedad variable (Solicitationes centralis o

solicitationes gravitatis variabilis). aquellas concurrentes en un punto llamado
“centro de solicitaciones”. Nos dice, también llamadas por Newton “fuerzas
centripetas”. Vemos aqui como la terminologia de de Hermann hace converger
las de Newton y la de Leibniz'®. Solicitacién (Leibniz) equivale a fuerza

(Newton), eliminando las distinciones poco prdcticas de Leibniz.

'3 De generalibus solicitationum continuatarum affectionibus, et de motibus in vacuo inde oriundur.
"4 Ver el apartado 3.3 de este trabajo, en el que se discuten las interpretaciones de Newton, Leibniz y
Hermann del concepto de fuerza.
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IIT.

Iv.

VI

VII.

Solicitaciones continuas (Solicitationes continuari): aquellas continuamente

aplicadas al cuerpo durante todo su trayecto. Se consideraba en el s. XVII y en
la mitad del XVIII que la fuerza actuaba por impulsos repetidos sobre el

mévil'®®,

Escala de solicitaciones centrales o de gravedad variable: en este caso y por

primera vez usa las coordenadas polares para representar el valor de la fuerza

central en cada punto de la trayectoria seguida por el mévil.

Solicitacién tangencial: aquella parte de la fuerza central que empuja en la

direccién tangencial en el punto de la curva que representa la trayectoria.

Solicitacién perpendicular: aquella parte de la fuerza central perpendicular a la

tangente en cada punto de la trayectoria. Esta fuerza es la que desvia
continuamente al cuerpo de la direccidn tangente que describiria si no actuara
la fuerza central. Es de hecho, nos dice, opuesta al impulso que intenta separar
al cuerpo de la curva en cada punto. Asi mismo, explica que no serd necesaria
una escala para estas fuerzas, ya que se equilibran en todo momento con el

impulso de alejamiento.

Escala de solicitaciones tangenciales: curva que representa en coordenadas

polares la fuerza tangencial en cada punto de la trayectoria.

15 Ver la nota anterior.

97



A continuacidn, representa las escalas en un diagrama mdltiple (fig. 27), de forma

que:
/h
H
A R A G g
/ ~~
B S E \F
b S e al \f
N
C n
o b
q
D
Fig. 27

e ANn (linea negra de la figura) es la trayectoria del mévil en la que se
consideran dos puntos infinitamente préximos Ny n cuyas distancias al
centro de fuerzas D son ED = ND y eD = nD respectivamente.

e Na = EB es la solicitacién central en el punto N respecto del centro D.
Igualmente eb representa la solicitacién en n. La escala ABbc es la de
fuerzas centrales para cada distancia a D representada en el eje
vertical AO.

e Na tiene las componentes: tangencial Np y perpendicular ap

e La componente tangencial Np = ES y la que corresponde a na = es. Por

lo que la curva RSs es la escala de fuerzas tangenciales.
En las siguientes definiciones conceptualiza una serie de magnitudes asociadas a la

aplicacion de fuerzas y que necesitard para demostrar los principios generales de su

dindmica:
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VIII.

IX.

XI.

XII.

Solicitacion acelerante o retardante segln el cuerpo descienda acercdndose al

centro O, o ascienda alejdndose de O.

Momento de una solicitacién: producto de la fuerza por la distancia infinitesimal

recorrida Nn. En el diagrama el momento de EB serd BE.Ee (rectdngulo BEe) y el
momento de ES serd ES.Ee (rectdngulo SEe). La nueva magnitud definida por

Hermann supone considerar el momento diferencial de una fuerza.

Escala de celeridades: curva AFf asociada a la de solicitaciones en cada punto N

de la trayectoria.

Momento de la celeridad: producto de la velocidad en un punto N por la

variacién infinitesimal de velocidad af entre dos puntos préximos Ny n de la
trayectoria. Este es un concepto original de Hermann que representa para
nosotros un diferencial de energia cinética. Lo usard para la demostracién de
uno de sus feoremas principales, el que en lenguaje actual llamamos “de las

fuerzas vivas", y que exponendremos enseguida.

Representacién algebraica del tiempo transcurrido: usa la simbologia tAE para

indicar el tiempo transcurrido desde que el movil estd en A hasta que llega a E,
etc. Veremos a continuacién que representa una variacion infinitesimal de
tiempo como dT y también como tNn, lo que nos indica una vez mds la mezcla de

simbolos geométricos y algebraicos que usa Hermann en toda su obra.

La representacion del diferencial de tiempo como dt, ausente en la obra de
Newton, aparece con Leibniz, tal como vemos por ejemplo en la demostracidn
del problema de la curva isdcrona planteada como reto a los cartesianos en el

texto: "Reponse de M. L. d la remarqgue de M. /abbé D. C. contenue.." que Leibniz
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publica en 1687 en Nouvelles de la Républigue des Lettres™. También Varignon

desde los articulos de 1698 representa un instante como dz'’.

Tal como explica M. Blay en la obra citada'®, la expresién algebraica del tiempo
permitird resolver cuestiones relativas a este pardmetro fisico bdsico, como los
conceptos que aparecen como consecuencia de considerar sus variaciones
temporales: la velocidad en un instante, la aceleracién y la fuerza. El trabajo de

Hermann estd pues en la linea de estas avances conceptuales.

Tras la definicién de magnitudes y escalas establece el postulado siguiente: podemos
considerar que el movimiento es uniforme en un “elemento” (diferencial) de espacio
Ee o Nn. Hermann explica que el movimiento no es de velocidad constante sino que
sufre un incremento (o decremento) de velocidad infinitesimal, pero como este
diferencial se puede suprimir al ser sumado (o restado) a una cantidad finita,
podemos tomar la velocidad como constante. En simbolos diferenciales diriamos que:
v + dv = v. Esta era una suposicion comin en la época, basada en la algoritmizacién

diferencial de Leibniz.

Un corolario [Phoronomia p. 55 n°® 128] establece las relaciones cinemdticas en un
elemento de distancia donde el movimiento, como ha postulado, puede considerarse
uniforme. Con sus simbolos (EF representa la velocidad) queda: tEe = Ee:EF y tNn =
Nn.EF de donde Ee = EF. tEe y Nn = EF.TNn. Equivale a escribir tal como hace

Hermann un poco mds adelante de modo algebraico [Phoronomia pp. 64-65 n° 145]:

dt =dr:iv y dr=vdt 5-a

" Ver [BLAY M. 1992 pp 123-125]
"7 Blay Op. Cit. p. 156
"¥ Ibid. p. 112
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Hermann estd dando implicitamente la expresién de la velocidad en un instante v o

velocidad cuando se recorre un dr en un dt. Esto le permitird escribir por primera
vez en la historia la segunda ley de Newton en su forma diferencial idéntica a la

actual.

Si comparamos el trabajo conceptual de Hermann con el que realizé Varignon en la
memoria presentada a /‘Académie en 1698 '?°, en la que define explicitamente la
velocidad instantdnea como cociente de diferenciales v = dr:dt, vemos que Hermann
dispone de las relaciones para la velocidad instantdnea, ya que aunque no expresa en
este capitulo la tercera expresion en la que la velocidad esta aislada, si la ha dado en

su definicion de velocidad (ver 3.2).

La inclusién de estas relaciones cinemdticas por parte de Hermann en el corolario de
un postulado, permite pensar que para Hermann las relaciones diferenciales en un
elemento de distancia se dan de forma natural. Varignon sin embargo convierte la

definicidn explicita de velocidad instantdnea en una de sus reglas bdsicas de cdlculo.

Para Hermann no hay problema de homogeneidad de magnitudes en este caso, ya que
Hermann habia definido la velocidad en un movimiento uniforme como cociente entre
espacio y tiempo en las definiciones preliminares de la Phoronomia™®. Su extensién

para un diferencial es inmediata.

Blay en la obra citada'®®, ha analizado manuscritos de Leibniz relacionados con una
memoria de 1689. En ellos Leibniz enuncia un “principio general” (principium generale)
que expresa la relacion diferencial dr = v dt que supone, en palabras de Blay, una

definicién operativa no explicita de la velocidad instantdnea, y que supone “sélo” una

9" Afirmamos que es “implicita” porque Hermann no usa los términos “velocidad instantanea”, o como
veremos a continuacion en el caso de la fuerza, no usa la expresion “fuerza instantanea” pero si sus
expresiones algebraicas.

1207 a construccion del concepto de velocidad instantanea por Varignon ha sido analizado en la obra de M.
Blay [BLAY M. 1992 pp. 153-179]

121 Ver el apartado 3.2 de esta monografia donde se analiza el concepto de velocidad en Hermann.

12 Ibid. pp. 126-132
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transposicién algebraica y diferencial de las relaciones geométricas con las que
trabajaron Galileo y Newton. Hermann establece en la Phoronomia una relacién
similar a la de Leibniz, afiadiendo la expresién para dt = dr:v, aunque fue Varigon,
unos afios antes, quien explicita el concepto de velocidad instantdnea y quien
desarrolla algoritmos para obtener una de las magnitudes cinemdticas conociendo las

otras, como analiza la obra de Blay.

Podemos esquematizar lo establecido por Hermann diciendo que:

o Descompone la fuerza central en tangencial y perpendicular'??,

e Usa la representacién polar para las escalas: de la fuerza central, de su
componente tangencial y de la velocidad en cada punto.

e Conceptualiza dos nuevas magnitudes: el momento de una fuerza (F.dr) y el de
la velocidad (vdv) para un elemento de movimiento.

e Extiende la descripcién a cualquier movimiento acelerante o retardante y a
movimientos en linea recta AO o en una curva ANn.

e Establece algebraicamente la relacién: espacio = velocidad - tiempo en un
elemento de distancia recorrido y fiempo = espacio : velocidad, es decir, puede

manejar la velocidad en un instante, sin explicitar su definicién.

Un lema establece la relacién entre las coordenadas polares, distancia r al centro de
fuerzas D y el dngulo a, con el arco correspondiente. Diriamos con simbolos distintos
de los de Hermann, que cualquier dngulo a puede ser expresado por el cociente entre

el arco s y el radio r correspondiente (a= s:r).

% Primera formulacion histérica de la “ley fundamental de la dindmica" en su forma

diferencial actual

12 Euler usara en su mechanica de 1736 la descomposicion en coordenadas cartesianas, con la que resultara
mas facil resolver problemas de cualquier tipo, al aplicar en cada eje, la que hoy conocemos como ley
fundamental de la dinamica F,., = m. a.
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La proposicion XVI y el escolio que le sigue constituyen la expresion detallada dada
en lenguaje equivalente al actual, de la que hoy conocemos como segunda ley de
Newton o ley fundamental de la dindmica. La proposicién dice: “"Toda solicitacion
actuando uniformemente, equivale al movimiento generado, divido por el tiempo en el

_ . , M.V
que el movimiento mismo se produce.”?* Con los simbolos de Hermann: G = -

(Ibidem) donde T es el tiempo durante el que actda la fuerza y:

e G es la solicitacién continuamente replicada que nosotros llamariamos “fuerza
instantdnea”. Aqui Hermann indica que de no ser repetida seria una “fuerza

“125 que no produciria movimiento.

muerta
e M.V es el producto de la masa por la velocidad del mévil, o “"movimiento
generado” (“motus generandus") que Hermann llama también “cantidad de

movimiento" (“motus gquantitates”)

Supone la algebrizacién de la segunda ley de Newton presente en los Principia de
forma retdrica y ambigua, ya que en la definicion de fuerza motriz es el cambio de
movimiento en un tiempo dado y en la segunda ley como cambio de movimiento
(movimiento equivale a cantidad de movimiento). Hermann tiene en cuenta la masa en

el movimiento generado y considera el fiempo en el que se produce el cambio.

En el escolio posterior, Hermann generaliza el resultado anterior estableciendo la
ecuacién en su forma diferencial, vdlida para cualquier fuerza 6'? en un intervalo de
tiempo dT. El razonamiento es el siguiente: supongamos que G es variable de cualquier
modo; si consideramos su accién durante un intervalo infinitesimal de tiempo dT, el
mévil adquiere una velocidad dV que al ser en un intervalo infinitesimal podemos

suponer uniforme, por lo que tenemos la relacion general:

124 «“Omnis solicitatio uniformiter agens aequivalet motui genito, applicato ad tempus, quo motus iste
producitur.” [Phoronomia p. 56 n° 130]

123 Para Hermann como para Leibniz, si la fuerza actia sélo en un instante no produce movimiento, se trata
de fuerzas muertas. Ver el capitulo 3.3 de este trabajo donde se discute el concepto de fuerza.

126 Hermann llama a G indistintamente: “solicitacion central”, “peso” (pondus) o “gravedad” (gravitatem),
pero al generar cualquier movimiento rectilineo o curvilineo, puede ser cualquier tipo de fuerza.
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=MV 5y
dT

Hermann expresa por primera vez después de los Principia de Newton, la ecuacion
fundamental de la dindmica en la forma general en que podemos encontrarla en los
textos de fisica actuales. Recordemos Newton describe la segunda ley en los

Principia verbalmente sin introducir simbolos algebraicos.

En este punto tenemos que comparar una vez mds el esfuerzo de Hermann con el que
unos afios antes ha realizado Varignon, y que ha sido expuesto y analizado en la
monografia de M. Blay [BLAY M. 1992]. Varignon y Hermann se proponen traducir en
lenguaje diferencial los resultados de la dindmica de su época, en especial los
resultados de los Principia, pero tenemos que resaltar que estos autores se
esfuerzan también por encontrar principios generales a partir de los que poder

deducir la mayor parte de resultados dindmicos.

Varignon presenta en 1700 dos memorias en I'Académie’®” que se publican en 1703. La
primera, que integra los resultados de la memoria cinemdtica de 1698, y de la que
hemos hablado a propésito del concepto de velocidad en un instante, estudia las
fuerzas centrales para establecer un conjunto de relaciones entre las magnitudes:
velocidad, espacio, tiempo y fuerza, de forma que puedan ser determinadas a partir
del conocimiento de una de ellas. En este trabajo Varignon define a partir de la
“velocidad en un instante”, la variacién de velocidad dv como ddx:dt® para dt
constante. A partir de esta Ultima expresién y apoydndose en el modelo galileano de
caida de cuerpos, llega a la expresion de “fuerza en un instante” como: F = dv : dt =
ddx : dt* [Ibid. p. 185] que usard como una de las sus 'Régles générales des
mouvemens." para estudiar movimientos en linea recta y en curvas en su segunda

memoria de 1700,

2T IBLAY M. 1992 pp. 180-221]
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Notemos que ni Hermann ni Varignon poseen como concepto diferenciado de la
aceleracion o variacion de velocidad con el tiempo, aunque trabajen con la variacién
de velocidad. En [Phoronomia p. 102 n°® 200] cuando hace el estudio del movimiento de

los péndulos compuestos da la siguiente definicién:

"Se dice que los péndulos compuesto CPQ o el simple CN aceleran igualmente, cuando la celeridad se

incrementa infinitesimalmente por la solicitacién central de la gravedad en cualquier pequefio tiempo

minimo .."*28

Desde Galileo se usa verbalmente aceleratio’®®

como cambio de velocidad, pero sin
que existan definiciones explicitas y sobre todo, sin que aparezca un simbolo
algebraico diferenciado, sefial de su conceptualizacién como objeto separado en la

formulacién mecdnica.

Es evidente que Hermann sigue su propio modo de construccién deductiva de la
dindmica independiente de la de Varignon, aunque éste Ultimo al disponer del
concepto explicito de velocidad instantdnea, puede dar una expresion de la fuerza

con la diferencial segunda del espacio.

Hermann posee, asi mismo, una expresion no explicita de la fuerza instantdnea con la

relacion 5-b. Dispone pues de las relaciones para trabajar con la fuerzay la velocidad
en un instante que, tal como veremos a continuacion, le permitirdn obtener resultados
de forma diferencial muy potentes en el estudio dindmico de las fuerzas centrales.

Exponemos a continuacidn los principales.

128 “Motus penduli composti CPQ et simplicis CN similiter accelerari dicuntur, cum celeritastis incrementa
infinitesima a solicitationibus gravitatis centralibus quolibet tempusculo minimo ...”"

12 [GALILEO G. 1988 p. 16]
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Teorema diferencial de las “fuerzas vivas"%: El momento de una fuerza

cualquiera es igual al momento de la velocidad por la masa del cuerpo [Phoronomia

p. 57 n° 132].

Hermann no le da ninglin nombre, pero equivale al teorema que hoy conocemos
como “de las fuerzas vivas” (o teorema trabajo-energia en otra denominacion
actual) en su forma diferencial: el trabajo realizado por la componente tangencial
de la fuerza en un desplazamiento diferencial ds sobre cualquier curva, equivale al
producto de la masa por vdv, que corresponde a nhuestra conservacién de la
energia. Recordemos que las fuerzas perpendiculares a la trayectoria no hacen

trabajo. Con simbolos actuales: Fids=mvdv (5-¢)

Consideramos significativo dar aqui la demostracién de Hermann, ya que, aunque
toma como referencia la figura, se realiza de modo puramente algebraico. Este
teorema es una consecuencia directa de la ley fundamental establecida antes
(para nosotros 2° ley de Newton). Usaremos la simbologia actual para facilitar la

comprension.

Parte de la ley fundamental que ha establecido (ver 5-b), y que es la segunda ley

de Newton: F = m dv:dt.

La rescribe teniendo en cuenta que la componente tangencial F; de la fuerza
central es la Unica que interviene en la variacion del movimiento, esto es:

Fidf =mdv
Multiplica ambos lados por la velocidad v supuesta constante en un diferencial de

tiempo, tal como justifico en el postulado inicial del capitulo:

130 La denominacion corresponde a la actual y esté relacionada con la polémica de las “fuerzas vivas” que se
desarrolla a finales del s. XVII, a partir de la critica que hace Leibniz de la dinamica cartesiana. Leibniz
llamaréd “fuerza viva” a lo que conocemos hoy por energia cinética. El debate, reavivado a partir de la

publicacion de la correspondencia Leibniz-Clarke en 1717, se extendera a lo largo del s. XVIIL. Su
resolucion sera posible cuando se puedan construir los conceptos diferenciados de fuerza y de energia que
permanecian mezclados en la polémica. Ver sobre la polémica: [DUGAS R.1954 pp. 466-483] y

[HANKINS T. L. 1965]
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Fi vdt = m vdv
Finalmente usa la relacién en la que introdujo la velocidad en un instante (5-a) y

llega a la expresién final: Fids = mvdv

Hermann identifica al final el producto vdv con un fragmento del drea del
tridngulo auxiliar que construye sobre la figura (fig. 27). Para representar el drea
que corresponde al momento de velocidad construye el tridngulo auxiliar AGH, de
modo que vdv = GHgh. Hermann necesitard esta asociacién con una figura para

hacer la integracion, que en este caso si serd puramente geométrica.

Si la trayectoria es la recta AD, la fuerza central no tiene componentes, en este
caso es la fuerza total la que hay que considerar en la ecuacién. Con esto quedan
cubiertas todas las opciones, tanto si las fuerzas centrales actian en
trayectorias curvas cualesquiera como si acttian en una misma direccién.

Sefialemos que Varignon en la memoria de 1700 citada™"

muestra cémo, a partir
de sus dos reglas en las que ha definido la velocidad y la fuerza en cada instante,
puede deducir resultados de la cinemdtica galileana y de la dindmica newtoniana.

En particular deduce la relacion 5-c.

La diferencia con Hermann es que éste destaca como principio, tal como veremos
un poco mds adelante, la conservacion de la energia, cuya potencia deductiva
resulta mds fdcil en muchas situaciones en las que la segunda ley de Newton seria

farragosa.

Teorema integral de las "fuerzas vivas":

En el teorema de la prop. XIX [Phoronomia p. 57 n° 132] Hermann hace la
integracion del resultado diferencial anterior, llegando a las siguientes dos

resultados:

BUBLAY M. 1992 pp. 153-179]
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1°. Si dos méviles iguales sometidos a las mismas fuerzas centradas en D, pero
uno de ellos moviéndose por o por la curva AN o cayendo por la recta AD,
adquieren la misma velocidad si han recorrido la misma distancia r (equidistantes
de D, nos indica Hermann) partiendo del reposo; En nuestro lenguaje, demuestra
que dos méviles que caen desde la misma altura por distintos caminos alcanzan la

misma velocidad.

2°. El cuadrado de la velocidad de cada uno de los mdviles es igual al doble del
drea AZBEA para masa unidad. Es decir, en nuestro lenguaje:

Vi = 2W (5-d)

(Siendo W el trabajo necesario para alcanzar la velocidad v desde el reposo, que
es la integral de Fdr, o drea AZBEA). O como escribimos hoy: W = £ m v = A
Ec (el trabajo realizado por las fuerzas es igual a la variacién de la energia

cinética E¢). Observemos que Hermann ha tomado el valor unitario para las masas.

La demostracion integral es puramente geométrica. Trabaja ampliando las dreas
diferenciales en la figura, hasta obtener igualdad entre dos dreas finitas. No usa
el algoritmo integral algebraico que desarrollé cuando se proponia estudiar las

formas que adopta una cuerda sometida a fuerzas cualesquiera’*?.

Estas relaciones estdn contenidas en los Principia en las proposiciones 39 y 40 del
libro T [NEWTON 1687 pp. 122-127], donde Newton demuestra respectivamente
que: la velocidad en un punto de la trayectoria es como la raiz cuadrada del la

superficie que forma en la fuerza con el desplazamiento radial, y que las

132 Ver en este trabajo el apartado “El célculo diferencial e integral: entre la geometria y el dlgebra”
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velocidades de caida por distintas trayectorias serdn iguales si los méviles

recorren la misma altura®®3,

La aportacion de Hermann consiste en considerar estd ecuacidn, tal como veremos
a continuacién, como una de las dos ecuaciones bdsicas de su modelo deductivo de
la dindmica. Por un lado Hermann usa el nuevo concepto de “momento de
velocidad” junto con el de "momento de fuerza” para las demostraciones que, por

ofro lado realiza en lenguaje diferencial.

Seguidamente expande los resultados para hacerlos completamente generales, ya
que no dependen de la ley de fuerzas centrales supuesta, extendiendo todos los
resultados a movimientos retardantes y al caso en que los méviles no partan del

reposo.

Haciendo reversible el movimiento acelerado, nos indica en un corolario
[Phoronomia p. 62 n° 141], que los cuerpos ascienden hasta la misma altura si

parten de la misma velocidad tanto por la recta AD como por curva AN.

En otro corolario [Phoronomia pp. 62-63 n° 142] explica que la velocidad de caida
es igual para moviles que caen desde la misma altura, fambién si estos distan
infinitamente del centro de atraccidn. Seria el caso de gravedad constante en que

podemos considerar el centro de la Tierra infinitamente alejado de nosotros.

Hermann explica que Galileo habia postulado este dltimo resultado como evidente
en sus Didlogos. Después fue demostrado por Torricelli, y mds tarde por Huygens
en la prop. VI de la segunda parte de su Horologium oscillatorium™, pero ambos

de modo indirecto y sélo en la hipétesis de gravedad uniforme de Galileo.

133 Estos resultados seran usados para demostrar en la proposicion 41 [NEWTON 1687 b, pp. 127-129] que:
dada cualquier ley de fuerzas centrales, y supuesta la cuadratura de las figuras curvilineas se puede encontrar
las curvas de la trayectoria seguida por el movil

1% Horologium oscillatorium. (F. Muguet, Paris, 1673) p. 31
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Los pesos y las masas son proporcionales

En el largo escolio I [Phoronomia pp. 63-64 n° 143-144] Hermann, explica que en
las demostraciones anteriores ha supuesto masas M y A iguales. Demostrard que
para que las velocidades sean iguales en la caida de dos mdviles A y M por dos
caminos distintos, las masas y los pesos tienen que ser proporcionales. Hermann
nos dice que si las masas no fueran proporcionales a los pesos, las velocidades de
caida en el vacio no serian iguales. Esta demostracion completa la realizada por
Hermann al comenzar su obra para gravedad constante, y que hemos analizado en

el apartado 3.5 de este trabajo.

Trascripcion algebraico-diferencial de las ecuaciones generales:

En el escolio IT [Phoronomia pp. 64-65 n° 145] Hermann traslada al lenguaje
algebraico-diferencial los principios generales demostrados, estableciendo lo que
él llama la primera y la segunda regla. Llamando g a la fuerza variable de la
gravedad, dx el camino diferencial recorrido, u la velocidad durante ese trayecto
infinitesimal y du a su diferencial, tenemos las dos formulas fundamentales de la

dindmica siguientes:

o ‘“Primera regla" (prima formula) equivalente a (5-c): g dx=u du (5-e)
(Equivale al teorema de la energia cinética o “ley de las fuerzas vivas" actual).
Digamos que esta relacién, como queda claro de su demostracion, se deduce de ley
fundamental de la dindmica, que Hermann considera como segunda ley en su
exposicion mecdnica. Durante toda la obra sefialard la potencia deductiva de esta

regla prima.

o "Segunda regla” (seconda formula) equivalente a (5-b): dt=m du:g (5-f)

(Equivale a lo que llamamos ahora "segunda ley de Newton")
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Tal como hemos comentado, Varignon habia considerado como “reglas generales”
la expresién de la velocidad instantdnea (v = dx : dt) y la expresién de la fuerza
instantdnea (2% ley de Newton), en tanto que Hermann considera que sus reglas
generales son: también la segunda ley de Newton y la expresién de ley de la
energia cinética que hoy también llamamos ley de las fuerzas vivas, y que
representa la conservacién de la energia, en tanto que toma la expresion
diferencial de la velocidad (que para él no es velocidad instantdnea de modo

explicito) como un postulado.

Vemos pues que ambas algorizmaciones son independientes, lo que nos puede
hacer pensar que Hermann no conocia las memorias en las que Varignon construye

sus reglas bdsicas, o simplemente elebora las suyas.

Destaquemos que las reglas de Herman contienen las dos aproximaciones a la
mecdnica que se dardn en afios sucesivos; con Lagrange tendremos la aproximacion
energética, que se afiadird a la aproximacién mediante el andlisis de las fuerzas
que a partir de la segunda ley de Newton habia hecho Euler. La ley de las fuerzas
requiere el tratamiento vectorial y la energética no, por lo que podemos afirmar
que las leyes de Hermann represntan un planteamiento mds completo y moderno

que las de Varignon.

Tal como iremos mostrando, Hermann hace uso intensivo de la ley energética para
resolver muchos de los problemas mecdnicos que habian sido ya resueltos. Re-
construye muchas demostraciones y elabora algunas nuevas a partir de este

principio, germen de lo que serad la mecdnica energética de Lagrange.

Eijemplos de aplicacion de las leyes generales del movimiento:

Hermann es explicito en cuanto a la generalidad de los principios y en cuanto al

alcance que pueden tener:
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"Hasta aqui se han presentado, acerca de los movimientos de cuerpos pesados, unos principios tan
generales, que éstos no sélo atafien a todo lo que pueda descubrirse acerca de los movimientos de

cualquier modo acelerados, sino que también evidencian mediante una actividad fdcil qué hipétesis

son posibles, y cudles, por el contrario, la naturaleza rechaza que sean inferidas ."**°

Hermann ilustra su afirmacién considerando la hipétesis de Baliani**® que supone
que la velocidad es como el espacio recorrido [Phoronomia p. 65 n° 146], es decir
u=x. Hermann demuestra que entonces uu = xx y diferenciando udu=xdx, por lo
que aplicando su primera regla queda que g = x, esto es, si x = O entonces g = O;
por consiguiente si la gravedad es nula al principio, entonces su movimiento
también es nulo; aplicando su segunda regla obtiene que dt = dx : x; cuya integral
vale t = log x, de donde deduce que si x = O el valor de t se hace infinito (). Es
decir, se requiere un tiempo infinito para recorrer en el comienzo un espacio nulo,
por tanto el mévil quedard quieto para siempre, *consequenter Baliani hypothesis

impossibilis & imaginaria est."*’

A continuacion [Phoronomia p. 65 n° 147], analiza el caso mds general en que la
velocidad adquirida varia con la potencia n del espacio x (u = x" siendo n natural),
llegando a la misma conclusién del caso anterior. Las leyes del movimiento

muestran la imposibilidad de tales suposiciones para la variacion de velocidad.

A continuacién Hermann analiza dos hipétesis referentes a las leyes de variacion

de la fuerza central.

135 “Hactenus ostensa circa motus gravium adeo generalia sunt, ut ea non solum omnia, quae circa motus
quomodocumque acceleratos excogitari possunt, attingunt, sed etiam facili negotio ostendant quaenam
hypotheses possibiles sunt, et quas vice versa natura ferre recuset.” [Phoronomia p. 64 n° 145]

13¢ Baliani ( Génoa 1582 — 1666) ver DSB I pp 424-5; Baliani publica De motu naturali gravium solidorum
el mismo afio 1638 en que Galileo publica sus Discorsi. En 1646 publica otra una revision de su obra
anterior titulada De motu naturali gravium solidorum et liquidorum. Para ver las diferencias y semejanzas
entre las deducciones de Galileo y Baliani de las leyes de caida de graves ver el capitulo La loi de Galilée et
celle de Baliani en [MOSCOVICI SERGE 1967, p 32].

137 La hipétesis analizada analiticamente por Hermann, y que éste asocia a Baliani, equivale a la demostrada
por Galileo en sus Discorsi de 1638. Galileo muestra por reduccion al absurdo que la propuesta de que la
velocidad en la caida libre crezca como el espacio recorrido, que pone en boca de Simplicio, es “falsa e
imposible” [GALILEO G. 1988, pp. 57-59].
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La primera [Phoronomia p. 66 n° 148-149] se refiere al caso en que la gravedad
es como la distancia al centro de fuerzas D (g = kx, siendo k una constante). En

esta hipétesis, demuestra que la escala de velocidades es una elipse (kx* = v?).

El segundo caso [Phoronomia pp. 67 n° 150-152] es mds interesante, ya que
supone que la gravedad es uniforme, es decir, nos movemos cerca de la superficie
terrestre. Es, tal como dice Hermann, el caso estudiado por Galileo, la caida libre

en el vacio. Deduce en pocas lineas de sus principios generales los siguientes

resultados galileanos:

o Dependencia velocidad - distancia. Demuestra que la curva de la velocidad

es una pardbola. Es decir: v = k x, donde k es la constante de
proporcionalidad o pardmetro de la pardbola que vale segin Hermann 2
p/m, siendo p el peso y m la masa del cuerpo’®:

2 _ 2m x

Y
e El tiempo de caida es el doble del espacio dividido por la velocidad

A%

adquirida durante ese tiempo (t = 2x/v).

Este resultado es el teorema de la velocidad media™*® para un mévil que

parte del reposo: podemos asimilar un movimiento acelerado a un
movimiento de velocidad uniforme tomando como v la media es decir v/2,
siendo v la v final del recorrido; asi, v, = x/t, de donde v:2 = x/t, y por

tanto + = 2x/v.

138 Corresponde a un resultado adicional del teorema II de los Discorsi de Galileo, en el que habia
demostrado la dependencia cuadratica del espacio con el tiempo en la caida libre. [GALILEO G. 1988, pp.
66-691].

139 Corresponde al teorema I de los Discorsi de Galileo por el que éste reduce el estudio de un movimiento
uniformemente acelerado al de uno uniforme equivalente [GALILEO G. 1988, pp. 64-66].
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o Dependencia del tiempo con la distancia: el tiempo de caida es

la raiz cuadrada del doble del espacio recorrido por la masa /2xm
p

dividido por el peso del cuerpo'*:

(my p son la masa y el peso respectivamente)

e Dependencia del tiempo con la velocidad: el tiempo de caida es

como la masa por la velocidad dividido entre el peso del cuerpo. t:ﬂ

|y
Hermann con sus dos principios generales, una combinacién de los que llamariamos en
lenguaje actual la segunda ley de Newton y la ley energética que puede obtenerse de
ella, deduce toda la cinemdtica galileana de forma simple y directa, analiza la
imposibilidad de ciertas hipétesis como la de Baliani, y ademds muestra cémo derivar

otros sistemas dindmicos a partir de considerar distintas hipdtesis para las fuerzas.

Construye un sistema deductivo para la dindmica que supone ademds una
reformulacion diferencial de los conocimientos dindmicos. Es una etapa en la
blisqueda de principios generales que permitan hacer una exposicién deductiva de la

creciente cantidad de resultados mecdnicos.

5.2 LAS LEYES GENERALES DEL MOVIMIENTO CURVILINEO
GENERADO POR FUERZAS CENTRALES Y SUS CONSECUENCIAS.

Después de exponer las dos reglas vdlidas para cualquier movimiento, dedica el
capitulo IT a demostrar las leyes que son aplicables a “"Los movimientos curvilineos en
el vacio, para cualquier hipétesis de gravedad variable"™*!. Demuestra dos principios

generales:

1% Corresponde al teorema II de los Discorsi de Galileo, demostrado por éste en forma de proporcion
[GALILEO G. 1988, pp. 66-69].
"' “De motibus curvilineis in Vacuo, in quacumque gravitatis variabilis Hypothesi.” [Phoronomia p. 68]
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e La fuerza centripeta en un punto de la trayectoria es el cociente entre el

cuadrado de la velocidad y el radio de curvatura en ese punto.
e Si consideramos dos puntos cualesquiera de la trayectoria, el producto de
la velocidad por la perpendicular a la tangente desde el centro de fuerzas,

tiene el mismo valor en ambos puntos'®.

A partir de estos principios, y de los generales para cualquier movimiento del capitulo

anterior, Hermann obtendra los siguientes resultados:

e La igualdad de velocidad para dos cuerpos que caen desde la misma altura por
la curva AN o la recta AE (ver fig. 28), como consecuencia de la segunda ley o
relacion energia-trabajo.

e Laley de las dreas o segunda ley de Kepler.

e Resuelve el problema directo de las fuerzas centrales. Dada la forma cénica

de la frayectoria, deducir que la fuerza es inversamente proporcional al
cuadrado de la distancia al centro.

e La expresién general diferencial del radio de curvatura en un punto de la

trayectoria en coordenadas polares.

e La demostracidn analitica del problema inverso de las fuerzas centrales. Dada

la expresion de la fuerza deducir la forma de las trayectorias.

Construye una figura que muestra la trayectoria ANn (ver fig. 28 ) de un movil en una
curva cualquiera sometida en todo momento a una fuerza central en D de valor Na,

cuyas componentes tangencial y perpendicular son Np y ap respectivamente.

En la figura incluye dos escalas de variables: escala de solicitaciones centrales GBb, y
escala de velocidades HIFf. El valor EB=Na representa por tanto la fuerza en N, y

EF la velocidad en ese mismo punto. Las demostraciones de las relaciones que

142 Tal principio, como veremos a continuacién, equivale a la constancia de la magnitud que llamamos
actualmente “momento angular”, fundamental para tratar problemas de fuerzas centrales.
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Fig. 28

describiremos a continuacién se realizan, como es costumbre en la obra, a partir de

segmentos diferenciales sobre la figura.
Se supone que el mévil estd inicialmente en A moviéndose segun la direccién AR
(tangente a la trayectoria) con velocidad AI; velocidad producida la caer desde el

reposo en H hasta A.

% Valor de la fuerza centripeta en un punto:

La proposicion XXI [Phoronomia pp. 68-69 n° 154] demuestra (fig. 28) que el
cuadrado de la velocidad EF adquirida por un mévil de masa uho, en un punto N de su

trayectoria y sometido a una fuerza central Na, es igual al producto de la
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componente perpendicular ap de la fuerza central por el radio nZ del circulo

osculador entre ny N. Es decir:

EF?=nZ . ap (5-9)
Con simbolos actuales ha demostrado que: m V=R - F, (para m=1, siendo F, la fuerza
perpendicular o normal a la trayectoria en el punto N considerado y R el radio de

curvatura en el punto considerado).

Para la demostracién toma dos puntos de la curva infinitamente préximos N y n,
cuyas tangentes son Nq y ns. Su demostracion es geométrico diferencial, ya que
trabaja con tridngulos semejantes y desprecia los diferenciales de orden superior.
Utiliza para la demostracién el postulado de la velocidad en un instante (dt = dt:v) y

su segunda regla (F = m dv:dt).

Este resultado es enunciado por primera vez sin demostracién, para movimientos
circulares, en la quinta parte del Horologium Oscillatorium (F. Muguet, Paris, 1673)
de Huygens, concretamente en los tres primeros teoremas relativos a la fuerza
centrifuga'®. Posteriormente Newton hace la demostracién en la proposicién IV del
libro I de los Principia *** también en el caso de circunferencias. La demostracién de
Hermann es mds general ya que se refiere a la caracterizacién de la fuerza
centripeta en cualquier curva. Da la expresion diferencial en cada punto o momento
de la trayectoria.

J

< Ley de constancia del "momento anqular"**’:

Teniendo en cuenta que en la figura anterior, DR y Dq son las perpendiculares desde
el origen de fuerzas centrales D a las tangentes AR y Ng, que representan

respectivamente las direcciones en las que el cuerpo se mueve en cada instante,

3 [THUYGENS C. 1888-1950; XVIII p. 361]

4 INEWTON I 1987b p. 178-180]

143 E titulo corresponde a nuestra interpretacion actual. Hermann no asigna nombre alguno en su
demostracion a la cantidad que demuestra permanece constante.
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Hermann demuestra en el teorema XXII [Phoronomia pp. 69-70 n° 155] que para
cualquier punto N de la curva del movimiento ANn se verifica la relacién siguiente:

AI.DR = EF.Dq (5-h)

Hermann usa para la demostracién dos de sus principios generales: el resultado del
teorema anterior (5-g) que proporciona la expresién para calcular la fuerza
perpendicular o centripeta, y su primera regla general (5-f) demostrado en el
capitulo anterior, que representa para nosotros el “teorema de las fuerzas vivas" o

conservacion de la energia, en su forma diferencial.

Si llamamos d a la perpendicular a la tangente desde el centro de fuerzas, podemos

traducir algebraicamente la expresién de Hermann como: vo-do=v-d

La interpretacién actual seria la siguiente: podemos ver fdcilmente que d se puede
escribir como r - sen (r,v), siendo r la distancia desde el centro de fuerzas D hasta el
punto considerado de la curva A o N, y (r,v) el dngulo que forman ambos segmentos.

Asi, La relacién v-r sen (r,v) equivale pues a huestro producto vectorial de vectores:

|17>< V| =r vsen(r,v)

Hermann, por tanto, ha demostrado que para cualesquiera dos puntos de la curva se

verifica que el producto vectorial de ry v tiene el mismo valor:

TyX Vo =XV
Que corresponde, tomando para la masa del cuerpo la unidad, a la conservacién del

momento angular L, vector que definimos en fisica actual como:

L=mrxv

Newton demuestra este resultado en el corolario 1 de la proposicién 1 del libro I de

los Principia con este enunciado:

6 INEWTON I b 1987 p. 174]
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"La velocidad de un cuerpo atraido hacia un centro inmdvil en un espacio no resistente es inversamente

como la perpendicular trazada desde el centro a la tangente de la curva”.

Hermann sigue un procedimiento inverso al de Newton. El resultado en Newton es un
corolario al teorema I en el que demuestra la ley de las dreas, sin embargo Hermann
lo obtiene a partir de los dos principios generales para fuerzas centripetas citados,
para deducir de él la ley de las dreas tal como veremos a continuacion. Este
desplazamiento en la secuencia de resultados es interesante por cuanto establece
qué principios pueden ser considerados mds potentes en un sistema deductivo de la
dindmica.

/

% Ley de las dreas (2° ley de Kepler):

En el corolario IT [Phoronomia pp. 70-71 n°® 157] del teorema anteriormente descrito

deduce la ley de las dreas o segunda ley de Kepler.

Como ha mostrado Guicciardini [GUICCIARDINI N. 1996], la demostracién de
Hermann constituye la primera que se hace analiticamente, ya que la de Newton en la
prop. I, libro I de los Principia., usa un modelo geométrico discreto (la curva es una
serie de segmentos), para después hacer el tiempo infinitamente pequefio y obtener
la curva’, en un procedimiento que podriamos asimilar al del paso al limite de una
sucesion. Tal como comenta Eloy Rada en la nota correspondiente a su traduccion de
la tercera edicion de los Princijpia. “Pero esto comportaba, de paso, asimilar a la
fuerza continua, la fuerza discreta compuesta de impulsos sucesivos. Quizd ahi

estuviera la razén de los repetidos ensayos revisionistas de esta seccién."**®

47 Hermann nos dice al final de la demostracion que Newton ya lo demostr6 en la prop. I del lib. I, pero por
métodos muy distintos. “... sed ex diversissimo fundamento.” [Phoronomia p. 71 n° 157].
8 INEWTON I 1987a. n. 17 p. 174]
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Tal como destaca Guicciardini [Ibidem p. 174], la demostracién analitica es
significativa ya que en ella se habian basado las demostraciones analiticas del llamado

nl49

"problema inverso de las fuerzas centrales”"”, publicadas por el propio Hermann, por

Johann Bernoulli y por P. Varignon en 1710™°. Este es el argumento que da el propio

Hermann en la carta citada en la discusién historiogrédfica (cap. 1)

, que nace como
respuesta a la acusacién de plagio por parte de Keill sobre la demostracién del
problema inverso. Para una discusion del estilo usado en la Phoronomia, es
significativo sefialar que en la citada carta, Hermann reconstruye analiticamente en
estilo algebraico-diferencial los resultados principales que conducen a la ley de las
dreas, comenzando desde sus dos principios generales analizados en el cap. 5.1

(ecuaciones 5-3; 5-f). Haremos en el cap. 6 de esta monografia una discusién en

relacién con esta cartay los estilos de la obra, dlgebra vs. geometria.

La demostracion de Hermann en la Phoronomia se basa en los dos principios generales
ya establecidos por él: el que ha tomado como postulado, la velocidad en un
diferencial de tiempo (ec. 5-a), y el principio de conservacion del producto de la
velocidad por la perpendicular a la tangente (conservacién del momento angular para

fuerzas centrales para nosotros) (ec. 5-h).

De ellos deduce en pocas lineas la siguiente relacién diferencial para un arco
infinitesimal Nn (fig. 28): AIL.DR. tNn = 2 NDn (recordemos que AT es la velocidad
inicial y DR la perpendicular inicial a la fangente AR). Integrando en la figura, llega a

la expresion que da el tiempo consumido en recorrer el arco AN:

ADN

1 Al.DR
2

tAN =

' Dada una ley inversa para la fuerza central, determinar las trayectorias posibles.

1503, Hermann Mémoires de I’Académie des Sciences (1710), 519-521. Johann Bernoulli Mémoires de
I’Académie des Sciences (1710), 521-533. P. Varignon Mémoires de [’Académie des Sciences (1710), 533-
544. Johann Bernoulli Mémoires de I’Académie des Sciences (1710), 521-533.

! Journal Literaire 9 (1717) p. 408
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Como 3AIL.DR corresponde a un producto de valores iniciales y por fanto constantes
en la expresidn, concluye que el tiempo en recorrer un arco es proporcional al drea
ADN barrida por el radio vector DA (radium vectorem en palabras de Hermann) en

ese tiempo.

Guicciardini nos indica en el texto citado, que Hermann reescribe la demostracion de
la Phoronomia en una carta a J. Keill que publica en 1717 en Journal Literaire™,
sustituyendo por diferenciales los simbolos que indican parejas de puntos en una

figura (por ejemplo Nn = ds etc.).

La demostracion de Hermann es un corolario de la conservacién que expresa la
ecuacién general 5-h. Este hecho, no explicitado en el citado articulo de Guicciardini
seguramente por seguir en su exposicién la version de la carta a Keill, coincide con el
modo en que se demuestra en los libros actuales de fisica, donde la ley de las dreas
es una consecuencia directa de la conservacién del momento angular. Por ejemplo, en
uno de los manuales de fisica mds usados internacionalmente [P. A. TIPLER 1988, T

I, p. 352] tenemos la siguiente ilustracién (fig. 29) y demostracién:

vdt

El drea A barrida por el radio vector r en un dt es la mitad del paralelogramo

definido por el producto de ry ds (= vdt):

A=l|fxwt| =L|fxmv|dt -1 pat
2 2m 2m

132 Journal Literaire 9 (1717), 406-415
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Siendo L el momento angular del planeta. Obtenemos que: dA L

dt 2m
Como L es constante en un sistema aislado, es decir, sin fuerzas externas, la
variacion de A con el tiempo es constante, es decir, la variacién de A es proporcional
a la variacién temporal (dA = k dt).

K/

% Problema directo de las fuerzas centrales:

El problema directo de las fuerzas centrales consiste en encontrar la ley de fuerzas
a partir de la forma de las drbitas. Este problema estd resuelto en los Princijpiaen las
proposiciones 11-13 de la seccién ITI del primer libro [Newton 1687 pp. 53-55] en las
que, una por una, demuestra qué solucion corresponde a cada una de las cdnicas. El
planteamiento de Hermann es mds global en el sentido de que busca primero una
forma de expresar la fuerza central en funcién del radio vector y de la perpendicular
a la tangente, para después introducir en ella la expresion de las cénicas y deducir la

ley de fuerzas resultante.

La demostracién de Hermann [Phoronomia p. 71 n° 158] parte de considerar el
principio de conservacién del momento angular (ec. 5-h). Traduce la ecuacién al
lenguaje algebraico llamando u a la velocidad y p a la perpendicular desde el centro a
la tangente (recordemos que equivale a nuestro producto vectorial del radio vector z

y de la velocidad u).

De 5-h tenemos: up = 1 (toma la constante igual a 1). De donde w? = 1/p° y

diferenciando se tiene que: udu = - dp/ p°.
A continuacion Hermann aplica sus segunda principios generales, el que hemos llamado

con su nombre actual de “las fuerzas vivas”, es decir: u du = g dz, donde g es la

fuerza central y z el radio vector, o expresado con sus palabras, el momento de la
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velocidad equivale al momento de la fuerza. Teniendo en cuenta que la variacién de u
es de signo contrario a la de z, obtiene la ecuacién diferencial:

g = dp/pdz (5-i)

Esta relacién general permite, en palabras de Hermann'®*, obtener el valor de la
fuerza central g si conocemos la variacion de p con z, es decir si conocemos la forma

de la trayectoria del mdvil. Lo ejemplifica ast:

Exempli gratia: cuando la trayectoria es una hipérbola o elipse se verifica la relacion
p? = c? z /2a t z, siendo a el semilado transverso, y cumpliendo c? = + (b® - a®) con el

signo superior para la hipérbola y el inferior para la elipse.

Rescribe la ecuacién de las cénicas de modo que 1/p° = 2a + z / ¢? z; diferenciando
queda dp/p’®=2adz/ c?z*, de donde por identificacién con la ec. 5-i resulta:

g=a/c? 7

Dicho con sus palabras: “hoc est solicitatio centralis, ad focum sectionum Conicarum
directa, est ubigue ut quadratum distantia mobilis ad foco inverse, quod jam passim

constat ex aliis.”[Ibid.].

Hermann da a continuacion [Phoronomia pp. 71-72 n° 160] una expresién alternativa
de la expresién de la fuerza central, transforma la ecuacion 5-i realizando un cambio
de variables, de modo que en lugar de p y dp aparezcan los diferenciales del arco s,
del dngulo t y del radio vector z: Nn = ds, y Pn = dt y dz = PN. Es decir, expresa la

fuerza en coordenadas polares.

153 . . . . . . .
“Usus hujus formalae fatis expeditus est, nam ex equatione curvae datae quaeritur valor ipsus p in z &

constantibus, cujusmodi determinatione etiam opus est in formula supra laudata.” [Phoronomia p. 71 n°
159]
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Recordemos que en la figura Nn son dos puntos préximos de la trayectoria, con sus
respectivos radios vectores DN y Dn, y que la perpendicular a la fangente Ng es Dq

que Hermann ha llamado p.

Despreciando diferenciales de tercer orden y usando la semejanza de tridngulos Nnp
y NDgq obtiene el siguiente cambio de variable p/z = dt/ds (ver fig. 30). De este modo

llega a la expresién final equivalente a 5-i:

dz ds’dt + z ds’ ddt - z dt ds dds
&= z’ dt’ dz

Hermann resalta que ha
deducido de sus principios
generales esta expresion que no
difiere salvo por el nombre con
la que publicé Varignon* en su
memoria de 1706. Ambos casos,
dice Hermann, son

completamente generales sin

presuponer la constancia de las

Fig. 30

diferenciales dz, dt, ds.

®

% El problema inverso de las fuerzas centrales:

Tal como hemos indicado, el problema inverso trata de encontrar la forma de las

trayectorias posibles de un mévil a partir de la ley de fuerzas y de datos iniciales.

Johann Bernoulli y Hermann plantean dudas a comienzos de s. XVIII sobre si Newton

ha demostrado el problema inverso de forma satisfactoria en los Principia™.

134 p_ Varignon : Comparaison des forces centrales avec le Pesanteurs Absolues des corps mus de vitesses
variés a discrétion le long de telles courbes q ’on voudra. Mémoires de I’Académie des Sciences (1706), 178-
235.

135 Ver sobre las posiciones criticas independientes de Johann BERNOULLI y de Hermann la n. 35 en
[MAZZONE S. 1996. p. 150]
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Emprenden pues la demostracién usando las nuevas técnicas diferenciales y Johann
Bernoulli y Varignon, publican sus soluciones analiticas simultdneamente con la de
Hermann en 1710™°. Previamente y coincidiendo con el comienzo de su estancia en
Italia, Hermann habia enviado en carta a Zendrini (22-12-1707) una formulacién

diferencial del problema inverso™’.

De hecho, mientras estd trabajando en la Phoronomia en Padua, Hermann escribe
entre 1710 y 1713 y en italiano, cinco articulos sobre el problema inverso en la revista
Giornale de’ Letterati d’ Italia (6LI). Hemos tratado en el capitulo "Jakob Hermann
en la Historiografia” de esta monografia, el contenido de los articulos y la polémica
que entabla Giuseppe Verzaglia con Hermann tras la publicacién por parte de éste

dltimo del primer articulo en GLI™®,

Veamos cudl es la situacién del problema inverso en los Principia y sus posteriores

159

vicisitudes, tal como han sido analizadas en la historiografia reciente™. Nos servird

de contexto para analizar la formulacién presente en la Phoronomia.

En la primera edicion de los Principia, Newton trata el problema de Kepler en las
secciones ITI y VIII. En la ITT demuestra en las proposiciones XI, XIT y XIII que si
la trayectoria de un cuerpo es una elipse, hipérbola o pardbola respectivamente,
entonces la ley de fuerzas ha de ser inversamente proporcional al cuadrado de la

distancia. A continuacién el corolario I'®°

afirma que se puede deducir de las
anteriores proposiciones, que si la ley es inversa del cuadrado de la distancia y dadas

unas condiciones iniciales, se puede afirmar que las trayectorias son secciones

' Ver ref. en n. 19. El interés de Vargnon se suscita por dos cartas que recibe de Johann Bernoulli y de
Hermann en 1710.

157 La carta esta transcrita en el apéndice 14-1 de [MAZZONE S. y ROERO C.S. 1997] Hermann la
publicarda en [HERMANN 1J. 1711 c]

8 Los estudios sobre la polémica con el analisis de las demostraciones de los articulos de Hermann y
Verzaglia se encuentran en [Mazzone S. 1996] y [Mazzone S. y Roero C.S. 1997; pp. 100-101; 228-241]

13 Sobre la historia del problema de Kepler y en particular sobre el debate en torno a la demostracion de la
ley inversa y a las polémicas generadas tras los Principia ver: [AITON 1964]; [De GRAND 1987]; [AITON
1989]; [BRAKENRIDGE 1989]; [POURCIAU 1991]; [WHITESIDE 1991]; [BLAY M. 1992 pp 216-
221]; [BERTOLONI MELI 1993; pp. 208-216]; [GUICCIARDINI 1995]; [SPEISER 1996]; [MAZZONE
1996] y [MAZZONE S. Y ROERO C.S. 1997; pp. 100-101; 228-241]

' Primera ediciéon. Londres [NEWTON 1687. p. 55]
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conicas. Falta pues por probar la unicidad de tales soluciones, por lo que la critica de

Hermann en su primer articulo de 1710 parece consistente.

En 1708 J. Keill, que pertenece al primer grupo de newtonianos, publica en la Roya/

! en el que se da la solucién del problema inverso de las

Society el primer articulo
fuerzas centrales aplicando el cdlculo diferencial. La solucién de Keill usando
geometria fluxional no muestra la unicidad de las soluciones cénicas, aunque como ha
analizado Guicciardini en el articulo citado, esto no era un requerimiento habitual en
las matemdticas del s. XVIIL. Keill y Johann Bernoulli mantendrdn una polémica entre
1714 y 1719. Keill proclama ser el primero en haber hecho la demostracién del
problema inverso contra la reclamacion de Johann, pero ademds afirma que Newton
ya lo habia demostrado en la proposicién 41y en el corolario I de la segunda edicién

de los Principia., siendo la demostracién de Johann diferente en cuanto a la

simbologia’®?.

Newton mismo, independientemente de las criticas de Hermann y Johann Bernoulli,
pero después de la publicacién de Keill, se habia dado cuenta de la insuficiencia légica

del corolario. Informa en 1709 a Cotes'®®

de la oportunidad de hacer algunos aifadidos
al corolario I, de forma que en la segunda edicién de los Principia de 1713'*, el
corolario contiene unas indicaciones mds detalladas de cémo construir las soluciones
conicas. A partir de la posicion del foco, de un punto de contacto y de la tangente se
obtiene la curvatura que corresponde a las cdnicas, teniendo en cuenta la ley inversa

del cuadrado para la fuerza central.

El articulo de Pourciau citado analiza el nuevo corolario de Newton y argumenta que
las indicaciones de Newton son suficientes para construir las cénicas como solucién

dnica concluyendo que:

1 E] articulo de Keill esta analizado en [GUICCIARDINI 1995]. Este articulo es famoso porque en él Keill
acusa a Leibniz por haber plagiado el calculo de Newton.

121 a polémica esta analizada en [GUICCIARDINI 1995 pp. 561- 566]

1% Publicada en [POURCIAU B. H. 1991]

1% Segunda edicion. Cambridge [NEWTON 1713. p. 53]. Ver p. 467 de NEWTON 1. 1687b]
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"We find that his argument does indeed contain a flaw, it is a minor omission rather than a serious

logical error. Having rectified this omission, we show how Newton's outline expands into a convincing

proof that inverse-square orbits must be conics.” [POURCIAU B. H. 1991. p. 159]

En el mismo articulo, Pourciau se pregunta Could Newton have proved this
proposition?, refiriéndose a la unicidad de las soluciones cénicas. Su respuesta es
Definitely. How do we know? Because Book I of the Principia contains the proof of an
even stronger result! Pouciau se refiere a la prop. XLII de la seccién VIII del
primer libro, donde Newton encuentra la ecuacién de la curva que verifica unas
condiciones iniciales de la posicion y de la velocidad en una direccién dada, para

cualquier ley de fuerzas centrales conocida.

La primera de las demostraciones en el articulo de Johann Bernoulli de 1710%° parte
de la proposicién 41 de la seccién VIII de los Principia, en la que Newton estudia de
un modo mds general el problema inverso. En dicha proposicion, Newton obtiene una
ecuacién de las curvas que sigue el mévil, supuesta un fuerza centripeta de cualquier
clase y estando garantizada la cuadratura de figuras curvilineas. Reduce pues el
problema inverso a cuadraturas de unas figuras auxiliares, pero no explica cémo
realizarlas, a pesar de que, tal como indica Guicciardini en el articulo citado, Newton
posee las técnicas del cdlculo fluxional necesarias para cuadrar muchos tipos de
curvas'®, Johann BERNOULLI traduce en términos diferenciales la pop. 41, y
particularizando para fuerzas que son como el inverso del cuadrado de la distancia,

obtiene las ecuaciones de las cénicas.

En su articulo, Johann Bernoulli ademds de criticar la insuficiencia de la

demostracion de Newton, critica la solucion que Hermann le ha enviado, por ser

195 Johann Bernoulli hace en el mismo articulo una segunda demostracion. Ambas analizadas en
[GUICCIARDINI 1995 pp. 551-554]

1% Entre 1691-1693 Newton compone el tratado de célculo fluxional De quadratura curvarum que aparecera
en 1704 como apéndice de su Opticks.
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complicada de integrar sin conocer las soluciones y por haber omitido la constante de

integracion.

Por tanto, la primera demostracién de Hermann es criticada, por un lado, por Johann

Bernoulli a quien responde en el tercer articulo de GLI, y por carta'®’

explicitando la
sustitucion realizada y la posibilidad de anular la constante de integracion con un
sistema adecuado de coordenadas. Por otro lado, tal como hemos dicho, es criticado

por Verzaglia.

La critica de Verzaglia se basa en afirmar que el problema inverso ha sido totalmente
resuelto en los Principia, ya que, tal como muestra en su articulo de 1710, la
solucion analitica que él hace y la construccion newtoniana contenida en la prop. 41

llevan a la misma ecuacién diferencial para una fuerza arbitraria.

Hermann publica un segundo articulo en GLI'™ donde ademds de dar solucién a un
problema mds general planteado por Johann BERNOULLI sobre fuerzas centrales en
medios resistentes, vuelve a la solucién newtoniana. Esta vez obtiene la solucidn
considerando una fuerza central arbitraria, llegando a una expresién de las curvas
equivalente a la de la proposicion 41 de Newton, para después particularizar para
fuerzas inversas del cuadrado de la distancia y obtener las cénicas. En el resto de
articulos en GLI, Hermann defiende de las acusaciones de paralogismo vy

superficialidad.

Segln los estudios historiogrdficos citados, podemos decir que las indicaciones de
Newton en la segunda ediciéon habrian sido fundamentalmente correctas para
demostrar el problema inverso; aunque a las instrucciones del nuevo corolario habria
que afiadir la proposicion 41 de los Princjpia donde se deduce la ecuacién de las

curvas que corresponden a una fuerza centripeta general. Pero para los actores del

'7 [Hermann 1711 b] y traduccién de la carta en n. 168 [MAZZONE S. Y ROERO C.S. 1997 p.88]
' [VERZAGLIA G. 1710]
1% [Hermann 1711 a] Ver la demostracion de Hermann en [MAZZONE S. Y ROERO C.S. 1997 pp. 94-98]
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debate a comienzos del s. XVIII, por un lado las explicaciones del corolario de la
primera edicion fallan Iégicamente, y por otro el resultado del teorema 41 depende
de su particularizacion para fuerzas que son como el inverso del cuadrado y de su

cuadratura.

El debate planteado entre los defensores de la suficiencia de Newton en sus
demostraciones, como Verzaglia o J. Keill, y los que como Johann Bernoulli y
Hermann, consideran que es necesario completarlas, aunque nunca se plantean que sus
resultados sean incorrectos, impulsa la aplicacion del nuevo cdlculo a los problemas
mecdnicos. Esos debates contribuyen a crear nuevos métodos de cdlculo diferencial e

integral, asi como a debatir en qué consiste el rigor matemdtico.

En lo que respecta a Hermann, podemos considerar que su posicién final sobre el

problema inverso es el tratamiento que de él hace en la Phoronomia.

La primera demostracion que hace Hermann del problema inverso en la Phoronomia
corresponde a la proposicién 23, que plantea el mismo problema que figura en la prop.
41 de los Principia.: “"dadas la solicitacién central, la velocidad i la direccidn inicial del
movil, definir y construir la curva describird en el vacio el proyectil, supuesta la

cuadratura de las figuras"”. [Phoronomia pp. 72 - 73, n° 162].

La demostracion de esta proposicion sigue la pauta de la contenida en la que le envié a
Zendrini por carta en 1708, y ambas se parecen a la proposicién 41 de los Principia.
En ambas, Hermann comienza trabajando con segmentos de un grdfico representados
por pares de puntos, y acaba expresando en un corolario mediante el dlgebra
diferencial [Phoronomia p. 73, n° 163] la ecuacién diferencial de la curva (aequatio

differentialis curvae) buscada.

En un escolio posterior, Hermann afirma que este problema fue resuelto primero por

Newton en su proposicion 41 y después por Johann Bernoulli de dos formas, por
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Varignon y por él mismo. También declara que su demostracion no difiere de la de

Newton “nisi in levibus nec essentialibus circumstantiis' [Ibid.].

Pero en el parrafo final del escolio explica qué queda por hacer y anuncia que serd el
quien primero lo resuelva, para dar con las soluciones algebraicas que corresponden a

ciertas leyes de fuerza. Leamos sus palabras:

"Por lo demds, puesto que esta solucién general presupone las cuadraturas también de esas curvas que no
son cuadrables, por esta razén ese problema es en general trascendente, y no es algebraico, salvo por
ciertas leyes de atracciones centrales. Cudles, en verdad, deban ser en general estas leyes de gravedad
variable, para que, una vez planteadas, resulten las curvas algebraicas de los proyectiles, el problema es,
segln se dice, minucioso y elegante pero a primera vista muy dificil, acerca del cual, que yo sepa, nadie

hasta ahora ha reflexionado. Cémo deba ciertamente explicarse, ello se evidenciard con la siguiente

proposicién, tras el lema que enseguida se aportard.””°

Hermann tratard el problema inverso de las fuerzas centrales en un contexto muy
amplio; obtendrd una expresion de las fuerzas en funcion de coeficientes
diferenciales que representan las diferenciales sucesivas como funciones del radio
vector z y de ciertos pardmetros. También obtendrd como serie de potencias la
expresion general de las curvas, en funcién también del radio vector y de
pardmetros. Después, tras particularizar pardmetros, obtendrd distintas leyes de
fuerzas, no sélo las inversas del cuadrado, para finalmente obtener las ecuaciones de

las curvas.

Esta estrategia generaliza el procedimiento usado en otras demostraciones del
problema inverso no sélo las realizadas por él en los articulos de GLI citados sino las
realizadas por Johann Bernoulli y Varignon. Un procedimiento general generara las

curvas para las distintas hipétesis de fuerza. A continuacion expondremos

0 “Caeterum, quia generalis haec solutio quadraturas praesupponit earum etiam curvarum quae
quadrabiles non sunt, ideo problema istud generaliter suntum est trascendens, nec algebraicum sit, nisi pro
certis legibus solicitationum centralium. Quae nam vero debeant esse in genere hae leges gravitatis
variabilis, ut illis positis cuvae projectorum algebraicae evadant, problema est fatis curiosum et elegans sed
prima fronte admodum difficile, de quo, sciam, nemo adhuc cogitavit. Quomodo vero debeat expediri, id i
sequenti apparebit propositione, post lemma mox afferendum. “ [Phoronomia p. 74 ,n° 164]
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esquemdticamente cémo generaliza la resolucion del problema inverso para llegar a

las soluciones algebraicas.

Hermann construye en la proposicién XXV [Phoronomia pp. 74 - 76, n° 167] una

nueva figura asociada a la que representaba la trayectoria ANn (fig. 31 izquierda) de

SS

—

Fig. 31

un mévil sometido a una fuerza con centro en D (EF era la velocidad en un punto N).
DA es el eje vertical en ambas figuras. Construye (fig. 31 derecha) un cuadrante Oml,
de forma que el dngulo MAL estd relacionado con el dngulo ADN que da la posicion
angular del mdévil sobre la trayectoria Ann, mediante la relacién ADN : MAL = 1/n
donde n es cualquier nimero racional positivo. DE representa el radio vector desde D
en ambas figuras. De este modo queda definida la curva LHh a partir de un radio AL

constante y de las dos coordenadas polares MAL y DE.
Para cada punto H de la curva LHh representa la tangente HhA cuya subtangente es

EA. Prolongando EH construye la curva AX haciendo que la subtangente EA = EA para

cada radio vector DE.
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Omitiendo los laboriosos detalles de la demostracidn, diremos que Hermann obtiene,
usando lemas matemdticos auxiliares, una expresién de la velocidad EF en funcién de
la subtangente EA de la curva LHh, de la tangente SL del semicirculo, del pardmetro

ny del radio vector DE.

2 2 2 .
. EA SL+ 1 5 - ]
AL’ DE* DE?

Diferenciando esta expresién de la velocidad en un punto de la trayectoria obtiene
una expresion con 2 EF. d(EF), o segin su notacién 2 EF.af (ver fig. 31 ). A
continuacidn usa su teorema general de igualdad de momentos de velocidad y fuerza
(que hemos llamado de “las fuerzas vivas" para seguir la nomenclatura actual), y llega
a una expresion general de la fuerza central G como funcién de los pardmetros de la
trayectoria del mévil. Dado que EF.af = 6. Ee (en simbolos actuales v.dv = F.dr) y

diferenciando la expresién 5 - j se obtiene':

_n? EA[DE.EAMG? - 2EQEAMG? + DEEEQAL?| 1
EQ.AG®.DE® DE’

G

En un corolario posterior [Phoronomia pp. 77 - 78, n° 169] supone que la ordenada
EH = + (e - A) donde e es una constante, y A una cantidad compuesta de cualquier
forma de constantes y del radio vector z. De este modo foma dA = B dz, y dB = C dz,

es decir las diferenciales sucesivas de A.

Algebriza la expresién anterior, usando los simbolos siguientes DE=z, AL = r

2

(pardmetro del cuadrante circular) y r? - e? = c® Sustituyendo los valores de la

expresion anterior de la fuerza G por los correspondientes A, By C queda:

Gl m 26 B+s*CzFeB’z+4e AB+2e AC* z+AB’z-2A’ B-A* Cz]
-z Bz’

(5-k)

' Los signos negativos que se obtienen al diferenciar son en Hermann positivos.
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Vemos como Hermann usa aqui lo que Euler llamard, en su obra Textos sobre e/
cdlculo diferencial de 1755 “coeficientes diferenciales”, que tendrdn un papel
preponderante en su formulacién de las diferenciales de orden superior, y que a
decir de H. J. M. Bos [BOS H. J. M. 1984 p. 106], por ser implicitamente las
derivadas de orden superior, preparardn el terreno para la sustitucion de la

diferencial por la derivada como concepto fundamental del cdlculo.

Hermann ha llegado a una expresion de la fuerza central G en funcion del radio
vector z, del pardmetro n racional positivo que representa la relacién entre el dngulo
de posicion ADN y el de la figura auxiliar MAL, de una funcidn de z y constantes que

ha llamado A, y de sus diferenciales sucesivas.

Particularizando A podemos obtener las distintas expresiones para la fuerza G que
queramos considerar. No se limita a trabajar con G inversamente proporcional al

cuadrado u otra hipdtesis, sino que consigue una expresion vdlida en cualquier caso.

En otro corolario [Phoronomia pp. 77, n° 168], Hermann obtiene la relacién que le
permitird deducir la ecuacién de la trayectoria del mévil, a partir de las hipotesis
particulares consideradas para la fuerza G. Veamos en qué consiste esta expresion

que utiliza los desarrollos en serie de potencias de expresiones trigonométricas.
Establece las siguientes relaciones en las figuras anteriores: llama T = tg MALy S =
sec MAL; z° = x? + y* (coordenadas cartesianas de la posicién z del mévil); por tanto

tg ADN = r y:x; sec ADN = r z:x.

Toma como hipétesis que la relacién entre los dngulos ADN y MAL, que habia tomado

como 1/n, es en general la siguiente:  ADN: MAL = 1: n = pv.
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A continuacidn escribe el desarrollo en serie de potencias para sec [v.ADN]y para la
sec [M.MAL], remitiendo a un articulo suyo publicado en Actas Eruditorum en 1706 p.

263'2, Las expresiones son:

sec [vADN]=rz': [ x' -02vx " 2+04vx" " *- ]

sec [WMAL]=S": [r""—02pur' 2404 pr* -]

Donde los ndmeros 02v, 04v,... y los de y, 02 y, 04 y, etc. son los coeficientes

binomiales correspondientes (p.ej. 02 v =v (v—1):2! Etc.)

Como ha supuesto que ADN : MAL = 1: n = v, implica que [v.ADN] = [u.MAL] y por
tanto sus secantes también son iguales, de donde se deduce la siguiente ecuacién

general algebraica de la curva ANn:

SPIX' -02vx ' P+04vx' Y- L l=r 2 [ -02pr' 2+ 04 urtt- ]
G-
Introduce el escolio final [Phoronomia pp. 78 - 81, n° 170] de este capitulo del modo

siguiente:

"Para que destaque con claridad el uso de nuestra férmula, la aplicaremos a un ejemplo particular. ...
Estos valores, reemplazados en la férmula del Coralario superior, dardn una férmula que, aun siendo
particular con respecto a la otra, de la cual fue deducida, no obstante puede procurar en abundancia

infinitas diversas curvas algebraicas, incluso, infinitas veces infinitas.” >

Indica como las expresiones generales para la fuerza (5-k) y para la curva (5-1),

pueden aplicarse para encontrar, a partir de una hipétesis particular para la fuerza

"2 Disquisitio diptrica de curvatura Radiorum visivorum atmosphaeram trajicientium, cui accedit indefinita
Sectio angularis ope Tangentium et secantium. Actas Eruditorum (junio 1706 pp. 256-263)

' Introduce el escolio con estas palabras “Ut appareat usus insignis nostrae formulae, exemplo cuidam
particulari eandem applicare libet. .... Qui valores, in formula superioris Corolarii substituti, dabunt
formulam quae etsi particularis est alterius respectu, ex qua deducta est, infinitas tamen diversas curvas
algebraicas suppeditare potest, immo infiniteies infinitas.” [Ibid.]
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G, la ecuacién de la trayectoria del movil. Da varios ejemplos entre los que
destacaremos el que corresponde a la hipétesis de una fuerza inversamente

proporcional al cuadrado de la distancia.

Estd interesado en encontrar soluciones algebraicas y supone el grupo de casos para

los que (z es el radio vector y a un pardmetro):

Como las diferenciales sucesivas de A son de la forma: dA = B dz y que dB = C dz,

obtiene: B=mz™:a™, C=m@m-1)z™%:aq™

De donde la expresién general de la fuerza central 6 (5-k) queda:

2 2 2 m-1 2 2 2m-2
_m -n" (mt2)n“ea +(m+1)n s"a 5-m

m+3 2m+3

m’z n’z m’ z

A partir de aqui, fomando valores para m y n, obtiene las distintas hipdtesis para las

fuerzas y de ellas la ecuacién de la trayectoria correspondiente.

El primer caso que analiza es param = - 1y n= 1. Sustituyendo en 5-m obtiene que es
G=+e:a%z?, es decir, una fuerza inversa con el cuadrado de la distancia z al

origen D.

Para estudiar la ecuacion de la trayectoria, vemos que como 1: n = piv, en este caso
toma p = v = 1. Sustituyendo los valores en la ecuacién general algebraica de la curva
(5-1), tenemos que los términos binomiales desaparecen quedando:

Sx=rz (5-n)

ComoA=(z™: a™!)= a? z,ycomo habiamos fomado EH = # (e - A) tenemos ahora

EH=+(ez-a%:z.
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Como habia supuesto en su construccion que la secante del dngulo MAL es tercera
proporcional de EH y del radio del cuadrante circular AL = r, nos queda: S:r=r: EH
ydeaqui S=r?z:ez-d Sustituyendo en (5-n) queda: e z=a®+r x, quees la

ecuacién de las secciones cénicas. Hermann analiza otras opciones tales como:

e m=-2yn=2enque6=-s°z:a® cuyas trayectorias son cénicas

e m=1=n= p=v enqueG=2s?%:z?% trayectorias circulares

e m=-lye=0enque6=1-n?:2z?% trayectorias espirales que pueden ser

algebraicas o trascendentes.

Sefialemos que el dltimo caso en el que la ley de fuerzas varia como el inverso del
cubo, es analizado por Newton en el corolario III de la prop. 41 (1687) '* donde
obtiene ciertas soluciones del problema en un caso en que las condiciones iniciales
estdn restringidas. Es evidente que no da la solucién completa en éste tipo de
problema inverso, ya que en la proposicion 9 del libro I habia encontrado que una
orbita espiral equiangular corresponde a una fuerza inversa del cubo. Johann
Bernoulli en su texto de 1710 habia aducido este ejemplo mostrar que la generalidad
de las soluciones no estaba garantizada en la primera redaccién del corolario I de

Newton.

El final del largo escolio de Hermann es elocuente sobre la potencia de su

procedimiento:

"Y sin duda baste con haber citado estos pocos ejemplos para ilustrar la férmula aducida desde el
principio de este articulo; a partir de estos hechos el lector perspicaz ya puede advertir de cudnta
inmensa utilidad es la solucién general del problema propuesto y resuelto segtn el articulo 167 [nuestra
ec. 5-k], puesto que una sola férmula particular para el articulo 170 [nuestra ec. 5-1], poco antes citada,

podia suministrar abundante materia para redactar un tratado razonable."”

174 Ver sobre esto [GUICCIARDINI 1995 pp. 546 y 560]

175 “Et quidem haec pauca exempla ad illustrationem formulae ab initio hujus articuli allatae adduxisse

sufficiat; ex quibus factis jam perspicax Lector animadvertere potest, quam immensi pene usus sit generalis
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5.3 LAS LEYES GENERALES DE LAS COLISIONES

El capitulo VI del primer libro de la Phoronomia trata de las “leyes del movimiento en
la colision de los cuerpos” [Phoronomia pp. 110-124]. En él Hermann seguird los
planteamientos de Leibniz organizdndolos a partir de un solo principio (de nuevo

energético) y amplidndolos a casos de choques oblicuos e ineldsticos.

El estudio de las leyes de los choques es un centro de interés a partir de la teoria
que expone Descartes en los Principes de Philosophie de 1644. En esta obra
Descartes aplica al choque su principio general de conservacion de la cantidad de
movimiento (mv) y da las siete reglas que explican todos los casos de choque directo
entre cuerpos. Este trabajo deja insatisfechos a muchos de sus lectores, ya que no
concuerda con las experiencias conocidas. La importancia del problema se pone de
manifiesto en que en 1668 la Roya/ Society pide a Huygens, Wren. Wallis y otros que
aporten soluciones. Huygens envia ese afio su solucién al problema'’® considerando la
conservacion de la cantidad de movimiento pero teniendo en cuenta, a diferencia de
Descartes, la direccionalidad de los movimientos. Establece que ha de conservarse
también la cantidad mv® durante el choque para cuerpos eldsticos, es decir aquellos

que recuperan su estructura tras al choque.

Leibniz con el texto "Brevis Demonstratio Erroris memorabilis Cartesii et aliorum
circa legem Naturalem' publicado en Actas Eruditorum en 1686 expone su critica del
sistema cartesiano'’’. En este texto Leibniz defiende la idea de que la ley cartesiana
de conservacion de la cantidad de movimiento (mv) es falsa y conduce a paradojas.
Propone medir la fuerza que posee un cuerpo por los efectos que produce, por

ejemplo al convertir un movimiento horizontal en ascensién libre vertical. En este

solutio problematis articulo 167 propositi et soluti, quandoquidem sola formula particularis articulo 170
paulo ante memorata justo tractatui conscribendo abundantem materiam subministrare posset.” [Ibidem]

176 Extrait d’une lettre de M. Huygens a I’auteur du journal sur les régles du mouvement dans la rencontre
des corps. Journal des Savants. 1699.

77 Para un anlsis de la posicién cartesiana y de la critica de Leibniz ver el apartado 4.3 The laws of motion
en [GARBER D. 1995, p. 309]
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caso muestra cémo el efecto de la fuerza de un cuerpo en movimiento depende de la
altura alcanzada, que a su vez es, por las leyes de Galileo de caida libre, como el
cuadrado de la velocidad. Argumenta, seguramente inspirado por las leyes de choque
de Huygens, que la cantidad conservada es la que llama “fuerza viva" (vis viva), dada
por mv®. Muestra, asi mismo, cémo en este caso, la cantidad de movimiento no se
conserva, ya que dos cuerpos de valor 1 y 4 alcanzarian alturas de 4 y 1
respectivamente teniendo la misma vis viva, sin embargo tendrian velocidades de 2 y
1 respectivamente. La critica leibniziana y la correspondiente “medida de la fuerza”
da lugar a la polémica llamada de “las fuerzas vivas" que recorrerd todo el s. XVIII.
La polémica de las “fuerzas vivas" se establece en un primer momento entre los
cartesianos y Leibniz, para reactivarse tras la publicacién de la correspondencia

Leibniz - Clarke en 1717'%, un afio después de que se edite la Phoronomia.

La exposicion leibnizina de las leyes de los choques se encuentra en el ensayo "Essay
de dynamigue sur les loix du Mouvement ..." escrito en la década de 1690 y publicado
por primera vez por C.I. Gerhardt en 1860'°. En este manuscrito Leibniz expone las
tres leyes de conservacién en linea recta siguientes':

“181 on las colisiones eldsticas, esto es, la suma

e Se conserva la "Fuerza absoluta
de mv® antes y después del choque. Enfatiza que dichos valores son absolutos
ya que no dependen de la direccionalidad de las velocidades, y que en los
choques ineldsticos una parte de la fuerza absoluta inicial se pierde en las

partes internas de los cuerpos, aunque se conserva en conjunto.

e Para los choque eldsticos se conserva la "Fuerza respectiva” o "Velocidad
Relativa" de los cuerpos que colisionan en la misma direccién. Es decir, siendo

(v, x) las velocidades de un cuerpo A antes y después del choque, y (y, z) las

178 Ver para una historia de la polémica en el s. XVIII [HANKINS T. L. 1965]

17 Traduccion castellana en [LEIBNIZ G.W. 1991 pp. 99-125]

' Ibid. pp. 117-120

1811 eibniz llama aqui “Fuerza Absoluta” a lo que ha llamado “Fuerza Viva” (vis viva) o incluso “Fuerza
Viva Absoluta” en otros textos como SpecimenDyinamicum publicado en AE en 1695.
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velocidades antes y después del segundo cuerpo B, se cumple durante el

choque que: v-y=1z-x.

e Se conserva el "Progreso comin” o “cantidad de movimiento” de los cuerpos
durante cualquier tipo de choque teniendo en cuenta la direccionalidad de los

movimientos.

Finalmente Leibniz muestra de forma algebraica cémo cualquiera de las tres leyes
puede obtenerse de las otras dos, por lo que para resolver el problema del cdlculo de

la velocidad después del choque bastaria usar dos de ellas.

Veamos ahora cudl es el planteamiento del problema de los choques en la Phoronomia.
Como hemos dicho, Hermann no interviene directamente en la polémica de las vis viva,
pero en su dindmica de choques fija su posicion y demuestra conocer los textos del

debate.

Como ya es habitual, infroduce una serie de definiciones relativas al problema
tratado. En este caso, amplia la definicion de colisién para el caso oblicuo (/n
directionius obliguis) y define los conceptos de velocidad propia y relativa asi como el

de fuerza absoluta:

o velocidad propia (velocitates propiae) la que tienen los cuerpos. Velocidad

relativa (velocitas relativa) la que tienen al acercarse mutuamente y que serd
la suma de las propias si se acercan en sentido opuesto y la diferencia si se
persiguen. Establece el sentido de las velocidades como positivo o negativo
para tener en cuenta su direccion, propiedad que también indica, como en
otros lugares, por el orden de los dos puntos que representan las velocidades

(AD = - DA).
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o Define la velocidad de los cuerpos antes del choque como la que habrian
adquirido en caida libre por gravedad, y la de después como la velocidad inicial

que tendrian al ascender verticalmente por gravedad (ver fig. 32).

o "Fuerza absoluta” (vis absoluta) de un cuerpo es la "altura” que alcanzarian en

movimiento libre, al caer (antes de chocar) o al subir (después del choque). Ya
hemos indicado que la "fuerza absoluta” equivale a la vis vivay ambas a lo que
serd la “energia cinética” del cuerpo, ya que la altura alcanzada en caida libre

es proporcional al cuadrado de la velocidad.

Recordemos que Leibniz justifica la denominacion “absoluta” por cuanto esta
cantidad se conserva en el universo, independientemente de la direccién de los
cuerpos, en sustitucién de la cartesiana "cantidad de movimiento" que, en su

opinidn, se conservaria en los choques pero no en general.

Hermann, nunca usa la denominacion vis viva en relacién con la altura que
virtualmente alcanzarian los cuerpos en su libre ascenso o descenso.
Recordemos que en las definiciones que encabezan la obra que estamos
analizando, nos dice que llamard simplemente fuerza (vis) a la fuerza viva (vis
viva) productora de cambios en la velocidad'®®. Sigue pues la mencionada
denominacion de Leibniz que permite introducir con el lenguaje una distincion
entre “fuerza" (vis) que incluye la vis vivay “fuerza absoluta” que se mediria

de otro modo.

e Diagrama de fuerzas absolutas: Hermann representa mediante segmentos

verticales las alturas equivalentes a cada "fuerza absoluta” del modo que
indica la fig. 32. Antes de chocar EA representa la fuerza absoluta del cuerpo
A, BF la del B. Después del choque las fuerzas absolutas son ea y fb. Estas

verticales son para nosotros las energias cinéticas.

"2 Ver el apartado 3.3 de esta monografia.
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e Cuerpos eldsticos o activos (corpora elastica aut actuosa) como aquellos que

poseen una fuerza activa o impulsora. Y cuerpos inertes o no eldsticos

(corpora non elastica aut inertia) que sélo son afectados por la fuerza de

inercia.

Como vemos, las definiciones responden a una explicitacion de la conceptualizacién
leibniziana de las colisiones. Podemos considerar en los cuerpos eldsticos o ho, su
"velocidad propia” y “relativa”, y ademds su "fuerza absoluta” representable mediante

un diagrama de alturas.

El estudio de los choques eldsticos se basa para Hermann en la deduccién de sus
leyes a partir de un dnico principio o hipdtesis que anuncia a continuacién: “Cuando los
cuerpos activos chocan entre si, su fuerza absoluta tras la colisién es la misma que
antes de chocar." [Phoronomia p. 112 n°® 218]. Nos indica que esta hipétesis significa
que las alturas del centro de gravedad (c. de g.) son la misma antes y después del

choque. En el diagrama de fuerzas absolutas CG = cg.

En el largo comentario que sigue a de las definiciones y a la hipdtesis expone sus

ideas en relacion a la polémica de las fuerzas vivas y a su propio planteamiento.
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Nos dice que su hipdtesis fue enunciada sin demostracién por Leibniz, pero que puede

183 No ignora, afirma, que

demostrarse y que él mismo lo hard quizds en otra ocasion
muchos hombres insignes han considerado que la medida de la fuerza ha de hacerse
por la cantidad de movimiento. Se refiere explicitamente a Papin, que en su polémica
con Leibniz afirma que la fuerza debe medirse por el tiempo y no por la altura
alcanzada. . También afirma que Huygens también adopté en cierta medida su

hipdtesis.

Afirma sucintamente que el principio cartesiano es falso, ya que pretende que
cuerpos con distintas velocidades ascenderdn lo mismo por los impulsos de la
gravedad producidos en tiempos iguales. Se refiere sin duda a razonamientos
expuestos por Leibniz en su polémica. Si la “fuerza" se mide por la cantidad de
movimiento, dos cuerpos que teniendo distintas velocidades tienen igual cantidad de

movimiento, producirian el mismo efecto o altura en su ascensién libre.

Demuestra la ley de conservacién de mv para choques ineldsticos oblicuos y la
conservacion de la velocidad del centro de masas en cantidad y direccion [Phoronomia
pp. 114-115 n® 220-221]. Muestra que para cuerpos eldsticos su hipétesis equivale a la

conservacién de la cantidad mv® [Phoronomia pp. 115-116 n° 222].

A partir de la siguiente expresién: A.AC.AB + C. CD? = A. ac. Ab + C.Dc? [Phoronomia
p. 116 n°® 223], y considerando una variacion de velocidad virtual infinitesimal durante
el choque, demuestra que en la colision eldstica se conserva la velocidad del centro de

gravedad y la velocidad relativa de los méviles.

183 <

219]

18 Recordemos que tras el citado articulo sobre los errores de Descartes que publica Leibniz, en 1686, los
cartesianos Catelan y Papin intervienen defendiendo las posiciones cartesianas protagonizando las primeras
escaramuzas de la polémica.

. etsi apodictice demonstrari potest, ut forte alia id occasione ostendemus.” [Phoronomia p. 113 n°
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En el corolario IV [Phoronomia p. 119 n°® 229], como aplicacién de las dos leyes
anteriores, da la expresién general que permite calcular las velocidades finales de los

cuerpos en colision a partir de sus masas m, ny de sus velocidades iniciales uy r:

ey (u—r)2m

(u—r)2n
u+ ——— B
m+n m+n

V, =
Una vez mds, Hermann expone un tema mecdnico de forma deductiva, a partir de la
menor cantidad de principios, o con sus palabras de forma "simple y elegante”. La
diferencia con Leibniz es que, adoptando sus conceptos y sus leyes, contribuye a
construir un sistema deductivo con ellas, ampliandolo ademds a los choques

ineldsticos y oblicuos.

Ha expuesto la teoria de los choques tomando para cuerpos eldsticos una de las leyes
de Leibniz como hipdtesis. Esta ley equivale a la conservacién de lo que serd para
nosotros la energia cinética, y para ellos la "fuerza absoluta” medida como una altura
virtual. A partir de ella demuestra la conservacion de la cantidad de movimiento y de
la velocidad relativa, y estas dos ecuaciones bastan para obtener las soluciones en los
choques. Hoy resolvemos este tipo de problemas con el par de ecuaciones de
Hermann, ya que es mds sencillo usar la conservacién de la velocidad relativa, que la

conservacién de la energia cinética que contiene potencias™®®.

5.4 EL DESCENSO DE CUERPOS POR CURVAS Y LOS PENDULOS

Hermann plantea el estudio del movimiento por curvas isdcronas para cualquier
hipétesis de fuerzas centrales y el movimiento de péndulos en el capitulo III de su
obra [Phoronomia p. 81]. Su originalidad consiste, de nuevo, en el uso la primera regla

dindmica general establecida por él (ver 5.1), es decir la conservacion de la energia.

'3 Ver [TIPLER P. A. 1988 t.1pp.265-285 ]
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Recordemos que estd serd una de las aproximaciones al estudio mecdnico que

culminard con Lagrange en s. XVIII: Resefiaremos sus principales resultados.

El teorema principal [Phoronomia pp. 81-84 n° 172] consiste en una caracterizacion
de las curvas de descenso isdcronas, es decir, curvas por las que un cuerpo desciende
en igual tiempo para cualquier arco que se considere. El planteamiento de Hermann es

el siguiente (ver fig. 33 ):

Sea BEA la curva isécrona por la que se mueve el cuerpo desde el reposo sometida a
las fuerzas centrales, representadas por la escala (cha) segtn las distancias radiales
BC, HE, Ve, efc. al centro de fuerzas O. Define una segunda escala ARD cuyas
ordenadas HR se definen de modo que cada HR = /(2 HAah) correspondiente.
Establecido esto, demuestra que: "Si AE = N-HR entonces la curva BEA es isécrona.

Siendo N una constante.”
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Si analizamos el teorema vemos que la escala ARD es una curva que expresa el
incremento de energia cinética entre los puntos de la curva H y el final A. Es decir,
HR = /(2 HAah) = /(2 Wy,) donde Wp4 representa en notacién actual el trabajo de la
fuerza central para ir desde H hasta A o desde E hasta A. Hermann construye la
curva de energias correspondiente a la isdcrona, siguiendo una vez mds el teorema de
la energia cinética que ha considerado como la primera de sus dos reglas
fundamentales (ver ec. 5-e del apartado 5.1 de esta monografia). La curvas isécronas
quedan pues caracterizadas por la condicion de que un fragmento de arco AE es

proporcional a la variacion de energia cinética correspondiente HR.

Sin entrar en detalle en la demostracién, podemos decir que usando teoremas
energéticos del modo que acabamos de explicar, llega a la conclusién de que el tiempo
dt de caida por un diferencial de curva Ee y que es ds/v, depende sélo de constantes
y del dngulo iCT del cuadrante KCD asociado a la curva energética ARD. Haciendo la
correspondiente integracién, el tiempo t para recorrer toda la curva BEA es
proporcional al dngulo del cuadrante KCD completo (diriamos hoy que vale m/2
radianes). El argumento final de Hermann es que si lo hiciéramos para otro fragmento
de curva, por ejemplo para FEA, el resultado seria también el dngulo correspondiente
a un cuadrante completo (de nuevo m/2 radianes), ahora para un radio mds pequefio

MCN.

El corolario I [Phoronomia p. 84 n° 173] considera un pequefio arco cercano al punto
A inferior de la curva isécrona. En este corolario obtiene la expresién de la constante
N usada en la demostracion general citada pero ahora para pequefias oscilaciones. N
queda como funcién del radio de curvatura 6A en A (para nosotros R) y del radio
vector r o distancia al centro de fuerzas O. Si pa es el peso del cuerpo en el punto
mds bajo A, N queda como:

_ Rr
R+1)p,
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Un segundo corolario [Phoronomia pp. 84-85 n° 174] particulariza el problema
tomando el radio de curvatura 6A igual a la longitud del péndulo correspondiente
colgado de 6. De este modo su teorema general de descenso por curvas isécronas

sirve ahora para péndulos de longitud R= BA.

Razona del modo siguiente (actualizamos su notacion ligeramente): si el teorema
muestra que tgea = N V/m - (un cuadrante KCD), una oscilacién completa seria T = 4
taea = N V/m (2 1), Sustituye el valor de N obtenido en el corolario I, llegando a la
expresién general para el periodo de un péndulo isécrono o para cualquier péndulo con

oscilaciones pequefias, en cualquier hipétesis de gravedad central:

T=2nx /—mer
(I+1,)p,

m es la masa, | la longitud del péndulo o radio de curvatura R, r4 el radio vector desde

A al centro de fuerzas O, y pa el peso del cuerpo en A.
El tercer corolario [Phoronomia p. 85 n° 175] particulariza para gravedad constante

en el que podemos considerar r como infinito en comparacién con la longitud del

péndulo |. Dado que ahora l+r, = ra el periodo es en este caso, similar al que

T=2r /m—l
Pa

Aqui refiere Hermann que su resultado estd de acuerdo con el de la prop. L IT del

encontramos en nuestros textos:

libro I de los Principia®’. En este teorema Newton deduce la proporcionalidad directa
del periodo de un péndulo con la raiz de su longitud, e inversa con el peso y la suma de

longitud y radio para cualquier fuerza central. En los corolarios Newton particulariza

'8 En su notacion 2 7 es la longitud de la circunferencia dividida por el radio.

7 INEWTON L b 1687 p. 553 ]
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para el caso de gravedad constante estudiado por Wren y por Huygens, tal como hace

Hermann.

Igualmente, Hermann expone en el mismo corolario III, como de la expresion del
periodo para gravedad constante, pueden deducirse los resultados que Newton da en
la prop. XXIV y sus corolarios, referidos a las proporciones entre las diversas

magnitudes, longitud, masa, peso, al comparar dos péndulos.

La novedad es que Hermann ha obtenido las constantes de proporcionalidad y ha
resuelto el problema usando su teorema energético. Este cambio es importante por
cuanto marca un camino en el que los teoremas energéticos permiten resolver de
modo mds directo muchos de los problemas dindmicos. Este serd el método que

generalizard Lagrange.

El teorema energético le permite a Hermann resolver también el problema de
Huygens [Phoronomia pp. 89-91 n° 179]. A saber, si la gravedad es uniforme la

isdcrona es la cicloide.

En este caso, la escala de fuerzas cha (ver fig. 33 ) es una recta vertical, y la escala
que representa la variacion de energia cinética del mévil que baja por la curva
isdcrona BEA, se convierte en una pardbola. Recordemos que en su teorema principal
HR = /(2 HAah) y por tanto en este caso HR? = 2 p hy, siendo p el peso constante del
mévil y ha la altura desde la que cae. Hoy diriamos que se trata de la expresion para

gravedad constante de la igualdad entre energia cinética y potencial en la caida.
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A continuacion, en un escolio [Phoronomia pp. 91-93] Hermann resuelve algunos de los
trece problemas planteados por Huygens en su Horologium Oscillatorium (Paris,
1673). Los cuatro primeros de Huygens corresponden, como es sabido, a la medida de
la fuerza centripeta como v?/r (ver ec. 5-g) que demostré Hermann, y que ya
comentamos en la seccién 5.2. El
quinto teorema de Huygens
consiste en encontrar la
relacién entre la  fuerza
centripeta y el peso. Hermann
considera el movimiento circular
generado en un péndulo cdnico

(fig. 34 ). C es la fuerza

centipeta, G el peso, R el radio

Fig. 34

de giro, M la masa, v la
velocidad equivalente a la caida libre desde la altura h = DM, T es el periodo o tiempo
de una vuelta y p es el cociente entre la longitud de la circunferencia L y el radio R,

que es el modo en el que se expresaba 2m.

Con estas definiciones y teniendo en cuenta como ecuacién I la expresion que
demostré para la fuerza centripeta: C R = v¥, como ecuacién IT el periodo T=pR/ v,y
como ecuacién IIT la velocidad en caida libre de Galileo v? = 2G h, obtiene con poco

esfuerzo:

e Conlasec.IyIIT el feoremaV de Huygens: C/G = 2h/R

o Conlasec. TyITysi Ti=Tx Ci/C, = Ri/R: (las fuerzas centripetas son
proporcionales a los radios)

e Conlasec.IyIIysiT es proporcional aR"tenemos que C = p R'~?" Si ademds
consideramos que, como en el caso de la gravedad, C es proporcional a R?
queda que R? = R*"! de donde n= 3/2 y por tanto T es proporcional a R*? que

es la tercera ley de Kepler.
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Tal como declara el propio Hermann, después de Huygens, L'Hospital da la
demostracién de estos teoremas en la memoria entregada a la Académie en 17008
de modo diferente a él. Podemos ver la solucion de L'Hospital en [BLAY M. 1992, pp.
103-107]. La solucion de Hermann difiere en cuanto que parte de una demostracion
general de la ley de la fuerza centripeta (ec. 5-g) en cada punto de la curva,
demostrada a partir de su segunda regla general (segunda ley de Newton). Basta
después particularizar para obtener las reglas de Huygens de modo sencillo. El
procedimiento de Hermann tiene el interés de contribuir a una algoritmizacién de la
mecdnica, es decir, resolver problemas a partir de principios generales, que en la

solucion de L'Hospital no estd presente.

Otro trabajo de L'Hospital tiene que ver con un problema que habia planteado Johann
BERNOULLT publicamente en Acta Eruditorum en 1695. El problema se conoce como

de la curva de igual presién o de la curva centrifuga, y consiste en encontrar la curva

que cumple que en cada punto son iguales el peso del cuerpo que cae y la fuerza
centrifuga o presién del mismo sobre la curva. Como de costumbre y segln el
contrato firmado con L'Hospital, Johann le habia explicado por correspondencia al
matemdtico francés los detalles fisicos del problema, como el significado de la

fuerza centripeta, para que L'Hospital pudiera dedicarse a su resolucién.
Hermann resuelve también este problema en [Phoronomia pp. 94-95; n° 185] de modo
parecido al de L'Hopital, pero sin usar la expresion del radio de curvatura presente

en L'Analyse des infiniment petits (Paris 1696).

En el capitulo V Hermann realiza el estudio del péndulo compuesto consistente en

varios cuerpos conectados entre si y oscilando. El objetivo es encontrar a partir del
péndulo compuesto el “"centro de oscilacién” o punto del péndulo simple sincrénico del

compuesto.

"8 Solution d’un probléme physico- mathématique. Histoire de I’ Académie 1700 (1703) 9-21
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Tal como explica Hermann, el primero en fratar estos problemas fue Huygens en la
cuarta parte de su obra sobre el reloj de péndulo, ya varias veces citada en este
apartado. Huygens se basa en la hipétesis que dice que la altura del centro de
gravedad de los diversos cuerpos que forman un péndulo compuesto es la misma al
descender que al subir por el impulso de la gravedad. Johann Bernoulli escribe un

3% que también cita Hermann, en el

trabajo relativo al péndulo compuesto en 170
que llega a calcular el centro de oscilacién de un péndulo compuesto para gravedad

uniforme a partir de considerar a las distintas partes del péndulo como una balanza.

Hermann demuestra en su teorema principal [Phoronomia pp. 105-106; n° 205] la
hipotesis de Huygens relativa a la constancia de altura del centro de gravedad al
subir y bajar en cualquier péndulo. Utiliza una vez mds, ademds de lemas geométricos,
los resultados obtenidos en su dindmica a partir de la conservacién de la energia:
igualdad de velocidad para cuerpos que caen desde la misma altura pero por distintos
senderos, y relacién entre la velocidad adquirida y la altura de partida. Usa asi mismo

los

C

N &

Fig. 35

18 «“Démonstration générale du centre de Balancement & d'Oscillation, tirée de la nature du Levier. Pa
r M. BERNOULLI, Professeur a Bale. Lettre du 13. Mars 1703
Histoire de 1'Académie royale (1720) pp. 78-84
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teoremas relativos a la caracterizacién de los centros de gravedad de sistemas de

cuerpos, que ha expuesto en su estdtica.

Obtiene después como corolario [Phoronomia p. 106; n° 206], la posicion CN (fig.
35) del centro de oscilacion N del péndulo simple, equivalente al péndulo compuesto
para dos masas P y Q conectadas mediante PQ. Toma E y F como los pesos
especificos de cada masa P y Q. La masa total es M = EP + F.Q, y G el peso del
péndulo equivalente:

(P.PC* +Q.QC*)G
M.MC

NC=

El siguiente corolario [Phoronomia p. 106 ; n° 207] considera el caso particular de
gravedad constante (pesos especificos iguales E = F = G) obteniendo (con M = P + Q):

(P.PC*> +Q.QC?)
M.MC

NC=

El corolario posterior [Phoronomia p. 107 ; n® 208] extiende la relacién al caso
continuo tomando como diferencial de masa dp =P = Q = ..., obteniendo la ecuacion de
posicién del centro de oscilacién para un cuerpo sélido, que en la notacién algebraica

de Hermann y Johann Bernoulli (fomando x = CM; MP= MQ = ... = y) es:

[ & +ydp

NC = [

Expresién que coincide con la de Johann BERNOULLI en el articulo citado. Hermann,
sin embargo, extiende la demostracién al caso en que la gravedad no es constante,
llega a ella mediante la demostracién previa del teorema del centro de gravedad
tomado por Huygens como postulado, y usa, una vez mds, los resultados generales
relativos a la conservacién de la energia. Supone, tal como hemos dicho en otros
apartados, un planteamiento basado en teoremas generales, una busqueda de

jerarquia en los principios mecdnicos historicamente significativa.
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5.5 EL MOVIMIENTO EN MEDIOS RESISTENTES

Como ilustracién final de las aportaciones algoritmicas y conceptuales que hace
Hermann en la Phoronomia, comentaremos sucintamente el largo estudio que hace del
tema del movimiento de cuerpos en medios resistentes. Corresponde a la seccién IVy

pentltima del libro y consta de 84 pdginas y 8 capitulos.

En la introduccion [Phoronomia pp. 277-278], Hermann cita a los autores que han
hecho aportaciones al tema, sin citar sus trabajos. Desde los origenes de Galileo y
Torricelli, hasta los desarrollos de Newton, Leibniz, Huygens y Wallis que son segun
Hermann parciales y a veces sin demostracion, por lo que resultan dificiles para los
novatos (Tyrones). Por dltimo cita los trabajos de Varignon que en sus memorias
presentadas a la Académie de Paris entre 1707 y 1710 parecen, dice, la culminacién
del tema. Sin embargo, nos dice Hermann, él persigue la brevedad y la claridad y para
ello usara los principios establecidos en su dindmica general. Principalmente uno que
permite simplificar y unificar las demostraciones y que no ha sido usado por otros
autores: para Hermann se trata de la “ley de igualdad de momentos”, para nosotros
es el teorema diferencial de conservacion de la energia o teorema trabajo-energia.
Recordemos que se trata de (F: ds = m v dv), considerada por Hermann como una de
las dos leyes mecdnicas principales, tal como hemos analizado en apartado 5.1 de esta

monografia.

En el capitulo XIV, que trata "La teoria general del movimiento de cuerpos en medios

resistentes”, Hermann establece las definiciones necesarias:

e Distingue las dos clases de resistencia [Phoronomia p. 279 ; n° 477-478]:
absoluta que es independiente de la velocidad de los cuerpos y que depende de
la adherencia de las superficies en contacto, y relativa (respectiva) que
proviene de los impactos de las particulas de fluido sobre el cuerpo en

movimiento y que depende de la densidad y de la velocidad relativa.
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o Define el movimiento primitivo como el que tendria el movil sin tener en

cuenta la resistencia. [Phoronomia p. 280 ; n° 480]

e Solicitacién acelerante (solicitatio acceleratrix) es la suma o diferencia entre

el peso y la resistencia, segun el cuerpo ascienda o descienda. Equivale a la
fuerza total que provoca el cambio de movimiento en cada caso.

e Define la velocidad terminal (velocitas terminalis) como la que alcanza un

cuerpo en caida libre cuando se ha extinguido su fuerza acelerante, cuando la
resistencia que crece con la velocidad iguala al peso.

o Distingue entre movimiento ordinario o general (motus communis) que tiene el

maévil en su avance con su movimiento primitivo (sin considerar resistencia), el

movimiento propio (motus propius) que serd generado por la resistencia, y el

movimiento absoluto (motus absolutus) que corresponde a la composicion de

los dos anteriores. Estudiard el movimiento mediante el andlisis separado del

general y del propio.

En el lema de la proposicion LIV extiende la ley de igualdad de momentos (para
nosotros de conservacién de la energia), que establecié en el estudio de la dindmica
general, al andlisis dindmico en medios resistentes, "por lo que no se necesitan nueva

demostracion”:

"Haec proposito eadem est cum prop. XVII Lib. I -132, ut adeao nova demonstratione non indigeat, nam
solicitationibus nomine quacumque vires mortuae, sed continue appicatae, intelligi queunt. Propterea, si

solicitatis gratia corpus in linia verticali moveri ponatur, spatiaque transmissa dicantur x, gravitas, g,

resistentia aeris r, velocitas acquisita corpori decidenti vel resigua ascendentes u...." [ Phoronomia p.

281; n° 484]

Hermann expresa el su principio de igualdad del momento de la fuerza aceleradora
(g9tr) y de la velocidad u como:

gdx ¥rdx=udu (5-5-a).
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Los signos corresponden respectivamente al ascenso o descenso vertical del cuerpo,
considerando para el ascenso que el espacio no es el recorrido sino el complementario

hasta la maxima altura.
Tal como mostraremos, Hermann usard el principio de conservacion de la energia
como ley bdsica para caracterizar las relaciones principales en el estudio del

movimiento resistente.

Combinando esta ecuacién (5-5-a) con la segunda ley de Newton (para él segunda

regla principal, ver apartado 5.1) dt= y con su lema para la velocidad en un

gFr
instante dt = dx : u, obtiene por integracién, el tiempo correspondiente a cada

movimiento en funcién de las fuerzas:

d
= -[ g+r

Tal como nos indica el propio Hermann, éstas son las relaciones generales en las que
basard el estudio de los distintos casos, ya que no se ha especificado ninguna

hipétesis para las fuerzas de resistencia r.

Para calcular el espacio recorrido, Hermann recurre al siguiente esquema: el espacio
realmente recorrido (movimiento absoluto) es el que resulta de calcular el que habria
recorrido sin resistencia (movimiento general), para después restarle el que
corresponde a la disminucién de velocidad debida a la resistencia del medio

(movimiento propio) [Phoronomia pp. 282-284 ; n® 487-488-489].
prop PP

En el escolio general final del capitulo introductorio [Phoronomia p. 286 ; n° 494],
Hermann sefiala que, una vez establecidos los principios generales (‘ratadis jam
generalibus principiis") y algunos lemas matemdticos referentes a propiedades de la

curva logaritmica y de la hiperbélica, queda su aplicacion a los distintos casos
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particulares. Comienza por considerar la "resistencia absoluta” (independiente de la
velocidad). Este caso estd resuelto, dice, trivialmente ya que es equivalente al de

gravedad constante, tratado en los pardgrafos 150-151 del cap. I de su dindmica.

Hermann estudia a continuacion, en sucesivos capitulos, los movimientos
correspondientes a cada una de las hipdtesis de dependencia de la resistencia r con

la velocidad u:

e Cap. XV: con la hipétesis de r = k u estudia los movimientos primitivos:
o Uniforme
o Ascenso y descenso vertical por gravedad
o Movimiento oblicuo (como compuesto de los dos anteriores)
e Cap. XVI: con la hipétesis de r = k u® estudia los movimientos primitivos:
o Uniforme
o Ascenso y descenso vertical por gravedad
e Cap. XVII: con la hipétesis de r = ku + k' u® estudia los movimientos primitivos:
o Uniforme

o Ascenso y descenso vertical por gravedad

El siguiente capitulo estudia el movimiento general en un medio con densidad A

variable para cualquier hipétesis sobre la dependencia con la velocidad u.

e Cap. XVIII: con la hipétesis de r = (ku ™+ k'u ™" !).A, estudia los movimientos
primitivos:
o Uniforme

o Ascenso y descenso vertical por gravedad

Aborda en el siguiente capitulo el estudio del movimiento ascendente o descendente

por cualesquiera lineas curvas:
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e Cap. XIX: leyes generales para el ascenso o descenso por curvas, con la
particularizacién para las hipétesis: r = k u% r = k u; r = k: curva cicloide

(equivalente a la prop. XXX del L. IT de los Principia)

Finalmente, en el capitulo XX trata del movimiento por cualquier curva, con la
resistencia proporcional al cuadrado de la velocidad, pero considerando que el centro
de fuerzas de gravedad estd situado sobre una curva determinada, particularizando

para gravedad con un Unico centro y para gravedad constante.

Para ilustrar el modo en que Hermann construye las demostraciones a partir del
principio de conservacion de la energia, expondremos el teorema que corresponde a la

proposicién LVIII [Phoronomia pp. 287-288 ; n° 495].

El objetivo es encontrar el tiempo y el espacio recorrido por un mévil que teniendo
movimiento primitivo uniforme se mueve por el aire con una resistencia proporcional a

la velocidad.

En la figura 36 suponemos que un mévil M se mueve en la direccién Q con velocidad
uniforme NA. Sin embargo, como consecuencia de la resistencia del aire, esta
velocidad NA disminuird después de un tiempo en una cantidad DE para llegar a ser

BD. El espacio “perdido” en ese mismo tiempo serd NE.
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La curva NDO representa por tanto las velocidades “propias” o “perdidas” ED, ed,
etc. y también las velocidades efectivas DB = NA - ED, db, etc. La curva PFO
representa las solicitaciones acelerantes FE, fe, etfc. responsables de la disminucion

de la velocidad, en este caso debidas sélo a la resistencia del aire.

Como segun la hipdtesis, las resistencias y las velocidades son proporcionales, las
curvas NDO y PFO son similares y BD. Bb = EF. Ee. Aplicando el teorema de igualdad
de momentos F. dr = vdv (conservacién de la energia) tenemos que EF. Ee = ED. ad.
Por tanto: EF. Ee = ED. ad = BD. Bb. (ad es el incremento de velocidad dv y Ee el de

espacio dr)
Se construye desde N la curva logaritmica NHT de forma que para la tangente NK la
subtangente constante sea AK = AN (e igual a IR) y su ordenada IH = BD. Se traza la

horizontal HCD que corta a la tangente NK en G, de forma que CD = EN = GH.

Trazamos HI paralela a la tangente NK. Como por construccién NE = GH y Ne = gh,

restando ambas queda que Ee = nh (ver detalle en la fig. 37)
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Demuestra que se /
verifica la igualdad g m n

de momentos, para la

construccion de la

G
logaritmica realizada: H
Fig. 37
EF. Ee = ED. ad = EF.
Nh

Por semejanza de tridngulos, nh: LR = mh: IR donde HR es la tangente en H. Como
ademds (dt = driv =) Ee: De = nh : LR, el diferencial del tiempo queda dt = mh: IR, y

por tanto, el tiempo para recorrer NE es:

tog AN
o = [ L AL
MOJIROR IR IR (= AN)

Que equivale con nuestros simbolos a:  t,;, =

Finalmente obtiene el espacio recorrido (Ax) como diferencia del que habria

recorrido con movimiento uniforme AN.tne menos el perdido por resistencia NE.
Ax = AN. tne - NE = AN (AT: AN) - NE = AT - NE = CH-GH = C6 = NC = DE
El espacio es pues como la velocidad perdida DE, es decir: Ax = (vo - V).
Hermann usa la conservacién de la energia para la construccion geométrica de la

logaritmica y con ella obtiene la expresién del tiempo en funcién de la velocidad en

cada instante y de la velocidad de partida vo. Este es el procedimiento general que
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usa en cada caso, lo que constituye una forma de construccién de algoritmos, en base

al principio de conservacién de la energia.

Para nosotros bastaria con sustituir la hipdtesis correspondiente a la fuerza de

resistencia F, que en el caso que hemos expuesto es F = k v, y realizar la integracion:

_(dv 1 Vo

VO—kV k \Y

rvdv 1
vev =—(v,-Vv) tal como ha encontrado Hermann por

Y el espacio seria Ax=|—=
VO-kV k

procedimientos geométricos-diferenciales.
¢Qué representa este trabajo de Hermann en 17162

Las 3 primeras secciones del Libro IT de los Principia estdn consagradas a analizar el
movimiento en medios resistentes teniendo en cuenta las tres hipdtesis para la

resistencia y para los distintos movimientos primitivos.

Varignon publica entre 1707 y 1711 en L’Académie Royal una serie de 12 memorias
relativas al movimiento en medios resistentes. En estas memorias Varignon aplica el

nuevo cdlculo a los resultados obtenidos por Newton, Huygens, Leibniz y Wallis™.

Los articulos de Varignon y su comparacion con los anteriores, especialmente los
contenidos en los Principia, han sido analizados por M. Blay en [BLAY M. 1992. pp.
251-330]"". Su estudio muestra cémo Newton construye las soluciones teniendo en
cuenta las particularidades de cada caso, “coup par coup' dice Blay, sin embargo,

Varignon en su primera memoria construye un procedimiento general que aplicard a

" Huygens : Discourse de la cause de la pesanteur des corps. p. 168. Wallis Opera Mathematica. T. 11 cap.
101. Leibniz : Acta Eruditorum. p. 39 1689.
" Podemos ver la lista de las memorias de Varignon en las pp 277-279 de la citada monografia de Blay.
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los distintos casos. Establece la ecuacién diferencial general del movimiento a partir

de la segunda ley de Newton [Ibid. pp. 280-289].

Sélo, nos dice Blay, “/introduction du calcul différentiel et intégral et a fortiori une
conceptualisation différentielle de Ja science du mouvement permettront
véritablement de mettre en place les équations générales du mouvement, et
finalement, de résoudre par des procédures algorithmigues bien réglées de
differéntiation et dintégration les problémes du mouvement dans les milieux

résistants. " [Ibid. p. 277]

El trabajo de Hermann es también algoritmico diferencial. Pero la diferencia con
Varignon es que mientras éste utiliza la segunda ley para trabajar cada situacién,
Hermann usa la conservacién de la energia para las construcciones de cada caso,
usando después la segunda ley de Newton (5-5-b) para calcular el tiempo. Es un
trabajo paralelo al de Varignon que pone énfasis en el uso de la conservacién de la
energia. Este es su valor, ya que la bldsqueda posterior de algoritmos, desembocara
en los trabajos de Euler y de Lagrange y su uso de la energia por parte del dltimo

para replantear toda la mecdnica.

5.6 EL CAPITULO FINAL DE LA PHORONOMIA Y LA TEORIA
CINETICA DE LOS GASES.

El dltimo capitulo de la Phoronomia previo al apéndice se titula De motu intestino
fluidorum [Phoronomia pp. 376-377], y constituye la primera enunciacién histérica
de la relacion entre el calor y la velocidad de las particulas que constituyen el gas
calentado. Esto fue sefialado primero por Knowles Middleton en 1965 y después por

C. Truesdell en 1968, sin que tuviera consecuencias en los textos cientificos o
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histéricos posteriores'®. Ambos autores destacan la ausencia de referencias previas

a esta importante contribucion de Hermann. El corto capitulo consta de un pdrrafo

introductorio, un tfeorema y un escolio:

Un comentario inicial donde Hermann explica qué entiende por “movimiento

interno”, el producido en las particulas de los fluidos por causas externas y
accidentales, como el calor en particular (... sed is particularum motus, qui in
fluidis a causis externis et accidentalibus excitari solet, quo calor praesertim

est referendus,..).

El teorema principal donde establece que, en cuerpos con la misma
composicion, el calor estd en razon compuesta de la densidad del cuerpo
caliente y del cuadrado de la agitacion de sus particulas, que llama D y V

respectivamente.

“Calor, caeteris paribus, est in composita ratione ex densitate corporis calidi, et duplicata

ratione agitationis particularum ejusdem"

La demostracién que le acompafia es de hecho un desarrollo detallado del
enunciado. Asi, entiende por “agitacion” de las particulas la “velocidad media”

de las mismas (celeritas media inter celeritates particulares).

Vale la pena traducir las explicaciones de Hermann: "Como el calor consiste en un

mayor movimiento de las particulas, serd como los impulsos de las particulas del

cuerpo caliente sobre el otro cuerpo que recibe el calor. Pero estos impulsos estdn en

razon compuesta del cuadrado de las velocidades y simple de la densidad, o como

D VZM 193

192 Ver, por ejemplo el capitulo “La fisica de los gases” del texto “Introduccion a los coneptos y teorias de
las ciencias fisicas” [HOLTON G. 1973, p. 460] o el capitulo “Bernoulli: genios without a gadfly” de The
Kinetic Theory of Gases. An anthology of classic papers with historical commentary. [BRUSH S. G. 2003.

p. 424-427]

193 < Jam, quia calor consistit in concitatiore particularum motu, calor erit, ut impressiones particularum
corporis calidi in quopiam objecto corpore calorem excipiente, sed hae impressiones sunt in composita
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Truesdell* considera que Hermann al plantear que la presién es proporcional al calor
y hablar de “impulsos”, esta estableciendo una ecuacion para la “presién”, tal como p =
K D.V? siendo k una constante. Sin embargo Hermann no establece una igualdad, sino

que habla de proporciones, afirmando que el calor es proporcional a D.VZ.

A partir del bosquejo de la teoria cinética de Hermann, Truesdell analiza la teoria de
Euler de 1729'°, basada en una modificacién de los vértices de Descartes elaborada
por Johann Bernoulli, y que llega a los mismos resultados. Truesdell la califica de
teoria cinética pero no de estadistica, ya que Euler considera que todas las particulas
tienen la misma velocidad. A continuacién, analiza la teoria cinética de Daniel
Bernoulli expuesta en su Hydrodynamica de 1738"°. Truesdell afirma que tanto
"Hermann y Bernoulli concebian a las moléculas y sus velocidades de traslacién como
infinitamente diversas;"®” Sin embargo, en la traduccién inglesa del capitulo X (“De
affectionibus atgque motibus fluidorum elasticorum, praecipue autem aéris.") de la
Hydrodynamica de D. Bernoulli'®® [BRUSH S. 6. 2003. pp. 57-65], y en la exposicién
que del mismo capitulo hace Truesdell en [TRUESDELL C. 1968. pp. 272-282],
observamos que Bernoulli considera que todas las particulas tienen la misma
velocidad, por lo que la afirmacidn estadistica previa de Hermann es particularmente

valiosa.

Sin embargo, Daniel BERNOULLT deducird a partir del movimiento de las particulas,
no sélo la relacién con el calor, sino también con la presién (ley de Boyle) que, sin
embargo, Hermann, siguiendo el procedimiento de Newton en los Principia, habia
relacionado con una fuerza entre particulas que crece son su proximidad (ver 4.4.2

de esta monografia). Truesdell termina su articulo diciendo:

ratione ex duplicata celeritatum et simpla densitatum, se ut D.V-. Ergo etiam calor est ut D. V2. QED.”
[Phoronomia p.376]

4 [TRUESDELL C. 1968. p. 252]

195 1. Euler. “Tentamen explicationis phaenomenorum aeris”, Comm. Acad. Sci. Petrop. 2(1727), 347-368.
1% [Bernoulli D. 1738, secc. 10]

7 0p. Cit. p. 281

" IBERNOULLI D. 1738. pp. 200-204]
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“Tus by 1738 three members of the Basel school of mathematicians, all of them working in

Petrograd, had laid out in mathematical form the elements of the modern moecular concept of

the gaseous state and had derived egiations of state®

Después de la lectura atenta de la Phoronomia que hemos realizado, podemos
interpretar que Hermann “"mide" los “impulsos” de las particulas, en relacién a lo que
él ha considerado la relacién fundamental cuando ha estudiado los choques eldsticos,

es decir lo que llamé siguiendo a Leibniz conservacién de la “fuerza absoluta"?®

, 0 sea
mv®, o en el caso de las muchas particulas de los gases DV®. Ademds introduce por
primera vez en al historia de la mecdnica un planteamiento estadistico, al considerar

que las velocidades de las particulas en un gas no tienen porqué ser iguales.

Los desarrollos de Hermann o los posteriores mds completos de Daniel Bernoulli,
permanecerdn ignorados, en favor de la teoria que hace del calor un fluido material
de particulas sutiles (el calérico), algo asi como el eter cartesiano. Es interesante
sefalar a este respecto, que Hermann ya habia criticado la hecesidad del eter como
causa de la elasticidad del aire (ver el apartado 4.4.2 de esta monografia donde

critica la teoria de A. Parent).

e En el escolio, Hermann aplica el teorema a un dispositivo que permitiria
"medir" la velocidad media de las particulas. Describe cémo construir tal
dispositivo, con un tubo lleno de mercurio hasta F, a la manera de un
barémetro de Torricelli, pero cerrando el depdsito del aire AB después (Fig.

38).

Tal artilugio le permitiria relacionar el calor adicional del aire calentado del
depésito (proporcional a la velocidad cuadrdtica media y a la densidad), con la

nueva altura I que alcanza el mercurio que estaba en H, cuando el aire se

19 de [Truesdell D. 1968, p. 282]
200 yer el apartado 5.1 de esta monografia, donde se expone la formalizacion que hace Hermann de los
choques.

163



expansiona desde F hasta E. El objetivo de Hermann es relacionar la velocidad

media de las particulas de aire con la altura del mercurio a partir de su teorema.

Hermann da una igualdad que expresa tal relacion, M
pero tal como sefiala Middleton en su articulo®®, tal

| T
igualdad es sélo una proporcion, ya que seria

H

necesaria una constante de proporcionalidad. Por

otro lado, tal como afirma Middleton, creemos que

no podemos considerar este dispositivo como una A
mejora en el termémetro de aire de Guillaume E |
Amontons®® de 1702, tal como se ha interpretdo 5 v
en algtin texto®® >
Fig. 38

Hermann ha establecido pues las ideas principales
de lo que serd la teoria cinética de gases como mecdnica estadistica, al considerar
la energia cinética como principio bdsico, tal como, seglin hemos comentado en

otros apartados, ha hecho en otros problemas mecdnicos.

2! IMIDDLETON W. E. 1965. p. 249]
22 Guillaume Amontons, Mem. Anal. Roy. Sci. Paris, 1702, pp. 155-174
293 a referencia de Middleton es: Geschichte der Physik Edmund Hoppe. Braunschweig 1926. p. 176
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6 EL CALCULO DIFERENCIAL E INTEGRAL: ENTRE LA GOMETRIA Y
EL ALGEBRA.

La Phoronomia no contiene una exposicién de los algoritmos del cdlculo diferencial,
pero si un algoritmo del cdlculo integral que incluye la interconexién entre ambos

cdlculos y ejemplos de aplicacién matemdtica.

Parece razonable suponer que no incluyera las definiciones y algoritmos del cdlculo
diferencial, a pesar de hacer un uso extenso del mismo, ya que en 1716 existia un
conocimiento amplio del mismo a partir del manual de cdlculo diferencial, fruto de las
ensefianzas remuneradas que recibe de Johann Bernoulli, publicado por De L'Hdpital

en 1696.

Johann Bernoulli es el autor, asi mismo, del tfratado mds completo de cdlculo integral
en ese momento Lectiones mathematicae de método integralium aliisque®™, objeto de
sus ensefianzas al Marques de |'Hdpital. Sin embargo, dicho material compuesto en su
mayor parte alrededor de 1700, no fue publicado hasta la edicion de sus trabajos
escogidos en 1742, ya que el contrato con I'Hopital le obligaba a no publicar lo que le
estaba ensefiando. Sabemos, sin embargo, que este texto era uno de los que llevaba

Hermann cuando se trasladé a Padua®®.

Entre tanto, y dado el cardcter heuristico y complejo de la integracién, se suceden
articulos publicados por los mejores matemdticos de la época, como los hermanos
Bernoulli, Leibniz, L'Hdpital, Riccatti, etc. donde se exponen métodos adaptados a la
resolucion de clases especiales de ecuaciones diferenciales conectados con

problemas mecdnicos concretos.

24 Johann Bernoulli. Opera 3, pp. 385-558
2 [IMAZZONE S.y ROERO C.S. 1997. p. 52]
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Es significativo que Hermann exponga por primera vez, en un texto de mecdnica
racional, el teorema fundamental del cdlculo en su expresion leibniziana y que dé

ejemplos de su uso para el cdlculo de integrales.

La exposicién del cdlculo integral de Hermann se hace en el cap. ITI de la seccion I
(estdtica) del libro I (mecdnica de sélidos). Sefialemos que la exposicion se realiza de

forma puramente algebraica sin referencia a figura alguna.

El lema bdsico dice: "Dadas cualesquiera fuerzas decrecientes A, B, C, D, E, se
cumple que A-B+B-C+C-D+D-E=A-E, dedonde si E = 0 la suma serd igual a

A, valor maximo de la serie”. [Phoronomiap. 37 N° 87]

Continla con un largo escolio, donde Hermann expone el teorema fundamental del
cdlculo, afadiendo que “por brevedad ilustraremos el Cdlculo integral con algunos
ejemplos”. Afirma asi mismo que “El Cdlculo integral o sumatorio es inverso del

calculo diferencial” 2%, Podemos resumir el escolio en los siguientes términos:

Si en la curva que queremos cuadrar indicamos los ejes con x e y la cantidad ydx es
un elemento de drea. El drea se encontrard si existe la cantidad A compuesta por la
indeterminada x y constantes, tal que sustituyendo x sucesivamente por x-dx, x-2dx,
x-3dx, etc. se forma una serie decreciente A, B, C, efc. tal que su primera diferencia
A-B =y dx. La suma de todas las diferencias (A-B)+ (B-C) + ... es el agregado de todas
las ydx contenidas en el drea y por tanto es el drea total. Si la cantidad minima de la
serie es M, el drea serd igual a A-M. Podemos encontrar el minimo de la serie
sustituyendo x en A por x- n dx que cuando n se hace infinito nos dard cero. Por

tanto para encontrar M bastara hacer x = 0.

296 «Calculus integralis vel summatorius est inversus calculi differentialis, ...” [Phoronomia p. 38 N° 88]
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Explica que de igual manera en el caso en que la sucesién A, B, C, etc. sea creciente,
la integral o suma de diferencias B-A + C-B + D-C + ... es igual a M-A siendo ahora M

el valor maximo de la serie y A el minimo.

Asi mismo, dice, que lo que se ha explicado para el caso de cuadratura de drea, vale
para dimensiones sélidas. A continuacién, Hermann desarrolla tres ejemplos;
expondremos el primero para mostrar como opera el método de integracion; los otros

a’ xdx

(@a>+x%*)4a’* +x’

dos ejemplos integran la irracional las hipérbolas X dx

Ejemplo I:
x dx

Ja’ +x?

Sea A= \/a’ +x° . Sustituyendo x por x-dx, queda: B = \/m_ deX :
Jal+x

Se forma la serie A, B, C, etc. de manera que A-B coincide con ydx que es igual a un

Queremos “sumar”

elemento del drea que queremos cuadrar. Su suma serd A-M siendo M el valor mds
pequefio de la serie, que encontramos haciendo x=0. M= a, de este modo el drea
queda:

x dx

J(A-B)= Jydx-= j—zA-Mz a’+x? —a

JJa? +x?

La heuristica necesaria para hacer integrales consiste en ser capaz de poner la
expresion a integrar como diferencia de dos términos A-B, de forma que
sustituyendo x por x-dx en A, nos dé B. De este modo tenemos A como resultado de
la integral, salvo la constante de integracién que seria el menor de los términos de la

serie formada, o el mayor para una serie creciente.
El método que nos ensefia Hermann sigue las ideas iniciales que guiaron a Leibniz en la

invencion del cdlculo. Tal como explica H. J. M. Bos en [BOS H. J. M. 1984, pp. 83-

86], del estudio de los manuscritos de 1675 se desprende que el estudio de las series
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numéricas, lleva a Leibniz al descubrimiento de que sumar series era fdcil si se sabe
cémo poner sus términos como diferencias. H. Bos cita el siguiente caso resulto por
Leibniz: "Leibniz resuelve el problema planteado por Huygens en 1672 de sumar la
serie 1/1, 1/3, 1/6, 1/10, 1/15. etc. donde los denominadores son los términos
triangulares r(r+1)/2. Descubre que los términos de la serie pueden escribirse como
diferencias" [Ibidem]:

2 2 2

r(r+1) o or+l

De donde la suma de los n primeros términos es la diferencia entre el primero y el

dltimo z -

rr+1) n+1

. En particular, la serie infinita suma 2.

Leibniz aplica a la geometria de las curvas la idea, ya conocida, de que las sucesiones
de diferencias y de sumas estdn intimamente relacionadas. La diferencia de dos
ordenadas sucesivas daria la tangente y la suma de ordenadas el drea bajo la curva.

Asi pues, segln H. Bos:

"La segunda idea principal de Leibniz, a pesar de lo imprecisa que era hacia 1673, sugeria ya un cdlculo
infinitesimal de sumas y diferencias de ordenadas mediante el cual podrian ser determinadas
cuadraturas y tangentes y en el que estas determinaciones aparecian como procesos inversos. La idea
hacia asimismo plausible que, de la misma manera que en las sucesiones, las diferencias son siempre

posibles, pero no las sumas, en las curvas las tfangentes son siempre fdciles, pero no asi las cuadraturas.”

[Ibid. p. 86]

Hermann usa su algoritmo de integracién en varios lugares, por ejemplo cuando
deduce las ecuaciones generales para un objeto flexible colgado por sus extremos y
sometido a fuerzas de cualquier forma [Ver el apartado 4.2 de esta monografia], o en
la deduccion de la cicloide como curva isdcrona en la hipétesis de gravedad constante

[ver apartado 5.4 de esta monografial.
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Sin embargo Hermann ha dado suficientes pruebas de dominio del nuevo cdlculo tal

como demuestran sus manuscritos sobre métodos de integracién®”’. Recordemos que

escribe en Padua mientras ensefia alli publica y privadamente el nuevo cdlculo.

M. Blay [BLAY M. 1992] ha estudiado la evolucion matemdtica en el estudio de

problemas mecdnicos a finales del s. XVII, observando tres etapas hasta llegar a los

textos de Varignon de 1698, que suponen un cambio conceptual y metodoldgico:

Los problemas se resuelven (analiza textos de los Bernoulli y de I'Hopital) en
dos etapas: primero se trasladan los problemas de la ciencia del movimiento a
cuestiones de “geometria pura“, a decir de los autores, para después
resolverlos usando cuando sea nhecesario conceptos del cdlculo leibniziano.

[Ibid. pp. 63-107].

Método de transposicion de Leibniz (en trabajos alrededor de 1690): consiste
en plantear el problema geométricamente para después “transponer” los
incrementos infinitesimales en elementos diferenciales de primer orden. Por
ejemplo usa una “transposition sous une forme différentielle, plus facilment
maniable, de la définition opérante non explicite galiléo-newtonienne de la
« vitesse instantanée. " [Ibid. p. 137], pero no posee aln una definicion

explicita y matemdticamente manejable de velocidad instantdnea.

Varios textos de Varignon publicados en la Académie de Paris entre 1698 y
1700 elaboran un procedimiento algoritmico para la resolucién de los
problemas del estudio del movimiento, a través de la conceptualizacién de los
conceptos de velocidad en cada instante y de fuerza aceleradora en cada
instante. Usa el formalismo del cdlculo leibniziano. Para lo que discutimos es
destacable, como indica Blay, que los grdficos de Varignon son sélo grafos

ilustrativos del uso de sus algoritmos.

27 Ver Hermann manuscripts preserved in Venice, en [MAZZONE S. y ROERO C.S. 1997. p. 54]
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Tal como hemos mostrado en la exposicién de los distintos temas mecdnicos tratados

por Hermann, en la Phoronomia se dan en general dos momentos o estilos distintos:

o El geometrico-diferencial: razonamientos usando pares de letras que

representan segmentos finitos o infinitesimales sobre una figura geométrica
referencial. Las integrales son dreas sobre la figura, aunque en ocasiones usa
el simbolo de la integral.

e El algebraico-diferencial: trascripcién en el lenguaje diferencial de las

relaciones obtenidas geométricamente. Las integrales son tratadas
algebraicamente como en el ejemplo que hemos trascrito al exponer su teoria

de la integracion.

Hermann ha buscado deliberadamente, tal como afirma en el prélogo®®, demostrar
los principales resultados mediante la referencia a figuras por razones pedagdgicas y
por considerarlas mds simples y elegantes “casi siempre”. En las demostraciones de
teoremas no se da una mezcla de geometria y dlgebra diferencial como en los
trabajos de Leibniz o los Bernoulli, analizados por M. Blay. La demostracién de los
resultados “principales” en la Phoronomia es puramente geométrico-diferencial, ya
que busca construir desde la figura, relaciones diferenciales entre variables sin usar

el formalismo leibniziano.

Hemos mostrado como en la Phoronomia se da una dependencia jerdrquica entre
ambos estilos. Después de extraer las relaciones principales de la incrementada
evidencia que proporcionan las figuras geométricas, las traslada al lenguaje
"algebraico-diferencial” para particularizarlas donde convenga. Podemos ver este
tratamiento por ejemplo en la estdtica de objetos flexibles (ver 4.2) y en el estudio
de los problemas de Kepler directo e inverso (ver 5.2) entre los fratados en esta

monografia.

2% Ver los comentarios al prefacio de la Phoronomia en el apartado 2 de esta monografia.
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Esta opcidn serd objeto de criticas por parte de Leibniz, Wolf y Johann Bernoulli.
Este Ultimo entiende en carta a Leibniz (1717) que Hermann se muestra: “"demasiado
deferente con los ingleses, hasta el punto de que prdcticamente a lo largo de todo el
libro usa el estilo de demostracion de Newton. El resultado es que las
demostraciones que llama lineales muy a menudo requieren varias pdginas, demasiadas
para el cansancio y molestia del lector. Mientras que si hubiera usado el Andlisis,
podria haberlas resuelto en 3 o 4 lineas cada vez."?”. El estilo se convierte en esos
momentos en un arma entre distintos grupos en competencia, introduciendo factores
externos en el desarrollo de la mecdnica y de la matemdtica asociada. El estilo
geométrico es visto no solo como ligado a la tradicién, o como mds farragoso en
ocasiones, sino como algo a evitar en tanto que es reivindicado por los newtonianos,
que buscan ademds de la prioridad en la invencion del nuevo cdlculo (ver nota 140),
legitimar el modo que le ha dado Newton.

210 o] estilo

Hasta entonces, como ha mostrado A. Malet en el caso de Wallis
algebraico se habia observado como una taquigrafia que abreviaba las manipulaciones
geométricas, representando “rather than two conflicting views about the purpose
and the actual working of 17-century mathematics, geometry and algebraic analysis
were two layers of the mathematical discourse.” [Ibid. p. 6]. La consideracion del
dlgebra como un lenguaje auténomo y mds adecuado en la ciencia, serd un
desplazamiento que se producird con el trabajo de Euler (Mechanica 1736),
D'Alembert (Encyclopédie 1750) y con los cambios en la filosofia del lenguaje de

Condillac [Ibid. pp. 7-8], que culminardn en la Méchanigue Analitigue de Lagrange en

1788%!,

29 “Etiam mihi videtur Hermanus in Libro suo nimium Anglis deferre, adeo quidem ut Newtoni morem
demonstrandi affectet per torius fere Libri decursus: unde sit ut demonstratines, quas vocat lineares,
saepissime magno legentium fastidio et fatigatione plures occupent paginas, cum si Analysi uti voluisset, eas
quandoque 3 aut 4 lineis absolvere potuisset.” En [MAZZONE S.y ROERO C. S. 1997. p. 75]

MO MALET A. 2002-03]

2 [PANZA M. 2003]
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Podemos preguntarnos: ¢las demostraciones geométricas de Hermann pueden ser
trasladadas fdcilmente al lenguaje algebraico? ¢Son estos “estilos” fdcilmente
intercambiables? La respuesta no es simple, ya que cada estilo crea sus propias
necesidades expresivas, haciendo que “visualicemos” o “prioricemos” aspectos
distintos. Es evidente que podemos a posteriori hacer una correspondencia entre los
"objetos expresivos” de cada estilo. Pero, a comienzos del s. XVIII el bagaje de
resultados acreditados en estilo geométrico es enorme, lo que hace que sea visto

como mds sencillo o mds diddctico, si esta es la intencién, como en Hermann.

La demostracién de la ley de las dreas de Kepler que hace Hermann, primera que se
hace analiticamente (ver el apartado 5.2), es realizada en la Phoronomia de modo
geométrico-diferencial. Sin embargo, tal como hemos explicado, un afio mds tarde
Hermann envia una demostracién en estilo algebraico-diferencial en carta a Keill
publicada en Journal Literaire’”. La carta es una respuesta a la acusacién de plagio
por parte de Keill en relacion a la resolucién del problema inverso de las fuerzas
centrales. La respuesta de Hermann consiste en demostrar que su procedimiento es

diferente, en tanto él basa su demostracién en la deduccién analitica previa de la ley

de las dreas que Keill habia tomado por demostrada.

Lo mds interesante, en cuanto a considerar la transduccién entre estilos, es que en
este corto articulo dirigido esta vez solamente a intelectuales, expresa los
desarrollos geométricos importantes de la Phoronomia en lenguaje algebraico-
diferencial: “"Mais comme je nai presque donné que des démonstrations Synthetigues
dans mon libre, en voici présentement lanalyse."*"® Ya no necesita que su texto sea
comprensible también por los novatos, haciendo inecesarias ciertas alusiones

geométricas.

212 L ettre de M. Hermann. Journal Literaire. 9 (1717), 406-415. Analizada en [GUICCIARDINI N. 1996,
pp. 175-178]
B Ibid. p. 411
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La secuencia demostrativa de la segunda ley de Kepler en el articulo de 1717 es la

misma que podemos seguir en la Phoronomia:

o Establece sus dos principios dindmicos generales: Fds= vdv (ver 5-e), la

conservacion de momentos de fuerza y velocidad (relacion trabajo-energia) y
la, para nosotros, ley fundamental de Newton (ver 5-f). esta segunda

integrada para fuerzas uniformes.

o Aplica estas leyes a las componentes intrinsecas de una fuerza central. La
primera a la componente tangencial Fy ds = vdv. La segunda al movimiento de
caida segtin la componente normal llegando a la expresién F, = v* : r (siendo r
el radio de curvatura).

o Finalmente combinando las expresiones de las fuerzas tangencial y normal

llega a la conservacién de momento angular. De aqui tal como hemos explicado

en la seccion 5.2 deduce la sequnda ley de Kepler.

Sin embargo, las caracteristicas que hacen interesante el articulo de 1717, es que en
¢l Hermann procede a tres desplazamientos estilisticos en relacién con la
Phoronomia. los segmentos representados por pares de puntos son ahora simbolos
algebraicos, ademds las integrales se “hacen” sin razonar sobre dreas en la figura
(ver fig. 27) y, finalmente, construye algebraicamente las ecuaciones diferenciales
que permiten obtener la expresion de la componenete normal de la fuerza, y la que

por integracién da la conservacion del momento angular.

Para ilustrar estos desplazamientos de estilo expondremos la deduccién de la
conservacion del momento angular en el texto de 1717 compardndola con la de la
Phoronomia. Podemos observar que nuestra fig. 39, que corresponde al articulo de

1717, no contiene las escalas de variables que usa en la Phoronomia (ver fig. 28).

Parte de las dos expresiones para las componentes intrinsecas de la fuerza central

que ha deducido (usaremos simbolos actualizados): - F; ds = vdv y F. = v% r;
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dividiendo obtiene dv: v =-F;ds:r F.que como Fy: F, = q:p (siendo p=DCyq=NC
fig. 39) queda: dviv=-qds:rp (6-a)

Por la semejanza de los tridngulos Cec y NOn (despreciando diferenciales de orden
superior) qds = rdp; que puede escribirse también como - q ds /rp = - rdp/rp = - dp/p,

que sustituyendo en la ecuacion anterior 6-a desemboca en la ecuacion diferencial:

dv/v = - dp/p. Escrita como pdv + udp = O se integra dando pu = cte (Hermann toma la
constante como 1). Es decir, el momento angular o producto de la velocidad por la
proyeccion del radio vector sobre la tangente (p=DC) es constante. De cuya
constancia deduce con poco esfuerzo la ley de las dreas de Kepler (ver seccion 5.2

para mds detalles).

Fig. 39

Sin embargo, en la Phoronomia la descripcion de la ecuacién diferencial final es
geométrica y también su integracién basada en un lema geométrico que Hermann
habia demostrado previamente [Phoronomia p. 68 n° 153]. El lema muestra que si el
cociente del incremento de una variable entre el decremento de ofra es como el

cociente entre esas variables, la relacién entre las variables tiene las propiedades de

174



la curva hipérbola analizada por Apolonio. Asi se llega en la Phoronomia a la relacién

hiperbdlica pu = cte.

El texto de 1717 nos indica la direccidn en la que se estd produciendo la algebrizacién
como simplificacién de procesos huméricos; se trata de buscar las ecuaciones
diferenciales y de integrarlas directamente tomando como Unicas referencias
geométricas las relaciones de cantidades obtenidas por semejanza de tridngulos

(como en la fig. 39).

Hay algunas resultados importantes en la Phoronomia que Hermann expresa
algebraicamente: la demostracién del teorema de Guldin (ver 4.1), o la deduccién de
lo que Hermann considera su primera regla dindmica diferencial (Fdr = vdv) a partir

de la segunda (F = m dv: dt) (ver 5.1).

En contraste con esto, la demostracién del teorema integral de la energia en la
Phoronomia, la realiza geométricamente (ver 5.1), mientras le habria bastado, de
forma mds abreviada, integrar directamente el teorema diferencial obtenido,
integral trivial para Hermann, es decir:

2
\%

F-dr=vdv :>J'Fdr=7, tomando vo = O

El significado de la integral indicada es incierto conceptualmente (trabajo de F para
nosotros), pero puede representarse geométricamente mediante un drea en la escala
de fuerzas que es lo que hace Hermann. Vemos que es la conceptualizacién fisica la

que permite avanzar en la algebrizacién ya que singulariza un "objeto” nuevo.
Podemos ver en la eleccién de estilo de la Phoronomia el tipo de dificultades

existentes a comienzos del s. XVIII para desarrollar la mecdnica analitica sin que la

referencia a figuras sea determinante.
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Existen pautas geométricas como la "observacion” de la semejanza de tridngulos o la
construccion de figuras auxiliares que permiten avanzar en las demostraciones
geométricas, sean estas finitas o infinitesimales, y que equivalen en algunos casos a
cambios de variable. Sin embargo la algebrizacion, cuando no es simple, requiere el
concepto fundamental de "funcion”, ausente en el momento en que Hermann escribe,
y la consideracién concomitante de variables dependientes e independientes.
Interconectando funciones algebraicamente y desarrollando las semejanzas de
tridngulos y las figuras auxiliares, como relaciones entre variables en distintos
sistemas de coordenadas (cambios de variable), se puede dar la autonomia respecto
de las figuras, para construir las ecuaciones diferenciales correspondientes, tal como

acabamos de ver que Hermann hace un afio después de publicada la Phoronomia.

Podemos ilustrar este razonamiento extraido del andlisis de la Phoronomia, con un

ejemplo muy simple presente en los textos fundadores del nuevo cdlculo:

Geométricamente “vemos” por semejanza de tridngulos, la relacién entre el tridngulo
diferencial y el que forma la subtangente Ax de una curva en un punto (x,y):

dy: dx = y: Ax

Algebraicamente, escribimos la ecuacién de la recta tangente y = m x + b siendo m la
pendiente y b la ordenada en el origen. Podemos tomar la pendiente de la recta como
dy:dx, ya que coincide con la de la curva en el punto de contacto. Si escribimos ahora

la ecuacién de la recta para y = O, restando con la anterior tenemos:

y = dy:dx - x +b
O =dy:dx-x"+b

y = dy:dx - (x - X)

como (x - x') es la subtangente, nos queda que dy:dx = y:Ax.

En este caso, la algebrizacion depende de considerar la recta como una ecuacion o

relacion funcional. También es evidente, que la consideracion algebraica funcional
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hace innecesaria la blisqueda de la subtangente, fundamental en el tratamiento
prefuncional geométrico. El desarrollo de un estilo distinto requiere unas
herramientas conceptuales diferentes (funcion) y lleva a focalizar los desarrollos

sobre aspectos distintos, aunque finalmente traducibles.

Recordemos [BOS H. J. M. 1974-75; pp. 9-10] que la primera definicion moderna de
"“funcion” se debe a Johann Bernoulli (1718), como “cantidad variable compuesta de
cualquier modo de cantidades variables y constantes”; aunque la palabra “funcion”
(Functionem) habia aparecido primero en un texto publicado por Leibniz en 1692
referido a las cantidades geométricas en una curva. Después Johann Bernoulli la usa
para indicar las potencias de una variable o cualquier otra funcién en general en 1698.
Es Euler quien extiende, usa y generaliza el concepto de funcién a partir de su
primera definicion de 1748. Tal como dice H. Bos, con Euler “[function] became a
concept connected with formulas rather than with figures' [Ibid.]. Hermann no usa
la palabra funcién, sélo en ocasiones enuncia que cierta variable estd compuesta de
constante y variables de modo diverso. Por ejemplo cuando trata el problema inverso

de las fuerzas centrales [Phoronomiap. 77 n° 169]:

"5/ in Canone articuli 167 loco ordinatae EH ponatur ...e ..A, quaelibet quantitas composita ex data seu

"

constante e, et variabile A, data tamen utlibet in x et quantitatibus constantibus,...

Hermann describe las relaciones entre variables a partir de la construccién de lo que
llama “Escalas” (Scala). Las escalas son para Hermann curvas que representan
"geométricamente” la correspondencia entre dos cantidades variables sin distincién.
Tal como hemos mostrado en los temas tratados, utiliza las scalas en las
demostraciones, combindndolas entre si para obtener relaciones entre distintas

variables o ecuaciones diferenciales.

Tal como hemos visto, Hermann usa tanto coordenadas cartesianas como intrinsecas

al tratar el problema de la forma de un objeto flexible sujeto por sus extremos (ver
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4.2). En los tratamientos dindmicos (ver 5.2 y 5.4) usa coordenadas polares®* para las

trayectorias y descomposicién intrinseca de fuerzas.

Hermann sigue la pauta general de su época, al considerar que las cantidades
presentes en sus ecuaciones tienen que ser homogéneas dimensionalmente, es decir,
todos los términos han de ser de la misma dimensidn, el producto de dos lineas ha de
dar una superficie, etc. Esto es una consecuencia de pensar las cantidades
geométricamente como lineas, dreas o volimenes. Como ejemplo de la persistencia del
requerimiento de homogeneidad dimensional, H. Bos cita una carta de reproche de

Johann Bernoulli a otro matemdtico en 1720 [Ibid. p. 7 nota 6]°°.

Por otro lado en la Phoronomia estdn presentes las relaciones entre variables como
proporciones, pero también como “leyes relacionales” cuya expresién ya ho es una
proporcion sino una ecuacion (ver por ejemplo las dos reglas principales mecdnicas o
las leyes de caida libre en 5.1. o la definicion de velocidad en 3.2, etc.). Recordemos
que el paso de proporciones a ecuaciones cuando ho sirven de definicién para una
magnitud derivada (p. ej. v= x:t), requiere el uso de constantes de proporcionalidad
que indican las unidades de medida de las magnitudes relacionadas. Esta
consideracion surgird con Euler en su Mechanica de 1736 tal como se analiza en

[GONZALEZ REDONDO F. A. 2003]

7 EXPERIMENTACION E INSTRUMENTOS. La razén préctica en al

Phoronomia.

La PAoronomia consiste en un intento de elaboracién de una mecdnica racional, basada
en principios suficienfemente generales para poder deducir una gran variedad de

situaciones. Ademds, muchos de los capitulos contienen andlisis de situaciones que

214 E] primero en usarlas fue Jacob Bernoulli a finales del s. XVII. Ver [BLAY M. 1992. p. 195]
213 para un analisis de las ventajas de este requerimiento que lo hicieron duradero, y para la justificacion de
su violacion a partir de Descartes, en la resolucion algebraica de ecuaciones, ver [BOS H. J. M. 1974-75;

pp- 6-7]
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atafien a experiencias, dispositivos e instrumentos. El andlisis parte de considerar las
situaciones prdcticas como correlato del andlisis mecdnico general ya establecido. En
ocasiones es critico, modificando argumentaciones de otros autores. A veces es
informativo, dando a conocer las dltimas novedades en aparatos de medida. O
creativo, aportando disefios originales. Veamos de qué modo Hermann disemina sus

andlisis prdcticos, qué usos les da y qué papel tienen en la elaboracién de su mecanica.

1. La mecdnica racional confirmada por experiencias

Hermann demuestra al comienzo del cap. I, secc. I, libro II, tal como hemos
explicado en el apartado dedicado a la hidrostdtica, que la presién sobre el fondo de
un recipiente sélo depende (supuesto el mismo liquido) de la profundidad desde la
superficie del liquido, y es por tanto independiente de la forma del recipiente. A
continuacién, en un escolio [Phoronomia p. 133 n° 256] sefiala que esta propiedad de
los fluidos lleva a una paradoja: una pequefia cantidad de liquido gravita tanto, como

otra masa del mismo liquido cientos o miles de veces mayor, para la misma altura.

Hermann, afirma a continuacién: “Sin embargo esta verdad puede confirmarse por
experiencias, para después ser probada;” (“Ejus tamen veritas ipsa experimentia
comprobata est, atque deinceps probari potest:’

[Phoronomia p. 134 n° 256].

Para Hermann el principio demostrado (una
veritas), puede ser confirmado mediante una

experiencia, que él analizard después usando sus

principios para mostrar como se desvanece la
aparente paradoja. La experiencia tiene aqui un

valor demostrativo e ilustrativo de un principio que

va contra la intuicién inmediata.
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El experimento anunciado consiste en considerar una balanza, en la que un plato P
equilibra un recipiente que puede adoptar dos formas muy distintas, el cilindro IBCK
y el puntiagudo ABC (ver Fig. 40). Hermann describe algunos detalles constructivos,
como el cuidado necesario para realizar el dispositivo, de modo que en la misma base
aBCf puedan encajar dos recipientes distintos, el cilindrico IBCK y el conoide
puntiagudo ABC, sin que perdamos liquido; una cuerda une el centro de la base aBCf

con el brazo MD de la balanza, que es igual al otro brazo DO.

2. La mecdnica racional explica el disefio de instrumentos de medida:

En el cap. ITI de la secc. I del segundo libro trata, como ya se ha dicho, del equilibrio
de cuerpos sumergidos total o parcialmente. Recordemos que: demuestra el teorema
de Arquimedes para fluidos heterogéneos, estudia el equilibrio resultante entre la
fuerza ascensional y el peso del cuerpo sumergido. En el corolario V [Phoronomia p.
155 n® 295] muestra como consecuencia del principio de Arquimedes, la relacion
inversamente proporcional entre la parte sumergida de un

cuerpo y la densidad del liquido en el que estd sumergido.

En el escolio [Phoronomia pp. 155-157 n°® 296] que sigue a los
desarrollos teéricos citados, Hermann nos anuncia el interés
que dichos resultados tienen, en concreto el Ultimo corolario
citado, para “fundamentar” dispositivos que sirven para

comparar pesos especificos:

"Los corolarios anteriores contienen los fundamentos de diversas mdquinas

hidrostdticas, con los que se suelen explorar las gravedades especificas de

los diversos liquidos."?'

218 «Corollarium praecedens fundamentun continet diversarum machinularum hygrostathmicarum, quibus
diversorum liquorum specificae gravitates explorari solent.” [Phoronomia p. 155 n° 256]
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Pasa a describir, nos dice, un aparato "familiar” (Fig. 41) (equivalente a un tipo de
densimetro que adln se usa), que consta de un bulbo M prolongado en un tubo delgado
MA. El bulbo acaba en un pequefio saquito N que contiene un poco de mercurio cuya

finalidad es que la mdquina se mantenga vertical.

Describe con detalle el procedimiento para construir una tabla de valores usando un
mismo liquido pero distintos pesos de mercurio en el bulbo M. Construye una tabla de
dos entradas: el peso del mercurio intfroducido en M, y la marca en el tubo MA
correspondiente a ese peso. De este modo, cuando se introduce la mdquina en dos
liquidos distintos Ay O, ésta se hundird hasta, por ejemplo, las marcas By C. Como
consecuencia del corolario V citado, podremos concluir que las densidades de los
liquidos estdn en razon inversa de los pesos correspondientes a las marcas By C, que

tenemos en la tabla elaborada previamente.

Hagamos notar que Hermann, como se hacia en la época, establece relaciones entre
dos medidas, y no una ecuacion o relacién directa entre la densidad y la parte
sumergida de la mdquina, ya que para esto hecesitaria establecer un sistema de

unidades, cosa que hasta Euler no se comenzard a hacer??.

Posteriormente [Phoronomia pp.
159-160 n° 300], resuelve el

problema de determinar la parte o)

sumergida CB de una barra AB E C F
(ver fig. 42), que pende

suspendida del extremo opuesto B Fig. 42
A al inmerso en el liquido B,
conocida la relacién de gravedades especificas entre el liquido y la barra. Y el

problema inverso [Phoronomia p. 160 n° 301: dadas la longitud de la barra AB y la

parte sumergida BC, podemos obtener la gravedad especifica relativa barra- liquido.

7 Para un estudio del paso de las proporciones a las ecuaciones que incluyen medidas en Euler, ver el
trabajo: GONZALEZ REDONDO F. A. 2003
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De modo que puede ser usada, dice, como instrumento hidrostdtico, que los franceses
llaman pese -/iguen, para medir gravedades especificas relativas de liquidos
dividiendo la barra adecuadamente para liquidos distintos.

La mecdnica racional proporciona para Hermann los fundamentos de aparatos de
medida ya conocidos. El procedimiento para establecer las escalas de los
instrumentos es experimental, pero los principios demostrados justifican ese
procedimiento. En el caso del barémetro (cap. IV del segundo libro), que Hermann usa
como experiencia decisiva que muestra que el aire pesa, deduce su funcionamiento del
estudio del comportamiento de dos vasos comunicantes, que ha realizado en la
estdtica general de fluidos, (ver apartado 4.4.1). Es la mecdnica racional la que

explica el funcionamiento del barémetro, como equilibrio de pesos.

3. La mecdnica racional explica la imposibilidad prdctica de ciertas mdquinas:

Seguimos en el cap. ITI de la secc. I del
segundo libro. Hermann resuelve el

siguiente problema [Phoronomia pp. 157-

158 n® 298], como aplicacién del principio 4

de  flotabilidad de  Arquimedes

demostrado:

Fig. 43

Dados: (Fig. 43) el diametro (FM = a) de una esfera metdlica hueca que flota en un
liquido hasta el nivel (AB), y la razdn (n) entre las gravedades especificas del metal y
del liquido homogéneo, determinar el didmetro interior (HN = x) requerido para que
la esfera quede sumergida a una determinada profundidad (LM = c). La solucién que

obtiene Hermann tomando c=a:m, donde m es un nimero dado, es:

X=a 3\/(m3 -3mn+2n):m’

En el corolario posterior reduce la relacion encontrada al caso en que la esfera hueca

esté sumergida totalmente en el liquido homogéneo. En este caso: x=a 3/(1-n)
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Finalmente, en el mismo corolario, aplica la relacion al caso en que la esfera esté
sumergida en el aire. Como el aire, nos dice Hermann, es 800 veces mds ligero que el

agua y 7200 veces mds ligero que el cobre®®, sustituyendo en la ecuacién anterior:

7199 . .
Xx=a }——, y tomando logaritmos obtenemos un valor de x comprendido entre

7200
(0,99995 a) y (0,99996 a). Es decir el grosor FH del
bronce igual a (a-x)/2 deberia ser menor que
0,000025 veces el didmetro (a) de la esfera de

bronce. Por tanto, dice Hermann, para por ejemplo

una esfera de bronce de 1/114 partes de pie de
grosor, hecesitariamos que tuviera un didmetro de

277 pies.

Termina discutiendo el proyecto del Padre Francesco

Lana®? (ver fig. 44) para construir un globo de cobre

con el que navegar por el aire, basdndose en el

Fig. 44

principio de Arquimedes. Lana propone en Magisterii

Naturae et Artis Tomo II. fol. 291, nos dice Hermann, un globo metdlico de 25 pies
de didmetro, lo que supondria un espesor del metal de 1/1600 partes de pie. Hermann
explica que Leibniz en la p. 127 del tomo I de Miscellaneorum berolinensium ya
analizé ejemplos similares y “"demostré abundantemente, que debian abandonarse de
antemano, todos los intentos de aceptar como exitosa la havegacion con cobre, que

habia propuesto el egregio Lana." [Phoronomiap. 159 n° 299].

¥ podemos considerar actualmente la densidad media del cobre 8,93 g/cm’, y la densidad del aire seco a
15° C a la presion atmosférica estandar al nivel del mar 0,0013 g/cm’, por lo que la densidad relativa aire-
bronce nos daria un valor aproximado actual de 1/6869, que se aproxima al considerado por Hermann con un
error de casi el 5%.

219 Francesco Lana- Terzi. S.J. (Brescia 1631-1687). Magisterium Naturae et Artis. Volume II (Brescia 1684
y 1686. vol 1 y II; Parma 1692 vol. III). El titulo completo de la obra es: Magisterium Naturae, Et Artis.
Opus Physico-Mathematicum... In Quo Occultiora Naturalis Philosophiae Principia Manifestantur,
Et Multiplici Tum Experimentorum, Tum Demonstationum Serie Comprobantur... Obra que en nueve
volimenes, aunque so6lo publico tres, pretendia ser una enciclopedia de los conocimientos de las ciencias
naturales de la época. Lana estd considerado en las historia del vuelo, como el primer precursor que se
plantea seriamente la posibilidad de construir una maquina voladora. Ver [Catholic Encyclopedia:
http://www.newadvent.org/cathen/08772¢.htm]

183



4. Mecdnica racional y experimentos demostrativos falaces:

Las primeras reflexiones en el capitulo V del segundo libro, dedicado a estudiar el
peso del aire, son para demostrar la falacia de un experimento, que Hermann
retrotrae hasta Aristdteles, y que nadie anteriormente al trabajo de Jacob Bernoulli
publicado en Actas de Leipzig en 1685 (p. 436) habria descubierto. El Filésofo, y sus
comentadores posteriores, habian afirmado, en opinién de Hermann, que una piel pesa
mds cuando estd inflada que cuando estd fldcida®?®. Esta seria la prueba de que el

aire pesa.

Hermann nos dice que Jacob B ha deducido de los principios de la hidrostdtica que:
"La piel o vejiga inflada ho pesa mds, que aplastada, aunque se suponga que el aire no

duZZl

ha sido privado de graveda , Y hos anuncia que puede ser explicado en pocas

palabras del siguiente modo:

Cuando pesamos una vesicula hinchada con aire dentro, se alza en contacto con ella
una columna de aire determinada, de forma que el peso que actia en un plato de la
balanza es el del aire y el de la vesicula; si después expulso el aire y la peso de nuevo,
el plato tendrd encima la misma columna de aire de antes, de forma que en todos los
casos el peso que actla sobre el plato tiene que ser el de la primera columna de aire y

el de la vesicula.

El esfuerza diddctico de Hermann se amplia con la siguiente analogia: si pesamos un
recipiente con agua, y después pesamos el recipiente vacio pero echando el agua que
antes estaba en el recipiente en el plato de la balanza, pregunta Hermann, ¢no
afirmaria todo el mundo que el peso no ha cambiado? Del mismo modo el peso de la

vesicula vacia no difiere del de la hinchada con aire. Cualquier cambio de peso, nos

20 <Utrem inflatum plus trahere quam compressum et flaccidum existimavit ” [Phoronomia p. 170 n° 313]
2 «Utrem seu vesicam inflatam non esse gravioris ponderis, quam complicatam, licet aerem gravitate hand
destitui praesupponas.” Ibid.
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dice Hermann, debe atribuirse a que en las operaciones de hinchado y deshinchado la
vesicula ha perdido particulas, y no al cambio de peso por ausencia de aire, como

demuestra el razonamiento a partir de la hidrostdtica.

Sefialemos como curiosidad no exenta de ensefianzas, que aln hoy, hay libros de
fisica y quimica para escolares que proponen realizar esta experiencia para

"demostrar” que el aire pesa.

"L'aire és un gas i també es pot pesar. Agafem, per exemple, una pilota desinflada i la pesem. A

continuacid la inflem i la tornem a pesar. Observem que pesa més que abans. La diferencia entre els dos

pesos serd el pes de l'aire que hi ha dins la pilota.” %%

La falacia en este caso consiste en afirmar que de la diferencia de pesos obtenemos
el peso del aire que hay en el interior. Solo seria el aire correspondiente al exceso de

presién que pudiera haber en la pelota o globo.

5. Experiencias que establecen nuevas propiedades que serdn explotadas por la

mecdnica racional:

En este caso, las experiencias analizadas encabezan la mecdnica racional, como
fundamentos experimentales que ponen al descubierto nuevas propiedades de la
materia. Propiedades que surgen en este caso de las nuevas preguntas que plantean
las experiencias novedosas. Serd la mecdnica racional en un segundo momento quien
tratard de responderlas, estableciendo modelos explicativos, y explotando sus

consecuencias.

En el comienzo del capitulo V del segundo libro, dedicado a la fuerza eldstica del aire,

Hermann nos explica que esta nueva propiedad llamada Elater’?’ o fuerza eldstica, se

22 A continuacion el texto propone hacer una investigaciéon con una balanza y globos. Quimica. Ciéncies de
la naturalesa. 1t cicle d’ESO; ed. Teide (2002) p. 21
2 Ver nota 8
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desprende ocularmente de ciertas experiencias. Son para Hermann las pruebas

evidentes de la nueva caracteristica del aire.

“Inter haec experimenta unum alterumve hoc loco recensebo, quod aeris elasticans ad oculum

demosntrare existimo” [Phoronomia p. 180 n°® 325]

Las experiencias son tres [ibid. pp. 180-181]. Hermann las describe de forma

simplificada, ya que eran bien conocidas:

e La vesicula de buey o porcina fldcida atada por su extremo, que es introducida
en una mdquina pneumdtica, se hincha debido a la elasticidad del poco aire que
hay en su interior?®*,

e Un recipiente cerrado de finas paredes de cristal introducido en otro del que
se ha extraido el aire, se rompe a menudo en miltiples fragmentos por la
elasticidad del aire que hay en su interior.

e Dos semiesferas de las que se ha extraido el aire se separan con mucha
dificultad, sin embargo pueden ser separadas fdcilmente cuando contienen

aire.

Boyle habia usado la experiencia de la vejiga en la parte superior de un tubo de
Torricelli como demostrativa de la elasticidad del aire, en su obra Experiments
Physico-Mechanical, Touching the Spring of the Aire. Oxford 1660 [ Works, vol. 1, p
13]. A continuacion Boyle sefiala en la obra citada, que el resultado seria el mismo

colocando la vejiga dentro del globo de cristal de la bomba pneumdtica.

La bomba pneumdtica (Antlia Pneumatica) es para Hermann la mdquina fundamental
que permite explorar la elasticidad del aire, tal como lo declara al comenzar su

estudio del Elater del aire. La describe con detalle tal como se ha explicado en el

24 Experiencia realizada por primera vez por Roberval en 1647 introduciendo una vesicula animal cerrada,
en la parte superior de un tubo de Torricelli. [WEBSTER C. 1965; p. 449]
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apartado 4.4.2 para después establecer la relacién que permita obtener el ndmero de

emboladas necesarias para enrarecer el aire en un grado determinado.
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8 CONCLUSIONES

Hermann decide escribir un tratado de hidradlica en 1709 mientras estd comenzando
su ensefianza publica y privada en Padua, trabajo que concluye en 1712 con la
Phoronomia. Su objetivo explicito es escribir un texto sobre hidrdulica (tema de
larga tradicion e interés en Padua), pero para hacerlo comprensible por los novatos

considera necesario exponer en él los fundamentos de sus deducciones. Su texto se

convierte pues en un tratado general de mecdnica racional, uno de cuyos centros de
interés estd, tal como hemos mostrado, en la exposicién secuenciada y estructurada
de los conocimientos mecdnicos dispersos en muchos textos de distintos autores (ver

cap. 2).

En primer lugar procede a estructurar la estdtica de fluidos en continuidad con la de
los sélidos rigidos y flexibles. Asi puede calcular la fuerza y el momento de cualquier
sistema de fuerzas actuante sobre objetos de cualquier forma (ver cap. 4),
extendiendo su uso al estudio de las presiones en un liquido o sobre un objeto
sumergido y acabando con el estudio del aire. Mientras en el anterior tratado de
estdtica [ver Mechanica (1669) de Wallis en la introduccién al cap. 4], Wallis estudia
superficies de revolucién, la aplicacién por parte de Hermann de los métodos del
nuevo cdlculo diferencial e integral en ambos estilos, geométrico y algebraico, le

permiten tratar casos mds generales (ver cap. 4.1)

La estructuracion de la estdtica, junto con la demostracion de sus principales
principios, basados en la consideracion del equilibrio de fuerzas, supone en 1716,
fecha de la publicacidn de la obra, una contribucién a la visién unitaria de distintos
campos como la hidrostdtica, el estudio del aire, y el equilibrio de sistemas de
fuerzas en sdlidos. Particularmente destacable es su estudio de sélidos flexibles
sujetos por extremos (ver 4.2), para los que elabora una serie de ecuaciones

diferenciales generales a partir de las que “deduce” los casos particulares de la
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catenaria, velaria, lintearia, y otros, es una agrupacion de una clase de problemas
previa a la que realizard Euler cuando los considere tipos de isoperimétricas. En la
hidrostdtica, estudia el caso general de fluidos heterogéneos, particularizable para

homogéneos (4.3).

Considerada globalmente, la estdtica de Hermann, sin embargo, no aparece ain como
caso particular de leyes dindmicas generales, como serd el caso de los principios
variacionales que desarrollaran D'Alembert, Maupertuis y finalmente Lagrange

durante el s. XVIII [PANZA M. 2003].

Merece una atencién destacada la estructuracién de la dindmica en la Phoronomia, ya
que constituye un intento por establecer un conjunto de conceptos y de leyes

relacionales, que proporcionan un tratamiento algoritmico de resolucién de problemas

mecdnicos. Mientras la estdtica rigida se estructura en orden creciente de
complejidad, desde conjuntos discretos a continuos de fuerzas, o desde sistemas
planos a sdlidos, la dindmica comienza estableciendo las leyes generales (5.1), para
desplegarse después en el estudio de tipos de problemas mecadnicos, como el estudio
de fuerzas centrales o la caida libre (5.2), el movimiento de los dpsides en drbitas,
las colisiones (5.3), el movimiento de cuerpos por curvas o el problema equivalente de
los péndulos (5.4), o el movimiento en medios resistentes (5.5) y la cinemdtica de

flujo de liquidos, en la parte de fluidos.

Su dindmica general se organiza a partir de dos principios y un postulado (5,1). El

primer principio que hoy conocemos como segunda ley de Newton y que Hermann

escribe por primera vez en su forma actual F = m dv:dt. El segundo es el que Hermann
llama “principio de igualdad de momentos”, que constituye para nosotros la

conservacion de la energia o teorema energia trabajo Fds = vdv; del que obtiene por

integracién JFds = %+ m v2 El postulado particulariza su definicién de velocidad

uniforme para un diferencial de tiempo dt = dx:v.

189



Es significativa la consideraciéon del principio energético en Hermann, primero por que
la distingue y la hace independiente de la formulacion algoritmica que ha realizado
Varignon unos afios antes (ver discusién en 5.1), basada, la de Varignon, en la segunda
ley de Newton y en la definicion de velocidad en un instante. Por otro lado, este
principio energético se convierte en su obra, en la prima formula (5.1), fundamental
en su planteamiento de problemas analizados en esta monografia, como movimientos
por fuerzas centrales, descenso por curvas, péndulos, o la muy completa serie de
capitulos dedicados al movimiento en medios resistentes (5.5). También se usa en el
estudio de la ecuacion barométrica que relaciona presién con altura atmosférica (ver

4.4.3 Modelos atmosféricos).

Aungue la expresién de su primera férmula general (fFds = ¥ m v®), y la conservacién
de la “fuerza absoluta"?*® (mv®) en los choques, contienen la misma cantidad, Hermann
no las asocia; son vistos como contextos mecdnicos distintos. En el estudio de los
choques, Hermann hace referencia a la polémica de las fuerzas vivas defendiendo la

posicién de Leibniz.

Es destacable, en el contexto energético (vis viva) con el que trabaja, su hipétesis
mecdnico-estadistica (5.6) en la que se postula por primera vez que la presion y la
temperatura son proporcionales al cuadrado de la "velocidad media” y la "densidad”
de las particulas de un gas. Hipdtesis ignorada en los textos histéricos de mecadnica o

de teoria cinética.

La Phoronomia es de principio a fin una mecdnica racional escrita en el nuevo lenguaje
del cdlculo diferencial e integral. Hermann da incluso una versién del que llamamos
"“teorema fundamental del cdlculo” y un algoritmo de cdlculo integral (ver 6). Es mds,
el nuevo cdlculo es la condicion de posibilidad del nuevo desarrollo conceptual de la
mecdnica. Permite la creacién de conceptos diferenciales como velocidad y fuerza en

un instante dt, que Hermann usa sin darles nombre especifico, y que permiten

22 . . . .
> Recordemos que “fuerza absoluta” es otro nombre para Vis viva, ambos procedentes de Leibniz (ver 5.3)
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desarrollar a partir de las leyes generales, las ecuaciones diferenciales de los temas

tratados (hay multiples ejemplos en el cap. 6).

Es un proceso de construccion algoritmico-diferencial emprendido de forma distinta
por Varignon y por Hermann, en el que se incluyen resultados de los Bernoulli, de
Leibniz, de Huygens y de L'Hopital. Varignon con el mérito de haber explicitado la
velocidad y la fuerza en un instante y Hermann destacando el principio que después
llamariamos energético. Todos ellos pendientes del desafio de reescribir y completar
los resultados de los Principia usando los huevos métodos matemdticos de andlisis
local, pero también de enfrentar nuevos problemas impulsados por la potencia de los
nuevos métodos; ésta serd para ellos la mejor prueba de la validez de unos métodos

que, por otro lado, estaban siendo puestos en cuestion.

Es en este proceso donde Hermann desarrolla nuevas demostraciones diferenciales,
como la unificacién de problemas de curvas flexibles sujetas por los extremos (4.2),
la ley de las dreas, o el problema inverso de las fuerzas centrales (5.2) que desarrolla
en toda su generalidad después de haber tratado el problema en una serie de
articulos publicados en Italia. También hace un estudio general del problema de

movimiento oblicuo en medio resistente valioso histéricamente por su dificultad (5.5).

Otra dimensién importante que recorre la obra de Hermann, es su trabajo conceptual
(ver cap. 3), ya mencionado al hablar de sus conceptos diferenciales, pero presente
también en sus definiciones de las clases de fuerzas (ver la comparacién conceptual
entre Newton, Leibniz y Hermann en 3.3). Mantiene algunas de las distinciones
verbales procedentes de la metafisica leibniziana y de la creencia de la época de que
la fuerza actia por impulsos continuados. Asi, considera con distinto nombre a las
fuerzas en un instante que ain no producen movimiento (vis morta o solicitatio), y a
estas mismas repetidas continuamente (vis viva o simplemente vis, o en contextos
estdticos potentia). Sin embargo vemos cémo en su propia obra se pierden en la

prdctica estas distinciones. No encontramos en la Phoronomia reflexiones sobre el
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debate de las fuerzas a distancia, su actitud sigue la de Newton sin hacerse eco de

las criticas de Leibniz o Huygens.

Son valiosas, asi mismo, las reflexiones presentes en la obra sobre la estructura de la
materia en el contexto de la filosofia mecdnica. Asi, su moderna definicidon de masa
como agregado de particulas (3.4) (éste es uno de los proyectos actuales
considerados para sustituir al prototipo de kg: ver nota 65), sus distinciones entre:
masa y peso (3.5 y 5.1), sélido (y su grado de resistencia frente a la rotura) y fluido
(4.3), liquido y gas (4.4.1), la afirmacion del vacio y la cuantificacion de su grado
(4.4.2), el razonamiento por el que considera que el movimiento del éter no tiene
ningln papel para explicar la elasticidad del aire (4.4.1), y la ya citada relacion entre

el calor y la energia cinética media de las particulas del gas.

En la dltima década del s. XVII la elaboracién de la mecdnica por parte de los autores
ya citados, se hace con una mezcla de estilos (ver 6). La presentacién de los
algoritmos fundadores del nuevo cdlculo por Leibniz, favorece que se busque el estilo
algebraico en el continente, mientras que el estilo de Newton hard que sus seguidores
defiendan el estilo geométrico cuando elaboren mecdnicas fluxionales. La polémica
sobre la prioridad hard que las opciones sobre el estilo a usar, se conviertan ademds
en una cuestion de pertenencia a bandos (ver comentario de Johann Bernoulli en 6),

debate en el que Hermann no entra.

Hermann declara en el prefacio su intencion de escribir la Phoronomia mezclando los
estilos geométrico o "lineal” (en las demostraciones principales) y “especioso” (en la
posterior particularizacién). Considera las construcciones geométricas mds "simples”
y “elegantes”, ademds de ser mds claras para los novatos. Es, sim embargo, muy
significativa la reescritura algebracica que hace de sus principales resultados
dindmicos en un articulo de 1717 (analizado en el apartado 6) porque nos permite
comparlos con los contenidos en la Phoronomia. Es un escrito para defenderse de un

plagio y por tanto, en esta ocasién, dirigido a intelectuales; por tanto no necesita
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hacer desarrollos geométricos detallados y puede ir directamente a las ecuaciones

diferenciales y proceder a su integracién.

Se da pues en su obra una mezcla de los estilos, newtoniano y leibniziano, fributaria
de la tradicion geométrica. Depender de los diagramas especificos de cada tipo de
problemas, dificulta ir avanzar en la generalilzacion de algoritmos. Por otro lado, es
necesario desarrollar herramientas coneptuales nuevas, como la de “funcién” y la de
variable dependiente, para una algebrizacién efectiva. Por esto, a pesar de contener
la Phoronomia un grado de estructuracion y algoritmacion superior a los textos
mecdnicos anteriores, salvo el caso similar de Varignon ya citado, el joven Euler ve en
1736 que cada resultado parece responder sélo al problema planteado, dificultando
su generalizacion. El titulo de su obra, Mechanica, sive motus scientia analytice

exposita, y sus palabras son elocuentes del programa emprendido:

"De hecho, el lector atn persuadido de la verdad de las cosas demostradas, ho las puede comprender
clara y distintamente. Asi es dificil poder resolver los mismos problemas cuando han cambiado sélo un
poquito, si uno nho los examina con la ayuda del andlisis y si no desarrolla las proporciones segtn el
método analitico. Esto es exactamente lo que me pasé a mi, cuando comencé a estudiar en detalle los
Principia de Newton y la Phoronomia de Hermann. De hecho, a pesar de haber comprendido bien las
soluciones de numerosos problemas, no pude resolver problemas que eran un poco diferentes. Por tanto
estudié el andlisis presente detrds de esos métodos sintéticos para tratar las proposiciones en términos

del andlisis, para mis propésitos”. 2%

La Phoronomia es pues representativa del proceso que conduce desde la magna obra
de Newton hasta la expresidn analitica de Euler, con sus dificultades y sus hallazgos

parciales.

226 « . . . . . ..
Lectore, etiamsi de veritate eorum, quae proferuntur, conuincatur, tamen non fatls claram et distinctam

eorum congnitionem assequatur, ita ut easdem quaestiones, si tantillum immutentur, propio marte vix
resolvere valeat, nisi ipse in analysin inquirat, easdemque propositiones analytica methodo evoluat. Idem
omnino mihi cum Newtoni Principia et Hermanni Phoronomiam perlustrare coepissem, usu venit, ut
quamquis plurium problematum soluciones fatis percepisse mihi viderer, tamen parum tantum discrepatia
problemata resoluere non potuerim. Illo igitur iam tempore, quantum potui, conatus sum analysin ex
synthetica illa methodo elicere, easdemque propositiones at meam utilitatem analytice pertractare, quo
negotio insigne cognitionis meae augmentum percepi.”’ Praefatio de la Mechanica [Euler 1736]
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Para terminar me gustaria citar tres posibles extensiones de esta monografia: por un
lado, estudiar las relaciones epistolares entre Hermann y Varignon para comprobar la
influencia de éste Ultimo en la construccion conceptual y algoritmica de Hermann. Asi
mismo, seria interesante estudiar la difusién e influencia de la Phoronomia en autores
como Daniel Bernoulli o Euler que coincidieron en S. Petesburgo con Hermann
[Hermann entre 1724-1731 (ver cap. 1). Daniel BERNOULLT 1725-1733, y Euler 1727-
1741], o en Kénig, que formula en 1751 la ley de la energia cinética de un sistema de
masas puntuales, y es discipulo de Hermann en Basel desde 1731 [DSB]. Finalmente,
el uso de principios “energéticos” de Hermann ¢tiene alguna influencia en la mecdnica

de Lagrange que se construye con este mismo enfoque?
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