
Universidad Autónoma de Barcelona

Escuela Técnica Superior de Ingeniería

Departamento de Arquitectura de Computadores y

Sistemas Operativos

Plani�cación de Aplicaciones

Best-E�ort y Soft Real-Time en

NOWs

Memoria presentada por José R.

García correspondiente al Trabajo
Experimental dentro del Programa
de Doctorado en Informática, Opción
A: "Arquitectura de Ordenadores y
Procesamiento Paralelo".

Barcelona, 10 de julio de 2007

El Dr. Por�dio Hernández Budé TU del Departamento de Arquitectura de
Computadores de la Universidad Autónoma de Barcelona,

CERTIFICA:

Que la presente memoria "Plani�cación de Aplicaciones Best-E�ort y Soft
Real-Time en NOWs" ha estado realizada bajo su dirección por D. José R.
García Gutiérrez, y constituye el Trabajo Experimental dentro del Programa
de Doctorado en Informática, Opción A: "Arquitectura de Ordenadores y
Procesamiento Paralelo".

Barcelona, 10 de julio de 2007

Dr. Por�dio Hernández

Es la libertad la esencia de la vida.
José Martí

Índice general

1. Introducción 1

1.1. Clusters no dedicados . 2

1.2. Plani�cación en clusters no dedicados 4

1.2.1. Plani�cación espacial 5

1.2.2. Plani�cación temporal 7

1.3. Tiempo Real estricto y débil 11

1.3.1. Sistemas de Tiempo Real Estricto 11

1.3.2. Sistemas Tiempo Real Débil 19

1.4. Sistemas de Plani�cación para Aplicaciones de Múltiples Tipos 23

1.5. Objetivos . 25

1.6. Organización de la Memoria 26

2. Arquitectura General del Sistema 29

2.1. Subsistema LoRaS . 30

2.2. Arquitectura del simulador fuera de línea 31

2.3. Extensiones incluidas . 31

2.3.1. Tiempo Remanente de Ejecución 32

2.3.2. Núcleo analítico . 35

2.3.3. Método simulado . 37

3. Implementación del Simulador para Aplicaciones SRT 43

3.1. Arquitectura . 43

3.1.1. Framework DESMO-J 43

3.1.2. Entidades relevantes 45

3.1.3. Eventos relevantes . 49

3.2. Soporte para nuevos algoritmos RT 54

3.3. Comunicación entre los procesos 55

i

4. Experimentación realizada y resultados obtenidos 59

4.1. Caracterización de los entornos de ejecución 59

4.1.1. Entorno de las ejecuciones reales 59

4.1.2. Entorno de las ejecuciones simuladas 61

4.2. Validación del Simulador . 62

4.3. Inclusión de carga SRT . 63

4.3.1. Carga local SRT . 64

4.3.2. Carga paralela SRT 64

5. Conclusiones y Trabajo Futuro 67

5.1. Conclusiones . 67

5.2. Trabajo Futuro . 68

A. Propuestas para la plani�cación 71

A.1. Implementación del plani�cador en espacio de usuario 71

A.1.1. Plani�cador basado en renice 72

A.1.2. Plani�cador basado en STOP-CONT 72

A.2. Plani�cador propuesto . 73

B. Procesadores multicore 75

B.1. Estado del arte procesadores multicore 75

B.2. Uso de la capacidad multicore de los procesadores 77

B.3. Experimentación en procesadores Pentium D 78

B.4. Algunas Arquitecturas SMP Actuales 79

Bibliografía 89

ii

Índice de �guras

1.1. Taxonomía de Arquitecturas Paralelas. 3

1.2. Taxonomía General de la Plani�cación de Aplicaciones Paralelas 5

1.3. Distribución de Nodos en la Plani�cación Espacial. 6

1.4. Plani�cación de Trabajos en la Plani�cación Espacial. 7

1.5. Efecto producido por la comunicación sobre la ejecución. . . . 8

1.6. Matriz de Ousterhout . 9

1.7. Clasi�cación de la Coplani�cación en relación al método de
control. 10

1.8. Esquema de una Tarea Periódica. 12

1.9. Ejemplo de plani�cación bajo EDF empleando Total Band-
width Server. 18

1.10. Caracterización del uso de ancho de banda de red durante una
vídeo conferencia. 19

1.11. Taxonomía: Modelos SRT. 21

1.12. Máquina virtual paralela. 24

2.1. Arquitectura del sistema de predicción por simulación inte-
grado en LoRaS. 30

2.2. Vista modular de la arquitectura del sistema de simulación
fuera de línea en LoRaS. 32

2.3. Esquema de la simulación a dos niveles. 38

2.4. Ejemplo de modelos de plani�cación para aplicaciones SRT . 39

2.5. Asignación dinámica del quantum de CPU en el núcleo simulado. 40

3.1. Interacción Modelo-Experimento en demoj. 45

3.2. Interacción general de entidades �hardware� presentes en el
modelo. 46

3.3. Interacción de las entidades que modelan la carga de trabajo
con las entidades �hardware�. 50

iii

3.4. Interacción de las clases, soporte para adición de algoritmos
de plani�cación RT. 54

3.5. Jerarquía de manejo de datos y su interacción general. 56

4.1. Validación parcial de los métodos SRT, contra ejecuciones
reales sin carga local. 60

4.2. Validación parcial de los métodos SRT, contra ejecuciones
reales con un 25% de carga local. 62

4.3. Validación parcial de los métodos SRT, contra ejecuciones
reales con un 50% de carga local. 63

4.4. Comparación de métodos en presencia de carga local SRT,
turnaround para 16 y 32 nodos. 64

4.5. Comparación de métodos en presencia de carga local Best-
e�ort, turnaround para 16 y 32 nodos. Aplicaciones paralelas
tipo SRT (15% del total). 65

B.1. Ejemplos de tipos de cache en procesadores dual-core. 76

B.2. Esquema de uso de los cores en procesadores Pentium D. . . . 77

iv

Índice de tablas

1.1. Resumen de los temas a tratar en la sección sobre sistemas
tiempo real estricto. 11

4.1. Caracterización de las aplicaciones paralelas para el proceso
de simulación. 61

B.1. Tiempos y speedups para Pentium D y Pentium IV, tipo de
aplicación NAS CPU bound. 78

B.2. Tiempos y speedups para Pentium D y Pentium IV, tipo de
aplicación NAS IO bound. 78

B.3. Tiempos y speedups para Pentium D (un core deshabilitado)
y Pentium IV, tipo de aplicación NAS CPU bound. 79

B.4. Tiempos y speedups para Pentium D (un core deshabilitado)
y Pentium IV, tipo de aplicación NAS IO bound. 79

v

vi

Capítulo 1

Introducción

La ciencia y la industria siempre han necesitado más potencia de cómputo
de la que proporcionan los ordenadores. Aunque una tendencia para resolver
este problema ha sido mejorar el hardware, no ha sido la única vía a seguir.
La computación paralela, con proyectos tan ambiciosos y hermosos como
SETI@Home [5], donde usuarios cooperan desde sus hogares en la búsqueda
de vida inteligente en otros planetas, se per�la cada vez con más fuerza,
como una de las posibles soluciones.

Al mismo tiempo que crece la potencia de cómputo de los ordenadores, y
se desarrollan nuevas técnicas de paralelización cambia de forma radical el
mundo de las aplicaciones. Nuevos tipos de aplicaciones paralelas con reque-
rimientos de cómputo más estrictos [84, 65, 88] son cada día más comunes
en el mundo cientí�co e industrial. Este tipo de aplicaciones pueden requerir
un tiempo de retorno (turnaround) especí�co o una calidad de servicio (QoS,
Quality of Service) determinada, haciendo más complejos los sistemas y mo-
delos de predicción e imponiendo nuevas pautas en el desarrollo de los mis-
mos.

En el caso de los clusters no dedicados, son de especial importancia las aplica-
ciones locales, cuya evolución se traduce en más requerimientos de recursos
de memoria, CPU y ancho de banda de red [26]. Un usuario local puede
estar visualizando un vídeo almacenado en su ordenador, lo cual implica
necesidades de CPU periódicas y un mayor uso de memoria que los tipos de
aplicaciones Best-e�ort habituales hasta la fecha.

La aparición de nuevos tipos de aplicaciones, como vídeo bajo demanda,
realidad virtual, aprendizaje a distancia y videoconferencias entre otras, se
caracterizan por la necesidad de cumplir sus deadlines y por lo tanto presen-
tan requerimientos periódicos de recursos. Este tipo de aplicaciones, donde la
pérdida de deadlines no se considera un fallo severo, aunque ha de ser evita-
da en lo posible, han sido denominadas en la literatura aplicaciones soft-real
time (SRT) periódicas.

1

El paralelismo es una de las grandes apuestas en la gran carrera para mejorar
el tiempo de ejecución de las aplicaciones [33]. El crecimiento progresivo en el
rendi miento de los procesadores en los últimos años se había visto frenado
por las barreras físicas del espacio y la velocidad de las señales. Hoy en
día se producen procesadores de dos núcleos incluso para los portátiles. Las
previsiones son que el número de núcleos por procesador se incrementará
paulatinamente con el tiempo.

Imaginando este escenario que se avecina: nuevas aplicaciones de escritorio y
paralelas, así como plataformas hardware cada vez más potentes y complejas,
el problema de la plani�cación temporal de dichas aplicaciones en clusters no
dedicados supone un nuevo reto a asumir por los investigadores y conforma
el núcleo de este trabajo.

1.1. Clusters no dedicados

Con objeto de satisfacer las necesidades de cómputo masivo existentes en
la industria o la ciencia pura, la paralelización se ha convertido en una de
las vías más estudiadas y aceptadas. En el fondo, el objetivo básico de esta
estrategia consiste en mejorar el tiempo de ejecución de las aplicaciones para
poder así afrontar problemas más complejos y aumentar el factor de escala.
Cuando paralelizamos, es especialmente atractiva la idea de lograr una gran
capacidad de cómputo a coste mínimo, siendo las redes de estaciones de tra-
bajo (Network of Workstations, NOW) no dedicadas una de las opciones. En
nuestro enfoque, una NOW es un laboratorio docente universitario, un ambi-
ente controlado donde conocemos y podemos estudiar a fondo las necesidades
y costumbres de nuestros usuarios locales [9]. En las universidades existen
todas las condiciones para este tipo de estudios, por un lado grandes redes
de ordenadores pertenecientes a instituciones y por el otro, grupos cientí�cos
con necesidades de cómputo importantes.

Queremos destacar que el uso de los períodos de inactividad de los orde-
nadores pertenecientes a NOWs para ejecutar aplicaciones paralelas no es una
utopía, pues en los escenarios antes descritos los ordenadores están ociosos
entre el 80 y el 90 porciento del tiempo. Multitud de trabajos se han centra-
do en este enfoque desde diferentes perspectivas, que representan diferentes
formas de utilizar esta capacidad de cómputo. Destacamos los estudios cen-
trados en clusters no dedicados, destacamos que nuestro trabajo se enfoca
en la Plani�cación de Aplicaciones:

Cluster Computing on The Fly [56]: Técnica de cómputo oportunista.

Cluster-US [67]: Basado en computadores hibernables, que utiliza los
nodos para el para el cómputo paralelo en horarios en que nos se uti-
lizan para otras tareas.

2

Figura 1.1: Taxonomía de Arquitecturas Paralelas.

Grid [62, 53]: Aprovechamiento de nodos ociosos para cómputo para-
lelo, en esta variante hay tanto clusters dedicados como no dedicados.

Plani�cación espacial y temporal de aplicaciones: Gang Schedu-
ling [28], Coplani�cación dinámica [70], Coplani�cación Dinámica [70]
o sistemas como SLURM [45], diseñados para clusters Linux.

La Figura 1.1 presenta una taxonomía de Arquitecturas Paralelas. Nues-
tro campo de interés está centrado en los Multicomputadores, donde las
máquinas tipoMassive Parallel Processors (MPP) son una opción. Los MPP
proporcionan una elevada capacidad de cómputo a un alto coste económico,
ya que para su funcionamiento requiere de hardware y software especí�co.
Por este motivo es cada vez más común el uso de clusters COTS (Commo-
dity Of-The-Shelf) debido principalmente a la disminución de los costes. Este
tipo de entorno se construye a partir de componentes comerciales fácilmente
accesibles y el nivel de acoplamiento que alcanzan es bastante menor que los
MPP. Es también una opción válida proveer los clusters COTS de redes de
conexión más rápidas, aunque hacerlo conlleva un aumento importante en el
presupuesto.

Siguiendo la taxonomía propuesta, los clusters COTS son divididos de acuer-
do a su objetivo o a su utilización. En el caso de la división por objetivos,
ejemplos de cada clase son HA-OSCAR [61] en clusters de alta disponibili-
dad (HAC, High Availability Clusters), MOSIX [58] en la clase de clusters
centrados en el balanceo de cargas (LBC, Load Balancing Clusters) y Maui
[43] como ejemplo de cluster centrado en obtener altas prestaciones (HPC,
High Performance Computing). En la clasi�cación por su utilización pode-
mos destacar dos clases, dedicados y no dedicados. Los sistemas dedicados
suelen conocerse como clusters Beowulf, caracterizandose por la no existencia
de aplicaciones no controladas por el sistema y la sintonización de todos los
componentes a la ejecución de una única aplicación paralela.

3

En esta útima vertiente de la clasi�cación (Utilización) es donde centramos
nuestros estudios (Figura 1.1), en los clusters no dedicados. Este tipo de clus-
ters está formados por recursos computacionales preexistentes, abaratándolos
aún más con respecto a ordenadores tipo MPP. Hemos de destacar que en los
clusters no dedicados podemos encontrar aplicaciones locales no controladas,
y es precisamente la aparición de nuevos tipos de aplicaciones locales de tipo
SRT una de las principales di�cultades, en base al nuevo grado de compleji-
dad que introduce en el sistema. Esto unido a los nuevos requerimientos de
las aplicaciones paralelas en cuanto al establecimiento de un turnaround de-
terminado, constituyen el entorno donde se van a desarrollar las propuestas
que se presentarán en este trabajo. La plani�cación temporal de aplicaciones
Best-e�ort y SRT, tanto locales como paralelas, en entornos no dedicados de
tal forma que no afectemos los niveles de interactividad necesarios para la
comodidad de los usuarios locales, con�gurará el objetivo de las propuestas
a desarrollar.

Son de suma importancia para nuestra �nalidad estudios como [35, 24], fo-
calizados tanto en el confort de los usuarios locales como en los recursos
que emplean en sus aplicaciones. Aún cuando estos estudios se centran en
aplicaciones tipo Best-e�ort, podemos complementarlos con estudios que ca-
racterizan los nuevos tipos de aplicaciones locales SRT [27]. Nuestra �nali-
dad es determinar la viabilidad de la ejecutación de cómputo mediante un
usuario paralelo sin que los niveles de interactividad del usuario local se vean
afectados.

Nuestro trabajo implica la coexistencia de la carga paralela con la presencia
de usuarios locales(y sus aplicaciones) en los ordenadores. Esto condiciona
nuestro problema de plani�cación a dos niveles, plani�cación espacial y
plani�cación temporal. Es decir, necesitamos decidir dónde ejecutaremos
nuestro cómputo paralelo y como plani�caremos los recursos en los nodos
compartidos, siendo este último tipo de plani�cación nuestro objetivo central.

1.2. Plani�cación en clusters no dedicados

Como ya hemos establecido anteriormente, la plani�cación de aplicaciones
paralelas tiene dos áreas claramente diferenciadas, la plani�cación espacial y
la plani�cación temporal. De estas dos variantes, la primera es la que decide
en qué conjunto de nodos se va a ejecutar una aplicación paralela y la segun-
da realiza la plani�cación temporal a corto plazo en cada nodo perteneciente
al cluster. La Figura 1.2 muestra de forma general la problemática que abor-
daremos en esta sección.

4

Figura 1.2: Taxonomía General de la Plani�cación de Aplicaciones Paralelas

1.2.1. Plani�cación espacial

Las políticas de plani�cación espacial son las encargadas de decidir en qué
nodos se ejecutan los trabajos y cómo se plani�carán. En esta subseción
abordaremos los temas relacionados con la selección de nodos y su posterior
plani�cación. La selección de nodos podemos abordarla desde dos vertientes
principales, la distribución de los nodos y la plani�cación de los trabajos.

1.2.1.1. Distribución de los nodos

Profundizando en la distribución de los nodos encontramos la necesidad de
particionar y seleccionar los nodos para una correcta distribución, de la for-
ma mostrada en la Figura 1.3. Entre las alternativas de particionamien-

to de nodos encontradas en la literatura, los más simples para su imple-
mentación son el estático y el variable, siendo este último una de las mejores
opciones por el balance entre la simplicidad a la hora de implementarlo y las
desventajas que presenta.

Por otro lado la selección intenta elegir los nodos donde ejecutaremos las
aplicaciones paralelas de acuerdo a políticas de selección. La política de se-
lección más simple, la binaria, considera que un nodo o bien está libre u
ocupado. Este tipo de política no considera la posibilidad de que las apli-
caciones puedan compartir nodos, ya que no tiene en cuenta el grado de
ocupación de los nodos. Como ejemplo de política binaria encontramos las
de tipo buddy [77, 55].

Las llamadas políticas de selección discreta [37, 30, 87] son aquellas dónde se
considera un grado de multiprogramación (Multi Programming Level,MPL)
mayor que 1. Lógicamente, al ser el MPL >1, las políticas de este tipo han de
combinar el espacio compartido con el tiempo compartido, es decir, trabajar
espacial y temporalmente.

En caso de presentar un MPL >1, es necesario de alguna forma poder estimar
el grado de disponibilidad de los nodos para cómputo paralelo. Un nodo con

5

Figura 1.3: Distribución de Nodos en la Plani�cación Espacial.

cierto grado de ocupación podrá ejecutar una aplicación paralela o no de
acuerdo a las necesidades de cómputo y memoria de esta. Dada la posibi-
lidad de ejecutar aplicaciones paralelas en nodos donde se estén ejecutando
aplicaciones locales, han de desarrollarse políticas que tengan en cuenta esta
situación. Este tipo de políticas se conocen como de selección continua.

1.2.1.2. Plani�cación de Trabajos

La plani�cación de trabajos se centra en el ordenamiento de los trabajos en
espera de ser ejecutados y la forma de seleccionarlos de la cola de espera.
Primero abordaremos las formas de ordenamiento de las colas de espera y
luego la forma de seleccionar los trabajos a ejecutar, la Figura 1.4 muestra
las diferentes políticas que mencionaremos.

Con la llegada al sistema de un nuevo trabajo paralelo que no se puede
ejecutar en el momento, tenemos un incremento de la cola de espera del
cluster. Algunas de las políticas de ordenamiento son: FCFS (First Come
First Served, los trabajos son ejecutados en el orden en que llegan al sistema
[86, 76]), SJF (Shortest Job First, los trabajos se ordenan de forma creciente
en función del tiempo de ejecución estimado [4]) y SNPF (Smallest Num-
ber of Processes First, los trabajos se ordenan de acuerdo a la cantidad de
procesadores que se solicitan [57]).

Una vez ordenada la cola de espera necesitamos seleccionar los trabajos que
se encuentran en ella para su ejecución. Aunque elegir el primero parece la
opción más justa, no siempre proporciona buenos resultados. Podría ocurrir
que un trabajo con muchos requerimientos esté a la cabeza de la cola y frene
innecesariamente los demás trabajos en espera.

También ha de considerarse si además del orden existente en la cola de
espera tendremos en cuenta el estado actual del cluster. El objetivo es lograr
un equilibrio entre las métricas de utilización del sistema relacionadas con

6

Figura 1.4: Plani�cación de Trabajos en la Plani�cación Espacial.

los usuarios y el rendimiento del cluster. Lo usual es intentar utilizar el
conocimiento del estado del cluster para predecir el estado futuro y sacar
ventajas de este conocimiento.

Entre las políticas más simples, que no necesitan información adicional ex-
cepto el conocimiento de la cola de espera podemos citar: First Fit y Best
Fit. La primera de ellas, como su nombre indica, funciona buscando el primer
trabajo existente en la cola cuyos requerimientos de recursos sean menores o
iguales que la disponibilidad de recursos del cluster [69, 4]. Empleando Best
Fit el criterio de selección es que el trabajo elegido tenga los requerimientos
de recursos más similares a la disponibilidad de recursos del cluster en el
momento dado [86].

Entre las políticas que intentan obtener ventaja del conocimiento del estado
del cluster podemos observar dos grupos fundamentales. Las que se basan
en mantener una calidad de servicio (QoS, Quality of Service) durante la
ejecución de la aplicación [17] y las que intentan adelantar trabajos utilizando
técnicas de Back�lling [80, 40, 38]. La desventaja natural de este tipo de
políticas reside en la necesidad de un tiempo estimado de ejecución de
las aplicaciones. El problema representado por la imprecisión propia de las
estimaciones de los usuarios [60] se ha intentado solucionar de utilizando
diversas técnicas, ya sea mediante sistemas históricos [47, 82] o de modelos
analíticos [44].

1.2.2. Plani�cación temporal

La necesidad de compartir los nodos entre los dos tipos de usuarios (local y
paralelo) para lograr la plani�cación el clusters no dedicados, nos obliga a
disponer de métodos para hacerlo de forma equitativa. Hemos de contemplar

7

Figura 1.5: Efecto producido por la comunicación sobre la ejecución.

tanto las necesidades de los usuarios locales que brindan sus ordenadores,
y encontrar formas de favorecer el progreso de las aplicaciones paralelas sin
afectarlos. Debido a que los nodos en un cluster no dedicado son compartidos,
ha de mantenerse la interactividad necesaria para el usuario local.

La forma de estimular el progreso de las aplicaciones paralelas se basa en
su propia naturaleza. Podemos decir que las aplicaciones paralelas son pro-
cesos cooperantes, lo cual implica el intercambio de mensajes en mayor o
menor medida. La Figura 1.5 muestra dos posibles casos de comunicación
entre dos procesos cooperantes. En el caso A vemos claramente como el he-
cho de que dichos procesos cooperantes no dispongan de la CPU de forma
simultánea provoca dos tiempos de espera adicionales. En cambio en el caso
B los dos procesos cooperantes se plani�can al mismo tiempo lo cual aumen-
ta las probabilidades de disminuir los tiempos de espera provocados por la
comunicación.

1.2.2.1. Coplani�cación tradicional

La coplani�cación, nombre recibido por las técnicas que intentan estimular
la plani�cación simultánea de procesos cooperantes, fue introducida por [63]
y ha sido abordada en múltiples estudios [34, 72, 11, 71, 28]. En su estudio
embrionario, John Ousterhout propone un algoritmo conocido como Algo-
ritmo de la Matriz de Ousterhout basado en la analogía existente entre
la gestión de memoria en un entorno monoprocesador multiprogramado y la
gestión de los procesadores en un entorno multiprocesador y multiprogra-
mado. En un entorno monoprocesador y multiprogramado obtenemos una
clara ventaja al tener todas las páginas del working set de una aplicación en
memoria a la vez cuando se ejecuta. El estudio de Ousterhout mostró que

8

Figura 1.6: Matriz de Ousterhout

el rendimiento de las aplicaciones paralelas se ve seriamente afectado si las
mismas no reciben su�cientes procesadores y las tareas pertenecienteas a las
mismas no son plani�cadas a la vez. Esto se debe a que los requerimientos
de comunicación y sincronización existentes entre los procesos cooperantes
de una aplicación paralela, pueden afectar ralentizando su ejecución debido
a las esperas provocadas por la no plani�cación simultánea de sus procesos
cooperantes.

La Figura 1.6 muestra un ejemplo de aplicación del Algoritmo de la Ma-
triz de Ousterhout. La matriz está formada en el eje de las ordenadas por
los procesadores (j = 1 − n) y en el eje de las abcisas por el número de
máquinas virtuales en ejecución (i = 1 − k). Las máquinas virtuales tienen
una potencia de cálculo igual a Potj/n donde Potj es la potencia de cál-
culo del procesador j y n es el grado de MPL de la máquina virtual. Cada
columna contiene los procesos asignados a cada procesador Jpk y cada �la
los trabajos que serán ejecutados durante el quantum (TSk) del procesador.
Siguiendo el algoritmo, cada vez que se ha de asignar un nuevo trabajo (Ji)
al sistema, se busca una �la con la misma cantidad de celdas libres que pro-
cesos tiene el trabajo a ser asignado. Una vez asignado el trabajo, se utiliza
una política de round-robin para plani�car las diferentes �las de la matriz.
En este ejemplo, para un n = 6 un MPL = 4 y las condiciones mostradas,
durante el quantum de tiempo TS0 se ejecutarán los procesos pertenecientes
a los trabajos J1 y J2, de manera que al �nalizar dicho quantum se producirá
un cambio de contexto global, de modo que el trabajo J3 será plani�cado en
los procesadores P0, P1, P2, P3yP4 durante el siguiente quantum TS1, y así
sucesivamente.

9

El término Gang Scheduling también ha sido empleado ampliamente en la
literatura para referirse a la necesidad de la coplani�cación. En [29] se de-
�ne este término como un esquema de plani�cación que organiza sus tareas
en grupos, de tal forma que las aplicaciones paralelas los conformen y que
los grupos sean plani�cados simultáneamente en los procesadores de nodos
diferentes. Esta de�nición concuerda completamente con lo ya establecido
anteriormente por Ousterhout y utilizaremos este término para referirnos a
ambas técnicas.

Figura 1.7: Clasi�cación de la Coplani�cación en relación al método de con-
trol.

Una relajación del concepto del Gang Scheduling fue propuesta en [71], en
el cual se establece que sólo es necesario coplani�car los procesos que están
cooperando en un instante determinado.

Una posible forma de clasi�car el extenso trabajo llevado a cabo en esta
área es de acuerdo al método de control empleado (Figura 1.7) para lograr
la coplani�cación de los procesos cooperantes:

Coplani�cación con control explícito: esta implementación de la co-
plani�cación requiere de un cambio de contexto global simultáneo a lo
largo de toda la máquina paralela [31]. Este enfoque es más apropiado
para ambientes dedicados y se ajusta a la de�nición de Gang schedu-
ling.

Coplani�cación con control implícito: Las decisiones de plani�cación
son tomadas por los plani�cador locales de acuerdo con la aparición de
eventos locales o remotos. Los eventos pueden ser de comunicación, de
memoria, de CPU, de actividad de usuarios locales o grado de multipro-
gramación (MPL). Como alternativas podemos citar la coplani�cación
predictiva [74, 71] basada en aumentar la probabilidad de coplani�ca-
ción cambiando las prioridades de los trabajos en función de los eventos
de comunicación recibidos y la coplani�cación dinámica [11, 73], que
plani�ca un proceso si recibe un evento de comunicación, expropiando
la CPU al proceso en ejecución.

Coplani�cación con control híbrido: como su nombre indica, se hace
uso de una combinación de las dos técnicas antes expuestas. Algunos de
los resultados son: Bu�ered Coscheduling (BC) [64], Flexible Coschedul-
ing (FCS) [30]y CoScheduling Cooperativo (CSC) [34].

10

Suele considerarse que las técnicas basadas en control híbrido son las que
aportan más �exibilidad y facilidades de implementación.

1.3. Tiempo Real estricto y débil

Nuestro trabajo se centra en nuevos tipos de aplicaciones con características
de tiempo real débil (soft real-time, SRT), motivo por el cual en esta sección
introduciremos algunos modelos SRT y de tiempo real estricto (real-time,
RT). Es válido destacar que los sistemas SRT usualmente son considerados
como una derivación o relajación de RT, como efectivamente ocurre. Debido
a que nos centraremos en los sistemas SRT, en este trabajo colocaremos
ambas teorías al mismo nivel en nuestro texto. La intención es profundizar
en sistemas RT sólo lo necesario, dado el volumen de información existente
y la orientación de nuestro trabajo.

TIEMPO REAL

Asignación de
Prioridades

Fija Dinámica

Algoritmo
Representativo

RMS EDF

Admisión de
Peticiones

∑n
i=1

Ci
Ti
≤ n

(
2

1
n − 1

) ∑n
i=1 Ui ≤ 1

Tareas
aperiódicas

Polling Server, Slack
Stealing Algorithm

Total Bandwidth
Server

Tabla 1.1: Resumen de los temas a tratar en la sección sobre sistemas tiempo
real estricto.

1.3.1. Sistemas de Tiempo Real Estricto

Un sistema con requerimientos de tiempo explícitos, ya sea de naturaleza
probabilística o determinística, es considerado de RT. La noción de prioridad
es comúnmente utilizada para establecer orden en el acceso a recursos, tanto
en la CPU como en la Red. La plani�cación de tareas RT será dividida en dos
grupos de acuerdo a la forma en que tratan la prioridad, ya sea con prioridad
�ja y o con prioridad dinámica. La Tabla 1.1 muestra un resumen de las
características y algoritmos que trataremos en esta subsección.

1.3.1.1. Plani�cación con Prioridad Fija

En el modelo de Plani�cación con Prioridad Fija todas las tareas de un
mismo trabajo tienen la misma prioridad, que no cambia en el tiempo. La

11

nomenclatura usualmente empleada denomina a cada tarea como τi, dónde
i es la prioridad de la tarea. Una tarea es periódica (Figura 1.8) si ocurre
cada cierto intervalo regular de tiempo, siendo la longitud entre los sucesivos
arribos de los trabajos que componen la tarea τi constante, llamado el período
de la tarea y denominado Ti. Cabe destacar que la prioridad i se calcula como
la inversa del período (i = 1

Ti
). El deadline (plazo) de una tarea periódica

se de�ne como Di, representando este valor el maximo valor de tiempo que
puede transcurrir antes de que el trabajo i de la tarea τi consuma su tiempo
de cómputo (Ci).

Figura 1.8: Esquema de una Tarea Periódica.

El modelo inicialmente propuesto en la teoría RT (conocido como Modelo
de Liu y Layland [54]) asume que:

1. Todas las tareas son periódicas

2. Todas las tareas llegan al inicio de su período y tienen un deadline
igual a su período.

3. Todas las tareas son independientes, es decir, no tienen relaciones de
precedencia en relación a los recursos que utilizan.

4. Todas las tareas tienen un tiempo de cómputo �jo, o al menos limitado,
que es menor o igual que su período.

5. Ninguna tareas se puede suspender a si misma.

6. Todas las tareas son completamente desalojables.

7. No se consideran overheads, relacionados con el sistema operativo.

8. Solo existe un procesador.

Bajo este modelo, las tareas de los trabajos periódicos ocurren a lo largo
del tiempo a intervalos regulares de longitud constante Ti (el período de la

12

tarea). Cada tarea tiene un deadline Di unidades de tiempo después de su
liberación. Llamamos rígida a una tarea de tiempo real (hard real-time) si
debe cumplir su plazo (tanto a nivel de tiempo de comienzo como de �nal);
de no cumplirlos se producirán daños no deseados o un error fatal en el
sistema.

Una tarea RT es llamada �exible si tiene un plazo asociado, que es conve-
niente, pero no obligatorio; aunque haya vencido el plazo, aún tiene sentido
plani�car y completar la tarea.

Una tarea aperiódica debe comenzar o terminar en un plazo o bien, puede
tener tanto una restricción para el comienzo como para la �nalización.

Los análisis de admisión son empleados para predecir si las restricciones
temporales de una tarea serán satisfechos en tiempo de ejecución. Los que
tienen en cuenta todos los elementos necesarios (test su�ciente y necesario)
alcanzan complejidad NP completa, por lo que son impracticables. Son gene-
ralmente de menor conplejidad algoritmica los tests que son su�cientes pero
no necesarios. Los tests su�cientes pero no necesarios tienen la desventaja
de que son pesimistas.

El hecho de que las prioridades no varien hace más efectivos los análisis de
admisión, siendo el Teorema del Instante Crítico [54] el empleado en este
caso. El instante crítico para una tarea es el tiempo de liberación para el
cual el tiempo de respuesta es el máximo (o excede su deadline, para el caso
en el cual el sistema está tan sobrecargado que los tiempos de respuesta
crecen sin límites). Este teorema establece que, para un conjunto de tareas
periódicas con prioridades �jas, el instante crítico de una tarea ocurre cuando
es invocada simultáneamente con todas las tareas de mayor prioridad que
ella. El intervalo de 0 a Di es entonces uno en el cual la demanda de tareas
de mayor prioridad τ1...τi−1 está en un máximo, creando la situación más
difícil para que τi cumpla su deadline. Este teorema ha probado ser robusto,
siendo verdadero incluso cuando muchas de las restricciones antes listadas
son relajadas.

El grupo de políticas de asignación de trabajos con prioridad �ja es conocido
como RMS (Rate-Monotonic Scheduling), en el cual a la tarea con el menor
perído se le asigna la mayor prioridad, a la próxima tarea de menor período la
siguiente prioridad y así sucesivamentes. Se ha probado que para un conjunto
de n tareas periódicas con política de asignación RMS la asignación es posible
si:

n∑
i=1

Ci

Ti
≤ n

(
2

1
n − 1

)
(1.1)

Como ejemplo podemos decir que un par de tareas es viable si su utilización
de CPU combinada no excede el 82,84%. Si n tiende al in�nito, el valor

13

n
(
2

1
n − 1

)
se aproxima a ln(2) para un valor aproximado de utilización de

69,31%. Muchas veces se asume que bajo estas condiciones el valor antes
mencionado de�na la máxima utilización posible, lo cual es errado, ya que
esto es solo una condición de su�ciencia. Este límite es cerrado en el sentido
de que existe algún conjunto de tareas inviables cuya utilización arbitraria-
mente se acerca a n

(
2

1
n − 1

)
. Por este motivo es posible encontrar multitud

de conjuntos de tareas con utilización mayor que el 69,31%. En [49] encon-
tramos un interesante estudio sobre RMS y los niveles de utilización de esta
técnica, que como promedio es del 88%.

No obstante a su utilidad, los análisis de admisión tienen limitaciones, como
lo son:

1. La condición de admisión es necesaria pero no su�ciente (es decir, pe-
simista).

2. Impone restricciones poco reales a las características de la tareas, es
decir Di = Ti.

3. Las prioridades de la tareas han de ser asignadas utilizando RMS, caso
contrario el el análisis de admisión es insu�ciente.

Por estas razones se han desarrollado pruebas de admisión más complejas,
pero que no tienen las limitaciones antes expuestas. En [15] se propone una
prueba de admisión de complejidad polinomial menos pesimista que el re-
presentado por la Fórmula 1.1. Esta prueba (Ecuación 1.2) ha demostrado
ser fuerte.

n∏
i=1

(
Ci

Ti
+ 1

)
≤ 2 (1.2)

Existen también tareas, denominadas aperiódicas que no cumplen con los
requerimientos del modelo anterior y han de ser contempladas también en
los modelos de RT. Este tipo de tareas puede ser diferente de las periódicas
en que los tiempos de arribo o de cómputo sean signi�cativamente diferentes,
que no tengan deadlines estrictos o bien alguna combinación de las caracte-
rísticas antes expuestas.

Si el modelo de tareas periódicas es ligeramente relajado, siendo Ci el máximo
tiempo de ejecución y Ti el tiempo mínimo entre los arribos, el modelo [54]
sigue siendo válido. Sin embargo es poco práctico y e�ciente hacer reservas
si los tiempos de cómputo o de arribo de las tareas aperiódicas son muy
variables.

Una de la soluciones a este problema es asignar prioridades bajas a las ta-
reas aperiódicas, es decir, relegarlas a procesamiento en background. Con

14

esta acción, intentamos aprovechar el tiempo de cómputo dejado por las
tareas periódicas para ejecutarlas. Esta aproximación es válida siempre y
cuando, las tareas aperiódicas relegadas a procesamiento en background no
tengan requerimientos de QoS, o de obtener un tiempo de respuesta promedio
signi�cativo.

Una solución posible al problema de las tareas aperiódicas es implementar un
servidor que se ejecute como una tarea periódica normal y que se encargue
de ejecutar las tareas aperiódicas. Esta técnica en la literatura se denomi-
na Polling Server [68]. La capacidad del servidor se calcula o�-line y en la
mayoría de los casos se asigna el mayor tiempo de cómputo, que permita el
análisis de admisión. En tiempo de ejecución, el servidor se ejecuta periódica-
mente y su tiempo de cómputo se emplea en ejecutar las tareas aperiódicas.
Una vez consumido su tiempo de cómputo su ejecución se suspende hasta
su próximo arribo programado, también periódico. Como el servidor se com-
porta como una tarea periódica, los análisis de admisión diseñados para ellas
se pueden aplicar normalmente.

Para las tareas aperiódicas los polling servers signi�can una mejora sustancial
respecto al procesamiento en background. Lógicamente, si llegan demasiadas
tareas aperiódicas la capacidad del servidor se verá sobrecargada y algunas
tareas tendrán tiempos de respuesta peores. El caso inverso también ocurre, si
no llegan tareas aperiódicas la capacidad de cómputo reservada al servidor se
infrautiliza. Una posible solución a este último problema es variar la prioridad
del servidor de acuerdo a si tiene o no tareas pendientes [79].

Partiendo de la idea anterior, servidores que se ejecutan como tareas pe-
riódicas, se han realizado varios trabajos germinales para mejorar el proce-
samiento de tareas aperiódicas en entornos RT. Entre los más interesantes
están el algoritmo de Slack Stealing [81], que es óptimo en el sentido de que
minimiza el tiempo de respuesta para las tareas aperiódicas manteniendo los
deadlines de todas las tareas RT.

Finalmente mostraremos los resultados encontrados en la literatura para RT
en multiprocesadores. Vemos re�ejadas dos aproximaciones a la plani�-
cación de tareas RT en múltiples procesadores, particionada y global. En la
aproximación por particiones cada tarea es asignanada estáticamente a un
procesador y en la global las tareas compiten por el uso de los procesadores.
En [22] se muestra que la plani�cación global de tareas para m-procesadores
utilizando RMS de un sistema de m + 1 tareas no puede ser garantizado
para utilizaciones del sistema por encima de 1. Por otro lado, utilizando
particionado con RMS next-�t podemos garantizar la viabilidad de los sis-
temas de tareas para utilizaciones por encima de m/(1+21/3). Este límite es
conocido como el efecto Dhall, en referencia al investigador que lo determinó.

Dado que el problema de particionamiento óptimo de tareas entre múltiple
procesadores es de tipo NP completo, las soluciones óptimas es posible solo

15

para los casos más simples. Por lo tanto, han de usarse heurísticas para en-
contrar soluciones aproximadas, siendo la más empleada RMFF (Rate Mono-
tonic First-Fit). Para este caso, se ha determinado que la máxima utilización

del sistema es de (m + 1)
(
21/(m+1) − 1

)
. Otro resultado interesante es que

para una plani�cación con prioridades �jas en un sistema multiprocesador de
m nodos, sin importar si es global o particionado o el esquema de asignación
de prioridades, la utilización garantizada no puede ser mayor que (m + 1) /2
[8].

Es válido destacar que los avances en la teoría RT aplicados a multiproce-
sadores o ambientes distribuidos no van a la par los logrados para monoproce-
sadores y que muchos de los resultados alcanzados para monoprocesador aún
necesitan ser generalizados a multiprocesadores, en caso de ser posible.

1.3.1.2. Plani�cación con Prioridad Dinámica

Plani�cando con prioridades estáticas, todas las tareas pertenecientes a un
mismo trabajo tienen la misma prioridad, si empleamos prioridades dinámi-
cas no será así. Otorgando las prioridades de forma dinámica, cada trabajo
perteneciente a una tarea tiene diferentes prioridades, en función de cuán
cerca esté su deadline. Uno de los algoritmos con prioridad dinámica más
estudiados es el EDF (Earliest Deadline First).

EDF es un algoritmo dinámico que no requiere que los procesos (tareas)
sean periódicos, lo cual constituye un requerimiento del algoritmo RMS.
Tampoco es necesario que sea uniforme el tiempo de ejecución por ráfaga
de CPU (como si ocurre con RMS). Cada vez que un proceso necesita la
CPU, anuncia su presencia y su plazo. El plani�cador mantiene una lista de
los procesos ejecutables en orden por plazo. El algoritmo ejecuta el primer
proceso de la lista, el que tiene el plazo más cercano. Cada vez que un
nuevo proceso está listo, el sistema veri�ca si su plazo se va a cumplir antes
que se cumpla el del proceso que se está ejecutando. En tal caso, el nuevo
proceso expropiará al actual. Para este algorimo, suponiendo las condiciones
del Modelo de Liu y Layland, la prueba de admisión para un conjunto de n
tareas periódicas se establece por la utilización del procesador 1.3.

n∑
i=1

Ui ≤ 1 (1.3)

En esta ecuación, el nivel de utilización, denotado como Ui se de�ne como
Ui = Ci

Ti
.

Aunque existe otro algoritmo que emplea prioridad dinámica, denominado
LLF (Least Laxity First)[59], este introduce un mayor overhead al sistema,
razón por la cual la mayor parte de la investigación se centra en mejorar el

16

algoritmo EDF. Las mejoras se centran en mejorar los análisis de admisión
y en relajar algunos de los postulados simplistas del algoritmo. En [20] se
muestra que el algoritmo EDF es óptimo en el sentido de que si existe un
algoritmo que puede construir una plani�cación viable en un solo procesador,
entonces el algoritmo EDF también puede construir una plani�cación viable.

Cuando se utiliza EDF el análisis de admisión puede ser realizado teniendo
en cuenta el criterio de Demanda de Procesador. La demanda se calcula para
un conjunto de trabajos RT y un intervalo de tiempo [t1, t2) como

h[t1,t2) =
∑

t1≤rk,dk≤t2

Ck. (1.4)

Es decir, la demanda de procesador es el valor representado por la cantidad
de tiempo de cómputo pedido por todos los trabajos con tiempo de arribo en
o después de t1 y deadline antes o en t2. A partir de este valor, el análisis de
admisión puede ser efectuado considerando que la demanda de procesador no
puede superar el tiempo disponible, es decir, podemos establecer la viabilidad
teniendo en cuenta 1.5.

∀t1, t2 h(t1, t2) ≤ (t2 − t1) (1.5)

Como las prioridades son dinámicas, la plani�cación de tareas aperiódicas
mejora ya que puede reaccionar mejor a la llegada de una tarea no periódica.
Uno de los principales enfoques es el del Total Bandwidth Server (TBS) [75],
que es una de las técnicas más e�cientes para plani�car tareas aperiódicas
bajo EDF. TBS funciona asignando a cada trabajo aperiódico un deadline
de tal forma que la carga total aperiódica no exceda un valor máximo Us.
El deadline asignado se calcula mediante la expresión asociada 1.6, nótese
que esta toma en cuenta las asignaciones a tareas anteriores (representadas
por dk−1). Una vez asignado el deadline, el requerimiento es insertado en
el sistema como el de cualquier otra tarea periódica, pero respetando el
umbral Us antes establecido. Podemos a�rmar que dado un conjunto de n
tareas periódicas con una utilización del procesador de Up y un TBS con
utilización Us todo el conjunto es viable para su plani�cación si y solo si
Up + Us ≤ 1. Es válido mencionar que el proceso de asignación de deadlines
puede ser optimizado para minimizar el tiempo de respuesta a las aplicaciones
aperiódicas [16]. En esta aproximación, el ancho de banda del servidor de�ne
como un umbral (Us), que representa la capacidad de cómpto disponible
respetando las tareas periódicas.

dk = max (rk, dk−1) +
Ck

Us
(1.6)

17

La Figura 1.9 muestra un ejemplo de uso de un TBS. Dos tareas periódicas
con períodos T1 = 6, T2 = 8 y tiempos de cómputo C1 = 3, C2 = 2 respecti-
vamente se plani�can bajo EDF para una utilización Up = 0, 75 implicando
que el ancho de banda del servidor disponible es de 0,25 (calculado mediante
Us = 1 − Up). Los deadlines son calculados utilizando la Ecuación 1.6 en el
momento de los arribos de las tareas aperiódicas. El primer arribo de tarea
aperiódica ocurre en t = 3 y se le asigna un deadline d1 = 7, como d1es el
deadline más cercano a expirar globalmente es servido inmediatamente. La
próxima tarea aperiódica arriba en t = 9 y recibe un deadline d2 = 17, pero
no es servida de forma inmediata, ya que en ese momento está en ejecución
una tarea con deadline más urgente (τ2, con deadline en t = 16). Por último
llega una tarea aperiódica en t = 14 que recibe un deadline d3 = 21, que no
es servida de forma inmediata ya que en el momento de su llegada la tarea
periódica τ1 está activa y tiene un deadline más bajo.

Figura 1.9: Ejemplo de plani�cación bajo EDF empleando Total Bandwidth
Server.

Para la implementación de reservas bajo EDF disponemos como una
opción válida del algoritmo Constant Bandwidth Server (CBS) [3]. Un CBS
se caracteriza por un presupuesto cs, un deadline dinámico ds y un par
ordenado (Qs, Ts), donde Qs es el presupuesto máximo y Ts el período del
servidor. Llamamos a el cociente Us = Qs/Ts el ancho de banda del servidor.
A cada trabajo servido por el CBS se le asigna un deadline conveniente e
igual al deadline actual del servidor, calculado para no sobrepasar el ancho
de banda reservado. Mientras el trabajo se ejecuta, el presupuesto cs es
decrementado en el tiempo consumido por el trabajo. Cada vez que cs = 0
se recarga el presupuesto del servidor a Qs y el deadline del servidor se
pospone en Ts, para reducir la interferencia a otras tareas.

18

Figura 1.10: Caracterización del uso de ancho de banda de red durante una
vídeo conferencia.

1.3.2. Sistemas Tiempo Real Débil

La teoría para RT está concebida tomando como axioma que la pérdida de
un deadline ha de considerarse un fallo en el sistema. Para lograr respetar de
forma estricta los deadlines de la tareas, la teoría RT se basa en la formulación
estricta del peor caso. Este enfoque permite tener una cota superior para la
carga en cualquier instante de tiempo, lo que nos permite conocer si los
deadlines de las tareas se cumplirán.

Pero qué ocurre si el peor caso no está cerca del caso promedio, como sucede
en la mayoría de los sistemas de control para lo que está diseñada la teoría
RT estricta. Un ejemplo claro y ampliamente utilizado en la literatura para
ejempli�car esta situación es el de un vídeo online. Si no hay cambios bruscos
en las escenas, los frames transmitidos son de menor tamaño, debido a la
codi�cación de la información en frames I, P o B. Esto tiene como conse-
cuencia que la media de uso del ancho de banda de red sea bastante menor,
diferencia que puede llegar a ser de varios órdenes de magnitud. Si tratamos
este caso de forma estricta, deberíamos de reservar recursos que una parte
importante del tiempo estarían ociosos.

La Figura 1.10 muestra un caso parecido, el uso de ancho de banda de red
durante una video conferencia. Claramente podemos observar que los va-
lores oscilan entre una media de 500-600 kbps cuando la cámara de video
y los participantes de la video conferencia están quietos hasta 3500-4000
kbps si se mueve la cámara de video. La variaciones se deben al algoritmo

19

utilizado, basado en enviar sólo las diferencias con la escena anterior, lo
que motiva que la cantidad de información a transmitir en cada caso se
diferente. Resulta evidente que para esta situación reservar el peor caso es
un desperdicio importante de recursos, esta sección intenta profundizar en
la teoría relacionada con el tratamiento de estos casos, la teoría de tiempo
real débil (Soft Real-Time, SRT).

1.3.2.1. Aplicaciones SRT

El caso anteriormente descrito presenta una situación que cada vez es más
común, tanto para usuarios locales como para los usuarios paralelos. En esta
sección mostraremos varios ejemplos de aplicaciones, tanto locales como pa-
ralelas, que requieren especial atención dados sus requerimientos de recursos
periódicos.

En [27] se estudian varios métodos para identi�car aplicaciones de tipo Hu-
man Centered (HuC), i.e.: reciben el foco de atención del usuario local, razón
por la cual, según se plantea en ese trabajo, deberían de recibir especial aten-
ción. La caracterización de las aplicaciones estudiadas en este trabajo nos
permite conocer mejor las diferencias en los requerimientos de recursos de
las aplicaciones a lo largo de un lapso de tiempo signi�cativo para nuestros
objetivos. El cambio más signi�cativo se re�eja en el paso de aplicaciones
con interactividad, basada en tiempos de respuesta del teclado o el ratón,
como a los editores de texto de diferentes tipos y a las aplicaciones mul-
timedia. Estas últimas necesitan más recursos de forma periódica para su
correcta ejecución, y podría ocurrir que durante largos períodos de tiempo
no reciban ningún evento originado por el usuario, como un clic de ratón
u otros. Aplicaciones de estas características (mayores requerimientos pe-
riódicos de recursos) componen el grupo de aplicaciones que denominaremos
aplicaciones locales SRT (local_SRT).

Otros componentes de este grupo son los tipos de juegos con algoritmos
de visualización complejos, como los conocidos por First Person Shooter
(FPS). Es una tendencia que los juegos de ordenador consuman cada vez
más recursos y en caso de no recibirlos de forma periódica, su ejecución no
sea satisfactoria para el usuario. Este tipo de aplicación se emplea en los
estudios como aplicación comparativa.

Por otro lado encontramos que es cada vez más común que los usuarios pa-
ralelos necesiten ejecutar aplicaciones con necesidades temporales. Este es el
caso descrito en [83], donde rutinas de detección de obstáculos en secuencias
de frames hacen que el volumen de cálculo sea alto y de acuerdo a la �na-
lidad del resultado, ha de obtenerse con urgencia. Este tipo de aplicaciones
requiere de hardware especializado o de cómputo paralelo de altas presta-
ciones. También en [65] encontramos un caso novedoso de aplicación paralela.

20

En este estudio encontramos un tipo de aplicaciones con una alta cantidad
de eventos, generados por instrumentación cientí�ca, y una ausencia casi to-
tal de usuarios. Para lograr recolectar todos los eventos necesitamos que las
tareas que se generan con cada evento gocen de prioridades en el sistema.

Otro ejemplo de aplicación paralela SRT, bastante más común que los ante-
riormente mencionados, es la posibilidad de que el usuario paralelo necesite
los resultados de la ejecución de su aplicación paralela dentro de un intervalo
de tiempo especí�co. Las aplicaciones que requieran de tiempos de cómputo
periódico en diferentes nodos de un sistema distribuido, ya sea dedicado o
no, recibirán en este estudio el tratamiento de aplicaciones paralelas SRT
(par_SRT).

1.3.2.2. Modelos SRT

¾Cómo representamos estas tareas de tipo SRT, ya sea locales o paralelas,
en forma de modelos? Han existido muchos enfoques basados en la teoría RT
existente, como lo es mezclar tareas periódicas con aperiódicas sin deadlines o
complejos modelos que le asignan a cada tarea un valor de utilidad en función
de la QoS requerida por la tarea. El disponer de modelos para este caso nos
permite predecir, calcular e incluso garantizar algún recurso a este tipo de
tareas. Describiremos algunos de los modelos (Figura 1.11) encontrados en
la literatura.

Figura 1.11: Taxonomía: Modelos SRT.

El modelo basado en demoras (lateness) se formula asociando a los deadlines
de las tareas SRT una restricción que representa la demora permisible. Esta
restricción puede tener varias formas e incluso podemos encontrarla en forma
compuesta. Por ejemplo, si de�nimos α(x) como la parte de los trabajos que
pierden su deadline por más de x unidades de tiempo, entonces se suele de�nir
la demora en la forma α(x) ≤ β. Esta notación representa una restricción en
el sentido de que limitamos la cantidad de trabajos que pierden su deadline
a β. En este modelo, cada deadline perdido se considera un fallo y β limita la
fracción de trabajos que pueden fallar. El valor α(−∞) representa la cantidad

21

de fallos, incluidos los rechazados en los análisis de admisión. En general, para
un conjunto de valores de tiempo denotado por {x1, . . . , xm} y una lista de
restricciones {β1, . . . , βm} podemos requerir que α(xi) ≤ βi, 1 ≤ i ≤ m. Esta
especi�cación de las restricciones nos permite tener en cuenta la naturaleza
estocástica de los tiempos de arribo y de cómputo de las tareas tipo SRT, lo
cual a su ves nos lleva a la formulación del concepto de viabilidad del caso
promedio, es decir, el mayor monto de carga promedio que el sistema puede
procesar cumpliendo las restricciones de demora.

También basados en la naturaleza estocástica de las aplicaciones SRT se han
formulado otros modelos, como el Modelo Estocástico RMS, Stochastic RMS
(SRMS) [12, 13]. Este modelo está especialmente designado para ser utilizado
en sistemas en los cuales las tareas periódicas tienen tiempos de cómputo y
requerimientos de QoS altamente variables, además de que los deadlines de
las tareas sean débiles, no duros. Este último requerimiento signi�ca que
algunos deadlines pueden perderse, aunque con restricciones en las pérdidas.
El diseño del algoritmo SRMS también se pensó de tal forma que maximice
el uso de los recursos a la vez que minimice el uso de recursos de las tareas
que pierden sus deadlines.

Por último mencionaremos los modelos que consideran que todos los paráme-
tros de las tareas SRT son estocásticos, es decir, que tienen tiempos de arribo
entre las tareas, tiempos de cómputo y deadlines estocásticos. Aunque en
este caso es difícil derivar un análisis completo de la viabilidad para el caso
promedio, se han desarrollado modelos para calcular la fracción de tareas
demoradas (late tasks) para los casos con trá�co pesado, en los cuales los
modelos tienen altos niveles promedio de utilización. Este método es conocido
como RTQT (Real-Time Queueing Theory) [25, 50, 51], Teoría de Colas para
Tiempo Real debido a que es una extensión de la Teoría de Colas que tiene
en cuenta de forma explícita los requerimientos temporales de las tareas
SRT. RTQT asume que las tareas se plani�can bajo EDF y su métrica de
rendimiento se calcula en base a la fracción de las tareas que terminan dentro
de su deadline.

Este algoritmo ha de mantener información del tiempo restante hasta que
el deadline de cada tarea �nalice (lead time). Este requerimiento combinado
con la necesidad del algoritmo EDF de mantener información de los dead-
lines de cada tarea, hace que este problema sea analíticamente intratable. El
problema se resuelve parcialmente ya que se pueden obtener buenas aproxi-
maciones para el caso de trá�co pesado, que servirá de cota para cualquier
otro caso más ligero. En RTQT este caso se alcanza cuando (ρ = 1), donde ρ
es la intensidad del trá�co e intenta signi�car el momento de mayor necesidad
de cómputo a través del momento en el que llegan más tareas.

22

1.4. Sistemas de Plani�cación para Aplicaciones de

Múltiples Tipos

Una vez introducido nuestro problema, la necesidad de una plataforma de ex-
perimentación �exible para llevar a cabo nuestros estudios se impone. Nece-
sitamos estudiar la plani�cación temporal de aplicaciones con características
SRT, tanto locales como paralelas, en entornos no dedicados. Cabe destacar
que además hemos de proveer soporte para la ejecución de aplicaciones Best-
e�ort, que también podrán ser paralelas o locales.

Nuestro grupo ha desarrollado CISNE (Cooperative & Integral Scheduling for
Non-dedicated Environments) [36, 39], una propuesta para la utilización de
recursos no dedicados, que implementa una Máquina Virtual Paralela (MVP)
y utiliza técnicas de plani�cación de aplicaciones. Este sistema proporciona
una doble funcionalidad (Figura. 1.12): ejecutar aplicaciones paralelas de tipo
Best-e�ort y aplicaciones locales (Best-e�ort), pertenecientes a los usuarios
locales del cluster no dedicado.

En la implementación inicial de CISNE, cada nodo del cluster es compar-
tido en el tiempo por ambos tipos de carga Best-e�ort: local y paralela.
En consecuencia el sistema ha de gestionar el uso de los recursos entre las
aplicaciones que se ejecutan, considerando que las tareas locales no pueden
verse ralentizadas. CISNE debe garantizar el progreso de las tareas de las
aplicaciones paralelas Best-e�ort en ejecución, de forma tal que el usuario
local no note una intrusión en su ordenador. Esta propuesta (CISNE) se basa
en una técnica de Plani�cación de Aplicaciones Paralelas, que considera las
características de las aplicaciones distribuidas y el estado del entorno para
ejecutar las aplicaciones de los usuarios paralelos.

Para aplicar la Plani�cación de Aplicaciones se analiza el problema desde
dos dimensiones opuestas y complementarias: el espacio y el tiempo. Como
se ha dicho, cada nodo de la MVP ha de ser capaz de gestionar el uso de CPU
entre las tareas en ejecución, aspecto que que se conoce como Plani�cación
Temporal (P.T.). Desde el punto de vista del espacio, el sistema ha de ser
capaz de asignar el conjunto de nodos que conforman el cluster no dedicado
a las aplicaciones paralelas que los necesiten, garantizando que ningún nodo
será sobrecargado de forma que las tareas locales vean alterada su capacidad
de respuesta. Este tipo de plani�cación es conocida como Plani�cación

Espacial (P.E.) y es el principal objetivo tomado en cuenta en el diseño
original del sistema CISNE.

Para evaluar nuestras propuestas, hemos de extender las funcionalidades de
CISNE, principalmente siguiendo las directivas enumeradas a continuación:

1. Los tipos de cargas de trabajos soportados por el sistema (aplicaciones
locales y paralelas de tipo Bes-e�ort) han de ser ampliados para so-

23

portar nuestras necesidades de experimentación. Hemos de dotar a
CISNE de soporte para aplicaciones con características SRT, tanto
locales como paralelas, pues nuestro escenario de experimentación está
compuesto por los cuatro tipos de carga de trabajo.

2. Ha de extenderse el diseño de CISNE para permitir un marco �exible en
la plani�cación temporal, ya que su idea inicial de diseño está enfocada
en la plani�cación espacial.

3. Mantener la acertada �losofía de ser capaces de predecir, con niveles
aceptables de precisión, los tiempos de turnaround de las aplicaciones
paralelas. Cabe destacar que el nuevo escenario implica el desarrollo
de nuevos métodos de estimación.

Figura 1.12: Máquina virtual paralela.

Recalcamos que al grupo inicial de aplicaciones previstas en el diseño de
CISNE (locales y paralelas de tipo Best-e�ort), hemos de agregar los nuevos
tipos de aplicaciones (descritas con más detalles en la sección 1.3.2.1) que han
aparecido, siendo deseable mantener la alta capacidad de predicción lograda
en CISNE [41]. Finalmente, los tipos de aplicaciones con las que ha de ser
capaz de trabajar el sistema para desarrollar nuestros estudios serían:

Locales Best-e�ort : Tipo de aplicaciones locales �comunes�, usualmente
editores de texto, compiladores y aplicaciones con niveles de interac-
tividad que pueden ser medidos con respecto a la respuesta en un
tiempo acotado por la capacidad de reacción del ser humano al utilizar
el teclado o el ratón. Contempladas en el diseño original de CISNE.

Paralelas Best-e�ort : Aplicaciones paralelas para las cuales no exis-
ten limitaciones en el turnaround o exigencias de QoS. La principal
cualidad deseada consistía en predecir lo mejor posible el turnaround

24

para lograr una mejor plani�cación y brindarle información al usuario
paralelo. Contempladas en el diseño original de CISNE.

Locales SRT : Aplicaciones con requerimientos de recursos determi-
nados, usualmente necesitan la CPU de forma periódica para su co-
rrecta ejecución. Es también una buena idea garantizarles la cantidad
de memoria principal que necesitan, ya que en caso contrario podrían
no ejecutarse correctamente. Descritas en la sección 1.3.2.1.El soporte
para este tipo de aplicaciones ha de ser añadido al sistema CISNE.

Paralelas SRT : Aplicaciones paralelas con un turnaround determi-
nado debido a sus características. Descritas en la sección 1.3.2.1. El
soporte para este tipo de aplicaciones ha de ser adicionado al sistema
CISNE.

Es válido destacar que aún cuando en la literatura encontramos trabajos que
estudian el comportamiento de las aplicaciones paralelas SRT en clusters,
nuestro trabajo se diferencia por el hecho de contemplar carga local, tanto
de tipo Best-e�ort como SRT. En [84, 88] se estudia el comportamiento de
aplicaciones SRT en clusters dedicados y [23, 78] describen herramientas
dedicadas a la plani�cación espacial de tareas paralelas SRT. En [23] los
nodos se seleccionan de acuerdo a estudios probabilísticos y en [78] se intenta
garantizar los deadlines de las tareas creando las tareas como parejas. Este
enfoque permite tener dos niveles de prioridad, para poder lanzar la tarea
con más prioridad si se estima que perderá su deadline.

Por otro lado, estudios como [1] intentan garatizar un recurso crítico, en
este caso el ancho de banda de red, empleando mecanismos de QoS. En
[85] también se hace uso de mecanismos de QoS para intentar garatizarles
recursos a algunos tipos de aplicaciones, la novedad es que particionan los
recursos disponibles para lograr hacerlo.

Una vez introducido el estado del arte y los conceptos básicos para com-
prender el alcance y enfoque de nuestro trabajo, pasamos a introducir los
objetivos que nos proponemos.

1.5. Objetivos

Este trabajo es una reacción ante las posibilidades de investigación que se
abren al rede�nirse un escenario muy conocido y estudiado. El nacimiento
de nuevos tipos de aplicaciones (locales y paralelas de tipo SRT) impone un
estudio en las técnicas de plani�cación temporal para lograr la coexistencia
de tipos de aplicaciones disimilares en clusters no dedicados.

25

Se ha llevado a cabo un esfuerzo de investigación en la literatura existente,
considerable si tenemos en cuenta que unimos dos campos de investigación
bien de�nidos. La plani�cación de aplicaciones, ya sea temporal o espacial,
está en el punto de mira de un amplio sector de la comunidad cientí�ca.
Nuestro trabajo mezcla la plani�cación temporal en clusters no dedicados
con aspectos de tiempo real débil, siendo este último campo también muy
explorado y pujante en el mundo cientí�co.

Con este trabajo, aún en etapa embrionaria, hemos intentado sembrar la
semilla para una investigación futura rica en posibilidades. Es nuestra �nal-
idad principal poder analizar el comportamiento de nuevos tipos de aplica-
ciones, con características SRT en clusters no dedicados. Su interacción con
las aplicaciones de tipo Best-e�ort, ampliamente contempladas en estudios
previos, es un objetivo también incluido entre los nuestros. Para este �n
hemos creado una plataforma de simulación que intentamos sea lo más �exi-
ble posible, teniendo en cuenta que conecta con prototipos de investigaciones
previas no diseñados para este �n especí�co.

Con el �n de contrastar nuestro método de simulación, creamos dos nuevos
núcleos para realizar nuestra experimentación, uno analítico y otro basado en
dos niveles de simulación. Ambos proyectos están en desarrollo, pero brindan
la grandes oportunidades para nuestros �nes. Estos dos métodos son capaces
de procesar los tipos de aplicaciones que necesitamos, paralelas y locales de
tipo SRT y Best-e�ort.

1.6. Organización de la Memoria

En este capítulo introductorio hemos descrito las dos áreas generales en las
que se enmarca nuestra investigación, la Plani�cación Temporal en Clus-
ters No Dedicados en la sección 1.2 y los nuevos tipos de aplicaciones de
Tiempo Real Débil, en la sección 1.3. Para facilitar la comprensión de los sis-
temas SRT, hemos introducido antes los conceptos básicos de Tiempo Real
dividiendo la sección previa en dos partes. En la sección 1.4 mostramos la
conjunción de los conceptos antes introducidos, y es nuestro primer intento
de describir nuestro problema. Posteriormente enumeramos los objetivos de
este trabajo.

El Capítulo 2 describe nuestra aproximación para estudiar la problemática
antes introducida. En este capítulo comenzamos por introducir la arquitec-
tura que tomamos como base (subsección 2.2). La necesidad de calcular el
tiempo remanente de ejecución (RExT) es descrita en la subsección 2.3.1
y luego los dos métodos de estimación de RExT propuestos, uno analítico
(subsección 2.3.2) y el otro consiste en simulación a dos niveles (subsección
2.3.3).

26

El núcleo de estimación simulado consiste en un software de simulación in-
dependiente, y su implementación es descrita en el Capítulo 3. La imple-
mentación emplea una librería de simulación orientada a eventos, basada en
entidades y eventos. Los principales eventos y entidades de�nidas, así como
una introducción a la librería, son tratados en la sección 3.1. Posteriormente
describimos con más detalles la forma de agregar nuevos algoritmos RT al
software (sección 3.2) y la forma de comunicación entre los dos procesos de
simulación (sección 3.3).

Una vez de�nido el problema, los modelos propuestos (analítico y simulado) y
los detalles de implementación, mostramos la experimentación realizada y los
resultados en el Capítulo 4. El mismo comienza por la validación de método
(sección 4.2) y la escalabilidad (sección ??). En la sección 4.3 mostramos la
experimentación realizada incluyendo cargas de tipo SRT, tanto local como
paralela y la combinación de ambos tipos de cargas.

Finalmente, el Capítulo 5 está dedicado a las conclusiones de este estudio y
las contribuciones realizadas.

Cabe destacar que los Apéndices incluidos (A y B) describen los pasos rea-
lizados para incluir en nuestros estudios las nuevas plataformas hardware
fácilmente accesibles hoy en día, los procesadores multicore.

27

28

Capítulo 2

Arquitectura General del
Sistema

En el presente capítulo se describe la arquitectura general del método de
simulación propuesto, basado en una serie de extensiones al entorno de pla-
ni�cación CISNE. Este entorno fue diseñado con el objetivo de estudiar la
plani�cación espacial de aplicaciones paralelas en clusters de ordenadores no
dedicados. Este sistema (CISNE en su versión original) se construye a par-
tir de dos subsistemas, al nivel más alto se realiza de forma centralizada la
plani�cación espacial (P.E.) empleando LoRaS, el cual distribuye la carga
paralela en el cluster. El subsistema de bajo nivel implementa un entorno
de plani�cación temporal (P.T.) en cada nodo, que ha de lograr la copla-
ni�cación y balanceo de recursos asignados a las tareas pertenecientes a un
mismo trabajo paralelo. A su vez es responsable de preservar el rendimiento
del usuario local.

CISNE es un entorno que consta de dos modos de ejecución, uno en el cual se
realizan ejecuciones reales y otro para realizar simulaciones o�-line. Aunque
nuestro objeto de interés a largo plazo es dotar al sistema de soporte para
lanzar aplicaciones SRT o simulaciones que contemplen este tipo de carga
(SRT), el progreso hecho hasta ahora se relaciona sólo con el modo de simula-
ción o�-line. Hemos modi�cado el modo de simulación o�-line adicionándole
dos nuevos núcleos de estimación, el soporte para la entrada de datos que ca-
racterizan aplicaciones SRT y además ha sido necesario de�nir un método de
intercambio de datos para el núcleo simulado. Se incluye también una breve
descripción de la arquitectura del modo de simualción o�-line de CISNE, de
tal forma que permita comprender la extensión de las modi�caciones.

29

Figura 2.1: Arquitectura del sistema de predicción por simulación integrado
en LoRaS.

2.1. Subsistema LoRaS

LoRaS es uno de los dos componentes fundamentales de CISNE, siendo res-
ponsable de aceptar peticiones de ejecución de aplicaciones paralelas y de�nir
el mejor momento y lugar para ejecutar tales aplicaciones. La arquitectura
del sistema LoRaS es centralizada con demonios en cada nodo para controlar
sus estados.

La arquitectura del sistema de simulación se divide en dos partes: por un lado
la simulación de las políticas de plani�cación con�gurables en el entorno, y
por otro lado la estimación del tiempo de ejecución de las aplicaciones, una
vez que éstas han sido plani�cadas por el simulador. Cabe destacar que las
extensiones realizadas al entorno son dos nuevos métodos de estimación, que
se acoplan en el sistema en la forma de núcleos de estimación (N.E en la
Figura 2.1).

Los N.E. requieren de dos tipos de información: una caracterización de las
aplicaciones a ejecutar (recursos de memoria y CPU consumidos, cantidad
de nodos necesarios, tiempo de ejecución en dedicado, etc.) y el estado actual
del entorno (cantidad de recursos totales y ocupados en los nodos, cuantas
aplicaciones paralelas y en que nodos se encuentran en ejecución, la actividad
local en el entorno, etc.). Esta información es provista por los módulos de
Caracterización de Aplicaciones y el Gestor de Colas, respectivamente. La
utilización del módulo de Caracterización de Aplicaciones permite desligar el
proceso de estimación, de valores de caracterización provistos por el usuario
paralelo, que suelen encontrarse alejados de la realidad según estudios como
[86, 60].

30

2.2. Arquitectura del simulador fuera de línea

La arquitectura del simulador o�-line, se basa en la �duplicación� de módulos,
reemplazándolos por otros (dummies), para proveer al gestor de colas de un
entorno en el que pueda plani�car aplicaciones como si realmente éstas fuesen
ejecutadas. Ha de destacarse que todos los módulos dummies se encuentran
bajo el control del simulador.

Para realizar las simulaciones o�-line en CISNE es necesario proveer en la
con�guración del sistema información sobre las características del entorno
(con�guración del entorno en la Figura 2.2). Por ejemplo hemos de entrar
en los �cheros de con�guración la memoria total, memoria inicialmente en
uso, la potencia de la CPU y si existe, cuál es la carga inicial de CPU
para cada nodo incluido en el sistema a simular. Esta caracterización es
importante, porque en el sistema en producción las características de los
nodos son obtenidas por el sistema desde los nodos reales cuando se inicia.

En este caso sin embargo, si tratamos con una simulación el sistema no podrá
interrogar a los nodos reales para obtener información sobre sus caracterís-
ticas y carga actual. De la misma forma y por las mismas razones, también
ha de proveerse para la simulación una caracterización de las tareas locales
(nodo en que se ejecutarán, tiempo de inicio y �n y consumo de recursos de
memoria y CPU) que se tendrán en el entorno a lo largo de la ejecución de
la simulación (con�guración de la carga Paralela (Local en la Figura 2.2).
Finalmente y debido a que el sistema ahora no presta un servicio de plani�-
cación a usuarios reales, hemos de proveer la carga de aplicaciones paralelas
a ejecutar en �cheros de entrada, como hemos hecho antes con al carga local.
Para esto, se provee al sistema de una lista de aplicaciones a ejecutar, junto
con el tiempo de llegada de cada una.

2.3. Extensiones incluidas

En esta sección describiremos las modi�caciones, en forma de extensiones,
añadidas al sistema CISNE hasta el momento. Hemos de destacar que las
extensiones sólo cubren el modo de simulación o�-line (descrito en la sección
2.2) del sistema. Este grupo de modi�caciones va dirigido a estudiar el com-
portamiento de las NOWs frente a los nuevos tipos de cargas SRT, descritos
en la sección 1.3.2.1.

Dado que de momento no somos capaces de ejecutar carga SRT de tipo lo-
cal o paralelo en nuestro entorno (CISNE) con las características de QoS
exigidas, a efectos de poder experimentar con propuestas de plani�cación
que contemplen los nuevos requerimientos de las aplicaciones SRT; se han
desarrollado modelos analíticos y núcleos de simulación que nos permitirán

31

Figura 2.2: Vista modular de la arquitectura del sistema de simulación fuera
de línea en LoRaS.

formular nuevas propuestas en este sentido. De esta forma logramos estable-
cer cierto nivel de validación en nuestros métodos, los cuales son descritos
en esta sección.

2.3.1. Tiempo Remanente de Ejecución

Los dos módulos fundamentales de la arquitectura en modo de simulación
o�-line son mostradas en la Figura 2.2, el Gestor de Colas (descrito en la
sección 2.1) y el Motor de Simulación.

El simulador de LoRaS funciona dirigido por eventos discretos, como los son
la llegada, arribo o �nalización de una tarea de cualquier tipo de trabajo.
Para realizar las simulaciones, el motor necesita de tres �cheros de con�gu-
ración:

Con�guración del Entorno: En este �chero especi�camos el con-
junto de nodos a utilizar por el Gestor de Colas para ejecutar la carga
paralela. Contiene la cantidad de nodos disponibles y sus principales
características (poder de cómputo, tamaño de la memoria principal,
cantidad de recursos consumidos por las cargas locales, etc.).

32

Con�guración del Núcleo de Simulación: Permite elegir el método
empleado para calcular el valor del Tiempo Remamente de Ejecución
(RExT , Remanent Execution Time) por el Gestor de Colas. Puede ser
tanto un método analítico (los incluidos en el diseño original), como el
método simulado implementado para este trabajo.

Con�guración de la Carga: Contiene la lista de trabajos, tanto
paralelos como locales, a simular por el entorno. De cada trabajo se
necesita información detallada, que por ejemplo incluye su tiempo de
ejecución en isolación, tiempo de arribo y requerimientos máximos de
memoria y CPU.

Una vez que todos los �cheros de con�guración se han cargado, el entorno
está listo para comenzar el proceso de simulación. Es importante destacar
que los valores estáticos utilizados para describir la carga a simular, tales
como su tiempo de ejecución de forma aislada o requerimientos máximos de
CPU o memoria, son recolectados por el mismo entorno para su uso futuro.
Toda esta infomación, junto al estado del cluster, es empleada en generar
los conjuntos de datos que conforman las diferentes etapas del proceso de
simulación. Hemos de destacar que el evento de llegada de una aplicación
paralela marca el comienzo de una nueva etapa, ya que implica una reesti-
mación de los tiempos de turnaround de todas las aplicaciones en ejecución,
pues lógicamente todas ser verán afectadas por los recursos que esta con-
sumirá. Cada vez que llega una aplicación paralela, se crea un conjunto de
datos que incluye la nueva aplicación paralela y se procesa por el motor de
simulación.

Como se ha descrito en la introducción (sección 1.3.1) de este trabajo, los
sistemas RT y SRT necesitan realizar análisis de admisión en el momento
de arribo de una tarea SRT, para saber si aceptándola en el sistema no se
afectan a las demás tareas. Dado el progreso de nuestro trabajo, un análisis
de admisión exhaustivo aún no es necesario. En el entorno se hace un análisis
rudimentario de capacidad de CPU para aceptar o no una aplicación SRT,
además, los niveles de aplicaciones SRT que arriban al sistema son acotados.

Todos los núcleos de estimación que se integran al entorno han de ser capaces
de retornar una estimación del Tiempo Remanente de Ejecución (RExT , Re-
manent Execution Time) de las aplicaciones paralelas incluidas en el sistema,
que es la base del funcionamiento del modelo de estimación del simulador.
La idea es la de estimar para un entorno dado, y con un conjunto de apli-
caciones en ejecución, cuál es la próxima aplicación que se espera �nalice y
cuales serán los recursos que se liberarán en tal caso. Los nuevos núcleos de
estimación, con capacidad de procesar carga con características SRT, con-
forman el resto de este capítulo.

33

El Algoritmo 1 muestra el proceso de simulación de forma simpli�cada. El
primer paso consiste en duplicar el estado del sistema, a los módulos dum-
mies creados a tal efecto e inicializar las colas de trabajos y lista de nodos.
El control de �nalización del algoritmo es la condición del wihle de la línea
3, que controla los trabajos en ejecución. Dentro de este lazo principal se
calcula RExT cada trabajo en ejecución (línea 4) y se asume que la próxima
aplicación en terminar será Ji, en el instante de tiempo ti (línea 5). El si-
guiente paso consiste en actualizar el tiempo de �nalización de la aplicación
Ji y eliminarla de la cola de aplicaciones en ejecución DRQ. También han
de actualizarce los tiempos que las restantes aplicaciones han estado en la
cola DRQ. El lazo que se ejecuta entre las líneas 8 y 13 es el encargado
de seleccionar las aplicaciones en la cola de espera (DQ) de acuerdo a las
condiciones del sistema y las políticas en uso y pasarlas a la cola DRQ.

Algoritmo 1 Proceso de Simulación
1: Duplicar el estado del sistema a dummy: siendo DQ una copia de la

cola de espera de trabajos, DRQ una copia de la cola de trabajos en
ejecución y CLsim una copia de los nodos que conforman el cluster y sus
respectivos estados

2: Guardar el momento actual (t0), como el momento en que la simulación
ha comenzado.

3: while (∃Jk ∈ DRQ) do
4: forall (Jk ∈ DRQ) do Calcular RExT de Jk.
5: Asumir que la aplicación Ji es la próxima que �nalizará en el tiempo

ti.
6: Actualizar el tiempo de �nalización de Ji a ti (i.e.: calcular el tiempo

de ejecución para Ji), y eliminarlo de DRQ.
7: forall (Jk ∈ DRQ) do Calcular tiempo de CPU usado para Jk ∈ ti−t0

y actualizarlo en las respectivas aplicaciones Jk.
8: while (∃ recursos disponibles Clsim y algún trabajo en DQ) do
9: Buscar una aplicación Jx ∈ DQ que pueda ser ejecutada en el estado

actual del sistema (Clsim).
10: Seleccionar el mejor subconjunto de Clsim para ejecutar Jx, emple-

ando la política del sistema.
11: Ejecutar la aplicación Jx en el subconjunto seleccionado de Clsim y

adicionarla a DRQ.
12: Incrementar el tiempo de espera estimado de Jx en ti − t0.
13: end while

14: forall (Jj ∈ DQ) do Incrementar el tiempo de espera estimado de Jj

en ti − t0.
15: Asignar t0 = ti.
16: end while

34

2.3.2. Núcleo analítico

Para facilitar la comprensión del método analítico propuesto en este trabajo,
explicaremos antes otro método similar sin capacidad SRT, que llamaremos
CPU . Introducimos también la notación RExTANL−SRT , que denotará nues-
tro método analítico capaz de realizar estimaciones con cargas SRT.

Nuestro método analítico sin capacidad SRT (CPU) comienza por calcular
el RExT que la aplicación necesitaría si se ejecutara de forma aislada, a este
valor lo llamaremos RExTisol(j) y se calcula según la Ecuación 2.1.

RExTisol(j) =
ttotal(j)× (ttotal_CPU (j)− tused_CPU (j))

ttotal_CPU (j)
, (2.1)

En esta ecuación, ttotal(j) es el tiempo total de ejecución, ttotal_CPU (j) el
tiempo de CPU de la aplicación ejecutada de forma aislada y tused_CPU (j)
el tiempo de CPU que ha empleado desde su comienzo, todos estos valores
asociados a la aplicación paralela j .

Ha de destacarse que la Ecuación 2.1 asume que RExTisol(j) es proporcional
al tiempo total de ejecución de forma aislada (ttotal(j)) limitado por el tiempo
de CPU que consumirá (ttotal_CPU (j)− tused_CPU (j)) y el tiempo total de
CPU que necesita la aplicación (ttotal_CPU (j)).

El próximo paso en el método CPU es considerar el tanto porciento de CPU
requerido por las tareas. De acuerdo a esto, el valor del RExT (j) se calcula
de acuerdo la la siguiente ecuación:

RExTCPU (j) = RExTisol(j)×
CPU(j)

CPUfeasible(j)
, (2.2)

donde CPU(j) es el tanto porciento de CPU (ttotal_CPU (j)/ttotal(j)) que la
aplicación puede utilizar y

CPUfeasible(j) = min(CPU(j),
CPU(j)

CPUmax(j)
) (2.3)

es el máximo tanto porciento de CPU que esperamos la aplicación j consuma.
Finalmente

CPUmax(j) = max(CPUpar(n) + CPUloc(n) | n ∈ N(j)) (2.4)

donde CPUloc/par(n) es la suma del uso de CPU de cada tarea local/paralela
ejecutándose en el nodo n. Destacamos que estos valores representan los
requerimientos máximos de uso de CPU (en porciento) entre los nodos donde
la aplicación paralela j está en ejecución.

35

Una vez descrito el método RExTCPU , lo usaremos como base para el méto-
do analítico capaz de lidiar con cargas SRT. El método RExTANL_SRT se
basa en considerar cuales de los requerimientos de la tareas, ya sea locales o
paralelas, son SRT. Para lograr esto, se rede�ne la expresión CPUfeasible(j)
de RExTCPU (j) de la siguiente manera:

CPUfeasible_SRT (j) =

{
CPU(j)

min(CPU(j), CPUmin_SRT (j))
j ∈ AppSRT

j /∈ AppSRT
(2.5)

donde AppSRT denota el conjunto de aplicaciones paralelas SRT en actual-
mente ejecución en el cluster y CPUmin_SRT (j) representa la cantidad mí-
nima de CPU de la que dispondrá la aplicación paralela j a lo largo de todo
el cluster y se calcula con la siguiente ecuación:

CPUmin_SRT (j) = min(
CPU(j)× (100− CPUSRT (n))

CPUno_SRT (n)
) | n ∈ N(j)

(2.6)

donde CPUSRT (n) y CPUno_SRT (n) representan las sumas de CPU requeri-
das por cada tarea SRT y no SRT, respectivamente, ejecutándose en el nodo
n. Las tareas pueden ser locales o paralelas.

2.3.2.1. Método de estimación MPL

MPL es un método de estimación del RExT propuesto en [36] y al igual
que el método CPU (descrito anteriormente como introducción al núcleo
analítico ANL − SRT), se basa en multiplicar por un factor el tiempo re-
manente de ejecución que la aplicación necesitaría en caso de ejecutarse de
forma aislada, que se calcula usando la Ecuación 2.1.

En este caso, el factor se calcula utilizando la Ecuación 2.7, la cual retorna el
número máximo de tareas, considerando tanto locales (MPLlocal(n)) como
paralelas (MPLparal(n)), que se ejecutan concurrentemente con j entre todos
los nodos utilizados por j para su ejecución (nodos(j)).

MPLmax(j) = max(MPLparal(n) + MPLlocal(n) | n ∈ nodes(j)). (2.7)

Finalmente, el valor del RExT en el método MPL se calcula utilizando la
Ecuación 2.8.

RExTMPL(J) = RExTisol(j)×MPLmax(j) (2.8)

36

Cabe destacar que el objetivo de la Ecuación 2.8, es el de ponderar el tiempo
de ejecución que tendría la aplicación j ejecutada en un entorno dedicada
a la misma (calculado empleando la Ecuación 2.1), considerando la mayor
carga actual con la que alguna de sus tareas ha de compartir el nodo, y por
lo tanto los recursos de cómputo.

2.3.3. Método simulado

Nuestra alternativa al modelo de analítico propuesto la constituye un nuevo
núcleo de estimación desarrollado, capaz de procesar carga con características
SRT está basado en la simulación. Análogamente a como hicimos con el
método anterior, lo denotaremos RExTSIM_SRT y es importante destacar
que es un simulador externo al entorno.

Aún siendo un programa externo al entorno, ha de devolver una estimación
del RExT , al igual que los métodos analíticos. Para lograr este objetivo,
es necesario establecer una interfaz de comunicación entre los dos progra-
mas (simuladores), para que el simulador externo (RExTSIM_SRT de ahora
en adelante) pueda recibir los datos de entrada y devolver los resultados.
Debido a que los dos programas estaban escritos en diferentes lenguajes de
programación, se optó por comunicarlos mediante �cheros, una vía cómoda
y simple. En nuestro caso, empleamos el formato XML ya que permite crear
plantillas y comprobar la consistencia de los datos con facilidad. El fun-
cionamiento de la interfaz mediante �cheros XML es mostrado en la Figura
2.3.

Al igual que el método análitico antes descrito, se toma una instantánea del
estado del sistema (conformada por el estado del cluster y los datos de las
aplicaciones) y se realiza una simulación. Con la diferencia de que el nivel
de detalle alcanzado es mucho mayor que en el método analítico. Esto se
debe a que este método de estimación del RExT es en realidad un motor de
simulación completo; siendo capaz, por ejemplo, de plani�car las tareas con
diferentes políticas de asignación teniendo en cuenta si las tareas son SRT o
no.

Hemos de destacar también que RExTSIM_SRT lleva a cabo su estimación
del RExT realizando una simulación del estado de cada nodo, tomando en
cuenta políticas diferentes políticas de asignación (diferentes si un trabajo es
SRT o no), recursos disponibles y los mensajes intercambiados por las apli-
caciones paralelas. A continuación analizamos un conjunto de casos de uso
representativos de aplicaciones SRT contempladas en este estudio y posteri-
ormente describimos la manera en la se administran los principales recursos
en nuestro simulador.

37

Figura 2.3: Esquema de la simulación a dos niveles.

2.3.3.1. Análisis de casos representativos de aplicaciones SRT

Dada la complejidad del entorno de plani�cación, hemos de centrarnos en
lograr una correcta predicción de los fallos en trabajos pertenecientes a ta-
reas (aplicaciones) SRT. La Figura 2.4 muestra dos casos representativos
de aplicaciones SRT. El caso A se incluye con �nes comparativos y mues-
tra el comportamiento de la plani�cación para aplicaciones RT, además de
las variables que lo de�nen. El caso B es un ejemplo de aplicación local
periódica SRT, en el cual podemos observar que los tiempos de cómputo
(los etiquetados como Ci real) de la aplicación local varían para cada arribo
de un trabajo. Este comportamiento corresponde con los requerimientos de
CPU de un vídeo en formato mpeg, el cual tiene frames de diferente tamaño,
por lo cual cada uno puede requerir Ci diferentes. Para lograr una correc-
ta predicción y plani�cación de las tareas Best-e�ort y SRT tanto locales
como paralelas, nos vemos en la necesidad de otorgarle la CPU en tiempos
conocidos (representados por los Ci deseado en la �gura).

La Figura 2.4.C, muestra el caso correspondiente a una aplicación paralela
con turnaround acotado, un caso que podría ser tratado como una aplicación.
Este tipo de aplicación podría plani�carse otorgándole la CPU con Ci largos
en algún momento de su ejecución, de acuerdo a la carga que tenga el nodo
donde se ejecuta, para intentar que termine dentro de su deadline. Dado que
es una aplicación aperiódica, no se vería afectada por este tratamiento. Este
enfoque, aunque tal vez sea ventajoso desde algunos aspectos, afecta nuestra
capacidad de predicción y di�culta enormemente todo el proceso de plani�-
cación. Creemos que es mejor asignarle un Ci que le permita terminar dentro
de su deadline (representado por Ci deseado), aunque podríamos otorgarle

38

Figura 2.4: Ejemplo de modelos de plani�cación para aplicaciones SRT

más de acuerdo al estado del nodo y utilizar el Ci deseado como cota mínima
del tiempo de cómputo que podemos otorgarle a esta aplicación paralela.

2.3.3.2. Plani�cación de la CPU

La gestión e�ciente de la CPU, uno de los recursos más estudiados tanto
en la de la de la plani�cación de aplicaciones RT como SRT, merece un
aparte en este trabajo. En RExTSIM_SRT la plani�cación de la CPU se
hace de acuerdo al tipo de tareas, es decir, las tareas SRT y las Best-e�ort
se plani�can de acuerdo a diferentes políticas y criterios de prestaciones.

Para la plani�cación de las aplicaciones Best-e�ort, se utiliza el tiempo de
cómputo después luego de procesarse las necesidades de cómputo de todas
las aplicaciones SRT. Este tiempo de cómputo asignado a las tareas Best-
e�ort se puede plani�car con alguna de las dos políticas: Round Robin o
Coscheduling Cooperativo [34]. Cabe destacar que la extensión realizada en
el simulador contempla la posibilidad de testear y analizar nuevas políticas
con un esfuerzo razonable.

De acuerdo con los análisis antes expuestos, la forma de gestionar la CPU en
presencia de aplicaciones SRT se hace de acuerdo a si es local o paralela. En
caso de ser local, solo necesitamos garantizarle sus requerimientos de CPU de
manera periódica. El problema torna a ser más complicado cuando estamos
en presencia de una aplicación paralela SRT, que en nuestro estudio está

39

Figura 2.5: Asignación dinámica del quantum de CPU en el núcleo simulado.

representada por una aplicación paralela con turnaround acotado. En una
aproximación inicial, parecería que es su�ciente con asignarle de forma perió-
dica la CPU en cada época (según la de�nición adoptada en sistemas Linux),
con un Ci = Cpar(j, n) calculado con una ecuación similar a la Ecuación 2.9.

Cpar(j, n) =
Tpar(j, n)× (tused_CPU (j)

(D(j)− texec(j))
× 100. (2.9)

Con esta ecuación podemos calcular el tiempo de cómputo (Cpar(j, n)) pe-
riódico (cada vez que transcurra el tiempo Tpar(j, n)) que necesitaría la apli-
cación paralela SRT j en el nodo n para terminar dentro del deadline correcto
(D(j)). El valor de tused_CPU (j), al igual que la Ecuación 2.1 de la sección
2.3.2, representa el tiempo de CPU que ha empleado desde su comienzo la
aplicación paralela y texec(j) es el tiempo que ha pasado en ejecución la
aplicación paralela j desde su comienzo.

Sin embargo, aunque este enfoque permite reservar tiempo de cómputo para
una aplicación paralela, es en extremo pesimista. Con un valor calculado en
base al deadline deseado, sólo se logra que la aplicación paralela SRT termine
cerca del valor usado como base del cálculo. La Figura 2.5 muestra dos casos
de asignación del quantum de la CPU. En esta �gura C representa el valor
de tiempo de cómputo reservado a una aplicación paralela SRT (calculado
con la Ecuación 2.9), R el slice del quantum reservado a otras aplicaciones
SRT locales o paralelas y Slibre el segmento de quantum de CPU que no está
en uso por ninguna aplicación SRT. En el caso A podemos notar que la apli-
cación paralela podría recibir un slice mayor, representado por Tmax_disp,
y de esta forma terminar antes del deadline asignado. El caso B muestra
el comportamiento de nuestro simulador, en el cual la aplicación paralela
SRT de mayor prioridad recibe el máximo slice del quantum posible. Emple-
ando este enfoque, las aplicaciones paralelas SRT pueden tomar ventaja de
cualquier momento de baja carga en los nodos y �nalizar antes.

40

2.3.3.3. Gestión de Memoria y Red

Ha de destacarse que aún cuando LoRaS entrega una carga balanceada al
núcleo de estimación simulado, teniendo en cuenta el estado del nodo y sus
recursos, RExTSIM_SRT es capaz de controlar la memoria usada en el nodo
de acuerdo al Contrato Social (límite en los recursos que podemos emplear
para cómputo paralelo respetando al usuario local, estudiado en [10]) de�nido
en el momento de su ejecución.

El recurso Red también ha sido tomado en cuenta en el diseño del núcleo si-
mulado. En nuestro simulador, las aplicaciones paralelas generan mensajes de
acuerdo a su caracterización. Logramos esto empleando una implementación
booleana de la distribución de Bernoulli, que inicializamos con el resultado
de 100 − getCPUUsage(job), basándonos en la idea de que el tiempo que
no se gasta en CPU se gasta en comunicaciones.

En base al valor generado por la distribución de Bernoulli, podemos decidir
si la aplicación comunica o no. En caso de que comunique, generamos men-
sajes para ella en todos los nodos en los que hay trabajos de la aplicación
paralela y los guardamos en el bu�er local del nodo que los genera. Posteri-
ormente cuando la aplicación paralela para la cual generamos los mensajes
tiene asignada la CPU, revisa el bu�er buscando mensajes y los envía a los
nodos donde están el resto de los trabajos. Estos mensajes se guardan en
los bu�ers de los nodos remotos, siendo este proceso retrasado para simular
la demora de la red. A continucación cuando los trabajos en sus respectivos
nodos tienen la CPU, procesan los mensajes.

41

42

Capítulo 3

Implementación del Simulador
para Aplicaciones SRT

Como ya hemos mencionado antes (Capítulo 2), el núcleo de estimación
simulado es una aplicación independiente al motor superior de simulación
(LoRaS). Esta aplicación recibe el nombre de Simulador_Cluster_SRT y
sus características principales son mencionadas en la sección 2.3.3. En este
capítulo describiremos su arquitectura e implementación.

3.1. Arquitectura

La arquitectura del Simulador_Cluster_SRT está basada en un framework
orientado a objetos diseñado para los programadores que usan Java y desa-
rrollan modelos de simulación. A partir de este framework se estructura todo
el modelo empleado, razón por la cual comenzaremos por introducirlo.

3.1.1. Framework DESMO-J

Según [48], DESMO-J es un framework orientado a objetos diseñando para
los programadores que desarrollan modelos de simulación. �DESMO-J� sig-
ni�ca �Discrete-Event Simulation and MOdelling in Java� (Simulación di-
rigida por eventos discretos y modelado en Java). Esta forma de nombrar el
framework destaca las dos características más signi�cativas de DESMO-J:

DESMO-J funciona bajo el paradigma de la simulación dirigida por
eventos discretos. En modelos de este tipo, todos los cambios de estado
del sistema se supone sucederán en puntos discretos del tiempo. Entre
dichos acontecimientos, el estado del sistema se asume seguirá siendo

43

el mismo. La simulación dirigida por eventos discretos es por lo tanto
particularmente conveniente para los sistemas en los cuales los cambios
del estado relevantes ocurren de forma repentina e irregular.

DESMO-J está implementado en Java. Usar este framework para cons-
truir modelos de simulación implica la escritura de un programa en
Java.

DESMO-J ha sido desarrollado en la Universidad de Hamburgo y en la ac-
tualidad es mantenido por un equipo de investigadores [21]. Este framework
adiciona características que simpli�can el desarrollo de simuladores dirigidos
por eventos discretos. Entre ellas podemos mencionar:

Clases para modelar componentes comunes de los modelos, como por
ejemplo: colas y distribuciones estocásticas basadas en números aleato-
rios.

Clases abstractas que pueden ser adaptadas a comportamientos especí-
�cos (modelos, entidades, eventos, procesos de simulación y otras).

Una infraestructura de simulación lista para emplearse que comprende
los plani�cadores, lista de eventos y reloj de simulación, todas encap-
suladas en una clase llamada Experiment.

Cabe destacar que esta última clase denota una separación entre el modelado
y la experimentación, lo cual facilia su uso. Todas las clases están contenidas
en paquetes de Java para organizarlas y hacerlas más accesibles.

En el Simulador_Cluster_SRT se emplean parte de las clases brindadas por
este framework, siendo las principales.

public abstract class Entity : representa la superclase para todas las en-
tidades en un modelo. Se supone que las entidades serán programadas
en cierto punto de simulación de acuerdo a eventos compatibles.
Las clases que heredan de Entity encapsulan usualmente toda la infor-
mación de entidades del modelo relevantes al modelador. Empleando
los eventos, podemos cambiar el estado del modelo en cierto momento
programable del tiempo.

public abstract class Event : provee la superclase para eventos de�nidos
por el usuario que pueden cambiar el estado del modelo. Al ser un
framework dirigido por eventos, los cambios de estado son generados
por eventos que son programados en distintos puntos del tiempo de
simulación. Un evento puede actuar solo en una entidad, cambiando
su estado de acuerdo a la reacción programada de la entidad al evento
especí�co.

44

Figura 3.1: Interacción Modelo-Experimento en demoj.

public abstract class Model : las clases que heredan de esta superclase
contienen todas las referencias a todos los componentes del modelo a
simular.

Una vez dados a conocer los elementos básicos necesarios para comprender
el framework usado, pasamos a describir las clases implementadas y su in-
teracción. La Figura 3.1 muestra el esquema general de funcionamiento, en
el mismo podemos apreciar la interacción existente entre los experimentos a
ejecutar y el API base para de�nir modelos. También queda especi�cada la
alto modularidad presente gracias al uso de desmoj.

3.1.2. Entidades relevantes

Agruparemos las entidades presentes en el modelo en dos grupos, el primero
conteniendo las entidades que representan elementos de hardware y el segun-
do las entidades relacionadas con los trabajos y tareas representadas.

Antes de entrar en la descripción de las entidades relevantes, queremos
destacar la clase base del simulador, nombrada SimCluster y mostrada
en la Figura 3.3. Esta clase es el contenedor principal de todas las entidades
incluidas en el diseño y la responsable de cargar los datos de entrada, generar
todos los nodos con sus respectivos estados e iniciar el proceso de simulación.
El proceso de inicio de la simulación incluye la creación de una instancia de la
clase desmoj.core.simulator.Experiment, que es la que provee la infraestruc-
tura para la ejecución de una simulación. El Algoritmo 2 muestra de forma
general las principales acciones a realizar para hacer simulaciones emplean-
do el modelo de�nido. En este algoritmo, primero de�nimos las instancias y
principales métodos que intervienen (líneas de la 1 a la 5) y luego mostramos

45

Figura 3.2: Interacción general de entidades �hardware� presentes en el mo-
delo.

46

las principales acciones a realizar para realizar un experimento. Con este al-
goritmo queremos mostrar los primeros pasos a realizar para poder ejecutar
un experimento luego de de�nir un modelo.

Es interesante mencionar también la manera de detener los experimentos,
que se basa en condiciones de parada. Las condiciones de parada han de ser
clases que hereden de la clase desmoj.Condition e implementen el método
check que es el empleado para determinar si las condiciones se cumplen o no.
En nuestra implementación la condición de parada es que todos los trabajos
paralelos (SRT o no) cargados en el �chero de datos de entrada terminen
su ejecución. Para lograr esto, mantenemos un contador de las tareas de
cada trabajo paralelo que van terminando su ejecución y al ser igual este
contador al valor inicial de la cantidad de tareas del nodo, aumentamos el
contador de cantidad de trabajos paralelos concluidos. El método check sólo
ha de comparar el valor de este contador con la cantidad inicial de trabajos
paralelos incluidos y detener la simulación en caso de ser iguales.

3.1.2.1. Entidades que modelan elementos �hardware�

Algoritmo 2 Algoritmo general de la simulación
1: SimulationModel → SimCluster Contiene las entidades y eventos del

modelo
2: Experiment → Clase que provee la infraestructura para ejecutar simula-

ciones con los modelos de�nidos.
3: StopCondition → Condición de Fin, en este caso el experimento se de-

tiene si todas las aplicaciones paralelas han terminado
4: SimCluster.init() → Inicializa el model, también carga los datos de in-

putFile.xml
5: SimCluster.doInitialSchedules() → Plani�ca los eventos iniciales del

modelo, en este caso también crea las instancias de StationEntity y
de JobEntity cargadas del �chero inputFile.xml y plani�ca los primeros
eventos StartCpuEvent

6: create new Instancia de Experiment → experiment
7: create new Instancia de SimulationModel → simModel
8: simModel.connectToExperiment(experiment)
9: create new Instancia de StopCondition → stopCondition

10: experiment.stop(stopCondition)
11: simModel.init()
12: simModel.doInitialSchedules()
13: experiment.start()
14: simModel.printResults(outFile.xml)
15: simModel.�nish()

47

class ClusterEntity : entidad que representa a un cluster, es el contenedor
principal de todos los elementos presentes en la simulación. Mantiene la
lista de los nodos pertenecientes al cluster y otras informaciones de carácter
global, como una lista con todos los mensajes que están en movimiento en
el cluster en cada momento.

class StationEntity : entidad que representa a un nodo del cluster. Encap-
sula los objetos que representan los recursos del ordenador, entre ellos la
CPU y sus modelos de plani�cación. Mantiene las siguientes colas:

RQ (Ready queue): representa la cola de trabajos listos para ser ejecu-
tados, de acuerdo a la plani�cación de eventos de la CPU, los trabajos
pasan a la misma y luego a la cola de espera hasta que se termine
la época actual. Hemos de hacer notar que en esta implemención los
trabajos de tipo SRT nunca pasan a la cola de espera.

WQ (Wait queue): contiene los trabajos que ya se han ejecutado y han
de esperar a que termine la época para volver a la RQ. Cada vez que
termina una época de la CPU esta cola es vaciada y todos los trabajos
que hay en ella pasan a la RQ.

RMBQ (Receive Messages Bu�er Queue): los mensajes que arrivan al
nodo son guardados en esta cola, a la espera de que la tarea a la cual
han sido enviados entre en la CPU y los pueda procesar.

SMBQ (Send Messages Bu�er Queue): los mensajes que han de ser
enviados desde este nodo son guardados en esta cola. En este imple-
mentación, los eventos de comunicación se revisan con cada evento de
terminación de la CPU, por lo que en caso de generarse alguno ha de
ser guadado a la espera de que la tarea que los generó entre en la CPU
y los pueda procesar.

La entidad StationEntity conoce las clases que implementan las políticas de
plani�cación de las tareas Best-e�ort y SRT. Como ya se mencionó ante-
riormente (sección 2.3.3), los tipos de políticas para tareas Best-e�ort son
Round Robin y Coscheduling Cooperativo; y para SRT son RMS y EDF.

class CpuEntity : representa la CPU de un nodo y encapsula toda la infor-
mación relacionada con la misma. Los eventos StartCpuEvent y ServiceEn-
dEvent son los que controlan la entrada y salida de trabajos a la CPU. El
control de las épocas es realizado a través de la clase CpuEpochHelper, que
se auxilia de las clases que implementan los algoritmos de plani�cación RT
(RMS y EDF) para saber cuál es la próxima tarea en entrar en la CPU.

Las relaciones entre estas entidades se observan en la Figura 3.2. Station-
Entity mantiene referencias a las instancias de las clases SchedulerHelper y

48

CpuEntity conteniéndolas y haciendo posible que CpuEntity pueda acceder la
información necesaria para la plani�cación de aplicaciones SRT de la instan-
cia de la clase que hereda de SchedulerHelper que esté en uso en el modelo.
La informanción del estado de la época es mantenida por CpuEpochHelper
y de ella se auxilia CpuEntity para controlarlas. Todo el conocimiento del
estado de la simulación es accesible desde el modelo, representado por una
instancia de la clase SimCluster.

3.1.2.2. Entidades que modelan la carga de trabajo

class JobEntity : Encapsula toda la información relacionada con una tarea.
De acuerdo a nuestras necesitdades, una tarea puede ser local o paralela y
para cada uno de estos tipos, podemos tener características SRT. Además de
los campos necesarios para controlar estas características de la tarea, hemos
de llevar el control de la cantidad de ji�es consumidos por todas las tareas
en cada momento, para controlar su terminación.
Al ser cargado un �chero de entrada, marcamos la entidad de acuerdo a si es
local Best-e�ort (LOCAL), local SRT (LOCAL_SRT), paralela Best-e�ort
(PARALLEL) o paralela SRT (PARALLEL_SRT). Estas marcas de�nen
cuales campos tendrán valores, la forma en que son tratados durante la pla-
ni�cación de la CPU, si revisan o no las colas de mensajes (RMBQ ó SMBQ)
y otros comportamientos propios de cada tipo de tarea.

class ParallelAppEntity : Contiene toda la información relacionada con
una aplicación paralela. A partir de los valores que la caracterizan se con-
struyen las tareas que la conforman en los diferentes nodos.

class MessageEntity : Entidad que representa a un mensaje. Conoce su
nodo origen y su nodo destino, además de la tarea que lo originó. Las carac-
terización de las aplicaciones paralelas son tomadas en cuenta para decidir
si generan o no mensajes, pues se generan de acuerdo a sus necesidades de
cómputo.

La interacción de las entidades mencionadas en esta subsección con las en-
tidades �hardware� es mostrada en la Figura 3.3. En esta �gura podemos
apreciar que el conocimiento de las tareas es propio de los nodos y que en
cambio información de más alto nivel se conoce desde la perspectiva del clus-
ter. En el cluster se mantiene la información de las aplicaciones paralelas y
los mensajes entre ellas, para que sea accesible a todas los nodos para su uso.

3.1.3. Eventos relevantes

Como se ha establecido anteriormente, los eventos controlan los cambios
de estado interno, y han de estar asociados a una entidad. En esta sección

49

Figura 3.3: Interacción de las entidades que modelan la carga de trabajo con
las entidades �hardware�.

describimos los eventos más importantes incluidos en este modelo, el Algo-
ritmo 3 muestra la interacción entre ellos. Hemos desglosado este algoritmo
para facilitar su comprensión, siendo el Algoritmo 5 el que explica el fun-
cionamiento de la generación de los mensajes y el Algoritmo 4 el que describe
el procedimiento seguido al �nalizar una tarea.

El Algoritmo 3 muestra la interacción general de los eventos, la primera
acción a realizar es cargar los datos del �chero de entrada en formato XML,
crear las instancias necesarias de JobEntity y StationEntity y generar el
primer evento de StartCpuEvent para cada tarea (líneas 6 a 9). Luego para
cada instancia de JobEntity presente en cada instancia de StationEntity
generamos el primer evento StartCpuEvent. Posterior a esto, el control de
los eventos para cada instancia de JobEntity relacionada con las instancias de
StationEntity pasa a los dos eventos principales del modelo, StartCpuEvent
y ServiceEndEvent. El primero realiza las acciones necesarias (línea 13),
entre las cuales está la plani�cación del evento ServiceEndEvent asociado
a su ejecución. Es durante la ejecución del evento ServiceEndEvent (líneas
14 a 23) que se chequea la ocurrencia de eventos de RT (líneas 18 a 20),
comunicación (línea 22) o terminación de tarea (líneas 15, 16).

El Algoritmo 4 ocurre cuando una tarea consume todo su tiempo de cómputo
(línea 15 del Algoritmo 3). En caso de ser una tarea local, no se hace nada
(línea 12). En cambio si es una tarea paralela ha de incrementarse el contador
de tareas de la respectiva aplicación paralela terminadas (línea 3). De acuerdo
a si esto implica que todas las tareas de la aplicación paralela han terminado
o no, se incrementa el contador de aplicaciones paralelas terminadas (línea
6) o no se hace nada. Si el contador de aplicaciones paralelas terminadas es
igual a la cantidad de aplicaciones cargadas del �chero de entrada, se detiene

50

Algoritmo 3 Interacción general entre los eventos en el modelo
1: StartCpuEvent → Evento que ocurre cada vez que una tarea necesita

la CPU, durante su ejecución dispara un evento ServiceEndEvent
2: ServiceEndEvent → Evento que ocurre cada vez que una tarea deja

la CPU, implica la posible generación de: Fin de Tarea, Condición RT
y Comunicación.

3: JobArrivalEvent → Ocurre cada vez que una tarea arriba al sistema,
durante la carga de datos del �chero de entrada.

4: CommunicationEvent → Representa un evento de comunicación, im-
plica que se revisen las colas locales de mensajes.

5: RTEvent → Representa un evento de RT.
6: for all Job ∈ inputFile.xml do
7: Generar la correspondiente instancia de (JobEntity → jobi,j) del Jobi

en stationj

8: Plani�ca para jobi,j , su primer evento StartCpuEvent en nodej , en
orden de prioridad para las tareas SRT y las Best-e�ort luego.

9: end for

10: for j = 0 to simCluster.getCantStations() do
11: for i = 0 to station[j].getCantJobs() do
12: while (jobi,j .remCV > 0) do
13: Durante el evento StartCpuEvent:

Plani�cación de un evento ServiceEndEvent en t = tactual +
jobi,j .assignedQuantumSlice
Chequeo de las colas de mensajes, SMBQ y RMBQ (envío y
recepción de mensajes).
Control de Época de la CPU y del quantum a asignar a las tareas

14: Durante el evento ServiceEndEvent:
Cálculo del tiempo de cómputo restante para la tarea →
jobi,j .remCV

15: if (jobi,j .remCV == 0) then
16: Ejecutar Algoritmo 4 (Fin de Tarea)
17: else

18: if (jobi,j .RT) then
19: Generar evento RTEvent → rtEvent
20: Plani�car rtEvent para t = t + job.getPeriod()
21: end if

22: Ejecutar Algoritmo 5 (Generación de Evento de Comuni-
cación)

23: end if

24: end while

25: end for

26: end for

51

la simulación (línea 8), proceso que implica la generación del �chero de salida
en formato XML .

Algoritmo 4 Fin de Tarea
1: La instancia de JobEntity, job ha consumido todo su volumen de cómputo
2: if ((job.type == PARALLEL) or (job.type == PARALLEL_SRT))
then

3: Incrementar el contador de tareas terminadas (finishedJobs) de la
aplicación paralela correspondiente.

4: if (finishedJobs == parallelAppJobsCounter) then
5: Guardar la información de la aplicación paralela para generar el

�chero de salida (outFile.xml)
6: Incrementar el contador de tareas paralelas terminadas �nishedPa-

rallelApps
7: if (�nishedParallelApps == loadedParallelApps) then
8: Condición de Finalización alcanzada, detener la simulación y ge-

nerar el �chero de salida (outFile.xml)
9: end if

10: end if

11: else

12: Fin de Tarea Local → Se descarta su información
13: end if

Finalmente, el Algoritmo 5 describe el proceso de la generación de un evento
de comunicación. Cabe mencionar que es un requerimiento para la ejecución
de este algoritmo que la tarea sea de tipo paralelo, ya sea SRT o no. Si a tarea
es paralela, procedemos a muestrear una distribución booleana de Bernoulli
creada de acuerdo a la relación cómputo/comunicación de la apliacación
paralela. Si el valor devuelto es verdadero, se pone en marcha el proceso
de crear mensajes en los otros nodos del cluster que tienen tareas de esta
aplicación paralela. Han de mencionarse que esto es solo el inicio del proceso
de comunicación, que consta de más partes. Luego de ser introducidos estos
mensajes en las colas de mensajes del nodo, se procesan cuando la tarea
paralela recibe la CPU y se envían a los nodos a los cuales están destinados.
El proceso de comunicación concluye cuando las respectivas tareas de los
otros nodos con tareas cooperantes revisan sus colas de mensajes recibidos,
los procesan y envían las respuestas.

class StartCpuEvent : Evento que gestiona la inserción de las tareas en la
CPU, calculando el quantum que le corresponde en caso de ser necesario.
Conjuntamente con el evento ServiceEndEvent controlan la entrada y salida
de las tareas en la CPU. En caso de tener tareas SRT, asigna sus slices del
quantum de la CPU de acuerdo a sus requerimientos, el slice disponible del
quantum se emplea en las aplicaciones Best-e�ort.
Al acceder una tarea paralela la CPU, revisa las colas de mensajes para saber

52

si han ocurrido eventos de comunicación. En caso de ser así, se gestionan en
ese momento.

class ServiceEndEvent : cada vez que ocurre un evento StartCpuEvent, se
genera un evento de este tipo, que se encarga de expulsar la tarea de la CPU.
Al ocurrir este evento se actualizan todas las variables que controlan las can-
tidades de CPU recibidas por cada tarea, en caso de terminar la tarea, se
trata de acuerdo a si es local o paralela. En caso de ser local, nada ocurre,
solo se guardan sus datos y se borra de las colas del nodo. Por otro lado,
en caso de ser paralela también se quita de las colas del nodo y además se
actualiza el contador de tareas en el trabajo paralelo. Si este contador vale
0, se noti�ca el �n del trabajo y se guarda hasta la terminación de la simu-
lación.
Los datos de las aplicaciones paralelas conforman un �chero de salida en for-
mato XML, que recibe LoRaS y constituyen los valores de RExT generados
por Simulador_Cluster_SRT.
En este evento se gestionan los eventos de tiempo real, que es descrito a
continuación.

class RealTimeEvent : representa a un evento RT, es plani�cado solo en
dos situaciones:
1− Al arribar una tarea con características SRT al sistema.
2− Cuando expulsamos alguna tarea SRT de la CPU.
Al ocurrir, desaloja (si no es SRT) el trabajo que se encuentra en la CPU y
se plani�ca un evento StartCpuEvent.

Algoritmo 5 Generación de Evento de Comunicación
Require: (job.type == PARALLEL) or (job.type == PARALLEL_SRT)
1: Muestrear la distribución de Bernoulli (creada de acuerdo a la relación

cómputo/comunicación) de la tarea paralela para decidir si comunica o
no → generateCommEvent

2: if (generateCommEvent) then
3: for (i = 0 to simCluster.stationCounter) do
4: if (stationHasJob(job, i) and (i 6=station.getStationId()))

then

5: create new MessageEntity → msg
6: Adicionar msg a la cola de mensajes en el cluster
7: station.SMBQ.insert(msg);
8: end if

9: end for

10: end if

class JobArrivalEvent : Debido a que los datos de los trabajos son cargados
de �cheros de entrada, el peso de los datos recae en las tareas. Para cada
nodo recibimos una lista de las tareas presentes en él, de cualquier tipo y

53

Figura 3.4: Interacción de las clases, soporte para adición de algoritmos de
plani�cación RT.

con cualesquiera características (SRT o Best-e�ort). A partir de esta lista,
se cargan los datos y el modelo se inicializa con ellos, este evento gestiona la
colocación de cada tarea en el nodo que le corresponde.

class CommunicationEvent : Representa un evento de comunicación, al
ocurrir, se revisan las colas de mensajes del nodo y los mensajes pertenecientes
a la tarea se procesan.

3.2. Soporte para nuevos algoritmos RT

Para facilitar la experimentación de nuevos algoritmos de plani�cación RT,
se diseñó el grupo de clases que conforman esta parte del software de forma

54

modular. Esta implementación, permite añadir nuevos algoritmos heredando
de una clase abstracta, nombrada SchedulerHelper e incluida en el paquete
simModelHelpers. La Figura 3.4 muestra las clases que representa a los al-
goritmos inicialmente incluidos en la jerarquía (RMSchedulerHelper y EDF-
SchedulerHelper) y la interacción entre las clases necesarias para realizar la
plani�cación.

La clase StationEntity es el contenedor principal de toda la información de
las tareas que se encuentran en ella y la forma de plani�carlas. Por esta razón
guarda referencias a los helpers para la plani�cación usando algorimos RT
y a la CPU. La clase CpuEntiy se apoya de la información brindada por la
clase CpuEpochHelper (también de�nida en el paquete simModelHelpers) a
la hora de controlar sus épocas. Esta a su vez, se nutre de la información
que brindan las clases mostradas en la Figura 3.4 (RMSSchedulerHelper o
EDFSchedulerHelper) para decidir datos relacionados con el quantum o cual
es el la próxima tarea RT en entrar en la CPU. Implementando esta parte
del software de esta forma logramos una mayor extensibilidad y �exibilidad
en el código, que se traduce en ahorro de tiempo y esfuerzo para desarrollos
futuros.

3.3. Comunicación entre los procesos

La comunicación entre LoRaS en modo de simulación o�-line y Simula-
dor_Cluster_SRT ocurre a través de �cheros en formato XML. Como ya se
ha explicado anteriormente, la simulación funciona a dos niveles, en el superi-
or, LoRaS genera �cheros XML con el estado del cluster y realiza la ejecución
de Simulador_Cluster_SRT. Una vez leídos de los �cheros XML, los datos
generados por LoRaS son guardados en clases (Figura 3.5), y posteriormente
empleados para generar los eventos de arribo de tareas. Cabe destacar que, al
igual que con el soporte de nuevos algoritmos RT, la modularidad del código
implica mayor facilidad a la hora de extender las funcionalidades a nuevos
tipos de tareas.

Las razones por las que elegimos XML como formato para los �cheros de
datos son:

La existencia de APIs que facilitan su uso en los lenguajes de progra-
mación implicados en el desarrollo.

Permite comprobar la validez y consistencia de los �cheros de datos de
forma rápida y segura. Para cada �chero XML podemos establecer su
�chero de formato, contra el cual podemos validarlo y comprobar su
consistencia, de acuerdo a la forma en la que lo de�nimos.

55

Figura 3.5: Jerarquía de manejo de datos y su interacción general.

56

Por las razones antes expuestas, ahorra tiempo de desarrollo y hace más
claros y legibles los �cheros de intercambio de datos. Es también un estándar
ampliamente utilizado.

57

58

Capítulo 4

Experimentación realizada y
resultados obtenidos

En este capítulo mostramos la experimentación realizada, principalmente
dirigida a validar el sistema, comprobar su escalabilidad y observar el de-
sempeño de nuestros métodos de estimación con capacidad SRT ante cargas
locales o paralelas SRT.

4.1. Caracterización de los entornos de ejecución

Antes de pasar a mostrar y comentar los resultados alcanzados, es necesario
describir el entorno utilizado para realizar las ejecuciones. Cabe destacar que
se han realizado ejecuciones reales, i.e.: con carga de tipo Best-e�ort, para
todos los métodos descritos en el capítulo 2. La caracterización de este en-
torno de ejecución es mostrado a continuación (subsección 4.1.1), que incluye
la forma de representar la carga paralela y las aplicaciones paralelas junto
con sus tiempos de llegada al sistema.

Ha de mencionarse que tanto las ejecuciones reales como las simuladas fueron
realizadas empleando la política FCFS (First Come First Serve) para la
selección de trabajos y la política Normal para la selección de los nodos.
Destacamos que la política Normal intenta seleccionar el mejor conjunto de
nodos para ejecutar una aplicación paralela teniendo en cuenta el uso de
recursos en los nodos del cluster. De esta forma esta política no sobrecarga
los nodos en detrimento de la carga local que pueda estar presente en ellos.

4.1.1. Entorno de las ejecuciones reales

En el caso de las ejecuciones reales, es necesario simular la presencia de
usuarios locales y además, aplicaciones paralelas que lleguen al sistema en

59

Figura 4.1: Validación parcial de los métodos SRT, contra ejecuciones reales
sin carga local.

intervalos de tiempo representativos. Por estas razones, las aplicaciones han
de estar correctamente caracterizadas, para garantizar luego que las com-
paraciones con los métodos de estimación empleados en las simulaciones
(analíticos o simulado) sean justas.

La actividad local Best-e�ort es modelada por un benchmark parametrizable.
Los valores de CPU, memoria y uso de red de las aplicaciones son dados
como parámetros a este benchmark y el simula el uso de estos recursos. Para
conseguir una mayor similitud con valores reales, se realizaron medidas en
laboratorios y con los valores obtenidos creamos los parámetros modelo para
aplicaciones Best-e�ort. En este caso, los valores para el benchmark son 15%
de CPU, 35% de memoria y 0.5 KB/s como uso de red.

La carga paralela está representada por una lista de aplicaciones NAS ejecu-
tadas usando PVM, que emplean 2, 4 y 8 nodos y llegan al sistema siguiendo
una distribución de Poisson. Estas aplicaciones han sido mezcladas de tal
forma que sea balanceada en cuanto a cómputo y comunicación. La Tabla
4.1 muestra la caracterización de las aplicaciones paralelas utilizadas.

El cluster donde se llevaron a cabo las ejecuciones estaba compuesto de 8
nodos Pentium-IV (1.8 GHz), con 512 MB de memoria RAM e interconecta-
dos por una red Fast-Ethernet. El sistema operativo instalado en estos nodos
es Linux. Las simulaciones son realizadas de acuerdo a la caracterización de
estos nodos.

60

NAS-IS (CPU (%) - Mem. (MB) - Tiempo (seg.))
Clase A Clase AB Clase B

Nodos CPU Mem. Tiempo CPU Mem. Tiempo CPU Mem. Tiempo

2 44 112 50 57 220 99 58 380 240

4 29 72 49 26 136 109 25 260 240

8 26 44 39 25 88 58 24 150 179

NAS-MG (CPU (%) - Mem. (MB) - Tiempo (seg.))
Clase A Clase AB Clase B

Nodos CPU Mem. Tiempo CPU Mem. Tiempo CPU Mem. Tiempo

2 72 220 49 86 220 129 90 220 209

4 57 113 29 83 113 65 78 113 119

8 36 60 19 62 60 49 70 60 75

Tabla 4.1: Caracterización de las aplicaciones paralelas para el proceso de
simulación.

4.1.2. Entorno de las ejecuciones simuladas

Para el caso de la actividad local de tipo SRT empleamos los resultados
mostrados en [26]. En este estudio se muestran varias aplicaciones con ca-
racterísticas SRT, entre las cuales seleccionamos una para nuestro estudio,
el visualizador multimedia Xine. Esta aplicación local se caracteriza por pre-
sentar diferentes niveles en el uso de recursos de acuerdo al tamaño de la
ventana de visualización, siendo los consumos de recursos representados co-
mo 11% de CPU y 15% de memoria para visualización de 1x y 41% de CPU
y 20% de memoria para visualización a 2x (donde x representa el tamaño
de la ventana de visualización).

Al no contar con aplicaciones paralelas SRT con la caracterización necesaria
por el simulador O�-line de LoRaS, hemos tenido que construirnos la car-
ga paralela SRT. En este enfoque inicial, las aplicaciones paralelas SRT son
aplicaciones paralelas Best-e�ort a las que se les de�nimos un deadline o
tiempo de �nalización máximo. Cabe destacar que este deadline lo calcu-
lamos sumándole al tiempo de ejecución obtenido mediante la ejecución de
la aplicación paralela isolada un 20% del valor obtenido (Ecuación 4.1).

deadline(j) = turnaroundisol(j) +
1
5
× turnaroundisol(j) (4.1)

Al construir la carga paralela SRT de esta forma, podemos reusar las carac-
terizaciones disponibles de trabajos previos. Cabe destacar que debido a que
aún no disponemos de soporte en el sistema de ejecuciones reales para apli-
caciones SRT, ya sean paralelas o locales, esta era una de las pocas opciones
viables. Creemos que la pérdida de generalidad introducida esta asunción es
permisible a este nivel de nuestro trabajo.

61

Figura 4.2: Validación parcial de los métodos SRT, contra ejecuciones reales
con un 25% de carga local.

Para las ejecuciones simuladas se utilizan caracterizaciones de los nodos
(Pentium-IV a 1.8 GHz con 512 MB de memoria RAM) empleados para
las ejecuciones reales.

4.2. Validación del Simulador

Debido a que el entorno CISNE aún no es capaz de ejecutar carga con caracte-
rísticas SRT, la validación posible en este momento del trabajo es parcial. Es
decir, podemos comparar los resultados de nuestros métodos de estimación
con resultados de ejecuciones reales solo para carga Best-e�ort. Por otro la-
do cabe destacar que gran parte de los estudios consultados en la literatura
[42, 12, 84, 88] usan la simulación como único método de trabajo, siendo la
excepción mayoritariamente los trabajos que hacen modi�caciones a los SO
para mejorar sus capacidades SRT [19, 14, 66, 2]. Para este caso, la cantidad
de aplicaciones NAS ejecutadas fue de 30.

Las Figuras 4.1, 4.2 y 4.3 muestran la precisión que nuestros métodos pueden
alcanzar para diferentes niveles de carga local. En este experimento tanto
la carga local como la paralela son de tipo Best-e�ort, debido a que son
comparados con métodos incapaces de procesar carga (paralela o local) de
timpo SRT. Para realizar esta experimentación, fueron empleados 8 nodos
para ejecutar tanto la carga local como la paralela, variando los niveles de

62

presencia de usuario local (en valores de 0%, 25% y 50%) en los diferentes
casos. La diferencia entre los valores obtenidos de las ejecuciones reales y
las simuladas por los diferentes métodos son mostradas aquí en la forma de
tanto porciento de error en el turnaround.

En esta �gura podemos apreciar que el método simulado (SIM_SRT , cor-
respondiente a RExTSIM_SRT) se comporta siempre mejor que los demás
métodos, como era de esperar dado su mayor nivel de detalle. Los valores
de error máximos en este tipo de experimento para SIM_SRT son siem-
pre menores al 12%. Cabe destacar que los métodos denotados por MPL
y CPU han sido contrastados contra otros métodos de estimación presentes
en la literatura, brindado al menos resultados tan buenos como ellos.

Figura 4.3: Validación parcial de los métodos SRT, contra ejecuciones reales
con un 50% de carga local.

4.3. Inclusión de carga SRT

La inclusión de carga con características SRT en la experimentación implica
que solo podemos emplear los métodos de estimación del RExT capaces
de trabajar con este tipo de tareas, que en nuestro caso son ANL-SRT y
SIM-SRT. Estudiaremos primero el efecto de la carga local SRT sobre las
aplicaciones paralelas Best-e�ort y luego la coexistencia de varios tipos de
cargas en un cluster no dedicado.

63

Figura 4.4: Comparación de métodos en presencia de carga local SRT,
turnaround para 16 y 32 nodos.

4.3.1. Carga local SRT

Este experimento compara los dos métodos de estimación del RExT en pre-
sencia de carga local Best-e�or y SRT. Para generar la grá�ca mostrada en
la Figura 4.4 realizamos experimentos para 16 y 32 nodos, con diferentes
niveles de presencia de usuario local. Es importante destacar que para cada
porciento de carga local, la mitad es de tipo SRT.

Creemos que esta experimento también nos permite observar el efecto de
la carga local de tipo SRT en el turnaround (tiempo que espera el usuario
paralelo hasta que concluye la ejecución de la aplicación paralela que ha lan-
zado) de las aplicaciones paralelas. La Figura 4.4 permite apreciar que ambos
métodos siguen la misma tendencia, lo cual es un resultado alentador, pues
nuestros dos métodos de estimación se comportan parecido. Cabe destacar
que el método simulado genera resultados con tiempos de turnaround ma-
yores que el análitico, consideramos que esto ocurre debido a su mayor nivel
de detalle, lo cual re�eja las mayores exigencias de recursos del usuario local
con más presición.

4.3.2. Carga paralela SRT

En este experimento, el 15% porciento de la carga paralela es de tipo SRT,
la presencia de usuario local es de tipo Best-e�ort y los experimentos fueron

64

Figura 4.5: Comparación de métodos en presencia de carga local Best-e�ort,
turnaround para 16 y 32 nodos. Aplicaciones paralelas tipo SRT (15% del
total).

hechos para 16 y 32 nodos. Como podemos apreciar en la Figura 4.5, los
tiempos de ejecución de las tareas paralelas disminuyen. Esto es un resultado
lógico y esperado, pues ahora las aplicaciones paralelas disponen de más
tiempo de CPU, debido a la disminución de los requerimientos de CPU y
memoria de las aplicaciones locales.

65

66

Capítulo 5

Conclusiones y Trabajo Futuro

En este capítulo enunciamos las conclusiones alcanzadas y las líneas de tra-
bajo futuro.

5.1. Conclusiones

Nuestro trabajo incluye elementos de plani�cación temporal en clusters no
dedicados y sistemas tiempo real débil. La unión de estas dos líneas se hace
necesaria para re�ejar los cambios ocurridos en las aplicaciones a ejecutar en
clusters no dedicados, tanto las locales como las paralelas. Nuevos tipos de
aplicaciones locales SRT, cuyo mejor ejemplo son las aplicaciones multime-
dia, implican una rede�nición de las pautas que garantizan su coexistencia
con la carga paralela. Las aplicaciones paralelas también evolucionan, re-
quiriendo en muchos casos QoS para una correcta ejecución.

Creemos que las aulas de ordenadores presentes en cualquier universidad
hoy en día son una fuente de poder de cómputo de la que muchos sistemas
intentan hace uso e�ciente. Un enfoque como el nuestro, que hace coexistir la
carga paralela y la local implica un mejor uso de estos recursos. El cambio en
las aplicaciones locales y paralelas anteriormente mencionado implica crear
nuevos esquemas y métodos de plani�cación para que los usuarios locales no
vean afectada la interactividad de sus ordenadores.

El principal objetivo de este trabajo es proveer un sistema que permite es-
tudiar la plani�cación temporal de aplicaciones de varios tipos que han
aparecido en la literatura. Para este �n, se ha modi�cado un sistema dis-
eñado para estudiar la plani�cación espacial de aplicaciones paralelas, que
contempla dos tipos de aplicaciones, locales y paralelas Best-e�ort. Se ha
añadido soporte para aplicaciones paralelas y locales SRT , en dos
métodos de estimación, uno analítico y otro simulado.

67

Se ha realizado una revisión bibliográ�ca dirigida a la consideración de
aplicaciones SRT, tanto locales como paralelas, en clusters no dedicados.
Cabe destacar que aún cuando es un tema ampliamente estudiado, no hemos
encontrado trabajos donde se aborde la problemática de la plani�cación es-
pacial en clusters no dedicados de aplicaciones locales y paralelas de los tipos
que contempla este trabajo, Best-e�ort y SRT.

Se han creado dos nuevos métodos de estimación con capacidad

SRT , que permiten estudiar el comportamiento de aplicaciones con estas
características en clusters no dedicados. Este trabajo ha signi�cado una serie
de extensiones y modi�caciones a sistemas previamente desarrollados en el
grupo.

El método de estimación por simualción es un simulador independiente, que
podría ser extendido para realizar simulaciones sin necesidad de otros sis-
temas. Su implementación modular permite incorporar nuevos algoritmos de
plani�cación con un esfuerzo razonable. Este método de estudio de la plani-
�cación temporal de aplicaciones paralelas y locales, tanto Best-e�ort como
SRT ha dado origen a la publicación:

J.García, P. Hernández, J. Lérida, F.Giné, F.Solsona & M. Hanzich.
Using Simulation for Job Scheduling with Best-E�ort and

Soft Real-Time Applications on NOWs. XVIII Jornadas de Pa-
ralelismo, JP'2007.

La experimentación desarrollada hasta este momento re�eja la necesidad
de combinar las métricas existentes con otras que nos permitan evaluar los
algoritmos de plani�cación SRT que incluyamos en nuestro sistema. Es im-
portante mencionar que es necesaria una rede�nición de la carga paralela,
para re�ejar de manera �deligna nuestro entorno de estudio. Creemos que
en esta nueva situación, las colas de espera han de ser cortas para poder
satisfacer los requerimientos de las aplicaciones paralelas SRT.

5.2. Trabajo Futuro

En este tipo de estudios, la caracterización de la carga, ya sea local o paralela,
es de primordial importancia. Además, los resultados alcanzados demuestran
que hemos de prestar especial importancia a las aplicaciones paralelas, de tal
forma que re�ejen nuestro entorno de una forma más especí�ca. Por lo tanto
una de nuestras líneas abiertas más importantes es el encontrar aplicaciones
paralelas, tanto SRT como Best-e�ort, que encajen mejor en nuestro entorno.

Aún cuando incluimos un modelo analítico en nuestro trabajo, creemos que
este es susceptible a mejoras, siendo esta dirección de trabajo también impor-
tante en nuestro futuro. Ha de trabajarse también en el desarrollo de nuevas

68

métricas y su combinación con las ya existentes, pues al combinar dos di-
recciones de investigación (plani�cación temporal en clusters no dedicados y
plani�cación aplicaciones SRT), han de proveerse medios para evaluar los re-
sultados en las dos direcciones. Creemos que el desarrollo de modelos analíti-
cos para la predicción relacionada con las métricas para aplicaciones SRT es
también importante.

Las nuevas métricas a contemplar en los modelos han de ser capaces de
evaluar el comportamiento de los algoritmos de plani�cación estudiados, en
base a las pérdidas de deadlines en las plani�caciones. Hasta ahora solo
somos capaces de medir deadlines de aplicaciones paralelas SRT, hemos de
ser capaces de medir los deadlines que pierde cada tarea SRT, ya sea paralela
o local. También hemos de desarrolla métodos analíticos para predecir las
pérdidas de deadlines de tareas SRT.

Finalmente, el hecho de que los procesadores multicore sean fácilmente acce-
sibles en el mundo comercial nos hace plantearnos con fuerza su inclusión
en nuestra línea de trabajo. Cabe mencionar que se ha hecho un esfuerzo
considerable de investigación en la literatura y ya se per�lan algunas de las
estrategias para su uso. Los resultados alcanzados hasta el momento en esta
línea de trabajo están incluidos en forma de anexos (Anexos A y B). Cabe
destacar los procesadores multicore es un tema en auge en la actualidad,
re�ejado en los recientes artículos sobre el tema [32, 6, 7, 18].

También incluidos en el apéndice B tenemos los estudios de rendimiento
relacionados con el uso de procesadores Pentium D para la ejecución de
aplicaciones PVM NAS.

69

70

Apéndice A

Propuestas para la
plani�cación

Hemos de destacar que nuestra propuesta para la plani�cación ha de tener
en cuenta el hardware en el cual se implementará y las necesidades de los
tipos de aplicación a plani�car. Los detalles del hardware disponible están
en el Apéndice B.

A.1. Implementación del plani�cador en espacio de

usuario

Es un requerimiento importante de diseño que no se haga ningún tipo de
modi�cación en el kernel de Linux. Esto nos permite una mayor portabili-
dad de nuestro sistema, además de facilitar enormemente su implantación
y mantenimiento. Un grupo de pruebas y re�exiones que incluimos en esta
subsección nos llevaron a nuestra opción de implementación del plani�cador.

Queremos destacar que la opción que parece más evidente para la imple-
mentación de un plani�cador en Linux, es decir, el uso de las colas RT in-
cluidas en las últimas versiones, ha quedado descartada en este trabajo. La
principal razón por la cual descartamos las colas RT es porque la única for-
ma de ejecutar una aplicación RT antes que otra es que esté en una cola de
mayor prioridad. El plani�cador tendría que utilizar una llamada al sistema
(sched_setscheduler) cada vez que hiciese falta otorgarle la CPU a alguna
aplicación, con el agravante de que no todas las aplicaciones son RT . Este
plani�cador resultaría más complejo que la propuesta que presentaremos más
tarde.

71

A.1.1. Plani�cador basado en renice

Las primeras pruebas realizadas giraron en torno al uso de la función renice
de Linux, la cual permite cambiar la prioridad estática de los procesos de
forma dinámica. Este método tiene como ventajas que:

Genera poca intrusión, dado que la modi�cación del valor nice de los
procesos no in�uye en el rendimiento del plani�cador y una vez asig-
nado se utiliza durante largos períodos de tiempo.

El quantum asignado a cada proceso es calculado de forma precisa a
partir del valor del nice (empleando el Algoritmo 6). Esta forma de
calcular es la empleada en el kernel 2.16.x.

Algoritmo 6 Cálculo de la prioridad a partir del nice

1: scale_prio(x, prio)← max(x× (max_prio−prio)
(max_user_prio/2) ,min_timeslice)

2: if (static_prio < nice_to_prio(0)) then
3: return scale_prio(def_timeslice× 4, static_prio)
4: else

5: return scale_prio(def_timeslice, static_prio)
6: end if

Y como desventajas:

No podemos controlar exactamente que proceso se ejecutará, pues al
consumir todo su quantum los procesos salen de la cola de procesos
listos y no se ejecutan hasta que termina la época.

Los valores de nice negativos generan problemas con la interactividad
del ordenador.

A.1.2. Plani�cador basado en STOP-CONT

Esta forma de plani�car las aplicaciones se basa en el envío de señales de
STOP/CONT para detener y reanudar los procesos. De esta forma logramos
controlar el momento concreto del tiempo en el cual un proceso inicia y se
detiene, además de la cantidad de cómputo que recibe.

Este método tiene una única desventaja, el hecho de genera más intrusión
que el método del renice antes descrito. Esto es debido a la ejecución perió-
dica del plani�cador para controlar las aplicaciones en ejecución, aunque es
válido destacar que en las pruebas realizadas no logramos medir la intrusión
generada por este tipo de plani�cador.

Las ventajas de este método son:

72

Al comparar el nivel de intrusión generado por este método lo com-
paramos con el anterior, por lo que vale la pena destacar que en com-
paración al renice, es mucho más �able y ajustable para las tareas de
plani�cación a realizar.

Proporciona una mayor resolución en la plani�cación (en el orden de
los µseg) que el renice (resolución máxima en el orden de los ji�es
≈ 10 mseg).

La plani�cación es mucho más fácil ya que podemos enviar señales a
grupos de procesos (padre y todos sus hijos).

A.2. Plani�cador propuesto

Finalmente en esta sección enunciamos nuestra propuesta de plani�cación,
que consiste en combinar los métodos expuestos. Esta combinación aporta lo
bueno del método del renice (intrusión extremadamente baja) y lo positivo
del método del STOP-CONT (su alta resolución) justo donde más falta hace.
Podemos implementar un plani�cador haciendo uso del método del STOP-
CONT para las aplicaciones SRT, que son las que necesitan de una alta
resolución temporal para su correcta ejecución. Y luego, las aplicaciones tipo
Best-e�ort son plani�cadas utilizando el método del renice, lo cual genera
poca intrusión en el sistema y no afecta las aplicaciones SRT.

Tenemos a nuestro favor que a partir del kernel de Linux 2.6.18 se incluyen
mejoras relacionadas con el tiempo real. Estas mejoras están principalmente
relacionadas con una mayor resolución del temporizador y mejoras en la
capacidad de desalojo de algunos segmentos del kernel. Es válido destacar
que aún queda mucho por hacer en estos dos sentidos.

73

74

Apéndice B

Procesadores multicore

Los procesadores multicore, que son ya una realidad hoy en día, comienzan
a ser objeto de muchos estudios. Entre los trabajos que se enfocan en tomar
ventaja de las posibilidades que abren al emplear procesadores multicore
encontramos [32, 6, 7, 18]. En este apéndice mostramos el estado de arte
relacionado con los procesadores multicore, la forma en la que pensamos
tomar ventajas de ellos y algunos experimentos realizados.

B.1. Estado del arte procesadores multicore

La plani�cación de aplicaciones paralelas SRT en procesadores multicore es
un tema de reciente interés en la comunidad cientí�ca. Las ventajas que
pueda aportar la coplani�cación en un entorno multicore no son evidentes
y han de ser estudiadas detalladamente. Además de la plani�cación, otros
temas de relevancia en esta área están asociados al nuevo cuello de botella
existente en estas arquitecturas, la memoria principal y las caches.

En [32] se aborda el problema desde una óptica introductoria, mostrando el
panorama general de hardware y las limitaciones de los sistemas operativos
(SO) comerciales al enfrentar este problema. Las conclusiones más impor-
tantes de este estudio son la necesidad de desarrollar aplicaciones capaces de
aprovechar el paralelismo existente en el hardware y que los plani�cadores
de los SO sean más competentes a la hora de aprovechar las capacidades
multicore de los procesadores. Sus recomendaciones pasan por tres puntos
principales, la clasi�cación de los procesos, la capacidad de adaptarse y
detectar su tipo de forma automática y la necesidad de incrementar la
cooperación entre los procesos.

La posibilidad de que los diferentes cores de un procesador multicore sean
usados para diferentes tipos de tareas es introducida en [18]. En este estudio,

75

Figura B.1: Ejemplos de tipos de cache en procesadores dual-core.

los cores que conforman el procesador multicore tienen diferente potencia,
por lo que se denomina a esta plataforma asimétrica. Proponen la plani�-
cación de las tareas best-e�ort y SRT en los diferentes cores del procesador
intentando mejorar el rendimiento de las aplicaciones best-e�ort con una
estrategia basada en servidores diferidos DS (Deferrable Servers) [79]. El
algoritmo propuesto en DS está basado en la premisa de aumentar las prio-
ridades a las tareas aperiódicas mientras las tareas periódicas no pierdan sus
deadlines.

Algunos estudios han intentado responder las incógnitas relacionadas con la
memoria principal y la cache en procesadores multicore. Ha de señalarse que
todos los estudios realizados se basan en la premisa de la cache de nivel 2
(L2) es compartida (Figura B.1.izquierda) entre los cores del multiproce-
sador. Estudios centrados en la plani�cación de tareas RT [7] y paralelas [6]
en plataformas multicore intentan tomar ventaja de esta característica de
algunos procesadores multicore. En estas circunstancias los cambios de con-
texto no son costosos cuando el working set de la aplicación está en cache y
de esta característica de los sistemas multicore con cache compartida sacan
ventaja en estos trabajos.

La in�uencia del ancho de banda de la memoria cuando se plani�can apli-
caciones RT o SRT es estudiada en [52]. Como conclusión principal de este
estudio encontramos que solo podemos colocar varios procesos RT o SRT en
un procesador multicore simétrico si controlamos el ancho de banda del bus
de memoria disponible y su uso. Se recomiendo además que las aplicaciones
RT o SRT modelen su comportamiento de acceso a memoria en ráfagas, para
facilitar la plani�cación del uso del bus de memoria. En [46] encontramos un
estudio sobre el efecto del impacto en la e�ciencia en el acceso a memoria en
sistemas SMP con diseño de memoria compartida. Contemplando el impacto

76

Figura B.2: Esquema de uso de los cores en procesadores Pentium D.

de la consumición de ancho de banda de memoria por parte de las nuevas
tecnologías de red, usando como ejemplo Myrinet.

Los trabajos en este tema aún son embrionarios y escasos, siendo algunos de
ellos interesantes consideraciones y recomendaciones a seguir.

B.2. Uso de la capacidad multicore de los proce-

sadores

Otro de los desafíos a enfrentar en este trabajo es la forma de tomar ventaja
de las bondades de los procesadores multicore, algunos de los cuales están
descritos en la sección B.4. En [18], múltiples procesadores de diferente poder
de cómputo son plani�cados con tareas SRT y Best-e�ort usando servidores
diferidos para mejorar el rendimiento de las aplicaciones Best-e�ort. Esta
idea nos parece válida, aún cuando en nuestro caso ambos cores tienen el
mismo poder de cómputo.

La Figura B.2 muestra una aproximación a este problema desde nuestra óp-
tica. Dado que hay disponibilidad de dos cores y tenemos dos grandes grupos
de aplicaciones, se propone utilizar cada core para cada grupo de aplicaciones
(SRT y Best-e�ort). Lógicamente para generar menos compentencia por los
recursos, las tareas de control también serían realizadas por el core dedicado
a las tareas Best-e�ort.

77

App/Proc mgb8 mgb4 mgb2 mgab8 mgab4 mgab2 mga8

Pentium IV 75 119 209 49 65 129 19
Pentium D 52 84 138 31 50 84 11
SpeedUp 1,43 1,42 1,52 1,56 1,29 1,53 1,74

Tabla B.1: Tiempos y speedups para Pentium D y Pentium IV, tipo de
aplicación NAS CPU bound.

App/Proc isb8 isb4 isb2 isab8 isab4 isab2 isa8

Pentium IV 179 240 240 58 109 99 39
Pentium D 119 144 103 59 70 50 30
SpeedUp 1,50 1,67 2,33 0,99 1,55 1,97 1,31

Tabla B.2: Tiempos y speedups para Pentium D y Pentium IV, tipo de
aplicación NAS IO bound.

B.3. Experimentación en procesadores Pentium D

Los experimentos realizados van destinados a calcular el speedup relativo
entre procesadores Pentium D a procesadores Pentium tradicionales. Los
procesadores Pentium D destacan por tener dos cores, cada uno a una ve-
locidad de 3.6G Hz y una cache de 2 MB por cada core, lo cual hace un total
de 4 MB. También ha de destacarse que el acceso a memoria es mejor, ya
que tienen valores del FSB mayores que los procesadores Pentium empleados
como comparativa. Los procesadores Pentium tienen una velocidad del reloj
de 1.8 GHz y 512 KB de cache.

Las tablas B.3 y B.4 muestran los tiempos de ejecución y speedup de acuerdo
a la caracterización de las aplicaciones del NAS. CPU bound signi�ca que
las aplicaciones emplean más tiempo calculando que accediento a disco e
IO bound lo contrario. El speedup promedio para todas las ejecuciones es de
1,58 y llama la atención que sea tan bajo, teniendo en cuenta que no solo hay
presentes dos procesadores, sino que también sus características particulares
han mejorado de forma notable.

Para intentar aclarar el por qué del bajo speedup, repetimos el experimento
anterior para los Pentiums D, pero con un proceso robándose toda la ca-
pacidad de cómputo de uno de los cores. Para asegurarnos que el sistema
de balanceo de colas de Linux no intefería en nuestro experimento, ligamos
nuestro ladrón de CPU a uno de los cores y el demonio de PVM al otro.

Los resultados parecen sorprendentes, pues el speedup promedio para este ex-
perimento (1,56) es apenas dos décimas menor que cuando empleamos los dos
cores. Creemos que esto se debe al hecho de que la implementación de PVM
es tratada como un proceso más por el SO, razón por la cual no toma gran

78

App/Proc mgb8 mgb4 mgb2 mgab8 mgab4 mgab2 mga8

Pentium IV 75 119 209 49 65 129 19
Pentium D 52 82 154 31 50 80 16
SpeedUp 1,44 1,44 1,36 1,57 1,30 1,62 1,22

Tabla B.3: Tiempos y speedups para Pentium D (un core deshabilitado) y
Pentium IV, tipo de aplicación NAS CPU bound.

App/Proc isb8 isb4 isb2 isab8 isab4 isab2 isa8

Pentium IV 179 240 240 58 109 99 39
Pentium D 117 144 102 58 71 49 29
SpeedUp 1,53 1,67 2,35 0,99 1,55 2,00 1,33

Tabla B.4: Tiempos y speedups para Pentium D (un core deshabilitado) y
Pentium IV, tipo de aplicación NAS IO bound.

ventaja de la capacidad multicore del procesador. Este situación refuerza la
propuesta antes realizada, ya que el hecho de emplear los procesadores por
separado no afecta de forma notable la ejecución de las aplicaciones.

B.4. Algunas Arquitecturas SMP Actuales

Symmetric multiprocessing (SMP) es el nombre de una arquitectura de or-
denadores multiprocesador en la cual dos o más procesadores idénticos están
conectados a una única memoria pricipal compartida. En este tipo de sis-
tema, la ubicación de la cache de nivel 2 (L2), de�ne el coste de las migra-
ciones de tareas entre procesadores. En esta sección repasaremos los proce-
sadores actuales que soportan arquitecturas SMP, cabe destacar que este
tipo de arquitectura es bastante común en los procesadores comerciales.

Una amplia variedad de procesadores soportan SMP en la actualidad, entre
ellos podemos mencionar:

Xeon de Intel: Soportan sistemas SMP desde mediados del 2001, es la
línea de procesadores de Intel destinada a servidores. Actualmente se
producen procesadores Xeon en versiones Dual-Core y Quad-Core. En
todas las versiones con varios cores la L2 es compartida.

Intel Core: Diseñado para ordenadores portátiles, por lo que se centra
en el ahorro energético de los procesadores. Al igual que su sucesor
directo (Intel Pentium Dual-Core) los cores integrantes del procesador
comparten la misma cache.

79

Intel Core 2 : Representa la unión de las dos líneas de procesadores
de Intel, para ordenadores portátiles y de escritorio. Puede contener 2
(versión Duo) o 4 (versión Quad) cores, con cache L2 compartida.

Opteron de AMD: Lanzado al mercado en abril del 2003, fue diseñado
para competir con los procesadores Xeon de Intel en el mercado de los
servidores. Desde mayo del 2005 tiene una versión de dos cores y se
espera que para mediados del 2007 salga al mercado la versión Quad-
Core. Además de arquitectura SMP soporta arquitecturas NUMA.

Ultra SPARC : Lanzados al mercado desde �nales del 2005, en versiones
de 4, 6 y 8 cores, soportando 4 hilos por cada uno de ellos. Utiliza una
cache L2 compartida de 3 MB de tamaño y técnicas para lograr un uso
más e�ciente.

Pentium D : Lanzado al mercado en mayo del 2005, incluye dos unidades
Pentium completas actuando cada una como un core, que disponen de
una cache L2. Los tamaños de las L2 por core están asociados a la
generación a la que pertenecen, siendo de 2x1 MB o 2x2 MB.

Ha de destacarse que aún cuándo en los procesadores multicore la tenden-
cia parece ser el uso de la cache L2 compartida, en este trabajo la experi-
mentación habrá de realizarse en procesadores Pentium D �Presler�. Estos
procesadores conforman la última y más nueva generación de procesadores
de esta gama, fabricados en tecnología de 65 nanómetros, con una velocidad
del reloj de 3.6 GHz y una cache L2 2 MB por cada core. En esta línea de
procesadores, la comunicación entre los cores se hace a través del FSB (Front
Side Bus), lo cual genera efectos tan negativos como la contención de bus
y el hecho de que cuando el procesador está muy cargado ha de dividirse el
ancho de banda existente (800 MT/s) entre los cores.

La contención de bus es un efecto ya presente en otros procesadores, como los
procesadores Xeon, con este término nos referimos a los efectos no deseados
que ocurren cuando más de un core intenta escribir en el bus de memoria.
Este efecto no deseado puede llevar a operaciones erróneas o daños al hard-
ware. Cabe destacar que no es un problema solo de los buses de memoria,
puede ocurrir también con cualquier bus del sistema con más de un disposi-
tivo asociado al bus.

80

Bibliografía

[1] TF Abdelzaher, KG Shin, and N. Bhatti. User-level qos-adaptive re-
source management in server end-systems. Computers, IEEE Transac-
tions on, 52(5):678�685, 2003.

[2] L. Abeni and G. Lipari. Implementing resource reservations in linux.
2002.

[3] Luca Abeni and Giorgio C. Buttazzo. Integrating multimedia applica-
tions in hard real-time systems. In RTSS, pages 4�13, 1998.

[4] K. Aida. E�ect of job size characteristics on job scheduling perfor-
mance. Job Scheduling Strategies for Parallel Processing, Lecture Notes
in Computer Science, 1911:1�17, 2000.

[5] David P. Anderson, Je� Cobb, Eric Korpela, Matt Lebofsky, and Dan
Werthimer. Seti@home: an experiment in public-resource computing.
Commun. ACM, 45(11):56�61, 2002.

[6] J. Anderson and J. Calandrino. Parallel real-time task scheduling on
multicore platforms. In Proceedings of the 27th IEEE Real-Time Systems
Symposium, 2006.

[7] J. Anderson, J. Calandrino, and U. Devi. Real-time scheduling on mul-
ticore platforms. In Proceedings of the 12th IEEE Real-Time and Em-
bedded Technology and Applications Symposium, 2006.

[8] Bjorn Andersson, Sanjoy Baruah, and Jan Jonsson. Static-priority sche-
duling on multiprocessors. In RTSS '01: Proceedings of the 22nd IEEE
Real-Time Systems Symposium (RTSS'01), page 93, Washington, DC,
USA, 2001. IEEE Computer Society.

[9] A. Andrzejak, P. Domingues, and L. Silva. Predicting machine avail-
abilities in desktop pools. 2006.

[10] R.H. Arpaci, A.C. Dusseau, A.M. Vahdat, L.T. Liu, T.E. Anderson, and
D.A. Patterson. The interaction of parallel and sequential workloads on

81

a network of workstations. ACM SIGMETRICS 1995, pages 267�277,
1995.

[11] A. Arpaci-Dusseau. Implicit coscheduling: coordinated scheduling with
implicit information in distributed systems. ACM Transactions on Com-
puter Systems, 19(3):283�331, 2001.

[12] A. Atlas and A. Bestavros. Statistical rate monotonic scheduling. Real-
Time Systems Symposium, 1998. Proceedings., The 19th IEEE, pages
123�132, 1998.

[13] A.K. Atlas and A. Bestavros. Slack stealing job admission control.
Technical report, Technical Report BUCS-TR-98-009, Boston Universi-
ty, Computer Science Department, 1998.

[14] SA Banachowski and SA Brandt. Best scheduler for integrated process-
ing of best-e�ort and soft real-time processes. PROCEEDINGS-SPIE
THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING,
pages 46�60, 2002.

[15] E. Bini, G.C. Buttazzo, and G.M. Buttazzo. Rate monotonic analysis:
the hyperbolic bound. IEEE Transactions on Computers, 52(7):933�
942, 2003.

[16] GC Buttazzo and F. Sensini. Optimal deadline assignment for sche-
duling soft aperiodic tasks inhard real-time environments. Computers,
IEEE Transactions on, 48(10):1035�1052, 1999.

[17] R. Buyya, M. Murshed, and D. Abramson. A deadline and budget con-
strained cost-time optimization algorithm for scheduling task farming
applications on global grids. 2002.

[18] J. Calandrino, D. Baumberger, T. Li, S. Hahn, and J. Anderson. Soft
real-time scheduling on performance asymmetric multicore platforms.
In Proceedings of the 13th IEEE Real-Time and Embedded Technology
and Applications Symposium, 2007.

[19] Stephen Childs and David Ingram. The linux-srt integrated multimedia
operating system: Bringing qos to the desktop. rtas, 00:0135, 2001.

[20] M.L. Dertouzos. Control robotics: The procedural control of physical
processes. Information Processing, 74:807�813, 1974.

[21] Desmoj Developer Team. Desmo-j project: http://asi-
www.informatik.uni-hamburg.de/desmoj/.

[22] S.K. Dhall and CL Liu. On a real-time scheduling problem. Operations
Research, 26(1):127�140, 1978.

82

[23] PA Dinda. A prediction-based real-time scheduling advisor. Parallel and
Distributed Processing Symposium., Proceedings International, IPDPS
2002, Abstracts and CD-ROM, pages 10�17, 2002.

[24] P. Domingues, P. Marques, and L. Silva. Resource usage of windows
computer laboratories. International Conference on Parallel Processing
Workshops (ICPPW'05), pages 469�476, 2005.

[25] B. Doytchinov, J. Lehoczky, and S. Shreve. Real-time queues in heavy
tra�c with earliest-deadline-�rst queue discipline. Ann. Appl. Probab,
11(2):332�378, 2001.

[26] Y. Etsion, D. Tsafrir, and D. G. Feitelson. Desktop scheduling: How
can we know what the user wants? ACM NOSSDAV, pages 110�115,
2004.

[27] Yoav Etsion, Dan Tsafrir, and Dror G. Feitelson. Process prioritiza-
tion using output production: Scheduling for multimedia. ACM Trans.
Multimedia Comput. Commun. Appl., 2(4):318�342, 2006.

[28] D. Feitelson and L. Rudolph. Gang scheduling performance bene�ts
for �ne-grained synchronization. Journal on Parallel and Distributed
Computing (JPDC'92), 16(4):306�318, 1992.

[29] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and
P. Wong. Theory and practice in parallel job scheduling. Job Scheduling
Strategies for Parallel Processing, Lecture Notes in Computer Science,
1291:1�34, 1997.

[30] E. Frachtenberg, D. G. Feitelson, J. Fernández, and F. Petrini. Par-
allel job scheduling under dynamic workloads. Job Scheduling Strate-
gies for Parallel Processing. High Perfomance Distributed Computing
(HPDC'03), Seattle, Washington. Lecture Notes in Computer Science,
2862.:208�227, June 2003.

[31] E. Frachtenberg, F. Petrini, S. Coll, and W. Feng. Gang scheduling with
lightweight user-level communication. In Proceedings of International
Conference on Parallel Processing Workshops (ICPPW'01), Valencia,
Spain, 2001. Workshop on Scheduling and Resource Management for
Cluster Computing.

[32] Eitan Frachtenberg. Process scheduling for the parallel desktop. In
ISPAN '05: Proceedings of the 8th International Symposium on Paral-
lel Architectures,Algorithms and Networks, pages 132�139, Washington,
DC, USA, 2005. IEEE Computer Society.

[33] D. Geer. Chip makers turn to multicore processors. Computer, 38(5):11�
13, 2005.

83

[34] F. Giné. Cooperating Coscheduling: a coscheduling proposal for non-
dedicated, multiprogrammed clusters. PhD thesis, Universitat Autònoma
de Barcelona, July 2004.

[35] A. Gupta, B. Lin, and P. A. Dinda. Measuring and understanding user
confort with resource borrowing. 13th IEEE International Symposium
on high Performance and Distributed Compuing (HPDC'04), Honolulu,
USA, 2004.

[36] M. Hanzich. A Temporal and Spatial Scheduling System for Non-
dedicated Clusters. PhD thesis, Universidad Autónoma of Barcelona,
July 2006.

[37] M. Hanzich, F. Giné, P. Hernández, F. Solsona, and E. Luque.
Coscheduling and multiprogramming level in a non-dedicated cluster.
EuroPVM/MPI 2004, Lecture Notes in Computer Science, 3241:327�
336, 2004.

[38] M. Hanzich, F. Giné, P. Hernández, F. Solsona, and E. Luque. 3DBack-
�lling: A space sharing approach for non-dedicated clusters. In Parallel
and Distributed Computing and Systems (PDCS'05), volume 17, pages
131�138. ACTA Press, 2005.

[39] M. Hanzich, F. Giné, P. Hernández, F. Solsona, and E. Luque. Cisne:
A new integral approach for scheduling parallel applications on non-
dedicated clusters. EuroPar 2005, Lecture Notes in Computer Science,
3648:220�230, 2005.

[40] M. Hanzich, F. Giné, P. Hernández, F. Solsona, and E. Luque. What to
consider for applying back�lling on non-dedicated environments. Jour-
nal on Computer Science and Technology, 5(4):189�195, 2005.

[41] M. Hanzich, F. Giné, P. Hernández, F. Solsona, and E. Luque. Using on-
the-�y simulation for estimating the turnaround time on non-dedicated
clusters. To be appeared in EuroPar 2006, Lecture Notes in Computer
Science, 2006.

[42] L. He, S.A. Jarvis, D.P. Spooner, and G.R. Nudd. Dynamic, capability-
driven scheduling of dag-based real-time jobs in heterogeneous clusters.
International Journal of High Performance Computing and Networking,
2(2):165�177, 2004.

[43] D. Jackson, Q. Snell, and Mark Clement. Core algorithms of the maui
scheduler. Job Scheduling Strategies for Parallel Processing, Cambridge,
MA, USA, 2221:87�102, June 2001.

84

[44] S. A. Jarvis, D. P. Spooner, H. N. Lim Choi Keung, J. Cao, S. Saini,
and G. R. Nudd. Performance prediction and its use in parallel and
distributed computing systems. Future Generation Computer Systems,
Special Issue on System Performance Analysis and Evaluation, 2004.

[45] M. Jette and M. Grondona. Slurm: Simple linux utiltity for resource
management. ClusterWorld 2003 Conference and Expo, June 2003.

[46] Evangelos Koukis and Nectarios Koziris. Memory bandwidth aware
scheduling for smp cluster nodes. In PDP '05: Proceedings of the 13th
Euromicro Conference on Parallel, Distributed and Network-Based Pro-
cessing (PDP'05), pages 187�196, Washington, DC, USA, 2005. IEEE
Computer Society.

[47] B. J. Lafreniere and A. C. Sodan. Scopred�scalable user-directed per-
formance prediction using complexity modeling and historical data. 11th
Job Scheduling Strategies for Parallel Processing, Lecture Notes in Com-
puter Science, 2005.

[48] T. Lechler and B. Page. Desmo-j: An object oriented discrete simu-
lation framework in java. In Proceedings of the European Simulation
Symposium '99, 1999.

[49] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling al-
gorithm: exact characterization andaverage case behavior. Real Time
Systems Symposium, 1989., Proceedings., pages 166�171, 1989.

[50] J. P. Lehoczky. Real-time queueing theory. In RTSS '96: Proceedings
of the 17th IEEE Real-Time Systems Symposium (RTSS '96), page 186,
Washington, DC, USA, 1996. IEEE Computer Society.

[51] J. P. Lehoczky. Real-time queueing network theory. In RTSS '97: Pro-
ceedings of the 18th IEEE Real-Time Systems Symposium (RTSS '97),
page 58, Washington, DC, USA, 1997. IEEE Computer Society.

[52] Jochen Liedtke, Marcus Völp, and Kevin Elphinstone. Prelim-
inary thoughts on memory-bus scheduling. In EW 9: Proceedings of
the 9th workshop on ACM SIGOPS European workshop, pages 207�210,
New York, NY, USA, 2000. ACM Press.

[53] M. Litzkow, M. Livny, and M. Mutka. Condor- a hunter of idle worksta-
tions. 8th International Conference of Distributed Computing Systems,
1988.

[54] C. L. Liu and James W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the ACM,
20(1):46�61, 1973.

85

[55] W. Liu, V. Lo, K. Windisch, and B. Nitzberg. Non-contiguous pro-
cessor allocation algorithms for distributed memory multicomputers.
IEEE/ACM Supercomputing 1994, pages 227�236, November 1994.

[56] V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao. Cluster computing
on the �y: P2P scheduling of idle cycles in the internet. 2004.

[57] S. Majumdar, D. L. Eager, and R. B. Bunt. Scheduling in multipro-
grammed parallel systems. ACM SIGMETRICS, Conference on Mea-
surement and Modeling of Computer Systems, pages 104�113, May 1988.

[58] S. McClure and R. Wheeler. Mosix: How linux clusters solve real-world
problems. Proceedings of the USENIX Annual Technology Conference,
pages 49�56, June 2000.

[59] A. K. Mok. Fundamental design problems of distributed systems for the
hard real-time environment. Technical report, Cambridge, MA, USA,
1983.

[60] A. W. Mu'alem and D. G. Feitelson. Utilization, predictability, work-
loads, and user runtime estimates in scheduling the ibm sp2 with back-
�lling. IEEE Transaction on Parallel & Distributed Systems, 12(6):529�
543, 2001.

[61] J. Mugler, T. Naughton, S. L. Scott, B. Barrett, A. Lumsdaine, J. M.
Squyres, B. Ligneris, F. Giraldeau, and C. Leangsuksun. Oscar clus-
ters. In Proceedings of the Ottawa Linux Symposium (OLS'03), Ottawa,
Canada, 23-26, 2003.

[62] M. Netto, R. N. Calheiros, R. K. S. Silva, C. F. De Rose, C. North�eet,
and W. Cirne. Transparent resource allocation to exploit idle cluster
nodes in computational grids. In Proceedings of The First IEEE Inter-
national Conference on e-Science and Grid Computing, pages 238�245,
Melbourne, Australia, 2005. IEEE Computer Society.

[63] J. Ousterhout. Scheduling techniques for concurrent systems. Proceed-
ings of the International Conference on Distributed Computing Systems,
1982.

[64] F. Petrini and W. Feng. Improved resource utilization with bu�ered
coscheduling. Conference on High Performance Networking and Com-
puting, Baltimore, Maryland. Proceedings of the 2002 ACM/IEEE con-
ference on Supercomputing., 1-26, 2002.

[65] George & Sharma Akshay. Plale, Beth & Turner. Real time response
to streaming data on linux clusters. Technical report, Indiana Universi-
ty. Computer Science Department Technical Report TR-569, November
2002.

86

[66] J. Regehr and J.A. Stankovic. Augmented cpu reservations: Towards
predictable execution on general-purpose operating systems. Proceed-
ings of the 7th Real-Time Technology and Applications Symposium
(RTAS 2001), pages 141�148, 2001.

[67] M. A. Rodriguez, F. Diaz del Río, C. Amaya, E. Florido, R. Senhadji,
and G. Jiménez. Multicomputador hibernable: una solución para com-
partir los recursos de computación de los laboratorios docentes. XIII
Jornadas de Paralelismo, Lleida, pages 117�122, 2002.

[68] L. Sha, J.P. Lehoczky, and R. Rajkumar. Solutions for some practical
problems in prioritized preemptive scheduling. IEEE Real-Time Systems
Symposium, pages 181�191, 1986.

[69] Q. O. Snell, M. J. Clement, and D. B. Jackson. Preemption based
back�ll. Job Scheduling Strategies for Parallel Processing, Lecture Notes
in Computer Science, 2537:24�37, July 2002.

[70] P. Sobalvarro, S. Pakin, W. Weihl, and A. Chien. Dynamic coscheduling
on workstation clusters. Job Scheduling Strategies for Parallel Process-
ing, Lecture Notes in Computer Science, 1459:231�256, 1998.

[71] P. Sobalvarro and W. Weihl. Demand-based coscheduling of parallel
jobs on multiprogrammed multiprocessors. Job Scheduling Strategies
for Parallel Processing, Lecture Notes in Computer Science, 949:106�
126, 1995.

[72] F. Solsona. Coscheduling Techniques for Non-Dedicated Cluster Com-
puting. PhD thesis, Universitat Autònoma de Barcelona, 2002.

[73] F. Solsona, F.Giné, P. Hernández, and E. Luque. Implementing explicit
and implicit coscheduling in a pvm environment. EuroPar 2000, Lecture
Notes in Computer Science, 1900:1165�1170, 2000.

[74] F. Solsona, F. Giné, P. Hernández, and E. Luque. Predictive coschedul-
ing implementation in a non-dedicated linux cluster. EuroPar 2001,
Lecture Notes in Computer Science, 2150:732�741, 2001.

[75] M. Spuri and GC Buttazzo. E�cient aperiodic service under earliest
deadline scheduling. Real-Time Systems Symposium, 1994., Proceed-
ings., pages 2�11, 1994.

[76] S. Srinivasan, R. Kettimuthu, V. Subrarnani, and P. Sadayappan. Char-
acterization of back�lling strategies for parallel job scheduling. Interna-
tional Conference on Parallel Processing Workshops (ICPPW'02), pages
514�522, 2002.

87

[77] S. Srinivasan, V. Subramani, R. Kettimuthu, P. Holenarsipur, and P. Sa-
dayappan. Selective buddy allocation for scheduling parallel jobs on
clusters. In Proceedings of IEEE International Conference on Cluster
Computing (CLUSTER 2002), September 2002.

[78] H. Streich and M. Gergeleit. On the design of a dynamic distributed
real-time environment. In WPDRTS '97: Proceedings of the 1997 Joint
Workshop on Parallel and Distributed Real-Time Systems (WPDRTS /
OORTS '97), page 251, Washington, DC, USA, 1997. IEEE Computer
Society.

[79] Jay K. Strosnider, John P. Lehoczky, and Lui Sha. The deferrable
server algorithm for enhanced aperiodic responsiveness in hard real-time
environments. IEEE Trans. Comput., 44(1):73�91, 1995.

[80] D. Talby and D. G. Feitelson. Improving and stabilizing parallel com-
puter performance using adaptive back�lling. In Proceedings of the
19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS'05), page 84.1, Washington, DC, USA, 2005. IEEE Computer
Society.

[81] S.R. Thuel and J.P. Lehoczky. Algorithms for scheduling hard aperiodic
tasks in �xed-priority systems using slack stealing. Real-Time Systems
Symposium, pages 22�33, 12 1994.

[82] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Back�lling using runtime pre-
dictions rather than user estimates. Technical Report TR 2005-5, School
of Computer Science and Engineering, Hebrew University of Jerusalem,
November 2005.

[83] M.T. Yang, R. Kasturi, and A. Sivasubramaniam. An automatic sched-
uler for real-time vision applications. Parallel and Distributed Processing
Symposium., Proceedings 15th International, page 8, 2001.

[84] Y. Zhan and A. Sivasubramaniam. Scheduling best-e�ort and real-
time pipelined applications on time-shared clusters. Proceedings of the
13th Annual ACM symposium on Parallel Algorithms and Architectures
(SPAA'2001), pages 209�218, 2001.

[85] J. Zhang, T. Hamalainen, and J. Joutsensalo. A new mechanism for sup-
porting di�erentiated services in cluster-based network servers. mascots,
00:0427, 2002.

[86] Y. Zhang, H. Franke, J. E. Moreira, and A. Sivasubramaniam. A com-
parative analysis of space- and time-sharing techniques for parallel job
scheduling in large scale parallel systems. IEEE Transactions on Par-
allel and Distributed Systems, 2002.

88

[87] Y. Zhang, H. Franke, J. E. Moreira, and A. Sivasubramaniam. An
integrated approach to parallel scheduling using gang-scheduling, back-
�lling, and migration. IEEE Transactions on Parallel and Distributed
Systems, 14(3):236�247, March 2003.

[88] W Zhu. Allocating soft real-time tasks on clusters. SIMULATION77,
5-6:219�229, 2001.

89

