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Capitulo 1

Introduccion

La ciencia y la industria siempre han necesitado mas potencia de computo
de la que proporcionan los ordenadores. Aunque una tendencia para resolver
este problema ha sido mejorar el hardware, no ha sido la tinica via a seguir.
La computaciéon paralela, con proyectos tan ambiciosos y hermosos como
SETI@QHome [5], donde usuarios cooperan desde sus hogares en la busqueda
de vida inteligente en otros planetas, se perfila cada vez con més fuerza,
como una de las posibles soluciones.

Al mismo tiempo que crece la potencia de computo de los ordenadores, y
se desarrollan nuevas técnicas de paralelizaciéon cambia de forma radical el
mundo de las aplicaciones. Nuevos tipos de aplicaciones paralelas con reque-
rimientos de computo méas estrictos [84, 65, 88| son cada dia més comunes
en el mundo cientifico e industrial. Este tipo de aplicaciones pueden requerir
un tiempo de retorno (turnaround) especifico o una calidad de servicio (QoS,
Quality of Service) determinada, haciendo mas complejos los sistemas y mo-
delos de prediccion e imponiendo nuevas pautas en el desarrollo de los mis-
mos.

En el caso de los clusters no dedicados, son de especial importancia las aplica-
ciones locales, cuya evolucion se traduce en més requerimientos de recursos
de memoria, CPU y ancho de banda de red [26]. Un usuario local puede
estar visualizando un video almacenado en su ordenador, lo cual implica
necesidades de CPU periédicas y un mayor uso de memoria que los tipos de
aplicaciones Best-effort habituales hasta la fecha.

La apariciéon de nuevos tipos de aplicaciones, como video bajo demanda,
realidad virtual, aprendizaje a distancia y videoconferencias entre otras, se
caracterizan por la necesidad de cumplir sus deadlines y por lo tanto presen-
tan requerimientos peridédicos de recursos. Este tipo de aplicaciones, donde la
pérdida de deadlines no se considera un fallo severo, aunque ha de ser evita-
da en lo posible, han sido denominadas en la literatura aplicaciones soft-real
time (SRT) periodicas.



El paralelismo es una de las grandes apuestas en la gran carrera para mejorar
el tiempo de ejecucion de las aplicaciones [33]. El crecimiento progresivo en el
rendi miento de los procesadores en los dltimos anos se habia visto frenado
por las barreras fisicas del espacio y la velocidad de las senales. Hoy en
dia se producen procesadores de dos nticleos incluso para los portatiles. Las
previsiones son que el namero de ntucleos por procesador se incrementara
paulatinamente con el tiempo.

Imaginando este escenario que se avecina: nuevas aplicaciones de escritorio y
paralelas, asi como plataformas hardware cada vez més potentes y complejas,
el problema de la planificacién temporal de dichas aplicaciones en clusters no
dedicados supone un nuevo reto a asumir por los investigadores y conforma
el nucleo de este trabajo.

1.1. Clusters no dedicados

Con objeto de satisfacer las necesidades de computo masivo existentes en
la industria o la ciencia pura, la paralelizaciéon se ha convertido en una de
las vias mas estudiadas y aceptadas. En el fondo, el objetivo basico de esta
estrategia consiste en mejorar el tiempo de ejecucién de las aplicaciones para
poder asi afrontar problemas mas complejos y aumentar el factor de escala.
Cuando paralelizamos, es especialmente atractiva la idea de lograr una gran
capacidad de computo a coste minimo, siendo las redes de estaciones de tra-
bajo (Network of Workstations, NOW) no dedicadas una de las opciones. En
nuestro enfoque, una NOW es un laboratorio docente universitario, un ambi-
ente controlado donde conocemos y podemos estudiar a fondo las necesidades
y costumbres de nuestros usuarios locales [9]. En las universidades existen
todas las condiciones para este tipo de estudios, por un lado grandes redes
de ordenadores pertenecientes a instituciones y por el otro, grupos cientificos
con necesidades de computo importantes.

Queremos destacar que el uso de los periodos de inactividad de los orde-
nadores pertenecientes a NOWs para ejecutar aplicaciones paralelas no es una
utopia, pues en los escenarios antes descritos los ordenadores estan ociosos
entre el 80 y el 90 porciento del tiempo. Multitud de trabajos se han centra-
do en este enfoque desde diferentes perspectivas, que representan diferentes
formas de utilizar esta capacidad de computo. Destacamos los estudios cen-
trados en clusters no dedicados, destacamos que nuestro trabajo se enfoca
en la Planificacion de Aplicaciones:

» Cluster Computing on The Fly [56]: Técnica de computo oportunista.

» Cluster-US [67]: Basado en computadores hibernables, que utiliza los
nodos para el para el computo paralelo en horarios en que nos se uti-
lizan para otras tareas.
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Figura 1.1: Taxonomia de Arquitecturas Paralelas.

» Grid |62, 53]: Aprovechamiento de nodos ociosos para computo para-
lelo, en esta variante hay tanto clusters dedicados como no dedicados.

= Planificacion espacial y temporal de aplicaciones: Gang Schedu-
ling [28], Coplanificacion dinamica [70], Coplanificacion Dinamica |70]
o sistemas como SLURM [45], disenados para clusters Linux.

La Figura 1.1 presenta una taxonomia de Arquitecturas Paralelas. Nues-
tro campo de interés estd centrado en los Multicomputadores, donde las
maquinas tipo Massive Parallel Processors (MPP) son una opciéon. Los MPP
proporcionan una elevada capacidad de computo a un alto coste econémico,
ya que para su funcionamiento requiere de hardware y software especifico.
Por este motivo es cada vez més comun el uso de clusters COTS (Commo-
dity Of-The-Shelf ) debido principalmente a la disminucion de los costes. Este
tipo de entorno se construye a partir de componentes comerciales facilmente
accesibles y el nivel de acoplamiento que alcanzan es bastante menor que los
MPP. Es también una opcion valida proveer los clusters COTS de redes de
conexién mas rapidas, aunque hacerlo conlleva un aumento importante en el
presupuesto.

Siguiendo la taxonomia propuesta, los clusters COTS son divididos de acuer-
do a su objetivo o a su utilizaciéon. En el caso de la divisiéon por objetivos,
ejemplos de cada clase son HA-OSCAR [61] en clusters de alta disponibili-
dad (HAC, High Availability Clusters), MOSIX [58] en la clase de clusters
centrados en el balanceo de cargas (LBC, Load Balancing Clusters) y Maui
[43] como ejemplo de cluster centrado en obtener altas prestaciones (HPC,
High Performance Computing). En la clasificacion por su utilizacién pode-
mos destacar dos clases, dedicados y no dedicados. Los sistemas dedicados
suelen conocerse como clusters Beowulf, caracterizandose por la no existencia
de aplicaciones no controladas por el sistema y la sintonizacién de todos los
componentes a la ejecucién de una tnica aplicacion paralela.



En esta utima vertiente de la clasificacion (Utilizacion) es donde centramos
nuestros estudios (Figura 1.1), en los clusters no dedicados. Este tipo de clus-
ters esta formados por recursos computacionales preexistentes, abaratandolos
ain mas con respecto a ordenadores tipo MPP. Hemos de destacar que en los
clusters no dedicados podemos encontrar aplicaciones locales no controladas,
y es precisamente la aparicién de nuevos tipos de aplicaciones locales de tipo
SRT una de las principales dificultades, en base al nuevo grado de compleji-
dad que introduce en el sistema. Esto unido a los nuevos requerimientos de
las aplicaciones paralelas en cuanto al establecimiento de un turnaround de-
terminado, constituyen el entorno donde se van a desarrollar las propuestas
que se presentaran en este trabajo. La planificacion temporal de aplicaciones
Best-effort y SRT, tanto locales como paralelas, en entornos no dedicados de
tal forma que no afectemos los niveles de interactividad necesarios para la
comodidad de los usuarios locales, configuraré el objetivo de las propuestas
a desarrollar.

Son de suma importancia para nuestra finalidad estudios como [35, 24|, fo-
calizados tanto en el confort de los usuarios locales como en los recursos
que emplean en sus aplicaciones. Atin cuando estos estudios se centran en
aplicaciones tipo Best-effort, podemos complementarlos con estudios que ca-
racterizan los nuevos tipos de aplicaciones locales SRT [27]. Nuestra finali-
dad es determinar la viabilidad de la ejecutaciéon de computo mediante un
usuario paralelo sin que los niveles de interactividad del usuario local se vean
afectados.

Nuestro trabajo implica la coexistencia de la carga paralela con la presencia
de usuarios locales(y sus aplicaciones) en los ordenadores. Esto condiciona
nuestro problema de planificaciéon a dos niveles, planificacion espacial y
planificaciéon temporal. Es decir, necesitamos decidir dénde ejecutaremos
nuestro computo paralelo y como planificaremos los recursos en los nodos
compartidos, siendo este ultimo tipo de planificacién nuestro objetivo central.

1.2. Planificacién en clusters no dedicados

Como ya hemos establecido anteriormente, la planificaciéon de aplicaciones
paralelas tiene dos 4reas claramente diferenciadas, la planificacion espacial y
la planificacion temporal. De estas dos variantes, la primera es la que decide
en qué conjunto de nodos se va a ejecutar una aplicaciéon paralela y la segun-
da realiza la planificacién temporal a corto plazo en cada nodo perteneciente
al cluster. La Figura 1.2 muestra de forma general la problematica que abor-
daremos en esta seccion.
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Figura 1.2: Taxonomia General de la Planificacion de Aplicaciones Paralelas

1.2.1. Planificacién espacial

Las politicas de planificacién espacial son las encargadas de decidir en qué
nodos se ejecutan los trabajos y cémo se planificaran. En esta subseciéon
abordaremos los temas relacionados con la seleccién de nodos y su posterior
planificacién. La selecciéon de nodos podemos abordarla desde dos vertientes
principales, la distribucion de los nodos y la planificacion de los trabajos.

1.2.1.1. Distribucién de los nodos

Profundizando en la distribucién de los nodos encontramos la necesidad de
particionar y seleccionar los nodos para una correcta distribucion, de la for-
ma mostrada en la Figura 1.3. Entre las alternativas de particionamien-
to de nodos encontradas en la literatura, los mas simples para su imple-
mentacion son el estético y el variable, siendo este altimo una de las mejores
opciones por el balance entre la simplicidad a la hora de implementarlo y las
desventajas que presenta.

Por otro lado la selecciéon intenta elegir los nodos donde ejecutaremos las
aplicaciones paralelas de acuerdo a politicas de seleccion. La politica de se-
lecciéon maés simple, la binaria, considera que un nodo o bien estéd libre u
ocupado. Este tipo de politica no considera la posibilidad de que las apli-
caciones puedan compartir nodos, ya que no tiene en cuenta el grado de
ocupacién de los nodos. Como ejemplo de politica binaria encontramos las
de tipo buddy [77, 55].

Las llamadas politicas de seleccién discreta [37, 30, 87] son aquellas donde se
considera un grado de multiprogramacion (Multi Programming Level, MPL)
mayor que 1. Logicamente, al ser el MPL >1, las politicas de este tipo han de
combinar el espacio compartido con el tiempo compartido, es decir, trabajar
espacial y temporalmente.

En caso de presentar un MPL >1, es necesario de alguna forma poder estimar
el grado de disponibilidad de los nodos para computo paralelo. Un nodo con
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Figura 1.3: Distribucion de Nodos en la Planificaciéon Espacial.

cierto grado de ocupaciéon podra ejecutar una aplicaciéon paralela o no de
acuerdo a las necesidades de computo y memoria de esta. Dada la posibi-
lidad de ejecutar aplicaciones paralelas en nodos donde se estén ejecutando
aplicaciones locales, han de desarrollarse politicas que tengan en cuenta esta
situacion. Este tipo de politicas se conocen como de seleccidn continua.

1.2.1.2. Planificacién de Trabajos

La planificaciéon de trabajos se centra en el ordenamiento de los trabajos en
espera de ser ejecutados y la forma de seleccionarlos de la cola de espera.
Primero abordaremos las formas de ordenamiento de las colas de espera y
luego la forma de seleccionar los trabajos a ejecutar, la Figura 1.4 muestra
las diferentes politicas que mencionaremos.

Con la llegada al sistema de un nuevo trabajo paralelo que no se puede
ejecutar en el momento, tenemos un incremento de la cola de espera del
cluster. Algunas de las politicas de ordenamiento son: FCFS (First Come
First Served, los trabajos son ejecutados en el orden en que llegan al sistema
|86, 76]), SIF (Shortest Job First, los trabajos se ordenan de forma creciente
en funcion del tiempo de ejecucion estimado [4]) y SNPF (Smallest Num-
ber of Processes First, los trabajos se ordenan de acuerdo a la cantidad de
procesadores que se solicitan [57]).

Una vez ordenada la cola de espera necesitamos seleccionar los trabajos que
se encuentran en ella para su ejecucion. Aunque elegir el primero parece la
opcién mas justa, no siempre proporciona buenos resultados. Podria ocurrir
que un trabajo con muchos requerimientos esté a la cabeza de la cola y frene
innecesariamente los demés trabajos en espera.

También ha de considerarse si ademés del orden existente en la cola de
espera tendremos en cuenta el estado actual del cluster. El objetivo es lograr
un equilibrio entre las métricas de utilizaciéon del sistema relacionadas con
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Figura 1.4: Planificacion de Trabajos en la Planificaciéon Espacial.

los usuarios y el rendimiento del cluster. Lo usual es intentar utilizar el
conocimiento del estado del cluster para predecir el estado futuro y sacar
ventajas de este conocimiento.

Entre las politicas mas simples, que no necesitan informacién adicional ex-
cepto el conocimiento de la cola de espera podemos citar: First Fit y Best
Fit. La primera de ellas, como su nombre indica, funciona buscando el primer
trabajo existente en la cola cuyos requerimientos de recursos sean menores o
iguales que la disponibilidad de recursos del cluster [69, 4]. Empleando Best
Fit el criterio de selecciéon es que el trabajo elegido tenga los requerimientos
de recursos mas similares a la disponibilidad de recursos del cluster en el
momento dado [86].

Entre las politicas que intentan obtener ventaja del conocimiento del estado
del cluster podemos observar dos grupos fundamentales. Las que se basan
en mantener una calidad de servicio (QoS, Quality of Service) durante la
ejecucion de la aplicacion [17] y las que intentan adelantar trabajos utilizando
técnicas de Backfilling (80, 40, 38|. La desventaja natural de este tipo de
politicas reside en la necesidad de un tiempo estimado de ejecucion de
las aplicaciones. El problema representado por la imprecisiéon propia de las
estimaciones de los usuarios [60] se ha intentado solucionar de utilizando
diversas técnicas, ya sea mediante sistemas historicos |47, 82] o de modelos
analiticos [44].

1.2.2. Planificacién temporal
La necesidad de compartir los nodos entre los dos tipos de usuarios (local y

paralelo) para lograr la planificacion el clusters no dedicados, nos obliga a
disponer de métodos para hacerlo de forma equitativa. Hemos de contemplar

7
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Figura 1.5: Efecto producido por la comunicacién sobre la ejecucion.

tanto las necesidades de los usuarios locales que brindan sus ordenadores,
y encontrar formas de favorecer el progreso de las aplicaciones paralelas sin
afectarlos. Debido a que los nodos en un cluster no dedicado son compartidos,
ha de mantenerse la interactividad necesaria para el usuario local.

La forma de estimular el progreso de las aplicaciones paralelas se basa en
su propia naturaleza. Podemos decir que las aplicaciones paralelas son pro-
cesos cooperantes, lo cual implica el intercambio de mensajes en mayor o
menor medida. La Figura 1.5 muestra dos posibles casos de comunicacién
entre dos procesos cooperantes. En el caso A vemos claramente como el he-
cho de que dichos procesos cooperantes no dispongan de la CPU de forma
simultanea provoca dos tiempos de espera adicionales. En cambio en el caso
B los dos procesos cooperantes se planifican al mismo tiempo lo cual aumen-
ta las probabilidades de disminuir los tiempos de espera provocados por la
comunicacion.

1.2.2.1. Coplanificaciéon tradicional

La coplanificacién, nombre recibido por las técnicas que intentan estimular
la planificaciéon simultdnea de procesos cooperantes, fue introducida por [63]
y ha sido abordada en maultiples estudios [34, 72, 11, 71, 28]. En su estudio
embrionario, John Ousterhout propone un algoritmo conocido como Algo-
ritmo de la Matriz de Ousterhout basado en la analogia existente entre
la gestién de memoria en un entorno monoprocesador multiprogramado y la
gestion de los procesadores en un entorno multiprocesador y multiprogra-
mado. En un entorno monoprocesador y multiprogramado obtenemos una
clara ventaja al tener todas las paginas del working set de una aplicacién en
memoria a la vez cuando se ejecuta. El estudio de Ousterhout mostré que
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Figura 1.6: Matriz de Ousterhout

el rendimiento de las aplicaciones paralelas se ve seriamente afectado si las
mismas no reciben suficientes procesadores y las tareas pertenecienteas a las
mismas no son planificadas a la vez. Esto se debe a que los requerimientos
de comunicacién y sincronizacién existentes entre los procesos cooperantes
de una aplicacién paralela, pueden afectar ralentizando su ejecuciéon debido
a las esperas provocadas por la no planificacién simultidnea de sus procesos
cooperantes.

La Figura 1.6 muestra un ejemplo de aplicacién del Algoritmo de la Ma-
triz de Ousterhout. La matriz estd formada en el eje de las ordenadas por
los procesadores (j = 1 — n) y en el eje de las abcisas por el numero de
méquinas virtuales en ejecucion (i = 1 — k). Las méquinas virtuales tienen
una potencia de célculo igual a Pot;/n donde Pot; es la potencia de cél-
culo del procesador j y n es el grado de MPL de la maquina virtual. Cada
columna contiene los procesos asignados a cada procesador Jp* y cada fila
los trabajos que seran ejecutados durante el quantum (7'Sy) del procesador.
Siguiendo el algoritmo, cada vez que se ha de asignar un nuevo trabajo (Ji)
al sistema, se busca una fila con la misma cantidad de celdas libres que pro-
cesos tiene el trabajo a ser asignado. Una vez asignado el trabajo, se utiliza
una, politica de round-robin para planificar las diferentes filas de la matriz.
En este ejemplo, para un n = 6 un M PL = 4 y las condiciones mostradas,
durante el quantum de tiempo T'Sy se ejecutardn los procesos pertenecientes
a los trabajos J1y J2, de manera que al finalizar dicho quantum se producira
un cambio de contexto global, de modo que el trabajo J3 sera planificado en
los procesadores Py, P1, P», Psy Py durante el siguiente quantum TSy, y asi
sucesivamente.



El término Gang Scheduling también ha sido empleado ampliamente en la
literatura para referirse a la necesidad de la coplanificacion. En [29] se de-
fine este término como un esquema de planificaciéon que organiza sus tareas
en grupos, de tal forma que las aplicaciones paralelas los conformen y que
los grupos sean planificados simultaneamente en los procesadores de nodos
diferentes. Esta definiciéon concuerda completamente con lo ya establecido
anteriormente por Ousterhout y utilizaremos este término para referirnos a
ambas técnicas.

Figura 1.7: Clasificaciéon de la Coplanificacion en relacion al método de con-
trol.

Una relajacion del concepto del Gang Scheduling fue propuesta en [71], en
el cual se establece que sélo es necesario coplanificar los procesos que estéan
cooperando en un instante determinado.

Una posible forma de clasificar el extenso trabajo llevado a cabo en esta
area es de acuerdo al método de control empleado (Figura 1.7) para lograr
la coplanificaciéon de los procesos cooperantes:

= Coplanificacion con control explicito: esta implementacion de la co-
planificacién requiere de un cambio de contexto global simultédneo a lo
largo de toda la maquina paralela [31]. Este enfoque es mas apropiado
para ambientes dedicados y se ajusta a la definicion de Gang schedu-
ling.

» Coplanificaciéon con control implicito: Las decisiones de planificacion
son tomadas por los planificador locales de acuerdo con la aparicién de
eventos locales o remotos. Los eventos pueden ser de comunicacién, de
memoria, de CPU, de actividad de usuarios locales o grado de multipro-
gramacion (MPL). Como alternativas podemos citar la coplanificacion
predictiva |74, 71| basada en aumentar la probabilidad de coplanifica-
cién cambiando las prioridades de los trabajos en funcién de los eventos
de comunicacion recibidos y la coplanificacion dindmica |11, 73|, que
planifica un proceso si recibe un evento de comunicacién, expropiando
la CPU al proceso en ejecucion.

= Coplanificacion con control hibrido: como su nombre indica, se hace
uso de una combinacion de las dos técnicas antes expuestas. Algunos de
los resultados son: Buffered Coscheduling (BC) [64], Flexible Coschedul-
ing (FCS) [30]y CoScheduling Cooperativo (CSC) [34].
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Suele considerarse que las técnicas basadas en control hibrido son las que
aportan mas flexibilidad y facilidades de implementacién.

1.3. Tiempo Real estricto y débil

Nuestro trabajo se centra en nuevos tipos de aplicaciones con caracteristicas
de tiempo real débil (soft real-time, SRT), motivo por el cual en esta seccion
introduciremos algunos modelos SRT y de tiempo real estricto (real-time,
RT). Es valido destacar que los sistemas SRT usualmente son considerados
como una derivacion o relajacion de RT, como efectivamente ocurre. Debido
a que nos centraremos en los sistemas SRT, en este trabajo colocaremos
ambas teorfas al mismo nivel en nuestro texto. La intencién es profundizar
en sistemas RT s6lo lo necesario, dado el volumen de informacién existente
y la orientacién de nuestro trabajo.

y TIEMPO REAL

Asignacion de Fija Dinamica
Prioridades
Algoritmo RMS EDF
Representativo
Admision de raS<n (2% — 1) noU <1
Peticiones
Polling Server, Slack Total Bandwidth

Tareas . .

oy Stealing Algorithm Server
aperiodicas

Tabla 1.1: Resumen de los temas a tratar en la seccién sobre sistemas tiempo
real estricto.

1.3.1. Sistemas de Tiempo Real Estricto

Un sistema con requerimientos de tiempo explicitos, ya sea de naturaleza
probabilistica o deterministica, es considerado de RT. La nocién de prioridad
es comunmente utilizada para establecer orden en el acceso a recursos, tanto
en la CPU como en la Red. La planificacion de tareas RT sera dividida en dos
grupos de acuerdo a la forma en que tratan la prioridad, ya sea con prioridad
fija y o con prioridad dindmica. La Tabla 1.1 muestra un resumen de las
caracteristicas y algoritmos que trataremos en esta subseccién.

1.3.1.1. Planificacién con Prioridad Fija

En el modelo de Planificacién con Prioridad Fija todas las tareas de un
mismo trabajo tienen la misma prioridad, que no cambia en el tiempo. La
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nomenclatura usualmente empleada denomina a cada tarea como 7;, donde
i es la prioridad de la tarea. Una tarea es periddica (Figura 1.8) si ocurre
cada cierto intervalo regular de tiempo, siendo la longitud entre los sucesivos
arribos de los trabajos que componen la tarea 7; constante, llamado el periodo
de la tarea y denominado T;. Cabe destacar que la prioridad ¢ se calcula como
la inversa del periodo (i = T%) El deadline (plazo) de una tarea periodica
se define como D;, representando este valor el maximo valor de tiempo que
puede transcurrir antes de que el trabajo ¢ de la tarea 7; consuma su tiempo
de computo (C;).

Ti T = Periodo de la tarea T;

A
Y

Di = Deadline de la tarea T

Ci = Tiempo de cémputo de la tarea T,

17—t '

Figura 1.8: Esquema de una Tarea Periodica.

El modelo inicialmente propuesto en la teoria RT (conocido como Modelo
de Liu y Layland [54]) asume que:
1. Todas las tareas son periodicas

2. Todas las tareas llegan al inicio de su periodo y tienen un deadline
igual a su periodo.

3. Todas las tareas son independientes, es decir, no tienen relaciones de
precedencia en relaciéon a los recursos que utilizan.

4. Todas las tareas tienen un tiempo de computo fijo, o al menos limitado,
que es menor o igual que su periodo.

5. Ninguna tareas se puede suspender a si misma.

6. Todas las tareas son completamente desalojables.

7. No se consideran overheads, relacionados con el sistema operativo.
8. Solo existe un procesador.

Bajo este modelo, las tareas de los trabajos periédicos ocurren a lo largo
del tiempo a intervalos regulares de longitud constante T; (el periodo de la
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tarea). Cada tarea tiene un deadline D; unidades de tiempo después de su
liberacion. Llamamos rigida a una tarea de tiempo real (hard real-time) si
debe cumplir su plazo (tanto a nivel de tiempo de comienzo como de final);
de no cumplirlos se produciran danos no deseados o un error fatal en el
sistema.

Una tarea RT es llamada flexible si tiene un plazo asociado, que es conve-
niente, pero no obligatorio; aunque haya vencido el plazo, ain tiene sentido
planificar y completar la tarea.

Una tarea aperiddica debe comenzar o terminar en un plazo o bien, puede
tener tanto una restriccién para el comienzo como para la finalizacién.

Los andlisis de admision son empleados para predecir si las restricciones
temporales de una tarea serdn satisfechos en tiempo de ejecucion. Los que
tienen en cuenta todos los elementos necesarios (test suficiente y necesario)
alcanzan complejidad NP completa, por lo que son impracticables. Son gene-
ralmente de menor conplejidad algoritmica los tests que son suficientes pero
no necesarios. Los tests suficientes pero no necesarios tienen la desventaja
de que son pesimistas.

El hecho de que las prioridades no varien hace méas efectivos los andlisis de
admision, siendo el Teorema del Instante Critico [54] el empleado en este
caso. El instante critico para una tarea es el tiempo de liberaciéon para el
cual el tiempo de respuesta es el maximo (o excede su deadline, para el caso
en el cual el sistema estd tan sobrecargado que los tiempos de respuesta
crecen sin limites). Este teorema establece que, para un conjunto de tareas
periddicas con prioridades fijas, el instante critico de una tarea ocurre cuando
es invocada simultdneamente con todas las tareas de mayor prioridad que
ella. El intervalo de 0 a D; es entonces uno en el cual la demanda de tareas
de mayor prioridad 7i...7;—1 estd en un méximo, creando la situacién maés
dificil para que 7; cumpla su deadline. Este teorema ha probado ser robusto,
siendo verdadero incluso cuando muchas de las restricciones antes listadas
son relajadas.

El grupo de politicas de asignacién de trabajos con prioridad fija es conocido
como RMS (Rate-Monotonic Scheduling), en el cual a la tarea con el menor
perido se le asigna la mayor prioridad, a la préxima tarea de menor periodo la
siguiente prioridad y asi sucesivamentes. Se ha probado que para un conjunto
de n tareas periddicas con politica de asignacion RMS la asignacion es posible
si:

;Tign(w—l) (1.1)

Como ejemplo podemos decir que un par de tareas es viable si su utilizacion
de CPU combinada no excede el 82,84 %. Si n tiende al infinito, el valor
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n (2% - 1) se aproxima a In(2) para un valor aproximado de utilizacién de
69,31 %. Muchas veces se asume que bajo estas condiciones el valor antes
mencionado defina la méxima utilizacién posible, lo cual es errado, ya que
esto es solo una condicién de suficiencia. Este limite es cerrado en el sentido
de que existe algin conjunto de tareas inviables cuya utilizacién arbitraria-
mente se acerca a n (2% — 1). Por este motivo es posible encontrar multitud
de conjuntos de tareas con utilizacion mayor que el 69,31 %. En [49] encon-
tramos un interesante estudio sobre RMS y los niveles de utilizacién de esta
técnica, que como promedio es del 88 %.

No obstante a su utilidad, los anélisis de admisién tienen limitaciones, como
lo son:

1. La condiciéon de admision es necesaria pero no suficiente (es decir, pe-
simista).

2. Impone restricciones poco reales a las caracteristicas de la tareas, es
decir D; = T;.

3. Las prioridades de la tareas han de ser asignadas utilizando RMS, caso
contrario el el andlisis de admision es insuficiente.

Por estas razones se han desarrollado pruebas de admisién mas complejas,
pero que no tienen las limitaciones antes expuestas. En [15] se propone una
prueba de admisién de complejidad polinomial menos pesimista que el re-
presentado por la Formula 1.1. Esta prueba (Ecuacion 1.2) ha demostrado
ser fuerte.

E(%ﬂLl) <2 (1.2)

Existen también tareas, denominadas aperiddicas que no cumplen con los
requerimientos del modelo anterior y han de ser contempladas también en
los modelos de RT. Este tipo de tareas puede ser diferente de las periodicas
en que los tiempos de arribo o de coémputo sean significativamente diferentes,
que no tengan deadlines estrictos o bien alguna combinacién de las caracte-
risticas antes expuestas.

Si el modelo de tareas periddicas es ligeramente relajado, siendo C; el méaximo
tiempo de ejecucion y T; el tiempo minimo entre los arribos, el modelo [54]
sigue siendo vélido. Sin embargo es poco practico y eficiente hacer reservas
si los tiempos de computo o de arribo de las tareas aperiédicas son muy
variables.

Una de la soluciones a este problema es asignar prioridades bajas a las ta-
reas aperiddicas, es decir, relegarlas a procesamiento en background. Con
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esta acciéon, intentamos aprovechar el tiempo de computo dejado por las
tareas periodicas para ejecutarlas. Esta aproximacién es valida siempre y
cuando, las tareas aperiddicas relegadas a procesamiento en background no
tengan requerimientos de QoS, o de obtener un tiempo de respuesta promedio
significativo.

Una soluciéon posible al problema de las tareas aperidédicas es implementar un
servidor que se ejecute como una tarea periédica normal y que se encargue
de ejecutar las tareas aperiddicas. Esta técnica en la literatura se denomi-
na Polling Server [68]. La capacidad del servidor se calcula off-line y en la
mayoria de los casos se asigna el mayor tiempo de computo, que permita el
andlisis de admisiéon. En tiempo de ejecucion, el servidor se ejecuta periédica-
mente y su tiempo de computo se emplea en ejecutar las tareas aperiddicas.
Una vez consumido su tiempo de computo su ejecuciéon se suspende hasta
su préximo arribo programado, también peridédico. Como el servidor se com-
porta como una tarea periddica, los andlisis de admision disenados para ellas
se pueden aplicar normalmente.

Para las tareas aperiddicas los polling servers significan una mejora sustancial
respecto al procesamiento en background. Logicamente, si llegan demasiadas
tareas aperiodicas la capacidad del servidor se vera sobrecargada y algunas
tareas tendran tiempos de respuesta peores. El caso inverso también ocurre, si
no llegan tareas aperiodicas la capacidad de computo reservada al servidor se
infrautiliza. Una posible solucion a este altimo problema es variar la prioridad
del servidor de acuerdo a si tiene o no tareas pendientes [79].

Partiendo de la idea anterior, servidores que se ejecutan como tareas pe-
riddicas, se han realizado varios trabajos germinales para mejorar el proce-
samiento de tareas aperiédicas en entornos RT. Entre los més interesantes
estan el algoritmo de Slack Stealing [81], que es 6ptimo en el sentido de que
minimiza el tiempo de respuesta para las tareas aperiédicas manteniendo los
deadlines de todas las tareas RT.

Finalmente mostraremos los resultados encontrados en la literatura para RT
en multiprocesadores. Vemos reflejadas dos aproximaciones a la planifi-
cacion de tareas RT en miiltiples procesadores, particionada y global. En la
aproximacién por particiones cada tarea es asignanada estaticamente a un
procesador y en la global las tareas compiten por el uso de los procesadores.
En [22] se muestra que la planificacion global de tareas para m-procesadores
utilizando RMS de un sistema de m + 1 tareas no puede ser garantizado
para utilizaciones del sistema por encima de 1. Por otro lado, utilizando
particionado con RMS next-fit podemos garantizar la viabilidad de los sis-
temas de tareas para utilizaciones por encima de m/(1+2'/?). Este limite es
conocido como el efecto Dhall, en referencia al investigador que lo determind.

Dado que el problema de particionamiento 6ptimo de tareas entre miltiple
procesadores es de tipo NP completo, las soluciones 6ptimas es posible solo
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para los casos mas simples. Por lo tanto, han de usarse heuristicas para en-
contrar soluciones aproximadas, siendo la mas empleada RMFF (Rate Mono-
tonic First-Fit). Para este caso, se ha determinado que la maxima utilizacion
del sistema es de (m + 1) (21/(’”“) — 1). Otro resultado interesante es que
para una planificacién con prioridades fijas en un sistema multiprocesador de
m nodos, sin importar si es global o particionado o el esquema de asignaciéon
de prioridades, la utilizacion garantizada no puede ser mayor que (m + 1) /2
[8].

Es valido destacar que los avances en la teorfa RT aplicados a multiproce-
sadores o ambientes distribuidos no van a la par los logrados para monoproce-

sadores y que muchos de los resultados alcanzados para monoprocesador atun
necesitan ser generalizados a multiprocesadores, en caso de ser posible.

1.3.1.2. Planificacién con Prioridad Dinamica

Planificando con prioridades estaticas, todas las tareas pertenecientes a un
mismo trabajo tienen la misma prioridad, si empleamos prioridades dinami-
cas no serd asi. Otorgando las prioridades de forma dinamica, cada trabajo
perteneciente a una tarea tiene diferentes prioridades, en funcién de cuén
cerca esté su deadline. Uno de los algoritmos con prioridad dindmica més
estudiados es el EDF (Earliest Deadline First).

EDF es un algoritmo dindmico que no requiere que los procesos (tareas)
sean periddicos, lo cual constituye un requerimiento del algoritmo RMS.
Tampoco es necesario que sea uniforme el tiempo de ejecucién por rafaga
de CPU (como si ocurre con RMS). Cada vez que un proceso necesita la
CPU, anuncia su presencia y su plazo. El planificador mantiene una lista de
los procesos ejecutables en orden por plazo. El algoritmo ejecuta el primer
proceso de la lista, el que tiene el plazo més cercano. Cada vez que un
nuevo proceso esta listo, el sistema verifica si su plazo se va a cumplir antes
que se cumpla el del proceso que se estd ejecutando. En tal caso, el nuevo
proceso expropiard al actual. Para este algorimo, suponiendo las condiciones
del Modelo de Liu y Layland, la prueba de admisién para un conjunto de n
tareas periddicas se establece por la utilizacion del procesador 1.3.

Y Ui<i1 (1.3)
=1

En esta ecuacion, el nivel de utilizacion, denotado como U; se define como
_ G
U= 7.

Aunque existe otro algoritmo que emplea prioridad dindmica, denominado
LLF (Least Lazity First)[59], este introduce un mayor overhead al sistema,
razén por la cual la mayor parte de la investigacién se centra en mejorar el
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algoritmo EDF. Las mejoras se centran en mejorar los andlisis de admision
y en relajar algunos de los postulados simplistas del algoritmo. En [20] se
muestra que el algoritmo EDF es 6ptimo en el sentido de que si existe un
algoritmo que puede construir una planificaciéon viable en un solo procesador,
entonces el algoritmo EDF también puede construir una planificacion viable.

Cuando se utiliza EDF el anéalisis de admisiéon puede ser realizado teniendo
en cuenta el criterio de Demanda de Procesador. La demanda se calcula para
un conjunto de trabajos RT y un intervalo de tiempo [t1,t2) como

h[tl,tQ) = Z Ch. (14)

t1<rg,dp <t2

Es decir, la demanda de procesador es el valor representado por la cantidad
de tiempo de cémputo pedido por todos los trabajos con tiempo de arribo en
o después de t; y deadline antes o en t5. A partir de este valor, el anélisis de
admision puede ser efectuado considerando que la demanda de procesador no
puede superar el tiempo disponible, es decir, podemos establecer la viabilidad
teniendo en cuenta 1.5.

Vi, ta  h(ty,to) < (t2 — 1) (1.5)

Como las prioridades son dindmicas, la planificacién de tareas aperiodicas
mejora ya que puede reaccionar mejor a la llegada de una tarea no periédica.
Uno de los principales enfoques es el del Total Bandwidth Server (TBS) [75],
que es una de las técnicas mas eficientes para planificar tareas aperiédicas
bajo EDF. TBS funciona asignando a cada trabajo aperiédico un deadline
de tal forma que la carga total aperiédica no exceda un valor maximo Us.
El deadline asignado se calcula mediante la expresion asociada 1.6, notese
que esta toma en cuenta las asignaciones a tareas anteriores (representadas
por dig_1). Una vez asignado el deadline, el requerimiento es insertado en
el sistema como el de cualquier otra tarea periddica, pero respetando el
umbral U antes establecido. Podemos afirmar que dado un conjunto de n
tareas periddicas con una utilizacion del procesador de U, y un TBS con
utilizacion Us todo el conjunto es viable para su planificacion si y solo si
U, + U, < 1. Es valido mencionar que el proceso de asignacién de deadlines
puede ser optimizado para minimizar el tiempo de respuesta a las aplicaciones
aperiodicas [16]. En esta aproximacion, el ancho de banda del servidor define
como un umbral (Us), que representa la capacidad de compto disponible
respetando las tareas periddicas.

C
dy, = mazx (rg,dg_1) + 716 (1.6)
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La Figura 1.9 muestra un ejemplo de uso de un TBS. Dos tareas periddicas
con periodos 171 = 6, T5 = 8 y tiempos de computo C; = 3, Co = 2 respecti-
vamente se planifican bajo EDF para una utilizacion U, = 0,75 implicando
que el ancho de banda del servidor disponible es de 0,25 (calculado mediante
Us =1—Up). Los deadlines son calculados utilizando la Ecuacién 1.6 en el
momento de los arribos de las tareas aperiddicas. El primer arribo de tarea
aperiddica ocurre en t = 3 y se le asigna un deadline d; = 7, como djes el
deadline més cercano a expirar globalmente es servido inmediatamente. La
proxima tarea aperiddica arriba en ¢ = 9 y recibe un deadline do = 17, pero
no es servida de forma inmediata, ya que en ese momento estd en ejecucion
una tarea con deadline mas urgente (72, con deadline en ¢ = 16). Por ultimo
llega una tarea aperioédica en t = 14 que recibe un deadline d3 = 21, que no
es servida de forma inmediata ya que en el momento de su llegada la tarea
periddica 7 estd activa y tiene un deadline méas bajo.

T2
1 I

0 6 12 18 24
T

| I I 1 1T 1T T T T 1

0 8 16 24

1 2 3
) dy ds ds

pedidos
aperiddicos !

1T | I N N I T 1T 1717 1T 1T 1T T T

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figura 1.9: Ejemplo de planificaciéon bajo EDF empleando Total Bandwidth
Server.

Para la implementaciéon de reservas bajo EDF disponemos como una
opcion valida del algoritmo Constant Bandwidth Server (CBS) [3]. Un CBS
se caracteriza por un presupuesto cs, un deadline dindmico ds y un par
ordenado (Qs,Ts), donde Qs es el presupuesto méximo y 7 el periodo del
servidor. Llamamos a el cociente Us = Q5/Ts el ancho de banda del servidor.
A cada trabajo servido por el CBS se le asigna un deadline conveniente e
igual al deadline actual del servidor, calculado para no sobrepasar el ancho
de banda reservado. Mientras el trabajo se ejecuta, el presupuesto cs es
decrementado en el tiempo consumido por el trabajo. Cada vez que ¢s = 0
se recarga el presupuesto del servidor a Qs y el deadline del servidor se
pospone en T, para reducir la interferencia a otras tareas.
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Figura 1.10: Caracterizaciéon del uso de ancho de banda de red durante una
video conferencia.

1.3.2. Sistemas Tiempo Real Débil

La teoria para RT esta concebida tomando como axioma que la pérdida de
un deadline ha de considerarse un fallo en el sistema. Para lograr respetar de
forma estricta los deadlines de la tareas, la teoria RT se basa en la formulacién
estricta del peor caso. Este enfoque permite tener una cota superior para la
carga en cualquier instante de tiempo, lo que nos permite conocer si los
deadlines de las tareas se cumpliran.

Pero qué ocurre si el peor caso no esta cerca del caso promedio, como sucede
en la mayoria de los sistemas de control para lo que esta disenada la teoria
RT estricta. Un ejemplo claro y ampliamente utilizado en la literatura para
ejemplificar esta situacion es el de un video online. Si no hay cambios bruscos
en las escenas, los frames transmitidos son de menor tamamo, debido a la
codificacién de la informacién en frames I, P o B. Esto tiene como conse-
cuencia que la media de uso del ancho de banda de red sea bastante menor,
diferencia que puede llegar a ser de varios 6rdenes de magnitud. Si tratamos
este caso de forma estricta, deberiamos de reservar recursos que una parte
importante del tiempo estarian ociosos.

La Figura 1.10 muestra un caso parecido, el uso de ancho de banda de red
durante una video conferencia. Claramente podemos observar que los va-
lores oscilan entre una media de 500-600 kbps cuando la camara de video
y los participantes de la video conferencia estdn quietos hasta 3500-4000
kbps si se mueve la caAmara de video. La variaciones se deben al algoritmo
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utilizado, basado en enviar sélo las diferencias con la escena anterior, lo
que motiva que la cantidad de informacién a transmitir en cada caso se
diferente. Resulta evidente que para esta situacion reservar el peor caso es
un desperdicio importante de recursos, esta seccién intenta profundizar en
la teoria relacionada con el tratamiento de estos casos, la teoria de tiempo
real débil (Soft Real-Time, SRT).

1.3.2.1. Aplicaciones SRT

El caso anteriormente descrito presenta una situacién que cada vez es mas
comun, tanto para usuarios locales como para los usuarios paralelos. En esta
seccidon mostraremos varios ejemplos de aplicaciones, tanto locales como pa-
ralelas, que requieren especial atencién dados sus requerimientos de recursos
periodicos.

En |27| se estudian varios métodos para identificar aplicaciones de tipo Hu-
man Centered (HuC), i.e.: reciben el foco de atencion del usuario local, razon
por la cual, segtin se plantea en ese trabajo, deberian de recibir especial aten-
cion. La caracterizacién de las aplicaciones estudiadas en este trabajo nos
permite conocer mejor las diferencias en los requerimientos de recursos de
las aplicaciones a lo largo de un lapso de tiempo significativo para nuestros
objetivos. El cambio més significativo se refleja en el paso de aplicaciones
con interactividad, basada en tiempos de respuesta del teclado o el raton,
como a los editores de texto de diferentes tipos y a las aplicaciones mul-
timedia. Estas ultimas necesitan mas recursos de forma periédica para su
correcta ejecucion, y podria ocurrir que durante largos periodos de tiempo
no reciban ningtn evento originado por el usuario, como un clic de raton
u otros. Aplicaciones de estas caracteristicas (mayores requerimientos pe-
riodicos de recursos) componen el grupo de aplicaciones que denominaremos
aplicaciones locales SRT (local SRT).

Otros componentes de este grupo son los tipos de juegos con algoritmos
de visualizacién complejos, como los conocidos por First Person Shooter
(FPS). Es una tendencia que los juegos de ordenador consuman cada vez
més recursos y en caso de no recibirlos de forma periédica, su ejecucién no
sea satisfactoria para el usuario. Este tipo de aplicaciéon se emplea en los
estudios como aplicacién comparativa.

Por otro lado encontramos que es cada vez mas comdn que los usuarios pa-
ralelos necesiten ejecutar aplicaciones con necesidades temporales. Este es el
caso descrito en [83], donde rutinas de deteccion de obstaculos en secuencias
de frames hacen que el volumen de célculo sea alto y de acuerdo a la fina-
lidad del resultado, ha de obtenerse con urgencia. Este tipo de aplicaciones
requiere de hardware especializado o de computo paralelo de altas presta-
ciones. También en [65] encontramos un caso novedoso de aplicacion paralela.
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En este estudio encontramos un tipo de aplicaciones con una alta cantidad
de eventos, generados por instrumentacion cientifica, y una ausencia casi to-
tal de usuarios. Para lograr recolectar todos los eventos necesitamos que las
tareas que se generan con cada evento gocen de prioridades en el sistema.

Otro ejemplo de aplicacién paralela SRT, bastante méas comiin que los ante-
riormente mencionados, es la posibilidad de que el usuario paralelo necesite
los resultados de la ejecucion de su aplicacién paralela dentro de un intervalo
de tiempo especifico. Las aplicaciones que requieran de tiempos de computo
periddico en diferentes nodos de un sistema distribuido, ya sea dedicado o
no, recibirdan en este estudio el tratamiento de aplicaciones paralelas SRT
(par_SRT).

1.3.2.2. Modelos SRT

., Como representamos estas tareas de tipo SRT, ya sea locales o paralelas,
en forma de modelos? Han existido muchos enfoques basados en la teoria RT
existente, como lo es mezclar tareas peridédicas con aperiédicas sin deadlines o
complejos modelos que le asignan a cada tarea un valor de utilidad en funcion
de la QoS requerida por la tarea. El disponer de modelos para este caso nos
permite predecir, calcular e incluso garantizar algiin recurso a este tipo de
tareas. Describiremos algunos de los modelos (Figura 1.11) encontrados en

la literatura.
Modelos
SRT

Modificaciones Basados en Valor de Estocasticos
algoritmos RT demoras (lateness) utilidad
(Parcial) (Total)
SRMS RTQT

Figura 1.11: Taxonomia: Modelos SRT.

El modelo basado en demoras (lateness) se formula asociando a los deadlines
de las tareas SRT una restricciéon que representa la demora permisible. Esta
restriccion puede tener varias formas e incluso podemos encontrarla en forma
compuesta. Por ejemplo, si definimos «(x) como la parte de los trabajos que
pierden su deadline por méas de x unidades de tiempo, entonces se suele definir
la demora en la forma «(z) < 5. Esta notacion representa una restriccion en
el sentido de que limitamos la cantidad de trabajos que pierden su deadline
a (. En este modelo, cada deadline perdido se considera un fallo y § limita la
fraccion de trabajos que pueden fallar. El valor a(—o0) representa la cantidad
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de fallos, incluidos los rechazados en los anélisis de admisién. En general, para
un conjunto de valores de tiempo denotado por {z1,..., =y} y una lista de
restricciones {f1,. .., Om} podemos requerir que o(z;) < ;,1 <1i < m. Esta
especificacion de las restricciones nos permite tener en cuenta la naturaleza
estocastica de los tiempos de arribo y de computo de las tareas tipo SRT, lo
cual a su ves nos lleva a la formulacién del concepto de wiabilidad del caso
promedio, es decir, el mayor monto de carga promedio que el sistema puede
procesar cumpliendo las restricciones de demora.

También basados en la naturaleza estocastica de las aplicaciones SRT se han
formulado otros modelos, como el Modelo Estocastico RMS, Stochastic RMS
(SRMS) [12, 13]. Este modelo esta especialmente designado para ser utilizado
en sistemas en los cuales las tareas periédicas tienen tiempos de computo y
requerimientos de QoS altamente variables, ademés de que los deadlines de
las tareas sean débiles, no duros. Este tltimo requerimiento significa que
algunos deadlines pueden perderse, aunque con restricciones en las pérdidas.
El diseno del algoritmo SRMS también se pensé de tal forma que maximice
el uso de los recursos a la vez que minimice el uso de recursos de las tareas
que pierden sus deadlines.

Por altimo mencionaremos los modelos que consideran que todos los parame-
tros de las tareas SRT son estocésticos, es decir, que tienen tiempos de arribo
entre las tareas, tiempos de computo y deadlines estocésticos. Aunque en
este caso es dificil derivar un anélisis completo de la viabilidad para el caso
promedio, se han desarrollado modelos para calcular la fraccién de tareas
demoradas (late tasks) para los casos con trafico pesado, en los cuales los
modelos tienen altos niveles promedio de utilizacién. Este método es conocido
como RTQT (Real-Time Queueing Theory) |25, 50, 51], Teoria de Colas para
Tiempo Real debido a que es una extension de la Teoria de Colas que tiene
en cuenta de forma explicita los requerimientos temporales de las tareas
SRT. RTQT asume que las tareas se planifican bajo EDF y su métrica de
rendimiento se calcula en base a la fraccidon de las tareas que terminan dentro
de su deadline.

Este algoritmo ha de mantener informacién del tiempo restante hasta que
el deadline de cada tarea finalice (lead time). Este requerimiento combinado
con la necesidad del algoritmo EDF de mantener informaciéon de los dead-
lines de cada tarea, hace que este problema sea analiticamente intratable. El
problema se resuelve parcialmente ya que se pueden obtener buenas aproxi-
maciones para el caso de trafico pesado, que servird de cota para cualquier
otro caso maés ligero. En RTQT este caso se alcanza cuando (p = 1), donde p
es la intensidad del trafico e intenta significar el momento de mayor necesidad
de computo a través del momento en el que llegan méas tareas.

22



1.4. Sistemas de Planificacién para Aplicaciones de
Multiples Tipos

Una vez introducido nuestro problema, la necesidad de una plataforma de ex-
perimentacion flexible para llevar a cabo nuestros estudios se impone. Nece-
sitamos estudiar la planificacién temporal de aplicaciones con caracteristicas
SRT, tanto locales como paralelas, en entornos no dedicados. Cabe destacar
que ademas hemos de proveer soporte para la ejecucion de aplicaciones Best-
effort, que también podran ser paralelas o locales.

Nuestro grupo ha desarrollado CISNE ( Cooperative € Integral Scheduling for
Non-dedicated Environments) [36, 39], una propuesta para la utilizacion de
recursos no dedicados, que implementa una Maquina Virtual Paralela (MVP)
y utiliza técnicas de planificaciéon de aplicaciones. Este sistema proporciona
una doble funcionalidad (Figura. 1.12): ejecutar aplicaciones paralelas de tipo
Best-effort y aplicaciones locales (Best-effort), pertenecientes a los usuarios
locales del cluster no dedicado.

En la implementacién inicial de CISNE, cada nodo del cluster es compar-
tido en el tiempo por ambos tipos de carga Best-effort: local y paralela.
En consecuencia el sistema ha de gestionar el uso de los recursos entre las
aplicaciones que se ejecutan, considerando que las tareas locales no pueden
verse ralentizadas. CISNE debe garantizar el progreso de las tareas de las
aplicaciones paralelas Best-effort en ejecuciéon, de forma tal que el usuario
local no note una intrusion en su ordenador. Esta propuesta (CISNE) se basa
en una técnica de Planificacion de Aplicaciones Paralelas, que considera las
caracteristicas de las aplicaciones distribuidas y el estado del entorno para
ejecutar las aplicaciones de los usuarios paralelos.

Para aplicar la Planificaciéon de Aplicaciones se analiza el problema desde
dos dimensiones opuestas y complementarias: el espacio y el tiempo. Como
se ha dicho, cada nodo de la MVP ha de ser capaz de gestionar el uso de CPU
entre las tareas en ejecucion, aspecto que que se conoce como Planificacion
Temporal (P.T.). Desde el punto de vista del espacio, el sistema ha de ser
capaz de asignar el conjunto de nodos que conforman el cluster no dedicado
a las aplicaciones paralelas que los necesiten, garantizando que ningiin nodo
serd sobrecargado de forma que las tareas locales vean alterada su capacidad
de respuesta. Este tipo de planificacién es conocida como Planificacion
Espacial (P.E.) y es el principal objetivo tomado en cuenta en el diseno
original del sistema CISNE.

Para evaluar nuestras propuestas, hemos de extender las funcionalidades de
CISNE, principalmente siguiendo las directivas enumeradas a continuacién:

1. Los tipos de cargas de trabajos soportados por el sistema (aplicaciones
locales y paralelas de tipo Bes-effort) han de ser ampliados para so-
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portar nuestras necesidades de experimentaciéon. Hemos de dotar a
CISNE de soporte para aplicaciones con caracteristicas SRT, tanto
locales como paralelas, pues nuestro escenario de experimentacion esta
compuesto por los cuatro tipos de carga de trabajo.

2. Ha de extenderse el diseno de CISNE para permitir un marco flexible en
la planificacion temporal, ya que su idea inicial de diseno estd enfocada
en la planificacién espacial.

3. Mantener la acertada filosofia de ser capaces de predecir, con niveles
aceptables de precision, los tiempos de turnaround de las aplicaciones
paralelas. Cabe destacar que el nuevo escenario implica el desarrollo
de nuevos métodos de estimacion.

é Nodo 0 Nodo 1 Nodo 2 Nodo3 )

4

A/

v v
Red de Area Local (alta velocidad) )
MVP TL: Tiempo Local - TP: Tiempo Paralelo

Figura 1.12: Maquina virtual paralela.

Recalcamos que al grupo inicial de aplicaciones previstas en el diseno de
CISNE (locales y paralelas de tipo Best-effort), hemos de agregar los nuevos
tipos de aplicaciones (descritas con mas detalles en la seccion 1.3.2.1) que han
aparecido, siendo deseable mantener la alta capacidad de prediccién lograda
en CISNE [41]. Finalmente, los tipos de aplicaciones con las que ha de ser
capaz de trabajar el sistema para desarrollar nuestros estudios serian:

s Locales Best-effort: Tipo de aplicaciones locales “comunes”, usualmente
editores de texto, compiladores y aplicaciones con niveles de interac-
tividad que pueden ser medidos con respecto a la respuesta en un
tiempo acotado por la capacidad de reaccién del ser humano al utilizar
el teclado o el ratéon. Contempladas en el diseno original de CISNE.

s Paralelas Best-effort: Aplicaciones paralelas para las cuales no exis-
ten limitaciones en el turnaround o exigencias de QoS. La principal
cualidad deseada consistia en predecir lo mejor posible el turnaround
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para lograr una mejor planificacion y brindarle informacion al usuario
paralelo. Contempladas en el diseno original de CISNE.

= Locales SRT: Aplicaciones con requerimientos de recursos determi-
nados, usualmente necesitan la CPU de forma peridédica para su co-
rrecta ejecucion. Es también una buena idea garantizarles la cantidad
de memoria principal que necesitan, ya que en caso contrario podrian
no ejecutarse correctamente. Descritas en la seccion 1.3.2.1.El soporte
para este tipo de aplicaciones ha de ser anadido al sistema CISNE.

s Paralelas SRT: Aplicaciones paralelas con un turnaround determi-
nado debido a sus caracteristicas. Descritas en la seccién 1.3.2.1. El
soporte para este tipo de aplicaciones ha de ser adicionado al sistema
CISNE.

Es vélido destacar que ain cuando en la literatura encontramos trabajos que
estudian el comportamiento de las aplicaciones paralelas SRT en clusters,
nuestro trabajo se diferencia por el hecho de contemplar carga local, tanto
de tipo Best-effort como SRT. En [84, 88| se estudia el comportamiento de
aplicaciones SRT en clusters dedicados y [23, 78] describen herramientas
dedicadas a la planificacién espacial de tareas paralelas SRT. En [23] los
nodos se seleccionan de acuerdo a estudios probabilisticos y en [78] se intenta
garantizar los deadlines de las tareas creando las tareas como parejas. Este
enfoque permite tener dos niveles de prioridad, para poder lanzar la tarea
con més prioridad si se estima que perderd su deadline.

Por otro lado, estudios como [1]| intentan garatizar un recurso critico, en
este caso el ancho de banda de red, empleando mecanismos de QoS. En
[85] también se hace uso de mecanismos de QoS para intentar garatizarles
recursos a algunos tipos de aplicaciones, la novedad es que particionan los
recursos disponibles para lograr hacerlo.

Una vez introducido el estado del arte y los conceptos basicos para com-
prender el alcance y enfoque de nuestro trabajo, pasamos a introducir los
objetivos que nos proponemos.

1.5. Objetivos

Este trabajo es una reaccién ante las posibilidades de investigaciéon que se
abren al redefinirse un escenario muy conocido y estudiado. El nacimiento
de nuevos tipos de aplicaciones (locales y paralelas de tipo SRT) impone un
estudio en las técnicas de planificacion temporal para lograr la coexistencia
de tipos de aplicaciones disimilares en clusters no dedicados.
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Se ha llevado a cabo un esfuerzo de investigacion en la literatura existente,
considerable si tenemos en cuenta que unimos dos campos de investigacion
bien definidos. La planificaciéon de aplicaciones, ya sea temporal o espacial,
estd en el punto de mira de un amplio sector de la comunidad cientifica.
Nuestro trabajo mezcla la planificacion temporal en clusters no dedicados
con aspectos de tiempo real débil, siendo este ultimo campo también muy
explorado y pujante en el mundo cientifico.

Con este trabajo, ain en etapa embrionaria, hemos intentado sembrar la
semilla para una investigacion futura rica en posibilidades. Es nuestra final-
idad principal poder analizar el comportamiento de nuevos tipos de aplica-
ctones, con caracteristicas SRT en clusters no dedicados. Su interaccién con
las aplicaciones de tipo Best-effort, ampliamente contempladas en estudios
previos, es un objetivo también incluido entre los nuestros. Para este fin
hemos creado una plataforma de simulacién que intentamos sea lo més flexi-
ble posible, teniendo en cuenta que conecta con prototipos de investigaciones
previas no disenados para este fin especifico.

Con el fin de contrastar nuestro método de simulacion, creamos dos nuevos
nicleos para realizar nuestra experimentacién, uno analitico y otro basado en
dos niveles de simulacién. Ambos proyectos estan en desarrollo, pero brindan
la grandes oportunidades para nuestros fines. Estos dos métodos son capaces
de procesar los tipos de aplicaciones que necesitamos, paralelas y locales de
tipo SRT y Best-effort.

1.6. Organizaciéon de la Memoria

En este capitulo introductorio hemos descrito las dos areas generales en las
que se enmarca nuestra investigacion, la Planificacion Temporal en Clus-
ters No Dedicados en la secciéon 1.2 y los nuevos tipos de aplicaciones de
Tiempo Real Débil, en la seccién 1.3. Para facilitar la comprension de los sis-
temas SRT, hemos introducido antes los conceptos bésicos de Tiempo Real
dividiendo la seccién previa en dos partes. En la seccién 1.4 mostramos la
conjunciéon de los conceptos antes introducidos, y es nuestro primer intento
de describir nuestro problema. Posteriormente enumeramos los objetivos de
este trabajo.

El Capitulo 2 describe nuestra aproximaciéon para estudiar la problematica
antes introducida. En este capitulo comenzamos por introducir la arquitec-
tura que tomamos como base (subseccion 2.2). La necesidad de calcular el
tiempo remanente de ejecucion (RExzT) es descrita en la subseccion 2.3.1
y luego los dos métodos de estimacién de REzT propuestos, uno analitico
(subseccion 2.3.2) y el otro consiste en simulacion a dos niveles (subseccion
2.3.3).
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El niicleo de estimaciéon simulado consiste en un software de simulacién in-
dependiente, y su implementacion es descrita en el Capitulo 3. La imple-
mentaciéon emplea una libreria de simulacién orientada a eventos, basada en
entidades y eventos. Los principales eventos y entidades definidas, asi como
una introduccién a la libreria, son tratados en la secciéon 3.1. Posteriormente
describimos con mas detalles la forma de agregar nuevos algoritmos RT al
software (seccion 3.2) y la forma de comunicacion entre los dos procesos de
simulacion (seccion 3.3).

Una vez definido el problema, los modelos propuestos (analitico y simulado) y
los detalles de implementacién, mostramos la experimentacion realizada y los
resultados en el Capitulo 4. El mismo comienza por la validacién de método
(seccion 4.2) y la escalabilidad (seccion ?77?). En la seccion 4.3 mostramos la
experimentacion realizada incluyendo cargas de tipo SRT, tanto local como
paralela y la combinacién de ambos tipos de cargas.

Finalmente, el Capitulo 5 esta dedicado a las conclusiones de este estudio y
las contribuciones realizadas.

Cabe destacar que los Apéndices incluidos (A y B) describen los pasos rea-
lizados para incluir en nuestros estudios las nuevas plataformas hardware
facilmente accesibles hoy en dia, los procesadores multicore.
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Capitulo 2

Arquitectura General del
Sistema

En el presente capitulo se describe la arquitectura general del método de
simulaciéon propuesto, basado en una serie de extensiones al entorno de pla-
nificacion CISNE. Este entorno fue disenado con el objetivo de estudiar la
planificaciéon espacial de aplicaciones paralelas en clusters de ordenadores no
dedicados. Este sistema (CISNE en su version original) se construye a par-
tir de dos subsistemas, al nivel mas alto se realiza de forma centralizada la
planificacion espacial (P.E.) empleando LoRaS, el cual distribuye la carga
paralela en el cluster. El subsistema de bajo nivel implementa un entorno
de planificacion temporal (P.T.) en cada nodo, que ha de lograr la copla-
nificacién y balanceo de recursos asignados a las tareas pertenecientes a un
mismo trabajo paralelo. A su vez es responsable de preservar el rendimiento
del usuario local.

CISNE es un entorno que consta de dos modos de ejecucion, uno en el cual se
realizan ejecuciones reales y otro para realizar simulaciones off-line. Aunque
nuestro objeto de interés a largo plazo es dotar al sistema de soporte para
lanzar aplicaciones SRT o simulaciones que contemplen este tipo de carga
(SRT), el progreso hecho hasta ahora se relaciona sélo con el modo de simula-
cion off-line. Hemos modificado el modo de simulacién off-line adicionandole
dos nuevos nucleos de estimacion, el soporte para la entrada de datos que ca-
racterizan aplicaciones SRT y ademés ha sido necesario definir un método de
intercambio de datos para el niicleo simulado. Se incluye también una breve
descripcion de la arquitectura del modo de simualcion off-line de CISNE, de
tal forma que permita comprender la extensién de las modificaciones.
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Figura 2.1: Arquitectura del sistema de prediccion por simulaciéon integrado
en LoRaS.

2.1. Subsistema LoRaS

LoRaS es uno de los dos componentes fundamentales de CISNE, siendo res-
ponsable de aceptar peticiones de ejecucién de aplicaciones paralelas y definir
el mejor momento y lugar para ejecutar tales aplicaciones. La arquitectura
del sistema LoRaS es centralizada con demonios en cada nodo para controlar
sus estados.

La arquitectura del sistema de simulacién se divide en dos partes: por un lado
la simulacién de las politicas de planificacion configurables en el entorno, y
por otro lado la estimacién del tiempo de ejecucion de las aplicaciones, una
vez que éstas han sido planificadas por el simulador. Cabe destacar que las
extensiones realizadas al entorno son dos nuevos métodos de estimacion, que
se acoplan en el sistema en la forma de nucleos de estimacion (N.E en la
Figura 2.1).

Los N.E. requieren de dos tipos de informacién: una caracterizacion de las
aplicaciones a ejecutar (recursos de memoria y CPU consumidos, cantidad
de nodos necesarios, tiempo de ejecucion en dedicado, etc.) y el estado actual
del entorno (cantidad de recursos totales y ocupados en los nodos, cuantas
aplicaciones paralelas y en que nodos se encuentran en ejecucion, la actividad
local en el entorno, etc.). Esta informacion es provista por los modulos de
Caracterizacion de Aplicaciones y el Gestor de Colas, respectivamente. La
utilizaciéon del médulo de Caracterizaciéon de Aplicaciones permite desligar el
proceso de estimacion, de valores de caracterizacién provistos por el usuario

paralelo, que suelen encontrarse alejados de la realidad segtin estudios como
[86, 60].
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2.2. Arquitectura del simulador fuera de linea

La arquitectura del simulador off-line, se basa en la "duplicaciéon” de médulos,
reemplazandolos por otros (dummies), para proveer al gestor de colas de un
entorno en el que pueda planificar aplicaciones como si realmente éstas fuesen
ejecutadas. Ha de destacarse que todos los médulos dummies se encuentran
bajo el control del simulador.

Para realizar las simulaciones off-line en CISNE es necesario proveer en la
configuracion del sistema informaciéon sobre las caracteristicas del entorno
(configuracion del entorno en la Figura 2.2). Por ejemplo hemos de entrar
en los ficheros de configuracion la memoria total, memoria inicialmente en
uso, la potencia de la CPU y si existe, cudl es la carga inicial de CPU
para cada nodo incluido en el sistema a simular. Esta caracterizacion es
importante, porque en el sistema en produccién las caracteristicas de los
nodos son obtenidas por el sistema desde los nodos reales cuando se inicia.

En este caso sin embargo, si tratamos con una simulacién el sistema no podré
interrogar a los nodos reales para obtener informaciéon sobre sus caracteris-
ticas y carga actual. De la misma forma y por las mismas razones, también
ha de proveerse para la simulacién una caracterizaciéon de las tareas locales
(nodo en que se ejecutarén, tiempo de inicio y fin y consumo de recursos de
memoria y CPU) que se tendran en el entorno a lo largo de la ejecucion de
la simulacion (configuracion de la carga Paralela (Local en la Figura 2.2).
Finalmente y debido a que el sistema ahora no presta un servicio de planifi-
cacion a usuarios reales, hemos de proveer la carga de aplicaciones paralelas
a ejecutar en ficheros de entrada, como hemos hecho antes con al carga local.
Para esto, se provee al sistema de una lista de aplicaciones a ejecutar, junto
con el tiempo de llegada de cada una.

2.3. Extensiones incluidas

En esta seccién describiremos las modificaciones, en forma de extensiones,
anadidas al sistema CISNE hasta el momento. Hemos de destacar que las
extensiones s6lo cubren el modo de simulacion off-line (descrito en la seccion
2.2) del sistema. Este grupo de modificaciones va dirigido a estudiar el com-
portamiento de las NOWs frente a los nuevos tipos de cargas SRT, descritos
en la secciéon 1.3.2.1.

Dado que de momento no somos capaces de ejecutar carga SRT de tipo lo-
cal o paralelo en nuestro entorno (CISNE) con las caracteristicas de QoS
exigidas, a efectos de poder experimentar con propuestas de planificacion
que contemplen los nuevos requerimientos de las aplicaciones SRT; se han
desarrollado modelos analiticos y nucleos de simulacién que nos permitirdn
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Figura 2.2: Vista modular de la arquitectura del sistema de simulacién fuera
de linea en LoRaS.

formular nuevas propuestas en este sentido. De esta forma logramos estable-
cer cierto nivel de validaciéon en nuestros métodos, los cuales son descritos
en esta seccion.

2.3.1. Tiempo Remanente de Ejecuciéon

Los dos mo6dulos fundamentales de la arquitectura en modo de simulacién
off-line son mostradas en la Figura 2.2, el Gestor de Colas (descrito en la
seccion 2.1) y el Motor de Simulacion.

El simulador de LoRaS funciona dirigido por eventos discretos, como los son
la llegada, arribo o finalizaciéon de una tarea de cualquier tipo de trabajo.
Para realizar las simulaciones, el motor necesita de tres ficheros de configu-
racion:

s Configuracion del Entorno: En este fichero especificamos el con-
junto de nodos a utilizar por el Gestor de Colas para ejecutar la carga
paralela. Contiene la cantidad de nodos disponibles y sus principales
caracteristicas (poder de computo, tamano de la memoria principal,
cantidad de recursos consumidos por las cargas locales, etc.).
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= Configuracion del Nicleo de Simulacion: Permite elegir el método
empleado para calcular el valor del Tiempo Remamente de Ejecucion
(RExT, Remanent Ezxecution Time) por el Gestor de Colas. Puede ser
tanto un método analitico (los incluidos en el diseno original), como el
método simulado implementado para este trabajo.

= Configuracion de la Carga: Contiene la lista de trabajos, tanto
paralelos como locales, a simular por el entorno. De cada trabajo se
necesita informaciéon detallada, que por ejemplo incluye su tiempo de
ejecucion en isolacién, tiempo de arribo y requerimientos maximos de
memoria y CPU.

Una vez que todos los ficheros de configuracion se han cargado, el entorno
esta listo para comenzar el proceso de simulaciéon. Es importante destacar
que los valores estaticos utilizados para describir la carga a simular, tales
como su tiempo de ejecucion de forma aislada o requerimientos maximos de
CPU o memoria, son recolectados por el mismo entorno para su uso futuro.
Toda esta infomacion, junto al estado del cluster, es empleada en generar
los conjuntos de datos que conforman las diferentes etapas del proceso de
simulaciéon. Hemos de destacar que el evento de llegada de una aplicacion
paralela marca el comienzo de una nueva etapa, ya que implica una reesti-
maciéon de los tiempos de turnaround de todas las aplicaciones en ejecucion,
pues logicamente todas ser veran afectadas por los recursos que esta con-
sumird. Cada vez que llega una aplicacién paralela, se crea un conjunto de
datos que incluye la nueva aplicacion paralela y se procesa por el motor de
simulacion.

Como se ha descrito en la introduccion (seccion 1.3.1) de este trabajo, los
sistemas RT y SRT necesitan realizar andlisis de admisiéon en el momento
de arribo de una tarea SRT, para saber si aceptandola en el sistema no se
afectan a las demas tareas. Dado el progreso de nuestro trabajo, un andlisis
de admisién exhaustivo atin no es necesario. En el entorno se hace un analisis
rudimentario de capacidad de CPU para aceptar o no una aplicaciéon SRT,
ademsés, los niveles de aplicaciones SRT que arriban al sistema son acotados.

Todos los nucleos de estimacion que se integran al entorno han de ser capaces
de retornar una estimacion del Tiempo Remanente de Ejecucion (RExT, Re-
manent Ezecution Time) de las aplicaciones paralelas incluidas en el sistema,
que es la base del funcionamiento del modelo de estimaciéon del simulador.
La idea es la de estimar para un entorno dado, y con un conjunto de apli-
caciones en ejecucion, cudl es la proxima aplicaciéon que se espera finalice y
cuales serén los recursos que se liberaran en tal caso. Los nuevos niicleos de
estimacién, con capacidad de procesar carga con caracteristicas SRT, con-
forman el resto de este capitulo.
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El Algoritmo 1 muestra el proceso de simulacién de forma simplificada. El
primer paso consiste en duplicar el estado del sistema, a los moédulos dum-
mies creados a tal efecto e inicializar las colas de trabajos y lista de nodos.
El control de finalizaciéon del algoritmo es la condicién del wihle de la linea
3, que controla los trabajos en ejecuciéon. Dentro de este lazo principal se
calcula RExT cada trabajo en ejecucion (linea 4) y se asume que la proxima
aplicacion en terminar serd J;, en el instante de tiempo ¢; (linea 5). El si-
guiente paso consiste en actualizar el tiempo de finalizacién de la aplicacion
J; v eliminarla de la cola de aplicaciones en ejecuciéon DR(@. También han
de actualizarce los tiempos que las restantes aplicaciones han estado en la
cola DRQ. El lazo que se ejecuta entre las lineas 8 y 13 es el encargado
de seleccionar las aplicaciones en la cola de espera (DQ) de acuerdo a las
condiciones del sistema y las politicas en uso y pasarlas a la cola DRQ.

Algoritmo 1 Proceso de Simulacién

1: Duplicar el estado del sistema a dummy: siendo D una copia de la
cola de espera de trabajos, DR una copia de la cola de trabajos en
ejecucion y C'Lg;, una copia de los nodos que conforman el cluster y sus
respectivos estados

2: Guardar el momento actual (tp), como el momento en que la simulaciéon
ha comenzado.

3: while (3J; € DRQ) do

4:  forall (J € DRQ) do Calcular REzT de Jj.

: Asumir que la aplicacion J; es la proxima que finalizara en el tiempo
t.

6:  Actualizar el tiempo de finalizacion de J; a ¢; (i.e.: calcular el tiempo

de ejecucion para J;), y eliminarlo de DRQ).

7. forall (J; € DRQ) do Calcular tiempo de CPU usado para Jy, € t;—ty

y actualizarlo en las respectivas aplicaciones Jg.

while (3 recursos disponibles Clg;,,, y algin trabajo en DQ) do
Buscar una aplicacion J, € D@ que pueda ser ejecutada en el estado
actual del sistema (Clgin,)-

10: Seleccionar el mejor subconjunto de Clg;,, para ejecutar J,, emple-
ando la politica del sistema.

11: Ejecutar la aplicacién J, en el subconjunto seleccionado de Clg;, v
adicionarla a DRQ.

12: Incrementar el tiempo de espera estimado de J, en t; — tg.

13:  end while

14:  forall (J; € DQ) do Incrementar el tiempo de espera estimado de J;
en t; — tp.

15: Asignar to =t;.

16: end while
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2.3.2. Nicleo analitico

Para facilitar la comprensién del método analitico propuesto en este trabajo,
explicaremos antes otro método similar sin capacidad SRT, que llamaremos
CPU. Introducimos también la notacion RExT AN —srT, que denotard nues-
tro método analitico capaz de realizar estimaciones con cargas SRT.

Nuestro método analitico sin capacidad SRT (CPU) comienza por calcular
el RExT que la aplicacion necesitaria si se ejecutara de forma aislada, a este
valor lo llamaremos RExT;s,(j) v se calcula segun la Ecuacion 2.1.

toa ) X toa ] _tuse .
RE2T () = total () X (totar_cPu () d_CPU(]))’ 2.1)

total_cPU(J)

En esta ecuacion, tiq(j) es el tiempo total de ejecucion, tirar cpu(j) el
tiempo de CPU de la aplicacion ejecutada de forma aislada y tyseq cpu(4)
el tiempo de CPU que ha empleado desde su comienzo, todos estos valores
asociados a la aplicaciéon paralela j .

Ha de destacarse que la Ecuacion 2.1 asume que RExT;44(j) es proporcional
al tiempo total de ejecucion de forma aislada (t1p¢4:(j)) limitado por el tiempo
de CPU que consumird (tiorqr cpu () — tusea cpu(j)) y €l tiempo total de
CPU que necesita la aplicacion (trotal ch(j)_).

El préximo paso en el método C' PU es considerar el tanto porciento de CPU
requerido por las tareas. De acuerdo a esto, el valor del REzT(j) se calcula
de acuerdo la la siguiente ecuacion:

CPU(j)
CPUfeasible (]) ’

donde CPU(j) es el tanto porciento de CPU (tyorar cru(F)/trotal(j)) que la
aplicacion puede utilizar y

REzTcopy(j) = RExT;501(5) % (2.2)

CPU(y)

CPUfeasible(j) = m’L?’L(CPU(])y m

) (2.3)

es el maximo tanto porciento de CPU que esperamos la aplicacién j consuma.
Finalmente

CPUpaz(j) = max(CPUpqr(n) + CPUpe(n) | n € N(j)) (2.4)

donde CPUloc/par(n) es la suma del uso de CPU de cada tarea local /paralela
ejecutandose en el nodo n. Destacamos que estos valores representan los
requerimientos maximos de uso de CPU (en porciento) entre los nodos donde
la aplicacién paralela j esta en ejecucion.
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Una vez descrito el método RExT¢ prr, lo usaremos como base para el méto-
do analitico capaz de lidiar con cargas SRT. El método RExT AN SrT S€
basa en considerar cuales de los requerimientos de la tareas, ya sea locales o
paralelas, son SRT. Para lograr esto, se redefine la expresion CPU fcqsipic(J)
de RExTcpy(j) de la siguiente manera:

, CPU(j) Jj € Appsrr
CPUeqsi = . . . : 2.5
feasile_rr(J) { min(CPU(j), CPUpin_sar(i)) & Appsnr
donde Appsrr denota el conjunto de aplicaciones paralelas SRT en actual-
mente ejecucion en el cluster y CPUpn  srr(j) representa la cantidad mi-
nima de CPU de la que dispondré la aplicaciéon paralela j a lo largo de todo
el cluster y se calcula con la siguiente ecuacién:

CPU(j) x (100 — CPUsrp(n))
CPUno_SRT(n)

CPUmin_SRT(j) = mln( ) | ne N(j)

(2.6)

donde CPUsgr(n) y CPUy, srr(n) representan las sumas de CPU requeri-
das por cada tarea SRT y no SRT, respectivamente, ejecutdndose en el nodo
n. Las tareas pueden ser locales o paralelas.

2.3.2.1. Meétodo de estimacion MPL

MPL es un método de estimacion del RExT propuesto en [36] y al igual
que el método CPU (descrito anteriormente como introduccion al nicleo
analitico ANL — SRT), se basa en multiplicar por un factor el tiempo re-
manente de ejecuciéon que la aplicacién necesitaria en caso de ejecutarse de
forma aislada, que se calcula usando la Ecuacién 2.1.

En este caso, el factor se calcula utilizando la Ecuacién 2.7, la cual retorna el
namero méaximo de tareas, considerando tanto locales (M P Ljyeq(n)) como
paralelas (M P Lyarqi(n)), que se ejecutan concurrentemente con j entre todos
los nodos utilizados por j para su ejecucion (nodos(j)).

MPLpaq(j) = max(MP Lpgrqi(n) + MPLjgeqi(n) | n € nodes(j)). (2.7)

Finalmente, el valor del RExT en el método MPL se calcula utilizando la
Ecuacion 2.8.

RExTypr(J) = RE2Tis01(j) X M PLpaz(j) (2.8)
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Cabe destacar que el objetivo de la Ecuacion 2.8, es el de ponderar el tiempo
de ejecucién que tendria la aplicacién j ejecutada en un entorno dedicada
a la misma (calculado empleando la Ecuacion 2.1), considerando la mayor
carga actual con la que alguna de sus tareas ha de compartir el nodo, y por
lo tanto los recursos de coémputo.

2.3.3. Meétodo simulado

Nuestra alternativa al modelo de analitico propuesto la constituye un nuevo
nticleo de estimacion desarrollado, capaz de procesar carga con caracteristicas
SRT estd basado en la simulacién. Andlogamente a como hicimos con el
método anterior, lo denotaremos RExTsry srr y es importante destacar
que es un simulador externo al entorno. B

Atun siendo un programa externo al entorno, ha de devolver una estimacion
del RExT, al igual que los métodos analiticos. Para lograr este objetivo,
es necesario establecer una interfaz de comunicacién entre los dos progra-
mas (simuladores), para que el simulador externo (RExTsrpy; srr de ahora
en adelante) pueda recibir los datos de entrada y devolver los resultados.
Debido a que los dos programas estaban escritos en diferentes lenguajes de
programacion, se opté por comunicarlos mediante ficheros, una via cémoda
y simple. En nuestro caso, empleamos el formato XML ya que permite crear
plantillas y comprobar la consistencia de los datos con facilidad. El fun-
cionamiento de la interfaz mediante ficheros XML es mostrado en la Figura
2.3.

Al igual que el método analitico antes descrito, se toma una instanténea del
estado del sistema (conformada por el estado del cluster y los datos de las
aplicaciones) y se realiza una simulacion. Con la diferencia de que el nivel
de detalle alcanzado es mucho mayor que en el método analitico. Esto se
debe a que este método de estimaciéon del RExT es en realidad un motor de
simulacion completo; siendo capaz, por ejemplo, de planificar las tareas con
diferentes politicas de asignacién teniendo en cuenta si las tareas son SRT o
no.

Hemos de destacar también que RExTsry srr lleva a cabo su estimacion
del REzT realizando una simulacién del estado de cada nodo, tomando en
cuenta politicas diferentes politicas de asignacion (diferentes si un trabajo es
SRT o no), recursos disponibles y los mensajes intercambiados por las apli-
caciones paralelas. A continuacién analizamos un conjunto de casos de uso
representativos de aplicaciones SRT contempladas en este estudio y posteri-
ormente describimos la manera en la se administran los principales recursos
en nuestro simulador.
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Figura 2.3: Esquema de la simulacién a dos niveles.

2.3.3.1. Analisis de casos representativos de aplicaciones SRT

Dada la complejidad del entorno de planificacién, hemos de centrarnos en
lograr una correcta prediccion de los fallos en trabajos pertenecientes a ta-
reas (aplicaciones) SRT. La Figura 2.4 muestra dos casos representativos
de aplicaciones SRT. El caso A se incluye con fines comparativos y mues-
tra el comportamiento de la planificacién para aplicaciones RT, ademas de
las variables que lo definen. El caso B es un ejemplo de aplicacién local
periddica SRT, en el cual podemos observar que los tiempos de computo
(los etiquetados como C; real) de la aplicacion local varian para cada arribo
de un trabajo. Este comportamiento corresponde con los requerimientos de
CPU de un video en formato mpeg, el cual tiene frames de diferente tamano,
por lo cual cada uno puede requerir C; diferentes. Para lograr una correc-
ta prediccion y planificacion de las tareas Best-effort y SRT tanto locales
como paralelas, nos vemos en la necesidad de otorgarle la CPU en tiempos
conocidos (representados por los C; deseado en la figura).

La Figura 2.4.C, muestra el caso correspondiente a una aplicacién paralela
con turnaround acotado, un caso que podria ser tratado como una aplicacién.
Este tipo de aplicacién podria planificarse otorgandole la CPU con C; largos
en algin momento de su ejecucién, de acuerdo a la carga que tenga el nodo
donde se ejecuta, para intentar que termine dentro de su deadline. Dado que
es una aplicacion aperiddica, no se veria afectada por este tratamiento. Este
enfoque, aunque tal vez sea ventajoso desde algunos aspectos, afecta nuestra
capacidad de prediccion y dificulta enormemente todo el proceso de planifi-
cacion. Creemos que es mejor asignarle un C; que le permita terminar dentro
de su deadline (representado por C; deseado), aunque podriamos otorgarle

38



T = Periodo de la tarea T

A 4

Di = Deadline de la tarea T

o

A
A 4

Ci = Tiempo de cémputo de la tarea T;

Ejemplo de C
aplicacion <—>‘
periodica A

e b 1

Aplicacion local SRT
Cireal —p» B
c | | | |

deseado

Aplicacion paralela SRT
Cireal —» C
C [ ] | |

deseado

Figura 2.4: Ejemplo de modelos de planificacién para aplicaciones SRT

més de acuerdo al estado del nodo y utilizar el C; deseado como cota minima
del tiempo de computo que podemos otorgarle a esta aplicaciéon paralela.

2.3.3.2. Planificacion de la CPU

La gestion eficiente de la CPU, uno de los recursos mas estudiados tanto
en la de la de la planificaciéon de aplicaciones RT como SRT, merece un
aparte en este trabajo. En RExTsry srr la planificacion de la CPU se
hace de acuerdo al tipo de tareas, es decir, las tareas SRT y las Best-effort
se planifican de acuerdo a diferentes politicas y criterios de prestaciones.

Para la planificacion de las aplicaciones Best-effort, se utiliza el tiempo de
cémputo después luego de procesarse las necesidades de computo de todas
las aplicaciones SRT. Este tiempo de computo asignado a las tareas Best-
effort se puede planificar con alguna de las dos politicas: Round Robin o
Coscheduling Cooperativo [34]. Cabe destacar que la extension realizada en
el simulador contempla la posibilidad de testear y analizar nuevas politicas
con un esfuerzo razonable.

De acuerdo con los anélisis antes expuestos, la forma de gestionar la CPU en
presencia de aplicaciones SRT se hace de acuerdo a si es local o paralela. En
caso de ser local, solo necesitamos garantizarle sus requerimientos de CPU de
manera periddica. El problema torna a ser mas complicado cuando estamos
en presencia de una aplicaciéon paralela SRT, que en nuestro estudio esté
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Figura 2.5: Asignacion dinamica del quantum de CPU en el ntcleo simulado.

representada por una aplicacién paralela con turnaround acotado. En una
aproximacion inicial, pareceria que es suficiente con asignarle de forma peri6-
dica la CPU en cada época (segin la definicion adoptada en sistemas Linux),
con un C; = Cper(j,n) calculado con una ecuacion similar a la Ecuacion 2.9.

. _ Tpar(jan) X (tused_CPU(j)
Corld ) = D)~ terec)

% 100. (2.9)

Con esta ecuacion podemos calcular el tiempo de computo (Cpar(j,n)) pe-
riodico (cada vez que transcurra el tiempo Tpe, (7, 1)) que necesitaria la apli-
cacion paralela SRT j en el nodo n para terminar dentro del deadline correcto
(D(5)). El valor de tyseqa cpu(j), al igual que la Ecuacion 2.1 de la seccion
2.3.2, representa el tiempo de CPU que ha empleado desde su comienzo la
aplicacion paralela y teyec(j) es el tiempo que ha pasado en ejecucion la
aplicacién paralela j desde su comienzo.

Sin embargo, aunque este enfoque permite reservar tiempo de computo para
una aplicaciéon paralela, es en extremo pesimista. Con un valor calculado en
base al deadline deseado, sblo se logra que la aplicacién paralela SRT termine
cerca del valor usado como base del calculo. La Figura 2.5 muestra dos casos
de asignacion del quantum de la CPU. En esta figura C representa el valor
de tiempo de computo reservado a una aplicacién paralela SRT (calculado
con la Ecuacion 2.9), R el slice del quantum reservado a otras aplicaciones
SRT locales o paralelas y Sp;p-e €l segmento de quantum de CPU que no esta
en uso por ninguna aplicaciéon SRT. En el caso A podemos notar que la apli-
cacion paralela podria recibir un slice mayor, representado por Trnae  disps
y de esta forma terminar antes del deadline asignado. El caso B muestra
el comportamiento de nuestro simulador, en el cual la aplicaciéon paralela
SRT de mayor prioridad recibe el méximo slice del quantum posible. Emple-
ando este enfoque, las aplicaciones paralelas SRT pueden tomar ventaja de
cualquier momento de baja carga en los nodos y finalizar antes.
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2.3.3.3. Gestion de Memoria y Red

Ha de destacarse que aun cuando LoRaS entrega una carga balanceada al
niicleo de estimacién simulado, teniendo en cuenta el estado del nodo y sus
recursos, RExTsry  srr es capaz de controlar la memoria usada en el nodo
de acuerdo al Contrato Social (limite en los recursos que podemos emplear
para computo paralelo respetando al usuario local, estudiado en [10]) definido
en el momento de su ejecucion.

El recurso Red también ha sido tomado en cuenta en el disefio del niicleo si-
mulado. En nuestro simulador, las aplicaciones paralelas generan mensajes de
acuerdo a su caracterizacion. Logramos esto empleando una implementacion
booleana de la distribuciéon de Bernoulli, que inicializamos con el resultado
de 100 — getCPUU sage(job), basindonos en la idea de que el tiempo que
no se gasta en CPU se gasta en comunicaciones.

En base al valor generado por la distribucién de Bernoulli, podemos decidir
si la aplicacién comunica o no. En caso de que comunique, generamos men-
sajes para ella en todos los nodos en los que hay trabajos de la aplicaciéon
paralela y los guardamos en el buffer local del nodo que los genera. Posteri-
ormente cuando la aplicacién paralela para la cual generamos los mensajes
tiene asignada la CPU, revisa el buffer buscando mensajes y los envia a los
nodos donde estan el resto de los trabajos. Estos mensajes se guardan en
los buffers de los nodos remotos, siendo este proceso retrasado para simular
la demora de la red. A continucaciéon cuando los trabajos en sus respectivos
nodos tienen la CPU, procesan los mensajes.
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Capitulo 3

Implementacion del Simulador
para Aplicaciones SRT

Como ya hemos mencionado antes (Capitulo 2), el nucleo de estimacion
simulado es una aplicaciéon independiente al motor superior de simulacién
(LoRaS). Esta aplicaciéon recibe el nombre de Simulador Cluster SRT y
sus caracteristicas principales son mencionadas en la seccién 2.3.3. En este
capitulo describiremos su arquitectura e implementacion.

3.1. Arquitectura

La arquitectura del Simulador Cluster SRT estd basada en un framework
orientado a objetos disenado para los programadores que usan Java y desa-
rrollan modelos de simulacion. A partir de este framework se estructura todo
el modelo empleado, razén por la cual comenzaremos por introducirlo.

3.1.1. Framework DESMO-J

Segun [48|, DESMO-J es un framework orientado a objetos disenando para
los programadores que desarrollan modelos de simulacién. "DESMO-J” sig-
nifica ” Discrete- Event Simulation and MOdelling in Java” (Simulacion di-
rigida por eventos discretos y modelado en Java). Esta forma de nombrar el
framework destaca las dos caracteristicas mas significativas de DESMO-J:

= DESMO-J funciona bajo el paradigma de la simulaciéon dirigida por
eventos discretos. En modelos de este tipo, todos los cambios de estado
del sistema se supone sucederan en puntos discretos del tiempo. Entre
dichos acontecimientos, el estado del sistema se asume seguira siendo
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el mismo. La simulaciéon dirigida por eventos discretos es por lo tanto
particularmente conveniente para los sistemas en los cuales los cambios
del estado relevantes ocurren de forma repentina e irregular.

= DESMO-J estd implementado en Java. Usar este framework para cons-
truir modelos de simulacién implica la escritura de un programa en
Java.

DESMO-J ha sido desarrollado en la Universidad de Hamburgo y en la ac-
tualidad es mantenido por un equipo de investigadores [21]. Este framework
adiciona caracteristicas que simplifican el desarrollo de simuladores dirigidos
por eventos discretos. Entre ellas podemos mencionar:

s Clases para modelar componentes comunes de los modelos, como por
ejemplo: colas y distribuciones estocéasticas basadas en niimeros aleato-
rios.

s Clases abstractas que pueden ser adaptadas a comportamientos especi-
ficos (modelos, entidades, eventos, procesos de simulacion y otras).

= Una infraestructura de simulacién lista para emplearse que comprende
los planificadores, lista de eventos y reloj de simulacién, todas encap-
suladas en una clase llamada Fzperiment.

Cabe destacar que esta ultima clase denota una separaciéon entre el modelado
y la experimentacion, lo cual facilia su uso. Todas las clases estdn contenidas
en paquetes de Java para organizarlas y hacerlas mas accesibles.

En el Simulador Cluster SRT se emplean parte de las clases brindadas por
este framework, siendo las principales.

» public abstract class Entity: representa la superclase para todas las en-

tidades en un modelo. Se supone que las entidades seran programadas
en cierto punto de simulacién de acuerdo a eventos compatibles.
Las clases que heredan de Entity encapsulan usualmente toda la infor-
macién de entidades del modelo relevantes al modelador. Empleando
los eventos, podemos cambiar el estado del modelo en cierto momento
programable del tiempo.

s public abstract class Event: provee la superclase para eventos definidos
por el usuario que pueden cambiar el estado del modelo. Al ser un
framework dirigido por eventos, los cambios de estado son generados
por eventos que son programados en distintos puntos del tiempo de
simulaciéon. Un evento puede actuar solo en una entidad, cambiando
su estado de acuerdo a la reaccién programada de la entidad al evento
especifico.
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Figura 3.1: Interaccién Modelo-Experimento en demoj.

» public abstract class Model: las clases que heredan de esta superclase
contienen todas las referencias a todos los componentes del modelo a
simular.

Una vez dados a conocer los elementos basicos necesarios para comprender
el framework usado, pasamos a describir las clases implementadas y su in-
teracciéon. La Figura 3.1 muestra el esquema general de funcionamiento, en
el mismo podemos apreciar la interaccién existente entre los experimentos a
ejecutar y el API base para definir modelos. También queda especificada la
alto modularidad presente gracias al uso de desmoj.

3.1.2. Entidades relevantes

Agruparemos las entidades presentes en el modelo en dos grupos, el primero
conteniendo las entidades que representan elementos de hardware y el segun-
do las entidades relacionadas con los trabajos y tareas representadas.

Antes de entrar en la descripcién de las entidades relevantes, queremos
destacar la clase base del simulador, nombrada SimCluster y mostrada
en la Figura 3.3. Esta clase es el contenedor principal de todas las entidades
incluidas en el diseno y la responsable de cargar los datos de entrada, generar
todos los nodos con sus respectivos estados e iniciar el proceso de simulacion.
El proceso de inicio de la simulacién incluye la creacién de una instancia de la
clase desmoj.core.simulator. Experiment, que es la que provee la infraestruc-
tura para la ejecucién de una simulacién. El Algoritmo 2 muestra de forma
general las principales acciones a realizar para hacer simulaciones emplean-
do el modelo definido. En este algoritmo, primero definimos las instancias y
principales métodos que intervienen (lineas de la 1 a la 5) y luego mostramos
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Figura 3.2: Interacciéon general de entidades "hardware” presentes en el mo-
delo.
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las principales acciones a realizar para realizar un experimento. Con este al-
goritmo queremos mostrar los primeros pasos a realizar para poder ejecutar
un experimento luego de definir un modelo.

Es interesante mencionar también la manera de detener los experimentos,
que se basa en condiciones de parada. Las condiciones de parada han de ser
clases que hereden de la clase desmoj.Condition e implementen el método
check que es el empleado para determinar si las condiciones se cumplen o no.
En nuestra implementacion la condicién de parada es que todos los trabajos
paralelos (SRT o no) cargados en el fichero de datos de entrada terminen
su ejecucion. Para lograr esto, mantenemos un contador de las tareas de
cada trabajo paralelo que van terminando su ejecucién y al ser igual este
contador al valor inicial de la cantidad de tareas del nodo, aumentamos el
contador de cantidad de trabajos paralelos concluidos. El método check sélo
ha de comparar el valor de este contador con la cantidad inicial de trabajos
paralelos incluidos y detener la simulacién en caso de ser iguales.

3.1.2.1. Entidades que modelan elementos “hardware”

Algoritmo 2 Algoritmo general de la simulacién

1: SimulationModel — SimCluster Contiene las entidades y eventos del
modelo

2: Experiment — Clase que provee la infraestructura para ejecutar simula-
ciones con los modelos definidos.

3: StopCondition — Condicién de Fin, en este caso el experimento se de-
tiene si todas las aplicaciones paralelas han terminado

4: SimCluster.init() — Inicializa el model, también carga los datos de in-
putFile.xml

5: SimCluster.doInitialSchedules() — Planifica los eventos iniciales del

modelo, en este caso también crea las instancias de StationEntity y

de JobEntity cargadas del fichero inputFile.zml y planifica los primeros

eventos StartCpuFEvent
create new Instancia de Experiment — ezperiment
create new Instancia de SimulationModel — simModel
simModel.connect ToExperiment (ezperiment)
create new Instancia de StopCondition — stop Condition

10:  experiment.stop(stop Condition)

11:  simModel.init()

12:  simModel.doInitialSchedules()

13:  experiment.start()

14:  simModel.printResults(outFile.zml)

15:  simModel finish()
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class ClusterEntity: entidad que representa a un cluster, es el contenedor
principal de todos los elementos presentes en la simulacién. Mantiene la
lista de los nodos pertenecientes al cluster y otras informaciones de caracter
global, como una lista con todos los mensajes que estan en movimiento en
el cluster en cada momento.

class StationEntity: entidad que representa a un nodo del cluster. Encap-
sula los objetos que representan los recursos del ordenador, entre ellos la
CPU y sus modelos de planificaciéon. Mantiene las siguientes colas:

» RQ (Ready queue): representa la cola de trabajos listos para ser ejecu-
tados, de acuerdo a la planificaciéon de eventos de la CPU, los trabajos
pasan a la misma y luego a la cola de espera hasta que se termine
la época actual. Hemos de hacer notar que en esta implemencion los
trabajos de tipo SRT nunca pasan a la cola de espera.

» WQ (Wait queue): contiene los trabajos que ya se han ejecutado y han
de esperar a que termine la época para volver a la RQ. Cada vez que
termina una época de la CPU esta cola es vaciada y todos los trabajos
que hay en ella pasan a la RQ.

» RMBQ (Receive Messages Buffer Queue): los mensajes que arrivan al
nodo son guardados en esta cola, a la espera de que la tarea a la cual
han sido enviados entre en la CPU y los pueda procesar.

» SMBQ (Send Messages Buffer Queue): los mensajes que han de ser
enviados desde este nodo son guardados en esta cola. En este imple-
mentacion, los eventos de comunicacién se revisan con cada evento de
terminacién de la CPU, por lo que en caso de generarse alguno ha de
ser guadado a la espera de que la tarea que los generd entre en la CPU
y los pueda procesar.

La entidad StationEntity conoce las clases que implementan las politicas de
planificacién de las tareas Best-effort y SRT. Como ya se menciond ante-
riormente (seccion 2.3.3), los tipos de politicas para tareas Best-effort son
Round Robin y Coscheduling Cooperativo; y para SRT son RMS y EDF.

class CpuEntity: representa la CPU de un nodo y encapsula toda la infor-
macion relacionada con la misma. Los eventos StartCpuFvent y ServiceEn-
dEvent son los que controlan la entrada y salida de trabajos a la CPU. El
control de las épocas es realizado a través de la clase CpuEpochHelper, que
se auxilia de las clases que implementan los algoritmos de planificacion RT
(RMS y EDF) para saber cuél es la proxima tarea en entrar en la CPU.

Las relaciones entre estas entidades se observan en la Figura 3.2. Station-
Entity mantiene referencias a las instancias de las clases SchedulerHelper y
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CpuEntity conteniéndolas y haciendo posible que CpuFEntity pueda acceder la
informacién necesaria para la planificacién de aplicaciones SRT de la instan-
cia de la clase que hereda de SchedulerHelper que esté en uso en el modelo.
La informancién del estado de la época es mantenida por CpuEpochHelper
y de ella se auxilia CpuFEntity para controlarlas. Todo el conocimiento del
estado de la simulacién es accesible desde el modelo, representado por una
instancia de la clase SimCluster.

3.1.2.2. Entidades que modelan la carga de trabajo

class JobEntity: Encapsula toda la informacién relacionada con una tarea.
De acuerdo a nuestras necesitdades, una tarea puede ser local o paralela y
para cada uno de estos tipos, podemos tener caracteristicas SRT. Ademés de
los campos necesarios para controlar estas caracteristicas de la tarea, hemos
de llevar el control de la cantidad de jiffies consumidos por todas las tareas
en cada momento, para controlar su terminacion.

Al ser cargado un fichero de entrada, marcamos la entidad de acuerdo a si es
local Best-effort (LOCAL), local SRT (LOCAL _SRT), paralela Best-effort
(PARALLEL) o paralela SRT (PARALLEL SRT). Estas marcas definen
cuales campos tendran valores, la forma en que son tratados durante la pla-
nificacion de la CPU, si revisan o no las colas de mensajes (RMBQ 6 SMBQ)
y otros comportamientos propios de cada tipo de tarea.

class ParallelAppFEntity: Contiene toda la informacion relacionada con
una aplicaciéon paralela. A partir de los valores que la caracterizan se con-
struyen las tareas que la conforman en los diferentes nodos.

class MessageEntity: Entidad que representa a un mensaje. Conoce su
nodo origen y su nodo destino, ademas de la tarea que lo originé. Las carac-
terizacion de las aplicaciones paralelas son tomadas en cuenta para decidir
si generan o no mensajes, pues se generan de acuerdo a sus necesidades de
computo.

La interacciéon de las entidades mencionadas en esta subseccién con las en-
tidades "hardware” es mostrada en la Figura 3.3. En esta figura podemos
apreciar que el conocimiento de las tareas es propio de los nodos y que en
cambio informacién de més alto nivel se conoce desde la perspectiva del clus-
ter. En el cluster se mantiene la informacion de las aplicaciones paralelas y
los mensajes entre ellas, para que sea accesible a todas los nodos para su uso.

3.1.3. Eventos relevantes

Como se ha establecido anteriormente, los eventos controlan los cambios
de estado interno, y han de estar asociados a una entidad. En esta seccion
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Figura 3.3: Interaccién de las entidades que modelan la carga de trabajo con
las entidades "hardware”.

describimos los eventos mas importantes incluidos en este modelo, el Algo-
ritmo 3 muestra la interaccién entre ellos. Hemos desglosado este algoritmo
para facilitar su comprension, siendo el Algoritmo 5 el que explica el fun-
cionamiento de la generacion de los mensajes y el Algoritmo 4 el que describe
el procedimiento seguido al finalizar una tarea.

El Algoritmo 3 muestra la interaccién general de los eventos, la primera
accion a realizar es cargar los datos del fichero de entrada en formato XML,
crear las instancias necesarias de JobEntity y StationEntity y generar el
primer evento de StartCpuEvent para cada tarea (lineas 6 a 9). Luego para
cada instancia de JobEntity presente en cada instancia de StationEntity
generamos el primer evento StartCpuEvent. Posterior a esto, el control de
los eventos para cada instancia de JobEntity relacionada con las instancias de
StationEntity pasa a los dos eventos principales del modelo, StartCpuEvent
y ServiceEndEvent. El primero realiza las acciones necesarias (linea 13),
entre las cuales estd la planificacién del evento ServiceEndEvent asociado
a su ejecucion. Es durante la ejecucion del evento ServiceEndEvent (lineas
14 a 23) que se chequea la ocurrencia de eventos de RT (lineas 18 a 20),
comunicacion (linea 22) o terminacion de tarea (lineas 15, 16).

El Algoritmo 4 ocurre cuando una tarea consume todo su tiempo de computo
(linea 15 del Algoritmo 3). En caso de ser una tarea local, no se hace nada
(linea 12). En cambio si es una tarea paralela ha de incrementarse el contador
de tareas de la respectiva aplicacion paralela terminadas (linea 3). De acuerdo
a si esto implica que todas las tareas de la aplicaciéon paralela han terminado
0 no, se incrementa el contador de aplicaciones paralelas terminadas (linea
6) o no se hace nada. Si el contador de aplicaciones paralelas terminadas es
igual a la cantidad de aplicaciones cargadas del fichero de entrada, se detiene
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Algoritmo 3 Interaccion general entre los eventos en el modelo

1:

StartCpuEvent — Evento que ocurre cada vez que una tarea necesita
la CPU, durante su ejecucién dispara un evento ServiceEndEvent

: ServiceEndEvent — Evento que ocurre cada vez que una tarea deja

la CPU, implica la posible generacion de: Fin de Tarea, Condicion RT
y Comunicacion.

JobArrivalEvent — Ocurre cada vez que una tarea arriba al sistema,
durante la carga de datos del fichero de entrada.
CommunicationEvent — Representa un evento de comunicacion, im-
plica que se revisen las colas locales de mensajes.

5: RTEvent — Representa un evento de RT.
6: for all Job € inputFile.xml do

10:
11:
12:
13:

14:

15:
16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:

Generar la correspondiente instancia de (JobEntity — job; ;) del Job;
en station;
Planifica para job; ;, su primer evento StartCpuEvent en node;, en
orden de prioridad para las tareas SRT y las Best-effort luego.
end for
for j = 0 to simCluster.getCantStations() do
for i = 0 to station[j].getCantJobs() do
while (job; j.remCV > 0) do
Durante el evento StartCpuEvent:
Planificacion de un evento ServiceEndEvent en t = t,ua +
job; j.assignedQuantumSlice
Chequeo de las colas de mensajes, SMBQ y RMBQ (envio y
recepcion de mensajes).
Control de Epoca de la CPU y del quantum a asignar a las tareas
Durante el evento ServiceEndEvent:
Cdlculo del tiempo de computo restante para la tarea —
job; j.remCV

if (job; j.remCV == 0) then
Ejecutar Algoritmo 4 (Fin de Tarea)
else

if (jObiJ‘.RT) then
Generar evento RTEvent — rtEvent
Planificar rt Event para t =t + job.get Period()

end if

Ejecutar Algoritmo 5 (Generacion de Evento de Comuni-

cacion)

end if
end while
end for
end for
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la simulacion (linea 8), proceso que implica la generacion del fichero de salida
en formato XML .

Algoritmo 4 Fin de Tarea
1: Lainstancia de JobEntity, job ha consumido todo su volumen de cémputo
2: if ((job.type == PARALLEL) or (job.type == PARALLEL_ SRT))
then
3:  Incrementar el contador de tareas terminadas (finishedJobs) de la
aplicacion paralela correspondiente.

4: if (finishedJobs == parallel AppJobsCounter) then

5 Guardar la informacién de la aplicacién paralela para generar el
fichero de salida (outFile.zml)

6: Incrementar el contador de tareas paralelas terminadas finishedPa-
rallelApps
if (finishedParallelApps == loadedParallelApps) then

8: Condicion de Finalizaciéon alcanzada, detener la simulacion y ge-

nerar el fichero de salida (outFile.zml)

9: end if

10:  end if

11: else

12:  Fin de Tarea Local — Se descarta su informacién

13: end if

Finalmente, el Algoritmo 5 describe el proceso de la generacién de un evento
de comunicacién. Cabe mencionar que es un requerimiento para la ejecucion
de este algoritmo que la tarea sea de tipo paralelo, ya sea SRT o no. Si a tarea
es paralela, procedemos a muestrear una distribuciéon booleana de Bernoulli
creada de acuerdo a la relacion computo/comunicacion de la apliacacion
paralela. Si el valor devuelto es verdadero, se pone en marcha el proceso
de crear mensajes en los otros nodos del cluster que tienen tareas de esta
aplicacion paralela. Han de mencionarse que esto es solo el inicio del proceso
de comunicacién, que consta de mas partes. Luego de ser introducidos estos
mensajes en las colas de mensajes del nodo, se procesan cuando la tarea
paralela recibe la CPU y se envian a los nodos a los cuales estan destinados.
El proceso de comunicacién concluye cuando las respectivas tareas de los
otros nodos con tareas cooperantes revisan sus colas de mensajes recibidos,
los procesan y envian las respuestas.

class StartCpuFEvent: Evento que gestiona la insercion de las tareas en la
CPU, calculando el quantum que le corresponde en caso de ser necesario.
Conjuntamente con el evento ServiceEndEvent controlan la entrada y salida
de las tareas en la CPU. En caso de tener tareas SRT, asigna sus slices del
quantum de la CPU de acuerdo a sus requerimientos, el slice disponible del
quantum se emplea en las aplicaciones Best-effort.

Al acceder una tarea paralela la CPU, revisa las colas de mensajes para saber
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si han ocurrido eventos de comunicacién. En caso de ser asi, se gestionan en
ese momento.

class ServiceEndEvent: cada vez que ocurre un evento StartCpuEvent, se
genera un evento de este tipo, que se encarga de expulsar la tarea de la CPU.
Al ocurrir este evento se actualizan todas las variables que controlan las can-
tidades de CPU recibidas por cada tarea, en caso de terminar la tarea, se
trata de acuerdo a si es local o paralela. En caso de ser local, nada ocurre,
solo se guardan sus datos y se borra de las colas del nodo. Por otro lado,
en caso de ser paralela también se quita de las colas del nodo y ademas se
actualiza el contador de tareas en el trabajo paralelo. Si este contador vale
0, se notifica el fin del trabajo y se guarda hasta la terminacion de la simu-
lacion.

Los datos de las aplicaciones paralelas conforman un fichero de salida en for-
mato XML, que recibe LoRaS y counstituyen los valores de RExT generados
por Simulador_ Cluster SRT.

En este evento se gestionan los eventos de tiempo real, que es descrito a
continuacion.

class RealTimeFEvent: representa a un evento RT, es planificado solo en
dos situaciones:

1— Al arribar una tarea con caracteristicas SRT al sistema.

2— Cuando expulsamos alguna tarea SRT de la CPU.

Al ocurrir, desaloja (si no es SRT) el trabajo que se encuentra en la CPU y
se planifica un evento StartCpuEvent.

Algoritmo 5 Generacién de Evento de Comunicacién
Require: (job.type == PARALLEL) or (job.type == PARALLEL _SRT)
1: Muestrear la distribucion de Bernoulli (creada de acuerdo a la relacion
computo/comunicacion) de la tarea paralela para decidir si comunica o
no — generateCommFEvent

2: if (generateCommEwvent) then

3:  for (i = 0 to simCluster.stationCounter) do

4: if (stationHasJob(job,i) and (i #station.getStationId()))
then

5 create new MessageEntity — msg

6: Adicionar msg a la cola de mensajes en el cluster

7: station.SMBQ.insert(msg);

8 end if

9: end for

10: end if

class JobArrival Event: Debido a que los datos de los trabajos son cargados
de ficheros de entrada, el peso de los datos recae en las tareas. Para cada
nodo recibimos una lista de las tareas presentes en él, de cualquier tipo y
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simModel::CpuEntity simModel::StationEntity
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-runningJob : JobEntity -RQ : SimQueue
-station : StationEntity -WQ : SimQueue
-quantum : int -RMBQ : SimQueue
-waitCpuQueue : SimQueueFIFO -SMBQ : SimQueue
-serviceCpuQueue : SimQueueFIFO -cpu : CpuEntity
-cpuEpochHelper : CpuEpochHelper _---quantum : int

+insert () : void «uses» /,/ -Memory : double
+getJob () : Entity 7 -freeMemory : double
+setWait () : void -7 -policy : string
+setService () : void -7 -jobsInStation
+getState () : bool -7 -schedHelper : SchedulerHelper

+getQuantumTime () : int -rtQueue : RTQueue
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+getCpuEpochHelper () : CpuEpochHelper T
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-quantumLength : int
-consumedQuantum : int simModelHelpers::SchedulerHelper
-epochCounter : long
+setQuantumLength () : void
+getQuantumLength () : int
+setConsumedQuantum () : void
+getConsumedQuantum () : int
+getRemainingQuantum () : int
+increaseEpochCounter () : void
+getEpochCounter () : long
+epochProgressStatus () : bool
+getRTJobQuantumPercent() : double

-prioCounter : int

+addJob() : void

+getMapSize() : int
+removedJob() : bool
+containsJob() : bool

+clear() : void
+getHighestPrioJob() : JobEntity
+getPrioCounter() : int

simModelHelpers::RMSchedulerHelper
simModelHelpers::EDFSchedulerHelper

+assignPrioritiesToJobsInPrioMap() : void
+getShortestPeriod() : int

Figura 3.4: Interaccion de las clases, soporte para adicion de algoritmos de
planificacién RT.

con cualesquiera caracteristicas (SRT o Best-effort). A partir de esta lista,
se cargan los datos y el modelo se inicializa con ellos, este evento gestiona la
colocacion de cada tarea en el nodo que le corresponde.

class CommunicationFEvent: Representa un evento de comunicacion, al
ocurrir, se revisan las colas de mensajes del nodo y los mensajes pertenecientes
a la tarea se procesan.

3.2. Soporte para nuevos algoritmos RT

Para facilitar la experimentacién de nuevos algoritmos de planificacién RT,
se disend6 el grupo de clases que conforman esta parte del software de forma
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modular. Esta implementaciéon, permite anadir nuevos algoritmos heredando
de una clase abstracta, nombrada SchedulerHelper e incluida en el paquete
simModelHelpers. La Figura 3.4 muestra las clases que representa a los al-
goritmos inicialmente incluidos en la jerarquia (RMSchedulerHelper y EDF-
SchedulerHelper) y la interaccion entre las clases necesarias para realizar la
planificacién.

La clase StationEntity es el contenedor principal de toda la informacién de
las tareas que se encuentran en ella y la forma de planificarlas. Por esta razén
guarda referencias a los helpers para la planificacion usando algorimos RT
y a la CPU. La clase CpuFEntiy se apoya de la informacion brindada por la
clase CpuEpochHelper (también definida en el paquete simModelHelpers) a
la hora de controlar sus épocas. Esta a su vez, se nutre de la informacién
que brindan las clases mostradas en la Figura 3.4 (RMSSchedulerHelper o
EDFSchedulerHelper) para decidir datos relacionados con el quantum o cual
es el la proxima tarea RT en entrar en la CPU. Implementando esta parte
del software de esta forma logramos una mayor extensibilidad y flexibilidad
en el codigo, que se traduce en ahorro de tiempo y esfuerzo para desarrollos
futuros.

3.3. Comunicacién entre los procesos

La comunicacién entre LoRaS en modo de simulacién off-line y Simula-
dor Cluster SRT ocurre a través de ficheros en formato XML. Como ya se
ha explicado anteriormente, la simulacién funciona a dos niveles, en el superi-
or, LoRaS genera ficheros XML con el estado del cluster y realiza la ejecucion
de Simulador _Cluster  SRT. Una vez leidos de los ficheros XML, los datos
generados por LoRaS son guardados en clases (Figura 3.5), y posteriormente
empleados para generar los eventos de arribo de tareas. Cabe destacar que, al
igual que con el soporte de nuevos algoritmos RT, la modularidad del c6digo
implica mayor facilidad a la hora de extender las funcionalidades a nuevos
tipos de tareas.

Las razones por las que elegimos XML como formato para los ficheros de
datos son:

= La existencia de APIs que facilitan su uso en los lenguajes de progra-
maciéon implicados en el desarrollo.

= Permite comprobar la validez y consistencia de los ficheros de datos de
forma rapida y segura. Para cada fichero XML podemos establecer su
fichero de formato, contra el cual podemos validarlo y comprobar su
consistencia, de acuerdo a la forma en la que lo definimos.
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simlO::XMLResultsWriter simlO::XMLDataLoader
-outputFileName : string
-toXml : ArrayList<SavedJobinfo> +LoadConfigurationData () : void
+XMLResultsWriter() +LoadNodeListData () : void
) +getNodelnfo () : Nodelnfo

\ +addNodelnfo () : void

«uses» +removeNodelnfo () : void
\ +getTotalJobSize(entrada justParallel : bool) : int
\
\ N \
\ / «uses»
\ / N
\ . \
\ «uses» \\
\ / \
\ // \\
simModel::SimCluster / N
/
-station [] : StationEntity / simlO::Job
-parallelApps : ArrayList<ParallelAppEntity> | ,/ T int
-msgsinCluster : ArrayList<MessageEntity> |’ e X
-savedJoblinfo : ArrayList<SavedJoblinfo> _?pinazggﬁolg:ge
-dataLoader : XMLDatalL.oader . -
-cluster : ClusterEntity +getJobType () : JobType
+getld () : int

+setld () : void
+getMemory () : double
+setMemory () : void
+getCpuUsage () : long
+setCpuUsage () : void

simlO::ParallelJob
-totalJiffies : long
-currentliffies : long -
_runtime : long simlO::LocalJob
-deadline :long -totalRunTime : long
+getJobType () : JobType -slotTime : long
+getRuntime () : long -periode : long
+setRuntime () : void +getJobType () : JobType
+getTotalliffies () : long +getTotalRuntime () : long
+setTotalJiffies () : void +setTotalRuntime () : void
+getCurrentJiffies () : long +getSlotTime () : long
+setCurrentJiffies () : void +setSlotTime () : void
+getDeadline () : long +getPeriode () : long
+setDeadline () : void +setPeriode () : void

Figura 3.5: Jerarquia de manejo de datos y su interaccion general.
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Por las razones antes expuestas, ahorra tiempo de desarrollo y hace maés
claros y legibles los ficheros de intercambio de datos. Es también un estandar
ampliamente utilizado.
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Capitulo 4

Experimentacion realizada y
resultados obtenidos

En este capitulo mostramos la experimentacién realizada, principalmente
dirigida a validar el sistema, comprobar su escalabilidad y observar el de-
sempeno de nuestros métodos de estimacion con capacidad SRT ante cargas
locales o paralelas SRT.

4.1. Caracterizaciéon de los entornos de ejecucién

Antes de pasar a mostrar y comentar los resultados alcanzados, es necesario
describir el entorno utilizado para realizar las ejecuciones. Cabe destacar que
se han realizado ejecuciones reales, i.e.: con carga de tipo Best-effort, para
todos los métodos descritos en el capitulo 2. La caracterizacién de este en-
torno de ejecucion es mostrado a continuacion (subseccion 4.1.1), que incluye
la forma de representar la carga paralela y las aplicaciones paralelas junto
con sus tiempos de llegada al sistema.

Ha de mencionarse que tanto las ejecuciones reales como las simuladas fueron
realizadas empleando la politica FCFS (First Come First Serve) para la
seleccion de trabajos y la politica Normal para la seleccién de los nodos.
Destacamos que la politica Normal intenta seleccionar el mejor conjunto de
nodos para ejecutar una aplicacién paralela teniendo en cuenta el uso de
recursos en los nodos del cluster. De esta forma esta politica no sobrecarga
los nodos en detrimento de la carga local que pueda estar presente en ellos.

4.1.1. Entorno de las ejecuciones reales

En el caso de las ejecuciones reales, es necesario simular la presencia de
usuarios locales y ademaés, aplicaciones paralelas que lleguen al sistema en
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Error est. Turnaround (sin carga local)
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Figura 4.1: Validacién parcial de los métodos SRT, contra ejecuciones reales
sin carga local.

intervalos de tiempo representativos. Por estas razones, las aplicaciones han
de estar correctamente caracterizadas, para garantizar luego que las com-
paraciones con los métodos de estimacién empleados en las simulaciones
(analiticos o simulado) sean justas.

La actividad local Best-effort es modelada por un benchmark parametrizable.
Los valores de CPU, memoria y uso de red de las aplicaciones son dados
como parametros a este benchmark y el simula el uso de estos recursos. Para
conseguir una mayor similitud con valores reales, se realizaron medidas en
laboratorios y con los valores obtenidos creamos los pardmetros modelo para
aplicaciones Best-effort. En este caso, los valores para el benchmark son 15 %
de CPU, 35% de memoria y 0.5 KB/s como uso de red.

La carga paralela esta representada por una lista de aplicaciones NAS ejecu-
tadas usando PVM, que emplean 2, 4 y 8 nodos y llegan al sistema siguiendo
una distribuciéon de Poisson. Estas aplicaciones han sido mezcladas de tal
forma que sea balanceada en cuanto a computo y comunicacion. La Tabla
4.1 muestra la caracterizacién de las aplicaciones paralelas utilizadas.

El cluster donde se llevaron a cabo las ejecuciones estaba compuesto de 8
nodos Pentium-IV (1.8 GHz), con 512 MB de memoria RAM e interconecta-
dos por una red Fast-Ethernet. El sistema operativo instalado en estos nodos
es Linux. Las simulaciones son realizadas de acuerdo a la caracterizacién de
estos nodos.
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NAS—IS (CPU (%) - Mem. (MB) - Tiempo (seg.))

Clase A Clase AB Clase B
Nodos | cPU | Mem. | Tiempo | CPU | Mem. | Tiempo | CPU | Mem. | Tiempo
2 44 112 50 57 220 99 58 380 240
4 29 72 49 26 136 109 25 260 240
8 26 44 39 25 88 58 24 150 179
NAS-MG (cPU (%) - Mem. (MB) - Tiempo (seg.))
Clase A Clase AB Clase B
Nodos | cPU | Mem. | Tiempo | CPU | Mem. | Tiempo | CPU | Mem. | Tiempo
2 72 220 49 86 220 129 90 220 209
4 57 113 29 83 113 65 78 113 119
8 36 60 19 62 60 49 70 60 75

Tabla 4.1: Caracterizacion de las aplicaciones paralelas para el proceso de
simulacion.

4.1.2. Entorno de las ejecuciones simuladas

Para el caso de la actividad local de tipo SRT empleamos los resultados
mostrados en [26]. En este estudio se muestran varias aplicaciones con ca-
racteristicas SRT, entre las cuales seleccionamos una para nuestro estudio,
el visualizador multimedia Xine. Esta aplicacion local se caracteriza por pre-
sentar diferentes niveles en el uso de recursos de acuerdo al tamano de la
ventana de visualizacion, siendo los consumos de recursos representados co-
mo 11 % de CPU y 15 % de memoria para visualizacion de 1z y 41 % de CPU
y 20 % de memoria para visualizacion a 2z (donde x representa el tamarfio
de la ventana de visualizacion).

Al no contar con aplicaciones paralelas SRT con la caracterizacion necesaria
por el simulador Off-line de LoRa$S, hemos tenido que construirnos la car-
ga paralela SRT. En este enfoque inicial, las aplicaciones paralelas SRT son
aplicaciones paralelas Best-effort a las que se les definimos un deadline o
tiempo de finalizacion méximo. Cabe destacar que este deadline lo calcu-
lamos suméandole al tiempo de ejecucion obtenido mediante la ejecuciéon de
la aplicacion paralela isolada un 20 % del valor obtenido (Ecuacion 4.1).

1
deadline(j) = turnaround;sy(j) + £ X turnaround;se (j) (4.1)

Al construir la carga paralela SRT de esta forma, podemos reusar las carac-
terizaciones disponibles de trabajos previos. Cabe destacar que debido a que
aun no disponemos de soporte en el sistema de ejecuciones reales para apli-
caciones SRT, ya sean paralelas o locales, esta era una de las pocas opciones
viables. Creemos que la pérdida de generalidad introducida esta asuncién es
permisible a este nivel de nuestro trabajo.
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Error est. Turnaround (carga local: 25%)
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Figura 4.2: Validacién parcial de los métodos SRT, contra ejecuciones reales
con un 25 % de carga local.

Para las ejecuciones simuladas se utilizan caracterizaciones de los nodos
(Pentium-IV a 1.8 GHz con 512 MB de memoria RAM) empleados para
las ejecuciones reales.

4.2. Validaciéon del Simulador

Debido a que el entorno CISNE atn no es capaz de ejecutar carga con caracte-
risticas SRT, la validaciéon posible en este momento del trabajo es parcial. Es
decir, podemos comparar los resultados de nuestros métodos de estimaciéon
con resultados de ejecuciones reales solo para carga Best-effort. Por otro la-
do cabe destacar que gran parte de los estudios consultados en la literatura
[42, 12, 84, 88| usan la simulacién como unico método de trabajo, siendo la
excepciéon mayoritariamente los trabajos que hacen modificaciones a los SO
para mejorar sus capacidades SRT [19, 14, 66, 2]. Para este caso, la cantidad
de aplicaciones NAS ejecutadas fue de 30.

Las Figuras 4.1, 4.2 y 4.3 muestran la precisiéon que nuestros métodos pueden
alcanzar para diferentes niveles de carga local. En este experimento tanto
la carga local como la paralela son de tipo Best-effort, debido a que son
comparados con métodos incapaces de procesar carga (paralela o local) de
timpo SRT. Para realizar esta experimentacion, fueron empleados 8 nodos
para ejecutar tanto la carga local como la paralela, variando los niveles de
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presencia de usuario local (en valores de 0%, 25% y 50 %) en los diferentes
casos. La diferencia entre los valores obtenidos de las ejecuciones reales y
las simuladas por los diferentes métodos son mostradas aqui en la forma de
tanto porciento de error en el turnaround.

En esta figura podemos apreciar que el método simulado (SIM SRT, cor-
respondiente a RExTsiy sgrr) se comporta siempre mejor que los demés
métodos, como era de esperar dado su mayor nivel de detalle. Los valores
de error méximos en este tipo de experimento para SIM SRT son siem-
pre menores al 12 %. Cabe destacar que los métodos denotados por M PL
y C'PU han sido contrastados contra otros métodos de estimacién presentes
en la literatura, brindado al menos resultados tan buenos como ellos.

Error est. Turnaround (carga local: 50%)
20,00
16,00 —
g 12,00
S
g 800
w
4,00
0,00 T T T
MPL CPU ANL-SRT SIM-SRT
Método de estimacion

Figura 4.3: Validacién parcial de los métodos SRT, contra ejecuciones reales
con un 50 % de carga local.

4.3. Inclusién de carga SRT

La inclusién de carga con caracteristicas SRT en la experimentacién implica
que solo podemos emplear los métodos de estimacion del RExT capaces
de trabajar con este tipo de tareas, que en nuestro caso son ANL-SRT y
SIM-SRT. Estudiaremos primero el efecto de la carga local SRT sobre las
aplicaciones paralelas Best-effort y luego la coexistencia de varios tipos de
cargas en un cluster no dedicado.
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Figura 4.4: Comparacién de métodos en presencia de carga local SRT,
turnaround para 16 y 32 nodos.

4.3.1. Carga local SRT

Este experimento compara los dos métodos de estimaciéon del RExT en pre-
sencia de carga local Best-effor y SRT. Para generar la grafica mostrada en
la Figura 4.4 realizamos experimentos para 16 y 32 nodos, con diferentes
niveles de presencia de usuario local. Es importante destacar que para cada
porciento de carga local, la mitad es de tipo SRT.

Creemos que esta experimento también nos permite observar el efecto de
la carga local de tipo SRT en el turnaround (tiempo que espera el usuario
paralelo hasta que concluye la ejecucion de la aplicaciéon paralela que ha lan-
zado) de las aplicaciones paralelas. La Figura 4.4 permite apreciar que ambos
métodos siguen la misma tendencia, lo cual es un resultado alentador, pues
nuestros dos métodos de estimaciéon se comportan parecido. Cabe destacar
que el método simulado genera resultados con tiempos de turnaround ma-
yores que el andlitico, consideramos que esto ocurre debido a su mayor nivel
de detalle, lo cual refleja las mayores exigencias de recursos del usuario local
con méas presicion.

4.3.2. Carga paralela SRT

En este experimento, el 15 % porciento de la carga paralela es de tipo SRT,
la presencia de usuario local es de tipo Best-effort y los experimentos fueron
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Figura 4.5: Comparacién de métodos en presencia de carga local Best-effort,

turnaround para 16 y 32 nodos. Aplicaciones paralelas tipo SRT (15 % del
total).

hechos para 16 y 32 nodos. Como podemos apreciar en la Figura 4.5, los
tiempos de ejecucion de las tareas paralelas disminuyen. Esto es un resultado
logico y esperado, pues ahora las aplicaciones paralelas disponen de més
tiempo de CPU, debido a la disminucién de los requerimientos de CPU y
memoria de las aplicaciones locales.
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Capitulo 5

Conclusiones y Trabajo Futuro

En este capitulo enunciamos las conclusiones alcanzadas y las lineas de tra-
bajo futuro.

5.1. Conclusiones

Nuestro trabajo incluye elementos de planificacion temporal en clusters no
dedicados y sistemas tiempo real débil. La unién de estas dos lineas se hace
necesaria para reflejar los cambios ocurridos en las aplicaciones a ejecutar en
clusters no dedicados, tanto las locales como las paralelas. Nuevos tipos de
aplicaciones locales SRT, cuyo mejor ejemplo son las aplicaciones multime-
dia, implican una redefiniciéon de las pautas que garantizan su coexistencia
con la carga paralela. Las aplicaciones paralelas también evolucionan, re-
quiriendo en muchos casos QoS para una correcta ejecucion.

Creemos que las aulas de ordenadores presentes en cualquier universidad
hoy en dia son una fuente de poder de computo de la que muchos sistemas
intentan hace uso eficiente. Un enfoque como el nuestro, que hace coexistir la
carga paralela y la local implica un mejor uso de estos recursos. El cambio en
las aplicaciones locales y paralelas anteriormente mencionado implica crear
nuevos esquemas y métodos de planificaciéon para que los usuarios locales no
vean afectada la interactividad de sus ordenadores.

El principal objetivo de este trabajo es proveer un sistema que permite es-
tudiar la planificacion temporal de aplicaciones de varios tipos que han
aparecido en la literatura. Para este fin, se ha modificado un sistema dis-
enado para estudiar la planificacién espacial de aplicaciones paralelas, que
contempla dos tipos de aplicaciones, locales y paralelas Best-effort. Se ha
anadido soporte para aplicaciones paralelas y locales SRT, en dos
métodos de estimacién, uno analitico y otro simulado.
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Se ha realizado una revision bibliogrdfica dirigida a la consideracién de
aplicaciones SRT, tanto locales como paralelas, en clusters no dedicados.
Cabe destacar que ain cuando es un tema ampliamente estudiado, no hemos
encontrado trabajos donde se aborde la problematica de la planificacién es-
pacial en clusters no dedicados de aplicaciones locales y paralelas de los tipos
que contempla este trabajo, Best-effort y SRT.

Se han creado dos nuevos métodos de estimacion con capacidad
SRT, que permiten estudiar el comportamiento de aplicaciones con estas
caracteristicas en clusters no dedicados. Este trabajo ha significado una serie
de extensiones y modificaciones a sistemas previamente desarrollados en el
grupo.

El método de estimacion por simualcion es un simulador independiente, que
podria ser extendido para realizar simulaciones sin necesidad de otros sis-
temas. Su implementacién modular permite incorporar nuevos algoritmos de
planificacién con un esfuerzo razonable. Este método de estudio de la plani-
ficacion temporal de aplicaciones paralelas y locales, tanto Best-effort como
SRT ha dado origen a la publicacion:

» J.Garcia, P. Hernéndez, J. Lérida, F.Giné, F.Solsona & M. Hanzich.
Using Simulation for Job Scheduling with Best-Effort and
Soft Real-Time Applications on NOWs. XVIII Jornadas de Pa-
ralelismo, JP’2007.

La experimentaciéon desarrollada hasta este momento refleja la necesidad
de combinar las métricas existentes con otras que nos permitan evaluar los
algoritmos de planificaciéon SRT que incluyamos en nuestro sistema. Es im-
portante mencionar que es necesaria una redefinicion de la carga paralela,
para reflejar de manera fideligna nuestro entorno de estudio. Creemos que
en esta nueva situacion, las colas de espera han de ser cortas para poder
satisfacer los requerimientos de las aplicaciones paralelas SRT.

5.2. Trabajo Futuro

En este tipo de estudios, la caracterizacion de la carga, ya sea local o paralela,
es de primordial importancia. Ademas, los resultados alcanzados demuestran
que hemos de prestar especial importancia a las aplicaciones paralelas, de tal
forma que reflejen nuestro entorno de una forma mas especifica. Por lo tanto
una de nuestras lineas abiertas mas importantes es el encontrar aplicaciones
paralelas, tanto SRT como Best-effort, que encajen mejor en nuestro entorno.

Atn cuando incluimos un modelo analitico en nuestro trabajo, creemos que
este es susceptible a mejoras, siendo esta direccién de trabajo también impor-
tante en nuestro futuro. Ha de trabajarse también en el desarrollo de nuevas
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métricas y su combinacién con las ya existentes, pues al combinar dos di-
recciones de investigacion (planificacion temporal en clusters no dedicados y
planificacion aplicaciones SRT), han de proveerse medios para evaluar los re-
sultados en las dos direcciones. Creemos que el desarrollo de modelos analiti-
cos para la prediccién relacionada con las métricas para aplicaciones SRT es
también importante.

Las nuevas métricas a contemplar en los modelos han de ser capaces de
evaluar el comportamiento de los algoritmos de planificaciéon estudiados, en
base a las pérdidas de deadlines en las planificaciones. Hasta ahora solo
somos capaces de medir deadlines de aplicaciones paralelas SRT, hemos de
ser capaces de medir los deadlines que pierde cada tarea SRT, ya sea paralela
o local. También hemos de desarrolla métodos analiticos para predecir las
pérdidas de deadlines de tareas SRT.

Finalmente, el hecho de que los procesadores multicore sean facilmente acce-
sibles en el mundo comercial nos hace plantearnos con fuerza su inclusiéon
en nuestra linea de trabajo. Cabe mencionar que se ha hecho un esfuerzo
considerable de investigacién en la literatura y ya se perfilan algunas de las
estrategias para su uso. Los resultados alcanzados hasta el momento en esta
linea de trabajo estan incluidos en forma de anexos (Anexos A y B). Cabe
destacar los procesadores multicore es un tema en auge en la actualidad,
reflejado en los recientes articulos sobre el tema [32, 6, 7, 18|.

También incluidos en el apéndice B tenemos los estudios de rendimiento

relacionados con el uso de procesadores Pentium D para la ejecucion de
aplicaciones PVM NAS.
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Apéndice A

Propuestas para la
planificacion

Hemos de destacar que nuestra propuesta para la planificacién ha de tener
en cuenta el hardware en el cual se implementara y las necesidades de los
tipos de aplicacion a planificar. Los detalles del hardware disponible estan
en el Apéndice B.

A.1. Implementacién del planificador en espacio de
usuario

Es un requerimiento importante de diseno que no se haga ningtn tipo de
modificacion en el kernel de Linux. Esto nos permite una mayor portabili-
dad de nuestro sistema, ademds de facilitar enormemente su implantacion
y mantenimiento. Un grupo de pruebas y reflexiones que incluimos en esta
subseccion nos llevaron a nuestra opcién de implementacion del planificador.

Queremos destacar que la opcién que parece més evidente para la imple-
mentacion de un planificador en Linux, es decir, el uso de las colas RT in-
cluidas en las ultimas versiones, ha quedado descartada en este trabajo. La
principal razén por la cual descartamos las colas RT es porque la dnica for-
ma de ejecutar una aplicaciéon RT antes que otra es que esté en una cola de
mayor prioridad. El planificador tendria que utilizar una llamada al sistema
(sched_ setscheduler) cada vez que hiciese falta otorgarle la CPU a alguna
aplicacién, con el agravante de que no todas las aplicaciones son RT . Este
planificador resultaria mas complejo que la propuesta que presentaremos més
tarde.

71



A.1.1. Planificador basado en renice

Las primeras pruebas realizadas giraron en torno al uso de la funcién renice
de Linux, la cual permite cambiar la prioridad estatica de los procesos de
forma dindmica. Este método tiene como ventajas que:

= Genera poca intrusion, dado que la modificaciéon del valor nice de los
procesos no influye en el rendimiento del planificador y una vez asig-
nado se utiliza durante largos periodos de tiempo.

s Kl quantum asignado a cada proceso es calculado de forma precisa a
partir del valor del nice (empleando el Algoritmo 6). Esta forma de
calcular es la empleada en el kernel 2.16.x.

Algoritmo 6 Calculo de la prioridad a partir del nice
(MAX PRIO—prio)

1: scale_prio(X,prio) < max(Xx (MAX_U—SER_PRIO/2),MIN_TIMESLICE)
2. if (STATIC PRIO < mnice_to_prio(0)) then

3:  return scale_prio(DEF _TIMESLICE X 4,STATIC _PRIO)

4: else

5. return scale prio(DEF _TIMESLICE, STATIC _PRIO)

6: end if

Y como desventajas:

= No podemos controlar exactamente que proceso se ejecutaréd, pues al
consumir todo su quantum los procesos salen de la cola de procesos
listos y no se ejecutan hasta que termina la época.

» Los valores de nice negativos generan problemas con la interactividad
del ordenador.

A.1.2. Planificador basado en STOP-CONT

Esta forma de planificar las aplicaciones se basa en el envio de senales de
STOP/CONT para detener y reanudar los procesos. De esta forma logramos
controlar el momento concreto del tiempo en el cual un proceso inicia y se
detiene, ademas de la cantidad de computo que recibe.

Este método tiene una tnica desventaja, el hecho de genera mas intrusion
que el método del renice antes descrito. Esto es debido a la ejecucién perio-
dica del planificador para controlar las aplicaciones en ejecuciéon, aunque es
valido destacar que en las pruebas realizadas no logramos medir la intrusiéon
generada por este tipo de planificador.

Las ventajas de este método son:
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= Al comparar el nivel de intrusiéon generado por este método lo com-
paramos con el anterior, por lo que vale la pena destacar que en com-
paracion al renice, es mucho mas fiable y ajustable para las tareas de
planificacién a realizar.

= Proporciona una mayor resoluciéon en la planificacion (en el orden de
los pseg) que el renice (resolucion méxima en el orden de los jiffies
~ 10 mseg).

= La planificacién es mucho més facil ya que podemos enviar senales a
grupos de procesos (padre y todos sus hijos).

A.2. Planificador propuesto

Finalmente en esta seccién enunciamos nuestra propuesta de planificacion,
que consiste en combinar los métodos expuestos. Esta combinacién aporta lo
bueno del método del renice (intrusion extremadamente baja) y lo positivo
del método del STOP-CONT (su alta resolucion) justo donde mas falta hace.
Podemos implementar un planificador haciendo uso del método del STOP-
CONT para las aplicaciones SRT, que son las que necesitan de una alta
resolucién temporal para su correcta ejecucion. Y luego, las aplicaciones tipo
Best-effort son planificadas utilizando el método del renice, lo cual genera
poca intrusiéon en el sistema y no afecta las aplicaciones SRT.

Tenemos a nuestro favor que a partir del kernel de Linux 2.6.18 se incluyen
mejoras relacionadas con el tiempo real. Estas mejoras estan principalmente
relacionadas con una mayor resolucién del temporizador y mejoras en la
capacidad de desalojo de algunos segmentos del kernel. Es valido destacar
que ain queda mucho por hacer en estos dos sentidos.

73



74



Apéndice B

Procesadores multicore

Los procesadores multicore, que son ya una realidad hoy en dia, comienzan
a ser objeto de muchos estudios. Entre los trabajos que se enfocan en tomar
ventaja de las posibilidades que abren al emplear procesadores multicore
encontramos [32, 6, 7, 18]. En este apéndice mostramos el estado de arte
relacionado con los procesadores multicore, la forma en la que pensamos
tomar ventajas de ellos y algunos experimentos realizados.

B.1. Estado del arte procesadores multicore

La planificaciéon de aplicaciones paralelas SRT en procesadores multicore es
un tema de reciente interés en la comunidad cientifica. Las ventajas que
pueda aportar la coplanificacién en un entorno multicore no son evidentes
y han de ser estudiadas detalladamente. Ademaés de la planificacion, otros
temas de relevancia en esta area estdn asociados al nuevo cuello de botella
existente en estas arquitecturas, la memoria principal y las caches.

En [32] se aborda el problema desde una 6ptica introductoria, mostrando el
panorama general de hardware y las limitaciones de los sistemas operativos
(SO) comerciales al enfrentar este problema. Las conclusiones més impor-
tantes de este estudio son la necesidad de desarrollar aplicaciones capaces de
aprovechar el paralelismo existente en el hardware y que los planificadores
de los SO sean mas competentes a la hora de aprovechar las capacidades
multicore de los procesadores. Sus recomendaciones pasan por tres puntos
principales, la clasificaciéon de los procesos, la capacidad de adaptarse y
detectar su tipo de forma automatica y la necesidad de incrementar la
cooperacion entre los procesos.

La posibilidad de que los diferentes cores de un procesador multicore sean
usados para diferentes tipos de tareas es introducida en [18]. En este estudio,
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Figura B.1: Ejemplos de tipos de cache en procesadores dual-core.

los cores que conforman el procesador multicore tienen diferente potencia,
por lo que se denomina a esta plataforma asimétrica. Proponen la planifi-
cacion de las tareas best-effort y SRT en los diferentes cores del procesador
intentando mejorar el rendimiento de las aplicaciones best-effort con una
estrategia basada en servidores diferidos DS (Deferrable Servers) [79]. El
algoritmo propuesto en DS esta basado en la premisa de aumentar las prio-
ridades a las tareas aperiddicas mientras las tareas periddicas no pierdan sus
deadlines.

Algunos estudios han intentado responder las incégnitas relacionadas con la
memoria principal v la cache en procesadores multicore. Ha de senalarse que
todos los estudios realizados se basan en la premisa de la cache de nivel 2
(L2) es compartida (Figura B.1l.izquierda) entre los cores del multiproce-
sador. Estudios centrados en la planificacion de tareas RT [7] y paralelas [6]
en plataformas multicore intentan tomar ventaja de esta caracteristica de
algunos procesadores multicore. En estas circunstancias los cambios de con-
texto no son costosos cuando el working set de la aplicacién esta en cache y
de esta caracteristica de los sistemas multicore con cache compartida sacan
ventaja en estos trabajos.

La influencia del ancho de banda de la memoria cuando se planifican apli-
caciones RT o SRT es estudiada en [52|. Como conclusion principal de este
estudio encontramos que solo podemos colocar varios procesos RT o SRT en
un procesador multicore simétrico si controlamos el ancho de banda del bus
de memoria disponible y su uso. Se recomiendo ademas que las aplicaciones
RT o SRT modelen su comportamiento de acceso a memoria en rafagas, para
facilitar la planificacion del uso del bus de memoria. En [46] encontramos un
estudio sobre el efecto del impacto en la eficiencia en el acceso a memoria en
sistemas SMP con diseno de memoria compartida. Contemplando el impacto
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Figura B.2: Esquema de uso de los cores en procesadores Pentium D.

de la consumicién de ancho de banda de memoria por parte de las nuevas
tecnologias de red, usando como ejemplo Myrinet.

Los trabajos en este tema aiin son embrionarios y escasos, siendo algunos de
ellos interesantes consideraciones y recomendaciones a seguir.

B.2. Uso de la capacidad multicore de los proce-
sadores

Otro de los desafios a enfrentar en este trabajo es la forma de tomar ventaja
de las bondades de los procesadores multicore, algunos de los cuales estan
descritos en la seccion B.4. En [18], multiples procesadores de diferente poder
de computo son planificados con tareas SRT y Best-effort usando servidores
diferidos para mejorar el rendimiento de las aplicaciones Best-effort. Esta
idea nos parece valida, ain cuando en nuestro caso ambos cores tienen el
mismo poder de cémputo.

La Figura B.2 muestra una aproximacion a este problema desde nuestra ép-
tica. Dado que hay disponibilidad de dos cores y tenemos dos grandes grupos
de aplicaciones, se propone utilizar cada core para cada grupo de aplicaciones
(SRT y Best-effort). Logicamente para generar menos compentencia por los
recursos, las tareas de control también serian realizadas por el core dedicado
a las tareas Best-effort.
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’ App/Proc ‘ mghb8 ‘ mgb4 ‘ mghb2 ‘ mgab8 | mgab4 | mgab2 ‘ mgag8 ‘
Pentium IV | 75 119 209 49 65 129 19
Pentium D 52 84 138 31 50 84 11

SpeedUp 1,43 1,42 1,52 1,56 1,29 1,53 1,74

Tabla B.1: Tiempos y speedups para Pentium D y Pentium IV, tipo de
aplicacion NAS CPU bound.

| App/Proc | isb8 | isb4 | isb2 | isab8 | isab4 | isab2 | isa8 |
Pentium IV | 179 | 240 [ 240 | 58 | 109 [ 99 [ 39

Pentium D | 119 | 144 | 103 99 70 20 30
SpeedUp | 1,50 | 1,67 | 2,33 | 0,99 | 1,55 | 1,97 | 1,31

Tabla B.2: Tiempos y speedups para Pentium D y Pentium IV, tipo de
aplicacion NAS IO bound.

B.3. Experimentacién en procesadores Pentium D

Los experimentos realizados van destinados a calcular el speedup relativo
entre procesadores Pentium D a procesadores Pentium tradicionales. Los
procesadores Pentium D destacan por tener dos cores, cada uno a una ve-
locidad de 3.6G Hz y una cache de 2 MB por cada core, lo cual hace un total
de 4 MB. También ha de destacarse que el acceso a memoria es mejor, ya
que tienen valores del FSB mayores que los procesadores Pentium empleados
como comparativa. Los procesadores Pentium tienen una velocidad del reloj
de 1.8 GHz y 512 KB de cache.

Las tablas B.3 y B.4 muestran los tiempos de ejecucién y speedup de acuerdo
a la caracterizacion de las aplicaciones del NAS. CPU bound significa que
las aplicaciones emplean mas tiempo calculando que accediento a disco e
10 bound lo contrario. El speedup promedio para todas las ejecuciones es de
1,58 y llama la atencién que sea tan bajo, teniendo en cuenta que no solo hay
presentes dos procesadores, sino que también sus caracteristicas particulares
han mejorado de forma notable.

Para intentar aclarar el por qué del bajo speedup, repetimos el experimento
anterior para los Pentiums D, pero con un proceso robandose toda la ca-
pacidad de computo de uno de los cores. Para asegurarnos que el sistema
de balanceo de colas de Linux no inteferia en nuestro experimento, ligamos
nuestro ladréon de CPU a uno de los cores y el demonio de PVM al otro.

Los resultados parecen sorprendentes, pues el speedup promedio para este ex-
perimento (1,56) es apenas dos décimas menor que cuando empleamos los dos
cores. Creemos que esto se debe al hecho de que la implementacién de PVM
es tratada como un proceso mas por el SO, razén por la cual no toma gran
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’ App/Proc ‘ mgb8 ‘ mgb4 ‘ mgb2 ‘ mgab8 | mgab4 | mgab2 ‘ mgag8 ‘
Pentium IV | 75 119 209 49 65 129 19
Pentium D 52 82 154 31 50 80 16

SpeedUp 1,44 | 1,44 | 1,36 1,57 1,30 1,62 1,22

Tabla B.3: Tiempos y speedups para Pentium D (un core deshabilitado) y
Pentium IV, tipo de aplicacion NAS CPU bound.

| App/Proc | isb8 | isb4 [ isb2 | isab8 | isab4 | isab2 | isa8 |
Pentium IV [ 179 [ 240 [ 240 | 58 [ 109 | 99 | 39
Pentium D | 117 | 144 | 102 58 71 49 29
SpeedUp | 1,53 [ 1,67 [ 2,35 | 0,99 | 1,55 | 2,00 | 1,33

Tabla B.4: Tiempos y speedups para Pentium D (un core deshabilitado) y
Pentium IV, tipo de aplicaciéon NAS IO bound.

ventaja de la capacidad multicore del procesador. Este situacion refuerza la
propuesta antes realizada, ya que el hecho de emplear los procesadores por
separado no afecta de forma notable la ejecuciéon de las aplicaciones.

B.4. Algunas Arquitecturas SMP Actuales

Symmetric multiprocessing (SMP) es el nombre de una arquitectura de or-
denadores multiprocesador en la cual dos o mas procesadores idénticos estéan
conectados a una tnica memoria pricipal compartida. En este tipo de sis-
tema, la ubicacion de la cache de nivel 2 (L2), define el coste de las migra-
ciones de tareas entre procesadores. En esta seccién repasaremos los proce-
sadores actuales que soportan arquitecturas SMP, cabe destacar que este
tipo de arquitectura es bastante comun en los procesadores comerciales.

Una amplia variedad de procesadores soportan SMP en la actualidad, entre
ellos podemos mencionar:

= Xeon de Intel: Soportan sistemas SMP desde mediados del 2001, es la
linea de procesadores de Intel destinada a servidores. Actualmente se
producen procesadores Xeon en versiones Dual-Core y Quad-Core. En
todas las versiones con varios cores la L2 es compartida.

= Intel Core: Disenado para ordenadores portétiles, por lo que se centra
en el ahorro energético de los procesadores. Al igual que su sucesor
directo (Intel Pentium Dual-Core) los cores integrantes del procesador
comparten la misma cache.
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s Intel Core 2: Representa la unién de las dos lineas de procesadores
de Intel, para ordenadores portatiles y de escritorio. Puede contener 2
(version Duo) o 4 (version Quad) cores, con cache L2 compartida.

s Opteron de AMD: Lanzado al mercado en abril del 2003, fue disefiado
para competir con los procesadores Xeon de Intel en el mercado de los
servidores. Desde mayo del 2005 tiene una versiéon de dos cores y se
espera que para mediados del 2007 salga al mercado la versién Quad-
Core. Ademés de arquitectura SMP soporta arquitecturas NUMA.

» Ultra SPARC'" Lanzados al mercado desde finales del 2005, en versiones
de 4, 6 y 8 cores, soportando 4 hilos por cada uno de ellos. Utiliza una
cache L2 compartida de 3 MB de tamano y técnicas para lograr un uso
més eficiente.

s Pentium D: Lanzado al mercado en mayo del 2005, incluye dos unidades
Pentium completas actuando cada una como un core, que disponen de
una cache L2. Los tamanos de las L2 por core estan asociados a la
generacion a la que pertenecen, siendo de 2x1 MB o 2x2 MB.

Ha de destacarse que atin cuando en los procesadores multicore la tenden-
cia parece ser el uso de la cache L2 compartida, en este trabajo la experi-
mentacién habra de realizarse en procesadores Pentium D "Presler”. Estos
procesadores conforman la ultima y més nueva generacion de procesadores
de esta gama, fabricados en tecnologia de 65 nanémetros, con una velocidad
del reloj de 3.6 GHz y una cache L2 2 MB por cada core. En esta linea de
procesadores, la comunicacion entre los cores se hace a través del FSB (Front
Side Bus), lo cual genera efectos tan negativos como la contencion de bus
y €l hecho de que cuando el procesador estd muy cargado ha de dividirse el
ancho de banda existente (800 MT/s) entre los cores.

La contenciéon de bus es un efecto ya presente en otros procesadores, como los
procesadores Xeon, con este término nos referimos a los efectos no deseados
que ocurren cuando méas de un core intenta escribir en el bus de memoria.
Este efecto no deseado puede llevar a operaciones erréneas o dafnos al hard-
ware. Cabe destacar que no es un problema solo de los buses de memoria,
puede ocurrir también con cualquier bus del sistema con mas de un disposi-
tivo asociado al bus.
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