
 
 

CODI FONT DELS IP CORES  

 ASSOCIATS AL PROJECTE 

 
 

CREACIÓ D’ IP CORES EN UNA 

PLATAFORMA NIOS:  

METODOLOGIA DE DISSENY 
 

 

 

Memòria del Projecte Fi de Carrera

d’ Enginyeria en Informàtica 

realitzat per 

Antoni Costa Sanfeliu 

i dirigit per 

Joan Oliver Malagelada 

Bellaterra, 15 de Juny de 2007 



 

 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   1 

 

 
ÍNDEX

 
 

1. IP CORE: PWM..................................................................................................... 2 

   1.1 PWM Hardware.................................................................................................. 2

      1.1.1 Fitxer de la tasca lògica (pwm_task_logic.v) ............................................... 2

      1.1.2 Fitxer de registres (pwm_register_file.v) ..................................................... 3

      1.1.3 Fitxer d’interfície (pwm_avalon_interface.v)............................................... 6

   1.2 PWM Software ................................................................................................... 7

      1.2.1 INC (avalon_slave_pwm_regs.h) ................................................................. 7

      1.2.2 HAL/INC (avalon_pwm_routines.h)............................................................ 8

      1.2.3 HAL/SRC (avalon_pwm_routines.c) ........................................................... 8

2. IP CORE: I2C ...................................................................................................... 10 

   2.1 I2C Hardware ................................................................................................... 10

      2.1.1 Fitxer del control de bits (i2c_master_bit_ctrl.vhd) ................................... 10

      2.1.2 Fitxer del control de bytes (i2c_master_byte_ctrl.vhd).............................. 16

      2.1.3 Fitxer d’interfície d’alt nivell (i2c_master_top.vhd) .................................. 20

      2.1.4 Fitxer d’interfície amb el bus Avalon (oc_i2c_master_top.vhd)................ 25

   2.2 I2C Software..................................................................................................... 26

      2.2.1 INC (oc_i2c_master.h) ............................................................................... 27

 
 

 

 

 

 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   2 

 

 

1. IP CORE: PWM 

 

1.1 PWM Hardware 

 
A continuació es detalla el codi utilitzat a nivell hardware, desglossat en les tres 

seccions estudiades: Tasca lògica, registres i interfície Avalon. 

 

1.1.1 Fitxer de la tasca lògica (pwm_task_logic.v) 

 
module pwm_task_logic 
( 
 clk, 
 pwm_enable, 
 resetn,  
 clock_divide, 
 duty_cycle, 
 pwm_out 
); 
 
//Entrades 
input clk;    //Senyal d’entrada de rellotge  
input [31:0] clock_divide;  //Valor de la divisió del rellotge 
input [31:0] duty_cycle;  //Valor del cicle de treball 
input pwm_enable;   //Senyal d’enable 
input resetn;    //Reset 
 
//Sortides 
output pwm_out;   //Sortida PWM  
 
//Declaració de senyals  
reg [31:0] counter;   //Comptador intern PWM  
reg pwm_out;    //Sortida PWM 
  
//Codi  
always @(posedge clk or negedge resetn)         //Process del comptador PWM 
begin 
 if (~resetn)begin 
  counter <= 0; 
 end 
 else if(pwm_enable)begin 
  if (counter >= clock_divide)begin 
   counter <= 0; 
  end 
  else begin  
   counter <= counter + 1; 
  end 
 end 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   3 

 

 else begin 
  counter <= counter;    
 end 
end 
 
always @(posedge clk or negedge resetn)      //Comparador PWM 
begin 
 if (~resetn)begin 
  pwm_out <= 0; 
 end 
 else if(pwm_enable)begin 
  if (counter >= duty_cycle)begin 
   pwm_out <= 1'b1; 
  end 
  else begin 
   if (counter == 0) 
    pwm_out <= 0; 
   else 
    pwm_out <= pwm_out; 
   end 
  end 
 else begin 
  pwm_out <= 1'b0; 
 end 
end 
  
endmodule 
 
 
 
 

1.1.2 Fitxer de registres (pwm_register_file.v) 

 
module pwm_register_file 
( //Senyals del bus Avalon 
 clk, 
 resetn,  
 chip_select, 
 address, 
 write, 
 write_data, 
 read, 
 read_data, 
 
 //Senyals de sortida del PWM 
 pwm_clock_divide, 
 pwm_duty_cycle, 
 pwm_enable 
); 
 
//Paràmetres  
parameter clock_divide_reg_init = 32'h0000_0000; 
parameter duty_cycle_reg_init   = 32'h0000_0000; 
 
//Entrades 
input clk;         //Rellotge del sistema 
input resetn;    //Reset del sistema 
input chip_select;   //ChipSelect del bus Avalon 
input [1:0] address;        //Bus d’adreces del bus Avalon  



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   4 

 

input write;    //Senyal d’escriptura del bus Avalon 
input [31:0] write_data;  //Bus de dades d’escriptura 
input read;          //Senyal de lectura del bus Avalon 
  
//Sortides 
output [31:0] read_data;    //Bus de dades de lectura 
output [31:0] pwm_clock_divide;  //Senyal PWM dividida del rellotge 
output [31:0] pwm_duty_cycle;    //Senyal PWM del cicle de treball 
output        pwm_enable;        //Senyal PWM d’enable 
 
//Declaració de senyals  
reg [31:0] clock_divide_register; //Registre de divisió del rellotge 
reg [31:0] duty_cycle_register;   //Registre del cicle de treball 
reg        enable_register;   //Bit d’enable 
reg [31:0] read_data;   //Bus de dades de lectura 
  
//Descodificació d’adreces 
wire clock_divide_reg_selected, duty_cycle_reg_selected, 
enable_reg_selected; 
//Validació d’una escriptura en una adreça concreta 
wire write_to_clock_divide, write_to_duty_cycle, write_to_enable; 
//Validació d’una lectura en una adreça concreta 
wire read_to_clock_divide, read_to_duty_cycle, read_to_enable; 
//Validació d’un accés correcte 
wire valid_write, valid_read; 
 
//Codi Principal  
 
//Descodificació d’adreces 
assign clock_divide_reg_selected = !address[1] & !address[0];  //adreça 00 
assign duty_cycle_reg_selected   = !address[1] &  address[0];  //adreça 01 
assign enable_reg_selected       =  address[1] & !address[0];  //adreça 10 
 
//Determinar si una transacció vàlida s’ha iniciat 
assign valid_write = chip_select & write;   
assign valid_read  = chip_select & read; 
 
//Determinar si s’ha produït una escriptura en una adreça concreta 
assign write_to_clock_divide = valid_write & clock_divide_reg_selected; 
assign write_to_duty_cycle   = valid_write & duty_cycle_reg_selected; 
assign write_to_enable       = valid_write & enable_reg_selected; 
 
//Determinar si s’ha produït una lectura en una adreça concreta 
assign read_to_clock_divide = valid_read & clock_divide_reg_selected; 
assign read_to_duty_cycle   = valid_read & duty_cycle_reg_selected; 
assign read_to_enable       = valid_read & enable_reg_selected; 
 
//Escriure en el registre divisor del rellotge 
always@(posedge clk or negedge resetn) 
begin 
 if(~resetn)begin //Async Reset 
  clock_divide_register <= clock_divide_reg_init; 
 end 
 else begin  
  if(write_to_clock_divide) begin 
   clock_divide_register <= write_data;    
  end 
  else begin 
   clock_divide_register <= clock_divide_register;   
  end 
   
 end 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   5 

 

end  
 
//Escriure en el registre del cicle de treball 
always@(posedge clk or negedge resetn) 
begin 
 if(~resetn)begin //Async Reset 
  duty_cycle_register <= duty_cycle_reg_init;  
 end 
 else begin  
  if(write_to_duty_cycle) begin 
   duty_cycle_register <= write_data;    
  end 
  else begin 
   duty_cycle_register <= duty_cycle_register;   
  end 
 end 
end  
 
//Escriure en el registre d’enable 
always@(posedge clk or negedge resetn) 
begin 
 if(~resetn)begin //Async Reset 
  enable_register <= 1'b0; 
 end 
 else begin 
  if(write_to_enable)begin 
   enable_register <= write_data[0]; 
  end 
  else begin 
   enable_register <= enable_register; 
  end 
 end 
end 
 
//Llegir del bus de dades  
always@(read_to_clock_divide or read_to_duty_cycle or read_to_enable or 
clock_divide_register or duty_cycle_register or enable_register) 
begin 
 if(read_to_clock_divide) begin 
  read_data = clock_divide_register; 
 end 
 else if(read_to_duty_cycle) begin 
  read_data = duty_cycle_register; 
 end 
 else if(read_to_enable) begin 
  read_data = {31'd0,enable_register}; 
 end 
 else begin 
  read_data = 32'h0000_0000; 
 end 
end 
 
//Assignar els valors dels registres a les sortides del PWM 
assign pwm_clock_divide = clock_divide_register; 
assign pwm_duty_cycle = duty_cycle_register; 
assign pwm_enable = enable_register; 
 
endmodule 

 
 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   6 

 

1.1.3 Fitxer d’interfície (pwm_avalon_interface.v) 

 
module pwm_avalon_interface 
( clk, 
 resetn, 
 avalon_chip_select, 
 address, 
 write, 
 write_data, 
 read, 
 read_data, 
 pwm_out 
 ); 
 
//Valors a passar als registres 
parameter clock_divide_reg_init = 32'h0000_0000; 
parameter duty_cycle_reg_init = 32'h0000_0000; 
 
//Entrades/Sortides PWM Avalon Slave 
input clk;           //Rellotge del sistema 
input resetn;     //Reset del sistema 
input avalon_chip_select;  //Avalon Chipselect 
input [1:0]address;         //Avalon bus d’adreces 
input write;    //Senyal Avalon d’escriptura 
input [31:0]write_data;  //Bus de dades d’escriptura 
input read;               //Senyal de lectura 
 
output [31:0]read_data;  //Bus de dades de lectura 
 
//Entrades/Sortides exportades PWM Avalon_Slave_ 
output pwm_out;        //Senyal de sortida PWM 
   
//Nodes Interns del PWM Avalon Slave 
 
//Senyal divisòria de rellotge del fitxer de registres a la tasca lògica 
wire [31:0] pwm_clock_divide;   
//Valor del cicle de treball del fitxer de registres a la tasca lògica 
wire [31:0] pwm_duty_cycle;     
//Senyal d’enable PWM del fitxer del registres a la tasca lògica 
wire pwm_enable; 
  
 
//PWM Instància 
pwm_task_logic task_logic 
( 
    .clk            (clk ), 
    .pwm_enable        (pwm_enable), 
    .resetn            (resetn), 
    .clock_divide      (pwm_clock_divide), 
    .duty_cycle        (pwm_duty_cycle), 
    .pwm_out       (pwm_out) 
); 
 
//Instàncies del fitxer de registres 
pwm_register_file #(clock_divide_reg_init, duty_cycle_reg_init) 
memory_element 
(  
 .clk                (clk), 
 .resetn              (resetn), 
 .chip_select         (avalon_chip_select), 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   7 

 

 .address             (address), 
 .write               (write), 
 .write_data         (write_data), 
 .read                (read), 
 .read_data           (read_data), 
 .pwm_clock_divide    (pwm_clock_divide), 
 .pwm_duty_cycle  (pwm_duty_cycle), 
 .pwm_enable         (pwm_enable) 
); 
 
endmodule 
 
 

 

1.2 PWM Software 
 
 

A continuació es detalla el codi utilitzat a nivell software, en dos nivells. En el 

primer es mostren les capçaleres on es defineixen les macros per a accedir als 

registres del component PWM,  i per l’altra les HAL (Hardware Abstraction Layer) 

que el processador NIOSII utilitza com a drivers per a l’execució dels components. 

 

1.2.1 INC (avalon_slave_pwm_regs.h) 

 
#ifndef __AVALON_PWM_REGS_H__ 
#define __AVALON_PWM_REGS_H__ 
 
#include <io.h> 
 
#define IORD_AVALON_PWM_CLOCK_DIVIDER(base)       IORD(base, 0)  
#define IOWR_AVALON_PWM_CLOCK_DIVIDER(base, data) IOWR(base, 0, data) 
 
#define AVALON_PWM_CLOCK_DIVIDER_MSK              (0xFFFFFFFF) 
#define AVALON_PWM_CLOCK_DIVIDER_OFST             (0) 
 
#define IORD_AVALON_PWM_DUTY_CYCLE(base)         IORD(base, 1)  
#define IOWR_AVALON_PWM_DUTY_CYCLE(base, data)   IOWR(base, 1, data) 
#define AVALON_PWM_DUTY_CYCLE_MSK                (0xFFFFFFFF) 
#define AVALON_PWM_DUTY_CYCLE_OFST               (0) 
 
#define IORD_AVALON_PWM_ENABLE(base)             IORD(base, 2)  
#define IOWR_AVALON_PWM_ENABLE(base, data)       IOWR(base, 2, data) 
#define AVALON_PWM_ENABLE_MSK                    (0x1) 
#define AVALON_PWM_ENABLE_OFST                   (0) 
 
#endif  

 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   8 

 

1.2.2 HAL/INC (avalon_pwm_routines.h) 

 
#include "avalon_pwm_regs.h" 
 
#define AVALON_PWM_TYPE (volatile unsigned int*) 
 
int avalon_pwm_init(unsigned int address, unsigned int clock_divider, 
unsigned int duty_cycle); 
int avalon_pwm_enable(unsigned int address); 
int avalon_pwm_disable(unsigned int address); 
int avalon_pwm_change_duty_cycle(unsigned int address, unsigned int 
duty_cycle); 
 
//Codis de retorn 
#define AVALON_PWM_OK                                           0 
#define AVALON_PWM_DUTY_CYCLE_GREATER_THAN_CLOCK_CYCLE_ERROR -1 
#define AVALON_PWM_ENABLED_CONFIRMATION_ERROR             -2 
#define AVALON_PWM_DISABLED_CONFIRMATION_ERROR               -3 
 
//Constants 
#define AVALON_PWM_ENABLED  1 
#define AVALON_PWM_DISABLED 0 

 

1.2.3 HAL/SRC (avalon_pwm_routines.c)

 
#include "avalon_pwm_routines.h" 
 
 
int avalon_pwm_init(unsigned int address, unsigned int clock_divider, 
unsigned int duty_cycle) 
{ 

//El registre que conté el cicle de treball ha de ser més petit o 
//igual que el divisor del rellotge 

 if(duty_cycle > clock_divider)    
{ 

return AVALON_PWM_DUTY_CYCLE_GREATER_THAN_CLOCK_CYCLE_ERROR; 
 } 
 else 
 { 
  IOWR_AVALON_PWM_CLOCK_DIVIDER(address, clock_divider - 1); 
  IOWR_AVALON_PWM_DUTY_CYCLE(address, duty_cycle); 
 } 
 return AVALON_PWM_OK; 
} 
 
int avalon_pwm_enable(unsigned int address) 
{ 
  IOWR_AVALON_PWM_ENABLE(address, AVALON_PWM_ENABLE_MSK); 
 
  //Confirma que el PWM està activat 
  if(IORD_AVALON_PWM_ENABLE(address) != AVALON_PWM_ENABLED)   
  { 
   return AVALON_PWM_ENABLED_CONFIRMATION_ERROR; 
  } 
  return AVALON_PWM_OK; 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   9 

 

} 
 
int avalon_pwm_disable(unsigned int address) 
{ 
  IOWR_AVALON_PWM_ENABLE(address, ~AVALON_PWM_ENABLE_MSK); 
 
 
  //Confirma que el PWM està desactivat 
  if(IORD_AVALON_PWM_ENABLE(address) != AVALON_PWM_DISABLED)   
  { 
   return AVALON_PWM_DISABLED_CONFIRMATION_ERROR; 
  } 
  return AVALON_PWM_OK; 
} 
 
 
int avalon_pwm_change_duty_cycle(unsigned int address, unsigned int 
duty_cycle) 
{ 
 

//El registre que conté el cicle de treball ha de ser més petit o 
//igual que el divisor del rellotge 
if(duty_cycle > IORD_AVALON_PWM_CLOCK_DIVIDER(address))    
{ 

  return AVALON_PWM_DUTY_CYCLE_GREATER_THAN_CLOCK_CYCLE_ERROR; 
 } 
 else 
 { 
      IOWR_AVALON_PWM_DUTY_CYCLE(address, duty_cycle); 
 } 
   return AVALON_PWM_OK; 
} 

 
 
 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   10 

 

 

2. IP CORE: I2C 

 

2.1 I2C Hardware 

 
A continuació es detalla el codi utilitzat a nivell hardware. Les seccions en les 

que està dividit són a nivell de bit, byte, interfície i un adaptador amb la interfície del 

bus Avalon, que a més simula els buffer tri-state, per a la bidireccionalitat dels dos 

senyals (SCL i SDA). 

 

2.1.1 Fitxer del control de bits (i2c_master_bit_ctrl.vhd) 

 
 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
 
entity i2c_master_bit_ctrl is 
port ( 
 clk    : in std_logic; 
 rst    : in std_logic; 
 nReset : in std_logic; 
 ena    : in std_logic;   //Senyal d’enable 
 clk_cnt : in unsigned(15 downto 0); //Valor del rellotge 
 cmd     : in std_logic_vector(3 downto 0); 
 cmd_ack : out std_logic;    //Ack comanda 
 busy    : out std_logic;    //Bus ocupat 

al      : out std_logic;    //Arbitratge perdut 
 din  : in std_logic; 
 dout : out std_logic; 
 //Línies I2C 
 scl_i   : in std_logic;  //Línia d’entrada del rellotge  
 scl_o   : out std_logic; //Línia de sortida del rellotge 
 scl_oen : out std_logic; //Línia de sortida d’enable. Activa a baixa 
 sda_i   : in std_logic;  //Línia d’entrada de dades 
 sda_o   : out std_logic; //Línia de sortida de dades 
 sda_oen : out std_logic  //Línia de sortida d’enable. Activa a baixa 
 ); 
end entity i2c_master_bit_ctrl; 
 
architecture structural of i2c_master_bit_ctrl is 
 constant I2C_CMD_NOP    : std_logic_vector(3 downto 0) := "0000"; 
 constant I2C_CMD_START  : std_logic_vector(3 downto 0) := "0001"; 
 constant I2C_CMD_STOP   : std_logic_vector(3 downto 0) := "0010"; 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   11 

 

 constant I2C_CMD_READ   : std_logic_vector(3 downto 0) := "0100"; 
 constant I2C_CMD_WRITE  : std_logic_vector(3 downto 0) := "1000"; 
 
 type states is (idle, start_a, start_b, start_c, start_d, start_e, 
 stop_a, stop_b, stop_c, stop_d, rd_a, rd_b, rd_c, rd_d, wr_a, wr_b, 
wr_c, wr_d); 
 signal c_state : states; 
 signal iscl_oen, isda_oen : std_logic;        

signal sda_chk            : std_logic;        
 signal dscl_oen           : std_logic;           
 signal sSCL, sSDA         : std_logic;           
 signal clk_en, slave_wait : std_logic;           
 signal ial                : std_logic;           

signal cnt : unsigned(15 downto 0) := clk_cnt;   
 signal cnt : unsigned(15 downto 0);             

 
begin 
//Si l’esclau no està llest pot esperar posant el senyal SCL a baixa 

 
process (clk) 
begin 

    if (clk'event and clk = '1') then 
      dscl_oen <= iscl_oen; 
     end if; 
 end process; 
 slave_wait <= dscl_oen and not sSCL; 
 
 //Generar el senyal de rellotge 
 gen_clken: process(clk, nReset) 
 begin 
     if (nReset = '0') then 
       cnt    <= (others => '0'); 
       clk_en <= '1'; 
     elsif (clk'event and clk = '1') then 
       if (rst = '1') then 
         cnt    <= (others => '0'); 
         clk_en <= '1'; 
       elsif ( (cnt = 0) or (ena = '0') ) then 
         cnt    <= clk_cnt; 
         clk_en <= '1'; 
       elsif (slave_wait = '1') then 
         cnt    <= cnt; 
         clk_en <= '0'; 
       else 
         cnt    <= cnt -1; 
         clk_en <= '0'; 
       end if; 
     end if; 
 end process gen_clken; 
 
 
 //Generar el controlador d’estats del bus 
 bus_status_ctrl: block 
   signal dSCL, dSDA          : std_logic;  //Fa esperar SCL i SDA 
   signal sta_condition       : std_logic;  //Inici detectat 
   signal sto_condition       : std_logic;  //Stop detectat 
   signal cmd_stop            : std_logic;  //Comanda de Stop 
   signal ibusy               : std_logic;  //Senyal interna d’ocupat 
 begin 
     //Sincronitza les entrades SDA i SCL 
     synch_scl_sda: process(clk, nReset) 
     begin 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   12 

 

         if (nReset = '0') then 
           sSCL <= '1'; 
           sSDA <= '1'; 
 
           dSCL <= '1'; 
           dSDA <= '1'; 
         elsif (clk'event and clk = '1') then 
           if (rst = '1') then 
             sSCL <= '1'; 
             sSDA <= '1'; 
 
             dSCL <= '1'; 
             dSDA <= '1'; 
           else 
             sSCL <= scl_i; 
             sSDA <= sda_i; 
 
             dSCL <= sSCL; 
             dSDA <= sSDA; 
           end if; 
         end if; 
     end process synch_SCL_SDA; 
 
     detect_sta_sto: process(clk, nReset) 
     begin 
         if (nReset = '0') then 
           sta_condition <= '0'; 
           sto_condition <= '0'; 
         elsif (clk'event and clk = '1') then 
           if (rst = '1') then 
             sta_condition <= '0'; 
             sto_condition <= '0'; 
           else 
             sta_condition <= (not sSDA and dSDA) and sSCL; 
             sto_condition <= (sSDA and not dSDA) and sSCL; 
           end if; 
         end if; 
     end process detect_sta_sto; 
 
     //Genera el senyal bus i2c ocupat 
     gen_busy: process(clk, nReset) 
     begin 
         if (nReset = '0') then 
           ibusy <= '0'; 
         elsif (clk'event and clk = '1') then 
           if (rst = '1') then 
             ibusy <= '0'; 
           else 
             ibusy <= (sta_condition or ibusy) and not sto_condition; 
           end if; 
         end if; 
     end process gen_busy; 
     busy <= ibusy; 
 
   
     //Generació d’arbitratge perdut. Es perd quan: 
     //Els bus i2c està a baixa i el master posa SDA a alta 
     //Senyal de Stop detectada quan no s’esperava 
     gen_al: process(clk, nReset) 
     begin 
       if (nReset = '0') then 
         cmd_stop  <= '0'; 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   13 

 

         ial       <= '0'; 
       elsif (clk'event and clk = '1') then 
         if (rst = '1') then 
           cmd_stop  <= '0'; 
           ial       <= '0'; 
         else 
           if (clk_en = '1') then 
             if (cmd = I2C_CMD_STOP) then 
               cmd_stop <= '1'; 
             else 
               cmd_stop <= '0'; 
             end if; 
           end if; 
 
           if (c_state = idle) then 
             ial <= (sda_chk and not sSDA and isda_oen); 
           else 
             ial <= (sda_chk and not sSDA and isda_oen) or 
(sto_condition and not cmd_stop); 
           end if; 
 
         end if; 
       end if; 
     end process gen_al; 
     al <= ial; 
 
     //Genera el senyal dout, el guarda i fa pujar el senyal SCL 
     gen_dout: process(clk) 
     begin 
       if (clk'event and clk = '1') then 
         if (sSCL = '1' and dSCL = '0') then 
           dout <= sSDA; 
         end if; 
       end if; 
     end process gen_dout; 
 end block bus_status_ctrl; 
 
 
 //Generació de la màquina d’estats 
 nxt_state_decoder : process (clk, nReset, c_state, cmd) 
 begin 
     if (nReset = '0') then 
       c_state  <= idle; 
       cmd_ack  <= '0'; 
       iscl_oen <= '1'; 
       isda_oen <= '1'; 
       sda_chk  <= '0'; 
     elsif (clk'event and clk = '1') then 
       if (rst = '1' or ial = '1') then 
         c_state  <= idle; 
         cmd_ack  <= '0'; 
         iscl_oen <= '1'; 
         isda_oen <= '1'; 
         sda_chk  <= '0'; 
       else 
         cmd_ack <= '0'; //NACK per defecte 
 
         if (clk_en = '1') then 
           case (c_state) is 
              when idle => 
                 case cmd is 
                   when I2C_CMD_START => c_state <= start_a; 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   14 

 

                   when I2C_CMD_STOP  => c_state <= stop_a; 
                   when I2C_CMD_WRITE => c_state <= wr_a; 
                   when I2C_CMD_READ  => c_state <= rd_a; 

     when others        => c_state <= idle;                     
end case; 

 
                 iscl_oen <= iscl_oen; //SCL manté l’estat 
                 isda_oen <= isda_oen; //SDA manté l’estat 
                 sda_chk  <= '0';      //No comprovació SDA 
 
              //Inici 
              when start_a => 
                 c_state  <= start_b; 
                 iscl_oen <= iscl_oen; 
                 isda_oen <= '1';      //SDA a alta 
                 sda_chk  <= '0';      //No comprovació SDA 
 
              when start_b => 
                 c_state  <= start_c; 
                 iscl_oen <= '1';      //SCL a alta 
                 isda_oen <= '1';      //Mantenir SDA a alta 
                 sda_chk  <= '0';      //No comprovació SDA 
 
              when start_c => 
                 c_state  <= start_d; 
                 iscl_oen <= '1';      //SCL a alta 
                 isda_oen <= '0';      //SDA a baixa 
                 sda_chk  <= '0';      //No comprovació SDA 
 
              when start_d => 
                 c_state  <= start_e; 
                 iscl_oen <= '1';      //SCL a alta 
                 isda_oen <= '0';      //SDA a baixa 
                 sda_chk  <= '0';      //No comprovació SDA 
 
              when start_e => 
                 c_state  <= idle; 
                 cmd_ack  <= '1';     //Comanda completada  
                 iscl_oen <= '0';     //SCL a baixa 
                 isda_oen <= '0';     //SDA a baixa 
                 sda_chk  <= '0';     //No comprovació SDA 
 
              //Stop 
              when stop_a => 
                 c_state  <= stop_b; 
                 iscl_oen <= '0';     //SCL a baixa 
                 isda_oen <= '0';     //SDA a baixa 
                 sda_chk  <= '0';     //No comprovació SDA 
 
              when stop_b => 
                 c_state  <= stop_c; 
                 iscl_oen <= '1';     //SCL a alta 
                 isda_oen <= '0';     //SDA a baixa 
                 sda_chk  <= '0';     //No comprovació SDA 
 
              when stop_c => 
                 c_state  <= stop_d; 
                 iscl_oen <= '1';    //SCL a alta 
                 isda_oen <= '0';    //SDA a baixa 
                 sda_chk  <= '0';    //No comprovació SDA 
 
              when stop_d => 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   15 

 

                 c_state  <= idle; 
                 cmd_ack  <= '1';   //Comanda completada 
                 iscl_oen <= '1';   //SCL a alta 
                 isda_oen <= '1';   //SDA a alta 
                 sda_chk  <= '0';   //No comprovació SDA 
 
              //Lectura 
              when rd_a => 
                 c_state  <= rd_b; 
                 iscl_oen <= '0';   //SCL a baixa 
                 isda_oen <= '1';   //SDA a alta   

   sda_chk  <= '0';   //No comprovació SDA 
 
              when rd_b => 
                 c_state  <= rd_c; 
                 iscl_oen <= '1';   //SCL a alta 
                 isda_oen <= '1';   //SDA a alta 
                 sda_chk  <= '0';   //No comprovació SDA 
 
              when rd_c => 
                 c_state  <= rd_d; 
                 iscl_oen <= '1';   //SCL a alta 
                 isda_oen <= '1';   //SDA a alta 
                 sda_chk  <= '0';   //No comprovació SDA 
 
              when rd_d => 
                 c_state  <= idle; 
                 cmd_ack  <= '1';   //Comanda completada 
                 iscl_oen <= '0';   //SCL a baixa 
                 isda_oen <= '1';   //SDA a alta 
                 sda_chk  <= '0';   //No comprovació SDA 
 
              //Escriptura 
              when wr_a => 
                 c_state  <= wr_b; 
                 iscl_oen <= '0';   //SCL a baixa 
                 isda_oen <= din;   //Activa SDA 
                 sda_chk  <= '0';   //No comprovació SDA 
 
              when wr_b => 
                 c_state  <= wr_c; 
                 iscl_oen <= '1';   //SCL a alta 
                 isda_oen <= din;   //Guarda SDA                  

   sda_chk  <= '1';   //Comprova SDA 
 
              when wr_c => 
                 c_state  <= wr_d; 
                 iscl_oen <= '1';   //SCL a alta 
                 isda_oen <= din;   //Guarda SDA 
                 sda_chk  <= '1';   //Comprova SDA 
 
              when wr_d => 
                 c_state  <= idle; 
                 cmd_ack  <= '1';   //Comanda completada 
                 iscl_oen <= '0';   //SCL a baixa 
                 isda_oen <= din;   //Guarda SDA 
                 sda_chk  <= '0';   //No comprovació SDA 
 
              when others => 
 
           end case; 
         end if; 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   16 

 

       end if; 
     end if; 
 end process nxt_state_decoder; 
 
 
 //Assignar sortides 
 scl_o   <= '0'; 
 scl_oen <= iscl_oen; 
 sda_o   <= '0'; 
 sda_oen <= isda_oen; 
end architecture structural; 
 
 

2.1.2 Fitxer del control de bytes (i2c_master_byte_ctrl.vhd) 

 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
 
entity i2c_master_byte_ctrl is 
 port ( 
  clk    : in std_logic; 
  rst    : in std_logic; 
  nReset : in std_logic;  
  ena    : in std_logic;  
  clk_cnt : in unsigned(15 downto 0);  
 
  //Senyals d’entrada 
  start, 
  stop, 
  read, 
  write, 
  ack_in : std_logic; 
  din    : in std_logic_vector(7 downto 0); 
 
  //Senyals de sortida 
  cmd_ack  : out std_logic; 
  ack_out  : out std_logic; 
  i2c_busy : out std_logic;  
  i2c_al   : out std_logic;  
  dout     : out std_logic_vector(7 downto 0); 
 
  //Línies I2C 
  scl_i   : in std_logic;   
  scl_o   : out std_logic;  
  scl_oen : out std_logic; 
  sda_i   : in std_logic;   
  sda_o   : out std_logic;  
  sda_oen : out std_logic   
 ); 
end entity i2c_master_byte_ctrl; 
 
architecture structural of i2c_master_byte_ctrl is 
 component i2c_master_bit_ctrl is 
 port ( 
  clk    : in std_logic; 
  rst    : in std_logic; 
  nReset : in std_logic; 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   17 

 

  ena    : in std_logic;     
  clk_cnt : in unsigned(15 downto 0);   
  cmd     : in std_logic_vector(3 downto 0); 
  cmd_ack : out std_logic; 
  busy    : out std_logic;  
  al      : out std_logic;  
 
  din  : in std_logic; 
  dout : out std_logic; 
 
  //Línies I2C 
  scl_i   : in std_logic;   
  scl_o   : out std_logic;  
  scl_oen : out std_logic; 
  sda_i   : in std_logic;   
  sda_o   : out std_logic;  
  sda_oen : out std_logic   
 ); 
 end component i2c_master_bit_ctrl; 
 
 //Comandes per la controladora de bits 
 constant I2C_CMD_NOP   : std_logic_vector(3 downto 0) := "0000"; 
 constant I2C_CMD_START : std_logic_vector(3 downto 0) := "0001"; 
 constant I2C_CMD_STOP  : std_logic_vector(3 downto 0) := "0010"; 
 constant I2C_CMD_READ  : std_logic_vector(3 downto 0) := "0100"; 
 constant I2C_CMD_WRITE : std_logic_vector(3 downto 0) := "1000"; 
 
 //Senyals per a la controladora de bits 
 signal core_cmd : std_logic_vector(3 downto 0); 
 signal core_ack, core_txd, core_rxd : std_logic; 
 signal al : std_logic; 
 
 //Senyals pels registres 
 signal sr : std_logic_vector(7 downto 0);  
 signal shift, ld : std_logic; 
 
 //Senyals per la màquina d’estats 
 signal go, host_ack : std_logic; 
 signal dcnt : unsigned(2 downto 0); 
 signal cnt_done : std_logic; 
 
begin 
 bit_ctrl: i2c_master_bit_ctrl port map( 
  clk     => clk, 
  rst     => rst, 
  nReset  => nReset, 
  ena     => ena, 
  clk_cnt => clk_cnt, 
  cmd     => core_cmd, 
  cmd_ack => core_ack, 
  busy    => i2c_busy, 
  al      => al, 
  din     => core_txd, 
  dout    => core_rxd, 
  scl_i   => scl_i, 
  scl_o   => scl_o, 
  scl_oen => scl_oen, 
  sda_i   => sda_i, 
  sda_o   => sda_o, 
  sda_oen => sda_oen 
 ); 
 i2c_al <= al; 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   18 

 

 cmd_ack <= host_ack; 
 go <= (read or write or stop) and not host_ack; 
 dout <= sr; 
 
 //Genera el registre 
 shift_register: process(clk, nReset) 
 begin 
     if (nReset = '0') then 
       sr <= (others => '0'); 
     elsif (clk'event and clk = '1') then 
       if (rst = '1') then 
         sr <= (others => '0'); 
       elsif (ld = '1') then 
         sr <= din; 
       elsif (shift = '1') then 
         sr <= (sr(6 downto 0) & core_rxd); 
       end if; 
     end if; 
 end process shift_register; 
 
 //Genera el comptador de dades 
 data_cnt: process(clk, nReset) 
 begin 
     if (nReset = '0') then 
       dcnt <= (others => '0'); 
     elsif (clk'event and clk = '1') then 
       if (rst = '1') then 
         dcnt <= (others => '0'); 
       elsif (ld = '1') then 
         dcnt <= (others => '1');   
       elsif (shift = '1') then 
         dcnt <= dcnt -1; 
       end if; 
     end if; 
 end process data_cnt; 
 
 cnt_done <= '1' when (dcnt = 0) else '0'; 
 
 //Màquina d’estats 
 statemachine : block 
     type states is (st_idle, st_start, st_read, st_write, st_ack, 
st_stop); 
     signal c_state : states; 
 begin 
     nxt_state_decoder: process(clk, nReset) 
     begin 
         if (nReset = '0') then 
           core_cmd <= I2C_CMD_NOP; 
           core_txd <= '0'; 
           shift    <= '0'; 
           ld       <= '0'; 
           host_ack <= '0'; 
           c_state  <= st_idle; 
           ack_out  <= '0'; 
         elsif (clk'event and clk = '1') then 
           if (rst = '1' or al = '1') then 
             core_cmd <= I2C_CMD_NOP; 
             core_txd <= '0'; 
             shift    <= '0'; 
             ld       <= '0'; 
             host_ack <= '0'; 
             c_state  <= st_idle; 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   19 

 

             ack_out  <= '0'; 
           else 
             //Inicialització dels senyals de reset 
             core_txd <= sr(7); 
             shift    <= '0'; 
             ld       <= '0'; 
             host_ack <= '0'; 
 
             case c_state is 
               when st_idle => 
                  if (go = '1') then 
                    if (start = '1') then 
                      c_state  <= st_start; 
                      core_cmd <= I2C_CMD_START; 
                    elsif (read = '1') then 
                      c_state  <= st_read; 
                      core_cmd <= I2C_CMD_READ; 
                    elsif (write = '1') then 
                      c_state  <= st_write; 
                      core_cmd <= I2C_CMD_WRITE; 
                    else //Stop 
                      c_state  <= st_stop; 
                      core_cmd <= I2C_CMD_STOP; 
                    end if; 
 
                    ld <= '1'; 
                  end if; 
 
               when st_start => 
                  if (core_ack = '1') then 
                    if (read = '1') then 
                      c_state  <= st_read; 
                      core_cmd <= I2C_CMD_READ; 
                    else 
                      c_state  <= st_write; 
                      core_cmd <= I2C_CMD_WRITE; 
                    end if; 
 
                    ld <= '1'; 
                  end if; 
 
               when st_write => 
                  if (core_ack = '1') then 
                    if (cnt_done = '1') then 
                      c_state  <= st_ack; 
                      core_cmd <= I2C_CMD_READ; 
                    else 
                      c_state  <= st_write;    
                          core_cmd <= I2C_CMD_WRITE;   
                      shift    <= '1'; 
                    end if; 
                  end if; 
 
               when st_read => 
                  if (core_ack = '1') then 
                    if (cnt_done = '1') then 
                      c_state  <= st_ack; 
                      core_cmd <= I2C_CMD_WRITE; 
                    else 
                      c_state  <= st_read;       
                      core_cmd <= I2C_CMD_READ;  
                    end if; 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   20 

 

 
                    shift    <= '1'; 
                    core_txd <= ack_in; 
                  end if; 
 
               when st_ack => 
                  if (core_ack = '1') then 
                    if (stop = '1') then 
                      c_state  <= st_stop; 
                      core_cmd <= I2C_CMD_STOP; 
                    else 
                      c_state  <= st_idle; 
                      core_cmd <= I2C_CMD_NOP; 
                      host_ack <= '1'; 
                    end if; 
                    ack_out  <= core_rxd; 
                    core_txd <= '1'; 
                  else 
                    core_txd <= ack_in; 
                  end if; 
 
               when st_stop => 
                  if (core_ack = '1') then 
                    c_state  <= st_idle; 
                    core_cmd <= I2C_CMD_NOP; 
                    host_ack <= '1'; 
                  end if; 
 
               when others => 
                  c_state  <= st_idle; 
                  core_cmd <= I2C_CMD_NOP; 
                  report ("Byte controller ha entrat en un estat 
il·legal."); 
 
             end case; 
 
           end if; 
         end if; 
     end process nxt_state_decoder; 
 
 end block statemachine; 
 
end architecture structural; 
 
 

2.1.3 Fitxer d’interfície d’alt nivell (i2c_master_top.vhd) 

 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
 
entity i2c_master_top is 
 generic( 
  ARST_LVL : std_logic := '0'                    
 ); 
 port ( 
  wb_clk_i  : in  std_logic;                     
  wb_rst_i  : in  std_logic := '0';               
  arst_i    : in  std_logic := not ARST_LVL;     



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   21 

 

  wb_adr_i  : in  unsigned(2 downto 0);            
wb_dat_i  : in  std_logic_vector(7 downto 0);  

  wb_dat_o  : out std_logic_vector(7 downto 0);   
  wb_we_i   : in  std_logic;                
  wb_stb_i  : in  std_logic;                      

wb_cyc_i  : in  std_logic;                
  wb_ack_o  : out std_logic;                      

wb_inta_o : out std_logic;                    - 
 
  //Línies I2C 
  scl_pad_i     : in  std_logic;                  
  scl_pad_o     : out std_logic;                 
  scl_padoen_o  : out std_logic;                  
  sda_pad_i     : in  std_logic;                 
  sda_pad_o     : out std_logic;                  
  sda_padoen_o  : out std_logic                  
 ); 
end entity i2c_master_top; 
 
architecture structural of i2c_master_top is 
 component i2c_master_byte_ctrl is 
 port ( 
  clk    : in std_logic; 
  rst    : in std_logic; 
  nReset : in std_logic;  
  ena    : in std_logic; 
  clk_cnt : in unsigned(15 downto 0);  
 
  //Senyals d’entrada 
  start, 
  stop, 
  read, 
  write, 
  ack_in : std_logic; 
  din    : in std_logic_vector(7 downto 0); 
 
  //Senyals de sortida 
  cmd_ack  : out std_logic; 
  ack_out  : out std_logic; 
  i2c_busy : out std_logic; 
  i2c_al   : out std_logic; 
  dout     : out std_logic_vector(7 downto 0); 
 
  //Línies I2C 
  scl_i   : in std_logic;   
  scl_o   : out std_logic;  
  scl_oen : out std_logic; 
  sda_i   : in std_logic;   
  sda_o   : out std_logic;  
  sda_oen : out std_logic   
 ); 
 end component i2c_master_byte_ctrl; 
 
 //Registres 
 signal prer : unsigned(15 downto 0);              
 signal ctr  : std_logic_vector(7 downto 0);       
 signal txr  : std_logic_vector(7 downto 0);       
 signal rxr  : std_logic_vector(7 downto 0);       
 signal cr   : std_logic_vector(7 downto 0);       
 signal sr   : std_logic_vector(7 downto 0);       
 
  



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   22 

 

//Senyal interna de reset 
 signal rst_i : std_logic; 
 
 //Accés d’escriptura al bus 
 signal wb_wacc : std_logic; 
 
 //Senyal interna d’ ACK 
 signal iack_o : std_logic; 
 
 //Senyal de comanda completada i neteja del registre 
 signal done : std_logic; 
 
 //Senyals de control dels registres 
 signal sta, sto, rd, wr, ack, iack : std_logic; 
 
 signal core_en : std_logic;                       
 signal ien     : std_logic;      
                 
 //Senyals d’estat del registre 
 signal irxack, rxack : std_logic;                 
 signal tip           : std_logic;                 
 signal irq_flag      : std_logic;                 
 signal i2c_busy      : std_logic;                
 signal i2c_al, al    : std_logic;                 
begin 
 //Genera la senyal interna de reset 
 rst_i <= arst_i xor ARST_LVL; 
 
 //Genera la senyal de sortida de ACK 
 gen_ack_o : process(wb_clk_i) 
 begin 
     if (wb_clk_i'event and wb_clk_i = '1') then 
       iack_o <= wb_cyc_i and wb_stb_i and not iack_o;         
     end if; 
 end process gen_ack_o; 
 wb_ack_o <= iack_o; 
  
  
 //Genera el senyal d’accés a escriptura 
 wb_wacc <= wb_cyc_i and wb_stb_i and wb_we_i; 
 
 assign_dato : process(wb_clk_i) 
 begin 
     if (wb_clk_i'event and wb_clk_i = '1') then 
       case wb_adr_i is 
         when "000"  => wb_dat_o <= std_logic_vector(prer( 7 downto 
0)); 
         when "001"  => wb_dat_o <= std_logic_vector(prer(15 downto 
8)); 
         when "010"  => wb_dat_o <= ctr; 
         when "011"  => wb_dat_o <= rxr; 
         when "100"  => wb_dat_o <= sr;   
    //Senyals per depurar. No documentats. 
         when "101"  => wb_dat_o <= txr; 
         when "110"  => wb_dat_o <= cr; 
         when "111"  => wb_dat_o <= (others => '0'); 
         when others => wb_dat_o <= (others => 'X');  
       end case; 
     end if; 
 end process assign_dato; 
 
 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   23 

 

 //Generació dels registres 
 gen_regs: process(rst_i, wb_clk_i) 
 begin 
     if (rst_i = '0') then 
       prer <= (others => '1'); 
       ctr  <= (others => '0'); 
       txr  <= (others => '0'); 
     elsif (wb_clk_i'event and wb_clk_i = '1') then 
       if (wb_rst_i = '1') then 
         prer <= (others => '1'); 
         ctr  <= (others => '0'); 
         txr  <= (others => '0'); 
       elsif (wb_wacc = '1') then 
         case wb_adr_i is 
            when "000" => prer( 7 downto 0) <= unsigned(wb_dat_i); 
            when "001" => prer(15 downto 8) <= unsigned(wb_dat_i); 
            when "010" => ctr               <= wb_dat_i; 
            when "011" => txr               <= wb_dat_i; 
            when "100" => null;  
            when others => 
               prer <= (others => 'X'); 
               ctr  <= (others => 'X'); 
               txr  <= (others => 'X'); 
         end case; 
       end if; 
     end if; 
 end process gen_regs; 
 
 //Genera el registre de comandes 
 gen_cr: process(rst_i, wb_clk_i) 
 begin 
     if (rst_i = '0') then 
         cr <= (others => '0'); 
     elsif (wb_clk_i'event and wb_clk_i = '1') then 
         if (wb_rst_i = '1') then 
             cr <= (others => '0'); 
         elsif (wb_wacc = '1') then 
             if ( (core_en = '1') and (wb_adr_i = 4) ) then 
                cr <= wb_dat_i; 
             end if; 
         else 
             if (done = '1' or i2c_al = '1') then 
                 cr(7 downto 4) <= (others => '0'); 
             end if; 
 
             cr(2 downto 1) <= (others => '0');    
             cr(0) <= '0';                         
         end if; 
     end if; 
 end process gen_cr; 
 
 //Decodificació comandes de registres 
 sta  <= cr(7); 
 sto  <= cr(6); 
 rd   <= cr(5); 
 wr   <= cr(4); 
 ack  <= cr(3); 
 iack <= cr(0); 
 
 //Decodificació del control dels registres 
 core_en <= ctr(7); 
 ien     <= ctr(6); 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   24 

 

 
 byte_ctrl: i2c_master_byte_ctrl port map ( 
  clk      => wb_clk_i, 
  rst      => wb_rst_i, 
  nReset   => rst_i, 
  ena      => core_en, 
  clk_cnt  => prer, 
  start    => sta, 
  stop     => sto, 
  read     => rd, 
  write    => wr, 
  ack_in   => ack, 
  i2c_busy => i2c_busy, 
  i2c_al   => i2c_al, 
  din      => txr, 
  cmd_ack  => done, 
  ack_out  => irxack, 
  dout     => rxr, 
  scl_i    => scl_pad_i, 
  scl_o    => scl_pad_o, 
  scl_oen  => scl_padoen_o, 
  sda_i    => sda_pad_i, 
  sda_o    => sda_pad_o, 
  sda_oen  => sda_padoen_o 
 ); 
 
  
 st_irq_block : block 
 begin 
     //Genera l’estat del registre de bits 
     gen_sr_bits: process (wb_clk_i, rst_i) 
     begin 
         if (rst_i = '0') then 
           al       <= '0'; 
           rxack    <= '0'; 
           tip      <= '0'; 
           irq_flag <= '0'; 
         elsif (wb_clk_i'event and wb_clk_i = '1') then 
           if (wb_rst_i = '1') then 
             al       <= '0'; 
             rxack    <= '0'; 
             tip      <= '0'; 
             irq_flag <= '0'; 
           else 
             al       <= i2c_al or (al and not sta); 
             rxack    <= irxack; 
             tip      <= (rd or wr); 
             irq_flag <= (done or i2c_al or irq_flag) and not iack; 
           end if; 
         end if; 
     end process gen_sr_bits; 
 
     //Genera el senyal d’interrupció 
     gen_irq: process (wb_clk_i, rst_i) 
     begin 
         if (rst_i = '0') then 
           wb_inta_o <= '0'; 
         elsif (wb_clk_i'event and wb_clk_i = '1') then 
           if (wb_rst_i = '1') then 
             wb_inta_o <= '0'; 
           else 
  



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   25 

 

             wb_inta_o <= irq_flag and ien; 
           end if; 
         end if; 
     end process gen_irq; 
 
     //Assignació de l’estat dels bits del registre 
     sr(7)          <= rxack; 
     sr(6)          <= i2c_busy; 
     sr(5)          <= al; 
     sr(4 downto 2) <= (others => '0');  
     sr(1)          <= tip; 
     sr(0)          <= irq_flag; 
 end block; 
 
end architecture structural; 
 
 

2.1.4 Fitxer d’interfície amb el bus Avalon (oc_i2c_master_top.vhd) 

 
 
entity oc_i2c_master_top is 
   port( 
       //Senyals del bus Avalon 
       address:       in unsigned(2 downto 0); 
       readdata:      out std_logic_vector(7 downto 0); 
       writedata:     in std_logic_vector(7 downto 0); 
       write:         in std_logic; 
       chipselect:    in std_logic; 
       clk:           in std_logic;                      
       reset_n:       in std_logic;                      
       irq:           out std_logic; 
       waitrequest_n: out std_logic; 
        
       //Sortides I2C 
       scl: inout std_logic;                 
       sda: inout std_logic                  
    ); 
end oc_i2c_master_top; 
 
architecture bhv of oc_i2c_master_top is 
 
component i2c_master_top is 
generic( 
 ARST_LVL : std_logic                           
); 
port ( 
  
 wb_clk_i  : in  std_logic;                     
 wb_rst_i  : in  std_logic;                     
 arst_i    : in  std_logic;                     
 wb_adr_i  : in  unsigned(2 downto 0);          
 wb_dat_i  : in  std_logic_vector(7 downto 0);  
 wb_dat_o  : out std_logic_vector(7 downto 0);  
 wb_we_i   : in  std_logic;                
 wb_stb_i  : in  std_logic;                     
 wb_cyc_i  : in  std_logic;                
 wb_ack_o  : out std_logic;                     
 wb_inta_o : out std_logic;                     
 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   26 

 

 //Línies I2C 
 scl_pad_i     : in  std_logic;                 
 scl_pad_o     : out std_logic;                 
 scl_padoen_o  : out std_logic;                 
 sda_pad_i     : in  std_logic;                 
 sda_pad_o     : out std_logic;                 
 sda_padoen_o  : out std_logic                  
); 
end component; 
 
signal scl_pad_i     : std_logic; 
signal scl_pad_o     : std_logic; 
signal scl_padoen_o  : std_logic; 
signal sda_pad_i     : std_logic; 
signal sda_pad_o     : std_logic; 
signal sda_padoen_o  : std_logic; 
begin 
   i2c_top : i2c_master_top 
       generic map ( ARST_LVL => '0') 
       port map ( 
           wb_adr_i  => address, 
           wb_dat_i  => writedata, 
           wb_dat_o  => readdata, 
           wb_we_i   => write, 
           wb_stb_i  => chipselect, 
           wb_cyc_i  => chipselect, 
           wb_inta_o => irq, 
           wb_clk_i  => clk, 
           wb_ack_o  => waitrequest_n, 
           wb_rst_i  => '0', 
           arst_i    => reset_n, 
            
           scl_pad_i    => scl_pad_i, 
           scl_pad_o    => scl_pad_o, 
           scl_padoen_o => scl_padoen_o, 
           sda_pad_i    => sda_pad_i, 
           sda_pad_o    => sda_pad_o, 
           sda_padoen_o => sda_padoen_o 
       ); 
 
   scl <= scl_pad_o when (scl_padoen_o = '0') else 'Z'; 
   sda <= sda_pad_o when (sda_padoen_o = '0') else 'Z'; 
   scl_pad_i <= scl; 
   sda_pad_i <= sda; 
 
end architecture bhv; 
 
 

2.2 I2C Software 
 
 

A continuació es detalla el codi utilitzat a nivell software. A diferència del cas 

anterior, aquest és un component master i per tant, tan sols s’especificaran les 

capçaleres on es defineixen les macros per a poder accedir als registres. 



 

 

 
 

Creació d’ IP Cores en una plataforma NIOS 

 
 
   27 

 

 

2.2.1 INC (oc_i2c_master.h) 

 
  
//Accés lectura/escriptura 
#define OC_I2C_PRER_LO 0x00     //Byte baix de preescalació del registre  
#define OC_I2C_PRER_HI 0x01     //Byte alt de preescalació del registre 
#define OC_I2C_CTR     0x02     //Control del registre 
           
//Registres de només escriptura 
#define OC_I2C_TXR     0x03     //Transmetre el byte del registre 
#define OC_I2C_CR      0x04     //Control del registre 
  
//Registres de només lectura     
#define OC_I2C_RXR     0x03     //Rebre el byte del registre 
#define OC_I2C_SR      0x04     //Estat del registre 
  
//Control del registre 
#define OC_I2C_EN (1<<7)        //Bit d’enable del core:                   
                                //1 - Core està activat 
                                //0 - Core està desactivat 
#define OC_I2C_IEN (1<<6)       //Bit d’enable d’interrupció 
                                //1 – Interrupció activada 
                                //0 – Interrupció desactivada         
                                //Els altres bits al CR estan reservats 
 
//Bits de comanda del registre 
#define OC_I2C_STA (1<<7)       //Regenerar la condició d’inici 
#define OC_I2C_STO (1<<6)       //Generar la condició de stop 
#define OC_I2C_RD  (1<<5)       //Llegir de l’esclau 
#define OC_I2C_WR  (1<<4)       //Escriure a l’esclau 
#define OC_I2C_ACK (1<<3)       //ACK de l’esclau 
                                //1 - ACK                        
                                //0 - NACK                      
#define OC_I2C_IACK (1<<0)      //Interrupció d’ACK 
 
//Estat dels bits del registre 
#define OC_I2C_RXACK (1<<7)     //Ack rebut de l’esclau 
                                //1 - ACK                        
                                //0 - NACK                       
#define OC_I2C_BUSY  (1<<6)     //Bit de bus ocupat 
#define OC_I2C_TIP   (1<<1)     //Transferència en progrés 
#define OC_I2C_IF    (1<<0)     //Flag d’interrupció 
 
//Bits de test i macros 
#define OC_ISSET(reg,bitmask)       ((reg)&(bitmask)) 
#define OC_ISCLEAR(reg,bitmask)     (!(OC_ISSET(reg,bitmask))) 
#define OC_BITSET(reg,bitmask)      ((reg)|(bitmask)) 
#define OC_BITCLEAR(reg,bitmask)    ((reg)|(~(bitmask))) 
#define OC_BITTOGGLE(reg,bitmask)   ((reg)^(bitmask)) 
#define OC_REGMOVE(reg,value)       ((reg)=(value)) 


	1. IP CORE: PWM
	1.1 PWM Hardware
	1.1.1 Fitxer de la tasca lògica (pwm_task_logic.v)
	1.1.2 Fitxer de registres (pwm_register_file.v)
	1.1.3 Fitxer d’interfície (pwm_avalon_interface.v)
	1.2 PWM Software
	1.2.1 INC (avalon_slave_pwm_regs.h)
	1.2.2 HAL/INC (avalon_pwm_routines.h)
	1.2.3 HAL/SRC (avalon_pwm_routines.c)
	 
	2. IP CORE: I2C
	2.1 I2C Hardware
	2.1.1 Fitxer del control de bits (i2c_master_bit_ctrl.vhd)
	2.1.2 Fitxer del control de bytes (i2c_master_byte_ctrl.vhd)
	2.1.3 Fitxer d’interfície d’alt nivell (i2c_master_top.vhd)
	2.1.4 Fitxer d’interfície amb el bus Avalon (oc_i2c_master_top.vhd)
	2.2 I2C Software
	2.2.1 INC (oc_i2c_master.h)

