Universitat
A, Autonoma
de Barcelona

CODI FONT DELS IP CORES
ASSOCIATS AL PROJECTE

CREACIO D’ IP CORES EN UNA
PLATAFORMA NIOS:
METODOLOGIA DE DISSENY

Memoria del Projecte Fi de Carrera
d’ Enginyeria en Informatica
realitzat per

Antoni Costa Sanfeliu

i dirigit per

Joan Oliver Malagelada

Bellaterra, 15 de Juny de 2007

etse)

Creaci6 d’ IP Cores en una plataforma NIOS 1

INDEX
1. IP CORE: PWIM ..ottt bbbt 2
1.1 PWM HAIOWATE......cuiiiiieiieiiiiesieeie ettt bbb 2
1.1.1 Fitxer de la tasca logica (pwm_task _10giC.V)cccccevvevviieiiiieiiece e 2
1.1.2 Fitxer de registres (pwm_register_file.V) ... 3
1.1.3 Fitxer d’interficie (pwm_avalon_interface.v).........cococevvinieneiniencnniencnns 6
1.2 PWM SOTEWEIE ...ttt bbb 7
1.2.1 INC (avalon_slave _pwm _regs.n)cccocevieiiiieiic e 7
1.2.2 HAL/INC (avalon_pwm_routings.n)........cccoeceeieieenininnieneee e 8
1.2.3 HAL/SRC (avalon_pWm_TOULINES.C)ccuervereerierieniisiesieieie et 8
2. IP CORE: 12C ...ttt sttt aneeneeneas 10
2.1 T2C HAGWAIE ..ottt sttt nneeneas 10
2.1.1 Fitxer del control de bits (i2c_master_bit_ctrl.vhd)cccceoeriniinnnns 10
2.1.2 Fitxer del control de bytes (i2c_master_byte_ctrl.vhd)..........cccoevrirnnn. 16
2.1.3 Fitxer d’interficie d’alt nivell (i2c_master_top.vhd)cccccvvvvvvniiinennns 20
2.1.4 Fitxer d’interficie amb el bus Avalon (oc_i2c_master_top.vhd)................ 25
2.2 12C SOTIWAIE........eiiieieeiieee ettt ettt e e 26

2.2.1 INC (0C_I2C_MASLEr.N) ..oveieiiieie e 27

etse)

Creaci6 d’ IP Cores en una plataforma NIOS 2

1. 1P CORE: PWM

1.1 PWM Hardware

A continuacio es detalla el codi utilitzat a nivell hardware, desglossat en les tres

seccions estudiades: Tasca logica, registres i interficie Avalon.

1.1.1 Fitxer de la tasca logica (pwm task logic.v)

module pwm_task_logic

(
clk,
pwm_enable,
resetn,
clock_divide,
duty_cycle,
pwm_out

);

//Entrades
input clk;

input [31:0] clock_divide;

input [31:0] duty_cycle;
input pwm_enable;
input resetn;

//Sortides
output pwm_out;

//Declaraci6 de senyals
reg [31:0] counter;
reg pwm_out;

//Codi

//Senyal d’entrada de rellotge
//Valor de la divisié6 del rellotge
//Valor del cicle de treball
//Senyal d’enable

//Reset

//Sortida PWM

//Comptador intern PWM
//Sortida PWM

always @(posedge clk or negedge resetn) //Process del comptador PWM

begin
iT (~resetn)begin

counter <= 0;

end

else if(pwm_enable)begin

if (counter >= clock _divide)begin

counter <= 0;

end
else begin

counter <= counter + 1;

end
end

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

else begin
counter <= counter;

end
end
always @(posedge clk or negedge resetn) //Comparador PWM
begin
if (~resetn)begin
pwm_out <= 0;
end
else if(pwm_enable)begin
if (counter >= duty_cycle)begin
pwm_out <= 1%b1;
end
else begin
if (counter == 0)
pwm_out <= 0;
else
pwm_out <= pwm_out;
end
end
else begin
pwm_out <= 1"b0;
end
end
endmodule

1.1.2 Fitxer de registres (pwm reqister file.v)

module pwm_register_Tfile
C //Senyals del bus Avalon
clk,
resetn,
chip_select,
address,
write,
write_data,
read,
read_data,

//Senyals de sortida del PWM
pwm_clock_divide,
pwm_duty_cycle,

pwm_enable

);

//Parametres
parameter clock _divide_reg_init = 32"h0000_0000;
parameter duty_cycle_reg_init = 32"h0000_0000;

//Entrades

input clk; //Rellotge del sistema
input resetn; //Reset del sistema

input chip_select; //ChipSelect del bus Avalon

input [1:0] address; //Bus d’adreces del bus Avalon

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

input write; //Senyal d’escriptura del bus Avalon
input [31:0] write_data; //Bus de dades d’escriptura

input read; //Senyal de lectura del bus Avalon
//Sortides

output [31:0] read_data; //Bus de dades de lectura

output [31:0] pwm_clock_divide; //Senyal PWM dividida del rellotge
output [31:0] pwm_duty cycle; //Senyal PWM del cicle de treball

output pwm_enable; //Senyal PWM d’enable

//Declaraciod de senyals

reg [31:0] clock_divide_register; //Registre de divisio6 del rellotge
reg [31:0] duty_cycle_register; //Registre del cicle de treball
reg enable_register; //Bit d’enable

reg [31:0] read_data; //Bus de dades de lectura

//Descodificacid d’adreces

wire clock _divide_reg_selected, duty_cycle_reg_selected,
enable_reg_selected;

//Validacié d’una escriptura en una adreca concreta

wire write_to_clock_divide, write_to_duty cycle, write_to_enable;
//Validacié d’una lectura en una adreca concreta

wire read_to_clock_divide, read_to_duty cycle, read_to_enable;
//Validaci6 d’un accés correcte

wire valid write, valid _read;

//Codi Principal

//Descodificacid d’adreces
assign clock_divide_reg_selected
assign duty_cycle_reg_selected
assign enable_reg_selected

lTaddress[1] & 'address[0]; //adreca 00
laddress[1] & address[0]; //adreca 01
address[1] & 'address[0]; //adreca 10

//Determinar si una transacci6 valida s’ha iniciat
assign valid_write = chip_select & write;
assign valid_read = chip_select & read;

//Determinar si s’ha produTt una escriptura en una adrega concreta
assign write_to_clock divide = valid_write & clock divide_reg_selected;
assign write_to_duty cycle valid_write & duty_cycle_reg_selected;
assign write_to_enable valid_write & enable_reg_selected;

//Determinar si s”’ha produit una lectura en una adreca concreta
assign read_to_clock_divide = valid_read & clock_divide_reg_selected;
assign read_to_duty_cycle = valid_read & duty_cycle_reg_selected;
assign read_to_enable = valid_read & enable_reg_selected;

//Escriure en el registre divisor del rellotge
always@(posedge clk or negedge resetn)
begin
if(~resetn)begin //Async Reset
clock_divide_register <= clock divide_reg_init;
end
else begin
if(write_to_clock_divide) begin
clock_divide_register <= write_data;
end
else begin
clock_divide_register <= clock_divide_register;
end

end

ets E) Creaci6 d’ IP Cores en una plataforma N1OS

end

//Escriure en el registre del cicle de treball
always@(posedge clk or negedge resetn)
begin
if(~resetn)begin //Async Reset
duty cycle_register <= duty_cycle_reg_init;
end
else begin
if(write_to_duty cycle) begin
duty cycle_register <= write_data;
end
else begin
duty_cycle_register <= duty_cycle_register;
end
end
end

//Escriure en el registre d’enable
always@(posedge clk or negedge resetn)

begin
if(~resetn)begin //Async Reset
enable_register <= 1"b0;
end
else begin
if(write_to_enable)begin
enable_register <= write_data[0];
end
else begin
enable_register <= enable_register;
end
end
end

//Llegir del bus de dades
always@(read_to_clock _divide or read_to_duty_cycle or read_to_enable or
clock_divide_register or duty cycle_register or enable_register)
begin
if(read_to_clock_divide) begin
read_data = clock_divide_register;
end
else if(read_to_duty cycle) begin
read_data = duty_cycle_register;
end
else if(read_to_enable) begin
read_data = {31°d0O,enable_register};
end
else begin
read_data = 32"h0000_0000;
end
end

//Assignar els valors dels registres a les sortides del PWM
assign pwm_clock_divide = clock _divide_register;

assign pwm_duty_cycle = duty_cycle_register;

assign pwm_enable = enable_register;

endmodule

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

1.1.3 Fitxer d’interficie (pwm avalon interface.v)

module pwm_avalon_interface
(clk,
resetn,
avalon_chip_select,
address,
write,
write_data,
read,
read_data,
pwm_out
)
//Valors a passar als registres
parameter clock _divide_reg_init = 32"h0000_0000;
parameter duty_cycle_reg_init = 32"h0000_0000;

//Entrades/Sortides PWM Avalon Slave

input clk; //Rellotge del sistema

input resetn; //Reset del sistema

input avalon_chip_select; //Avalon Chipselect

input [1:0]address; //Avalon bus d’adreces

input write; //Senyal Avalon d’escriptura
input [31:0]write_data; //Bus de dades d’escriptura
input read; //Senyal de lectura

output [31:0]read_data; //Bus de dades de lectura

//Entrades/Sortides exportades PWM Avalon_Slave_
output pwm_out; //Senyal de sortida PWM

//Nodes Interns del PWM Avalon Slave

//Senyal divisoria de rellotge del fitxer de registres a la tasca logica
wire [31:0] pwm_clock _divide;

//Valor del cicle de treball del fitxer de registres a la tasca logica
wire [31:0] pwm_duty cycle;

//Senyal d’enable PWM del fitxer del registres a la tasca logica

wire pwm_enable;

//PWM Instancia
pwm_task_logic task_logic

(
-clk (clk),
-pwm_enable (pwm_enable),
.resetn (resetn),
-clock_divide (pwm_clock_divide),
.duty_cycle (pwm_duty_cycle),
-pwm_out (pwm_out)

)

//1Instancies del fitxer de registres
pwm_register_file #(clock _divide_reg_init, duty cycle reg_init)
memory_element

.clk (clk),
.resetn (resetn),
-chip_select (avalon_chip_select),

ets E) Creaci6 d’ IP Cores en una plataforma N1OS 7

.address (address),
-write (write),
-write_data (write_data),
-read (read),
-read_data (read_data),
-pwm_clock_divide (pwm_clock_divide),
-pwm_duty_cycle (pwm_duty_cycle),
-pwm_enable (pwm_enable)

):

endmodule

1.2 PWM Software

A continuacio es detalla el codi utilitzat a nivell software, en dos nivells. En el
primer es mostren les capgaleres on es defineixen les macros per a accedir als
registres del component PWM, i per I’altra les HAL (Hardware Abstraction Layer)

que el processador NIOSII utilitza com a drivers per a I’execucio dels components.

1.2.1 INC (avalon slave pwm regs.h)

#ifndef _ AVALON_PWM_REGS H__
#define _ AVALON_PWM_REGS_H__

#include <io.h>

#define I0RD_AVALON_PWM_CLOCK_DIVIDER(base) I0RD(base, 0)
#define I0WR_AVALON_PWM_CLOCK_DIVIDER(base, data) I0WR(base, 0, data)
#define AVALON_PWM_CLOCK_DIVIDER_MSK (OXFFFFFFFF)
#define AVALON_PWM_CLOCK_DIVIDER_OFST ©

#define I0RD_AVALON_PWM_DUTY_CYCLE(base) I0RD(base, 1)
#define 10WR_AVALON_PWM_DUTY_CYCLE(base, data) IOWR(base, 1, data)
#define AVALON_PWM_DUTY_CYCLE_MSK (OXFFFFFFFF)
#define AVALON_PWM_DUTY_CYCLE_OFST)

#define I0RD_AVALON_PWM_ENABLE(base) I10RD(base, 2)
#define 10WR_AVALON_PWM_ENABLE(base, data) I0WR(base, 2, data)
#define AVALON_PWM_ENABLE_MSK (Ox1)

#define AVALON_PWM_ENABLE_OFST)

#endi

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

1.2.2 HAL/INC (avalon pwm routines.h)

#include "avalon_pwm_regs.h"

#define AVALON_PWM_TYPE (volatile unsigned int*)

int avalon_pwm_init(unsigned int address, unsigned int clock _divider,
unsigned int duty_cycle);

int avalon_pwm_enable(unsigned int address);

int avalon_pwm_disable(unsigned int address);

int avalon_pwm_change_duty cycle(unsigned int address, unsigned int
duty cycle);

//Codis de retorn

#define AVALON_PWM_OK 0
#define AVALON_PWM_DUTY CYCLE_GREATER_THAN_CLOCK_ CYCLE_ERROR -1
#define AVALON_PWM_ENABLED_CONFIRMATION_ERROR -2
#define AVALON_PWM_DISABLED_ CONFIRMATION_ERROR -3
//Constants

#define AVALON_PWM_ENABLED 1
#define AVALON_PWM_DISABLED 0O

1.2.3 HAL/SRC (avalon pwm routines.c)

#include "avalon_pwm_routines._h"

int avalon_pwm_init(unsigned int address, unsigned int clock_divider,
unsigned int duty_cycle)

{

}

//El registre que conté el cicle de treball ha de ser més petit o
//igual que el divisor del rellotge
if(duty_cycle > clock_divider)

return AVALON_PWM_DUTY_CYCLE_GREATER_THAN_CLOCK_CYCLE_ERROR;
else

10WR_AVALON_PWM_CLOCK_DIVIDER(address, clock divider - 1);
T1O0WR_AVALON_PWM_DUTY_CYCLE(address, duty_cycle);

return AVALON_PWM_OK;

int avalon_pwm_enable(unsigned int address)

{

I0WR_AVALON_PWM_ENABLE(address, AVALON_PWM_ENABLE_MSK);

//Confirma que el PWM esta activat
iT(IORD_AVALON_PWM_ENABLE(address) != AVALON_PWM_ENABLED)

return AVALON_PWM_ENABLED_CONFIRMATION_ERROR;

3
return AVALON_PWM_OK;

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

¥
int avalon_pwm_disable(unsigned int address)

I0WR_AVALON_PWM_ENABLE (address, ~AVALON_PWM_ENABLE_MSK);

//Confirma que el PWM esta desactivat
iT(1ORD_AVALON_PWM_ENABLE(address) != AVALON_PWM_DISABLED)
{

return AVALON_PWM_DISABLED_CONFIRMATION_ERROR;

+
return AVALON_PWM_OK;

int avalon_pwm_change_duty cycle(unsigned int address, unsigned int
duty_cycle)

{

//El registre que conté el cicle de treball ha de ser més petit o
//igual que el divisor del rellotge
if(duty_cycle > I0RD_AVALON_PWM_CLOCK_DIVIDER(address))
{

return AVALON_PWM_DUTY_CYCLE_GREATER_THAN_CLOCK_CYCLE_ERROR;
else

10WR_AVALON_PWM_DUTY_CYCLE(address, duty cycle);

3
return AVALON_PWM_OK;

etse)

Creaci6 d’ IP Cores en una plataforma NIOS 10

2. 1P CORE: 12C

2.1 12C Hardware

A continuacid es detalla el codi utilitzat a nivell hardware. Les seccions en les
que esta dividit son a nivell de bit, byte, interficie i un adaptador amb la interficie del
bus Avalon, que a més simula els buffer tri-state, per a la bidireccionalitat dels dos
senyals (SCL i SDA).

2.1.1 Fitxer del control de bits (i2c master bit ctrl.vhd)

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity i2c_master_bit_ctrl is

port (
clk > in std_logic;
rst : in std_logic;
nReset : in std_logic;
ena : in std_logic; //Senyal d’enable
clk_cnt : in unsigned(15 downto 0); //Valor del rellotge
cmd : in std_logic_vector(3 downto 0);
cmd_ack : out std_logic; //Ack comanda
busy : out std_logic; //Bus ocupat
al : out std_logic; //Arbitratge perdut
din : in std_logic;

dout : out std_logic;
//Linies 12C

scl_1 : in std_logic; //Linia d’entrada del rellotge

scl_o : out std_logic; //Linia de sortida del rellotge

scl_oen : out std logic; //Linia de sortida d’enable. Activa a baixa
sda_1i : in std_logic; //Linia d’entrada de dades

sda o : out std_logic; //Linia de sortida de dades

sda_oen : out std_logic //Linia de sortida d’enable. Activa a baixa

).

end entity i2c_master_bit_ctrl;

architecture structural of i2c_master_bit_ctrl is

constant 12C_CMD_NOP : std_logic_vector(3 downto 0) := "0000";
constant 12C_CMD_START : std_logic_vector(3 downto 0) := '"0001";
constant 12C_CMD_STOP : std_logic_vector(3 downto 0) := "0010";

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

11

constant 12C_CMD_READ : std_logic_vector(3 downto 0)
constant 12C_CMD_WRITE : std_logic_vector(3 downto 0)

type states is (idle, start_a, start b, start _c, start d, start e,
stop_a, stop_b, stop_c, stop_d, rd_a, rd_b, rd_c, rd_d, wr_a, wr_b,

wr_c, wr_d);

begin
//Si

signal c_state : states;
signal iscl_oen, isda_oen : std_logic;

signal sda_chk - std_logic;
signal dscl_oen : std_logic;
signal sSCL, sSDA : std_logic;
signal clk_en, slave_wait : std_logic;
signal ial std_logic;

unsigned(15 déwnto 0) := clk_cnt;
unsigned(15 downto 0);

signal cnt
signal cnt

process (clk)
begin
if (clk"event and clk = "1%) then
dscl_oen <= iscl _oen;
end if;
end process;
slave_wait <= dscl_oen and not sSCL;

//Generar el senyal de rellotge
gen_clken: process(clk, nReset)
begin
ifT (nReset = "0") then
cnt <= (others => "0%);
clk en <= "17;
elsif (clk"event and clk = *"1") then
if (rst = "17) then
cnt <= (others => "0%);
clk en <= "17;
elsif ((cnt = 0) or (ena = "0")) then
cnt <= clk_cnt;
clk en <= "17;
elsif (slave_wait = "1") then

cnt <= cnt;
clk_en <= "0%;
else
cnt <= cnt -1;
clk en <= "07;
end if;
end if;

end process gen_clken;

//Generar el controlador d’estats del bus
bus_status_ctrl: block
signal dSCL, dSDA

signal sta_condition
signal sto_condition
signal cmd_stop
signal ibusy
begin
//Sincronitza les entrades SDA i1 SCL
synch_scl_sda: process(clk, nReset)
begin

std_logic; //Inici

"'0100";
'*1000™;

I’esclau no esta llest pot esperar posant el senyal SCL a baixa

std_logic; //Fa esperar SCL i SDA

detectat

std_logic; //Stop detectat
std_logic; //Comanda de Stop
std_logic; //Senyal interna d’ocupat

ets E) Creaci6 d’ IP Cores en una plataforma N1OS

12

if (nReset = "0") then
SSCL <= "1°7;
SSDA <= "1°7;

dSCL <= "1°7;
dSDA <= "1°;
elsif (clk"event and clk = "1") then
if (rst = "1%) then
SSCL <= "1°7;
SSDA <= "1°7;

dSCL <= "1°;

dSDA <= "17;
else

sSCL <= scl_i;

SSDA <= sda_i;

dSCL <= sSCL;
dSDA <= sSDA;
end if;
end if;

end process synch_SCL_SDA;

detect_sta_sto: process(clk, nReset)
begin
if (nReset = "0") then
sta_condition <= "07;
sto_condition <= "0";
elsif (clk"event and clk = "1") then
if (rst = "17) then
sta_condition <= "07;
sto_condition <= "0";
else
sta_condition <= (not sSDA and dSDA) and sSCL;
sto_condition <= (SSDA and not dSDA) and sSCL;
end if;
end if;
end process detect_sta_sto;

//Genera el senyal bus i2c ocupat
gen_busy: process(clk, nReset)
begin
if (nReset = "0") then
ibusy <= "0";
elsif (clk"event and clk = "1") then
if (rst = "1%) then

ibusy <= "0%;
else
ibusy <= (sta_condition or ibusy) and not sto_condition;
end if;
end if;

end process gen_busy;
busy <= ibusy;

//Generacio6 d’arbitratge perdut. Es perd quan:
//Els bus i2c esta a baixa i1 el master posa SDA a alta
//Senyal de Stop detectada quan no s’esperava
gen_al: process(clk, nReset)
begin
if (nReset = "0") then
cmd_stop <= "0°;

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

ial <= "0°;
elsift (clk"event and clk = "1%) then
if (rst = "17) then
cmd_stop <= "07;
ial <= "0%;
else
if (clk_en = "1%) then
if (cmd = 12C_CMD_STOP) then
cmd_stop <= "1°;
else
cmd_stop <= "0°;
end if;
end if;

if (c_state = idle) then
ial <= (sda_chk and not sSDA and isda_oen);
else
ial <= (sda_chk and not sSDA and isda_oen) or
(sto_condition and not cmd_stop);
end if;

end if;
end if;
end process gen_al;
al <= ial;

//Genera el senyal dout, el guarda i fa pujar el senyal SCL
gen_dout: process(clk)
begin
if (clk*event and clk = "1%) then
if (sSCL = "1" and dSCL = "0") then
dout <= sSSDA;
end if;
end if;
end process gen_dout;
end block bus_status_ctrl;

//Generaci6 de la maquina d’estats
nxt_state_decoder : process (clk, nReset, c_state, cmd)
begin
if (nReset = "0") then
c_state <= idle;
cmd_ack <= "0°;
iscl_oen <= "1°7;
isda oen <= "1°%;
sda_chk <= "0";
elsif (clk"event and clk = "1%) then
if (rst = "1° or ial = "1%) then
c_state <= idle;
cmd_ack <= "0°;
iscl oen <= "1°%;
isda_oen <= "1°%;
sda_chk <= "0";
else
cmd_ack <= "0"; //NACK per defecte

if (clk_en = "1%) then
case (c_state) is
when idle =>
case cmd is
when 12C_CMD_START => c_state <= start_a;

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

when 12C_CMD_STOP => c_state <= stop_a;

when 12C_CMD _WRITE => c_state <= wr_a;

when 12C_CMD_READ => c_state <= rd_a;

when others => c_state <= idle;
end case;

iscl_oen <= iscl_oen; //SCL manté I’estat
isda_oen <= isda oen; //SDA manté l’estat
sda_chk <= "0°; //No comprovacié SDA

//1nici
when start_a =>
c_state <= start_b;
iscl_oen <= iscl_oen;
isda_oen <= "1°7; //SDA a alta
sda_chk <= "0"; //No comprovacid SDA

when start_b =>
c_state <= start_c;

iscl_oen <= "1°7; //SCL a alta
isda oen <= "1°%; //Mantenir SDA a alta
sda_chk <= "0"; //No comprovaci6 SDA

when start_c =>
c_state <= start d;

iscl_oen <= "1°7; //SCL a alta
isda_oen <= "07; //SDA a baixa
sda_chk <= "0"; //No comprovaci6 SDA

when start_d =>

c_state <= start_e;

iscl_oen <= "1°7; //SCL a alta
isda_oen <= "07; //SDA a baixa
sda_chk <= "0"; //No comprovaci6 SDA

when start_e =>
c_state <= idle;

cmd_ack <= "1°7; //Comanda completada

iscl_oen <= "07; //SCL a baixa

isda oen <= "07; //SDA a baixa

sda_chk <= "0"; //No comprovaci6 SDA
//Stop

when stop_a =>
Cc_state <= stop_b;

iscl _oen <= "07; //SCL a baixa
isda_oen <= "07; //SDA a baixa
sda chk <= "0"; //No comprovaci6 SDA

when stop_b =>
Cc_state <= stop_c;

iscl _oen <= "17; //SCL a alta
isda_oen <= "0%; //SDA a baixa
sda_chk <= "0"; //No comprovaci6 SDA

when stop_c =>
Cc_state <= stop_d;
iscl_oen <= "17; //5CL a alta
isda_oen <= "07; //SDA a baixa
sda_chk <= "0"; //No comprovaci6 SDA

when stop_d =>

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

15

Cc_state <=
cmd_ack <=
iscl_oen <=
isda_oen <=
sda_chk <=

//Lectura

when rd_a =>
Cc_state <=
iscl_oen <=
isda_oen <=
sda_chk <=

when rd_b =>
Cc_state <=
iscl_oen <=
isda_oen <=
sda_chk <=

when rd_c =>
Cc_state <=
iscl_oen <=
isda_oen <=
sda_chk <=

when rd_d =>
c_state <=
cmd_ack <=
iscl_oen <=
isda_oen <=
sda_chk <=

//Escriptura

when wr_a =>
Cc_state <=
iscl_oen <=
isda_oen <=
sda_chk <=

when wr_b =>
Cc_state <=
iscl _oen <=
isda_oen <=
sda_chk <=

when wr_c =>
Cc_state <=
iscl _oen <=
isda_oen <=
sda_chk <=

when wr_d =>
Cc_state <=
cmd_ack <=
iscl_oen <=
isda_oen <=
sda_chk <=

I
\%

when others

end case;
end if;

idle;
"yt
PRR
PR
0"-

rd_b;
0
“1el
0"

rd_c;
"1r-
PR
0"-

rd_d;
"1r-
PR
0"-

idle;
"1t
“0"-
"t
0"-

wr_b;
0" -
din;
0"

Wr_c;
1.
din;
10

wr_d;
17
din;
“1e.

idle;
“1e-
0"
din;
0" -

//Comanda completada
//SCL a alta
//SDA a alta
//No comprovacid SDA

//SCL a baixa
//SDA a alta
//No comprovacid SDA

//SCL a alta
//SDA a alta
//No comprovaci6 SDA

//SCL a alta
//SDA a alta
//No comprovaci6 SDA

//Comanda completada
//SCL a baixa

//SDA a alta

//No comprovaci6 SDA

//SCL a baixa
//Activa SDA
//No comprovacié SDA

//SCL a alta
//Guarda SDA
//Comprova SDA

//SCL a alta
//Guarda SDA
//Comprova SDA

//Comanda completada
//SCL a baixa
//Guarda SDA

//No comprovacid SDA

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

end if;
end if;
end process nxt_state_decoder;

//Assignar sortides
scl_o <= "0%;
scl_oen <= iscl_oen;
sda_o <= "0%;
sda_oen <= isda oen;
end architecture structural;

2.1.2 Fitxer del control de bytes (i2c_master byte ctrl.vhd)

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity i2c_master_byte ctrl is

port (
clk > in std_logic;
rst : in std_logic;
nReset : in std_logic;
ena > in std_logic;
clk_cnt : in unsigned(15 downto 0);
//Senyals d’entrada
start,
stop,
read,
write,
ack_in : std_logic;
din : in std_logic_vector(7 downto 0);
//Senyals de sortida
cmd_ack : out std_logic;
ack_out : out std_logic;
i2c_busy : out std_logic;
i2c_al > out std_logic;
dout : out std_logic_vector(7 downto 0);
//Linies 12C
scl_i : in std_logic;
scl_o : out std_logic;
scl_oen : out std_logic;
sda_1i : in std_logic;
sda_o - out std_logic;
sda_oen : out std_logic
).

end entity i2c_master_byte_ctrl;

architecture structural of i2c_master_byte ctrl is
component i2c_master_bit_ctrl is
port (
clk : in std_logic;
rst : in std_logic;
nReset : in std_logic;

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

17

ena i
clk _cnt
cmd
cmd_ack
busy

al

in
out

din :
dout :
//Linies 1
sclh_1i
scl_o
scl_oen
sda_i
sda_o
sda_oen

):

n std_logic;

in unsigned(15 downto 0);

in std_logic_vector(3 downto 0);
out std_logic;

out std_logic;

out std_logic;

std_logic;
std_logic;

2C

in std_logic;
out std_logic;
out std_logic;
in std_logic;
out std_logic;
out std_logic

end component i2c_master_bit_ctrl;

//Comandes per la controladora de bits

constant
constant
constant
constant
constant

12C_CMD_NOP
12C_CMD_START
12C_CMD_STOP
12C_CMD_READ
12C_CMD_WRITE :

//Senyals per a la controladora de bits

signal core_cmd
signal core_ack,
signal al

: std_logic_vector(3 downto 0);

core_txd, core_rxd : std_logic;

: std_logic;

//Senyals pels registres

signal sr :
signal shift, Id

//Senyals per la

signal go, host_ack :

signal dcnt :

begin
bit_ctrl:
clk =>
rst =>
nReset =>
ena =>
clk cnt =>
cmd =>
cmd_ack =>
busy =>
al =>
din =>
dout =>
scl_i =>
scl_o =>
scl_oen =>
sda_i =>
sda_o =>

sda_oen =>
)

i2c_al <= al;

std_logic_vector(7 downto 0);

: std_logic;

maquina d’estats
std_logic;

unsigned(2 downto 0);
signal cnt_done :

std_logic;

i2c_master_bit_ctrl port map(

clk,

rst,
nReset,
ena,

clk _cnt,
core_cmd,
core_ack,
i2c_busy,
al,
core_txd,
core_rxd,
scl_i,
scl_o,
scl_oen,
sda_ i,
sda_o,
sda_oen

std_logic_vector(3 downto 0) :
std_logic_vector(3 downto 0) :
std_logic_vector(3 downto 0)
std_logic_vector(3 downto 0)
std_logic_vector(3 downto 0) :

'*0000";

"'0001";
"'0010";
''0100";

''1000";

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

cmd_ack <= host_ack;
go <= (read or write or stop) and not host_ack;
dout <= sr;

//Genera el registre
shift_register: process(clk, nReset)
begin
if (nReset = "0") then
sr <= (others => "0%);
elsift (clk"event and clk = "1%) then
if (rst = "17) then
sr <= (others => "0%);
elsif (Id = "1") then
sr <= din;
elsif (shift = "1%) then
sr <= (sr(6 downto 0) & core_rxd);
end if;
end if;
end process shift_register;

//Genera el comptador de dades
data_cnt: process(clk, nReset)
begin
if (nReset = "0") then
dent <= (others => "0%);
elsif (clk"event and clk = "1") then
if (rst = "17) then
dent <= (others => "0%);
elsif (Id = "1") then
dent <= (others => "1%);
elsif (shift = "17) then
dent <= dent -1;
end if;
end if;
end process data_cnt;

cnt_done <= "1" when (dcnt = 0) else "07;
//Maguina d’estats

statemachine : block
type states is (st_idle, st_start, st_read, st write, st_ack,

st_stop);
signal c_state : states;
begin
nxt_state_decoder: process(clk, nReset)
begin

it (nReset = "0%) then
core_cmd <= 12C_CMD_NOP;
core_txd <= "0°;
shift <= "0";
id <= "0";
host_ack <= "0";
c_state <= st_idle;
ack_ out <= "0";
elsif (clk"event and clk = *"1") then
if (rst = "17 or al = "1") then
core_cmd <= 12C_CMD_NOP;
core_txd <= "0";
shift <= "0";
Id <= "0";
host_ack <= "0";
c_state <= st_idle;

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

ack out <= "0";
else
//Inicialitzaci6 dels senyals de reset
core_txd <= sr(7);
shift <= "0%;
Id <= "0%;
host_ack <= "0";

case c_state is
when st_idle =>
if (go = "17) then

if (start = "1%) then
Cc_state <= st_start;
core_cmd <= 12C_CMD_START;

elsif (read = "1%) then
c_state <= st_read;
core_cmd <= 12C_CMD_READ;

elsif (write = "1%) then
c_state <= st _write;
core_cmd <= 12C_CMD_WRITE;

else //Stop
Cc_state <= st_stop;
core_cmd <= 12C_CMD_STOP;

end if;

Id <= "1";
end if;

when st_start =>
if (core_ack = "1%) then

if (read = "17) then
Cc_state <= st_read;
core_cmd <= 12C_CMD_READ;

else
c_state <= st _write;
core_cmd <= 12C_CMD_WRITE;

end if;

Id <= "17;
end if;

when st _write =>
if (core_ack = "1") then
if (cnt_done = "1%) then
c_state <= st_ack;
core_cmd <= 12C_CMD_READ;
else
c_state <= st _write;
core_cmd <= 12C_CMD_WRITE;
shift <= "1°";
end if;
end if;

when st_read =>
if (core_ack = "1%) then

if (cnt_done = "1%) then
c_state <= st_ack;
core_cmd <= 12C_CMD_WRITE;

else
c_state <= st_read;
core_cmd <= 12C_CMD_READ;

end if;

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

20

shift <= "1°7;
core_txd <= ack_in;
end if;

when st_ack =>
if (core_ack = "1%) then
if (stop = "17) then
Cc_state <= st_stop;
core_cmd <= 12C_CMD_STOP;
else
c_state <= st_idle;
core_cmd <= 12C_CMD_NOP;
host_ack <= "17";
end i1f;
ack_out <= core_rxd;
core_txd <= "1°;
else
core_txd <= ack_in;
end if;

when st_stop =>
if (core_ack = "1") then
c_state <= st_idle;
core_cmd <= 12C_CMD_NOP;
host_ack <= "1";
end if;

when others =>
c_state <= st_idle;
core_cmd <= 12C_CMD_NOP;

report (""Byte controller ha entrat en un
il-legal.");
end case;
end if;
end if;

end process nxt_state_decoder;
end block statemachine;

end architecture structural;

2.1.3 Fitxer d’interficie d’alt nivell (i2c master top.vhd)

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity i2c_master_top is

generic(
ARST_LVL : std_logic = "0"
);
port (
wb_clk_i : in std_logic;
wb_rst_ i : in std_logic := "07;
arst_1i > in std_logic := not ARST_LVL;

estat

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

21

).

wh_
wb_

adr_1i
dat i

wb_dat_o

wb_we_1i

wb_stb_i

whb_

cyc_i

wb_ack_o

wb_inta_ o

out

in
in
in

out
out

//Linies 12C
scl_pad_i

scl_pad_o

scl_padoen_o
sda_pad_i

sda_pad_o

sda_padoen_o

end entity i2c_master_top;

unsigned(2 downto 0);
std_logic_vector(7 downto 0);
std_logic_vector(7 downto 0);
std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

in std_logic;
out std_logic;
out std_logic;
in std_logic;
out std_logic;
out std_logic

architecture structural of i2c_master_top is
component i2c_master_byte ctrl is

port (

):

end component

clk
rst
nRe
ena

set

clk _cnt :

std_logic;
std_logic;
std_logic;
std_logic;
n unsigned(15 downto 0);

//Senyals d’entrada
start,

sto

P,

read,

wri
ack
din

te,
_in

std_logic;
in std_logic_vector(7 downto 0);

//Senyals de sortida

cmd
ack
i2c
i2c
dou

_ack
_out
_busy
_al

t

out
out
out
out
out

//Linies 12C
in std_logic;
out std_logic;
out std_logic;
in std_logic;

scl
scl
scl

i
0
_oen

sda_o
sda_oen

sda_1i ;

//Registres

signal
signal
signal
signal
signal
signal

prer :
ctr
t™@r
rxr

Ccr
Sr

std_logic;
std_logic;
std_logic;
std_logic;
std_logic_vector(7 downto 0);

out std_logic;
out std_logic

i2c_master_byte ctrl;

unsigned(15 downto 0);

: std_logic_vector(7 downto 0);
: std_logic_vector(7 downto 0);
: std_logic_vector(7 downto 0);

: std_logic_vector(7 downto 0);
: std_logic_vector(7 downto 0);

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

//Senyal interna de reset
signal rst_i : std_logic;

//Accés d’escriptura al bus
signal wb_wacc : std_logic;

//Senyal interna d” ACK
signal i1ack o : std logic;

//Senyal de comanda completada i neteja del registre
signal done : std_logic;

//Senyals de control dels registres
signal sta, sto, rd, wr, ack, iack : std_logic;

signal core_en : std_logic;
signal ien : std_logic;

//Senyals d’estat del registre
signal irxack, rxack : std_logic;

signal tip : std_logic;
signal irg_flag : std_logic;
signal i2c_busy : std_logic;
signal i2c_al, al : std_logic;

begin
//Genera la senyal interna de reset
rst_i <= arst_i xor ARST_LVL;

//Genera la senyal de sortida de ACK

gen_ack_o : process(wb_clk_i)

begin
if (wb_clk_i"event and wb_clk_i = "1%) then

iack_ 0 <= wb_cyc_i and wb_stb_i and not iack_o;

end if;

end process gen_ack_o;

wb_ack_o <= iack o;

//Genera el senyal d’accés a escriptura
wb_wacc <= wb_cyc_i and wb_stb_i1 and wb_we_i;

assign_dato : process(wb_clk_i)
begin
if (wb_clk_i“event and wb_clk_i = "1%) then
case wb_adr_i is

when 000" => wb_dat_o <= std_logic_vector(prer(7 downto
0)):

when 001" => wb_dat_o <= std_logic_vector(prer(15 downto
8)):

when 010" => wb dat o <= ctr;

when 011" => wb_dat_o <= rxr;

when 100" => wb dat o <= sr;

//Senyals per depurar. No documentats.
when 101" => wb_dat o <= txr;

when "110" => wb_dat_o <= cr;

when 111" => wb_dat_o <= (others => "0%);
when others => wb_dat_o <= (others => "X");

end case;
end if;
end process assign_dato;

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

//Generaci6 dels registres
gen_regs: process(rst_i, wb_clk_i)
begin
if (rst_i = "0") then
prer <= (others => "1%);
ctr <= (others => "0%);
txr <= (others => "07);
elsift (wb_clk_i“event and wb_clk_1 = "1%) then
if (wb_rst_i = "1%) then
prer <= (others => "1%);
ctr <= (others => "0%);
txr <= (others => "07);
elsif (wb_wacc = "1%) then
case wb_adr_i is
when 000" => prer(7 downto 0) <= unsigned(wb_dat_i);
when "001" => prer(15 downto 8) <= unsigned(wb_dat_i);
when "010" => ctr <= wb_dat _i;
when "011" => txr <= wb_dat_i;
when 100" => null;
when others =>
prer <= (others => *"X%");
ctr <= (others => "X");
txr <= (others => *X");
end case;
end if;
end if;
end process gen_regs;

//Genera el registre de comandes
gen_cr: process(rst_i, wb_clk_i)
begin
if (rst_i = "0") then
cr <= (others => "07);
elsif (wb_clk_i“event and wb_clk_i = "1%) then
if (wb_rst i = "1") then
cr <= (others => "0%);
elsif (wb_wacc = "1%) then
if ((core_en = "1") and (wb_adr_i = 4)) then
cr <= wb_dat_i;
end if;
else
if (done = "1° or i2c_al = "1%) then
cr(7 downto 4) <= (others => "0%);

end if;
cr(2 downto 1) <= (others => "0%);
cr(0) <= "07;

end if;

end if;
end process gen_cr;

//Decodificacié comandes de registres
sta <= cr(7);
sto <= cr(6);
rd <= cr(5);
wr <= cr(4);
ack <= cr(3);
iack <= cr(0);

//Decodificaci6 del control dels registres
core_en <= ctr(7);
ien <= ctr(6);

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

24

byte ctrl: i2c_master_byte ctrl port map (

clk =
rst =>
nReset =>
ena =>
clk_cnt =>
start =>
stop =>
read =>
write =>
ack_in =>
i2c_busy =>
i2c_al =>
din =

cmd_ack =>
ack out =>

dout =>
scl_1i =
scl_o =
scl_oen =>
sda_i =>
sda_o =>

sda_oen =>

):

wb_clk_i,
wb_rst i,
rst_i,
core_en,
prer,

sta,

sto,

rd,

wr,

ack,
i2c_busy,
i2c_al,

txr,

done,
irxack,

rxr,
scl_pad_1i,
scl_pad_o,
scl_padoen_o,
sda_pad_i,
sda_pad_o,
sda_padoen_o

st_irg_block : block

begin

//Genera I’estat del registre de bits
gen_sr_bits: process (wb_clk_ i, rst_i)

begin
ifT (rst_i
al
rxack
tip

= "0") then
<= "0":
<= "0";
<= "0":

irg_flag <= "0%;
elsif (wb_clk_i"event and wb_clk_i = "1%) then
if (wb_rst i = "1") then

al
rxack
tip

<= "0";
<= "0°";
<= "0";

irg_flag <= "0";

else
al
rxack
tip

<= i2c_al or (al and not sta);
<= irxack;
<= (rd or wr);

irg_flag <= (done or i2c_al or irg_flag) and not iack;

end if;
end if;

end process gen_sr_bits;

//Genera el senyal d’interrupcio
gen_irqg: process (wb_clk_i, rst_ i)

begin
if (rst_i

wb_inta_
elsif (wb_

= "0") then
0 <= *0":
clk_i"event and wb_clk_i = "1") then

if (wb_rst_i = "1%) then
wb_inta_o <= "0";

else

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

wb_inta_o <= irg_Fflag and ien;
end if;
end if;
end process gen_irq;

//Assignacio de I’estat dels bits del registre

sr(7) <= rxack;
sr(6) <= i2c_busy;
sr(5) <= al;
sr(4 downto 2) <= (others => "0%);
sr(l) <= tip;
sr(0) <= irqg_flag;
end block;

end architecture structural;

2.1.4 Fitxer d’interficie amb el bus Avalon (oc i2c master top.vhd)

entity oc_i2c_master_top is

port(
//Senyals del bus Avalon
address: in unsigned(2 downto 0);
readdata: out std_logic_vector(7 downto 0);
writedata: in std_logic_vector(7 downto 0);
write: in std_logic;
chipselect: in std_logic;
clk: in std_logic;
reset_n: in std_logic;
irq: out std_logic;

waitrequest_n: out std_logic;

//Sortides 12C

scl: inout std_logic;

sda: inout std_logic
);

end oc_i2c_master_top;
architecture bhv of oc_i2c_master_top is

component i2c_master_top is

generic(

ARST_LVL : std_logic
E

port (

wb_clk_i in std_logic;

wb_rst i in std_logic;

arst_i in std_logic;

wb_adr_i in unsigned(2 downto 0);
wb_dat_i in std_logic_vector(7 downto 0);
wb_dat_o out std_logic_vector(7 downto 0);
wb_we i in std_logic;

wb_stb_i in std_logic;

wb_cyc_i in std_logic;

wb_ack_ o : out std_logic;

wb:inta_o : out std_logic;

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

26

//Linies
scl_pad_i
scl_pad_o
scl_padoen_o
sda_pad_1i
sda_pad_o
sda_padoen_o

);

12C
in
T out
T out
in
T out
T out

end component;

signal
signal
signal
signal
signal
signal
begin

i2c_top :

scl <= scl_pad_o when (scl_padoen_o
sda <= sda_pad_o when (sda_padoen_o
scl_|
sda_

end architecture bhv;

scl_pad_i
scl_pad_o
scl_padoen_o
sda_pad_i
sda_pad_o
sda_padoen_o

generic map (

port map (
wb_adr_i
wb_dat_i
wb_dat o
wb_we_1i
wb_stb i
wb_cyc_i
wb_inta_o
wb_clk_i
wb_ack o
wb_rst_i
arst_1i

scl_pad_i
scl_pad_o

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic

: std_logic;
: std_logic;
: std_logic;
- std_logic;
: std_logic;
- std_logic;

i2c_master_top

ARST_LVL => "0%)

=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>

scl_padoen_o

sda_pad_i
sda_pad_o

sda_padoen_o

);

pad_i <= scl;

pad_i <= sda;

2.2 12C Software

address,
writedata,
readdata,
write,
chipselect,
chipselect,
irg,

clk,
waitrequest_n,
0",
reset_n,

scl_pad_i,
scl_pad_o,
scl_padoen_o,
sda_pad_1i,
sda_pad_o,
sda_padoen_o

"0") else "Z7;
"0") else "Z7;

A continuacio es detalla el codi utilitzat a nivell software. A diferéncia del cas

anterior, aquest €s un component master i per tant, tan sols s’especificaran les

capcaleres on es defineixen les macros per a poder accedir als registres.

etse)

Creaci6 d’ IP Cores en una plataforma NIOS

2.2.1 INC (oc i2c master.h)

//Accés
#define
#define
#define

lectura/escriptura
OC_12C_PRER_LO 0x00
OC_12C_PRER_HI 0x01
0C_12C_CTR 0x02

//Registres de només escriptura

#define
#define

0C_12C_TXR 0x03
0C_12C_CR 0x04

//Registres de només lectura

#define
#define

0C_12C_RXR 0x03
0C_12C_SR 0x04

//Control del registre

#define

#define

OC_12C_EN (1<<7)

OC_I12C_IEN (1<<6)

//Bits de comanda del registre

#define
#define
#define
#define
#define

#define

//Estat

#define

#define
#define
#define

OC_12C_STA (1<<7)
0C_12C_STO (1<<6)
OC_I2C_RD (1<<5)
OC_I2C_ WR (1<<4)
OC_12C_ACK (1<<3)

OC_I2C_IACK (1<<0)
dels bits del registre

OC_12C_RXACK (1<<7)

OC_12C_BUSY (1<<6)
OC_I2C_TIP (1<<1)
OC_I12C_IF (1<<0)

//Bits de test i macros

#define
#define
#define
#define
#define
#define

OC_ISSET(reg,bitmask)
OC_ISCLEAR(reg,bitmask)
OC_BITSET(reg,bitmask)
OC_BITCLEAR(reg,bitmask)

//Byte baix de preescalacio6 del registre
//Byte alt de preescalacié del registre
//Control del registre

//Transmetre el byte del registre
//Control del registre

//Rebre el byte del registre
//Estat del registre

//Bit d’enable del core:

//1 - Core esta activat

//0 - Core esta desactivat

//Bit d’enable d’interrupcid

//1 — Interrupci6 activada

//0 — Interrupcié desactivada

//Els altres bits al CR estan reservats

//Regenerar la condicid d’inici
//Generar la condicid de stop
//Llegir de I’esclau
//Escriure a I’esclau

//ACK de I1’esclau

//1 - ACK

//0 - NACK

//1Interrupcié d’ACK

//Ack rebut de I’esclau
//1 - ACK

//0 - NACK

//Bit de bus ocupat
//Transferéncia en progrés

//Flag d”interrupcio

((reg)&(bitmask))

(1 (OC_ISSET(reg,bitmask)))
((reg) | (bitmask))

((reg) | (~(bitmask)))

OC_BITTOGGLE(reg,bitmask) ((reg)™(bitmask))

OC_REGMOVE(reg,value)

((reg)=(value))

	1. IP CORE: PWM
	1.1 PWM Hardware
	1.1.1 Fitxer de la tasca lògica (pwm_task_logic.v)
	1.1.2 Fitxer de registres (pwm_register_file.v)
	1.1.3 Fitxer d’interfície (pwm_avalon_interface.v)
	1.2 PWM Software
	1.2.1 INC (avalon_slave_pwm_regs.h)
	1.2.2 HAL/INC (avalon_pwm_routines.h)
	1.2.3 HAL/SRC (avalon_pwm_routines.c)
	
	2. IP CORE: I2C
	2.1 I2C Hardware
	2.1.1 Fitxer del control de bits (i2c_master_bit_ctrl.vhd)
	2.1.2 Fitxer del control de bytes (i2c_master_byte_ctrl.vhd)
	2.1.3 Fitxer d’interfície d’alt nivell (i2c_master_top.vhd)
	2.1.4 Fitxer d’interfície amb el bus Avalon (oc_i2c_master_top.vhd)
	2.2 I2C Software
	2.2.1 INC (oc_i2c_master.h)

