Universitat
/ Autonoma
de Barcelona

etse

ANALISI DEL SISTEMA OPERATIU RTLINUX E IMPLEMENTACIO
D’UN ENTORN DE DESENVOLUPAMENT DE TASQUES EN TEMPS REAL

(APLICAT AL CONTROL DE PROCESOS)

Memoria del Projecte Fi de Carrera
d'Enginyeria en Informatica
realitzat per

Marc Franco 1 Farré

1 dirigit per

Pedro Balaguer Herrero

Bellaterra, 11 de Juny de 2007

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real epasons

Universitat
A Autonoma e t se

de Barcelona Escola Técnica Superior d’Enginyeria

El sotasignat, Pedro Balaguer Herrero

Professor/a de I'Escola Técnica Supetior d'Enginyeria de la UAB,

CERTIFICA:

Que el treball a que correspon aquesta memoria ha estat realitzat sota la
seva direccio per en

I per tal que consti firma la present.

Signat:

Bellaterra, 8 de Juny de 2007

Agraiments a la meva familia,

a ella que I’he tingut al costat donant-me suport durant el projecte,
als amics que han fet possible que hagi arribat aqui

i al suport constant del Director del Projecte.

Gracies a ells aqui arriba el final de [’inici
de la carrera de la meva vida.

Index de contingut

Capitol 1: INtroducCio...............ccoooviveieiiiiieieiieee s 9
1.1 MOTIVACIONS 1.ttt ettt e e ettt e e et ee e e ettt e e et eeeeeanteeeeeneeeaeeas 12
1.2 ODBJECHIUS ..eeieiieiiie et et ee ettt e ettt e e ettt e e et ee e e ettt e e e et eeeeennteeeeaneeeaeens 13
1.3 Planificacio del temPseeeeeiiiiieeiiiie ettt ettt e 14
1.4 Estructura del dOCUMENL..........c..uiiiiiiiiieiiiiee ettt 15

Capitol 2: Sistemes en Temps Real......................coooooiiiiiiii 17
2.1 INEEOAUCCIO -ttt ettt et e et e e et ee e e et e e e e eaeeeaeeas 19
2.2 DEFINMICIONS ..ceetiiie ettt ettt et e e ettt e e et ee e e et eeeeeaeeeaeens 20
2.3 CaraCterTSTIQUES -..eeeiureieeeiiieeeeaieteeeette e e ettt eeeeeatteeeesaeeeeesneeeeeenteeesanneeeaeans 20
2.4 Classificacio dels Sistemes en Temps Realc.occceiiiiiiiiiiiiiiis 21
2.5 Tasques de Temps Realcoooiiiiiiiiiiiiii e 23
2.6 Planificaci6 en Sistemes en Temps Realoccoceiniiiiiiiiiiniiinnnen. 25

2.6.1 Prioritars @SIALIQUESccuueeeeneuieeianiiieieeiieee ettt e et 26
2.6.2 Prioritats diRAMIGQUES.............ccoccuueeiiniiiiiniiieiiieiieeeeee et 29
2.7 Exemples de Sistemes en Temps Real...........cccoovvieiiiiiiiiiiiiiiniiie. 31
2.8 Sistemes Operatius en Temps Realccoocoeiiiiiiiiiniiiiiiiiice. 33
2.8.1 SiStemes OPEFALIUS..........coccuueeeeieiieianiiie ettt ettt 33
2.8, 1.1 DEJIIICIONS ..ottt s saese s enens 34

2.8.1.2 FUNCIONS A'UN SO ...ttt ee et ie s 34

2.8, 1.3 HISTOTIA cc.vecuveneiveeieeeieeieieseeieeeseee et sttt sse s sesaeessessesasensanseessenes 35

2.8.1.4 Classificacio dels SOocoouuoeneneeeieieisieeeee et 36

2.8.2 CaracteriStIQUES..............ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e aenenenenesesnnnes 39
2.8.3 AVQUITECIUTA..........cceeeeeeeeeeee e eenesesnnees 39
2.8.4 Classificacio dels SO en Temps Real................cccouveeeeeeeeccivveeeenaann, 43
2.8.5 Distribucions SO en Temps Realc..ccooeevuvvvieeeeiinciiiieeeeeeennn, 44
2.8.5.1 SO amb licencia GNU/GPLcccceeeeeeeeeeeeeeeeecennenenenens 44

2.8.5.2 SO COMEICIALS ...t e et saeseesaesens 48

2.9 Sistema Operatiu Real Time Linux (RTLINUX).....ccceveriiiiiiiiiiieeeiiee e 49
2.9.1 CaracteriStIQUES..............coeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeenesenenesnnnnnes 49
2.9.2 Arquitectur@ RTLINUXovvveeeeeeeeciiiieee e e eecirieeee e eesrveaeee e e 51
2.9.3 Moduls del NUCKEoooeeeiieiiiieee et 52
2.9.4 Aplicacions de RTLIIUXccooeeeeiiiiieieesiniiiiiieeeeeeeiieeeaes e 52

Capitol 3: Preparacié d’un Sistema en Temps Real 53
B PIOVI .ttt st e e 55
3.2 ElecCiO de 185 @INES.....cceirmiiiiiiiiiiiiriiieee ettt e 56

3.2.1 RTLinux com a Sistema en Temps Realccccocoeeimniieiennnncn. 56
3.2.2 TCL/TK com a eina de desenvolupament de Software 57
3.3 Preparacid de RTLINUXcciiiiiiiiiiiiiiieeeeeiiiiiee e eiirieee e e e e e e e s 58
3.3 INSIALLACIO ..ot 58
3.3.2 FUNCIONAMENLevveeeeeeeeiiiieeeeeeeeeeiiteeeeeesestirteeeees s snseeeeaesesnnns 61
3. 3.3 MOULS ...ttt 61
3.3 4 RENAIMENE «.ocoooeeniiiiieee ettt e e ettt e e e s e tataeeeaeseeeaas 64
3.3.5 CONFIGUIACIO ...ttt e 67
3.3.6 PrOGFAIMACIO.........vvvveeeeeeeeciiriieaeeeeeeeiieeeeee e e eseittvseaaesssesseasaeaeeesesnnes 71
3.3.6.1 Estructura basica d’un MOAUL.................c.ccoeveeeeeeeceecreieeenierieeeeenens 71
3.3.6.2 Creacid i gestio de tasques en Temps Redl.............cccccceveeeneecvenannns 72

3.3.6.3 Comunicacio entre tasques (FIFOS)couuieevececeeieeenieneeeeeenens 73

3.3.7 EXCIIPLES. ...ttt 74

3.4 Preparacil TCL/TKttt e e s 78

340 QUE €S TCLITK?oeeeeeeeeeieeeee ettt e e e eteree e e e 78

3.4.2 Per que utilitzar TCL/TK?ccccouiioiiiiiiiiiniiiiiiee et 79

3:4.3 INSIALLACIO ..ot 79

3.4.4 VICL €ina de SUPOTTcccuvvveeeieeeeeccireieeeeeesccrreeeeeeeeseivvnaeaeessennes 80

3.4.5 Exemple d’aplicacio: Diagrama de tempscceeevvveeeeeeeeeennne. 80

3:4.5.1 CONCEPIC ..o eeeeeeeeeee e e et e e e e et 80

3.4.5.2 DUSSCIY....ceeeeeaeeeeeiieieeeeeeeeeeeeeee e e e e e et 81

3.4.5.3 IMPLEMEAIACIO..........eeeeeeeeaeeeeeicieeeee e e e et 82

3.4.5.4 Exemple d’@XeCUCIOceeeeeeeeeeeeiiiiiieeeeeeeeeeiicieieeeeeeeeeevaeeee s 85

Capitol 4: Generador de Tasques en Temps Realc.cccocoen. 87
O B o () USRS 89

4.2 Plantejament del Problema i SoluCio.........cocveveeiiiiiiiniiiiieiieeeiee e, 90

42,1 PYODIEIA ...ooooooiiieieieeeeeeee ettt e e et a e e e 90

B.2.2 SOLUCTO ..ottt 91

4.3 Disseny de I’aplicacio...........uuveeeerieiiiiiiiieeeeeeriiiieee e e e ee e e eiereee e 92

4.3.1 DiSSENY GUIueeiiiiiiiiiiiiiiiie ettt e 93

4.3.2 Generacio i Execucio del codi.................ccoovoeiivniiuiiinniiiiiniiecanane 95

4.4 Implementacid de I'apliCaciO.........ccuvvviieieeriiiiiiiiieee et 97

4.4.1 Implementacio GUI.............ccccocovvuiiiimiiiiiiiniiiiiiniie et 97

4.4.2 Implementacio Generacio i EXCCUCIOcueeevreueeeennieianiieeenene 99

4.5 Funcionament de 1’aplicacié (Exemple d’execucid)cccoeuveeernvreeennnne. 108
Capitol 5: Exemplesi Resultatscoooiiiieee, 113
T I s 1) DRSPS 115

5.2 Exemples generats manualmentccoeevruiiiieiieiniiniiiiieeeenenniiieeeee e e 116

5.2.1 Exemplel: Interrupcio del teClatccceeeeeeeeunnnnnnennnernnnnnnennnannns 116

5.2.1 Exemple2: Prova de SO...........cccceeeeeeeeeeeeeeeeeeieeecccevessessaennns 118

5.3 Exemples generats amb ’aplicacié (Generador de Tasques) 120

5.3.1 Exemple3: Prova de la periodicitar...............ccoeeevvveeeeeeeesccinvvennnnnn 120

5.3.2 Exemple4: Control d’un procés Simple............ccccceeeeeeeeccecviunnennnnnnn. 123

5.3.3 Exemple5: Control d’un tanc d’aigua (Temperatura i Nivell).......... 126

Capitol 6: Conclusio...............ocoooviiiiiiiiiie e, 143
6.1 ODbJECtius @SSOIILS «.eouuveeieiiiiieiiiie ettt e 146

6.2 Problemes trobats...........oocueeiiiiiieiiiiiie e 147

6.3 Propostes de treball futurcoooiiieiiiniiiiiii e 148

6.4 Valoraci6 personal del Projecte Final de Carrera.........cccccceeevnueeennne. 150

Capitol 7: ANNEX.............ooooiiiiecceeeeee e 153
7.1 Codi font apliCaCIONSceeeriiieeiiiiiieiiniieie ettt e 155

7.2 Codi font eXemples SENETALScceeriuereerriiieieeiieeeeeieeeeeeieeeeeieeeeeans 172
Estructura del CD adjuntat ..o, 181

Referencies Bibliografiques...................cccooooeiiiiiiciieee, 183

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

1. Introduccio

Aquest document és la memoria del projecte final de carrera “Desenvolupament de Software per a
Sistemes Operatius en Temps Real lliures” realitzat a la facultat d’enginyeria informatica de la
Universitat Autonoma de Barcelona (ETSE-UAB). Aquest projecte s’emmarca en el conjunt dels
Sistemes Operatius en Temps Real de llicencia gratuita com és RTLinux.

Com a memoria, és un text imprescindible per comprendre el desenvolupament del projecte final de
carrera i serveix per veure totes les etapes seguides per arribar a complir els objectius proposats.

Sén cada cop més els dispositius que utilitzen les bases dels sistemes en temps real, per controlar sistemes
per computador. Un clar exemple es la industria del automobil, un turisme actual de classe mitjana inclou
pel voltant d’una dotzena d’aquests automatismes (ABS, aribags, etc.). Un altre camp d’aplicacié dels
sistemes en temps real sén els electrodomestics de nova generacié que inclouen sistemes de control i
temporitzacié en temps real. Es tant gran el creixement d’aquests sistemes en temps real, que avui dia ja
dupliquen en niimero al sistemes convencionals informatics. Els estudis relaten que aquesta diferéncia va
en augment. La propietat que diferéncia els sistemes en temps real dels altres és que les seves accions no
tant sols han de ser correctes sindé que s’han de produir en uns intervals de temps determinats pels
sistemes que controlen. Per exemple, el control d’injeccié d’un motor de combustible s’ha de realitzar la
injeccié de la barreja dins del interval de temps marcat per la rotacié del motor, sind es compleixen
aquests intervals el motor no funcionaria. En aquest sistemes es tracta d’un sistema empotrat, els sistemes
en temps real normalment sén empotrats i tenen bastants restriccions de recursos. Tot i aquestes
restriccions de recursos, les aplicacions per aquests sistemes en temps real poden arribar a ser molt grans,
els sistemes de control d’un avié es conten les linies de codi de les aplicacions en milions. Aquesta
complexitat comporta 1’obligacié d’utilitzar la enginyeria del Software.

En aquest projecte s’analitza la viabilitat de crear un d’aquests sistemes en temps real utilitzant software
lliure (Sistema Operatiu i eines de desenvolupament). S’analitza la possibilitat de desenvolupar sistemes
en temps real sense tenir la necessitat de recorrer a eines en les quals s’hagi de pagar llicencies.

El software 1liure és una definicié molt complexa la qual comporta diferents tipus de llicencies i que no
s’entra en discussié en aquest projecte. Simplement remarcar la necessitat d’utilitzar aquest tipus de

software per les segiients causes.

- La primera causa i potser la més important en aquest punt de la situacié personal és la
obtencid de llicencies de software comercial. Aquests tipus de llicencies poden arribar a ser
d’uns preus tant alts que una persona individual no pot pagar per un software el qual es vol

analitzar per comprovar-ne la viabilitat de la construccié de software.

- Una altre causa i no menys important que 1’anterior és que amb 1’obtenci6 d’eines i software
de codi lliure és que es podra modificar i personalitzar de la manera que es vulgui, per
contra, el software comercial €s unic i no es pot modificar. Per tant, els software lliure ens

dona més flexibilitat per personalitzar-lo a la nostre manera.

-11 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

Un enginyer ha de poder optimitzar el software lliure obtingut per les propies necessitats e
inclos millorar-lo i exposar-ne les idees. Aquesta és potser una de les grans avantatges del
software lliure, la creacié de comunitats les quals discuteixen idees d’implementacid,

d’aquesta manera és més facil obtenir software de qualitat.

Personalment no he estat mai una persona que hagi seguit de molt a prop tot aquest entorn de software
lliure ni hem considero un usuari expert en Sistemes Operatius com Linux, és més, en el capitol
motivacions expresso el repte personal que m’imposo en aquest projecte final de carrera al haver de
tractar tot amb un entorn Linux i de software lliure.

Després de tenir clar que sén els sistemes en temps real i les avantatges que donen, es fa un analisis dels
Sistemes Operatius en Temps Real per crear I’entorn de creacié de sistemes en Temps Real. L’escollit és
RTLinux, un Sistema Operatiu creat per Michael Baravanov i Victor Yodaiken que avui dia continuen el
seu desenvolupament en la seva empresa FSMLabs amb una versié comercial, RTLinux/Pro. S’estudien
les propietats d’aquest Sistema Operatiu, el funcionament i s’analitza la viabilitat d’utilitzar-lo com
entorn per crear tasques en temps real.

Seria de gran importancia crear un entorn potent, flexible i sense pagar per llicencies comercials i aixo
s’aconsegueix amb RTLinux. Al final es veu com es pot desenvolupar software per a sistemes en temps
real de forma amigable per 1’usuari sense que aquest hagi de tenir coneixements profunds de programacié
en RTLinux.

Aquest projecte és doncs, un estudi inicial de la creacié d’aplicacions per tasques en temps real en un
entorn de temps real com es RTLinux. A partir d’aqui es senten les bases per a la creacié d’un entorn de
creacié de tasques en temps real complert i de facil Gs. Aquest projecte no intenta crear un software de
dltima generacié ni molt menys. El projecte el que pretén es veure la possibilitat de crear un entorn de
temps real i desenvolupar-ne aplicacions. Un cop el lector a llegit el document i esta interessat en crear un
entorn de creaci6 de tasques en temps real pot seguir el projecte on es deixa aquest. Al final del projecte

es proposen millores del que s ha fet iidees de disseny d’aplicacions per un possible treball futur.

1.1 Motivacions

Després de cursar tots aquests any per complir totes les assignatures del pla d’estudis que s’estableixen
com a necessaries per acabar la carrera. Com alumne i futur enginyer, queda fer una ultima pinzellada als
estudis amb aquest projecte i aquest document formal. Durant tots aquests anys s’han apres molts
conceptes de diferents camps perd sobretot ens han ensenyat a aprendre. Un enginyer ha de ser capag de
desenvolupar-se en qualsevol camp en el minim termini de temps possible per que aixo es el que es
demana quan se surt de la universitat. Per tant els conceptes assimilats tenen una importancia, perd el
gran pes es la capacitat que s’obté per aprendre i el projecte final de carrera intenta reflexa aquesta
caracteristica obtinguda durant els anys d’estudiant.

El tema del projecte té diferents motivacions. Una de les més importants i personal és la motivaci6 del

repte. Mai he estat una persona que hagi seguit en profunditat ’entorn de Linux, és més, sempre he

-12 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

utilitzat Windows per la seva comoditat. Ara no entraré a discussions de que es millor i que es pitjor,
simplement cadascun sera funcional per cada entorn. Vaig comencar a fer el projecte amb uns
coneixement minims de Us de Linux, i he aconseguit compilar un kernel e instal-lar un linux en temps
real.

Una motivacid es aquest terme, “‘sistemes en temps real”’, no en tenia gaire coneixement tampoc i m’atreia
molt aquest concepte, saber que es el temps real, perque és necessari. Al transcurs del projecte cada cop
han estat més les motivacions, com més coses noves s’aprenien més en profunditat volia arribar. Un tema
prou atractiu i interessant de desenvolupar, unir conceptes de temps real amb software de codi lliure, tot
un repte. Sistemes de temps real utilitzats en entorns tant avangats com en les naus enviades de la NASA
com la “pathfinder” que portava el sistema operatiu en temps real MarteOS o en entorns tan critics com
aparells medics.

Una altre motivacié ha estat fer el projecte per acabar la carrera, posar en marxa tots les tecniques
d’estudi, analisis i aprenentatge que he adquirit durant els anys d’estudiant, de quina millor manera acabar
una carrera fent un projecte final i un cop acabat fer una reflexié personal de tot el que s’ha apres i que es
reflexa en el projecte.

Finalment anomenar un problema de temps que m’he trobat aquest any en I’elaboracié del projecte final
de carrera i que m’ha obligat a seguir un estricte calendari per poder obtenir els resultats finals en el
temps estimat, aquest aspecte m’ha ajudat aprendre a posar en marxa un projecte planificant el temps amb

altres projectes personals de manera real.

1.2 Objectius

Sén varis els objectius presentats en el projecte amb els quals s’intenta arribar a un objectiu final,
concloure en la viabilitat de crear un entorn de desenvolupament de tasques en temps real de forma facil
tot utilitzant software de codi lliure. Per arribar aquest objectiu final s’ha d’estudiar en profunditat els
sistemes en temps real, veure els sistemes operatius que implementen aquests sistemes en temps real,
estudiar-ne i analitzar-ne els sistemes operatius que son de software lliure per crear I’entorn desitjat. Un
cop creat I’entorn desitjat veure quines possibilitats de programacié hi ha actualment per desenvolupar
aplicacions per ampliar el nombre d’eines per facilitar al usuari final la creaci6 de tasques en temps real i
el posterior analisis. Els objectius del projecte s’han anat ampliant i guiant durant el desenvolupament
d’aquest.

Al final d’aquest projecte s’han proposat nous objectius els quals estan referenciats en el capitol de
conclusions en 1’apartat de treball futur els quals poden arribar a ser nous projectes finals de carrera per la
seva gran envergadura. S’havia iniciat el projecte amb una visi6 bastant limitada de les possibilitats que
oferien aquests tipus de sistemes.

Com ja s’ha comentat, la idea del projecte era un estudi inicial dels sistemes en temps real i tot el que hi
ha darrera. Ara un cop acabat el projecte i s’han complert els objectius, la visié ha augmentat i ha sorgit

idees per a futurs treballs.

- 13 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

1.3 Planificaci6 del temps

En aquesta planificacid no esta inclosa la definici6 del projecte degut a que aquesta etapa es preliminar al
projecte i tampoc es té en compte el disseny i preparacié de la presentacié del projecte. A continuaci6 es

detallen els punts de la taula per tenir més clar en que consisteix cada concepte.

1.- Estudi inicial dels Sistemes en Temps Real

En aquest primer punt es fa un estudi previ de que son els sistemes en temps real, per a que
serveixen, quins camps d’aplicacions tenen. També es fa un estudi més profund de les caracteristiques

d’aquests tipus de sistemes, com funcionen (per exemple: tipus de planificacid), etc.

2.- Analisis dels diferents Sistemes Operatius en Temps Real

Seguidament es passa a veure els Sistemes Operatius en Temps Real emmarcats dins dels
Sistemes Operatius. Es fa un estudi previ del funcionament basic dels Sistemes Operatius per comprendre
les avantatges que suposaran els Sistemes Operatius en Temps Real. S’analitzen un conjunt de Sistemes
Operatius en Temps Real actuals ja siguin de software lliure o comercials. Es fa un posterior analisis per

elegir-ne un pel projecte.

3.- Instal-lacié i Configuracié de RTLinux

En el analisis anterior s’elegeix el Sistema Operatiu RTLinux. En aquest punt es passa a veure
com compilar e instal-lar RTLinux. Un cop funcionant s’ha de configurar per el nostre us. Aquest ha estat
un dels temes més feixucs potser per la falta d’experiéncia en entorns Linux. S’ha arribat a perdre molts

cops el Sistema Operatiu.

4.- Aprenentatge: us i programacié en RTLinux

Un cop RTLinux ha funcionat correctament s’ha passat aprendre a utilitzar-lo (moduls
carregables, planificadors, fifos, etc..) i programar amb la API que es disposa de RTLinux per programar

tasques en temps real.

5.- Analisis RTLinux com a Sistema Operatiu en Temps Real

En aquest punt ja es t€ uns minims coneixements de funcionament i programacié amb RTLinux i
cal veure el rendiment que ofereix RTLinux a través de programes per testar la planificacid, les fifos, les

interrupcions, el jitter, la latencia, etc. del Sistema Operatiu.

6.- Aprenentatge programaci6 Tcl/Tk

Per desenvolupar les aplicacions per facilitar la tasca de 1’usuari final en un entorn de temps real
com RTLinux s’elegeix el llenguatge de programacié Tcl/Tk. En aquest punt s’analitza el perqué de
I’eleccié d’aquesta eina enfront d’altres i el posterior aprenentatge per assolir uns minims per estar

preparat pel desenvolupament d’aplicacions.

-14-

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“"5"2‘3‘5; Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

7.- Desenvolupament d’aplicacions

Disseny e implementacié de les diferents eines desenvolupades durant el projecte. Eines com
I’aplicacié que mostra 1’execuci6 de les tasques en el planificador de temps real, el Generador de Tasques

(la més complerta), les diferents aplicacions de generacié de grafiques dels resultats.

8.- Proves i Conclusions

Proves referents al Sistema Operatiu en Temps Real RTLinux i les aplicacions creades.
Generaci6 de tasques amb 1’aplicacié destinada per aquest efecte. Analisis dels resultats per extreure’n les

conclusions finals del projecte.
9.- Documentacié

Redaccid i revisié de la present documentacié. Expressié sobre el paper del treball fet i els

objectius assolits Una de les parts més complexes del projecte.

Concepte Quantitat

1. Estudi inicial dels Sistemes en Temps Real. 25h
2. Analisis dels diferents Sistemes Operatius en Temps Real. 25h
3. Instal-lacié i Configuracié de RTLinux 40h
4. Aprenentatge: Us i programaci6 en RTLinux 50h
5. Analisis RTLinux com a Sistema Operatiu en Temps Real 20h
6. Aprenentatge programacié Tcl/TK 20h
7. Desenvolupament d’aplicacions 80h
8. Proves i Conclusions 50h
9. Documentacié 150h
Total 460h

1.4 Estructura del Document

El document esta dividit en els segiients capitols i annexes que s’expliquen a continuacio:

Capitol 1 Introduccid

Aquest capitol es I’actual i tracta d’introduir al lector al projecte final de carrera. Es descriuen les
motivacions per les quals s’ha fet el projecte, els objectius proposats i una planificacié temporal de les

tasques a realitzar.

Capitol 2 Sistemes en Temps Real

El capitol dos exposa els coneixements adquirits sobre sistemes en temps real per la posterior
preparacié d’un entorn de treball en temps real. Aquest tema es purament teoric i introdueix al lector en

els conceptes de temps real.

-15 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " Emggﬁ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

Capitol 3 Preparacié d’un Sistema en Temps Real

Aquest capitol exposa els passos a seguir i els coneixements a obtenir per preparar les eines
necessaries per obtenir I’entorn de treball en temps real i el perque de la eleccié d’aquestes eines.
S’explica com installlar el Sistema Operatiu en Temps Real RTLinux i com configurar-lo per
personalitzar-lo. Es mostra el funcionament d’aquest sistema operatiu i la programacié de la API en
temps real. Per altre banda s’explica com instal-lar Tcl/Tk i la manera de programar en aquest tipus de

llenguatge.

Capitol 4 Generador de Tasques en Temps Real

Es posa en comu tots els coneixements assolits i es fa s de totes les eines preparades per
desenvolupar una aplicacié per generar tasques en temps real de forma facil i amigable per ’usuari final.
S’explica els detalls de disseny e implementaci6é de I’aplicaci6 creada. Finalment a través d’un exemple

de creacid de tasques en temps real, s’explica el funcionament de 1’eina implementada.

Capitol 5 Exemples i Resultats

Es creen una serie d’exemples ja sigui utilitzant 1’aplicacié creada o manualment per veure la
facilitat de crear tasques amb I’aplicaci6 i veure també aspectes del temps real. Es mostren i comenten els
resultats obtinguts. Concretament s’exposen cinc exemples que intenten avarca tot el que s’apres durant el

projecte.

Capitol 6 Conclusions

S’exposen les conclusions extretes dels resultats obtinguts. Es comprova quins objectius s’han
assolit. S’exposen millores a implementar e idees que s han originat durant el transcurs del projecte per a

treballs futurs. Finalment es fa una reflexi6 personal sobre el projecte final de carrera.

Annexes

En aquest punt s’adjunten els codi font de les aplicacions creades i dels exemples generats.

-16 -

Sistemes en
Temps Real

Capitol 2: Sistemes en Temps Realccccooooiiiiiinincen, 17
2.1 INETOAUCCIO ..ottt ettt e 19
2.2 DEIMICIONS -..eeeeeuieieeeiiittee ettt ettt et e sttt e ettt e e sibaeeesabaeees 20
2.3 CaraCterTSHIQUESeeeerurreieriiieeeiiittee ettt ee ettt e ettt e e sttt e e ebteeessabaeeeeabeeeas 20
2.4 Classificaci6 dels Sistemes en Temps Realcccoovviiiiiiiiiiiinniiennnen. 21
2.5 Tasques de Temps Realcccoooiiiiiiiiiiiiiiii e 23
2.6 Planificaci6 en Sistemes en Temps Realccccoooiiiiiiiiiiiiiii, 25

2.6.1 PriOTItALS @SIALIQUESccecevevveeeeeeeeeesiraeeeeeeestiraeseesesesenrseseeesesnnnes 26
2.6.2 Prioritats dilAIMIGUES..............ueeeeeeeeeeeirieeeeeeeeiseisivseseesssisinrssseesssssnnes 29
2.7 Exemples de Sistemes en Temps Real..........ccooccoiiiiiiiiiiiiis 31
2.8 Sistemes Operatius en Temps Realccccooviiiiiiiiiiiiiie, 33
2.8.1 SiStemes OPEraALIUS...........cceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenenenenennsesnes 33
2.8, 1.1 DEJITICIONS ..ot eie st eae s s se s 34

2.8.1.2 FUNCIONS d’UI SO ...ttt 34

2.8.1.3 HISIOFIQ ettt 35

2.8.1.4 Classificacio dels SOcuouuvneneeeieieiseeeeee e 36

2.8.2 CATACIETISIIQUES........cueeeeiiiiie ettt e 39

2.8.3 AFQUITECTUF ..ottt e e ettt e e e ettt ee e e e e e 39

2.8.4 Classificacio dels SO en Temps Real...............cccoouueeveiienecciuneneennnnnn. 43
2.8.5 Distribucions SO en Temps Realccccooeeeuveeiieiiineiiiiieeeenannn, 44
2.8.5.1 SO amb licencia GNU/GPLccccceeeeeeeeeeeeeeeecnennsenennns 44

2.8.5.2 SO COMEICIALS «...vvvvveeeneeeeeeesieeeeeeieiee et s et seesaesens 48

2.9 Sistema Operatiu Real Time Linux (RTLINUX).......coiieriiiiriniiieeeiieeeeen. 49
2.9.1 CaracteriStIQUES..............cuuueeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeseeaenenesnsesnnnsnes 49
2.9.2 Arquitectur@ RTLINUXovvvveeeeeeeciiiieee e e eeccirieeee e e eesrveeeee e e e 51
2.9.3 MOAULS el NUCKEcccoooeeiriiiieieeeeciieee et e e e 52

2.9.4 Aplicacions de RTLINUXcccooveeeiivieeeeeeicciiieieeeeeesrveeeeee e 52

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

2. Sistemes de Temps Real

2.1 Introduccié

En aquest punt, s’aclareix alguns conceptes previs necessaris per comprendre el que s’aconsegueix amb el
projecte, construir un sistema en temps real en un PC de sobretaula amb software de llicencia gratuita i
veure la viabilitat de desenvolupar software en temps real per millorar la interaccié de 1’usuari amb el
sistema.

Es reflecteix tot el que involucra crear un sistema de temps real, es veu que és un sistema de temps real
juntament amb les seves caracteristiques, definicions, propietats, exemples, etc. Després veurem que sén
els Sistemes Operatius i perque serveixen. Veurem unes classificacions d’aquests en la que trobarem dins
d’aquesta els Sistemes Operatius en Temps Real que sera el tipus de Sistema Operatiu que utilitzarem per
crear I’entorn de Sistema de Temps Real. Igual que amb els Sistemes Operatius, amb els Sistemes
Operatius en Temps Real en veurem caracteristiques, propietats, etc. Un cop es té clar aquests conceptes,
es passa a veure unes quantes distribucions actuals de RTOS (Real Time Operating System) tan amb
llicencia gratuita com RTOS d’ambit comercial.

De tots els Sistemes Operatius en Temps Real que veurem, donarem més importancia a RTLinux, que
sera el Sistema Operatiu utilitzat en el projecte per crear el nostre Sistema de Temps Real. En veurem una
explicaci6 amb més detall de com esta estructurat, les caracteristiques i finalment algun exemple
d’aplicacié. En proxims capitols, veurem en més detall el funcionament de RTLinux i com programar
tasques en temps real amb tot el que va associat.

Tenim diferents tipus de sistemes informatics, els sistemes basats en el processament per lots, basats en el
processament en linia i els de temps real. El primer sistema, el basat en lots, no té importancia el punt en
el temps en el que s’aconsegueix el resultat, per exemple la facturacié d’una empresa. El segon sistema, el
basat en processament en linia és desitjable saber en quin punt en el temps s’aconsegueixen els resultats,
per exemple els sistemes de compra on-line. Per tdltim, el que interessa, els sistemes de temps real és
necessari saber en quin punt del temps s’obtindran els resultats, han de ser sistemes deterministes, per
exemple els semafors, control aeri, etc..

Els sistemes de temps real son sistemes informatics que interactuen amb el medi de forma deterministica i
sempre de forma molt controlada. Aquesta propietat fa que un sistema de temps real sigui Optim per a
funcions de supervisi6 i control, son tipiques les tasques d’adquisicié de dades o supervisid. Aquestes
tasques necessiten tenir uns intervals ben definits i normalment sén tasques periodiques que €s en el que

es basen principalment els sistemes de temps real.

-19 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

2.2 Definicions

En el transcurs del temps, diferents cientifics han definit els sistemes de temps real a la seva manera,

seguidament podem veure alguns exemples:

- Laplante:
“Un sistema de temps real és un sistema en que els temps de resposta han de satisfer
requisits explicits, i en cas de no respondre dins d’un interval acordat es poden produir

consegqiiéncies greus, fins i tot poder arribar al fracas.”

- Burns:
“Un sistema de temps real és un sistema de processament de la informacio que ha de

respondre a estimuls generats exteriorment dins un periode finit i especificat.”

- Donald Gillies:
“Un sistema de temps real es aquell que per que les operacions computacionals siguin
correctes no depen tant sols del resultat obtingut, sino en el temps en que s’obtindra el
resultat. Si el temps en que s’obté el resultat no acompleix els requisits, es dira que el

sistema ha fallat.”

Un bon exemple de sistema en temps real es el d’un Robot que ha de recollir peces d’una cinta mecanica.
Si el robot arriba tard, la peca ja no estara. Encara que el procés d’arribar al lloc es correcte, no
s’acompleix el requisit temporal i per tant s ha fallat en I’accié. Si la pega arriba abans també es dira que
el sistema ha fallat ja que el brag del robot pot impedir que la pega finalitzi.

Es freqiient veure com es confon temps real amb sistemes rapids. Cal doncs deixar clar abans de seguir
endavant, que sistema de temps real no es sinonim de sistema rapid.

La importancia d’un sistema en temps real no és la rapidesa en fer una tasca, la importancia del temps real

és assegurar que el temps definit per fer una tasca es complira.

2.3 Caracteristiques

Per tenir una idea més clara de com soén els sistemes en temps real no n’hi ha prou amb les definicions
anteriorment citades. S’ha de profunditzar una mica més analitzant les caracteristiques que acompleixen

aquests tipus de sistemes.

+ Determinisme: El determinisme es clau en els sistemes de temps real. El determinisme és
saber quan tardara una tasca en iniciar-se. Aquest caracteristica es molt important ja que un
sistema de temps real ha de tenir una precisié perfecte. Normalment es defineix com al temps

abans de respondre a una interrupcié. Es important saber el temps de resposta a un event extern.

-20 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

- Responsivitat: La responsivitat és el temps que tarda una tasca en executar-se després

d’atendre la interrupci6.

+ Control: En sistemes de temps real els usuaris tenen un control més ampli d’aquest. Els
processos seran configurats per I'usuari. L’usuari podra especificar les prioritats, la gestié de la

memoria, etc..

- Confiabilitat: El sistemes de temps real a part de no tenir errors, ha de ser un sistema estable.
Ha de mantenir un marge d’error que no porti a un punt critic. Si el sistema falla, aquest a de

mantenir el maxim de dades i si no pot complir totes les tasques, complira les més critiques.

Les aplicacions dels sistemes real sén molt variades, i continuament apareixen nous camps d’utilitzacié
per aquests. Alguns d’aquests es troben en sectors com les telecomunicacions, sistemes multimedia,
robotica, aviacid, automobils, etc. Hi ha alguns sistemes de temps real que a part de requeriments

temporals també tenen requeriments de seguretat critics.

Quan anem a dissenyar un sistema de temps real passarem per varies fases:

@) S’identifiques les tasques que s’hauran de realitzar i les restriccions temporals
d’aquestes.

(ii) Seguidament es codificaran els programes que executaran les tasques.

(iii) Finalment es mesuraran els temps per veure si s’acompleixen els requisits temporals.

Meés endavant es veu com es segueixen aquests tres punts i com és fa un estudi exhaustiu del requeriment

temporal i la planificacié de les tasques. Tot aix0 és fa mitjangant simulacions i diagrames de temps.

2.4 Classificacio dels sistemes en temps real

El sistemes en temps real es poden classificar de diferents maneres. Seguidament es veuen les diferents
caracteristiques utilitzades per a classificar-los. Es tindra en compte diferents aspectes, el temps, el tipus

de processament, la duresa en el tractament dels errors, etc.

1) La primera classificaci6 és fara depenent de la duresa en el tractament d’errors que es presentin en els

sistemes:

- Soft real-time systems: Aquests tipus de sistemes poden tolerar un incompliment en el temps de

resposta, amb la seva penalitzacié pertinent, es a dir, es poden perdre placos a vegades. En
aquests sistemes s’assegura que les tasques més critiques s’executaran. Les dades s’executen en
memories no volatils. Un exemple de sistema de temps real soft és una tasca que fa I’adquisici6

de dades d’un determinat sistema.

-21 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

de Barcelona

- Hard real-time systems: En aquests sistemes, una resposta fora del plag no té valor i resultara la

falla del sistema. Un exemple és el control de frenada d’un automobil. Si aquesta tasca no

s’acompleix dins un plag especificat els resultats seran desastrosos.

- Firm real-time systems: En aquests sistemes es poden perdre placos ocasionalment, és té pero

que una resposta fora de pla¢ no tindra cap valor. Aquest tipus de sistemes son per exemple

sistemes en temps real multimedia.

2) També es poden classificar segons 1’escala de temps utilitzada. Es diferencien tres tipus sistemes en

temps real:

- Basats en el rellotge: S’invoca i executa repetidament a intervals constants a partir d’una

invocaci6 inicial, tasques periodiques.

- Basats en events: Les accions es realitzen a partir d’un event, per exemple, una accié comenga

quan es llegeix una dada del sensor, basicament tasques aperiodiques.

- Interactius: L’execucid de les accions es fa en temps irregulars, per exemple, un operari inserint

dades.

3) Es poden classificar per la manera de processar les dades:

- Sistemes centralitzats: S6n sistemes en que tant sols hi ha un node pel processament, es
I’encarregat d’atendre totes les peticions, les tasques que s’executen ho fan en memoria

compartida. S’utilitza poc temps en la comunicaci6 entre tasques.

- Sistemes distribuits: Sén sistemes en els que hi ha varis nodes, units a través d’una xarxa que

els comunica, les tasques s’executen en els diferents nodes. Hi ha un important consum en temps

per la comunicaci6 entre tasques.

4) Una altra manera de classificar els sistemes en temps real sera segons 1’estratégia de planificaci6é que

s’utilitza :

- Sistemes estatics: En aquests tipus de sistemes, les caracteristiques i la seva naturalesa son

coneguts abans, en temps de disseny es planificara la seva execuci6. El sistema no admet noves
tasques en el moment de I’execucid. Aixi que tot el pla d’execucio es previst abans de comencar

a executar les tasques.

- Sistemes dinamics: Aquests tipus de sistemes admeten tasques noves en l’execucié. Quan

detecta una nova tasca, el sistema analitzara si pot executar-la complint els requisits temporals

-22 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié

P i Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

de Barcelona

sense afectar les altres tasques ja previstes en el disseny. Aquests tipus de sistemes tenen un

planificador complex.

5) Per tltim, es classifiquen els sistemes en temps real segons la manera com interactuen amb

el medi:

- Sistemes embeguts: S6n sub-sistemes d’un sistema més complex. Un exemple de sistema

embegut seria el sistema de control d’injeccié de combustible d’un automobil.

- Sistemes no embeguts: S6n sistemes tnics e independents del hardware al qual corren.

2.5 Tasques de temps real

Les activitats que es realitzen en un sistema de temps real s’anomenen tasques.

Les tasques en temps real tenen diferents propietats que les defineixen.

- Funcionals: Que fan les tasques.
- Temporals: Quan es realitzen.

- Altres: fiabilitat, seguretat...

Les tasques de temps real tenen un comportament temporal especific el qual s’especifica mitjancant els
seus atributs temporals. Aquests atributs temporals soén 1’esquema d’activacio i el plag per executar-se la

tasca.

Activacio Limit

Plac d'execucié

Tnici Fi

l Execucid tasca

Temps de resposta

Figura 2.1: Exemple execucio tasca en temps real

La figura 2.1 il-lustra I’execucié d’una tasca en temps real. Es veu a la part superior com hi ha un rang on

es limita el pla¢ d’execucio.

-23 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

La tasca s’ha d’executar dins d’aquest plag. També es pot diferenciar bé entre el temps d’execucio i el
temps de resposta d’una tasca en temps real. El temps d’execuci6 €s el temps de comput, el temps que
tarda la tasca en executar-se integrament, en canvi, el temps de resposta d’una tasca en temps real
compren el temps d’execucid de la tasca i el temps que passa des de que s’activa la tasca fins que es

comenga a executar.

Anteriorment es parlava dels atributs temporals de les tasques els quals donen el comportament temporal

de cada tasca. Aquests atributs temporals sén:

- Activacié: Tenim dos tipus d’activacié d’una tasca, les periodiques i les aperiodiques.
Les tasques periodiques s’activen a intervals regulars, amb periode T. Les

tasques aperiodiques s’activen cada cop que succeeix un event.
- Plag de resposta: Hi ha dos tipus de placos de resposta. Quan hi ha un temps limit per
acabar, aleshores es parla de plag absolut. Quan el pla¢ t€ un interval

des de I’activacio es parla de plag relatiu.

Per a produir-se una tasca es necessari que hi hagi un event, periodic de rellotge o un event extern. Quan

es produeix un event entren en joc el periode de jitter i la laténcia.

- Laténcia en un event: La latencia davant d’un event es el temps que esta des de que es

produeix la interrupcié fins que es comenga a executar la rutina de tractament de la
interrupcié. Un event pot ser una interrupcié hardware o software. La latencia davant
una interrupcié hardware és el temps des de que es produeix la interrupcié fins que
s’executa la primera instrucci6 de la rutina de tractament, degut a retards en el bus.
En canvi, la laténcia davant una interrupcié software €s el temps des de que la senyal
es generada fins que la primera instrucci6 de las tasca es executada, en aquest tipus el

retard €s degut al temps d’accés als registres del processador.

- Periode de jitter: El periode de jitter son les variacions en el temps entre la mateixa
tasca quan s’executa de forma repetida. Una altre manera de dir-ho, el jitter és la
diferéncia entre el temps esperat per que un event passi i el temps en que passa

realment [’event.

-4 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié i Escola Tacnica Superior d'Enginyeria

d’un entorn de desenvolupament de tasques en temps real

de Barcelona

En la segiient figura és mostra graficament quan actua la laténcia d’un event i el periode de jitter

comentats anteriorment.

A
Laténcia event
- L i
o
18
" i Periode de jitter
| |
r E -1
Interrupcio Comengament rutina
iractament interrupcio

Figura 2.2: Event interrupcid i periode de jitter.

2.6 Planificacio en sistemes de Temps Real

La planificacié és 1’assignacié de recursos i temps a unes tasques de forma que es compleixin determinats

requisits d’eficiencia. Els requisits que tenen els planificadors depen del sistema en que treballa el

planificador. En sistemes sense temps real, els requisits buscats sén els de minimitzar els temps

d’execucid. En canvi, els sistemes en temps real, els requisits buscats seran els de compliment d’uns

limits temporals.

Els metodes de planificaci tenen un algoritme de planificacié que donara 1’ordre en que s’executaran les

tasques i un metode per analitza el comportament temporal del sistema

La planificacié d’un sistema pot ser tan dinamica com estatica:

Planificaci6 estatica: Els requisits temporals s’analitzen abans de

I’execuciéi determina l’ordre. Aquesta planificacié minimitza la

carrega en temps d’execucid pero per altre banda, es poc flexible.

Planificacié Dinamica: L’ordre en que s’executaran les tasques es resol en
temps d’execucié i I’analisi temporal també es fara en temps d’execucio.
Aquests tipus de planificadors aporten una carrega considerable en temps

d’execucio.

De planificadors estatics hi ha RM (Rate Monotonic) i DM (Deadline Monotonic) i de planificadors

dinamics hi ha EDF (Earliest Deadline First) i LLF (Least Laxity First). Seguidament es mostra un

esquema de la classificacié de les politiques de planificacié

-25 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 5“‘{:‘3; Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

Palitiques de temps Real

Periddics Pricritats

Estaticas Cindimicas

Deadline Monotonic Rate Monotonic Least Laxity First Earliest Deadline First

Figura 2.3: Classificacio Politiques de temps Real

Si les tasques s’executen ciclicament aleshores la planificaci6 es fa sobre el primer hiperperiode en temps
de disseny, el minim comu multiple del periode, i com que estem en un sistema en que totes les tasques
s’executen de forma periodica, després del primer hiperperiode es torna a repetir les seqiiencia.

També hi ha les politiques basades en prioritats, aquest es un dels sistemes més usats. Planificadors amb
prioritats n’hi ha de dos tipus, estatiques i dinamiques. Les estatiques treballaran amb prioritats estatiques

en canvi les dinamiques ho faran amb prioritats dinamiques en temps d’execucio.

2.6.1 Prioritats estatiques

En aquest tipus de sistemes, el limit de temps d’execucié es el periode de la tasca. Les tasques
son independents, per tant, no es comparteixen recursos. Hi ha dos tipus de planificadors per a

prioritats estatiques.

1.- Rate Monotonic: En la fase de disseny, s’assignen les prioritats de forma inversa als
periodes. En temps d’execucié s’activa la tasca amb més alta prioritat. Aquest tipus de
planificador és Optim per a sistemes amb prioritats estatiques. Rate Monotonic té algoritmes per
garantir que la planificaci6 sera correcta.

El test de garantia RM diu que si es compleix una certa desigualtat per un cert conjunt de
tasques, aquestes seran planificables. La desigualtat ha de ser entre el factor d’utilitzacié i el
limit garantit d’utilitzacié. Aquest tipus de test sera suficient perd no necessari, es poden trobar
escenaris en que un conjunt de tasques no compleixin aquest test perd que siguin panificables.

El test de temps de finalitzacié un escenari de planificacié sera planificable sota qualsevol
assignacio de prioritats si totes les tasques compleixen el seu plag maxim d’execucid en el pitjor

cas.

-26 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
Barcelona

de

d’un entorn de desenvolupament de tasques en temps real

El pitjor temps d’execuci6 €s el temps en que la tasca tarda més en finalitzar, aixo passa quan
totes les tasques de prioritat més alta s’activen alhora conjuntament amb aquesta. Aquest test

sera suficient i necessari al contrari del test anterior.

2.- Deadline Monotonic: Les prioritats s’assignaran de forma inversament proporcional al plag
d’execucié. En aquest tipus de planificacié només sera valid utilitzar el test de temps de
finalitzacié. El Rate Monotonic es convertira en un cas particular del Deadline Monotonic. El
DM sera optim per planificadors amb prioritats fixes que compleixin que el temps maxim
d’execuci6 sigui menor o igual al periode d’execucié de les tasques. Es pot afirmar que si un
conjunt de tasques no es planificable amb [’assignacié de prioritats segons DM no sera

planificable amb cap altre manera d’assignar les prioritats.

Un cop vistos els dos sistemes de planificacié per a prioritats estatiques, s’ha de tenir en compte
una serie de punts importants que afectaran a la manera de construit els algoritmes de

planificaci6 explicats anteriorment.

@) Canvis de context: El temps en posar i treure una tasca del processador no es nul-la. En
sistemes de planificacié basat en prioritats tant sols hi ha canvis de context quan
s’activin tasques amb major prioritat. Per a cada activacié d’una tasca amb major

prioritat resultara dos canvis de context.

Canvis de
context

Tasca 1
Tosco 2
Figura 2.4: Esquema canvi de context
(ii) Gesti6 de recursos: En els sistemes de temps real les tasques no son independents entre

elles. Aquestes tasques comparteixen dades entre elles usant 1I’exclusié mutua i han de
sincronitzar-se per col-laborar entre elles. Per a realitzar tot aixo de forma eficient i
segura la solucié passara per protegir les seccions critiques mitjancant semafors.
L’exclusié mutua evita que diferents tasques accedeixin a recursos compartits en les
seccions critiques. Un dels problemes de I’exclusié mitua és la inversi6 de prioritat. La
inversio de prioritat passa quan una tasca de major prioritat necessita entrar en una
secci critica controlada per una tasca de menor prioritat, la tasca de major prioritat
haura de bloquejar-se a ’espera que s’alliberi. En el segiient exemple s’il-lustra millor

la inversi6 de prioritats.

-27 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real epasons

Existeixen 3 tasques:

A: tasca amb alta prioritat

B: tasca amb mitjana prioritat

C: tasca IDLE que només s’executa sind hi ha cap tasca en la cua.

La tasca A i C accedeixen a un mateix recurs, per tant aquestes tasques usaran semafors
per assegurar 1’exclusié mitua.

En un moment donat C s’esta executant i entra en seccid critica fent un wait (mutex),
mentre C esta en la seccid critica es produeix un event que fa que A s’assigni al
processador i com que fa un wait (mutex) es queda bloquejat esperant que C faci un
signal (mutex) alliberant el semafor, pero resulta que abans que s’executi C altre cop, B
s’activa i com que no hi ha cap tasca en el processador, aquesta 1’agafa. Al cap d’una
estona de tenir B en el processador, tenim el segiient estat:

A: Bloquejada esperant que C alliberi el mutex.

B: Executant-se com si fos la tasca amb major prioritat.

C: bloquejada esperant que no hi hagi cap tasca al processador.

En aquest moment hi ha la inversié de prioritat, B s’estad executant com si tingues més

prioritat que totes les altres tasques per causa del bloqueig de A.

+ pricritat
Bloguejada
Tasca 3 .-]
2]
Togoo 2]
3
Tasca 1 A —_— L]
1 4
- pricritat

Figura 2.5: Inversio de prioritats

Aquest problema va passar amb la Mars Pathfinder, 1’aparell enviat el 14 de Juliol de
1997 el qual experimentava freqiients resets que provocaven la perduda de dades
recollides. Quan la Mars Pathfinder tenia que recollir dades i enviar-les es trobava que
la tasca de recollir dades no tenia temps d’acabar per que se li havia assignat una baixa
prioritat, per arreglar-ho tant sols van haver d’augmentar la prioritat d’aquesta tasca i
aixi no entraria en I’efecte anomenat inversi6 de prioritats.

En la figura anterior es veu un exemple de inversi6 de prioritats:

1.- La tasca 1 entra en seccid critica controlada per un mutex.

2.- Tasca tres s’activa pero el mutex de la seccid critica esta bloquejat per la tasca 1

-28 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié i Escola Tacnica Superior d'Enginyeria

d’un entorn de desenvolupament de tasques en temps real

de Barcelona

(iii)

3.- Tasca dos s’executa ja que no té seccid critica i no hi ha cap tasca en execucio.
Aquesta tasca esta funcionant com si fos la tasca amb més prioritat i estd retardant
I’execuci6 de la tasca 3.

4.- S’allibera el semafor de la seccid critica en la tasca 1.

5.- De seguida s’allibera en la tasca 3 i es comenca a executar ja que es la tasca amb
més prioritat. Aquesta tasca s’esta executant amb retard.

Existeixen varies formes de corregir I’error de la inversié de prioritats, es poden donar
diferents prioritats en les seccions critiques com es va fer en la Mars Pathfinder, ordenar

I’ordre d’execuci6 offline o fer que les seccions critiques siguin interrumpibles.

Servei aperiodic: Hi ha un temps que no utilitzen les tasques critiques periodiques que
es pot usar per: portar un log del sistema per monitoritzar el que esta passant, refinar
I’execuci6 de les tasques, comprovar integritat del sistema, etc. Tot aixo es fara sense
posar en perill ’execucié de les tasques critiques. Es poden classificar el servei

aperiodic en tres:

1.- Servidor en background: En aquest tipus de serveis aperiodics, les tasques es
van posant en una cua fins que queda plena, les tasques tant sols seran executades
quan no hi hagin tasques critiques pendents per ser executades. Per realitzar un
servidor en background 1’tnic que s’ha de fer és crear una tasca servidora amb la
prioritat més baixa, aquesta tasca espera rebre tasques aperiodiques i les va
executant.

2.- Servidor per Polling: En aquest metode el que fa es afegir una tasca periodica
com a tasca critica. Els valors de periode, temps de comput i la prioritat s’elegeixen
de forma que el conjunt sigui planificable. Les tasques aperiodiques es van
guardant en una cua i quan el servidor entra en execucié comenca a executar les
tasques que te guardades fins que no t€ més tasques o finalitza el seu temps de
comput.

3.- Servidor Diferit: Aquest métode es com el servidor per Polling pero ara la tasca

de servidor se li assignara la prioritat més gran.

2.6.2 Prioritats dinamiques

En politiques de planificacié amb prioritats dinamiques les tasques no tenen una prioritat inicial.

La prioritat de cada activacié s’escollira de forma dinamica. Per tant, es pot tenir que varies

activacions de la mateixa tasca es podran fer amb diferents prioritats. Normalment sera mes

eficient que les politiques de planificacié amb prioritats estatiques. Existeixen dos politiques de

prioritats dinamiques.

-20 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real epasons

1.- Earliest Deadline First: Les tasques s’executen per ordre dels seus respectius temps limits.
La primera tasca que s’executara sera aquella que abans finalitza el seu temps per ser executada.
Aquesta decisi6 es pren en temps d’execucid. El desavantatge que té aquest metode es
I’existencia de freqiients comparacions de temps de finalitzacié de plag. L’avantatge d’utilitzar

EDF és la facilitat de I’analisi que s’ha de fer per escollir la prioritat de la tasca.

Tosca 1

! | 2 |
rescaz | 1],

| Task 2 1] Task 11] [Task 1 2 [Task 22 |

Figura 2.6: Exemple EDF.

En I’exemple de la il-lustracié es mostra una exemple d’execucié de dos tasques utilitzant el
metode de planificacié EDF. Es mostra com primer s’executa la tasca 2 ja que el seu plag
d’execuci6 acaba abans. En la segona execucid, la tasca 1 sera la que s’executi abans ja que el
plac d’execucié d’aquesta arriba abans. En el moment d’execucié s’han de fer els calculs
pertinents per saber en cada moment quina tasca s’haura d’executar abans.

Com ja s’ha comentat anteriorment, tota planificacié porta associat un algoritme i un metode per
verificar si el conjunt sera planificable amb 1’algoritme. L’algoritme EDF té associada una
formula per saber si sera planificable. La formula diu que el sumatori dels quocients entre el
temps de comput i el periode de totes les tasques ha de ser més petit o igual que 1 per a que el

conjunt sigui planificable.

2.- Least Laxity First: Aquest métode consisteix en assignar la prioritat a les tasques de forma
inversament proporcional a la seva holgura. La holgura d’una tasca es el temps de mes que té
una tasca per executar-se sense afectar els temps de la planificacié. S assignara doncs, la prioritat
més alta a la tasca amb holgura més petita.

Aquest algoritme al igual que EDF pot aconseguir un 100% de factor d’utilitzacié. En el metode
EDF no es necessari coneixer el temps de comput de cada tasca, en canvi amb LLF aquest
parametre sera requerit. Aixo sera una desavantatge ja que 1’holgura es calcula en base al temps

de comput, aquest calcul es inexacte ja que s’assumira el pitjor cas per a calcular 1’holgura.

-30 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " fus Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

de Barcelona

Tascal L _\If______

escaz [¢ [L EEE v EEE 4

Tascaz M [1 4 ™ [T _| _ ¥

Figura 2.7: Exemple LLF.

En I'exemple es mostra I’execucié de tres tasques sota la politica Least Laxity First, es
comprovar com sempre s’executa la tasca amb menys holgura, és a dir, la tasca que menys temps
de més té per ser executada, es veu com la tasca 2 és la que té menys temps i per aixo s’executa

abans. Després en el segon periode, s’executa dos vegades per una que s’executa la tasca 3.

2.7 Exemples de sistemes en Temps Real

Finalment només quedara veure uns exemples de sistemes en temps real. Es poden necessitar aquests

tipus de sistemes en diferents escenaris.

1) Control d’un flux: En aquest exemple es té una canonada amb una valvula. Es necessita un
sistema que controli el cabal d’aigua que passa per la canonada. Segons el valor del cabal
s’obrira o es tancara la valvula per que passi I’aigua. Es necessari un sistema de temps real
que mesuri el cabal d’aigua i prengui les decisions de forma precisa per a que al final de la

canonada no arribi a sobrecarregar-se.

Vihula

Control del flux, obertura o
tancament de la valvula segons
walors obtinguts del cabal.

Figura 2.8: Sistema de temps real: Control d’un flux

-31 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

de Barcelona

2) Control d’un procés: En aquest tipus de sistemes de temps real hi ha uns processos a

controlar dins d’un sistema complet.
En I’exemple hi ha un diposit amb aigua en el que s’ha de controlar el volum d’aigua que hi
ha i la temperatura, per fer-ho es disposa d’un sensor de temperatura i un de altura.

Depenent dels valors obtinguts per els sensors I’ ordinador central prendra unes decisions.

]

sensor
temperatura

PC controlader de
sistermes en femps real

calefactor

sensor
capacitat

Figura 2.9: Sistema de temps real: Control d’un procés

3) Control en fabricacié: Un altre escenari en el que es requereix un sistema de control en

temps real es en un procés de fabricacié. Hi ha un ordinador que controlara el procés.
Aquest tipus d’escenari es estudiat en assignatures com planificacié de la produccid.
Existeix una seqiiencia d’operacions des de que entren els materials per fer les peces fins

que aquestes surten. Tots aquestes operacions seran controlades per un computador central.

OPERACIONS

Entrada peges sortida peges

Mcuing

manipulacic Transport

Controlador dels processos

Figura 2.10: Sistema de temps real: Control de produccio en la fabricacio.

-32 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

2.8 Sistemes Operatius en Temps Real

Els Sistemes Operatius de Temps Real es poden trobar en molts llocs i sén tant ttils com tots els altres
Sistemes Operatius. Es poden trobar en controls aeris, instruments medics, a la industria (petrolera,
quimica, etc.), en I’automobilisme, etc. S6n moltes les aplicacions que es donen als sistemes de temps
real. Es de gran importancia seguir els avencos fets en aquest camp ja que en el futur dels Sistemes
Operatius conviuran els Sistemes de temps Real distribuits multiprocessador. El bloc principal del
projecte dona gran importancia als Sistemes Operatius de Temps Real ja que el projecte es basa en
estudiar el temps real i com aplicar-lo amb un ordinador personal i fer-ho amb eines de codi lliure.

El gran augment de complexitat en els aparell microelectronics fa que es necessiti d’un control exhaustiu
d’aquests, si amb aix0 s’afegeix que aquests aparells poden ser encastats i poden controlar tasques tan
critiques com la navegacié d’un avié o el control de I’orbita d’un satel-lit, i tenen la necessitat de
respondre en temps determinats es fa necessari 1’ts de Sistemes Operatius en Temps Real.

Per tenir un Sistema Operatiu en Temps Real no es precisa d’una gran computadora, per exemple, el
sistema operatiu que governa una llangadora especial pot usar un hardware amb 2mb de memoria, i
microprocessador no gaire potent. La importancia d’un Sistema Operatiu en Temps Real no es la rapidesa
d’aquest, per tant no necessita un hardware molt avancat, tant sols necessita el hardware necessari per

complir uns temps determinats, per tant, el hardware vindra determinat pel sistema a controlar.

2.8.1 Sistemes Operatius

El hardware per si sol no serveix de res, te la necessitat de tenir associat un software per que
tingui alguna utilitat. E1 Hardware amb ajuda del Software podra guardar, processar, i recuperar
informacid, és a dir manipular la informacié. El Software per computador es pot classificar en
dos classes: els programes de sistema que controla I’operativa del hardware i els programes
d’aplicaci6 els quals resolen problemes pels usuaris. Exemples de programes d’aplicacié n’hi ha
a infinitats, programes de gestor, de finances, etc.. Perd el que interessa pel projecte son els
programes de sistemes, ’exemple clar de programa de sistema és el Sistema Operatiu el qual
controla tots els recursos del computador i el qual donara la base per a construir els programes

d’aplicacio.

AR

Sisterna Operativ
Hardw are

Figura 2.11: Sistema Operatiu (capa intermeédia)

-33 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

En ’origen de la historia dels computadors, els sistemes operatius no existien i la introduccid
d’un programa d’aplicacié es convertia en un increible esfor¢ que tant sols algunes persones ben
preparades podien fer-ho. Quan es volien crear programes d’aplicacié per resoldre problemes
practics, es tardava tant que no sortia a compte. Amb tota aquesta situacié es va comengar a
pensar en crear una capa entre el hardware i 1’usuari, aix{ ’'usuari podra fer un us eficient del
hardware de forma senzilla. Aquesta capa intermedia sera el que es coneix actualment com el

Sistema Operatiu.

2.8.1.1 Definicions

No existeix cap forma udnica de definir que és un Sistema Operatiu, hi ha diferents

definicions que son valides.

(i) Es potimaginar un Sistema Operatiu com els programes instal-lats en el software que
fan usable el hardware. El hardware només fa comput i el Sistema Operatiu déna la facilitat
d’usar aquest comput al usuari i administren els recursos d’aquest hardware per obtenir un

bon rendiment.

(i) Els Sistemes Operatius sén administradors dels recursos hardware, computador, E/S,

mitjans d’emmagatzematge, dispositius de comunicacid, etc..

(iii) El Sistema Operatiu és un intermediari entre 1’usuari i el hardware, i 1’objectiu
d’aquest es proporcionar al usuari una forma facil per a que pugui crear programes
d’aplicaci6. L’objectiu principal del Sistema Operatiu és doncs, donar una facilitat d’us del
hardware al usuari i com a objectiu secundari, que el hardware s’utilitzi de forma eficient.
Aquest dltim objectiu, es veura més endavant que en Sistemes Operatius en Temps Real és

més important que qualsevol altre objectiu.

(iv) Un Sistema Operatiu, €s el programa més important de I’ordinador. Per que funcionin
altres programes, sera necessari 1’existencia del Sistema Operatiu. Els sistemes Operatius
realitzen tasques basiques com reconeixement dels dispositius d’E/S, enviar imatge a la

pantalla, etc..

2.8.1.2 Funcions d’un Sistema Operatiu

El Sistema Operatiu com a Software que simplifica I'is del computador té unes funcions
associades essencials per a la gestié de I’equip. Com a funcions més destacades es troben:

Gesti6 de recursos de I’equip i donar una interficie per 1’usuari.

-34 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

Com a gestor de recursos, el Sistema Operatiu administra la CPU, la memoria, la E/S,
I’administracié de recursos, etc.. Com que sén moltes les coses a controlar des del Sistema
Operatiu, s’han dividit les tasques que té que realitzar un Sistema Operatiu.

Un Sistema Operatiu ha de gestionar els processos, gestionar la memoria, gestionar els
fitxers, gesti6 E/S, seguretat i comunicacié. Totes aquestes tasques estan molt ben

diferenciades.

2.8.1.3 Historia

1940-50: En aquest periode comencen apareixer els primers computadors, aquest s’utilitzen
sense cap Sistema Operatiu ja que encara no existeixen. L’ds dels computadors és molt

complicat i requereix molt de temps.

1950-60: Comencen apareixer de forma discreta els Sistemes Operatius amb 1’objectiu de
facilitar les tasques als usuaris. En aquells temps el funcionament dels Sistemes Operatius
era bastant simple, es carregaven els programes a través d’unes cintes o targetes perforades

(monitor resident).

1960-70: En aquesta eépoca van sorgir canvis notables, entren en joc noves tecniques com la
multiprogramacié en el qual la computadora pot tenir més d’un programa d’usuari en
execucid i aprofitar les E/S per executa altres programes. També el temps compartit el qual
permet 1’execucié de més d’un programa i usuari, al igual que en la multiprogramacio, la
computadora sera compartida entre els diferents programes/usuaris amb la diferéncia que
ara si un programa porta un temps concret executant-se, passara la CPU a un altre programa
i aix{ és compartira el processament entre diferents programes/usuaris.

El 'Temps Real també és una altre concepte introduit en aquesta &poca, hi ha doncs Sistemes
Operatius que executen les tasques en temps real i per tltim existeixen el multiprocessador,

Sistemes Operatius que poden gestionar varis processadors alhora.

1970-80: L’electronica avanga i apareixen grans projectes per crear Sistemes Operatius,
perd molts sortien molt cars o es necessitava molt més temps de I’esperat. La complexitat

augmenta molt.

1980-90: Apareixen els grans Sistemes Operatius que ara son els més usats per 1’usuari,
Windows (MS-DOS) i Apple Macintosh. Aquest Sistemes Operatius és van crear utilitzant
explicitament la tercera definicié anomenada anteriorment, és a dir, I’objectiu principal
d’aquests Sistemes Operatius és donar la maxima facilitat a 1’usuari per utilitzar la maquina

i com a objectiu secundari, que aquesta es faci de forma optima.

! Concepte explicat en els punts 2.1, 2.2, 2.3, 2.4

-35 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real epasons

2.8.1.4 Classificacio dels Sistemes Operatius

Amb el temps, han sorgit multitud de Sistemes Operatius que han fet que es puguin
classificar en diferents categories depenent de les caracteristiques de cadascun. La
classificaci6 es fa a partir de les caracteristiques dels Sistemes Operatius i del ds o aplicacié

que se li donara.

@) Sistemes Operatius per lots: Els Sistemes Operatius per lots, processen una gran

quantitat de treball amb molt poca interaccié amb 1’usuari. Aquests Sistemes Operatius s6n
dels més antics i poden obtenir uns alts temps d’execucio ja que el procesador esta molt més
usat gracies a la seva simplicitat. L’objectiu d’un Sistema Operatiu per lots és el
processament d’una gran quantitat de processos sense o amb poca interaccié amb 1’usuari.
L’usuari carrega una seqiiéncia de tasques a realitzar i li dona el control al Sistema Operatiu
per que les executi. S6n Sistemes Operatius destinats a alts index de processament. Aquest

Sistemes Operatius seran aconsellables per a tasques de llarga durada.

AB e =
s i
Cea s

Figura 2.12: Sistema Operatiu per lots

(ii)) Sistemes Operatius de multiprogramacid: La caracteristica principal d’un Sistema

Operatiu multiprogramacié és que pot executar més d’una

tasca a la vegada i aix{ el processador el processador estara
. e . . Tasca |
sempre en Us. Per aconseguir aix0, el Sistema Operatiu el que
fa es posar les varies tasques en memoria per poder-les
L) Tasca 2
executar totes en qualsevol moment i aixi tenir sempre el
processador ocupat. Aquest tipus de Sistemes suporten sovint
. TGSCG N
a multiusuaris, aix0 implica afegir seguretat al Sistema
Operatiu. La caracteristica principal doncs sera que un Sistema
. . N . . R
Operatiu multiprogramaci6é tindra varies tasques competint
pels recursos del sistema. .
hferncmnd

Figura 2.13: SO

Multiprogramacio

-36 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“‘&":;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

(iii) Sistemes Operatius de Temps Compartit: Els Sistemes Operatius de Temps Compartit

simulen que cada usuari té tot el control dels recursos del computador. L’usuari creu que té
disponibles tots els recursos en tot moment. El Sistema Operatiu el que fara es gestionar tots
aquests recursos de forma eficient per a que els usuaris creguin que tenen aquests en tot
moment. Tindrem doncs una gran carrega sobre el Sistema Operatiu. Un exemple clar es el

SO utilitzat en les WorkStation utilitzant el SO Sun.

Figura 2.14: Sistema Operatiu de Temps Compartit.

(iv) Sistemes Operatius Distribuits: Aquests Sistemes Operatius el que fan es distribuir les

diferents tasques en diferents processador en un mateix equip o en diferents equips. Donen
total transparencia al usuari, un usuari llenca una tasca a executar-se, ell no sap en quina
maquina s’esta executant, perd rebra els resultats com si I’estigués executant en el mateix
PC.

Generalment aquests Sistemes Operatius proporcionen mecanismes per a la comparticié

global de recursos.

Interficie
/l/ CPU
Interficie . Interficie
Memdona
<P Sisterna 2 <R
Mermndric : e rmdria
Sisterna 1 Sisterna 3

Figura 2.15: Sistema Operatiu Distribuit

-37 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“;,:,‘2&:; Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

(v) Sistemes Operatius de Xarxa: S6n Sistemes Operatius que s’interconecten en una

xarxa per compartir recursos i la informacié. Actualment la majoria d’empreses
informatitzades tenen un Sistema Operatiu de xarxa per poder interconnectar tots els

components de la xarxa i poder compartir la informacio.

sepvidor amb SO Impresora compartida

e wara

— eeem G
[

Srdinadorn compartint recursos

Figura 2.16: Sistema Operatiu de Xarxa

(vi) Sistemes Operatius en Temps Real: Aquest tipus de Sistema Operatiu és el que té

protagonisme en el projecte. Sera necessari pel control de processos en temps real.

Aquests tipus de Sistemes Operatius no donen importancia a 1’usuari siné que tot el treball
fet sera pensant en les propies tasques. S’utilitzen quan hi ha una gran quantitat de
successos. Normalment aquests Sistemes Operatius sén molt especifics com per exemple
Sistemes Operatius pel control aeri, per la borsa, etc.

Han de ser capag de tractar una gran quantitat de successos amb un temps o pla¢ determinat,
amb temps d’execucio precis. El procés d’aquestes rafegues de successos sera de milers en

un segon sense perdre’n ni un. A de ser capac de tractar-los per sota de I’ ordre dels “ms.

control
-
— 1 cicle .
Sisterna
" controlat
[
S2RE0F

tilers de cicles persegon

Figura 2.17: Sistema Operatiu en Temps Real.

* ms:milisegons, un segon partit en mil parts

- 38 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

2.8.2 Caracteristiques

En un Sistema Operatiu de Temps Real no tant sols és important que les tasques es facin de
manera correcte sind que aquestes s’han d’executar en un temps establert.

Tenen una forta interaccié amb I’exterior, reben els estimuls els tracten i retornen una sortida
(control), aquests tipus de sistemes s’anomenen reactius ja que reaccionen al exterior.
Normalment les tasques d’un Sistema Operatiu de Temps Real sén periodiques i es basen en
rebre estimuls, tractar-los i enviar una sortida a 1’exterior. Aquest llag periodic pot fer-se en
I’ordre dels microsegons i es possible que en un segon es repeteixi milers de vegades i no pot
perdre ni un sol estimul. Aquest es el fonament principal i més important d’un Sistema de Temps
Real, poder processar molts estimuls sense perdre’n cap en molt poc temps.

Normalment es cau en I’error que un Sistema Operatiu de Temps Real ha de ser rapid i aix0 no

es cert, la importancia €s complir els temps definits i el determinisme d’aquest.

2.8.3 Arquitectura

Per entendre l’arquitectura d’un Sistema Operatiu en Temps Real primer s’ha de veure

I’arquitectura d’un Sistema Operatiu Convencional.

En un Sistema Operatiu Convencional la memoria esta dividida en I’espai per 1’usuari i I’espai
del sistema. Els usuaris accedeixen pensant que tenen tot 1’espai d’usuari per ells gracies a la
gestid del kernel multitasca. Per accedir a I’espai del sistema es fara mitjancant crides a sistemes
i aixi donar transparéncia als programes d’usuari sobre els detalls fisics de 1’arquitectura.

Les funcionalitat d’un Sistema Operatiu Convencional sera la gesti6 de processos, gestio fitxers,
gestié memoria, interaccié amb el hardware, etc.. En canvi, en un Sistema Operatiu de Temps
Real la funcionalitat principal i requerida es proveir d’uns temps de resposta necessitat per les

tasques de temps real.

‘ Ezspai d'usuari

Crides a Sisterna
Planificacid Tasques

Ezpai del Sisterna

Interrupcions

‘ Hardhirare ‘

Espai del Sisterma confrola la interaccié
entre 'espai d'usuari i el hardware

Figura 2.18: Arquitectura Sistema Operatiu Convencional.

-30 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
Barcelona

de

d’un entorn de desenvolupament de tasques en temps real

Una altre difereéncia entre un Sistema Operatiu Convencional i un de Temps Real, es que en el
primer, normalment es tenen uns valors baixos de laténcia i jitter, pero els Sistemes Operatius de
Temps Reals requereixen que aquests valors estiguin determinats i no depenguin de la carrega

del sistema.

Ara un cop s’entén com esta estructurat un Sistema Operatiu Convencional i quines diferéncies
existeixen amb un Sistema Operatiu de Temps Real, s’ha de veure com transformar aquesta
arquitectura per aconseguir-ho.

Per fer-ho s’ha de reduir el jitter i la latencia, per fer aixd0 s’han desenvolupat diferents

arquitectures que modifiquen 1’ anterior.

@) Preemptable Kernel: Aquesta tecnica el que fa es modificar I’espai del Sistema

de forma que els processos de kernel i temps real s’executin amb major
prioritat i puguin interrompre als processos de menor prioritat. Aquesta tecnica
necessitara modificar el gestor d’interrupcions del sistema per a no bloquejar
els processos de major prioritat. Les tasques de temps real s’executaran com a
tasques del sistema i aleshores tindran major prioritat que les tasques que no
s6n de temps real i aixi el planificador podra decidir correctament sempre
prioritzant els processos en temps real. Aquests tipus de tecnica millora

notablement el temps de jitter i la latencia.

rr S

Proceass Pric RT Espai d'usuati Mo RT
- FProcess Frocess

Crides o Sisterma
: Planificacid Tasques
Gl Planificadon
FProcess .@
~V

Intarrupcions

Hardweare

Figura 2.19: Arquitectura Preemptable.

Aquest tipus d’arquitectura facilita a ['usuari desenvolupar facilment
aplicacions, té proteccié de memoria i ’'usuari no pot corrompre el Kernel.
L’usuari també disposara de tots els serveis disponibles en I’arquitectura
convencional. Dins d’aquests avantatges hi ha uns punts molt en contra per

aconseguir el parametres optims.

- 40 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria

d’un entorn de desenvolupament de tasques en temps real

de Barcelona

(i)

El rendiment no es suficient per aconseguir la baixa latencia de I’ordre dels
microsegons, es produeix un canvi molt gran en el codi del kernel, s’esta fent
un kernel nou. El rendiment global del sistema baixara notablement.

Es pot concloure que preemptable kernel no sera una arquitectura bona per
obtenir un Sistema Operatiu en Temps Real.

Aquesta tecnica modifica I’espai del sistema totalment, hi ha altres tecniques
que consisteixen en modificar parts de I’espai del sistema, aquestes tecniques

es denominen kernel Patch.

Kernel Patch: Aquesta técnica consisteix en modificar I’espai del sistema i
afegir un segon kernel, per dotar el Sistema Operatiu de temps real. Existeixen

tres técniques:

1. Micro-Kernel: Aquesta técnica afegeix una capa entre el hardware i 1’espai
del sistema. Aquesta capa s’anomena HAL (Hardware Abstraction Layer).
Aquesta capa controla I’execucié de les tasques de temps real i executa el
kernel del sistema com una tasca en background. El kernel del sistema tant
sols s’executara quan no hi hagi cap tasca executant-se. Aquesta capa controla
les interrupcions i s’assegura que les tasques en temps real s’executin amb
maxima prioritat. Un exemple d’aquesta arquitectura és RTLinux, el Sistema

Operatiu utilitzat en el present projecte.

+

RT N i o
. Sisterna Operativ Linus,

. Prio No RT Y Espai d'usuarif’ No RT tasca en background
- Process Process
B ! i Crides a Sisterna

Plio Flanificacid Tasques

Process
N

+

Interrupcions
Crides o Sisterna
Planificacid Tasques

Interrupcions

‘ Hardw cre ‘

{ii Comunicacid entre tasca en ternps real i
tasca no ternps real, mitjiancant buffers.

Figura 2.20: Arquitectura Mikro-Kernel

3 4
Procés executat en segon pla.

-41 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " me“c‘;'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

2. Nano-Kernel: Aquesta teécnica consisteix en posar una capa que captura les
interrupcions hardware i permet I’execucié en paral-lel de varis sistemes.
Aquesta tecnica no es directament per crear un sistema operatiu en temps real
ja que per sobre el nano-kernel es pot trobar sistemes de temps real o no. Un

exemple d’aquesta estructura es ADEOS.

Linux, windows...
-~ T

@ Flanificador

Espai o'Usuari Espai d'Usuari Espai d'Usuari
Crides de
RTOS MNO RTOS MNO RTOS sisterna
[Ta oL To oL To
RT Kernel Kemel Kernel

Interrupcions

Nano Kernel

Interrupcions

Harcware

Figura 2.21:Arquitectura Nano-kernel

3. Recurs-Kernel: La dltima tecnica a tractar entre les de kernel-patch, es la que
utilitza un kernel nou com a porta als recursos (sistema de fitxers, ports, etc.).
Aquesta porta es per I’espai d’usuari i per ’espai de sistema. El recurs-kernel a
part de capturar les interrupcions hardware, gestiona els recursos que

demanaran les diferents tasques tan com les d’usuari com les de sistema.

Espai d'usuar
Tasques en Tasques Mo
Ternps Real Termps Real

Crides a sisterna

Espai de Slsterna

\I/ /I\ Interrupcions

Porta de Recursos

Hetrde cire

Figura 2.22: Arquitectura Recurs-Kernel

-42 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié i Escola Tacnica Superior d'Enginyeria

d’un entorn de desenvolupament de tasques en temps real

de Barcelona

La tecnica de kernel patch déna millors resultats que la de preempted kernel,
obtenint latencies de l'ordre dels 5 microsegons, clarament millor que
I’anterior tecnica. El Kernel de linux s’executara com una tasca en no temps
real i per tant, amb la prioritat més baixa. La planificacié d’aquests tipus
d’arquitectures resultaran una planificacié totalment deterministica, per tant es
compliran els dos requisits indispensables per obtenir un Sistema Operatiu en
Temps Real.

Perd no tot seran punts positius, el desenvolupament de tasques en temps real
sera bastant més complexa i per tant s’haura de tenir coneixements amplis de
linux. Les caracteristiques de temps real seran implementades en moduls com
es veura més endavant. Es pot arribar a corrompre el kernel si és comet algun

€rror.

2.8.4 Classificacio dels Sistemes Operatius en Temps Real

Els Sistemes Operatius en Temps Real es poden classificar de diverses formes, es poden

classificar en base a la importancia dels temps limits, segons 1’escala de temps, segons la

integracié amb el sistema , segons la forma de processament i per dltim, segons la tecnica de

planificacié utilitzada.

®

(i)

Segons la importancia dels temps limits: Existeixen tres grups, sistemes de

temps real estricte els quals un incompliment dels placos establerts
comportara una falla total del sistema, sense la possibilitat de continuitat. Per
tant amb aquests sistemes es més important acabar les tasques en el temps
assignat. Els sistemes de temps real flexible, a diferéncia del sistema anterior,
aquests poden incomplir algunes vegades les restriccions temporals pero aixo
fara que el sistema respongui amb menor qualitat. I per dltim en aquesta
classificaci6 hi ha els sistemes operatius ferm, aquests sistemes son sistemes
operatius durs perd poden tolerar algunes falles si la probabilitat que passi aixo

és baixa.

Segons I’escala de temps: En aquesta classificacié hi ha tres grups altre cop,

sistemes basats en rellotge, s’executen a intervals repetits i molt curts, per a
tasques periodiques que s’executaran cada cert temps. Els sistemes basats en
events les accions es realitzaran asincronament, quan es produeixi un succés
s’executara la tasca que tractara tal succés. Per ultim en aquesta classificacid,
els sistemes interactius els quals s’inicien a intervals irregulars, quan per

exemple es prem una tecla del teclat i aixo ha de produir una certa tasca.

-43 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié i Escola Tacnica Superior d'Enginyeria

d’un entorn de desenvolupament de tasques en temps real

de Barcelona

(iii)

@iv)

)

Segons la forma de processament: Aquest tipus de classificacié fara una divisié

en dos tipus, sistemes centralitzats quan el processament de les tasques a
executar es fara en un sol node, la comunicacid es fa mitjancant la memoria, en
canvi en els sistemes distribuits el processament de les tasques es fara entre
diferents nodes, aquests es comunicaran per la xarxa, el consum de temps en

comunicacié sera bastant important en aquests tipus de sistemes.

Segons la integracié amb el hardware: N’hi ha de dos tipus, els encastats i el

no encastats, en els sistemes encastats, el sistema operatiu de temps real
estara dins un subconjunt d’un sistema més complexa. En canvi en els sistemes

no encastats, seran independents del hardware extern.

Per dltim, segons la técnica de planificacié: Altre cop es diferencien dos grups,

els sistemes estatics, els quals totes les seves tasques s’en saben les seves
caracteristiques i en temps de disseny es pot planificar I’execucié. No
s’admeten tasques noves en temps d’execucié. En els sistemes dinamics, es
poden tenir tasques conegudes i que en temps d’execucié apareguin noves

tasques i poder-les planificar de forma eficient.

2.8.5 Distribucions de SO en Temps Real

Existeixen diferents distribucions de Sistemes Operatius en Temps Real, a continuacié es

descriuen algunes les quals abarquen tots els tipus d’arquitectures anteriorment explicades,

especialment la micro-kernel que sera la utilitzada en el projecte. Per dltim, s’anomenen alguns

projectes que hi ha actualment perd que no interessen tant ja que no sén de codi lliure.

2.8.5.1 Sistemes Operatius amb llicencia GNU/GPL

Chimera OS (Preemptable-Kernel): Chimera és sistema operatiu real de

multiprocessadors dissenyat per software reconfigurable per sistemes robotics.
Chimera es caracteritza per la seva alta multiplicitat ens les caracteristiques
ofrenades i gracies aixo pot oferir un desenvolupament rapid de reconfiguracio.
Disposa d’un nucli de temps real el qual té programacid estatica i dinamica, aquest
nucli permet multitasca per tant podran executar-se multiples tasques de forma
concurrent.

Pel que fa a la planificacié tan pot suportar planificacié per prioritats fixes (Rate

Monotonic) i planificacié amb prioritats dinamiques (Earliest Deadline First).

-44 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " Emggﬁ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

Aquest tipus d’arquitectura una de les avantatges que té, es la facil implementacid
d’aplicacions en temps real. La distribucié Chimera conté multitud de biblioteques
per a us general i biblioteques de desenvolupament tal com biblioteques de
matematiques, de comandes d’interprets, etc.

Incorpora complets i complexes controladors d’errors. Es dels unics Sistemes
Operatius que és de multiprocessador, a diferéncia de altres sistemes que fan
repliques de la CPU i les comunica amb un protocol especific.

Chimera proporciona la majoria de caracteristiques disponibles en Sistemes
Operatius de Temps Real, més les eines necessaries pel desenvolupament de

sistemes de control basat en captadors i moduls

CHIMERT

reconfigurables.

Com ja s’ha explicat, I’arquitectura preemptable no
aconsegueix bons resultats pel que fa a les lateéncies i
jitter, per tant, de ben segur que sera un bon Sistema

Operatiu en Temps Real i sera complet perd per

I’arquitectura que s’utilitza no obtindra els requeriments

desitjats. Aquest projecte pero ja no esta actiu.

2. Linux/RK (Recurs-Kernel): Linux Recurs Kernel com el seu nom indica, utilitza
I’arquitectura de Recurs-Kernel. Utilitzara un Kernel per abstraure del hardware,
aquest Kernel sera una porta als recursos que oferira el hardware. Les tasques quan
tenen la necessitat d’un recurs (CPU per exemple) es comuniquen amb el recurs
kernel per demanar el recurs. Aquest kernel gestionara els recursos entre les tasques
depenent de les seves prioritats. Aquest €s un projecte no massa conegut i on no hi

ha massa documentacid per implementacions.

3. ADEOS OS (Nano-Kernel): ADEOS el que busca es crear un entorn que serveixi

per compartir el hardware per multiples Sistemes Operatius o instancies. Aquests
s’anomenen dominis, aquests dominis poden viure junt amb altres dominis,
independents entre ells, I’tinic domini que han de coneixer tots es ADEOS. ADEOS
consta d’una arquitectura Nano-Kernel. ADEOS notifica a cada modul les
interrupcions hardware, les crides a sistema i els events. Cada domini disposara
d’una prioritat, aquesta prioritat determinara 1’ordre en que els events son tractats
en els dominis. Aquests events son col-locats en una pipeline. La manera de
treballar de ADEOS és la segiient:

Un domini entra en execucio, aleshores pot passar

dos coses, que finalitzi voluntariament ja que Adeos
acabat totes les interrupcions que tenia que tractar o

un domini més prioritari a bloquejat el domini. La importancia de ADEOS es la

necessitat de controlar de forma determinista el flux d’interrupcions.

- 45 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria

d’un entorn de desenvolupament de tasques en temps real

de Barcelona

4.

RTAI (Micro-kernel): RTAI es una implementacié de linux en temps real, afegeix

un petit kernel i tracta el kernel de linux com una tasca de menor prioritat. RTAI
afegeix una amplia seleccié de mecanismes de comunicacié entre processos i altres
serveis de temps real. RTAI proporciona LXRT un modul per facilitar el
desenvolupament d’aplicacions en temps real en 1’espai d’usuari. RTAI tracta el
kernel de linux com una tasca més executada en background, per tant, s’executa
amb prioritat més baixa. Les interrupcions externes seran tractades per RTAI

Interrupt dispatcher, el qual enviara les interrupcions al kernel de linux.

Comm
Scheduler IPC :

LINUX HW Management | Comm / 1PC | Scheduler RTAI
[Interrupt Dispatcher

j

processor | peripherals

APFPLICATIONS . . @ @ TASKS

HW

Figura 2.23: Arquitectura RTAI

Es pot veure com cada kernel disposa d’un planificador independent. El kernel en
temps real disposa del Interrupt Dispatcher el qual tracta les interrupcions externes
i les envia al kernel linux. En canvi les interrupcions del processador com els
missatges d’error sén enviats directament el kernel de linux. RTAI inclou HAL
(Hardware Abstraction Layer) que s’utilitza per interceptar les interrupcions
hardware i processar-les després. L’objectiu principal de HAL és minimitzar el
nimero de canvis sobre el codi del kernel i per tant millorar el manteniment de
RTAL

La planificacié en RTAI es implementat com un modul dedicat, aquest té sempre
una tasca executant, el kernel de linux, com a tasca amb menor prioritat.

RTAI té tres tipus de planificadors, Uniprocessador (UP), Multiprocessador
simetric (SMP) i Multi-Uniprocessador (UMP) en aquest Ultim es obligat assignar
la CPU a cada tasca.

La comunicacié entre tasques es fara mitjangant les FIFO. RTAI pot llangar
interrupcions quan escriu en una FIFO, aixi I’espai d’usuari pot capturar-les. Una
altre eina basica son els semafors, RTAI proporciona un API per utilitzar semafors,
cada semafor té associada una FIFO. Un altre mecanisme, els mailbox, qualsevol
ndmero de processos pot enviar i rebre missatges de i des de un mailbox. Un
mailbox emmagatzema missatges fins a un limit establert.

RTAI proporciona actualment gestié de memoria dinamica en temps real, reservant

espai en temps d’execucio.

- 46 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 5“‘{:‘3; Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

Com a ultima eina important, es pot anomenar el modul LXRT, la interficie de
I’espai d’usuari amb RTAIL Aix0 el que permet es executar aplicacions en temps
real en I’espai d’usuari. Aquest fet evita molts cops el mal funcionament del
sistema operatiu ja que no s’accedeix a posicions de memoria critiques.

Gracies aquesta eina, es pot depurar el procés en temps

real fins que no conté cap error i aleshores es pot convertir fyk

en un modul. En el periode de depuracié s’esta treballant R A I“
sobre procés en temps real soft, en canvi un cop depurat i

sense errors es pot convertir en un procés en temps real hard. LXRT proporciona
APIs per la comunicacié entre processos de temps real o usuari. Quan s’esta en
mode soft s’executara amb el planificador del kernel de linux, en canvi si s’esta en
hard-real time, es fara amb el planificador de temps real. LXRT proporciona eines
per facilitar que una tasca pugui passar d’un estat a un altre (hard a soft). Encara
que els programadors de RTAI veuen bé el desenvolupament d’aplicacions en
temps real estricte utilitzant LXRT, el temps de resposta no es tant bo com

I’execuci6 de tasques com a moduls del kernel.

5. RTLinux (Micro-Kernel): RTLinux és un Sistema

Operatiu que executa linux com un thread de menor @

prioritat, igual que RTAI. RTLinux executa tasques de
temps real i rutines d’interrupcié en la mateix maquina

que el linux estandard. El pitjor cas de temps es entre que RT L i nux

es detecta la interrupcid i s’executa la primera instruccid

de la rutina de tractament en aquesta interrupcid, aquest temps es la laténcia i esta
en els 10 microsegons, en la plataforma x86. RTLinux té dos tipus de llicencies,
RTLinux/Open, disponible sota la llicencia GPL pero que des del 2001 no es
treballa i RTLinux/Pro versié comercial.

En el projecte es dona especial importancia a la distribucié Open ja que 1’objectiu
es aconseguir un sistema en temps real utilitzant llicencies gratuites.

RTLinux segueix 1’arquitectura Mikro-Kernel, per tant es bastant semblant a la de
RTAI RTLinux és un sistema operatiu petit i simple que esta entre mig del kernel
de linux i el hardware. Per a que RTLinux tingui el control del hardware s’han de
fer unes modificacions previes al kernel de linux, dotar-lo del control directe de les
interrupcions hardware, control del rellotge hardware e implementacié d’un rellotge
virtual per Linux, el control de les interrupcions per part de Linux es reemplagat per
dues funcions que permeten activar o desactivar interrupcions virtuals.

RTLinux proporciona un entorn d’execucié sota el kernel de linux, per tant es té

més baix nivell i per aixd molts dels serveis de linux no podran ser utilitzats.

-47 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real epasons

2.8.5.2 Sistemes Operatius Comercials

1. ONX OS (Mikro-Kernel): Sistema Operatiu de Temps Real w.
basat en UNIX que compleix amb la normativa POSIX. Un

QKX SOFTWARE SYSTEMS

Sistema Operatiu orientat a sistemes encastats. Distribuci6

comercial de QNX Software System. Esta basat en una arquitectura Mikro-Kernel.
QNX incorpora I’arquitectura del model de procés universal UPM. UPM permet
reduir el temps de desenvolupament.

QNX esta disponible per plataformes x86, MIPS i PPC.

El Mikro-Kernel de QNX es altament optimitzat i de mida reduida, 12K.

Aquest tipus de distribucié no interessa tant ja que es comercial.

2. VxWorks OS (Mikro-Kernel): Un altre Sistema Operatiu —=2= B
P == WindRiver

en Temps Real comercial és VxWorks, comercialitzat per

Wind River System. Com QNX OS, VxWorks s’utilitza majoritariament per a
sistemes encastats. Consta de 1’arquitectura Mikro-Kernel, potser la més usada
actualment. Suporta PPC, Motorola, ARM, x86, SPARC, etc.

Mikro-Kernel wind de espai reduit. El planificador és multitasca basat en prioritats.
Al ser una estructura Mikro-Kernel sera escalable, es podran ampliar amb moduls
d’E/S, sistemes de fitxers, suport de xarxa, suport per a sistemes SMP, suport per a

memoria virtual i suport per a sistemes distribuits.

En la taula segiient es mostra un petit resum del estat de cada distribucié comentada en
aquest apartat. Pel projecte s’ha escollit finalment RTLinux, encara que ja no segueixi
activa la versid open source, s ha cregut que €s la mes adient per I’estudi que s’esta fent.
Com ja es veura més endavant, els seus valors de latencia i jitter sén optim i es disposa

de informacié necessaria per poder implementar el sistema en temps real que es

necessita.

Distribucié Llicéncia Arquitectura versio
actual
Chimera OS - Parat Preemptable-Kernel 32
Linux/RK Open Source Actiu Recurs-Kernel 2.4.18
ADEOS 0OS GNU/GPL Actiu Nano-Kernel 2.6
RTAI GNU/GPL Actiu Mikro-Kernel 32
RTLinux/OPEN GNU/GPL Parat Mikro-Kernel 24.21
QNX Comercial Actiu Mikro-Kernel 4.24
VxWorks Comercial Actiu Mikro-Kernel 6

-48 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

2.9 Sistema Operatiu Real Time Linux (RTLinux)

RTLinux va ser creat per Michael Barabanov i Victor Yodaiken. Actualment esta disponible la versio
comercial RTLinux/Pro distribuida per FSM Labs empresa dels creadors. Existeix una versi6é open source
que ja no hi treballen, van deixar-la per iniciar la versié comercial perd existeixen comunitats que
segueixen el desenvolupament. En aquest projecte interessara la versié open source que s’ha esta en la
versi6 2.4.

RTLinux funciona sobre PPC i x86. RTLinux té una arquitectura Mikro-Kernel patentada per Victor
Yodaiken, la qual s’ha utilitzat per crear altres distribucions com RTAI RTLinux adopta, des de la versi
2, I’estandard POSIX, pthreads, etc.

També existeix una versié per a plataformes multiprocessador, en la qual es pot assignar tasques als
processadors. RTLinux en part es un parche que s’aplica al kernel de linux i una altre part sén moduls que

es poden carregar. Cada versié de RTLinux esta fet expressament per a versions de linux concretes.

2.9.1 Caracteristiques

1- Es un planificador expulsiu per prioritats fixes, per a I’execucié de tasques en
temps real.

2- Les tasques poden ser tan periodiques o bé activades per una interrupcio.

3- Incorpora mecanismes per comunicar-se amb tasques no critiques, aquests

mecanismes son les FIFOs.
4- Les tasques en temps real s’executen en mode supervisor, és a dir, poden
accedir a la E/S, reprogramar interrupcions, etc.

5- Executa el nucli de linux com una tasca més en background.

El nucli de linux ja no activa/desactiva directament les interrupcions, quan ho vol fer li dira a
RTLinux. Si linux vol desactivar una interrupcié li diu a RTLinux pero aquest no la desactivara
ja que les tractara i les retornara a Linux quan es reactivi. El que es té doncs, és que linux perd el
control del sistema, ens podem trobar en la situacié en que sembla que el sistema s’ha penjat
pero en realitat el que passa es que tota la CPU esta destinada a les tasques en temps real i no
donen temps a que s’executi linux.

RTLinux es bastant eficient, i deixa a linux les tasques no critiques com les de monitorejar els
valors captats per les tasques critiques. En un processador 486 de Intel, RTLinux pot mostrar
amb precisi6 de fins a 1 mostra cada 30 microsegons.

RTLinux suporta I’estandard POSIX, Portable Operating System Interface, i la X de UNIX.
POSIX és una serie de crides al sistema operatiu definides pel IEEE. Actualment POSIX es

divideix en tres grans grups:

-49 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“‘&":;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

1. POSIX.1, Core Services (implementa les crides de C)

- Creaci6 i control de processos.

- Senyals.

- Excepcions de punt flotant.

- Excepcions per violacié de segment.
- Excepcions per instruccio il-legal.

- Errors del bus.

- Control de temps.

- Operacions de fitxers i directoris.

- Pipes

- Biblioteca C

- Instruccions d’E/S i control dispositius.
- Senyals.

- Excepcions de punt flotant.

- Excepcions per violaci6 de segment.
- Excepcions per instruccié il-legal.

- Errors del bus.

- Control de temps.

- Operacions de fitxers i directoris.

- Pipes

- Biblioteca C

- Instruccions d’E/S i control dispositius.

2. POSIX.1b, extensions per a temps real

- Planificacié amb prioritats.
- Senyals de temps real.

- Control de temps.

- Semafors.

- Intercanvi de missatges.

- Memoria compartida.

- B/S sincrona i asincrona.

- Bloqueig memoria.

3. POSIX.lIc, extensions per threads

- Creacio, control i destruccié threads.
- Planificacio.
- Sincronitzacio.

- Control de senyals.

-50 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria

de Barcelona

d’un entorn de desenvolupament de tasques en temps real

2.9.2 Arquitectura RTLinux

RTLinux com ja s’ha comentat, té una arquitectura Mikro-Kernel. A diferéncia d’altres sistemes
operatius, RTLinux no afegeix noves crides a sistema ni modifica cap de les existents.

RTLinux es situara entre el hardware i el propi sistema operatiu de linux, creant com una mena
de maquina virtual per a que linux segueixi funcionant.

RTLinux obtindra tot el control del hardware i executara linux com a tasca en background.

Irt—taskl
S

Schedul er

i sndufunhdumseemiRaa 1 machins
(Hardware Hardware j

Figura 2.24: Arquitectura RTLinux

En la figura anterior, es pot veure més clara I’arquitectura de RTLinux. Es pot veure com
RTLinux forma una capa entre mig del hardware i el sistema operatiu. RTLinux gestionara les
interrupcions hardware i controlara tots els recursos hardware. El sistema operatiu de linux sera
una tasca més a planificar amb el planificador de temps real. La creacié de tasques es fara
mitjancant I’ API de pthreads. El sistema operatiu de linux tindra el seu propi planificador el qual
gestionara les seves tasques. L’arquitectura doncs es de tres capes. La capa hardware, que sera la
maquina real, entre mig RTLinux que sera la maquina virtual sobre la qual s’executaran les
tasques en temps real i el sistema operatiu de linux que conformara la tercera capa, la capa de
més alt nivell.

Les tasques de temps real, rt-tasks, comparteixen el mateix espai de memoria que el nucli, per
tant, cada rt-task pot accedir a totes les variables i funcions. Una rt-task no pot fer crides a
sistema del sistema operatiu, aquestes s’executen en mode supervisor, poden executar qualsevol
instrucci6 i poden accedir a totes les E/S. Per executar una rt-task s’utilitzaran com a moduls que

es carreguen en el sistema.

-51-

Universitat

Projecte: Analisi del sistema operatiu RTLinux e implementacié " fus Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real epasons

2.9.3 Moduls del nucli

Com ja s’ha comentat, per posar en execucié una tasca en temps real, RTLinux utilitza uns
moduls que es carregaran. Aquests moduls son trossos de sistema operatiu que és poden inserir o

eliminar en temps d’execucié. El modul no es res mes que un objecte compilat, extret des d’un

font en C.
Meés endavant s’explicara com s’utilitzaran aquests moduls i com es programaran tasques en

temps real en RTLinux.

2.9.4 Aplicacions de RTLinux

1. NASA Flight Linux utilitza RTLinux, com a sistema operatiu de temps real amb sistemes

encastats.

qughtLing,

A3
Gsie ¥

Figura 2.25: Logo NASA FL

2. Robot HOAP de Fujitsu, és un robot que té la capacitat de
interactuar amb el medi, posseeix un sistema avangat per
reconeixer imatges i t€ I’habilitat de comunicar-se a més de
mostrar emocions. Tot aixd funciona sota el sistema operatiu
RTLinux i es proporcionen tot una serie de d’eines per poder

programar el robot i afegir-hi funcionalitat donant control total

al usuari.

Figura 2.26: Robot HOAP3

-52-

Preparacio d’un
Sistema en Temps
Real

Capitol 3: Preparacié d’un Sistema en Temps Real 53
TR B =4 () ST UPPPPRPPRR 55
3.2 ElecCiO de L85 BINES.....uuuviiiieeeeeriiiiiieeeeeeeiiiteee e e ee ettt e e e e s et eeee e e enaas 56

3.2.1 RTLinux com a Sistema en Temps Realccccocoeeimnieiannnncn. 56
3.2.2 TCL/TK com a eina de desenvolupament de Software 57
3.3 Preparacid de RTLINUXooiiiiiiiiieiieee ettt e 58
3.3 INSIAL-LACIO oo 58
3.3.2 FUNCIONAMENL ...ttt e 61
B33 MOAULS ...t 61
3.3.:4 RENAIIMENL ...ttt e 64
3.3.5 CONIGUIACIO......c.vvvveeeeeeeeciieieee e e ettt e e e et e e e e saraeaeeeeeenanes 67
3.3.60 PrOGFAIMACIO.........vvvveeeeeeeeiiiiieeeeeeeeeiieeee e e e e sreittraeaaesssesseasssaeeesennnnes 71

3.3.6.1 Estructura basica d’un MmOAUL................ccc.oceeeeeeeeveeieeeeeeeieeeeeeeenes 71

3.3.6.2 Creacio i gestio de tasques en Temps Real.................ccccccveveveevuennnne. 72

3.3.6.3 Comunicacio entre tasques (FIFOS)occoovvivenvinvieniinieenecnenene 73
3.3.7 EXCIIPIES....ccoveeieaiiiiiieieeeeeeeee ettt e e et a e e 74
3.4 Preparaci® TCL/TKooo ettt 78
340 QUE €S TCLITK? ..ottt 78
3.4.2 Per que utilitzar TCL/TK?ccccouiioiiiiiiiiiiniiiiiiie et 79
3:4.3 INSIAL-LACIO ..ottt 79
3.4.4 VICL €ina de SUPOTTccuuvvveeeieeaeeciiriieeeeeesccrvreeeeeeeseivvnaeaeeeaenes 80
3.4.5 Exemple d’aplicacio: Diagrama de tempscoeeevvvveeeeeeeeeeennns 80
3:4.5.1 CONCEPIC ..o eeeeeeceeee e e et e e e e et 80
3:4.5.2 DUSSCIY....ceeeeeaeeeeeiieeeeeeeee ettt e e e e e e et s 81
3.4.5.3 IMPLEMEAIACIO..........eeeeeeeeeeeeeeiicieeeee e e eeeceeee e 82

3.4.5.4 Exemple d’@XeCUCIOceeeeeeeeeeeiiiiiiieeaeeeeeeeiiiieeeeeeeee e 85

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

3. Preparacié d’un Sistema en Temps Real

3.1 Previ

Un cop assolits els conceptes anteriors ja s’esta en disposicidé de crear el sistema en temps real. Sera
necessari un Sistema Operatiu en Temps Real, com ja s’ha vist al capitol anterior, 1’escollit sera RTLinux,
es veura el perque s’ha elegit aquest Sistema Operatiu i com instal-lar-lo, configurar-lo i fer-lo funcionar.
S’han fet alguns canvis en el codi font del Sistema Operatiu per propia necessitat que també es
comentaran. Un cop es té el Sistema Operatiu en Temps Real llest per treballar es veura el seu
funcionament i com programar tasques en Temps Real.

També es veura en aquest capitol alguns exemples que demostren que el nostre Sistema Operatiu es
realment en Temps Real.

Una vegada es tingui el Sistema Operatiu llest i els coneixements de com funciona, quedara elegir alguna
eina per programa aplicacions en Temps Real. L’eina escollida sera el llenguatge TCL/TK.

Es veura que és TCL/TK, perque s’ha elegit i com s’instal-la. Un cop instal-lat tcl/tk s’instal-lara també
una eina que ajudara a programa software amb GUI avancades, aquesta eina és vtcl. Finalment es veuran
alguns exemples de programacié en aquest llenguatge.

Al finalitzar aquest capitol ja es disposara del Sistema en Temps Real utilitzant totes les eines amb
llicencia gratuita, i quedara veure que es pot dissenyar aplicacions avangades, aix0 es veura en el segiient

capitol.

-55-

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

3.2 Eleccio de les eines

L’objectiu del projecte és veure que sén els Sistemes en Temps Real i per a que serveixen. Estudiar la
viabilitat de tenir un Sistema en Temps Real en un PC de sobretaula tot utilitzant llicencies gratuites i
desenvolupar software de Temps Real seguint la mateixa linia de les llicencies gratuites, en poques
paraules, obtenir un Sistema en Temps Real gratuit i crear software amb una interficie amigable per
’usuari.

Com ja s’ha explicat, els Sistemes Operatius en Temps Real basats en Kernel-Patch donen un millor
rendiment del sistema, obtenint latencies de 1’ordre dels microsegons. El desavantatge que tenen en
aquest sistemes és que alhora de crear tasques en Temps Real es bastant més complex que en Sistemes
basats en preemptable kernel. Per millorar aquest aspecte es creara un Software de generacié de tasques
en Temps Real, aix0 es veura en el segiient capitol. Abans pero, s’haura de preparar el Sistema en Temps
Real i les eines necessaries per desenvolupar Software i tenir clar com crear tasques en Temps Real.

Les eines escollides per portar a terme el desenvolupament de ’entorn seran RTLinux i TCL/TK.
RTLinux com a Sistema Operatiu en Temps Real i TCL/TK com a llenguatge per desenvolupar Software

de Temps Real.

3.2.1 RTLinux com a Sistema Operatiu en Temps Real

Per a crear el Sistema en Temps Real s’elegeix RTLinux. Un cop vistos en el capitol anterior
alguns Sistemes Operatius en Temps Real de llicencia gratuita s’ha acabat elegint RTLinux, tant
pel seu bon rendiment com per tota la documentacié disponible per desenvolupar software en
temps real. RTLinux proveeix de totes les avantatges que brinda linux. Es podra modificar tots
els moduls del sistema de RTLinux que siguin necessaris.

Se sap de I’existencia d’una distribucié comercial, RTLinux/Pro que de ben segur que segueix
I’estructura inicial de RTLinux de codi lliure, per tant, si en un futur és vol seguir desenvolupant
software per aplicacions en temps real, es tindra 1’eleccié de tirar pel cami de la llicencia
comercial la qual ens servira moduls avangats i de ben segur sense haver de modificar el
software ja creat. De moment pero, comencarem amb 1’estructura inicial que brinda el RTLinux
de codi lliure que és 1’objectiu del projecte. L’avantatge de treballar amb codi obert és la
possibilitat de modificar el que es vulgui depenent de les necessitats. A més RTLinux conta amb
una caracteristica que poques distribucions lliures suporten, RTLinux suporta arquitectures
multiprocessador, aquest és un gran avantatge ja que si es volen sistemes de temps reals
complerts i que suportin aquests tipus d’arquitectures, s’haurien de pagar llicencies bastant cares.
Tenim RTOS comercials molt bons, que tenen millor rendiment que els anomenats de codi lliure,
pero amb suport econdmic és normal que siguin eines més completes.

En la taula segiient és veuen uns preus orientatius dels Sistemes Operatius Comercials. Si es
volen llicencies per fer projectes de gran envergadura, seran necessaries llicencies del tipus

‘team-of-developers” equip de desenvolupadors i es pot comprovar que els preus son bastant

-56 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
Barcelona

d’un entorn de desenvolupament de tasques en temps real

elevats. Per tant queda clar que 1’ds de Sistemes Operatius en Temps Real comercials per Us

individual queda bastant limitat.

VxWorks 23000$ (team-of-developers)
1000$ (single use)

1995$ (Programaci6é amb kernel
QNX OS .
Neutrino)
2195$ (Desenvolupament sota

Photon)

Per tant, no queda més remei que utilitzar un RTOS de llicencia gratuita, no sera necessari per
I’objectiu del projecte, crear un sistema de temps real molt critic en el que puguin perillar les
vides de persones (exemple un controlador d’avid), siné que el que es necessita es crear un

sistema de temps real amb un bon rendiment dintre els RTOS de codi obert.

3.2.2 TCL/TK com a eina de desenvolupament de Software

TCL/TK és un llenguatge de programacié interpretat i multiplataforma,
aquesta Ultima caracteristica és molt important. Un llenguatge
multiplataforma és en el que es pot programar aplicacions per varies
plataformes, per exemple, per Linux i Windows. En els punts segiients es
veura tot el referent a TCL/TK, es veura en més detall que és, com
s’utilitza i de quines eines es disposa per programar.

TCL/TK s’ha elegit per desenvolupar aplicacions de temps real i donar

una manera més amigable a ’usuari per interactuar amb el sistema. TCL/TK és de codi lliure,
per tant aquest és un dels punts més importants alhora d’elegir TCL/TK com a llenguatge per a
desenvolupar les aplicacions. Hi ha altres llenguatges de codi lliure i que servirien de igual
manera que TCL/TK per a crear les aplicacions, pero TCL/TK s’ha escollit per les segiients

raons:

- Facilitat de programaci6 al ser un llenguatge interpretat, un llenguatge interpretat és
un llenguatge que s’executa a través d’un interpret, al contrari que els llenguatges
compilats.

- S’obtenen amb molta rapidesa aplicacions avangades.

- Comparat amb altres llenguatges interpretats, aquest és un llenguatge bastant rapid.

- Les aplicacions son facil de modificar ja que separa molt clarament la part de comput

(TCL) amb la part d’interficie d’usuari (TK).

-57 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié i Escola Tacnica Superior d'Enginyeria

de Barcelona

d’un entorn de desenvolupament de tasques en temps real

- Com ja s’ha comentat, una gran caracteristica d’aquest llenguatge, és la propietat de

multiplataforma.

- Per tltim anomenar una altre gran caracteristica, la possibilitat d’afegir noves

comandes escrites en C/C++. No tant sols podem desenvolupar Software a partir del

llenguatge, sin6 que podem millorar el llenguatge a la manera que vulguem.

Perd no tant sols sén avantatges el que s’aconsegueix amb TCL/TK, hi ha també algunes

desavantatges perd que seran de poca importancia pel que es vol aconseguir. Algun dels

problemes que presenta és la lentitud respecte als llenguatges compilats, alhora d’executar una

aplicacié fara falta l'interpret i la depuracié es fa dificil ja que es tracta d’un llenguatge

interpretat i I’Ginic que fa es traduir.

3.3 Preparacié de RTLinux

En aquest punt es prepara el Sistema Operatiu en Temps Real mitjancant RTLinux. Es veura com

instal-lar-lo, configurar-lo i com funciona. Es veura com funciona I’estructura de moduls dinamics i la

manera de programar. Tot aix0 es veura finalment reflectit amb exemples. Pero no tot sén facilitats, com

a punt final a la preparaci6é de RTLinux es descriuran alguns problemes trobats duran la preparacio.

3.3.1 Instal-lacio

En aquesta secci6 es presenta com instal-lar RTLinux en un PC per obtenir el nostre entorn en

Temps Real.

S’ha de tenir clar, que no cal tenir uns coneixements molt avangats per fer el que s’explicara a

continuacié, amb les explicacions segiients qualsevol persona amb minims coneixements de

I’entorn de Linux podra instal-lar-se RTLinux.

El que es necessita primer és tenir instal-lat un Sistema Operatiu Linux que serveixi per

instal-lar-hi RTLinux. La instal-lacié d’aquestes distribucions, actualment, sén facil, per tant no

hi ha cap problema, sera com instal-lar un Windows ja que tot es pot fer de manera visual. Un

cop es té instal-lat el Sistema Operatiu Linux ja es podra comencar a fer els preparatius per

instal-lar RTLinux.

1. Primer de tot es necessari obtenir el codi font d’un kernel de Linux i d’una distribucié de

RTLinux. Com ja s’ha explicat, RTLinux és una arquitectura de tipus Kernel Patch,

s’afegira un parche al kernel de Linux per obtenir RTLinux. També s’ha explicat que cada

distribucié de RTLinux té associada unes versions de kernel de Linux. S’obtenen els dos

fitxers des de “www.kernel.org” (el kernel de Linux) i a fsmlabs es troba la versi6 de

RTLinux Open.

-58 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

2. El segiient pas es descomprimir els dos fitxers obtinguts:

a. Laversi6 descarregada de Linux:
cd /usr/src/
tar xzf linux.2.x.y.tar.gz (x.y la subversié del fitxer)

Un cop fet aixo s’obté un nou directori: /us/src/linux.2.x.y

b. La versi6 descarregada de RTLinux:
cd /usr/src/
tar xzf rtlinux-3.*.tar.gz
Un cop fet aixo s’obté un nou directori: /ust/src/rtlinux-3.*
Per millorar I’accessibilitat per part de ’'usuari es pot crear un link que apunti al
directori creat i que s’anomeni RTLinux. Per fer aix0 s’escriu:
cd /usr/src

In —sf /usr/src/rtlinux-3.% ./rtlinux

Ara per accedir al directori del codi font de Linux s’anira a “/usr/src/linux” i per accedir al

codi font de RTLinux s’anira a “/usr/src/rtlinux”.

3. El segiient pas sera enllacar RTLinux amb Linux, per fer-ho s’utilitzaran les comandes:
cd /usr/src/rtlinux
In —sf /usr/sre/linux /linux

Al fer aix0 s’obtindra un altre directori dins de /usr/src/rtlinux anomenat rtlinux.

4. Jaesta tot preparat, ara queda mirar si les versions de RTLinux i el Kernel de Linux sén
compatibles. Per fer-ho s’escriu:
cd /usr/sre/rtlinux
grep -A 2 “["\W*VERSION” ./patches/kernel_patch*
La sortida d’aquesta comanda donara les versions de Kernel de Linux que suporta la

distribucié de RTLinux descarregada.

També s’hauria de comprovar la versié del compilador gcc “gee —v” i veure que és una
versi6 igual o superior a la 2.7.3.2. També es pot utilitzar el compilador kgce (gce 2.9.1)
modificant el Makefile de /ust/src/rtlinux la linia:

CC =$ (CROSS_COMPILE) gcc
per la linia:

CC =kgce

5. Araes creara el Kernel Patch. La instal-lacié de RTLinux consisteix en aplicar el parche de

RTLinux al kernel de Linux. Per fer aixo, s’utilitzara la comanda “patch”.

-59 .-

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“‘&":;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

cd /usr/src/linux

patch —p1 < /usrc/src/rtlinux/kernel_patch-2.%.*

6. Ja s’ha aplicat el parche RTLinux al kernel de Linux, ara es configurara el kernel, es
compilara i s’obtindra una imatge del Linux en temps real. Cal saber que compilar un kernel
pot portar temps i dependra de la maquina utilitzada.

Per configurar el kernel:

cd /usr/sre/linux

make config

Un cop fet aix0 sortiran preguntes les quals donen respostes per defecte. Cal tenir en compte
algunes d’importants. Cal especificar correctament el tipus de CPU de la maquina a la que
s’esta instal-lant RTLinux. Si la maquina tant sols té una CPU, s’haura de desactivar I’opcid
SMP. Es desactivara també el servei APM de la BIOS, aquest servei pot produir efectes
imperdibles en un Sistema de Temps Real.

Un cop configurat el kernel adequadament, es compilara per obtenir la imatge del RTLinux,
aixo es fara amb les segiients comandes:

make dep

make bzImage

make modules

make modules_install

Com a resultat d’aixo, s’obté la imatge “bzImage” que es trobara a
/ust/src/linux/arch/i386/boot. Aquesta es la imatge que s’ha d’arrencar per entrar al Sistema

Operatiu en Temps Real.

7. Aradoncs s’ha de configurar el gestor d’arrencada per que carregui la imatge de RTLinux
obtinguda en el pas anterior. S’haura de configurar doncs el gestor d’arrencada LILO.
Abans de configurar res, es copiara la imatge bzImage al directori /boot/
cp /usr/src/linux/arch/i386/boot/bzImage /boot/bzImage
Per configurar el gestor LILO el que es fa es crear una entrada nova per la imatge creada de
RTLinux. Per fer-ho es seguiran els passos segiients:

- Editar el fitxer /etc/lilo.conf
- Afegir I’entrada:
image = /boot/bzImage
label = RTLinux
read-only
root = /dev/hdal (hdaX, X és el valor de la particié)
- Escriure la comanda /sbin/lilo per aplicar els canvis en el gestor
- Comprovar que la sortida ens surt
Added linux *
Added rtlinux

-60 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié i Escola Tacnica Superior d'Enginyeria

de Barcelona

d’un entorn de desenvolupament de tasques en temps real

8. Ara es reinicia el Sistema Operatiu i s’observara com surt el gestor d’arrancada el qual té
com a opci6 el Sistema Operatiu en Temps Real RTLinux. Es seleccionara per passar a

configurar-lo.

9. El procés és semblant al de configurar el kernel de Linux.
cd /usr/sre/rtlinux
make config
En aquest punt, es permet configurar aspectes de RTLinux com I’activacié de les senyals o

rellotges POSIX, I’activacid de operacions en punt flotant, la mida de les fifo, etc.

10. Com a tltim pas només queda compilar RTLinux amb:
make
make devices

make install

Seguint aquests 10 passos, utilitzant les distribucions anomenades, en principi no s’ha de tenir
problemes en obtenir finalment RTLinux.

Per comprovar que tot a funcionat bé, es pot intentar d’activar el temps real amb la comanda:
start rtlinux

Si es carreguen una serie de moduls sense cap error, significara que ja esta activat el temps real

en el RTLinux i que tot funciona correctament

3.3.2 Funcionament

El funcionament de RTLinux és una mica especial. Un cop iniciada una sessié amb RTLinux es
pot escollir quan es vol estar en Temps Real. Amb la comanda >start rtlinux s’inicia 1’estat en
temps real. El que fa aquesta comanda es afegir una serie de moduls o trossos de sistema
operatiu que habiliten el temps real. Amb la comanda >stop rtlinux es trauran tots els moduls
inserits deshabilitant el temps real.

RTLinux doncs, funciona a base de moduls que es poden inserir i eliminar en temps d’execucio.

3.3.3 Moduls

Els moduls son trossos de Sistema Operatiu que es poden inserir i extraure en temps d’execucio.
Quan es compila un programa que conté diferents fitxers fonts, el que es fa primer es compilar-
los per separat per obtenir fitxers objecte .o i finalment s’enllacen tots per obtenir un executable.

Ara imaginem que el fitxer objecte que conté el main del programa es pugues posar en execucio i

que el Sistema Operatiu fos capag d’enllagar els altres fitxers objecte quan es necessites, en

-61 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria

de Barcelona

d’un entorn de desenvolupament de tasques en temps real

temps d’execucié. Doncs linux es capa¢ de fer-ho amb el propi kernel. Quan linux arranca,
només ho fa I’executable vmlinuz que es 1’indispensable per arrancar, després es poden carregar
i descarregar en temps d’execucié els moduls que es creguin necessaris.

Es pot crear moduls nous e inserir-los en temps d’execucid sense necessitat de recompilar el
kernel o reiniciar 1’ordinador.

Una vegada un modul s’ha carregat, passara a formar part del Sistema Operatiu, podra doncs
accedir a totes les variables i estructures de dades del nucli, s’executara amb el maxim nivell de
privilegi per tant tindra accés a totes les E/S i el mappeig d’adreces de memoria es fara directe a
memoria fisica, per tant no hi haura paging.

El moduls comencen a donar algunes caracteristiques de Temps Real, no es pot produir fallades
de pagina (més determinisme) i donen accés a tota la E/S.

Per treballar amb els moduls de RTLinux es disposa de les segiients comandes:

Modul Descripcio

insmod Instal-la un modul en el nucli.
rmmod Extreu un modul del nucli.
modinfo Mostra informacié del modul
modprobe Automatitza i facilita la gesti6 dels moduls
depmod Determina dependencia entre moduls
Ismod Llista els moduls carregats

Per compilar un modul, és a dir, un fitxer font .c per obtenir el modul .o s’utilitzara la segiient

comanda:

gee —c —02 —fomit—frame—pointer -DMODULE -D__ KERNEL__ nomfitxer.c

e Esposal’opcié “-c” per a que el compilador compili i ensambli el fitxer, pero no enllagar-lo,
unicament general el fitxer objecte.

* L’opci6 “-O2 —fomit-frame-pointer” serveix per generar codi optimitzat.

e Finalment, I'opcié “-DMODULE -D__KERNEL__” defineix les macros MODULE i

_ KERNEL__ usades pels fitxers de capgalera del nucli per generar el codi apropiat.

Amb aquesta comanda s’obtindra el nomfitxer.o llest per carregar-lo com un modul més al nucli.

-62 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“;,:,‘;;&:; Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

Ansmiod nomFitxer.o

Sy=s. Call | ﬁv
Linux S. Q. nomFitxer.o
D:ivers

Interr# T/0

Hardware

Figura 3.1: Moduls en RTLinux

Un cop inserit un modul, es poden veure els missatges enviats pel kernel amb la comanda dmesg
per fer tot aixo, sera necessari ser root.

Per inserir el modul s’utilitzara >insmod nomFitxer.o i per extraure el fitxer >rmmod
nomkFitxer, no caldra afegir I’extensi6 del fitxer al extraure un modul del nucli.

Una vegada un modul s’ha carregat al nucli, totes les seves funcions i variables ptibliques sén
accessibles des de tots els moduls carregats o que s’hagin de carregar.

La majoria de APIs de RTLinux estan dividides en varis moduls opcionals amb 1’objectiu de
poder dissenyar Sistemes de Temps Real ajustats a les necessitats de cadascu. Si una aplicacié en
Temps Real no necessita comunicacié amb altres tasques doncs no es carregara el modul de
fifos.

Per tant, abans d’executar un modul creat , s’haura de carregar els moduls requerits pel modul

implementat.

-63 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
Barcelona

de

d’un entorn de desenvolupament de tasques en temps real

3.3.4 Rendiment

Per comprovar el rendiment del Sistema Operatiu RTLinux s’ha creat dos programes, un en
temps real i un altre que no és en temps real. Aquests programes el que faran sera enviar una
dada al port paral-lel amb un periode de 40000 microsegons. Amb les modificacions fetes al
modul planificador de RTLinux es podran mesurar els temps. Per obtenir resultats més precisos
s’hauria de fer amb circuiteria externa perd amb aquest projecte s’han deixat com a bons els
resultats obtinguts amb la monitoritzaci6 dels temps a través del planificador.

Tot aixd sembla una mica complex ja que de moment no s’ha parlat de programacié de tasques
en Temps Real ni de modificacions al planificador de Temps Real, etc..

La idea d’ara mes que quedar-se amb el funcionament del programa, és en els resultats obtinguts

que ajudaran a comprendre perqueé RTLinux servira com a Sistema Operatiu en Temps Real.

El modul a executar en temps real és el segiient:

#include <rtl.h>

#include <time.h>

#include <pthread.h>

#define LPT 0x367 // adreca del port paral-lel
pthread_t mytask;

void fun(int t) {

struct sched_param p;

p - sched_priority = 1;

pthread_setschedparam (pthread_self(), SCHED_FIFO, &p);
pthread_make_periodic_np (pthread_self(), gethrtime(), 40000000);
while (1) {

outb(t, LPT);

pthread_wait_np ();

}

}

int init_module(void)

{

hrtime_t now;

pthread_create (&mytask, NULL, fun, 0);

return O;

}

void cleanup_module(void)

{
rt_task_delete(&mytask);

}

- 64 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real epasons

El modul a executar en no temps real és el segiient:

// Programa a executar en no temps Real.

#include <stdio.h>
#include <fcntl.h>
#include <time.h>
#include "lpv.h" // /dev/lpv és un driver simple del port paral-lel

void main(){

int fd;
unsigned char buffer;

struct timespec t;

t.tv_sec = 0;
t.tv_nsec = 40000000;

fd = open("/dev/lpv",O0_RDWR); //obrim per esciure en el port paral-lel
if (fd<0) {

perror("Could not open");

exit(-1);

}

while(1){
write(fd,"1",1);
nanosleep(&t,NULL);

write(fd,"2",1);
nanosleep(&t,NULL);

}

close(fd);

Aquests dos programes s’executaran amb i sense carrega al sistema i es comprovara que en
Temps Real, no es nota aquesta carrega ja que li dona maxima prioritat a la tasca en temps real
per a ser executada al igual que a les interrupcions al port paral-lel i deixa en espera totes les

altres tasques que no siguin en temps real.

-65 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

Si primer s’executa el programa sense temps real, s’obtenen els resultats:

1) Amb carrega al sistema (aplicacions en background):
Temps minim d’execucié: 18.000 microsegons
Temps maxim d’execucid: 20.540 microsegons

S’obté una mitjana d’execucié de 20.000 microsegons i una desviacié de 34,3 microsegons.

2) Sense carrega al sistema (cap procés executant-se):
Temps minim d’execucié: 18.032 microsegons
Temps maxim d’execucid: 20.553 microsegons

S’obté una mitjana d’execucié de 20.032 microsegons i una desviacié de 1,52 microsegons.

Si ara s’executa el segon programa amb temps real, tenim les dos opcions:

1) Amb carrega al sistema (aplicacions en background):
Temps minim d’execucié: 19.992 microsegons
Temps maxim d’execucié: 20.018 microsegons

S’obté una mitjana d’execucié de 19.999 microsegons i una desviacié de 1,35 microsegons.

3) Sense carrega al sistema (cap procés executant-se):
Temps minim d’execucié: 19.992 microsegons
Temps maxim d’execucié: 20.013 microsegons

S’obté una mitjana d’execucié de 19.999 microsegons i una desviaci6 de 0,92 microsegons.

En el valor a fixar-se €s en el de la desviacié obtinguda. Es pot veure com en els dos programes,
tant en temps real com no en temps real, quan no es té carrega al sistema s’obtenen valors de la
desviaci6 proxims a 1, aix0 significa que la variacié de temps d’execucié es molt semblant en
cada periode. Aixo passa per que no hi ha cap carrega en el sistema o casi nul-la i fa que cap altre
tasca bloquegi el programa.

Ara be la part més interessant, quan s’executen els programes amb carrega en el sistema
s’obtenen resultats molt interessants e importants per I’objectiu del projecte. Quan es fa amb el
programa en no temps real, la desviaci6 creix molt, arribant a 34,3 aix0 es causat pel bloqueig
d’altres tasques de Linux a la tasca d’escriptura al port paral-lel. En canvi el programa en temps
Real segueix obtenint valors proxims a 1. aixo es per que RTLinux déna en les tasques en temps
real tot el control sobre el hardware. Els processos de Linux han d’esperar a que acabi la tasca en
temps real, per aixo no es noten canvis en els temps tant si hi ha o no carrega en el sistema.
Aquest fet assegura que es disposa d’un Sistema de Temps Real funcionant correctament, aquest

exemple n’és la prova ja que al executar la tasca en temps real dona un cert determinisme.

- 66 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié i Escola Tacnica Superior d'Enginyeria

de Barcelona

d’un entorn de desenvolupament de tasques en temps real

Com més s’aproxima a 0 el valor de la desviaci6, més deterministic sera el sistema. Per tant, un
experiment amb un Sistema Operatiu en Temps Real ideal la desviaci6é hauria de ser 0 amb
molta carrega i per tant el sistema seria totalment deterministic.

Aquest és un exemple per comprovar que s ha elegit un bon Sistema Operatiu en Temps Real.
En proxims punts, es veuran altres exemples més practics i on es notara millor la forca del

Temps Real. Ara per ara s’introduira més a fons en la programacié de RTLinux.

3.3.5 Configuracio

Un cop instal-lat RTLinux i se sap com funciona, s’haura de preparar pel projecte. Com que es
vol mesurar els temps quan s’estan executant tasques, per saber el temps que estan en execucio i
quan canvien per altres tasques, s’haura de trobar alguna manera de mostrar aquesta informacio.
El modul que fa aquesta tasca, €s el planificador de Temps Real (rtl_sched.o), per tant s’ha de
modificar el codi font i recompilar-lo per obtenir el planificador modificat.

El planificador utilitzat per RTLinux és de tipus FIFO i basat en prioritats estatiques. Es basara
en les prioritats, s’executara la tasca amb major prioritat. Per exemple, es t&¢ A=1, B=2 prioritats,
i comenca a executar-se A i mentre aquesta estd en execucid, s’activa B aleshores A es
bloquejara ja que es de menor prioritat donant pas a I’execuci6 de la tasca B esperant a tenir la
CPU lliure, un cop acabada I’execucié de B, es tornara a executar A. El planificador de RTLinux
es expulsador per prioritats estatiques.

El que es pretén es obtenir els valors de temps dels canvis de tasques en el processador,
modificant el planificador. Per fer-ho, s’afegeixen unes linies de codi al rtl_sched.c que escriguin
la informacié necessaria en una de les real time fifos. Aixi des de un procés no de temps real, es
podra obtenir la informacié. Aquesta informacié després es podra fer servir per veure’n
I’execucié amb alguna eina de diagrama de temps. Més endavant es veura una eina creada per
monitorejar el pas dels processos per la CPU amb els seus temps, creada pel projecte.

Ara centrem I’atenci6 en modificar el planificador de rtlinux.

Analitzant el codi de rtl_sched.c es troba que en la funcié rtl_schedule es on es troben els canvis

de tasques en la CPU. Fixant-se en les segiients linies de codi que hi ha en la funcié:

if ((t->pending & ~t->blocked) && (Inew_task Il
(t->sched_param.sched_priority > new_task>sched_param.sched_priority))) {
new_task =t;

now1 = gethrtime();

}

Notar que en aquest punt es mira si al tasca segiient en la cua de tasques (t) esta pendent de ser
executada i no esta bloquejada per una altre tasca i que té prioritat més alta. Si es compleix, la

nova tasca a ser executada sera t.

-67 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié

P i Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

e

Per tant, en aquesta funcié es pot obtenir la informacié de canvi de tasques en la CPU. Amb la
funcié rtl_switch to (&sched->rtl_current, new_task); esfaelcanvide

tasca en la CPU.

El que s’ha d’afegir en aquesta funcié son les segiients linies al principi de la funcié:

if ((sched->rtl_current != NULL))
{
if (first == 0)
idOld = (unsigned long)sched->rtl_current;

taskLinux = 1dOld;
printk("Primera tasca a executar-se %ul \n\n",idO1d);

first=1;
timel = 0;
}
else
{

if (idOld != (unsigned long)sched->rtl_current)
{
timel = timel + ((gethrtime()-now1));
_pthread =(unsigned long)sched->rtl_current;
if ((unsigned long)sched->rtl_current == taskLinux) {
printk("LINUX: %ul amb prioritat %d - %ld \n",(unsigned
long)sched->rtl_current,sched->rtl_current->sched_param.sched_priority,timel);
}
else
{
printk("OTHER: %ul amb prioritat %d - %Id \n",(unsigned
long)sched->rtl_current,sched->rtl_current->sched_param.sched_priority,timel);
}
write (fd_fifo,&_pthread, sizeof(unsigned long));
write (fd_fifo,&sched->rtl_current-
>sched_param.sched_priority, sizeof(int));
write (fd_fifo,&timel, sizeof(long int));
idOld = (unsigned long)sched->rtl_current;
timel = 0;

En el modul inicial s’inicialitza un temporitzador que en cada canvi de tasca s’inicialitzara, la
variable de temporitzador és nowl.

La variable first serveix per saber quan és la primera vegada que s’entra al modul. La primera
vegada es posa la variable first = 1 per no tornar a entrar en aquesta secci6 i timel també a O per
inicalitzar el temporitzador. Una altre variable a inicialitzar es idOld i taskLinux que sera la tasca

actual en la CPU.

- 68 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“‘&":;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

e

En les proximes entrades a la funcid, si la tasca actual és la mateixa que la tasca anterior no es
fara res i el temporitzador seguira corrent, en canvi, si la tasca actual es diferent a la tasca antiga
s’obtindra la diferencia entre el temps des de que es va iniciar la tasca i el temps actual obtenint
el temps total de la tasca en la CPU. Aquesta informaci6é s’escriura a una real time fifo que
proporciona RTLinux. En aquesta fifo s’escriu la segiient informacio.

- Identificador de la tasca.

- Prioritat de la tasca.

- Temps de la tasca en la CPU.

En el main del planificador, en aquest cas, en el init_module s’hauran d’afegir les pertinents
inicialitzacions de la fifo i de les variables de temps i control que s’han utilitzat per monitoritzar

els temps.

timel = 0;

time2 = 0;

first = 0;

now1 = gethrtime();
contadorTime=0;

rtf_destroy(0);
fifo_status = rtf_create(0,4000);
if (fifo_status)
{
rtl_printf("RTLinux measurement test fail.
fifo_status=%d\n",fifo_status);
return -1;
1
rtl_printf("RTLinux measurement module on CPU %d\n",rtl_getcpuid());
fd_fifo = open("/dev/rtf0", O_NONBLOCK);
if (fd_fifo < 0) {
rtl_printf("/dev/rtfO open returned %d\n", fd_fifo);
return (void *) -1;

}

Per tltim, queda definir les variables globals:

int fd_fifo;

long int idOld;
long int taskLinux;
int first;

long int timel;

-69 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié

P i Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

de Barcelona

L’explicacié es potser una mica dificil d’entendre ja que es a més detall d’implementacio,
serveix per guiar a qui vol modificar el fitxer de planificacié del RTLinux. Amb la segiient figura

s’il-lustra el funcionament del nou planificador obtingut després de compilar-lo.

Iniciar Tirer
Capturar el temps actual en now
CldTask == CurrentTask

Executar Planificadaor
Sicanwi de tasca en la SPU,
capturem el temps en nowl

oldTask == SurrentTask

Ternps <= Diferencia entre temps
actual i now! [capturat anteriorment)
Ezcrivre informacid en |a FIFG

5 oldTask == CurrentTask

Figura 3.2: Diagrama de flux del Planificador.

El que s’aconsegueix amb la modificacid, es emmagatzemar la informacié a una real time fifo el
que esta passant al planificador. Aix{ després des de un programa en no temps real es pot obtenir
les dades llegint-les de la fifo i escriure-les en un fitxer per que altres aplicacions en facin 1’ds

que vulguin L’esquema seria el segiient:

- Fichero Mo Termps Real

RTFIFSE

RTLIMUE

Figura 3.3: Obtencio dades del Planificador

-70 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié

P i Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

de Barcelona

3.3.6 Programacio

La programaci6 de tasques en Temps Real és fa usant el llenguatge C. Com ja s’ha explicat,
quan es crea una tasca en temps real, el que es fa sera compilar un fitxer font C per obtenir-ne un
objecte .0 que sera un modul que es carregara al nucli de RTLinux quan es necessiti.

Per comprendre com programar aquests moduls, primer s’explica I’estructura basica d’un modul
i seguidament s’introdueix a una explicacié rapida dels temes més importants en programacié de

tasques en temps real.

3.3.6.1 Estructura basica d’un modul

funcions RT Furiciens RTimplemeanten la funcienalitat de la tasca definida
eninit_module, normalment sén tazques amb un bucle infinit
jagque sdn tasques periddigues.

init_module Elmadulinicial defineix crea i configura les tazques en temps real que
executaran alguna funcid ja definida.

cleanup_module El médul cleanvp_medule &s Pencarregat de trevre les
tazques que sastan executant, seria com un destructer
de CH+.

Figura 3.4: Estructura basica d’un modul RT

En la figura anterior, es mostra 1’estructura basica d’'un modul en de Temps Real,
aquesta és 1’estructura basica, a partir d’aqui es pot anar complicant i augmentant la
mida perd sempre seguint aquesta estructura. Seguidament es pot veure el primer modul

en Temps Real.

pthread_t thread;
void * thread_code(void)
{
pthread_make_periodic_np(pthread_self(), gethrtime(), 1000000000);
while (1)
{
pthread_wait_np ();
rtl_printf("Hello World\n");
}

return O;

}

int init_module(void)

{
return pthread_create(&thread, NULL, thread_code, NULL);

}

void cleanup_module(void)

pthread_delete_np(thread);
}

-71 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“‘&":;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

Aquest modul no fa res , simplement crea una tasca que executara el procediment
thread_code, aquesta execuci6 sera periodica de periode 1*10"9 microsegons. En cada
periode imprimira el missatge “Hello World” en la sortida del nucli del RTLinux. Com
es pot veure, aquest exemple segueix 1’estructura basica definida anteriorment. T¢ el cos
del codi que es la funcié init_module que conté la creacid i configuracié de les tasques,
després t€ les funcions que executaran les tasques creades i per ultim t€ la funcié
cleanup_module per destruit les tasques.

Un cop estudiat com €s ’estructura d’'un modul, s’han de veure una serie de temes

importants sobre programacié de tasques en Temps Real.

El més important és saber com funciona la creacid i gestié de tasques en temps real i
I’ds de FIFOS per la comunicacié entre tasques, aix0 ajudara a entendre el codi
modificat del planificador de Temps Real. Aquesta memoria no te la pretensio de fer un
manual complet sobre programacié RTLinux perd si que vol deixar clar al lector com
iniciar-se a la programacié de tasques en Temps Real i per aix0 es interessant tractar

aquests dos temes.

3.3.6.2 Creacio i gestié de tasques en Temps Real

pthread_create(*thread, *attr, *start, *arg): Inicia I’execucié d’una tasca, els atributs
es veuran després, I’atribut per defecte = NULL.

pthread_exit(retval): Finalitza I’execucié6 de la tasca que el crida.
pthread_join(thread,retval): Suspen I’execucié de la tasca que I’'invoca fins que acaba

I’execucio de la tasca = thread.

Els atributs d’una tasca definiran com aquesta tasca s’executara i amb quines propietats.
Les crides més importants son:

pthread_attr_init(*attr), pthread_attr_init_destroy(*attr): Inicialitza els atributs en
una tasca, els atributs sén una estructura especial.
pthread_attr_[getlset]schedparam(*attr, *param): Estableix o obté la prioritat d’una

tasca.

Per definir la periodicitat d’una tasca s’utilitzen les segiients funcions:
pthread_make_periodic_np(thread, start_time, period): Permet despertar una tasca
cada cert temps periodic, el periode s’especifica en nanosegons.

pthread_wait_np(): Suspen 1’execucié de la tasca que 1’invoca, és necessari que la

tasca sigui periodica per a que es torni a activar en un cert temps.

-72 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

Per eliminar una tasca de temps real s’utilitza la crida:
pthread_delete_np(pthread_t thread): Aquesta crida es fa en el modul

cleanup_module i destrueix la tasca.

Ara ja es té una mica més clar com funciona el modul hello.c escrit anteriorment. Ara es
passa a veure com funcionen una mica per sobre les FIFO per entendre el funcionament

de les modificacions que s’han fet al planificador.

3.3.6.3 Comunicacio6 entre Tasques (FIFOS)

Les FIFO sén un mecanisme basat en la implementacio de UNIX. Aquestes s’utilitzen
per comunicacié entre tasques de temps real o entre tasques de temps real i tasques de
Linux. Per utilitzar les FIFO, s’haura de carregar el modul opcional de FIFOs en temps
real. La comunicacié és unidireccional, cada lectura elimina les dades llegides del
buffer.

Des de linux es veuen les fifo com dispositius especials de caracters.

Per crear i destruir fifos s’utilitzara:
rtf_create(fifo_nr,size): Aquesta funcié només es pot invocar des del modul inicial i no
des de les funcions de les tasques en temps real. Aquesta funcié crea una fifo nimero

“fifo_nr” amb una mida “size”.

rtf_destroy(fifo_nr): Marca com a lliure la fifo “fifo_nr” i allibera la memoria

utilitzada, normalment aquesta funcié s’invoca des del modul cleanup_module.

Per llegir i escriure en fifos s’utilitzara:
rtf_get(fifo_nr,&buf,nBytes): Llegeix de la fifo nimero “fifo_nr” el contingut del
buffer “buf” amb mida “nBytes”.

rtf_set(fifo_nr,&buf,nBytes): Insereix a la fifo nimero “fifo_nr” el contingut del

buffer “buf”’ amb mida “nBytes”.

Des de linux es poden llegir aquestes fifos com si de fitxers és tractessin amb les

tipiques funcions de C (read/write).
Ara ja se sap més com funciona la programacié de tasques en Temps Real, com crear-les i com

comunicar-les entre elles i amb programes de linux. En aquest moment ja es pot comprendre bé

com s’han fet les modificacions al planificador i també s’esta preparat per comprendre 1’exemple

-73 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié i Escola Tacnica Superior d'Enginyeria

de Barcelona

d’un entorn de desenvolupament de tasques en temps real

posat, per veure el rendiment de RTLinux, ja no només servira per quedar-se amb els resultats de
rendiments siné que ara ja s’haura de comprendre com s’han implementat les tasques.

Per acabar d’entendre millor la programacié de RTLinux en el segiient apartat es veuran més
exemples de tasques en temps real. Aquests exemples també ajudaran a comprendre per que
serveix un Sistema Operatiu en Temps Real .

Pel que fa a la programacio de tasques en temps real es podria parlar de molts més aspectes pero
simplement s’ha fet un petit incis als coneixements basics d’aquest tipus de programacié. Es

podria parlar de senyals, interrupcions, semafors, memoria dinamica, etc.

3.3.7 Exemples

En aquest apartat es mostren dos exemples per comprendre una mica millor la programacié de

tasques en temps real i per veure el funcionament de RTLinux.

Exemplel

En el primer exemple es crea una tasca en temps real periddica que executa un bucle. La tasca
que executara el bucle sera peridodica de 50000000 ns. Aquest fitxer es compilara i un cop
obtingut el fitxer objecte s’inserira al kernel amb insmod exemplel.o.

Un cop inserit el modul es pot notar que el sistema va més lent, aixd és per que la tasca esta
demanant casi sempre la CPU i com que és en temps real, sempre li dona, en canvi linux no
tindra tant temps de CPU i per aix0 es notara la lentitud. Ara es pot modificar el nimero
d’iteracions del bucle per augmentar el temps de comput. Com més temps de comput, més
alentiment es notara. Si s’augmenta el bucle fins a un temps de comput de 50000000 ns (el
mateix temps de periode de la tasca en temps real), semblara que el Sistema Operatiu s’ha penjat,
pero no és aixi, la tasca en Temps Real s’esta executant amb un us de la CPU del 100% ja que
quan acaba un periode, de immediat ha de tornar-se a executar i no pot deixar la CPU, per tant
Linux no tindra temps de CPU i no es podra processar. Aixo produira que sembli que el sistema

s’ha bloquejat.

#include <rtl.h>
#include <rtl_sched.h>

pthread_t _thread;

void fun() {
int 1,X,j,n;
n=5000;
j=10;
while(1){
for (i=0; i<n; i++)
for (x=1; x<j; X++);
pthread_wait_np();
}
1

-74 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“‘&":;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

int init_module(void) {
struct sched_param sched_param;

pthread_attr_t attr;

pthread_attr_init (&attr);
sched_param.sched_priority = 1;
pthread_attr_setschedparam (&attr, &sched_param);
pthread_attr_setfp_np(&attr, 1);
pthread_create(&_tank_thread, &attr,fun,0);

return O;

}

void rt_cleanup_module(void){
pthread_delete_np (_thread);

}

Exemple2

En I’exemple anterior s’ha vist la creacid i gestié de tasques en temps real i com és té control
total sobre els recursos hardware. Ara en aquest exemple es veura com funciona la comunicaci6
entre tasques i els mecanismes de fifos. Aquest exemple es bastant interessant ja que es
comprova el que ofereixen els Sistemes Operatius de Temps Real, es comprovard de manera
auditiva. S’han implementat dos programes de lectura d’un fitxer de s6 (.au) un en temps real i
un altre des de linux en no temps real. Un cop executats es comparen els resultats observats amb
carrega al sistema i es veura clarament un aspecte important de RTLinux.

El que fa I’aplicaci6 es llegir dades de la fifo que s’escriuen des d’un procés linux, aquestes
dades son el contingut d’un fitxer .au. El periode de llegir de la FIFO i emetre el s6 és de
8192Hz. Per executar I’exemple es compilara e inserira el modul al kernel, aquest esperara a que
hi hagi dades a la fifo, des de una aplicaci6 linux s’escriuran les dades a la fifo, per exemple amb
la comanda cat.

El programa que reprodueix és el segiient:

#include <rtl.h>
#include <time.h>
#include <pthread.h>
#include <rtl_fifo.h>
#include <asm/io.h>
pthread_t tasca;
/*Filtre del s6*/
int filtre(int Xx)
{

static int oldx;

int ret;

if(x & 0x80) { x =382 -x; }

ret = x > oldx;

oldx = x;

return ret;

-75 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“‘&":;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

void * sound(void *arg)
{
char dat;
char t;
struct sched_param p;
p.sched_priority=1;
pthread_setschedparam (pthread_self(), SCHED_FIFO, &p);
pthread_make_periodic_np (pthread_self(), gethrtime(),1000000000/8192LL); /* freq =
8192 Hz */
while(1)
{
pthread_wait_np ();
if(rtf_get(0, &dat, 1) > 0)
{
dat = filter(dat);
t = inb(0x61);
t &= Oxfd;
tl=(dat & 1) << 1;
outb(t,0x61);
}
}
}

int init_module(void)

rtf_create(0, 4000); /* crear fifo */

/* preparar el speaker */

outb_p(inb_p(0x61)I3, 0x61);

outb_p(0xb0, 0x43);

outb_p(3, 0x42);

outb_p(00, 0x42);

return pthread_create(&tasca, NULL,sound, 0);

}
void cleanup_module(void)

pthread_delete_np(tasca);
rtf_destroy(0);

Per comparar el temps real amb el que no €s temps real, s’ha creat un exemple que fa exactament
el mateix pero des de una aplicacié d’usuari (en no temps real.)

En aquest exemple s’haura de demanar permis al Sistema Operatiu per accedir als ports del
speaker ja que no s’esta en zona de temps real i per tant no es té total accés lliure als recursos
hardware. Per fer-ho s’utilitzara la crida ioprem(). Una altre qiiesti6 a veure és com generar la
lectura i emissié del s6 a una freqiiencia de 8192Hz, la crida nanodelay() tant sols té una
resolucié del ordre dels milisegons pel que s’haura de fer alguna cosa per obtenir 0,12

milisegons. Per fer-ho es crea una funcié que gasti temps en comput.

-76 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié

P i Escola Técnica Superior d'Enginyeria
) de Barcelona
d’un entorn de desenvolupament de tasques en temps real

#include <unistd.h>
#include <asm/io.h>
#include <time.h>

static int filtre(int x)

{
static int oldx;
int ret;
if(x & 0x80) x = 382 - x;
ret = x > oldx;
oldx = x;
return ret;
}
void wait(int x)
{
int i;
for (i=0; i<x; i++);
}
void sound()
{
char dat;
char t;
while (1)
{
if (read(0, &dat, 1) > 0)
{
dat = filter(data);
t = inb(0x61);
t &= 0xfd;
tl=(dat & 1) << 1;
outb(t,0x61);
1
wait(40000);
1
}

int main(void)

{
unsigned char dummy,x;
ioperm(0x42, 0x3,1);
ioperm(0x61, 0x1,1);
dummy= inb(0x61);
wait(10);
outb(dummyl3, 0x61);
outb(0xb0, 0x43);
wait(10);
outb(3, 0x42);
wait(10);
outb(00, 0x42);
sound();

-77 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

Si s’executen els dos programes es podra comprovar com el primer (en temps real) pot complir
els requeriments temporals amb carrega al sistema ja que la reproduccié del fitxer .au anira bé,
en canvi en el segon exemple si s’afegeix carrega al sistema la reproduccié es veura tallada
(bloqueig de la tasca). Ni que el s6 sigui bastant dolent ja que s’esta treballant sobre el speaker
del PC que no aporta gens de qualitat, aquest exemple serveix per percebre una de les propietats

importants d’aquests tipus de sistemes, els compliments dels terminis temporals imposats.

3.4 Preparaciéo TCL/TK

3.4.1 Que és TCL/TK?

TCL/TK és un llenguatge de programaci6 interpretat i multiplataforma. Llenguatge que va se
creat per Jhon K. Ousterhout i un equip de la Universitat de California. Actualment els
desenvolupadros del llenguatge sén Sun Microsystems Laboratories. Aquest llenguatge és d’ds
gratuit, per tant sera adient pels requisits del projecte.

Aquest llenguatge de programaci6 es divideix en dos grups:

- TCL: Llenguatge de comandes, I’interpret d’aquest llenguatge de comandes és tclsh.
Una de les grans avantatges d’aquest llenguatge és la facilitat amb que es poden crear
noves extensions del llenguatge implementant funcions en C++ que passaran a ser
noves instruccions de [Dinterpret. Alguna d’aquestes extensions s6n: BLT
(representacions grafiques en 2D), Itcl (Incremental tcl, TCL orientat a objecte), OraTcl
(per manipular ORACLE). Una de les extensions més importants i populars de TCL és

TK (Tool Kit) creada pel creador de TCL.

- TK: Proporciona un interpret denominat wish i que permet la creacié d’interficies
grafiques. TK doncs permet crear elements d’interficie grafica anomenats widgets

(botons, scrolls, llistes, etc.).

TK es distribueix juntament amb TCL en un paquet anomenat TCL/TK.

Tcl/Tk pot arribar a ser un llenguatge molt potent ja que com ja se sap, es gratuit i el
programador pot estendre el nimero de funcions. D’aquesta manera amb 1’ajuda de tota la
comunitat de programadors es pot anar augmentant la complexitat del llenguatge. Aquesta és una
de les avantatges dels llenguatges de codi lliure. Amb aquest llenguatge es poden crear diferents
funcions/procediments per obtenir funcionalitats personalitzades i també es poden obtenir de
altres programadors que formen part d’'una comunitat pel desenvolupament de noves eines,

funcionalitats, etc. pel llenguatge descrit.

-78 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“‘&":;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

3.4.2 Per que utilitzar TCL/TK?

Existeixen diferents raons que fan elegir TCL/TK per programar les aplicacions que es volen
implementar pel projecte. El primer aspecte i el més important de tots es que el llenguatge és de
codi lliure, en I’apartat anterior ja s’han comentat els avantatges que aixo comporta.

Aquest llenguatge permet crear interficies grafiques amigables per 1’usuari per representar les
dades del programa de forma senzilla. TCL/TK és un llenguatge bastant facil d’aprendre i
entendre. Amb poques linies de codi es pot crear una aplicacié amb una interficie grafica
complexa. Per tant, es disposa d’un llenguatge facil d’utilitzar i amb una gran poteéncia.

Una altre rad és la facilitat en que es pot modificar les aplicacions creades en TCL/TK en
posteriors versions. La seva alta facilitat de separacié del codi computable i la interficie grafica
fa que es puguin fer modificacions de la GUI sense modificar 1’estructura del flux de dades de
I"aplicacid.

Un avantatge important alhora d’utilitzar Tcl/Tk es que aquest serveix per mostrar les dades que
genera un programa en C. Imaginar una aplicaci6é en Tcl/Tk que genera la grafica dels resultats
de la temperatura d’un controlador donat per un programa en C. Si es canvia el programa en C
per generar els valors d’un controlador, ara perd de nivell, I’aplicacié Tcl/Tk seguira servint,
simplement s’ hauran de canviar alguns aspectes de presentacio.

Per ultim comentar que TCL/TK és un llenguatge multiplataforma, per tant es poden programar
les aplicacions ja sigui des de Linux, Windows o altres Sistemes Operatius. El llenguatge actua
com una maquina virtual on es poden executar les aplicacions sobre qualsevol plataforma. Aixo

dona gran avantatge davant altres llenguatges.

TCL TK

Camput Dades Interficie Grafica

Mostra de les dades
et la GUI

Ervviament de les dades
comutades des de TCL

Figura 3.5: Arquitectura TCL/TK

3.4.3 Instal-lacio

Per instal-lar TCL/TK simplement s’ha d’obtenir la distribucié actualitzada de Tcl/Tk, ja sigui
per Windows, Linux, Unix o qualsevol sistema compatible per Tcl/Tk. Es pot buscar la

distribucié per Internet. En el cas del projecte, com que s’esta realitzant amb RTLinux, es

-79 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " Emggﬁ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

baixara la versid per Linux, sera un fitxer d’extensié .rpm. Els fitxers RPM son paquets que
contenen ’aplicaci6, els documents d’aquesta i les fonts de 1’aplicacid.

Un cop obtingut el fitxer RPM s’instal-lara amb la comanda rpm —i fitxer.rpm.

Un cop instal-lat es podra accedir als interprets de tcl i tk. Executant la comanda telsh s’accedeix

al interpret de tcl i executant la comanda wish s’accedeix al interpret de tk.

3.4.4 VTCL eina de suport

VTCL és una eina de desenvolupament d’aplicacions visuals d’alta

qualitat. Aquesta eina és totalment lliure i es pot trobar per diferents é;;\::\"-.ll L j_:
plataformes tal com Windows, MAC, UNIX, etc. =
?"-f"'l' It ¥

Si la programaci6é de TCL/TK ja es senzilla, aquesta eina encara facilita

més el treball i dona més complexitat i poténcia a les aplicacions que es &: V } (

vulguin crear amb el minim temps possible.

0O .

Un aspecte molt important de VTCL és que ddéna la possibilitat de provar 1 aplicaci6é abans
d’utilitzar-la amb un bot6 de test. Un cop conforme amb els resultats només s’ha de guardar i ja
estara llest per ser usat. L’tnic requeriment que t€¢ VTCL és que com és normal, necessita tenir
instal-lat el llenguatge TCL/TK. Aquesta eina esta en continu desenvolupament, per tant, cada
cop surten versions més avangades i millorades.

Per tant, el llenguatge TCL/TK juntament amb I’eina VTCL és una gran aposta per desenvolupar
les aplicacions necessaries de RTLinux ja que permet fer-ho de forma gratuita, facil i obtenint

software de qualitat i amb gran potencia.

3.4.5 Exemple d’aplicacié: Diagrama de temps

Per posar a prova les possibilitats de Tcl/Tk es creara una aplicacid, aquesta sense utilitzar I’eina
de programacié visual VTCL. Aquesta aplicacié consistira en representar de forma visual la
planificacié de les tasques en temps real de RTLinux. Aquesta aplicacié mostrara 1’execuci6 de
les tasques en temps real més la tasca de linux a través del temps. L’aplicacié mostrara els canvis
de tasques en la CPU. Aquesta aplicacié és la primera que s’ha fet utilitzant Tcl/Tk en el
projecte. A estat una manera de comprovar la viabilitat d’utilitzar el llenguatge i veure’n la

poténcia de programacié que ofereix.

3.4.5.1 Concepte

Un cop se saben les possibilitats de Tcl/Tk i s’ha escollit com eina de programaci6 de
les aplicacions ara es passa a comprovar la seva poténcia i veure de forma practica si
I’eleccid a estat correcta. L’aplicacié que es crea és un generador de diagrama de temps

el qual mostra 1’execuci6 de les tasques en Temps Real de RTLinux. Aquesta aplicacid

- 80 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 5“‘{:‘3; Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

serveix per dues coses, la primera ja comentada per veure’n la potencia del llenguatge, i
la segona rad per poder entendre millor que esta passant quan s’executen tasques en
temps real.

Aquesta eina es de gran utilitat i s’ha implementat en dos periodes. En el primer periode
s’ha fet la funcionalitat basica, mostrar les tasques com s’executen en el temps, en
aquesta primera versié no s’ha fet a escala ni s’han afegit cap mena d’informacié al
diagrama, simplement surt el flux d’execuci6. Aquesta primera versié serveix per
comprovar la viabilitat de Tcl/Tk en crear aplicacions amigables per 1’usuari. En el
segon periode es millora 1’aplicacié afegint informacié de tot tipus de les tasques e
implementant una funcié de zoom per millorar-ne la interaccié amb 1’usuari alhora de
veure I’execucié de les tasques. Aquesta tultima versié s’afegira a 1’aplicacié que

s’explicara en el segiient capitol, el generador de tasques.

3.4.5.2 Disseny

El disseny de I’aplicacié es senzill. El que fa 1’aplicacié és llegir les dades del fitxer
monitor.txt. Les dades que conté aquest fitxer son les dades de la planificaci6 de les
tasques en RTLinux.

Com ja s’ha explicat anteriorment, es va modificar el fitxer de planificacié de tasques
en temps real (rtl_sched.c) per tal d’obtenir les dades de planificacié de les tasques.
Aquestes dades s’escrivien a una rt_fifo i una aplicacié en no temps real en recollia les
dades i les emmagatzemava en un fitxer, aquest fitxer es el monitor.txt. L’aplicaci6 que
es passa a dissenyar també s’executara en entorn de no temps real. En la segiient

il-lustracié es mostra I’arquitectura de 1’aplicacid.

rrcnitortxt

Llegir dades Planificacid

Genergdor Diagramd
de Termps

Figura 3.6: Arquitectura aplicacio Diagrama de Temps

Representacid de les
dades

Notar que I’arquitectura segueix la base de TCL/TK, hi ha dos parts ben diferenciades,

la part de TCL (comput i manipulacié dades) i TK (representacié visual de les dades).

-81 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

Es pot treure per exemple la part de TK i modificar-la totalment sense haver de
modificar cap aspecte de TCL. Aquesta caracteristica ja s’ha comentat perd ara es veu
I’ds practic. Per entendre’n I’arquitectura de 1’aplicacié s’explica dividint ens els dos

grups, TCL i TK.

- Part TCL: Llegeix les dades del fitxer monitor.txt i introdueix les dades
en unes estructures de TCL per la posterior visualitzacidé. Aquestes
estructures sén manipulades per obtenir dades que podra utilitzar la part de
TK, aquestes dades son del tipus, temps minim d’execucid, temps maxim
d’execucid, numero de tasques, etc.. Notar doncs que aquest modul es tipic
d’obtencid i manipulacié de dades.

- Part TK: Aquest modul el que fa es representar les dades que a generat el
modul TCL. Aquest crea la interficie de I’aplicacié i en grafica el

diagrama de temps.

3.4.5.3 Implementacio

Un cop es té clar el disseny de I’aplicacié, s’entrara en més detall en cada part de
I’aplicacié. Seguidament s’expliquen cadascun dels dos moduls (Tcl i TK) de

I’aplicacid a detall d’implementacid.

- Part TCL: Aquest modul el que fa es llegir del fitxer monitor.txt les dades
escrites pel planificador en temps real. Aquestes dades les posa en una

variable. El format del fitxer monitor.txt és del tipus:

<ID Tascal> - <Temps en execucié>
<ID Tasca2> - <Temps en execucié>

El que fara I’aplicaci6 sera crear una estructura en forma de llista de llistes
de dos posicions cada subllista. Cada posici6 de la llista contindra la ID de
la tasca i el seu temps d’execuci6, [[ID1,T1],[ID2,T2],ID1,T3]]. Aquest
modul també obtindra unes dades importants pel modul TK. Obtindra una
altre llista on contindra les ID de les tasques que entren en execucid per
saber quines soén i quantes [ID1,ID2,ID3]. També obtindra una variable
amb el temps total de la simulacid, aquesta variable s’obtindra a partir de
la suma dels temps de la llista de llistes. Per dltim, obtindra una dada
important per ’escalat de la grafica, la variable $AUX. Aquesta variable
inicialment sera la divisi6 entre el valor maxim de temps i el valor minim

de temps. Aquesta variable des del modul TK es podra modificar

-82 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“‘&":;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

mitjan¢ant un botd, aixo es veura a continuacié. Seguidament es mostra el

codi de la part TCL comentat.

Llegim dades del fitxer
set fp [open "monitor2.txt" r]
set data [read $fp]

close $fp

llista de tasques

set lista ()

data conté la ID i el Temps de cada linia

set data [split $data "\n"]

Variable que contindra el valor total de temps de simulaci6
totalTime = Suma(Temps d'execuciod)

set totalTime O

set aux 0

set pt 0

Variables per obtenir el maxim i minim de temps per calcular
la variable AUX d'escalat

set min 999999999

set max 0

Per cada linea del fitxer
foreach line $data {
Separem el ID i temps de cada linia
set datal [split $line " - "]
Mirem si ja existeix la ID en la llista
set var [Isearch $lista [lindex $datal 0]]
if { $var==-1} {
Afegim la ID a la llista de IDs
set lista [linsert $lista [llength $lista] [lindex $datal 0]]
set b [lindex $datal 3]
set totalTime [expr $b + $total Time]
1
Obtenim Temps i I'acomularem a la variable de Temps total
set b [lindex $datal 3]
set totalTime [expr $b + $total Time]
puts $totalTime

En aquesta part s'obté el valor minim i maxim de Temps
if { $min > $b } {

if {$b>01}{
set min $b
}
}
if { $max < $b } {
set max $b
}

puts "-->$min"
puts "-->$max"

Calculem el valor d'escalat
set AUX [expr $max/$min]

- 83 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

- Part TK: La part TK el que fara es agafar les dades generades per TCL i
mostrar-les a través d’una interficie. Creara una finestra que contindra un
Canvas amb possibilitat de moure’l a partir d’una barra de desplagament.
Un Canvas és un control que esta limitat per una regi6 concreta i que s’hi
pot dibuixar el que es vulgui. Dins d’aquest Canvas hi haura el diagrama
amb ’execucié de les tasques. En la part inferior del Canvas s’hi trobara
un boto el qual permetra allunyar o apropar el canvas, es a dir, canviara el

valor d’escalat. Seguidament es mostra el codi de la part Tk.

wn title . "Simulacié de les tasques creades"

Crearem el Canvas amb el scrollbar amb la funcié ScrollTexto
ScrollTexto .p $totalTime $AUX -width 900 -height 600
.p-texto xview moveto 0.0

Afegim el botons de Zoom apropar i allunyar

button .in -text ZomIn -width 30 -command {set AUX [expr $SAUX + $min];
button .out -text ZomOut -width 30 -command {set AUX [expr $AUX - $min];
Al premer un dels botons, cridarem la funcié Zoom que redibuixara

el diagrama amb 1’escalat modificat

ho afegim a la finestra
pack .in .out -side top

Cirdem la funcié Zoom per graficar tasques amb les dades obtingudes
des del modul de TCL

Zoom $AUX $data $line $lista $totalTime $pt 520 $aux

El codi font complet de 1’aplicacié es pot trobar a “I’annex on esta
totalment comentat. Aqui tant sols es posen les parts importants per
entendre 1’aplicacié i per entendre les facilitats que aportara TCL/TK a les
aplicacions.

Un cop vist el disseny i la implementacié de 1’aplicaci6 es pot veure com
realment aquest llenguatge es bastant comprensiu ja que llegint-lo es pot
entendre bastant el que s’esta fent. El llenguatge és bastant potent perque
permet fer coses amb un grau de complexitat alta amb poques linies de
codi i aporta abstraccié entre la interficie grafica i la manipulacié de
dades. L’tnic aspecte que no s’ha comprovat és el de multiplataforma pero
en el cas d’aquest projecte no es de massa importancia ja que el que es
necessita es desenvolupar eines pel Sistema Operatiu de Temps Real

RTLinux.

* El codi font es pot trobar en el punt 7.1 de I’annex.

-84 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " Emggﬁ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

3.4.5.4 Exemple d’execucio

Per finalitzar el tema de TCL/TK tant sols queda veure algun exemple d’execucié de
I’aplicacié de generacié de diagrama de temps de les tasques en temps real. En aquest

punt es mostrara també 1’aspecte de les aplicacions creades amb Tcl/Tk.

[T

TRERRERE LR e

600 1400 2200 3000 3800 4600 5400 6200

Figura 3.7: Exemple execucid versio 1

En la il-lustracié anterior es mostra una imatge de la primera versié que es comentava
anteriorment. Notar que no es dona massa informacié i 1’escalat s’ha fet a ma
modificant el codi. S’ha buscat el valor optim per veure el resultat de la millor manera.
Notar com esta mostrant I’execucié de tres tasques. Las tasca inferior es pot observar
que es la de Linux ja que és la que s’esta executant en background, és a dir, quan no hi
ha cap tasca en execucid. Després hi ha dues tasques en temps real. La mes superior es
pot concloure que s’executa amb un periode mes curt per aixo la seva freqiiencia es
major i es pot veure que de ben segur que és més prioritaria que la tasca en temps real
que es troba al mig ja que quan aquesta del mig intenta executar-se es va bloquejant per

causa de la tasca superior que demana més freqiientment 1’ds de la CPU.

En la segiient il-lustraci6 es mostra un exemple d’execucié de la segona versid de
I’aplicacid, en aquesta es pot veure com es mostren més dades i s’han definit els eixos.
La barra de desplacament s’ha modificat en aquesta versié per fer més rapid 1’accés a
tota la grafica ja que en ’anterior versi6 no es podia desplacar arrestant-la. A 1’inferior
de la finestra es pot veure dos botons que s’han afegit per fer de manera manual
I’escalat del diagrama i no haver de modificar el codi. Sén dos els botons que hi ha, un

per allunyar i I’altre per apropar. Ara 'usuari es pot moure tant en el temps com en

-85 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“"5"2‘3‘5; Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

I’escalat i aixi poder analitzar de forma bastant comoda 1’execucié de les tasques a

través del planificador en temps real de RTLinux.

Tasques

Tasca d I e e R R AR R

Tasca 1 i | b ! L | I 4 L i I
5973312 11344832 17916736 23BBBOSE 29653320 35631104 41002816 47774464 53745792 59718176 656096008 7166

Tasca 2

temps (ns)

Zomin

Zomout |

Figura 3.8: Exemple execucid versio 2

En I’exemple es pot veure com s’ha allunyat molt per veure’n una vista general de
I’execuci6. Les linies negres que es veuen sén la informacié de temps. Aquesta
informacié de temps es mostra per a cada tasca. En cada tasca el temps es mostra quan
hi ha un canvi d’execucié a no execucié. Al allunyar molt la vista, els resultats es
solapen entre ells, en futures versions es podria millorar i mostrar menys quantitat de

dades quan mes s’allunyi la vista.

Notar doncs que es possible de forma relativament facil crear aplicacions sobre
RTLinux per donar un entorn més facil d’entendre i flexible per 1’usuari. Des de que
s’ha instal-lat el RTLinux i no es sabia que passava amb 1’execucié de les tasques fins
en aquest moment el salt ja es prou gran. Quan es tenia modificat el planificador i
s’obtenia un fitxer de text, aquest era casi incomprensible per 1’usuari perd ara es
disposa d’una interficie que ajuda a entendre 1’execucié de les tasques. No s’han
necessitat masses linies de codi ni aprendre a programa perfectament amb TCL/TK.
Amb més experiencia amb programacié TCL/TK és poden arribar a fer aplicacions

bastant interessants i completes.

- 86 -

Generador de
Tasques en Temps
Real

Capitol 4: Generador de Tasques en Temps Realccc.c......... 87
AT PIOVI e cuiiiie ettt e 89
4.2 Plantejament del Problema i SOIUCIO.ccoocueeiiriiiiiiniiiiiiiiecciec e, 90

42,1 PFODIEIA ...ooooooiiieieieeeeeeee ettt e e et e e e e e 90
B.2.2 SOIUCIO .veveeieeeeeiiieee ettt ettt e e e et teae e e e e e 91
4.3 Disseny de I'apliCacil.....c.oocuueeiiriiieriiiiiiiiiiiee et 92
4.3.1 DiSSENY GUI ...cc..ueeiiiiiiiiiiiiiieie ettt 93
4.3.2 Generacio i Execucio del COi...............uuuuiiiiiniiiiuiiiiaiiiaiiiiieeeeennans 95
4.4 Implementacid de I'aplicaciQ.........ccoovviiiirniieiiniiiiiiiiiieceieee e 97
4.4. 1 Implementacio GUIL.............cccoeeeeeeeeeeeeeeeeeeeeeeceeeeec e 97
4.4.2 Implementacio Generacio i EXECUCIOcceeeeeeeeeeeeeeenneneennnnnnnns 99

4.5 Funcionament de 1’aplicacié (Exemple d’execucid)ccceeuveeeenireeennnee. 108

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

4.1 Previ

En aquest capitol es posa en marxa els conceptes obtinguts durant el projecte a través de les eines
instal-lades, configurades i apreses a manipular. En aquest punt 1’objectiu sera cercar un problema real
que faci referencia al tema del projecte. Algun problema que ajudi a veure si es pot acomplir 1’ objectiu
proposat durant tot el projecte, obtenir un Sistema Operatiu en Temps Real per a un PC i poder-ne crear
aplicacions per facilitar la feina de 1’usuari final, tot utilitzant software lliure.

Un cop arribat aquf ja s’han assimilat els conceptes de temps real, sistemes operatius en temps real, etc.
assimilats en capitols anteriors. També s’han escollit les eines a utilitzar, s’han instal-lat i estan llestes per
utilitzar-les. L’dltim pas ha estat introduir una mica en 1'ds d’aquestes eines, Sistemes Operatius,
llenguatges de programacié. Ara queda proposar un problema real.

Aquest problema s’haura d’analitzar i veure com és pot afrontar utilitzant tot el que s’ha apres. Es
dissenyara 1’aplicacié que solucionara el problema plantejat i un cop llest el disseny es passara a
implementar 1’aplicacié amb el llenguatge elegit en el capitol anterior. Si tot ha funcionat correctament es
passara a fer proves per veure el funcionament i els resultats.

En aquest tema s’esta posant en marxa tots els coneixements assimilats a base d’estudiar teoria, fer
proves, fer tests, analitzar exemples, etc. I en el segiient capitol es veuran els resultats i es podra comencar

a treure conclusions sobre 1’objectiu principal del projecte.

-89 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“‘&":;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

4.2 Plantejament del Problema i Solucio

Ara es té un Sistema Operatiu en Temps Real de codi lliure, es pot modificar, és més, s’ha modificat com
s’ha volgut, gran avantatge del codi lliure. Es disposa d’eines de codi lliure que també es poden modificar
i ampliar comes vulgui. Es té tot preparat per posar-ho en marxa. Aqui s’ha arribat a complir mig
objectiu, ara toca posar-ho a prova. Per fer aixd s’ha d’analitzar un problema real que és podria trobar
I’usuari final i solucionar-lo creant una aplicacié. Fent aix0o es podra acabar de complir 1’objectiu del
projecte. Si s’acompleix és podrien arribar a pensar multitud d’eines per I’usuari del Sistema Operatiu en
Temps Real i fins i tot modificacions a aquest Sistema Operatiu tot gracies a utilitzar software lliure.

Des del principi de tot el projecte es podria haver escollit el cami d’utilitzar software privat i pagar totes
les llicencies i de ben segur que s’obtindria un Sistema Operatiu de Temps Real amb un rendiment optim
com ja s’ha vist en la descripcié de Sistemes Operatiu comercials i a mes a mes també es disposaria de
tota classe de software potent. No tot sén avantatges pero, el preu a pagar de ben segur que seria molt alt i

no es podrien fer les modificacions que es volguessin ja que seria un sistema protegit i tancat.

Tornant al punt actual, s’ha de pensar una problema real que pot tenir un usuari final del Sistema Operatiu
en Temps Real i com es podra solucionar amb les eines que es disposa. En el segiient subapartat es

planteja el problema alhora de crear les tasques amb temps real.

4.2.1 Problema

Potser un dels problemes més importants i recents que es pot trobar un usuari del Sistema
Operatiu en Temps Real sera alhora de crear les tasques en temps real. Aquest és el primer
problema que és poden trobar amb el primer contacte amb el sistema. L’objectiu principal del
Sistema Operatiu sera poder crear algunes tasques, cadascuna amb una finalitat, i que aquestes
siguin en temps real. De moment no es pot pretendre que 1’usuari no tingui cap mena de nocid en
programacid, potser en treballs futurs si. El perfil de 1'usuari del sistema hauria de ser d’un
programador amb coneixements de C. No necessariament necessitaria coneixements de Sistemes

Operatius ni cap de les coses estudiades anteriorment.

2 Tasca en Temps Real

Figura 4.1: Problema: creacio tasques en TR

-90 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
Barcelona

de

d’un entorn de desenvolupament de tasques en temps real

Imaginar la situacid, un programador es trobar amb un Sistema com aquest i sap que és de temps
real i també sap que necessita aquesta caracteristica.

Aquest programador no té€ nocions de programacié de tasques en temps real i no pot perdre el
temps en estudiar com funciona. Necessitem crear una eina de suport per a que el programador
pugui crear tasques en temps real. Ell sap que vol que facin les tasques i la funcionalitat
d’aquestes les té implementades pero les vol inserir en el temps real perd no sap com fer-ho.
L’aplicacié que s’ha de crear ha de fer exactament aix0, implementar la funcionalitat de les

tasques i posar-les en marxa.

4.2.2 Solucio

La soluci6 al problema plantejat sera la creacié d’una aplicacié que generi tasques en temps real
a partir del codi funcional de cada tasca que aportara 1’'usuari. Aquesta aplicacié generara el codi
font de les tasques en temps real. L’usuari tindra 1’opcié d’anar afegint tasques adjuntant el codi
de la funcionalitat de la tasca i finalment podra demanar de generar-les i posar-les en
funcionament. Aprofitant eines ja implementades, 1’aplicacié permetra veure’n la simulacié de

I’execuci6 de les tasques i aixi aquest podra analitzar si es el que necessita el seu sistema.

Generador de Tasques
en Temps Real

Implementacio
Tasques

Figura 4.2: Solucio: creacio tasques en TR

Ara ja se sap que la soluci6 al problema sera crear una utilitat per generar automaticament les
tasques en temps real, fer aixd no sera trivial. Una proposta de projecte podria ser aquesta,
dissenyar una aplicacié complerta i potent de generacié de tasques en temps real sobre el Sistema
Operatiu RTLinux. Seguint tots els passos de disseny d’una aplicacié utilitzant totes les
tecniques apresses d’enginyeria del software. Aquest projecte seria l’anterior al projecte
comentat. Primer es necessitaria fer un estudi de la viabilitat d’obtenir un Sistema Opreatiu en
Temps Real i crear-ne software complex i potent. Per tant aquest projecte pot servir a algun

lector que es vulgui aventurar a seguir en aquest tema després de llegir-ne aquesta memoria.

-91 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

Bé, doncs 1‘aplicacié haura de ser capag de generar tasques en temps real amb una cert grau
d’abstraccid. Aquesta eina es desenvolupara amb el llenguatge ja utilitzat Tcl/Tk i amb 1’ajuda
de comandes del propi Sistema Operatiu RTLinux. Haura de proporcionar una interficie grafica
facil d’utilitzar i amigable per I’usuari i amb un cert toc de professionalitat.

Notar doncs que amb el desenvolupament d’aquesta aplicacié i els exemples executats
posteriorment s’abarcaran tots els temes explicats al principi d’aquesta memoria.

Seguidament es presenta el disseny de 1’aplicacid per la seva posterior implementacio.

4.3 Disseny de I’aplicacio

En aquest punt es proposa la discussié d’alguns aspectes del disseny de 1’aplicacié a realitzar. Recordar
que I’aplicacié generara tasques en temps real a partir de les funcionalitats de cada tasca.
- L’usuari introduira la informacié de cada tasca i aquesta haura de generar-ne el codi i
seguidament compilar i executar.
- Se li permetra a I'usuari especificar la funcionalitat de les tasques, les prioritats i amb el periode
que es vol executar.
- L’usuari podra definir variables compartides entre les diferents tasques i a més podra decidir si
vol que ’aplicacio crei real time fifos.
Notar com I’aplicacié sera ja bastant complerta i permetra fer bastants coses, en el proxim capitol es
veuran una serie d’exemples de control amb temps real, aquests exemples s’han fet utilitzant aquesta
aplicacid, alguns dels exemples generats amb aquesta aplicacié sén de la complexitat del control del
nivell i temperatura d’un tanc d’aigua, un control que segur que si s’ha d’implementar sense cap ajuda,
tant sols programant, es tardaria bastant més en fer-ho per no dir que passaria si el programador no sabes
programa tasques en temps real. Sera una aplicaci6 de gran ajuda i per tant s’ha de fer un bon disseny.
El disseny es pot definir en dues etapes, la primera etapa sera el disseny de la interficie grafica, com es
vol presentar a ’usuari 1’eina. Com 1’usuari introduira les tasques i les seves propietats a 1’aplicacié. Com
es presentaran les dades introduides, com podra analitzar 1’execucié final, quins aspectes es deixaran a
I’usuari definir (variables compartides, real time fifos, etc).
La segona etapa sera la problematica de com generar el codi a partir de les dades introduides per I’usuari i

I’execucié d’aquestes tasques.

-02 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

4.3.1 Disseny GUI

Disseny de la interficie d’usuari sera la primera etapa de disseny. En aquesta etapa es creara una
interficie simple i coherent, una interficie facil d’utilitzar per I’usuari i a la vegada potent. Per
desenvolupar aquesta etapa, es fara pensant en el llenguatge Tcl/Tk més concretament amb 1’eina
de programacié visual TCL. S’haura de donar la possibilitat a I’'usuari d’introduir les tasques en
temps real de forma facil i consistent.

L’aplicacié consistira amb una finestra en la qual hi haurad un formulari on es podra introduir

informaci6 per cada tasca, la informaci6 a introduir per tasca sera:

- Prioritat de la tasca: sera una caixa de text on es podra introduir la prioritat

amb que la tasca s’haura d’executar, el tipus de dada a introduir sera un
nimero. Com més gran sigui la prioritat més possibilitats tindra
d’executar-se davant d’altres.

- Nom de la tasca: igual que I’anterior, sera una caixa de text on s’introduira
el nom de la tasca, aixi es tindra una manera d’identificar cada tasca.

- Periode de la tasca: caixa de text on s’introduira el temps amb que la tasca
es repetira I’execucid, aquest temps s’especifica amb nanosegons.

- Declaracié variables: una caixa de text multilinia on s’introduira la

declaraci6 de les variables del codi que implementara la funcionalitat de la
tasca.
- Codi tasca: per ultim hi haurd una altre caixa de text multilinia on

s’introduira el codi de la implementacié de la funcionalitat de la tasca.

Tasca 1
Declaracid varables:
a3
Hom Tasca: J
Prioritat Tasca: Coll T :
Periode Tasca: ns

{
:
= I =

£ i3]

Figura 4.3: GUI entrada dades de les tasques

A part de donar la possibilitat d’introduir les dades de cada tasca, aquestes potser tindran la

necessitat d’usar variables compartides entre elles.

-03 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria

de Barcelona

d’un entorn de desenvolupament de tasques en temps real

Per donar aquesta possibilitat, s’introdueix una altre caixa de text multilinia en un altre requadre,
general per a totes les tasques, en aquest requadre es podran declarar totes aquelles variables que
I’usuari vol que siguin accessibles per més d’una tasca.

Una altre opci6 afegida en la interficie, és la possibilitat d’escollir si es vol crear una real time
fifo o dues *(N). Aix0 es representa mitjancant uns “check buttons”. Es déna la possibilitat
d’escollir una, dos o cap real time fifo. Aquesta opcio es pot necessitar quan es volen comunicar

alguna de les tasques introduides amb alguna altre tasca.

—Variables Compartides

J Create fifos:
| rti

W

Figura 4.4: GUI entrada variables compartides i Real Time FIFOS

Per ultim, una altre dada a introduir mitjancant la GUI sera els includes del programa que seran
necessaris. Com ja se sap, RTLinux no sempre necessita tenir tots els moduls carregats, si en
unes tasques no es necessari 1’is de real time fifos, no s’afegira la definici6é dels includes per
aquest modul. En versions futures es podria fer que el propi programa reconeixes
automaticament la necessitat dels includes, aix0 ja es comentara en el capitol de propostes de
futur. Per introduir els includes disposem d’un botd, quan premem aquest s’obrira una finestra

amb una caixa de text on es podran editar els includes que siguin necessaris.

#include vrcl_ho
#include 'rtl_sched. hv
#include <math_h>
#include <rtl_fifo.h>

save |

Figura 4.5: GUI per definir includes

> En I'aplicaci6 s’ha fet per a dos rt-fifos ja que sera suficient, perd podria fer-se per a N rt-fifios.

-94 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " e Escola Tacnica Superior d'Enginyeria

de Barcelona

d’un entorn de desenvolupament de tasques en temps real

4.3.2 Generacio i Execucio del codi

Un cop introduides les dades en 1’aplicacié mitjangant la GUI dissenyada, el que fa falta és
generar i executar-ne el codi. Un modul de temps real esta organitzat d’una certa forma, el
generador de tasques aprofita aquesta caracteristica per crear el fitxer de codi font que
posteriorment en generara 1’objecte. L’estructura del modul en temps real consta de una funcié
d’inicialitzacid, una funcié d’acabament i les funcions d’implementacié de les tasques en temps

real.

#include <...»
threadl

threadd Definicid de les tasques

thread M

WA IO R Gl Funcians que implementen la funcianalitat

} de les diferents fasques en temps real
creades en la funcid init_module,

void =fune(void ~arg){ Aquestes funcions poden implementar codi

} perigdic o no peridbdic. En cada funcid es

defineix la periodicitat en que s'executara

void =fun3 (void =arg){ el codi de la tasca

}

int init_module(void){ En aquesta funcid es defineixen totes les
tasques en temps real juntament amb les
seves propietats i la funcid a executar
(les funcions superiors). Seria com el

} main() en C

void rt_cleanup_madule (vaid) { . o
En aquesta funcid s'eliminen les tasques

que s'han creat en el modul anteriar,
deixant |'estat de la maquina al anterior a
I'entrada de les tasques en temps real,

Figura 4.6: Estructura del codi d’un modul TR

Inicialment en el codi es troba la definicié dels diferents includes que seran necessaris,
seguidament hi ha la definicié de les tasques en temps real que s’executaran.

Després ve la serie de funcions que sén la implementacié de les tasques en temps real, cada
funcié en defineix la funcionalitat de la tasca. Si la funci6 es peridodica es defineix la prioritat en

que s’executara aquesta funcid. La definici6 de la periodicitat es fa en nanosegons. Després de

-05 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

de Barcelona

totes les funcions implementades queda la creacié dels dos moduls generals, el d’inicialitzacié i
el de finalitzaci6.

La funcié d’inicialitzaci6 crea les tasques en temps real, associa la tasca a una certa funcionalitat
i en defineix les caracteristiques de cada tasca. En canvi, la funcié de finalitzacio es finalitzara
I’execuci6 de les tasques en temps real retornant al estat inicial.

Per generar tot aquest codi, el programa utilitza totes les dades introduides per la GUI, com
s’explica en I’apartat anterior, aquestes dades sén les que varien, en canvi I’estructura del codi es
invariant i segueix un patré definit en unes variables definides. Per veure més detall, veure
I’apartat segiient d’implementacié del Generador de Tasques.

Un cop generat el codi, es compila i executa durant un cert temps. Per fer aixo s’utilitza un fitxer

Makefile com el mostrat seguidament:

all: code.o

include /usr/src/rtlinux/rtl.mk
clean:
rm -f *.0

test: all
#-rmmod sound
#-rmmod rt_process
#-rmmod frank_module
(cd /usr/src/rtlinux/; scripts/rmrtl)
(cd /usr/src/rtlinux/; scripts/insrtl)
@insmod code.o
sleep 1
@rmmod code
J/monitor&
sleep 2
sh killmonitor.sh
#include $(RTL_DIR)/Rules.make

En el Makefile, es compila el codi del fitxer generat, s’obté 1’objecte .0. Aleshores s’insereix en
el kernel durant un temps, en aquest cas un segon. Un cop passat el segon, es treu el modul i
s’executa un programa de monitoritzacié de la planificacié de les tasques que escriu la simulaci6
de I’execuci6 de les tasques en un fitxer de text per després mostrar la simulacid.

Per tant, en I’aplicaci6 es disposa d’un boto per generar i executar el codi i un altre boto per

simular 1’execucid, aquest dltim no es pot prémer fins que no s’ha generat i executat el codi.

-96 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

4.4 Implementacio de I’aplicacio

En aquest punt s’explica a detall d’implementacié I’aplicacié de generacié de tasques. La implementacid
també es divideix en els dos grans grups, la implementacié de la GUI i la implementacié de la generaci6

de les tasques.

4.4.1 Implementacié GUI

Per implementar la part de la interficie grafica s’utilitza el software de codi lliure visual TCL per
facilitar la tasca de creaci6 d’interficies. Les dades necessaries per la generacié automatica de les

tasques en temps real son les segiients:

- Variables compartides: sén les variables globals del fitxer, que s’utilitzen en les

diferents funcions.

- Includes: sén els fitxers de capcaleres necessaris per la correcta compilacié del codi
generat.

- RT-fifos: Creaci6 de fifos en temps real per utilitzar-les en alguna de les funcions de
les tasques.

- Nom Tasca (per cada tasca): nom de la tasca a generar.

- Prioritat Tasca (per cada tasca): prioritat en que s’executa la tasca en el planificador de

temps real.

- Periode de la Tasca (per cada tasca): periode en que s’executa repetidament la

funcionalitat de la tasca.

- Variables de la Tasca (per cada tasca): definicié de les variables utilitzades en la

implementacié de la funcionalitat de la tasca

- Codi de la Tasca (per cada tasca): codi d’implementacié funcionalitat de la tasca.

Les variables referents a cada tasca, nom, prioritat, perfode, variables i codi s’emmagatzemen en
una estructura. Aquesta s’insereix en una llista la qual contindra tota la informacié de totes les
tasques inserides. Cada cop que es prem el boté guardar s’emmagatzema la informacié de la
tasca en la llista de tasques. Seguidament es mostra un petit esbés de codi on es mostra aquesta

estructura.

##Codi source de la tasca
set code [Textl get 0.0 end]
#Declaraci6 variables

set vars [Text2 get 0.0 end]
#prioritat de la tasca

set prioTasc $txtPrio
#periode de la tasca

set periodTasc $txtPeriode
#Nom de la tasca

set nameTasc $txtName

-97 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

de Barcelona

ITRTRTRIRIRTR IR TR IR IR TR IR TR IR IR TR I TR IR IR TR IR TR IR IR IR I IR IR IR IR TR IR IR IR IR IR IR IR INIRTR IR TR
HHHH A A A i

#llista on tenim els 4 parametres anteriors

#llista: -periode tasca
-id tasca

-prioritat tasca
-code

-Nom

ITRTRTRTRIRTR IR TR IR IR TR IR TR IR IR TN IR IR IR NI TR TN IR TN IR IR NIRRT TR TN IR TR TN IR TR INIRTNINTHT]
T A A A A A A

set dada "$prioTasc:$periodTasc:$code:$vars:$nameTasc"
set llista [split $dada :]

#Definim un array on contindrem totes les dades de les diferents tasques
set ArrayTasc($i) $llista

L’altre informacid, variables compartides, includes, rt-fifos, s’emmagatzemen en variables
individuals. Aquesta informacio es guarda en les variables quan es prem el boté de generar codi.
La GUI implementada facilita la insercié d’aquesta informacié en 1’aplicacié i la seva
manipulacid.

Per facilitar la comprensié de com s’ha implementat la interficie grafica s’il-lustra la interficie

amb la seva funcionalitat.

Tascal
Declaracit variables: Creacio de fifos
A1
Nom Tasca: Yariables de la tasca J
Prioritat Tasca: T D
Periotie Tasca: ns S| Create fifos:
] . i Insercid de includes
Codi execucid Tasca -
Save Task W orif
- Includes
e 5
Variables globdis Simulator |
Generate f
: Reset |
Status: none
Botons per passar a la part de
generacio, execucio i
Ez quarda en la llista I'estructura que Desplagament entre tasques gimulacio del codi.
conté |'informacia de la tasca ™ creades

Figura 4.7: Implementacié de la GUI

- Boté “Save Task”: Aquest botd insereix la informacié de la tasca en una estructura
que anira a parar a una llista de tasques. Si ja estd creada la tasca el que fa es

guardar els canvis en I’estructura de la tasca.

- 08 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

- Botons desplagament: Aquests dos botons permet desplacar-se en la llista de

tasques. Doéna la possibilitat de moure’s d’una tasca cap a una altre i poder
modificar qualsevol tasca després d”haver-la inserit.

- Botons eleccié rt-fifos: Aquests dos botons de seleccié donen la possibilitat de

decidir si es vol crear alguna real time fifo per la comunicacié amb altres tasques.
Aquesta informacié es guarda en una variable individual.

- Boté “Includes”: Aquest boté obre una finestra amb la definicié dels inludes
necessaris per I’execucié del codi. Permet borrar/modificar/inserir aquesta
informacid. Els includes es guarden en una variable concreta.

- Boté “Reset”: Elimina tots els elements de la llista de tasques, posa el comptador
de tasques a 0 i buida les estructures omplertes al inserir tasques.

- Boté “Generate” : Genera el codi font a partir de tota la informacié recol-lectada.

4.4.2 Implementaciéo Generacié i Execucio

Aquesta es potser la part més important de ’aplicacié. Aquesta part fa referencia a tota
I’implementacié que hi ha darrera de 1’execuci6 del bot6 “Generate” explicat anteriorment.

La generaci6 del codi consisteix en transformar tota la informacié obtinguda en codi executable,
per fer-ho s’aprofita 1’estructura estatica que contenen els moduls de temps real. Es tenen unes
variables estatiques i unes altres dinamiques (les obtingudes per la GUI de I’aplicacié) i amb
totes aquestes es genera el codi. La forma de generar el codi és simple. Es va construint un fitxer
.c escrivint la informacié de les variables estatiques i dinamiques de forma ordenada. Aquesta
informaci6 s’escriu creant un fitxer nou anomenat “code.c” en el qual s’escriu tot el codi generat

a partir de la informaci6 que es disposa. Per escriure en el fitxer es fa el segiient:

set Ntasc [array size ArrayTasc]
set out [open "code.c" w]+
puts $out “Informacié de generaci6 de codi”

La primera linia informa del nombre de tasques a generar, les dos segiients serveixen per escriure
en el fitxer el codi generat. Per tant en els proxim punts on s’explica la generaci6 per parts, quan
s’utilitzi la funcié “puts” servira per escriure el codi al fitxer a generar. El codi a generar es pot
dividir en el codi de capcalera, el codi de definicié de tasques, el codi de les funcions, el codi de

la funci6 d’inicialitzacié i el codi de la funcié de finalitzacio.

-90 .

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

- Definicié includes i variables globals: El primer a generar es la informacié de

capegalera del fitxer, aixdo simplement sera copiar el contingut de la variable dels
includes inserits. Aquesta informacié sera el que primer s’escriu en el fitxer .c
generat. Després es copien totes les variables globals inserides per la GUL Si s’ha
seleccionat la creacié de rt-fifos també es definiran en aquest punt. Tot aix0 es fa

amb el segiient procediment:

proc ::GenerateHeader {out n rtfO rtf1} {
#Includes i capcaleres
global includes
global returns
global declareThread
global pointandcoma
#set includes "#include <rtl.h> \n#include <time.h> \n#include <pthread.h>"
set returns "\n\n"
set pointandcoma ";"
puts $out "$includes"
puts $out ""
puts $out "//Declaracions variables compartides"
puts $out [Text3 get 0.0 end]
#Declarem rtfs..
if {$rtf0 == 1} {
puts $out "int fifo0;"
}
if {$rtfl == 1} {
puts $out "int fifol;"
}
}

- Definici6 tasques: Seguidament es passa a definir les tasques que s’executaran. Per
fer-ho sera necessari saber el nimero de tasques definides i els seus noms, aixo
s’extreu de la llista de tasques creada al inserir tasques mitjancant la GUI
implementada. Per a cada tasca es defineix la seva variable amb el nom inserit. En
aquest tros de codi es veu com es fa ds de variables “string” per generar codi,
algunes variables estatiques com “nameThread” i altres variables dinamiques com

la variable “tasca”.

set nameThread "pthread_t thread"
set pointandcoma ";"
for {set 1 1} {$1 <= S$SNtasc} {incr 1 1} {
set tasca S$ArrayTasc($i)
set name [lindex S$Stasca 4]
puts S$out "$nameThreadS$name$pointandcoma”

}

- 100 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " g“.fa":e:‘.il“ . Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

de

- Definici6 funcions: En aquest apartat es defineix el contingut de les funcions que
donen funcionalitat a la tasca. Aquestes funcions tenen la part de declaraci6 de
variables locals, la part de definicié periodicitat i la part del codi que dona
funcionalitat a la tasca. Per fer aixo es cridara al procediment “GenerateTasc” per a

cada tasca inserida. El codi d’aquest procediment és:

proc ::GenerateTasc {out tasca i} {
#Per a cada tasca

global nameRoutine

global argsRoutine

global int

global structSchedParam
global structSchedParam_priority
global hrtime_t

global setSchedParam1
global makePeriodic

global period

global ret

global closee

global opeen

global whilee

global npPeriodic

global pointandcoma

set pointandcoma ";"

set nameRoutine "void *start_routine"

set argsRoutine "(void *arg)"

set int "int"

set structSchedParam "struct sched_param p"

set structSchedParam_priority "p.sched_priority="

set hrtime_t "hrtime_t now"

set setSchedParam1 "pthread_setschedparam(pthread_self(),SCHED_FIFO,&p)"
set period "unsigned long period ="

set makePeriodic "pthread_make_periodic_np(pthread_self(),gethrtime(),"
set makePeriodicl ")"

set ret "return 0"

set closee "\}"

set opeen "\{"

set whilee "while(1)"

set npPeriodic "pthread_wait_np()"

set prio [lindex [lindex $tasca 0] 0]
set period [lindex [lindex $tasca 0] 1]
set code [lindex [lindex $tasca 0] 2]
set vars [lindex [lindex $tasca 0] 3]
set name [lindex [lindex $tasca 0] 4]

puts $out "$nameRoutine$nameSargsRoutine”
puts $out "$opeen”
puts $out "$vars"

- 101 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

puts $out "$makePeriodic$period$makePeriodic 1$pointandcoma”
puts $out "$whilee$opeen”

puts $out "$npPeriodic$pointandcoma”

puts $out "$code”

puts $out "$closee"”

#puts $out "$ret$pointandcoma”

puts $out "$closee”

Primer es defineixen les cadenes de caracters estatiques. Després s’obté la
informacié de la tasca i s’escriu tota ’estructura de la funcié al fitxer.
Cada tasca té associada una funcid, per tant, aquest procediment es cridara per a

cada tasca inserida.

- Definicié funcid inicialitzacié: La funcié d’inicialitzacié defineix les tasques i les

seves propietats. Aixo es fa mitjancant la informacié de la tasca i les cadenes de
caracters definides i que son estatiques. Depenen de si s’escull la opcié de crear rt-

fifo, aquestes seran creades en aquest modul.

- Definicié funcié finalitzacié: La funcié de finalitzacié destrueix les tasques creades

en el modul anterior i les fifos creades.

En el codi segiient es mostra la generacié dels dos dltims punts ja que van associats. Com
sempre, primer es defineixen les cadenes de caracters estatiques i seguidament es recupera la

informaci6 obtinguda a través de la GUI per generar codi segons el que 1’usuari vol.

set ret "return 0"

set initt "int init_module(void)\{"

set pthreadCreatel "pthread_create("
set pthreadCreate2 ",&attr,"

set pthreadCreate3 ",0)"

set thread "&thread"

set routine "start_routine"

set pointandcoma ";"

set closee "\}"

set clean "void cleanup_module(void)\{"

set deletel "pthread_delete_np("

set delete2 ")"

set threadl "thread"

set schedParam "struct sched_param sched_param;"

set attr "pthread_attr_t attr;"

set attrInit "pthread_attr_init (&attr);"

set prio "sched_param.sched_priority ="

set sched "pthread_attr_setschedparam (&attr, &sched_param);
set setfp "pthread_attr_setfp_np(&attr, 1);"

-102 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“‘&":;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

#Generate Init

puts $out "$initt"

set entra 0

if {$rtf0==1} {
puts $out "int fifo_status;"
set entra 1

1
if {$rtfl == 1} {
if {$entra==0} {
puts $out "int fifo_status;"
1
}

puts $out $schedParam
puts $out Sattr

if {$rtf0==1} {
puts $out "rtf_destroy(0);"
puts $out "fifo_status = rtf_create(0, 4000);"
puts $out "if (fifo_status) {"
puts $out "rtl_printf(\"RTLinux measurement test fail. fifo_status=%d\\n\",fifo_status);"
puts $out "return -1;"
puts $out "}"
puts $out "fifo0 = open(\"/dev/rtfO\", O_NONBLOCK);"
puts $out "if (fifo0 < 0) {"
puts $out "rtl_printf(\"/dev/rtfO open returned %d\\n\", fifo0);"
puts $out "return (void *) -1;"
puts $out "}"

}

if {$rtfl == 1} {
puts $out "rtf_destroy(1);"
puts $out "fifo_status = rtf_create(1, 4000);"
puts $out "if (fifo_status) {"
puts $out "rtl_printf(\"RTLinux measurement test fail. fifo_status=%d\\n\",fifo_status);"
puts $out "return -1;"
puts $out "}"
puts $out "fifol = open(\"/dev/rtf1\", O_NONBLOCK);"
puts $out "if (fifol < 0) {"
puts $out "rtl_printf(\"/dev/rtf1 open returned %d\\n\", fifol);"
puts $out "return (void *) -1;"
puts $out "}"
1

for {seti 1} {$i <= $Ntasc} {incri 1} {

set tasca $ArrayTasc($i)

set name [lindex $tasca 4]

set prioritat [lindex $tasca 0]

puts $out $attrlnit

puts $out $prio$prioritat$pointandcoma

puts $out $setfp

puts $out $sched

puts $out

"$pthreadCreate 1 $thread$name$pthreadCreate2$routine$name$pthreadCreate3$pointand
coma"

puts $out "$ret$pointandcoma”
puts $out "$closee"”

- 103 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 5“‘{:‘3; Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

#Generate Cleanup
puts $out "$clean”

if {$rtf0==1} {
puts $out "close(fifo0);"
puts $out "rtf_destroy(0);"

}

if {$rtfl == 1} {
puts $out "close(fifol);"
puts $out "rtf_destroy(1);"
}

for {seti 1} {$i <= $Ntasc} {incri 1} {
set tasca $ArrayTasc($i)
set name [lindex $tasca 4]
puts $out "$deletel1S$thread 1$name$delete2$pointandcoma”

}

puts $out "$closee"”

close $out

Vist tot el codi implementat es pot veure com la manera de generar el codi és simple, s’utilitza la
informacié obtinguda a partir de la GUI i variables pre-definides. Per exemple, quan es necessita

definir el codi que declara les tasques, el codi a generar sera:

pthread_t threadTascal;
pthread_t threadTasca2;

En aquest codi generat, les variables estatiques son:

set thread “pthread_t thread”

.

set pointandComa *;

I les variables dinamiques son els noms de les tasques inserides per ’usuari a través de la GUL

set tasca $ArrayTasc($i)

set name [lindex $tasca 4]

on $i es la variable que indica sobre quina tasca estem treballant ara mateix.
$ArrayTasc es I’array que conté les estructures de les tasques

$tasca es I’estructura de la tasca $i i en la posici6 4 hi ha el nom de la tasca

- 104 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria

de Barcelona

d’un entorn de desenvolupament de tasques en temps real

Per tant, la forma de generar el codi és concatenant les diferents variables tan dinamiques com

estatiques obtingudes.

sortida = “$thread$name$pointandComa”

Un cop generat integrament el codi aquest s’haura de compilar i posteriorment executar. Per fer

aix0 simplement s’executa una comanda.

exec make test

Aquesta comanda executa un Makefile en el mateix directori ja creat. Aquest Makefile compila
per generar el fitxer objecte, 1’insereix durant un segon i posteriorment I’extreu. Un cop fet aixo
s’executa un programa monitor per obtenir les dades de planificacié per si es vol simular
I’execuci6 de les tasques amb el boté “simulator”. El programa monitor s’executa en background

durant un temps i després s’elimina amb un script “killmonitor.sh”.

Codi Makefile:

all: code.o

include /usr/src/rtlinux/rtl.mk
clean:
rm -f *.0

test: all
#-rmmod sound
#-rmmod rt_process
#-rmmod frank_module
(cd /usr/src/rtlinux/; scripts/rmrtl)
(cd /usr/src/rtlinux/; scripts/insrtl)
@insmod code.o
sleep 1
@rmmod code
J/monitor&
sleep 2
sh killmonitor.sh
#include $(RTL_DIR)/Rules.make

Codi killmonitor.sh

#!/bin/bash

kill “ps uxc | grep -i "monitor” | awk '{print $2}"

- 105 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
Barcelona

d’un entorn de desenvolupament de tasques en temps real

de

Codi monitor.c

#include <stdio.h>
#include <errno.h>
#include <sys/time.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include "rtl_fifo.h"

int main()

{
FILE *f1;
int fdO;
int n;

unsigned long id;
long int time;

int prio;

char t;

if ((fd0 = open("/dev/rtf0", O_RDONLY)) < 0) {
fprintf(stderr, "Error opening /dev/rtfO\n");
exit(1);

}

non

f1 = fopen("monitor2.txt","w+");

fclose(f1);

n = read(fd0, &t, sizeof(char));

printf("%c \n",t);

while (1) {

f1 = fopen("monitor2.txt","a+");

n = read(fd0, &id, sizeof(unsigned long));

n = read(fd0, &prio, sizeof(int));

n = read(fd0, &time, sizeof(long int));

printf("ID: %ul TIME: %ld PRIO: %d\n", (unsigned long)id, (long int)time,
(int)prio);

fprintf(f1," %ul - %ld\n",(unsigned long)id, (long int)time);
fflush(stdout);

fclose (f1);

}

return O;

Un cop revisats els detalls d’implementacié es pot comprovar que s’ha generat una aplicacié amb una

complexitat del disseny un tant alta. Tot aixo utilitzant Tcl/Tk per tant s’ha corroborat que 1’ds d’aquest

llenguatge es possible per el desenvolupament de tal aplicacions. Ara queda veure com adjuntar aquests

dos grups d’implementacio, la GUI i 1a generaci6 del codi, per obtenir el resultat final de 1’aplicacio.

- 106 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“‘&":;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

En la segiient figura es mostra un resum del disseny/implementacié de 1’aplicacié. En aquesta figura es
mostren tots els passos que segueix 1’aplicacié per a obtenir els resultats finals. L’aplicacié comenca amb
una interficie que demana informacié a 1’usuari de les tasques, les seves propietats i altre informacié
general sobre el modul a generar. Aquesta interficie dona facilitat a I’'usuari per inserir i/o modificar la
informacié. Amb aquesta informacié emmagatzemada en variables i estructures de dades i les cadenes de
caracter pre-definides, es genera el codi font. Aquest codi es compila per obtenir el fitxer objecte el qual
és inserit durant un segon al kernel. Aquest segon que el modul ha estat inserit es monitoreja amb
I’aplicacié monitor el qual genera un fitxer de text que serveix per simular 1’execucié de les tasques.

En tot aquest procediment, entren en joc varies aplicacions creades, el Generador de Tasques per generar
el codi i englobar-ho tot, 1’aplicacié monitor per llegir les dades del planificador en temps real, I’script
killmonitor.sh per parar 1’execucié de I’aplicacié monitor i 1’aplicacié per mostrar la simulacié de

I’execuci6 de les tasques llegint del fitxer de text monitor.txt

Estructura de dades amb |'informacid
de totes les tasques + alfre informacid
(rt-fifos, includes, vars globalz.)

=Insertar mbdul durant un seqon,
insmad fitx<er.o
sleep L

m—— 2 rmmad fit<er

Generacid del fitzer de \
codi font ~.¢

Fit=er abjecte

i compilar
Cibtencid de
les dades * Executar aplicacid monitoreiy del
planificador per generar el fitzer
Cadenes de caracters de text manitor.txt
pre-definides per a la generacid
manitor.txt

Simulacid =

Figura 4.8: Disseny/Implementacié Generador de Tasques

En T’aplicacié creada s’ha utilitzat tots els conceptes analitzats anteriorment, la utilitzacié6 de RTLinux,
Tcl/Tk, la simulacié de I’execucid de les tasques, etc. En el segiient apartat s’explica amb un exemple

com funciona 1’aplicacid i els resultats obtinguts.

- 107 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

4.5 Funcionament de I’aplicacié (Exemple d’execucio)

En aquest punt es detallara el funcionament de 1’aplicacié creada, per fer-ho es simulara una situacio real

d’execucid. L’exemple que es crea consisteix en dues tasques amb les segiient propietats:

Tasca 1
- Nom: Tascal
- Prioritat: 2
- Perfode: 500000000 ns
- Codi a executar: un bucle amb un nombre d’iteracions que vindra definit
per una variable global
Tasca 2

- Nom: Tasca2
- Prioritat: 2
- Periode: 10000000 ns

- Codi a executar: incrementa la variable global en cada execucid

Aquestes dues tasques compartiran una variable global. La Tascal simplement realitza una operacié N
vegades, on N ve definit pel nombre d’iteracions que fara en cada execucid. Aquest nombre d’iteracions
ve definit per una variable compartida entre les dues tasques. La Tasca2 en cada execuci6 incrementa la
variable compartida entre tasques aixi per cada execucié de la Tasca2 es veura incrementat el temps
d’execuci6 de la Tascal. Aquestes dues tasques no fan res d’especial, aquest exemple simplement es per
comprovar la facilitat en que es poden crear tasques en temps real amb el generador de tasques i el

posterior analisis de I’execucié amb la simulacié d’aquesta.

El primer que s ha de fer, és obrir 1’aplicacié de Generaci6 de Codi. Per obrir I’aplicacié s’ha de cridar a
vTcl i al mend obrir fitxer existent per carregar 1’aplicacid. Per posar en marxa ’aplicacié s’ha de prémer
la combinacié de tecles “ALT+e” per passar el mode test. Tot aix0 s’ha de fer amb 1’usuari root del

sistema per poder executar comandes de rtlinux.

- 108 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " s
d’un entorn de desenvolupament de tasques en temps real

Autbnoma

de B

reclona

Escola Técnica Superior d'Enginyeria

Un cop oberta I’aplicaci6 és seguiran els segiients passos:

1.- S’afegeix la informacié de la Tascal, nom de la tasca, prioritat, periode, codi d’execucid, variables del

codi.

Declaracio varidie::
= _ [imt 5 - LoBOD: -
o Tagsua: 109030 it 3 =0 [
: = i a =0 i
Friorkat Tasea: 1 Codli Tozea:
Posiatio Tasca: SN0 ne |[or 1i=0i cnrisrt | 2| vee virwe
Eoo 1) =0, 3=t j=+! [
a = losll i o
1
Guanfar Tasca | o
NS |
(3 | 33 |
— Vartakles Compar loes
int £ = 0. iy
#
Fesal |
HE Tasmues: 1 Egtal: Aang

Figura 4.9: Entrada de la Tascal

2.- Un cop afegida la informacié de la Tascal es prem el boté “Guardar Tasca” per guardar els canvis i

automaticament 1’aplicacié passa a preguntar per les dades de la segiient tasca.

3.- En el segiient pas s’afegeix la informacié de la Tasca2 de la mateixa manera que en el punt 1 i es prem

de nou “Guardar Tasca”

per guardar els canvis d’aquesta ultima tasca. Si en aquest punt s’ha de

modificar alguna de les tasques inserides s’utilitzaran els botons de desplacament de les tasques per anar

d’una tasca a una altre i modificar-ne la informacié. Un cop modificada la informacié d’una tasca es prem

“Guardar Tasca” per a que s’apliquin els canvis.

(T Genertar de T Y

—Tasca 2

Declaracid variables:

Nom Tasca: |Tasca?
Prioritat Tasca: |1

Codi Tasca:

Periode Tasca: |10000000 ns |t =

Guardar Tascal

<< |

t o+ 40: .
Crear real-time

fifoz

Guardar i Aplicar
canvis

»> |

F— I

ElL

Includes

— Variables Compartides

int t = O:

Definir includes

Botons de desplagament

Generar i simular Tasques

% Simulador,
~> Generar

Reset |

Nt Tasques: 2

Estat: none i

Figura 4.10: Entrada de la Tasca2

- 109 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

de Barcelona

4.- Un cop inserides les tasques, s’haura de comprovar si s’han d’afegir variables compartides entre

tasques, si es aixi, s’afegiran al requadre de la part inferior de 1’aplicacid.

5.- Si hi ha la necessitat d’afegir algun include s’haura de prémer el boto “Includes” on s’obre una finestra

per introduir els includes necessaris per les tasques.

6.- Si hi ha la necessitat d’utilitzar real time fifos, es selecciona 1’opcié de crear una o dos real time fifos

per utilitzar-les en alguna de les tasques inserides.

7.- Un cop inserida tota la informaci6 es prem el boto “Generate”, aquest boto genera el codi, el compila i
I’insereix durant un segon al kernel de RTLinux i posteriorment es monitoritza 1’execuci6 de les tasques

que incorpora el modul inserit.

8.- Tant sols queda veure la simulaci6 de 1’execuci6 de les tasques per si es vol analitzar si tot a funcionat

correctament. Per fer aixo es prem el boto “Simulacié”.

Tasques

Tasca 2 4364751 | 1) ZE BES ZE WBS‘?W?] wa‘uszw‘auuu 3\7878 UEWU(JW‘I%MZIHN GE‘WR‘IH&W EIRE ﬂ{ iawéum&misusza}mméusf

Tasca 1 3?54%364 ?531'4355 1‘\334!9655 |515§1552

BRP tcr it b e R s

temps (ns)

Figura 4.11: Resultat de la simulacio

Un cop feta la simulacié es comprova que tot a funcionat correctament, en la simulaci6 es veu I’execucid
de tres tasques, la tasca de color vermell es la tasca de Linux, aquesta tasca sempre esta en execucio sin
hi ha cap altre tasca en la CPU. Les altres dues tasques son les tasques creades automaticament amb el
generador de tasques. La Tascal és la que executa uns bucles, el nimero de bucles a executar dependra de
la Tasca2 que augmentara aquest nimero de bucles. Es veu com en cada execuci6 de la Tascal augmenta
el temps de comput d’aquesta ja que s’esta incrementant el nombre de bucles d’aquesta tasca mitjangant
la Tasca2. Per cada execuci6 de la Tasca2 s’incrementa en 40 iteracions el bucle de la Tascal.

Per cada execuci6 de la Tascal s’executa 5 vegades la Tasca2, per tant en cada execucié de la Tascal es
veu incrementat el nombre de bucles en 40*5 = 200 iteracions. En la imatge anterior es veu facilment

com la barra de la Tascal augmenta en cada execucio.

-110-

Projecte: Analisi del sistema operatiu RTLinux e implementacié " Emggﬁ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

En tant sols 8 passos s’han creat dues tasques en temps real que comparteixen informacié. S’ha
aconseguit desenvolupar un primera versio d’una eina que pot ser de molta utilitat. Qualsevol
programador amb coneixements de programaci6 en C podra programar tasques en temps real amb aquesta
aplicacié. També dona la possibilitat d’analitzar 1’execucié per entendre millor el temps real. S’ha creat
una eina basica i facil d’utilitzar, en proximes versions es podria anar completant i eliminant les
restriccions que pot tenir aquesta aplicacio.

El codi de I’aplicaci6 es pot trobar en ’annex on es troba el codi de les aplicacions desenvolupades.

El codi de I’exemple generat es pot trobar en I’annex on es troba el codi dels exemples generats.

-111-

Exemples i
Resultats

Capitol 5: Exemplesi Resultatscococoooviiiiniiiniiceee, 113
ST PIOVI.ciiiiiiiiiii e 115

5.2 Exemples generats manualment...........ceeevevieirniiieeeiniiiienniieee e, 116

5.2.1 Exemplel: Interrupcio del teclatoococevevvieiiiniiiciiniieeannnne, 116

5.2.1 Exemple2: Prova de SO...........cccceeeeeeeeeeeeeeeeeeeeeeeceeaesenensaannns 118

5.3 Exemples generats amb ’aplicacié (Generador de Tasques) 120

5.3.1 Exemple3: Prova de la periodicitar............ccccoeveevrvvveeeeeeesccinvvennannn. 120

5.3.2 Exemple4: Control d’un procés Simple............ccccceeeeeeeeccecviunnennnnnnn. 123

5.3.3 Exemple5: Control d’un tanc d’aigua (Temperatura i Nivell).......... 126

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

5. Exemples i Resultats

5.1 Previ

En aquest capitol es mostren una serie d’exemples al lector per a que quedin clars els conceptes i els
objectius del projecte. Recordar que I’objectiu del projecte és analitzar la viabilitat de construir un
Sistema Operatiu en Temps Real i desenvolupar-ne aplicacions. Tot aix0 s’ha de aconseguir amb s de
software lliure. En aquest punt ja s’han assolit els objectius i ara tant sols queda veure’n exemples per
provar que s’han assolit. Aquest capitol es dedicara a descriure una serie d’exemples per comprovar
alguns conceptes assolits, algun d’aquests exemples seran referents a interrupcions, a generacié de
tasques minimitzant el periode , a reproduir un fitxer de sé o en controlar algun procés. Aquests
exemples és generen de forma manual o automaticament amb el Generador de Tasques, posteriorment
s’analitzen els resultats detalladament i I’execuci6 de les tasques en el planificador de temps real.

Els exemples es divideixen en dos grups, els generats automaticament i els generats manualment. El
exemples generats automaticament es fan utilitzant el Generador de Tasques desenvolupat en el capitol
anterior. El tipus d’exemples generats en aquest grup sén de control de processos, en concret, el control
d’un procés integral i el control d’un procés mes complexa, control de la temperatura i nivell d’un tanc
d’aigua. En aquest grup també es fa un analisis de la periodicitat de les tasques canviant el valor del
periode d’una tasca i analitzant el resultat obtingut. En els exemples generats manualment es fa
programant ja que amb el Generador de Tasques no es poden fer aquests tipus d’exemples, ja s’explicara
per que no es poden generar aquests exemples per les restriccions de I’aplicacié. Els exemples generats
ens aquest grup sén dos, el primer exemple es proven les interrupcions del teclat i s’analitza
profundament amb 1’execucié de la interrupcid en el planificador de temps real, per ultim, el segon
exemple sera 1’execuci6 d’una tasca que reprodueix un fitxer de s6 amb una cert periode.

S’han elegit cinc exemples amb els quals es cobreixen els aspectes importants estudiats en el llarg del

projecte.

-115-

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

5.2 Exemples generats manualment

En aquest punt es passen a explicar els exemples creats manualment, ens aquests exemples es veuen
alguns dels aspectes importants de RTLinux i els sistemes en Temps Real. Concretament es detallen dos
exemples, el primer exemple s’utilitzen les interrupcions, concretament la interrupcié del teclat, i com a
segon exemple d’aquest apartat es mostra com una tasca reprodueix un fitxer de sd, la reproduccié es fara

en una certa periodicitat.

5.2.1 Exemple 1: Interrupcio del teclat

En aquest exemple es mostra el funcionament basic de les interrupcions del Sistema
Operatiu i com aquestes interrupcions es tracten com a més prioritaries ja que RTLinux té
accés directe al hardware. L’exemple simplement el que fa es esperar per una interrupcié del
teclat, quan és prem una tecla del teclat es desperta una tasca la qual executa una instruccio,
imprimir qualsevol caracter. Aquesta tasca podria ser una rutina de tractament de la
interrupcié. Per exemple, aquesta tasca podria enviar unes certes dades algun lloc. Si
aquesta tasca es posa amb maxima prioritat quan es premés una tecla, el sistema operatiu
deixaria de fer tot el que estava fent per enviar les dades (execucié de la tasca). Aquesta
tasca s’executa sempre amb el mateix temps ni que la carrega de Linux sigui alta ja que és té
dos punts clau: S’esta utilitzant interrupcions RTLinux, per tant, és té accés directe al
hardware, es tracta la interrupcié per sobre d’altres interrupcions de Linux, el segon punt
important es que la interrupcié executa una tasca en temps real i aquesta ni que el sistema
estigui carregat, s’executara deixant de banda I’execucié de Linux.

El codi de I’exemple es pot trobar en 1’annex on es troba el codi de tots els exemples.

OTHER: 36680499201 amb prioritat O - 3488
+960

LINUX: 37499247401 amb prioritat -1 - 4547040
OTHER: 36680499201 amb prioritat O - 3008
+640

LINUX: 37499247401 amb prioritat -1 - 4546624
OTHER: 36680499201 amb prioritat 0 - 3200
+736

LINUX: 37499247401 amb prioritat -1 - 182592
OTHER: 36680499201 amb prioritat O - 3584
+864

LINUX: 37499247401 amb prioritat -1 - 4661792
OTHER: 36680499201 amb prioritat 0 - 3136
+576

LINUX: 37499247401 amb prioritat -1 - 184960
OTHER: 36680499201 amb prioritat 0 - 2880
+576

LINUX: 37499247401 amb prioritat -1 - 304032
OTHER: 36680499201 amb prioritat 0 - 2528
+576

LINUX: 37499247401 amb prioritat -1 - 4765216
OTHER: 36680499201 amb prioritat 0 - 3424
+640

Figura 5.1: Resultat exemplel

- 116 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " Emggﬁ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

Si es compila e insereix el modul de temps real es comprova (amb la comanda dmesg) que
al prémer qualsevol tecla s’executa la tasca (imprimir el caracter “+” al buffer del kernel).

En la il-lustraci6 anterior és veu el resultat generat de prémer tecles quan el modul es inserit.
Es veu com s’executa la tasca de Linux amb prioritat negativa, quan es prem una tecla treu
de la CPU Ia tasca de Linux per passar a executar la tasca que desperta la interrupcié. El
temps de comput que apareix al final de cada linia és la suma del temps de tractar la
interrupcié més el temps de planificacié més el temps de comput de la tasca. A sota de cada
linia surt el temps tant sols del comput de la tasca. Durant tot el projecte s’ha analitzat
majoritariament tasques periodiques, tasques que cada cert temps executen una serie
d’instruccions i aquestes han de complir uns terminis d’execucié. En aquest exemple,
s’analitza una tasca asincrona, no té cap mena de periodicitat, simplement es passa a
executar quan s’activa una interrupcid, concretament la del teclat. Exemples reals d’aquests
tipus de tasques poden ser tasques que esperen a la interrupcié d’un port del PC per a la
lectura de dades. Aquest tipus de dades han de respondre a interrupcions en un temps
minim, han de tenir la propietat de poder tractar milers d’interrupcions en un segon sense
perdre’n cap. En la figura anterior és veu com el temps de tractament d’interrupcions esta
ajustat a I’ordre dels nanosegons. La segiient figura mostra tot el que s’explica de forma més

clara amb I’execucié de la tasca interrupcié en el planificador de temps real.

Tasques

Tascal é é
3206336 2022544

Tasca 2 W
3

termps (ns)

Figura 5.2: Planificacioé exemplel

En aquesta il-lustracié es veu com la Tascal, la tasca que es despertada per la interrupcié del
teclat, no segueix cap mena de patré de periodicitat com les altres tasques analitzades en els
altres exemples. En la imatge podem analitzar que s’ha premut la tecla dues vegades amb
una diferéncia de 2 milisegons, casi no s’ha deixat de prémer la tecla. Es pot arribar a
obtenir una resolucié molt més baixa d’interrupcions perd manualment no es pot tant rapid.

Amb I’s d’un port parallel es podria comprovar que es poden tractar interrupcions

- 117 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

hardware en un temps de 1’ordre dels nanosegons. En un segon sense anar molt lluny, es
podrien arribar a tractar al voltant d’unes 100.000 interrupcions de teclat. Si una persona
pugues prémer 100.000 tecles per segon, el Sistema Operatiu en Temps Real podria captar-
les totes i emmagatzemar-ne el valor.

Queda clar doncs, que es disposa d’un sistema en temps real prou eficient i que compleix els
requeriments del projecte pel que fa al marc de les interrupcions.

Gracies a un Sistema Operatiu d’aquestes caracteristiques es pot arribar a fer infinitat de
processos de monitoritzaci6 de dades, control, etc. amb una precisié sobre les interrupcions

de I’ordre dels nanosegons.

5.2.2 Exemple 2: Prova de s6

Aquest exemple és el segon del grup de generacié manualment. Aquest exemple ja s’ha
comentat en el capitol 3, perd aqui s’analitza més profundament. Es un dels exemples que
deixa més clar la poténcia d’un sistema operatiu en temps real. Recordar que aquest
exemple consisteix en reproduir un fitxer de s6 a través d’una tasca en temps real. Aquesta
tasca reprodueix el fitxer de sé amb una freqiiencia de 8192Mz.

Ja s’ha comentat en el capitol 3 la diferéncia d’executar aquest exemple i el mateix perod
amb una tasca en 1’area d’usuari i que la diferéncia recau en la continuitat de la reproduccid
del s6. Si es reprodueix el s6 amb la tasca de no temps real i amb una carrega alta en el
sistema operatiu es nota com la reproduccid es va tallant per causa d’aquesta sobrecarrega,
I’efecte seria el mateix que passa quan es reprodueix un MP3 en Windows i s’esta carregant
el sistema amb molts processos, es talla la reproduccié a vegades. Ara bé, amb una tasca en
temps real aix0d no passara, si el sistema operatiu linux esta sobrecarregat, aquest haura
d’esperar a que finalitzi la reproduccié del fitxer de sé per part de la tasca en temps real per
executar els processos que té pendents ell mateix. El resultat sera una execucid nitida encara

que hi hagi sobrecarrega en el sistema.

conté les dades del so
a reproduir

llegeix byte i el |
passa per un
filtre
periode
Tascaen TR B192Mhz

envia la dada
filtrada al —
speaker del PC

Figura 5.3: Exemple2: Prova de s6

- 118 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

La tasca en temps real que implementa el codi generat el que fa és llegir d’una real time fifo
el fitxer de s6. Amb una freqiiencia de 8192Mhz llegeix una dada de la fifo, la filtra i I’envia
al port del speaker del PC. Per tant ara s’esta tractant amb una tasca periodica, amb periode
122070,3125 nanosegons (8192Mhz). Esta clar el procediment en la figura anterior.

Es de vital importancia que la reproduccié segueixi estrictament el periode definit per la
correcta reproducci6 del fitxer de sd, per tant, s una bona solucié aplicar temps real.

Aquesta tasca s’ha provat i s’ha vist com la reproducci6 del sé no es talla ni que es carregui
el sistema. S’ha analitzat I’execuci6 en el planificador i els resultat es molt semblant amb el

sistema carregat o no carregat. En la segiient figura es mostra la simulacid.

Tasques

BT i 1 vy o 1 i 2

Tasca 2 Bu

13 MIJEE!Z 262'358 Jﬁdllzﬁ 5EIE!196 EZIEZIJ ?45%32 8?1'”2 553')92 1114508 12341

temps (ns)

Figura 5.4: Planificacio exemple2

En la simulacié de la planificaci6 es veu com la Tasca 2 (tasca en temps real) s’executa cada
130000 nanosegons (122070,315 + el temps de planificacid), aquesta es amb la freqiiencia
amb que es reprodueix el fitxer de s6. Aquesta simulacid serveix tant pel sistema
sobrecarregat com no, s’assembla molt la simulacid, es casi identica. Sempre que arriba
I’instant de llegir i enviar la dada al speaker, la tasca en temps real agafa la CPU per
executar-se i la Tascal (Linux) sera la que haura d’esperar a executar-se. Si es fes aixdo amb
una tasca en no temps real, els rectangles vermells, els que mostren 1’execucio de la tasca de
reproducci6 de s6, és veurien tallats si el sistema estigués sobrecarregat i d’aqui vindrien els
talls alhora d’escoltar la reproduccid.

En aquest exemple es mostra la importancia d’un sistema en temps real i les seves

avantatges. S’ha demostrat d’una manera practica i molt perceptible.

-119 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié

P i Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

de Barcelona

5.3 Exemples generats amb ’aplicacié (Generador de Tasques)

Els segiients exemples es creen amb I’aplicacié desenvolupada en el capitol anterior, el Generador de
Tasques. Sera més facil ara crear els exemples que en el punt anterior en que es feia de forma manual. En
el punt anterior no es podien generar els exemples amb 1’aplicacié per que no es prou general per poder
generar qualsevol tipus de tasca en temps real, I’aplicacié té restriccions. Per exemple, 1’aplicacié
desenvolupada tant sols genera tasques periodiques, per tant I’exemple de les interrupcions de teclat és
impossible de moment generar-la amb 1’aplicacid. L’altre exemple, prova de s, potser no seria del tot
impossible generar-lo amb I’aplicaci6 si s’integrés la funci6 filtre al codi de la tasca en temps real pero

per més facilitat s’ha optat per la implementacié manual.

Ara bé, pels exemples generats en aquest apartat, és de gran utilitat el generador de tasques, no tant sols
per la seva capacitat de generar automaticament i de forma molt facil les tasques en temps real siné per la
facilitat i rapidesa en que es poden modificar i tornar a executar les tasques.

En aquest apartat es comenten tres exemples. El primer exemple s’analitza 1’execucié d’una tasca
modificant el seu periode d’execucié fins al seu limit. Per fer les proves i modificacions és fa facilment
amb ’aplicacié de Generador de Tasques variant el valor del periode de la tasca.

Els altres dos exemples fan referencia al control de processos en temps real, es veu com es controlen
processos amb temps real i que es possible. Es comprova la facilitat en que es pot muntar un sistema

simulat amb el Generador de Tasques per la seva posterior implementacié en un entorn real.

5.3.1 Exemple 3: Prova de la periodicitat

La prova de la periodicitat consisteix en crear una tasca en temps real qualsevol i modificar-
ne la periodicitat. Per cada modificacié veure’n el resultat de la planificacié i comprovar

fins quin valor minim es pot baixar el valor del periode i veure que passa si es baixa més.

enerador ae rasquas !
Tasca 1l
Declaracid variables:
int 1 = 0O A
Nom Tasca: |Probal J
Prioritat Tasca: |1 T -
ModeTasca:n-.-" = 242 S Crear fifos:
| i nio
Yalor a variar en
Guardar 1m] nn
fotlie bt cada prova
x Includes
e ax
— Compartides
-
Simularior|
ot |
Generar f
[
Reset |
__N® Tasques: 1 Estat: none

Figura 5.5: Creacié Exemple3

- 120 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " Emggﬁ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

La tasca en temps real que s’ha creat €s una tasca que cada cert periode fa una operacié de
suma simple, aquest periode sera variat. En cada test s’insereix el modul en temps real
obtingut durant 1 milisegon o el que és el mateix, 100000000 nanosegons.

La tasca és creada inicialment amb un periode de 100000000 nanosegons. La forma de
generar aquest exemple es mostra en la figura anterior. Amb aquest periode durant un

microsegons s’ obté 1’execuci6 de la tasca dues vegades.

Tasques

Tasca 1 4 |u
7nierz 15020832

Tasca 2 H‘m
4

temps (ns)

Figura 5.6: Resultat amb P=100000000ns

En la imatge anterior es veu com la tasca s’activa en I’instant t=7511872ns i la segiient
activacié en t=15020832, 100000000 nanosegons després. Tant sols s’activa la tasca dos
vegades en un microsegon.

Només mirant la simulacié de la tasca es veu com aquesta pot tenir una periodicitat bastant
més petita.

Les segiients proves es fan per valors de periode=10000000ns, 1000000ns, 100000ns,
10000ns i 2500ns.

En cada prova tant sols cal modificar el valor de la caixa de periode de las tasca en el
Generador de Tasca i prémer el boto “Generar” i posteriorment “Simular” i ja s’obtenen els
resultats. Es una forma bastant rapida d’ obtenir resultats.

La simulaci6 que s’obté per a un periode de 2500ns és la segiient:

Tasques

Tascal
it
3

temps (ns)

Figura 5.7: Resultat amb P=2500ns

-121-

Projecte: Analisi del sistema operatiu RTLinux e implementacié
d’un entorn de desenvolupament de tasques en temps real

Universitat
Autbnoma
Farcelona

Escola Técnica Superior d'Enginyeria

Si es comparen les dues imat;

ges anteriors es pot veure com en la segona imatge per

I’exemple amb periode de 2500ns la tasca es repeteix molt freqiientment agafant molt temps

de CPU a la tasca Linux. La Tasca 2 és la de Linux i la Tasca 1 la que s’ha creat per

I’exemple, es veu com les dos tasques tenen talls, aquests talls son casi igual de freqiients en

les dos tasques. Cal dir que aquesta €s la dltima prova que ha funcionat. Al provar un

periode de 2000ns el sistema s’

ha penjat. Mes que penjat el que possiblement ha passat és

que la tasca en temps real s’executa amb tanta freqiiencia que no dona temps a 1’execucié de

Linux i déna la sensacié a I’usuari de que el sistema esta penjat perod en realitat la tasca en

temps real es possible que s’esti
En la segiient taula es mostra

tasca i el periode de la tasca:

gui executant amb normalitat.

la relaci6 entre nombre d’execucions per milisegons de la

Periode de la Tasca Nombre d’execucions/milisegon

10000000ns
100000ns
100000ns
10000ns
2500ns
2000ns

9
43
274
14516
29144

En la segiient grafica es mostra

el resultat de modificar la periodicitat de la tasca, obtenint el

nombre d’execucions per milisegon obtingut. S’obtenen 9 execucions per un periode de

10000000ns i per I’altre canté amb una periodicitat de 2500ns s’obtenen 29144 execucions.

Aquest dltim valor frega el limi

t del valor minim de periode per a la tasca analitzada ja que

per un periode de 2000ns el sistema ja no ho suporta.

Prova de la periodicitat
35000
(2]
§ 30000 o
% 25000 —
g 20000 -
2 15000 | P
x /
Bt 10000
o v
£ 5000 - W
2 o
1E+07 | 1E+06 | 1E+05 | 10000 | 2500
‘7 - & — - Seriel 9 43 274 14516 29144
Periode de la Tasca (ns)

-122 -

Projecte: Analisi del sistema operatiu RTLinux e implementaci6 " et

d’un entorn de desenvolupament de tasques en temps real

de Barcelona

Escola Técnica Superior d'Enginyeria

5.3.2 Exemple 4: Control d’un procés simple

El segiient exemple s’inicia la generacié de tasques per al control en temps real. En aquest

exemples no es fara cap control, simplement es mostrara com seria el funcionament per

després passar a un exemple més complex.

Un controlador és aquell sistema que controla el valor d’una variable dins d’uns rangs

proposats.

Tot sistema de control consisteix en una planta i un control d’aquesta planta, hi ha diferents

tipus de sistemes de control ja siguin de llag¢ obert o lla¢ tancat.

Els controls de lla¢ obert sén aquells que la sortida del sistema no té efecte en ’entrada, és

necessari una calibracié molt bona i no reacciona a pertorbacions externes. En la segiient

imatge s’il-lustra I’esquema d’un control en llag obert.

Fertforbacions

Entrada 9

Control

Pracés

% Sartida

Figura 5.8: Control en llag obert

També tenim els controladors en llag tancat, s’aplicara doncs als processos que tenen

pertorbacions. L’objectiu d’aquests controladors és mantenir una variable en uns nivells

desitjats davant de les pertorbacions externes.

El primer exemple de control en temps real €s un sistema de llag obert, en canvi el segon

exemple del control és un sistema del tipus lla¢ tancat.

Entr

Pertorbacions

\ Caontrol

Procés

Sortida

Mesuraments

Aqui es pot afegir la
variable mesurada per
comparar amb la referéncia
i abtenir ['error

Figura 5.9: Control en llag tancat

-123 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

de Barcelona

En aquest primer exemple simplement s’implementara un sistema d’aquest tipus de control
en llag obert, perd en realitat no fara cap mena de control. El sistema a simular sera una

funcié integradora. La funcié que la descriu en el discret seria:

Y(n) = Y(n-1) + U(n), on
Y(n): és la sortida del sistema en 1’instant n
Y(n-1): és la sortida del sistema en 1’instant anterior

U(n): és I’accid de control en I’'instant actual

El sistema el que fa es sumar la sortida de I’estat anterior amb el valor del control.

El control que s’implementa en aquest és simplement que cada 10 intervals de temps la
sortida del control sera 11 cada 10 altres intervals de temps la sortida sera 0. La resposta del
sistema sera una resposta esglad. El que fa el sistema es integrar i com que 1’accié de control
dona com entrada una constant la sortida del sistema tendira a ser una recta amb un pendent
de 45°. La integral d’una constant és una recta.

Aquest exemple s’implementa per entendre com es pot implementar aquest tipus de sistema
amb I’aplicacié de generacié de tasques en temps real.

Seguidament es mostra com s’ha creat aquest exemples:

Pasl: S’implementa el procés a controlar (I’integrador), i s’escriu en cada moment la

variable de la sortida per poder-ne veure el resultat.

Tasca 1
Declaraci variables:
i
Mom Tasca: |Planta M
o r ‘
Prioritat Tasca: |1 Fe e
Periode Tasca: ns I =idion % crear fifos:
write(fifel, &1, 61Zeof (int}):
1 rtro
Guardar Tasca W rifl
- Includes
« | 22
[Variables Compartides
int i=0: Y
int u=0:
Generar
- Reset
| N Tasgques: 2 Estat: Generaling ., |

Figura 5.10: Pasl

- 124 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

de Barcelona

Pas2: S’implementa la tasca de control que la sortida de la qual repercutira en el procés
inicial. Cal tenir les variables de sortida i control com a compartides entre moduls i es creara

la rt-fifol per escriure les dades de sortida.

i 2.8
- Tasca 2
Declaracié variables:
int a = o &
Nom Tasca: |Control J
. . #
Prioritat Tasca: |1 Codi Tasca:
Periode Tasca: |10000000 ns|ifta == 100 | 5| crear fifos:
a =
if fu== 1 [1 rtfD
u = 0:
Guardar Tasca 1 alie: [1- o rtfl
1
! Includes
< 23
— Variables Compartis
Generar
i
Reset |
N2 Tasques: 2 Estat: Generating.. i
— —

Figura 5.11: Pas2

Pas3: Es genera el codi i es monitoritza el resultat obtingut. En la figura segiient es mostra el
resultat obtingut de la sortida del sistema. Es pot veure com és una recta ja que s’esta
integrant una constant. Per poder veure’n el resultat, s’ha creat una aplicacié que mostra
graficament els resultats obtinguts de la sortida del sistema. Per veure el codi de 1’aplicacié
anar al Annex al apartat de codi font de les aplicacions.

S’ha comprovat que es bastant senzill crear sistemes de control amb 1’aplicacié de generacié
de tasques en temps real, i també es facil la modificacié. Si es volguessin fer proves amb el
controlador dissenyat i canviar parametres d’aquests, simplement s’hauria de fer en la tasca
corresponent, desar els canvis i tornar a generar per veure’n els resultats.

Per tant tenim la facilitat de crear i modificar un sistema de control per poder-lo analitzar.

Y (sorida)

o e E ot I I I AT
GBI St

01234567 89N0MAANTENHLELZELERRRIERIBHDEHEAN UANNHN NI EHEFEPEEEIEHRBILDEBHTTTZ

Temps =>T"non T=0.01%

Figura 5.12: Resultat Integrador

- 125 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " Emggﬁ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

5.3.3 Exemple 5: Control d’un tanc d’aigua (Temperatura i Nivell)

Per aprofitar les caracteristiques de I’aplicacié de generacié de tasques desenvolupada, el
que s’ha proposat fer és un sistema més complex. El sistema tractat és el del control de la
temperatura i nivell d’un tanc d’aigua. Aquest sistema s’ha trobat en uns exemples de la
Universitat Politecnica de Valencia. S’han agafat les equacions de la simulaci6 del sistema i
s’ha afegit el control d’aquest sistema. El sistema controla per una part la temperatura de
I’aigua mitjancant un sensor que mesura la temperatura de 1’aigua per comparar-la amb una
temperatura de referéncia i veure si s’ha d’introduir aigua calenta o no i deixar que 1’aigua
freda que cau continuament refredi I’aigua del tanc. Per 1’altre banda hi ha el control del

nivell de I’aigua, si aquest nivell supera la referencia s’haura d’ obrir la valvula per disminuir

el nivell.
Qn Qt e
S
Temp Pvs
i
Level Qs

Figura 5.13: Control d’un tanc d’aigua

Aquest sistema de control t€ una complexitat prou alta per posar a prova les possibilitats que
ofereix una aplicacié com la de generar tasques.

Aquest tipus de control és bastant complex de controlar ja que si per exemple tenim que el
nivell de 1’aigua es baix s’haura d’omplir perd mirant si sera necessari tant sols amb 1’aigua
que cau freda o s’haura d’activar ’aigua calenta per augmentar la temperatura d’aquest.
S’ha de tenir en compte que els dos factors poden repercutir en el altre factor (temperatura,
nivell). A més, les equacions de la simulacié incorporen pertorbacions al sistema per veure

que aquest reacciona ja que es un control en llag tancat.

Qin = Qinput + (random - 0.5);

ot = Qtm * Pwt:

Q= = cte2 ¥ zgrt(level)] * Pvs;

Fl = (Qin & Te) + (Qt * Tc) + ((Qtotal - Q=) ¥ Temp):
F2 = [(Qin + Ot + Qtotal - Qs);

Tewp = F1 f F2:

Lewvel = Lewvel + [(Qin - 0= 4+ Qt) ¥ ctel);

Qtotal = Qtotal - Q3 + Qin 4+ Qt;

Figura 5.14: Simulacio del sistema

- 126 -

Projecte: Analisi del sistema operatiu RTLinux e implementaci6 " et

. Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real epasons

En la figura anterior es mostren les equacions del sistema, en la primera linia s’introdueix la
pertorbaci6 al sistema amb el valor random.

Per controlar aquest tipus de sistema s’utilitzara el controlador. Un controlador PID
(proporcional, integral, derivatiu) es un sistema de control, que mitjangant un actuador, es
capag¢ de mantenir una variable o procés en un punt desitjat. Aquest tipus de controlador €s
dels mes usats en aquests tipus de control i per aix0 s’ha escollit per controlar tal sistema.

Un controlador PID esta dividida en la part diferencia, proporcional e integrador:

1. Part proporcional: Consisteix en el producte entre I’error del sistema mesurat i la
constant proporcional. Aquest té importancia quan ’error es gran. En la majoria dels
casos aquest tipus de control no arriba a obtenir un error nul.

P =Kp * ek, on
ek és I’error del sistema (la diferéncia entre la variable mesurada i la
de referéncia)

2. Part integral: El mode de control integral permet eliminar 1’error en 1’estat estacionari.
En aquesta accié de control I’error es integrat. El qual suma a un periode de temps
determinat i després multiplicat per una constant integral.

Ik = Ik1 + ex*Ki (és fa 1’acumulacié del control anterior mes el
producte de I’error per la constant del control integral)

3. Part derivativa: Corregeix 1’error en el transitori, amb la funcié de la derivada del error.
Es deriva respecte el temps i multiplica per una constant derivativa i és sumada a la
I’error anterior.

D = (ex-ek-1)*Kd (€és fa la diferéncia entre 1’error de I’estat actual i
I’anterior per una constant derivativa)

Notar doncs que es necessari la sintonitzacié de les constants de cada control per formar el

PID optim. Seguidament es veu com s’ha creat aquest sistema pas per pas amb el generador

de tasques i posteriorment es veuran les proves fetes amb diferents sintonitzacions escollides

per les constants PID i es veuran els resultats comentats.

Pas1: S’insereix la primera tasca, la tasca de simulacié del sistema, per fer aixo s’afegeix la

segiient informaci6 al apartat destinat a la informaci6 de tasques.

Mom Tasca; |Simulacio Codi Tasca

rdcael (int_ random) ;

Prioritat Tasca: |100 random = ((double) (int random & Ox1f)) / 256.0;
Qin = Qinput + (random - 0.5);
Periode Tasca: (50000000 Ot = Otm * Pvt;
0z = cte2 ¥ sgrt(level) ¥ Pwva;
Variables Fl1 = (Qin * Te) + (Qt * Tc) + | (Qtotal - Q3] * Temp) :
F2 = (Qin + Ot + Quotal - 03);

doulkle F1,FZ:
dowble Te=15.00;

Temp = F1 / FZ;
Level = Level + ((Qin - O + QL) * ctel);
double Toe=45.00; Ctotal = Qtotal - Qs + Qin + Qg

double ctel=0.02Z;
double cteZ=3.8;
double random;

long int random;

Figura 5.15: Tasca Simulacio

- 127 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié

P i Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

de Barcelona

Pas2: Un cop guarda la primera tasca es passa a inserir la tasca de visualitzacié de la

informaci6 del sistema per poder monitoritzar la sortida.

Mom Tasca: |Visualitzacio Codi Tasca
Prioritat Tasca: |20 write [(fifol, &Tewp, sizecfidoubklel):
Periode Tasca: [500000000 write (fifol, &Lewvel, =sizeof(double)):;

Figura 5.16: Tasca Visualitzacio

Pas3: Després es passen a afegir les dos tasques de control, la de la temperatura i la del

nivell. Aquests controls implementen el controlador PID.

YWariables
Nom Tasca: |ContralMivell

double pwvs;
double dwvt:

Prioritat Tasca: |100

Perode Tasca: |700000000 doukle iwve:;
Codi Tasca
pws = [Lewel - Nref) *klewvel:;
dvt = [pws — ehAnteriorlN) *dcewmpl;
eAnterior = pvs:
iwvt = iAnteriorN + [(itempl*pwvs);
iinteriorl = iwc:

pws = pws + ivtc + dvre;
if (pws<0) pws=0;

if (pws»1.00) pws=1.00;
Pws = pvs:

Figura 5.17: Tasca Control del nivell.

Yariakles
Nom Tasca: |ControlTemp

double pwt;
double dwt;

Prioritat Tasca: (100

Periode Tasca: |700000000 double iwvt:
Codi Tasca
pwt = [Tref - Tewmp) *ktetp:
dvt = [pwt - elnteriorT) *dtenmpT:
einteriorT = pwvt;
ivt = ihnteriorT + [itempT*pvt):;
ilnteriorT = ivt:
pvwt = pvwt + ivt + dwvt;
if (pwt<0.0)1 pwvt=0;
if (pwtx1.00) pwt=1.0;
Pvt = pvt:

Figura 5.18: Tasca Control de la temperatura

- 128 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“‘&":;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

Pas4: Un cop afegides totes les tasques tant sols quedara crear la rt-fifo amb 1’opcid
habilitada per crear rt-fifos, inserir les capcaleres necessaries i finalment les variables

compartides.

Yariables glabals

féDbeclaracions variables cowpartides
extern double sgrt(double x):

static doukble Lewvel= 0.00;

static double Tewp = 15.00;

static double Qt ,Qtm = 16.00;
static double Qin, Qinput = 10.0;
static double Qs = 30.00;

static double Qtotal = 0.,00;

static double Pvwt = 0.0, Pws = 0.0;

/f Warishles de control
static doukble klewvel = 0.9:
static double ktemp = 0.5;
static doukble Nref=25.00;
static double Tref=18.50;

J/Variabhles Controlador D
static double dtewmpT = 0.4;
static double dtewmpM = 0.1
static double einteriorT
static double einteriorM

non
o o
LY

J{Variables Controlador I

static double iAnteriorT = 0O;
static double iAnteriorMN = 0O;
static double itewpT = 0.7;
static double itewpM = 1:

Figura 5.19: Variables globals del sistema

S’observa en la figura anterior que es defineixen les constants del control PID (constants
P,ILD). Aquestes sén les constants a sintonitzar per el correcte funcionament del control
PID. Aixo es s’explica en els segiients passos.

Per entendre una mica millor el codi inserit en el control aqui s’expliquen una mica les

equacions utilitzades del PID:

Pas5: Un cop inserida tota la informacid tant sols ‘ha de generar i posar en marxa el sistema
de temps real creat, aixo és fa premen el boté “Generar”. Ara ja es podra obtenir la sortida
del sistema. Per veure’n la sortida s’han creat dues aplicacions per veure graficament la
resposta del sistema. El codi font de 1’aplicacié es troba en 1’annex a 1’apartat de codi font
de les aplicacions. Un cop es té tot preparat ja es pot comencar 1’analisi de les respostes del
sistema de control creat. El que s’ha fet, es donar diferents valors a les constants de control i

veure’n el resultat i finalment escollir el que s’ha cregut millor. Tant sols s’ha anat canviant

-129 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " Emggﬁ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

el valors de les constants de control que es troben al requadre de variables compartides i

s’ha tornat a generar el codi per veure’n la resposta.

Les segiients proves s han fet amb un valor constant de la constant del control proporcional

amb un valor de Kp = 0.5.

Sintonitzacid 1

Constant de Control

Constant Integral (Ki) Temperatura 0.9
Constant Derivativa (Kd) Temperatura 0.5
Constant Integral (Ki) Nivell 0.1
Constant Derivativa (Kd) Nivell 0.1
Resultat (Nivell)
Nivell (i)

i i

e s o e s el s) P M T) P I M CMC D D LI i

A L B o 3 B e B e B] G D L A 10 En RIS D

2357 e

Temps == T"n on T=0.55

- 130 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“;,:,‘2&:; Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

Resultat (Temperatura)

Temperatura (*C)

Lo 3 En N T SO

B

r

e e T IR G D LI L
T

T

=T S T

é__ ==

1] 1]
0123456769 01 2 F6TIEET 258862 E50 F2335675004234587 39055 585030000E080CE090T 237 367 BA0HE5806859094303 0EFIEE

=
@

Temps == T°n on T=0.5s

En aquesta prova els valors de la sintonitzacid del derivatiu pel cas de la temperatura déna
una resposta una mica brusca. Aixo es degut a la constant derivativa, s’hauria de baixar per
donar la resposta més suau. Per la part de I’integrador la resposta 1’estableix pero encara té
algunes fluctuacions que s’haurien d’eliminar. En el control del nivell s’haura d’ajustar
millor ja que dona una resposta molt forta al principi i després varies fluctuacions respecte

al valor que es vol obtenir del nivell.

-131-

Universitat
Autbnoma

de Barcelona

Escola Técnica Superior d'Enginyeria

Projecte: Analisi del sistema operatiu RTLinux e implementacié

d’un entorn de desenvolupament de tasques en temps real

Sintonitzacié 2

=)
S
N
=
)
@)
]
=
-
=
]
Ed
w0
=
)
@)

0.1

Constant Integral (Ki) Temperatura

0.1

Constant Derivativa (Kd) Temperatura

0.4

Constant Integral (Ki) Nivell

0.4

Constant Derivativa (Kd) Nivell

Resultat (Nivell)

Hlivell (mm)

LLLLLLLL UL L LU LU UL LU L)
T

|
|

T A T W s £+ T M (S (i,
B N e

D=L

0N 23456703 T EE 56 T 208 P P8 332567 R a0 120

053

=T"n on T:

Temps

Resultat (Temperatura)

Temperatura (*C)

(NI P LT (0 e T L 7o e T M0 LAY
e L e L e R T N TR T T T e e e

IS A

055

=T"non T:

Temps

-132 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " Emggﬁ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

En aquesta prova es pot veure com la sintonitzacié de les constants derivatives sén valors
baixos i s’obté aleshores una resposta suau al principi i seguidament 1’integrador déna una
bona resposta també en el estacionari. Aquesta encara no és la sintonitzacié bona. Aquests
comentaris s’han fet mirant la grafica de la temperatura. La que s’ha notat que costa mes
obtenir un control nitid es el del control del nivell, de totes les proves fetes, aquesta es
potser la que obté millors resultats pels dos controls. El control del nivell és irregular a
causa de la pertorbacié externa afegida a la simulacid, perd es comprova que tot i aixi aquest
sistema reacciona davant aquesta. La pertorbacié es la que fa que el sistema estigui

continuament controlant el procés.

- 133 -

Universitat . 4 & 1 . .
P i Escola Técnica Superior d'Enginyeria

d’un entorn de desenvolupament de tasques en temps real

Projecte: Analisi del sistema operatiu RTLinux e implementacié

Sintonitzaci6 3

=)
S
N
=
)
@)
]
=
-
=
]
Ed
w0
=
)
@)

Constant Integral (Ki) Temperatura
Constant Derivativa (Kd) Temperatura
Constant Integral (Ki) Nivell

Constant Derivativa (Kd) Nivell

Resultat (Nivell)

Mivell (mm)

=>T*n on T=05s

Temps

Resultat (Temperatura)

Temperatura (*C)

N L T I T~ LD 3 b= T L Ly 30— Sy,
e e T S AT AT T e e e

==T"n on T=0.5s

Temps

- 134 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " Emggﬁ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

En aquesta prova s’han augmentat els valors de les constants derivatives per veure com
afecta en la resposta del sistema. Els valors de I'integrador s’han deixat igual que en la
primera sintonitzacid. El resultat d’aixo és una resposta al transitori molt més forta encara
que en el primer exemple i aix0 fara que tardi molt més en arribar en un estat estacionari i es
pugui notar I’accié del control integrador. Potser s’hauria d’augmentar les constants del

control integrador per poder estabilitzar la sortida en 1’estacionari.

- 135 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié

P i Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

de Barcelona

Sintonitzaci6 4

Constant de Control

Constant Integral (Ki) Temperatura 0.2

Constant Derivativa (Kd) Temperatura 0.2

Constant Integral (Ki) Nivell 0.1

Constant Derivativa (Kd) Nivell 0.1
Resultat (Nivell)

Mivell (mm)

TERY T]

P P P T T T e M A T

o,

) L - 01

01234567690123456 T3 Q023498780 82345600004183488A886553506F0866EB456B6T9TZ74T07T80T20456RE6900R5456D8H

Temps == T*n on T=0.5%

Resultat (Temperatura)

Temperatura (*C)

EACMICICICILICI LI
LD 1 C s N SO

ParIrIrTIr

) S - 0

01234567690123450 T8 2@02349E 78808234560 000123488A886505506 660 60B456E690TZ3 70770800254 56R690003456080

Temps == T"n on T=0.5s

- 136 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " Emggﬁ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

Fins ara la millor configuracié que s’ha trobat és la de la segona sintonitzacid, ara aqui s’ha
disminuit el valor de la constant derivativa de 0.4 a 0.1. La sortida del sistema és molt
semblant a la de la sintonitzacié 2 pero sembla ser que la resposta €s una mica més suau

encara. Es pot dir que aquests sén de moment els valors de sintonia millor trobats.

- 137 -

Universitat . 4 & 1 . .
P i Escola Técnica Superior d'Enginyeria

d’un entorn de desenvolupament de tasques en temps real

Projecte: Analisi del sistema operatiu RTLinux e implementacié

Sintonitzacié 5

=)
S
N
=
)
@)

Constant de

Constant Integral (Ki) Temperatura

Constant Derivativa (Kd) Temperatura

Constant Integral (Ki) Nivell

Constant Derivativa (Kd) Nivell

Resultat (Nivell)

Mivell {mm)

=
i e
i e
—
=

T DL e CI =¥
et B T T N TP N Y T T TV e SR S

S oL e —

=>T"n on T=05s

Temps

Resultat (Temperatura)

Temperatura (*C)

M= L 1 b (OO L0 LV (¥ e W P LA £
I SR P 4 BT (T B B O I B o e T e T T

0.5

> T*n on T=i

Temps

- 138 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“"5"2‘3‘5; Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

Sintonitzacié 6

Constant de Control

Constant Integral (Ki) Temperatura
Constant Derivativa (Kd) Temperatura

Constant Integral (Ki) Nivell

oS o o O

Constant Derivativa (Kd) Nivell

Resultat (Nivell)

Mivell (mm)

AT B N T A LD T 3 BN = B) C B S SO0

R e e e T P T I D LA ICE I AL LI

01234567 8910TA4S6AHPPEZELPRRE2BHREDCTEDHBHHUAXNHHMANTEESISEEETLEBEHERETHI

Temps == T"n on T=0.5s

Resultat (Temperatura)

Temperatura (*C)

e et BV TG0 (VT ST LRI, BT Y

S NI f s U D B L BT IO DS IC) B AT IEE

01234567501 EEA58TFSEEZ548B2E50F553556835004a834587835905555856FC008668EE6E59

Temps => TN on T=0.55

- 139 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“‘&":;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

En la “Sintonitzacié 57, es passa a augmentar el valor de la constant integrador i es
comprova com el valor en 1’estacionari fluctua i no acaba d’assolir la variable de referéncia.
Aquest augment en la constant també afecta al valor transitori donant una resposta més forta
al principi.

Un cop fetes aquestes proves s’ha conclos que com més tendeixen les constants de control I,
D a 0 millor és el resultat. Per tant d’aqui s’extrau que el millor control a efectuar en aquest
sistema seria amb les constants derivativa i integral igual a 0 i aix0 significara, que tant sols
amb el control proporcional és té prou per obtenir una bona resposta del sistema. Aquesta
sintonitzacio es troba en “Sintonitzacié 6”.

Caldria doncs estudiar amb mes profunditat perque s’obtenen millors resultats sense control
Integrador i Derivatiu. El sistema és mes complex que el tipus de sistemes explicats
anteriorment. El sistema de control és de tipus MIMO i no SISO. Els tipus de sistemes
estudiats normalment sén els SISO (single input single output), tenen una entrada i una
sortida. En canvi els sistemes MIMO (com el de ’exemple) tenen varies entrades i varies
sortides. L’exemple té el control de la temperatura i el control del nivell, aquests dos
controls sén dependents entre ells ja que per exemple si la temperatura s’ha d’augmentar,
s’haura d’afegir aigua calenta i aix0 repercutira en el nivell del tanc. Per tant tenim una
dependencia entre els dos controls, aixo fa que el sistema a controla sigui més complex, del
tipus MIMO. Amb un sistema del tipus SISO de ben segur que dissenyant un control PID
com el que s’ha dissenyat, s’hagués obtingut uns resultats propers a 1’error 0 en el control
pero en els sistemes MIMO no és tan facil. Seguidament es mostra una il-lustracié amb

esquemes dels dos tipus de sistemes.

T T
Cantral Cantral
M — M
Cantral Cantral
Sistema SIS0 Sistema MIMO

Figura 5.20: Tipus de sistemes

A part de tenir un sistema de control complex, el seu comportament no és lineal, cal veure
la funcié que simula el sistema. Aquest sistema conté 1’arrel quadrada, aquest aspecte fa que

el sistema no sigui lineal.

- 140 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

Aquestes son les varies raons concloses pel que fa al control PID del exemple. Sin6 es
sintonitzen bé les constants es pot obtenir pitjor resultats. El control PID anomenat en
aquesta memoria es per a sistemes tipus SISO estudiats en la present enginyeria. Per aixo

s’ obté millors resultats simplement amb el control proporcional.

Amb aquest dltim exemple ha calgut crear un sistema complexe i fer-ne un estudi ampli per
veure’n la resposta amb diferents configuracions. Tot aixd s’ha fet amb 1’aplicacié creada
per generar tasques. Ha estat de gran utilitat tot i que tant sols és una versi6 inicial. Val a dir
doncs que s’ha creat una eina senzilla d’utilitzar i amb unes opcions potents per crear i
analitzar sistemes de tot tipus. Per0 la gran importancia que t€ tot aixo es que després de fer
les proves sobre un sistema simulat en el que es controla tot (I’execucié de les tasques que
controlen el sistema, el control del sistema, etc.) tant sols treient la tasca que simula el
sistema i modificant les tasques de control per obtenir les dades des dels sensors ja
s’obtindria el sistema de control en temps real. Amb 1’exemple anterior, tant sols agafant-lo
i modificant els controladors per obtenir les dades dels sensors del sistema es podria agafar i
posar-ho en la planta real i s’obtindrien els resultats ja simulats i analitzats, ja que s’ha
tingut la possibilitat de controlar 1’ordre d’execuci6 de les tasques de control.

Aquest és I’objectiu del projecte, provar la viabilitat de crear un entorn de desenvolupament
de sistemes en temps real. Un entorn ha de poder desenvolupar sistemes de control i poder-
los analitzar de forma senzilla i mantenint el codi per a la planta real i aix0 es el que s’ha
aconseguit. Un cop arribat aquest punt tant sols queda pensar, dissenyar i desenvolupar

diferents eines per funcionalitats necessaries per ’usuari del sistema operatiu de temps real.

- 141 -

Issues

W, W, W, w. w. w. w. w. w. w.

Conclusio

Capitol 6: Conclusio...............ocoovviiiiiiiieee e, 143
6.1 ODJECtius @SSOIILS ceueiieieeiiieeeiie e eeeee et e e e et ee e seee e 146
6.2 Problemes trobats...........oocuieeiiiiiiiiiiiiii et 147
6.3 Propostes de treball futurcoooiiiiiiniiiiiii e 148

6.4 Valoraci6 personal del Projecte Final de Carrera.........ccccccceevnneeennne. 150

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

6. Conclusio

Aquest projecte final de carrera ha tingut la intencié d’estudiar els sistemes en temps real per tal de crear
un entorn de desenvolupament d’aplicacions per temps real sota el sistema operatiu RTLinux. Sén molts
els sistemes que cada cop son més sofisticats i tenen la necessitat de ser controlats per sistemes en temps
real tal com sistemes de control d’aviacid, de les aeronaus enviades al espai, etc. Es un tema amb molt
contingut i encara queda molt per explotar. En aquest projecte s’ha estudiat com funcionen aquests tipus
de sistemes i s’ha fet possible obtenir-ne un, en un computador personal. El Sistema Operatiu instal-lat ha
estat RTLinux després de fer-ne un analisis entre diferents Sistemes Operatius en Temps Real. Tot aquest
analisis s’ha fet sota el requeriment de que siguin de codi lliure. S’ha configurat a mida, s’ha estudiat com
funciona el sistema operatiu i finalment s’ha apres a programar en la API de temps real. En aquest punt ja
es tenia preparat un sistema operatiu en temps real i la necessitat ara radicava en elegir un llenguatge de
programacio per crear-ne aplicacions per facilitar la tasca al usuari final. El llenguatge utilitzat ha estat el
Tcl/Tk per ser de codi lliure i per la seva facilitat d’aprendre i a la vegada per la seva potencia. S’ha
estudiat com programar amb aquest llenguatge i una vegada s’ha obtingut una certa experieéncia s’ha
comengat a dissenyar eines pel desenvolupament d’un entorn per RTLinux. Amb la creacié d’una eina per
generar tasques automaticament s’ha comprovat la viabilitat per a crear un entorn complex i facil
d’utilitzar per a la creacié d’aplicacions en temps real. Amb el generador de tasques, una aplicacié
mitjanament complexa s’ha vist la poténcia que es pot extreure d’un sistemes operatiu i unes eines de
programacié de codi lliure. Amb el generador de tasques s’ha provat de crear tasques de control i s’ha
pogut crear de forma facil i flexible. Un exemple clar ha estat el control de temperatura i nivell d’un tanc
d’aigua, s’ha vist la possibilitat de crear les tasques de control de forma rapida i senzilla amb el generador
de tasques. El generador de tasques no només té 1’avantatge d’una creacio rapida i senzilla siné que té la
facil possibilitat de modificacié d’aquestes tasques i la posterior posada en marxa. Cal recordar al crear
els controladors de temperatura i nivell del tanc d’aigua, que alhora de dissenyar el control es necessitava
obtenir la constant de control tant del controlador proporcional com el derivatiu i el integrador. No ha
estat necessari tocar codi font i compilar directament, a través de 1’aplicacié s’ha canviat les dades
necessaries i s’ha torna a generar el codi per posteriorment veure’n el resultat. A més a més si es vulgues
aplicar el control implementat a una planta real, el codi es mantindria i simplement s’hauria de canviar la
forma en que s’obtenen les dades (ara a través dels sensors). Per tant s’ha obtingut una eina prou ttil amb
I’ts de software lliure .

Després de veure’n les possibilitats que pot donar el temps real, RTLinux i el software lliure, tant sols
queda estudiar les necessitats de 1’usuari que utilitzi aquests tipus de sistemes i comengar a dissenyar e
implementar eines per la confeccié d’un entorn complerts per la creacid, simulaci6 i analisis de tasques en
temps real per al control de sistemes complexes. Aquest entorn podria ser ttil per a la creacié de tasques
en temps real per a molts camps com la robotica , automobilistic, control aeri, etc. La major part de les
implementacions serien per a sistemes de control empotrats. Com es pot veure, serien moltes les sortides
que tindria la creacid de tal entorn. Aquest projecte a quedat com un estudi preliminar, des del disseny e
implementaci6 de varies aplicacions per augmentar la utilitat de I’entorn a crear fins a la confecci6 de

moduls modificats pel Sistema Operatiu en Temps Real RTLinux, tal com la modificacié del planificador

- 145 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

en temps real per exemple, ja que RTLinux ens permet modificar tots els aspectes del Sistema Operatiu

cosa que un Sistema Operatiu comercial no ho permetria.

6.1 Objectius assolits

S’ha complert tots els objectius proposats al inici del projecte final de carrera, és més, s’han proposat de
nous per a la confeccié de nous projectes ja que el tema del temps real dona per molt. Seguidament

s’enumeren els objectius en punts explicats breument.

y.

1.- Estudi inicial dels sistemes en Temps Real v

Inicialment 1’objectiu a complir era comprendre el terme de sistema en temps real i la utilitat
d’aquests tipus de sistemes. En aquest punt es comprova la necessitat i la envergadura d’aquests tipus de
sistemes en 1’actualitat. S’entra en detall en aspectes de rendiment. Aquest objectiu era obligat assolir per

poder fer aquest projecte final de carrera.

y,

alf

2.- Analisis dels Sistemes Operatius en Temps Real (eleccié d’un SO)

Un cop estudiats els sistemes en temps real, el proxim objectiu complert ha estat 1’analisi de
diferents sistemes operatius en temps real de codi lliure per elegir-ne un. S’analitzen unes quantes de les
moltes distribucions que existeixen i s’acaba elegint RTLinux per les seves caracteristiques i

documentacio.

v

3.- Instal-lacié i Configuraci6 de RTLinux *
Instal-lacié del kernel de RTLinux sobre el kernel de linux i la posterior configuracié per al
proposit del projecte. En aquest punt es troben problemes alhora d’instal-lar i és necessari crear un bon

manual pas per pas per a futures instal-lacions, inclos del lector.

4.- Provar que s’ha obtingut un Sistema Operatiu en Temps Real "'*;‘
Fer varies proves per analitzar si el Sistema Operatiu RTLinux instal-lat compleix els requisits

d’un Sistema Operatiu en Temps Real i veure’n el rendiment.

5.- Aprendre a utilitzar RTLinux i programar amb la API de temps real c_gf'#
Un cop s’ha provat que RTLinux compleix els requeriments necessaris es comenca a aprendre
com utilitzar RTLinux i programar la API de temps real que proporciona. Aixi es comenga a veure quina

es la estructura dels moduls en temps real pel generador de tasques.
6.- Elegir llenguatge de programacié per el desenvolupament d’aplicacions i el posterior aprenentatge

S’elegeix el llenguatge Tcl/Tk per desenvolupar-ne les aplicacions, s’arpen a utilitzar aquest

llenguatge i obtenir-ne una certa experiéncia per comengar a crear eines per RTLinux.

- 146 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

.

7.- Desenvolupament d’aplicacions
Es dissenyen e implementen aplicacions per facilitar la tasca de generacié i analisis de tasques en
temps real amb el llenguatge Tcl/Tk. Es crea el generador de tasques per a facilitar la tasca de creacid i

modificacié de tasques en temps real (versi6 limitada, possibles millores comentades mes endavant)

8.- Exemples per extreure conclusions v

Es creen exemples tant de tasques en temps real per comprovar les interrupcions i el planificador
de temps real com exemples creats amb I’aplicacié desenvolupada anteriorment per generar tasques de
control en temps real. En aquest punt es comenten els resultats obtingut i es conclou en que s ha obtingut
un entorn inicial d’eines pel suport al desenvolupament de tasques en temps real sota 1’ds constant de

software lliure.

9.- Generar idees per a la creacié d’un entorn complert v

Un cop assolits els objectius es proposen noves idees que generaran nous objectius. El projecte el
que cerca es la possibilitat de crear un entorn pel desenvolupament de tasques en temps real utilitzant
software lliure. Un cop assolit aquest objectiu tant sols queda generar idees per la creacié d’un entorn
complert. Aquestes idees poden arribar a generar nous projectes finals de carrera tal com creacié de
diferents aplicacions o modificacié del propi RTLinux per millorar o personalitzar aspectes del propi

Sistema Operatiu en Temps Real. Algunes d’aquestes idees estan exposades en aquest mateix capitol, més

concretament en el punt 6.4.

6.2 Problemes trobats

Durant la realitzaci6 del projecte han estat diferents els problemes trobats i que s’han anat solucionant.
Inicialment el problema trobat ha estat un problema conceptual, no es tenia clar el concepte de temps real.
Les explicacions no quedaven clares del tot perd amb la experimentacié amb RTLinux i els conceptes
obtinguts s’ha anat entenent poc a poc cada cop millor el concepte. El concepte de sistema en temps real
no és un concepte facil d’entendre, més aviat complex i molts cops es pot arribar a confondre com ja s’ha
comentat en aquesta memaoria.

Després també es va tenir problemes alhora d’instal-lar RTLinux, ja que cada manual d’instal-lacié ho
explicava a la seva manera i es van haver de posar en comu diferents manuals per a la instal-lacié i
configuraci6 de RTLinux, es va arribar a perdre més d’una vegada el sistema complet. Un cop
aconseguida la instal-lacié rapidament es va generar un manual per punts per a la instal-lacié de RTLinux
sota la distribucié Mandrake per si és vol repetir la instal-lacié o el lector mateix la vol portar a terme
sense massa dificultat ni coneixements amplis de linux.

Un altre dels problemes trobats ha estat alhora de programar en RTLinux i tota la dificultat que pot portar
aprendre una llibreria de programacio6 al igual que aprendre a programar amb el llenguatge Tcl/Tk.

També s’han anat trobant problemes alhora d’implementar aplicacions, en fer les proves, etc. pero s’han

anat solucionant sense massa dificultat.

- 147 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

Personalment crec que ha estat un projecte final de carrera bastant complert ja que estd compost per una
bona part teorica (sistemes en temps real, sistemes operatius en temps real, rtlinux, tcl/tk, etc.) i la part
practica (implementacié d’aplicacions, exemples, resultats, etc.) Com tot estudi/analisi inicial, que
podriem dir que és el que s’ha fet amb aquest projecte, és complex al principi ja que entren en joc molts
conceptes nous que s’ han d’analitzar i provar.

Un cop resolts tots els problemes i complert els objectius es podra pensar idees per a projectes futurs que

sentint les seves bases en el que s’ha estudiat en aquest projecte final de carrera.

6.3 Propostes de treball futur

Un cop assolit els objectius proposats al principi i s’ha conclds que realment es pot arribar a crear un
entorn de desenvolupament de sistemes en temps real amb les eines escollides, €s podrien fer multitud
d’aplicacions i modificacions del propi RTLinux.

Sé6n moltes les opcions que hi ha per continuar aquest projecte.

Per comengar, ’aplicacié de generacié de tasques implementada en aquest projecte per comprovar la
viabilitat de la construccié d’aplicacions per RTLinux de forma rapida i obtenint aplicacions complexes,

aquesta és podria millorar en els segiients aspectes:

- Es podria permetre la creacié de N real time fifos en comptes de només dues.

- Es podria generalitzar molt més la construccié de tasques afegint la possibilitat d’escollir
per cada tasca si es vol una tasca periodica o aperiodica.

- També es podria afegir la possibilitat d’afegir interrupcions en les tasques, personalitzar el
modul d’iniciacid, el modul de finalitzacio, etc.

- Personalitzacié modul inicii fi.

- Inserir interrupcions en la creacié de tasques.

- Millora en la gesti6 de les tasques (inserir, eliminar, modificar tasques)

- Donar la possibilitat de guardar les tasques en un fitxer XML per poder obrir en altres

instants.

Una altre de les aplicacions creades ha estat la de mostrar I’execucié de les tasques en el planificador de
temps real. Aquesta aplicacié mostra quan les tasques s’executen perd no mostra quan una tasca esta
activada. Per tant, la millora a realitzar en aquesta aplicacid seria permetre visualitzar I’activacié de les
tasques i el bloqueig. Tant sols amb la informacié de I’execucié de les tasques no n’hi ha prou per fer-ne
un analisis exhaustiu del que esta passant en el planificador.

Mostrant I’activacio de les tasques i el bloqueig es tindra més informacié per un bon analisis.

Amb aquestes dos millores de les aplicacions ja es tindria un conjunt d’eines per al estudi de tasques en

temps real a través de RTLinux. Recordar que la modificacié de tasques amb 1’aplicacié de generaci6 de

- 148 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

tasques €s realment rapid i facil de fer i aixd permet fer un estudi ampli amb el suport de 1’eina de
visualitzacié de 1’execuci6 de les tasques.

A part de la millora de les aplicacions ja existents €s podrien crear diferents aplicacions per a millorar i
ampliar ’entorn de desenvolupament, tant aplicacions per a la gesti6 de les tasques en temps real com
aplicacions per el analisis. Aquest podria ser motiu per un projecte nou, partint de la base de I’estudi
realitzat en el present projecte és podria pensar, dissenyar e implementar eines per la millora de 1’entorn
de desenvolupament de sistemes en temps real.

Un altre tema a tractar sera la modificacié del propi Sistema Operatiu en Temps Real RTLinux, per
exemple un altre tema que podria ser motiu de projecte seria I’estudi en profunditat dels planificador en
temps real per implementar-los sota RTLinux i fer les proves pertinents per analitzar quin dels
planificadors seria I’adient (FIFO, Round Robin, Earliest Deadline First, etc..). El tema del planificador
esta bastant poc desenvolupat en RTLinux i es podria estudiar per fer varies implementacions i millorar-
lo. El planificador RTLinux és de prioritats estatiques com ja s’ha explicat, doncs una possible
implementacio seria la creacié d’un planificador amb prioritats dinamiques.

Altres treballs a realitzar seria la creacié o modificacié de moduls de temps real, existents (fifo, posix,
etc.) o de nous (network, comunicaci6, hardware). Un bon projecte a realitzar podria ser I’estudi d’un
modul en temps real de comunicacié basat en el protocol IP. El modul s’anomena RTL-IwIP
(lightweightIP). Un modul que permetra la comunicacié TCP/IP amb un minim requeriment de recursos.
RTL-IWIP inclou els protocols IP, ICMP, UDP i TCP. Aquest projecte analitzaria i provaria el modul en
temps real el qual seria de molta utilitat per a la comunicacié de tasques en temps real. Si el modul
analitzat fos Ttil es podria integrar en el sistema creat en aquest projecte i afegir utilitats a les aplicacions
creades per millorar la gesti6 de la comunicaci6 entre tasques de temps real. Seria una gran millora poder
disposar de comunicacid entre tasques. Aix0 permetria la possibilitat del control remot de tasques en
temps real. Un altre modul existent s’anomena rtsock. Imaginem el segiient escenari, un controlador de
qualsevol procés que es vol controlar remotament, amb aquest modul ho podriem aconseguir. A mes a
mes es podria modificar el propi modul per afegir millores en la comunicacié. Personalment crec que

aquesta ultima proposta és especialment interessant per a realitzar un projecte final de carrera.

- 149 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

6.4 Valoracio personal del Projecte Final de Carrera

Personalment he trobat interessant el tema tractat en aquest projecte, en cada avang que s’ha fet, la
motivacié ha crescut. Crec que 1’elaboracié d’un projecte final de carrera per part de I’estudiant és una
bona forma de posar en funcionament tot el que s’ha apres durant els anys d’estudiants abans d’arribar a
aquest tramit, abans de posar fi al estudis, encara que els estudis mai s’acaben per un enginyer. Valoro
molt positivament I’elaboracié d’un projecte final de carrera ja que entren en joc els aspectes més
importants que 1’estudiant es trobara en la vida real alhora de treballar. El projecte realitzat consta dels
segiients passos: Un estudi/analisis del tema tractat, la implementaci6, uns resultats i unes conclusions.
Un cop fet tot aixo I’estudiant en genera una documentacidé en forma de memoria per reflectir tot el que
s’ha fet durant el projecte i finalment es fa un resum d’aquest document per presentar-lo. Cal dir doncs
que I’estudiant posa a prova la propietat d’aprendre, analitzar nous temes, escriure tot el que ha fet durant
el projecte i presentar-ho. Tot aquests aspectes s’han posat a prova en aquest projecte. Valoro
positivament el treball realitzat, ja que en un inici no és tenia moltes nocions sobre el tema dels sistemes
en temps real, RTLinux, etc. i s’ha aconseguit obtenir un petit entorn de desenvolupament de tasques en
temps real a part d’entendre com funciona tot aquests tipus de sistemes. Crec que s’ha tractat un tema
bastant interessant i amb moltes possibilitats de futur ja que el camp del temps real encara no esta prou
explotat per les gran empreses del software en I’actualitat i donara molt a parlar en els proxims anys. Els
sistemes operatius més famosos, Windows/MAC-OS no disposen de bones tecniques de temps real,
encara que s’anuncien en algunes les caracteristiques perd de ben segur que en un futur proxim en
sentirem més a parlar.

Personalment valoro ’esfor¢ realitzat per a portar a terme aquest projecte final de carrera ja que m’ha
suposat una carrega molt alta per causa de projectes externs als estudis (treball). M’ha ajudat a aprendre a
planificar el temps en diferents periodes per poder realitzar diferents projectes i poder-los dur a terme.
Com ja s’ha dit a estat bastant dur perd un cop arribat al final personalment es valora molt. Si el temps ho
hagués premés s’hagués profunditzat molt més en les aplicacions creades, en els exemples de
controladors PID (Proporcional, Integral, Derivador) i sobretot m’hagués agradat molt haver pogut fer
proves de comunicacié entre tasques mitjangcant TCP/IP. De ben segur que fora de 1’ambit d’aquest
projecte es faran proves amb aquests tipus de modul en temps real i crear eines per a la gestié de
comunicacié mitjancant sockets per a tasques en temps real ja que és un tema realment interessant de
tocar.

Inicialment al escollir aquest projecte, al no tenir massa idea de que era el temps real, una de les tiniques
motivacions que tenia era el repte d’afrontar temes nous, com ja s’explica en el capitol introductori
d’aquesta memoria, perd0 a mesura que avangava el temps i s’assimilaven els conceptes i es feien les
proves, les motivacions creixien fins al punt que al acabar aqui el projecte no n’he tingut prou i tinc la
necessitat de fer més proves e intentar realitzar alguns dels treballs futurs proposats en el punt anterior.
Per tant, després del gran esforg i de les dificultats que ha presentat el projecte, al finalitzar aquest s’ha

quedat amb les ganes de seguir endavant.

- 150 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " Emggﬁ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

En resum, es pot dir que ha estat una experiéncia molt positiva encara que ha suposat molt d’esfor¢ fins
arribar alguna vegada al 1imit de la desesperacié per no poder complir els placos temporals imposats
personalment. També considero que aquesta és potser la gracia del projecte que fa que cada dia es
presentin nous reptes en el desenvolupament del projecte.

Aqui arriba tant sols el final del principi, dels estudis de la meva vida.

- 151 -

Capitol 7: ANNEX..........cocooviiiiiiiiieeeee e 153
7.1 Codi font apliCaACIONScvveeeeieiiieeeeiiiee et e e et 155
7.2 Codi font eXemples ZENETALScceevvrererriieirriiieeerriieeeeiieeeenieeee e 172

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“".?;‘:;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

7. Annex

7.1 Codi font aplicacions

(1) Generador de Tasques

Codi Procediment Generacio capcalera

FHA A R A A A R R R A R A
#H#

Procedure: GenerateHeader

proc ::GenerateHeader {out n rtf0 rtfl} {
#Includes i capcgaleres
global includes
global returns
global declareThread
global pointandcoma
#set includes "#include <rtl.h> \n#include <time.h> \n#include
<pthread.h>"
set returns "\n\n"
set pointandcoma ";"
puts S$out "$includes"
puts S$Sout ""
puts Sout "//Declaracions variables compartides"
puts S$out [Text3 get 0.0 end]
#Declarem rtfs..
if {$rtf0 == 1} {
puts Sout "int fifoO;"
}
if {$rtfl == 1} {
puts S$Sout "int fifol;"
}

Codi Procediment Generacid Tasca

FHEA A R A A A R R A R R A

#H##
Procedure: GenerateTasc
proc ::GenerateTasc {out tasca i} {

#Per a cada tasca
global nameRoutine
global argsRoutine
global int

global structSchedParam
global structSchedParam priority
global hrtime_t

global setSchedParaml
global makePeriodic
global period

global ret

- 155 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
Barcelona

d’un entorn de desenvolupament de tasques en temps real

global closee
global opeen

global whilee
global npPeriodic
global pointandcoma

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

pointandcoma ";"

nameRoutine "void *start_routine"

argsRoutine " (void *arg)"

int "int"

structSchedParam "struct sched_param p"

structSchedParam_priority "p.sched_priority="

hrtime_t "hrtime_t now"

setSchedParaml "pthread_setschedparam(pthread_self (), SCHED_FIFO, &p)"
period "unsigned long period = "

makePeriodic "pthread_make_periodic_np(pthread_self(),gethrtime(),"
makePeriodicl ") "

ret "return 0"

closee "\}"

opeen "\ {"

whilee "while(1)"

npPeriodic "pthread_wait_np ()"

set prio [lindex [lindex S$tasca 0] 0]
set period [lindex [lindex S$tasca 0] 1]
set code [lindex [lindex S$Stasca 0] 2]
set vars [lindex [lindex Stasca 0] 3]
set name [lindex [lindex S$Stasca 0] 4]

puts "Prio: $prio \n"
puts "Period: S$period \n"
puts "Code: S$code \n"
puts "Vars S$vars \n"

puts S$out "$nameRoutine$name$argsRoutine"

puts S$Sout "Sopeen"

#puts Sout "S$structSchedParam$pointandcoma"

puts S$Sout "S$Svars"

#puts S$Sout "S$SstructSchedParam_priority$prio$pointandcoma”
#puts Sout "S$setSchedParaml$pointandcoma”

puts Sout "$SmakePeriodicS$Speriod$makePeriodicl$pointandcoma”
puts Sout "$SwhileeSopeen"

puts S$Sout "$npPeriodic$pointandcoma™"

puts S$out "S$Scode"

puts S$out "$closee"

#puts S$Sout "SretSpointandcoma"

puts S$out "$closee"

- 156 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " Emggﬁ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

Codi per desar una Tasca (al prémer el bot6 “Guardar”)

1lblStatus configure -text "Saving..."
##Codi source de la tasca

set code [Textl get 0.0 end]

#Declaracid variables

set vars [Text2 get 0.0 end]

#prioritat de la tasca

set prioTasc $txtPrio

#periode de la tasca

set periodTasc S$txtPeriode

#Nom de la tasca

set nameTasc $txtName

S i R i
#llista on tenim els 4 parametres anteriors

#llista : -periode tasca

-id tasca

-prioritat tasca
—code

—Nom

i i i i o
set dada "S$prioTasc:$periodTasc:S$Scode:$Svars:S$SnameTasc"
set llista [split S$dada :]

#Definim un array on contindrem totes les dades de les diferents tasques
set ArrayTasc($i) S$llista

1blNtask configure —-text [array size ArrayTasc]
1blStatus configure -text "none"

Codi per desplacament Tasques a I’esquerra (bot6 “<<”)

if { $1 > 1 } {
set 1 [expr $i-1]
set tasca S$ArrayTasc($i)
set prio [lindex Stasca 0]
set period [lindex S$tasca 1]
set code [lindex Stasca 2]
set vars [lindex S$tasca 3]
set name [lindex Stasca 4]

#Netejem formulari
txtNamel delete 0 end
txtPriol delete 0 end
txtPeriodel delete 0 end
Text2 delete 0.0 end
Textl delete 0.0 end

#insertem variables de $i

txtNamel insert 0 S$name

txtPriol insert 0 $prio

txtPeriodel insert 0 $period

Text2 insert 0.0 S$vars

Textl insert 0.0 S$code

.top45.tit46 configure -text "Tasca $i"
}}

- 157 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " Emggﬁ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

Codi per desplacament Tasques a la dreta (botd “>>")

if { [array size ArrayTasc] > $i} {
set 1 [expr $i+1]
set tasca S$ArrayTasc($i)
set prio [lindex Stasca 0]
set period [lindex S$tasca 1]
set code [lindex Stasca 2]
set vars [lindex S$tasca 3]
set name [lindex Stasca 4]

#Netejem formulari
txtNamel delete 0 end
txtPriol delete 0 end
txtPeriodel delete 0 end
Text2 delete 0.0 end
Textl delete 0.0 end

#Insertem variables

txtNamel insert 0 S$name

txtPriol insert 0 $prio

txtPeriodel insert 0 S$period

Text2 insert 0.0 $vars

Textl insert 0.0 S$code

.top45.tit46 configure -text "Tasca $i"

} else {

if { [array size ArrayTasc] == $i} {
set 1 [expr $i+1]
.top45.tit46 configure -text "Tasca $i"
Text2 delete 0.0 end
Textl delete 0.0 end
txtNamel delete 0 end
txtPriol delete 0 end
txtPeriodel delete 0 end

b}

- 158 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " Emggﬁ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

Codi per generar el fitxer de codi font de la tasca en temps real (bot6 “Generar”)

set Ntasc [array size ArrayTasc]
puts "ola"
set out [open "code.c" w]
GenerateHeader S$out $Ntasc S$Srtf0 $rtfl
puts S$Sout ""
set nameThread "pthread_t thread"”
set pointandcoma ";"
for {set 1 1} {$1 <= S$SNtasc} {incr 1 1} {
set tasca S$ArrayTasc($i)
set name [lindex S$Stasca 4]
puts $Sout "S$nameThread$Sname$pointandcoma"
}
puts $out ""
for {set 1 1} {$1i <= S$Ntasc} {incr 1 1} {
GenerateTasc $out [list $ArrayTasc($i)] $i

set ret "return 0"

set initt "int init_module (void)\{"

set pthreadCreatel "pthread_create ("

set pthreadCreate2 ", &attr,"

set pthreadCreate3 ",0)"

set thread "&thread"

set routine "start_routine"

set pointandcoma ";"

set closee "\}"

set clean "void cleanup_module (void) \{"

set deletel "pthread_delete_np ("

set delete2 ")"

set threadl "thread"

set schedParam "struct sched_param sched_param;"
set attr "pthread_attr_t attr;"

set attrInit "pthread_attr_init (&attr);"

set prio "sched_param.sched_priority ="

set sched "pthread_attr_setschedparam (&attr, &sched_param);"
set setfp "pthread_attr_setfp_np(&attr, 1);"

#Generate Init
puts S$Sout "$initt"
set entra O
if {$rtf0 == 1} {
puts S$out "int fifo_status;"
set entra 1
}
if {$rtfl == 1} {
if {$entra == 0} {
puts S$Sout "int fifo_status;"
}
}

puts S$Sout $schedParam
puts S$Sout Sattr

if {Srtf0 == 1} {

- 159 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real epasons

puts S$Sout "rtf_destroy(0);"
puts S$Sout "fifo_status = rtf_create(0, 4000);"
puts S$Sout "if (fifo_status) {"
puts Sout "rtl_printf (\"RTLinux measurement test fail.
fifo_status=%d\\n\",fifo_status);"
puts S$out "return -1;"
puts S$Sout "}"
puts Sout "fifoO = open(\"/dev/rtf0\", O_NONBLOCK) ;"
puts Sout "if (fifo0 < 0) ("
puts Sout "rtl_printf (\"/dev/rtf0 open returned %d\\n\", fifoO);"
puts $out "return (void *) -1;"
puts S$Sout "}"

if {$rtfl == 1} {
puts Sout "rtf_destroy(l);"
puts $out "fifo_status = rtf_create(l, 4000);"
puts $out "if (fifo_status) ("
puts $Sout "rtl_printf (\"RTLinux measurement test fail.
fifo_status=%d\\n\",fifo_status);"
puts $out "return -1;"
puts Sout "}"
puts Sout "fifol = open(\"/dev/rtfl\", O_NONBLOCK);"
puts S$out "if (fifol < 0) {"
puts $Sout "rtl_printf(\"/dev/rtfl open returned %d\\n\", fifol);"
puts S$Sout "return (void *) -1;"
puts Sout "}"
}

for {set 1 1} {$1i <= S$SNtasc} {incr 1 1} {

set tasca S$ArrayTasc($i)

set name [lindex S$Stasca 4]

set prioritat [lindex S$tasca 0]

puts S$Sout SattrInit

puts S$out S$prio$prioritat$pointandcoma

puts S$Sout S$setfp

puts S$out $sched

puts S$Sout
"SpthreadCreatel$thread$nameSpthreadCreate2$routine$nameSpthreadCreate3S$p
ointandcoma"
}

puts S$Sout "Sret$pointandcoma"
puts S$out "$closee"

#Generate Cleanup
puts S$out "S$clean"

if {Srtf0 == 1} {
puts S$out "close(fifo0);"
puts S$out "rtf_destroy(0);"
}

if {$rtfl == 1} {
puts S$out "close(fifol);"
puts S$out "rtf_destroy(l);"

- 160 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " 3“‘&":;‘3'“ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

for {set 1 1} {$1 <= SNtasc} {incr 1 1} {
set tasca $ArrayTasc($i)
set name [lindex S$tasca 4]

puts Sout "S$deletel$threadl$nameS$Sdelete2S$Spointandcoma”

}

puts S$Sout "S$closee"
close $Sout

#exec rtlinux start
exec make test

Codi per cridar I’aplicacié de simulaci6 de les tasques

exec wish DiagramaTemps.tcl

(11) Fitxer de Makefile cridat en I’aplicacid anterior

all: code.o

include /usr/src/rtlinux/rtlinux-3.1/rtl.mk
clean:
rm —-f *.o

test: all
(cd /usr/src/rtlinux/; scripts/rmrtl)
(cd /usr/src/rtlinux/; scripts/insrtl)
insmod code.o
sleep 1
rmmod.old code
./monitoré&
sleep 2
sh killmonitor.sh
@echo "Now start the real-time tasks module"
@echo "Type <return> to continue"
include $(RTL_DIR)/Rules.make

(1i1) Codi font del script “killmonitor.sh”

#!/bin/bash

kill “ps uxc | grep -i "monitor" | awk '{print $2}'"

- 161 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real epasons

(1v) Codi font del Simulador de Tasques del Planificador en Temps Real

proc ScrollTexto { parent totalTime AUX args } {

Crea la frame on colocar el widget texto.

frame S$parent -borderwidth 10

pack S$Sparent -side top -expand yes -fill y

Crea dos barras de scroll, una vertical y otra horizontal.

scrollbar $parent.sy —-command "S$parent.texto yview"

scrollbar $parent.sx —-orient horizontal -command "S$parent.texto xview"
Crea un widget texto amb les barres de scroll associades

set 1 [expr S$totalTime/S$SAUX]

eval {canvas S$parent.texto \

-bd 2 \

-scrollregion "-100 0 $i O" \

—-yscrollcommand "S$parent.sy set" —-xscrollcommand "S$Sparent.sx set" -width
20 —-height 10 } \

Sargs

Coloca tot a la pantalla

grid $parent.texto -row 0 —-column 0 -rowspan 1 —-columnspan 1 -sticky
news

grid S$parent.sy -row 0 —-column 1 -rowspan 1 -columnspan 1 -sticky ns
grid $parent.sx -row 1 —-column 0 -rowspan 1 -columnspan 1 -sticky ew
grid rowconfig $parent 0 -weight 1 -minsize O

grid columnconfig $parent 0 -weight 1 -minsize 0

Retorna el widget texto

return $parent.texto

}

wm title . "Simulacid de les tasques creades"

#Posem els identificadors de temps
set fp [open "monitor2.txt" r]
set data [read $fp]
set lista ()
close $fp
Fitxer a processar
set data [split $data "\n"]
set totalTime 0
set aux O
set pt O
set AUX 4000
set firstLine 0
set min 999999999
set max O
#Per cada linea
foreach line $data {
set datal [split $line " - "]
set var [lsearch $lista [lindex S$datal 0]]
if { $var == -1 } {
set lista [linsert $lista [llength $lista] [lindex
Sdatal 0]]
set b [lindex $datal 3]
set totalTime [expr S$b + S$totalTime]

- 162 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
Barcelona

d’un entorn de desenvolupament de tasques en temps real

set b [lindex $datal 3]
set totalTime [expr S$b + StotalTime]
puts S$totalTime
if { Smin > S$b } {

if { $b > 0 } {

set min $b

}
}
if { Smax < S$b } {

set max $b

}

set AUX [expr $max/Smin]

set min [expr S$AUX/2]

Es crida el procediment per crear la GUI

ScrollTexto .p $totalTime $AUX -width 900 -height 600

.p.texto xview moveto 0.0

button .in -text ZomIn -width 30 —-command {set AUX [expr SAUX +

Smin]; Zoom $AUX $data $line $lista StotalTime $pt S$Spos S$Saux}

button .out -text ZomOut -width 30 -command {set AUX [expr S$AUX -

Smin]; Zoom $SAUX $data $line $lista StotalTime S$pt S$pos S$Saux}

pack .in .out -side top

set pos 520
proc Zoom {

StotalTime/ (SAUX)]
Spt]

Spt/ (SAUX)] 505

StotalTime/ (SAUX)]

set firstLine 0
set totalTime O

AUX data line lista totalTime pt pos aux} {

set tascal 0
set tascaz 0
.p.texto delete all
foreach line $data {

set datal [split $line " - "]

set var [lsearch $lista [lindex $datal 0]]

set b [lindex $datal 3]

set totalTime [expr S$b + StotalTime]

if { [lindex $lista 1] == [lindex $datal 0] } {

if { [lindex $lista 1] > 0 } {

.p.texto create rectangle [expr $pt/(SAUX)] 300 [expr
310 -fill blue -tag rectangulo -width 0

.p.texto create text [expr $pt/(SAUX)] 315 -text [expr

.p.texto create line [expr S$pt/(SAUX)] 495 [expr

.p.texto create text -50 305 -text "Tasca 1"
set tascal [expr S$Stascal + 1]

set pt S$totalTimetotalTime

} elseif { [lindex $lista 2] == [lindex $datal 0] } {

if { [lindex $lista 2] > 0 } {

.p.texto create rectangle [expr S$pt/ (SAUX)] 350 [expr
360 -fill red -tag rectangulo -width 0

- 163 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real epasons

.p.texto create text -50 355 -text "Tasca 2"
.p.texto create text [expr $pt/(SAUX)] 365 -text [expr
Spt]
.p.texto create line [expr $pt/(SAUX)] 495 [expr
Spt/ (SAUX)] 505
set tasca2 [expr S$Stasca2 + 1]
}
set pt $StotalTime
} elseif { [lindex $lista 3] =
if { [lindex $lista 3] > 0 } {
.p.texto create rectangle [expr $pt/(SAUX)] 250 [expr
StotalTime/ ($SAUX)] 260 -fill brown -tag rectangulo -width O
.p.texto create text -50 255 -text "Tasca 3"
.p.texto create text [expr $pt/(SAUX)] 265 -text [expr

= [lindex $datal 0] } {

Sptl

.p.texto create line [expr S$pt/ (SAUX)] 495 [expr
Spt/ (SAUX)] 505

}

set pt $StotalTime

} elseif { [lindex S$lista 4] == [lindex $datal 0] } {

if { [lindex $lista 4] > 0 } {

.p.texto create rectangle [expr S$pt/ (SAUX)] 400 [expr
StotalTime/ ($SAUX)] 410 -fill orange -tag rectangulo -width 0

.p.texto create text -50 405 -text "Tasca 4"

.p.texto create text [expr $pt/(SAUX)] 415 -text [expr
Sptl

.p.texto create line [expr S$pt/(SAUX)] 495 [expr
Spt/ (SAUX)] 505

}

set pt S$totalTime

} elseif { [lindex S$lista 5] =

if { [lindex $lista 5] > 0 } {

.p.texto create rectangle [expr S$pt/ (SAUX)] 450 [expr
StotalTime/ ($SAUX)] 460 -fill black -tag rectangulo -width O

.p.texto create text -50 455 -text "Tasca 5"

.p.texto create text [expr S$pt/(SAUX)] 465 -text [expr

= [lindex $datal 0] } {

$ptl

.p.texto create line [expr S$pt/(SAUX)] 495 [expr
Spt/ ($AUX)] 505

}

set pt $StotalTime

} else {

set pt $StotalTime

}

if { $pos == 510 } {
set pos 520
} else {
set pos 510

- 164 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " Emggﬁ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

.p.texto create line 0 100 0 500 -tag liney —-width 2
.p.texto create line 0 500 [expr S$totalTime/ (SAUX)] 500 -tag linex -
width 2

.p.texto create text -10 90 -text "Tasques"
.p.texto create text 10 550 -text "temps (ns)"
set n 500
for {set i 0} {$i < S$StotalTime} {incr 1 S$AUX} {
#.p.texto create line [expr $i/(SAUX)] 495 [expr
$i/(SAUX)] 505
if { Saux == [expr SAUX/2] } {
#.p.texto create text [expr $i/(SAUX)] 510 -text
[expr $1i]
.p.texto create line [expr $i/(SAUX)] 495 [expr
$i/(SAUX)] 505
set aux O
} else {
incr aux 1

}

}

set t [expr S$totalTime/$AUX]

.p.texto configure -scrollregion "-100 0 $t O"
puts "H#H#HHHHH"

puts Stascal

puts Stasca?

}
Zoom S$AUX $data $line $lista StotalTime S$pt S$pos S$Saux

(v) Codi font grafiques de sortida (Resultats exemples de control Temperatura)

wm title . "Resultat Control de Temps"

set fp [open "./controlP/temp.txt" r]
set data [read $fp]
set lista ()
close $fp
set data [split $data "\n"]
set totalTime [llength $datal]
set AUX [expr S$totalTime/4]
set min [expr $AUX/10]
Funcidé ja creada en el codi anterior
ScrollTexto .p $totalTime $AUX -width 900 -height 600
.p.texto xview moveto 0.0
button .in -text ZomIn -width 30 —-command {set AUX [expr SAUX +
Smin]; Zoom S$data $totalTime S$SAUX}
button .out -text ZomOut -width 30 -command {set AUX [expr S$AUX -
Smin]; Zoom S$data $totalTime S$SAUX}
pack .in .out -side top
#set AUX 100000
set firstLine 0
set pos 520

- 165 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " Emggﬁ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

proc Zoom { data totalTime AUX } {
set line ()
.p.texto delete all
set 1 0
set line
foreach line $data {
if {$1i < S$totalTime-1} {
set point0 [lindex S$data $i]

.p.texto create line [expr $1i*$AUX] [expr (500 -
(Spoint0*10))] [expr $i*$AUX] 500 -tag liney -width 4

.p.texto create line [expr $i*S$AUX] 500 [expr $i*$AUX] 100

set n 40

for {set t 100} {S$t < 500} {incr t 10} {
.p.texto create line 0 $t [expr StotalTime*$AUX] St

.p.texto create text -50 $t -text $n
set n [expr $n - 1]

}
for {set t 0} {$t < StotalTime} {incr t 1} {

.p.texto create text [expr $t*$AUX] 510 -text St
}
puts [expr $1*S$AUX]
puts [expr (500 - $point0)*$AUX]
set 1 [expr $i + 1]
}
}

.p.texto create line 0 100 0 500 -tag liney -width O
.p.texto create line 0 500 [expr S$totalTime*S$AUX] 500 -tag linex -

width O
.p.texto create line 0 [expr 500 - (18.5*10)] [expr StotalTime*S$SAUX]

[expr 500 - (18.5%10)] -width 2 -fill "red"
.p.texto create text -10 80 -text "Temperatura (°C)"
.p.texto create text 10 550 -text "Temps => T*n on T=0.5s"

set n 500
.p.texto configure -scrollregion "-100 0 $totalTime 0"

}

Zoom $data S$totalTime S$SAUX

(vi) Codi font grafiques de sortida (Resultats exemples de control Nivell, funcié Zoom)

proc Zoom { data totalTime AUX } {
set line ()
.p.texto delete all
set 1 0
set line
foreach line $data {

if {$1i < StotalTime-1} {

set point0 [lindex $data $i]

.p.texto create line [expr $1*$AUX] [expr (500 -
($point0*10))] [expr $i*$AUX] 500 -tag liney -width 4

.p.texto create line [expr $1*S$AUX] 500 [expr $1*S$SAUX]

100
set n 40

- 166 -

Projecte: Analisi del sistema operatiu RTLinux e implementaci6 " et

. Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real epasons

for {set t 100} {$t < 500} {incr t 10} {
.p.texto create line 0 $t [expr StotalTime*$SAUX] $t
.p.texto create text -50 $t -text $n
set n [expr $n - 1]
}
for {set t 0} {$t < StotalTime} {incr t 1} {
.p.texto create text [expr $t*$AUX] 510 -text St
}
puts [expr $1*$AUX]
puts [expr (500 - $point0) *$AUX]
set 1 [expr $i + 1]
}
}
.p.texto create line 0 100 0 500 -tag liney —-width O
.p.texto create line 0 500 [expr S$totalTime*$SAUX] 500 -tag linex -
width 0
.p.texto create line 0 [expr 500 - (25*10)] [expr S$totalTime*S$AUX]
[expr 500 - (25*%10)] -width 2 -fill "red"
.p.texto create text -10 80 -text "Nivell (mm)"
.p.texto create text 10 550 -text "Temps => T*n on T=0.5s"
set n 500
.p.texto configure -scrollregion "-100 0 S$totalTime 0"
}
Zoom $data S$totalTime S$AUX

(vii) Codi font del planificador de tasques en Temps Real (rtl_sched.c)

En aquest codi tant sols es mostra la funcié “init_module” i “scheduler” que s6n
les que és modifiquen.

Codi init_module

int init_module (void)
{
rtl_irgstate_t interrupt_state;
int 1i;
int fifo_status;
int ret;
int my_cpu_id;
char init;
schedule_t *s;

unsigned int cpu_id = rtl_getcpuid();
nowl = gethrtime();

rtl_spin_lock_init (&rtl_tqueue_lock);
zombie_threads = 0;

timel = 0;
time2 = 0;

first = 0;

contadorTime=0;

ret = rtl_get_soft_irqg (sched_irqg _handler, "RTLinux Scheduler");
proc = 0;

- 167 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real epasons

if (ret > 0) {

rtl_sched_irqg = ret ;

} else {
rtl_printf ("Can't get an irg for RTLinux scheduler");
return -EINVAL;

}

proc = 0;

rtl_no_interrupts(interrupt_state);

my_cpu_id = cpu_id;

rtf_destroy(0);
fifo_status = rtf_create(0,4000);
if (fifo_status)
{
rtl_printf ("RTLinux measurement test fail.
fifo_status=%d\n",fifo_status);
return -1;
}
rtl_printf ("RTLinux measurement module on CPU %d\n",rtl_getcpuid());
fd_fifo = open("/dev/rtf0", O_NONBLOCK) ;
if (fd_fifo < 0) {
rtl_printf ("/dev/rtf0 open returned %d\n",
fd_fifo);
return (void *) -1;
}
init = '-';
write(fd_fifo, &init,sizeof (char));

for (i = 0; 1 < rtl_num_cpus(); i++) {
cpu_id = cpu_logical_map (i);
s = &rtl_sched [cpu_id];

s —> rtl_current = &s->rtl_linux_task;
s —> rtl_tasks = &s—->rtl_linux_task;
s —> rtl_new_tasks = 0;

rtl_spin_lock_init (&s->rtl_tasks_lock);

s —> rtl_linux_task . magic = RTL_THREAD_MAGIC;

rtl_sigemptyset (&s —-> rtl_linux_task . pending);

rtl_sigaddset (&s —-> rtl_linux_task . pending,
RTL_SIGNAL_READY) ;

s —> rtl_linux_task . blocked = 0;

s —> rtl_linux_task . threadflags = 0;

s —> rtl_linux_task . sched_param . sched_priority = -1;
s —> rtl_linux_task . next = 0;

s —> rtl_linux_task . uses_fp = 1;

s —> rtl_linux_task . fpu_initialized = 1;

s —> rtl_linux_task . creator = 0;

s —> rtl_linux_task . abort = 0;

s —> rtl_task_fpu_owner = &s->rtl_linux_task;

s —> sched_flags = 0;
rtl_posix_init (&s->rtl_linux_task);
s—> clock = rtl_getbestclock (cpu_id);

- 168 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " Emggﬁ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

} else {
rtl_printf("Can't get a clock for processor
$d\n", cpu_id) ;
rtl_restore_interrupts (interrupt_state);
return -EINVAL;

}

cpu_id = my_cpu_id;

#ifdef CONFIG_SMP

for (i = 0; i < rtl_num_cpus(); i++) {
int cpu;
int ret;
cpu = cpu_logical_map (1i);
s = &rtl_sched [cpul;
ret = rtl_request_ipi(resched_irqg, cpu);
}
fendif
rtl_restore_interrupts (interrupt_state);
save_errno_location = _ _errno_location;
__errno_location = thread_errno_location;
/* rtl_setdebug (RTLDBG_ALL); */

return 0;

Codi rtl_schedule

static hrtime_t ini_time=0LL;
int rtl_schedule (void)
{
schedule_t *sched;
struct rtl_thread_struct *t;
struct rtl_thread_struct *new_task;
struct rtl_thread_struct *preemptor = 0;
unsigned long oldthread;
unsigned long newthread;
int prio;
char *oldTask;
char *newTask;
char *time;
unsigned long interrupt_state;
unsigned long _pthread;
int cpu_id = rtl_getcpuid();
hrtime_t now;
rtl_sigset_t mask;

rtl_no_interrupts(interrupt_state);

rtl_trace2 (RTL_TRACE_SCHED_IN, (long) pthread_self());
/* new_task = &sched->rtl_linux_task;*/

new_task = 0;

sched = &rtl_sched[cpu_id];

now = sched->clock->gethrtime (sched->clock);

- 169 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real epasons

if ((sched->rtl_current != NULL))
{
if (first == 0)
{
id0ld = (unsigned long)sched->rtl_current;

taskLinux = 1d01ld;

printk ("Primera tasca a executar-se %ul \n\n", id01ld);
first = 1;

timel = 0;

nowl = gethrtime();

else

if (idOld !'= (unsigned long)sched->rtl_current)
{
_pthread =(unsigned long)sched->rtl_current;
if ((unsigned long)sched->rtl_current == taskLinux) {
printk ("LINUX: %$ul amb prioritat %d - %1d
\n", (unsigned long)sched->rtl_current, sched->rtl_current-
>sched_param.sched_priority,timel);
}
else
{
printk ("OTHER: %ul amb prioritat %d - %1d
\n", (unsigned long)sched->rtl_current, sched->rtl_current-
>sched_param.sched_priority,timel);
tasca = tasca + 1;
printk ("$1d\n", tasca);
}
write (fd_fifo, & pthread, sizeof (unsigned long));
write (fd_fifo, &sched->rtl_current-
>sched_param.sched_priority, sizeof (int));
write (fd_fifo,&timel, sizeof (long int));
idO0ld = (unsigned long)sched->rtl_current;
timel = 0;

if (sched->clock->mode == RTL_CLOCK_MODE_ONESHOT) {
sched->clock->value = now;

}

for (t = sched->rtl_tasks; t; t = t->next) {
/* expire timers */

if (test_bit (RTL_THREAD_TIMERARMED, &t->threadflags)) {
if (now >= t->resume_time) {

clear_bit (RTL_THREAD_TIMERARMED, &t->threadflags);

rtl_sigaddset (&t->pending, RTL_SIGNAL_TIMER);

if (t->period !'= 0) { /* periodic */
t->resume_time += t->period;
/* timer overrun */

#ifndef CONFIG_RTL_OLD_TIMER_BEHAVIOUR

- 170 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real epasons

while (now >= t->resume_time) {
t->resume_time += t->period;
/* rtl_printf ("overrun"); */
}
fendif
} else {
t->resume_time = HRTIME_INFINITY;
}

}

/* and find highest priority runnable task */
if ((t->pending & ~t->blocked) && (!new_task ||
(t—>sched_param.sched_priority > new_task-

>sched_param.sched_priority))) {
_pthread = (unsigned long)pthread_self();
if (proc == 0) {
proc = _pthread;
printk ("ID Linux: %$ul\n\n", proc);
}
prio = pthread_self ()->sched_param.sched_priority;
contadorTime = contadorTime + 1;
timel = timel + ((gethrtime()-nowl));

if (proc!=_pthread) {
new_task = t;

nowl = gethrtime();
contadorTime = 0;
}
else {
new_task = t;
nowl = gethrtime();
}
}
}
if (sched->clock->mode == RTL_CLOCK_MODE_ONESHOT && !test_bit
(RTL_SCHED_TIMER_OK, &sched->sched_flags)) {
if ((preemptor = find_preemptor (sched, new_task))) {

(sched->clock)->settimer (sched->clock, preemptor-
>resume_time - now);
} else {
(sched->clock)->settimer (sched->clock, (HRTICKS_PER_SEC
/ HZ) / 2);
}
set_bit (RTL_SCHED_TIMER_OK, &sched->sched_flags);

}

if (new_task != sched->rtl_current) { /* switch out old, switch in
new */
if (new_task == &sched->rtl_linux_task) {
rtl_make_rt_system_idle();

} else {
rtl_make_rt_system_active();
}
rtl_trace2 (RTL_TRACE_SCHED_CTX_SWITCH, (long) new_task);
rtl_switch_to(&sched->rtl_current, new_task);

-171 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " Emggﬁ Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real i

/* delay switching the FPU context until it is really needed
*/
#ifdef CONFIG_RTL_FP_SUPPORT
if (sched->rtl_current-> uses_fp &&\
sched->rtl_task_fpu_owner != sched-
>rtl_current)
{
if (sched->rtl_task_fpu_owner)
{
rtl_fpu_save (sched,sched->rtl_task_fpu_owner);
}
rtl_fpu_restore (sched,sched->rtl_current);
sched->rtl_task_fpu_owner = sched->rtl_current;
}
#endif /* CONFIG_RTL_FP_SUPPORT */

}
mask = pthread_self ()->pending;

if (pthread_self()->pending & ~(1 << RTL_SIGNAL_READY))
do_signal (pthread_self());

rtl_trace2 (RTL_TRACE_SCHED_OUT, (long) pthread_self());
rtl_restore_interrupts (interrupt_state);
return mask;

7.2 Codi font exemples generats

(1) Exemplel: Interrupcié del teclat

#include <rtl core.h>
#include <rtl.h>
#include <pthread.h>

#define KEYBOARD_INTERRUPT 1

hrtime_t start,end;
pthread_t pthread_id;

unsigned my_keyboard_interrupt_handler (unsigned int irq, struct pt_regs
*regs) {
start = gethrtime();
pthread_wakeup_np (pthread_id); // desperta tasca la interrupcid
return O;

-172 -

Projecte: Analisi del sistema operatiu RTLinux e implementaci6 " et

. Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real epasons

void *my_pthread_handler (void *arg) {
while (1) {

pthread_suspend_np (pthread_self ());
end = gethrtime();
rtl_printf("+"); // La tasca activada escriu el caracter +
// 1 torna a esperar per una interrupcid
rtl_global_pend_irg(KEYBOARD_INTERRUPT) ;
rtl_printf ("%$1d\n", end-start);
// Temps que tarda a executar-se rutina tractament de la interrupcid
// Laténcia de la interrupciéd.

}
int init_module (void) {

pthread_create (&pthread_id,NULL,my_pthread_handler,NULL) ;

return
rtl_request_irg(KEYBOARD_INTERRUPT,my_keyboard_interrupt_handler);
}

void rtl_cleanup_module (void) {
rtl_free_irg(KEYBOARD_INTERRUPT) ;
pthread_delete_np (pthread_id);

(i1) Exemple2: Prova de s6

#include <rtl.h>
#include <time.h>
#include <pthread.h>
#include <rtl_fifo.h>
#include <asm/io.h>

pthread_t tasca;
/*Filtre del sé*/

static int filter (int x)
{
static int oldx;
int ret;
if(x & 0x80)
{
X = 382 - x;
}
ret = x > oldx;
oldx = x;
return ret;

-173 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié
d’un entorn de desenvolupament de tasques en temps real

Universitat
Autbnoma
de Barcelona

Escola Técnica Superior d'Enginyeria

void * sound(void *arg)
{
char dat;
char t;
struct sched_param p;
p.sched_priority=1;

while (1)

{
pthread_wait_np ();
if(rtf_get (4, &dat, 1) > 0)
{
dat = filter (dat);
t = inb(0x61);
t &= 0Oxfd;
t |= (dat & 1) << 1;
outb(t, 0x61);
}

int init_module (void)
{
rtf_create (4, 4000); /* crear fifo */
/* preparar el speaker */
outb_p(inb_p(0x61) |3, 0x61);
outb_p (0xb0, 0x43);
outb_p (3, 0x42);
outb_p (00, 0x42);
return pthread_create(&tasca, NULL, sound,

}

void cleanup_module (void)

{
pthread_delete_np(tasca);
rtf_destroy(4);

0);

pthread_setschedparam (pthread_self (), SCHED_FIFO, &p);
pthread_make_periodic_np (pthread_self(),
gethrtime(),1000000000/8192LL); /* freg = 8192 Hz */

(111) Exemple3: Prova de la periodicitat

#include <rtl.h>
#include <time.h>
#include <pthread.h>

pthread_t threadTascal
void * start_routineTascal (void *args)
{

struct sched_param p;

p.sched_priority=1;

pthread_setschedparam(pthread_self (), SCHED_FIFO, &p);
pthread_make_periodic_np (pthread_self (), gethrtime(),10000000);

174 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real epasons

while (1) {
pthread_wait_np();
i = 2+2;

}

return 0;

}

int init_module (void) {
pthread_create(&threadTascal,NULL, start_routineTascal,0);
return O;

}

void cleanup_module (void) {
pthread_delete_np(start_routineTascal);

}

(iv) Exemple4: Control d’un procés simple

#include <rtl.h>
#include <time.h>
#include <pthread.h>

//Declaracions variables compartides
int i=0; //Sortida de la simulacid
int u=0; //SOrtida de l'accidé de control

pthread_t threadControl;
pthread_t threadSimulacio;

void * start_routineSimulacio(void *args)

{
struct sched_param p;
p.sched_priority=100;
pthread_setschedparam(pthread_self (), SCHED_FIFO, &p) ;
pthread_make_periodic_np(pthread_self(),gethrtime(),5000000);

while (1) {
pthread_wait_np();
i=u+ i;

}

return 0;

}

void * start_routineControl (void *args)
{

struct sched_param p;

int a = 0;

p.sched_priority=100;
pthread_setschedparam(pthread_self (), SCHED_FIFO, &p) ;
pthread_make_periodic_np (pthread_self (), gethrtime (), 7000000) ;
while (1) {

pthread_wait_np();

-175 -

Universitat
Autbnoma
de Barcelona

Projecte: Analisi del sistema operatiu RTLinux e implementacié
d’un entorn de desenvolupament de tasques en temps real

Escola Técnica Superior d'Enginyeria

if (a==10) {
a = 0;
if (u==0)
{
u=1;
}
else
{
u = 0;
}
}
else
{
a=a+ 1;

int init_module (void) {

return 0;

}

void cleanup_module (void) {
pthread_delete_np(threadSimulacio);
pthread_delete_np(threadControl) ;

}

pthread_create(&threadSimulacio,NULL, start_routineSimulacio, 0);
pthread_create(&threadControl,NULL, start_routineControl, 0);

(v) Exemple5: Control PID d’un tanc d’aigua (Temperatura i Nivell)

#include "rtl.h"
#include "rtl_sched.h"
#include <math.h>
#include <rtl_fifo.h>

//Declaracions variables compartides

extern
static

double
double

sqgrt (double x);
Level= 0.00;

double
double
double
double
double
double

static
static
static
static
static
static

Temp = 15.00;

Qt ,Qtm = 16.00;
Qin, Qinput = 10.0;
Qs = 30.00;

Qtotal = 0.00;

Pvt = 0.0, Pvs = 0.0;
// Variables de control

static double klevel = 0.9;

static double ktemp = 0.5;

static
static

double Nref=25.00;
double Tref=18.50;

- 176 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real epasons

//Variables Controlador D
static double dtempT = 0.4
static double dtempN = 0.1;

static double eAnteriorT 0;
static double eAnteriorN = 0;
//Variables Controlador I

static double iAnteriorT = 0;
static double iAnteriorN = 0;

static double itempT = 0.7;
static double itempN = 1;

int fifol;

pthread_t threadSimulacio;
pthread_t threadVisualitzacio;
pthread_t threadControlNivell;
pthread_t threadControlTemp;

void *start_routineSimulacio(void *arg)
{

double F1,F2;

double Te=15.00;

double Tc=45.00;

double ctel=0.02;

double cte2=3.8;

double random;

long int_random;

pthread_make_periodic_np (pthread_self (), gethrtime(),50000000) ;
while (1) {

pthread_wait_np();

rdtscl (int_random) ;

random = ((double) (int_random & Ox1f)) / 256.0;

Qin = Qinput + (random - 0.5);

Qt = Qtm * Pvt;

Qs = cte2 * sqgrt(Level) * Pvs;

F1 = (Qin * Te) + (Qt * Tc) + ((Qtotal - Qs) * Temp);
F2 = (Qin + Qt + Qtotal - Qs);
Temp = F1 / F2;

Level = Level + ((Qin - Qs + Qt) * ctel);
Qtotal = Qtotal - Qs + Qin + Qt;
}

void *start_routineVisualitzacio(void *arg)
{
pthread_make_periodic_np(pthread_self(),gethrtime(),500000000) ;
while (1) {
pthread_wait_np();
write (fifol, &Temp, sizeof (double));
write (fifol, &Level, sizeof (double));

}

- 177 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " fus Escola Técnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real

nar
de Barcelona

void *start_routineControlNivell (void *arg)
{

double pvs;

double dvt;

double ivt;

pthread_make_periodic_np (pthread_self (), gethrtime(), 700000000) ;
while (1) {
pthread_wait_np();
pvs = (Level - Nref)*klevel;
dvt = (pvs - eAnteriorN) *dtempN;
eAnteriorN = pvs;
ivt = iAnteriorN + (itempN*pvs) ;
iAnteriorN = ivt;
pvs = pvs + ivt + dvt;
if (pvs<0) pvs=0;
if (pvs>1.00) pvs=1.00;
Pvs = pvs;

void *start_routineControlTemp (void *arg)
{

double pvt;

double dvt;

double ivt;

pthread_make_periodic_np (pthread_self (), gethrtime (), 700000000) ;
while (1) {
pthread_wait_np();

pvt = (Tref - Temp) *ktemp;

dvt = (pvt - eAnteriorT)*dtempT;
eAnteriorT = pvt;

ivt = iAnteriorT + (itempT*pvt);
iAnteriorT = ivt;

pvt = pvt + ivt + dvt;

if (pvt<0.0) pvt=0;
if (pvt>1.00) pvt=1.0;
Pvt = pvt;

}

int init_module (void) {
int fifo_status;
struct sched_param sched_param;
pthread_attr_t attr;
rtf_destroy(l);
fifo_status = rtf_create(l, 4000);
if (fifo_status) {
rtl_printf ("RTLinux measurement test fail.
fifo_status=%d\n",fifo_status);
return -1;
}
fifol = open("/dev/rtfl", O_NONBLOCK) ;
if (fifol < 0) {
rtl_printf("/dev/rtfl open returned %d\n", fifol);
return (void *) -1;

- 178 -

Projecte: Analisi del sistema operatiu RTLinux e implementacié " i Escola Tacnica Superior d'Enginyeria
d’un entorn de desenvolupament de tasques en temps real epasons

pthread_attr_init (&attr);
sched_param.sched_priority =100;
pthread_attr_setfp_np(&attr, 1);
pthread_attr_setschedparam (&attr, &sched_param);
pthread_create (&threadSimulacio, &attr, start_routineSimulacio,0);
pthread_attr_init (&attr);
sched_param.sched_priority =20;
pthread_attr_setfp_np(&attr, 1);
pthread_attr_setschedparam (&attr, &sched_param);
pthread_create (&threadvVisualitzacio, &attr, start_routineVisualitzacio,0);
pthread_attr_init (&attr);
sched_param.sched_priority =100;
pthread_attr_setfp_np(&attr, 1);
pthread_attr_setschedparam (&attr, &sched_param);
pthread_create (&threadControlNivell, &attr, start_routineControlNivell,0);
pthread_attr_init (&attr);
sched_param.sched_priority =100;
pthread_attr_setfp_np(&attr, 1);
pthread_attr_setschedparam (&attr, &sched_param);
pthread_create (&threadControlTemp, &attr, start_routineControlTemp, 0) ;
return 0;
}
void cleanup_module (void) {
close(fifol);
rtf_destroy(l);
pthread_delete_np(threadSimulacio);
pthread_delete_np(threadVisualitzacio);
pthread_delete_np(threadControlNivell);
pthread_delete_np(threadControlTemp) ;

- 179 -

Estructura del CD adjuntat

Amb la memoria s’adjunta un CD amb tota la informacié inserida. E1 CD conté aquest propi document,
conté el codi font de les aplicacions creades, els exemples generats, els kernels utilitzats per instal-lar
RTLinux, la imatge creada de RTLinux, el paquet de Tcl/Tk i vTcl.

La forma en que es distribueix el CD es la segiient:

D:/Memoria del Projecte/: En aquest directori es troba en format electronic la memoria del present

projecte.

D:/Codi font Exemples/: En aquest directori es troben tots els exemples generats de tasques en temps

real, ja sigui amb 1’aplicacid de generaci6 de tasques o de forma manual.

D:/Codi font Aplicacions/: Aqui es troba el codi font de les aplicacions, Generador de Tasques,

simulador planificador en temps real, aplicacions de graficacié dels resultats.

D:/Instal-lacié RTLinux/: En aquest directori hi ha els dos kernels utilitzats per la instal-lacié de
RTLinux (kernel RTLinux i linux) i també la imatge generada que és la que arranca al iniciar RTLinux i
tot el que fa referéncia a RTLinux.

D:/Tcl/Tk/: Aqui es troba el paquet de Tcl/Tk i la eina de desenvolupament visual tcl.

D:/RTLinux exemples/: Conjunt d’exemples de programes utilitzant la API RTLinux (exemples

proporcionats per RTLinux).

D:/Documents/: Aqui es troben una série de documents interessants sobre tots els temes tractats en

aquest projecte: temps real, RTLinux, Tcl/Tk, control computacional, etc.

- 181 -

Referencies Bibliografiques

1.- Sistemes de temps real

[1.a] Comp.realtime: Frequently Asked Questions (FAQs) (version 3.6)

http://www.fags.org/faqs/realtime-computing/faq/

[1.b] Bina Ramamurthy
http://www.cs.buffalo.edu/faculty/bina/cse421/spring00/lec10/index.htm

[1.c] Sistemas de Tiempo Real y Lenguajes de Programacién (3* Edicidn).

Autor: Alan BURNS y Andy WELLINGS, Editorial: ADDISON-WESLEY Iberoamericana Espaiia
[1.d] G.Bernat, A. Llamosi, R. Puigjaner. “Disefio de Sistemas de Tiempo Real”
[1.e] N. Audsley and A. Burns. “Real-Time System Scheduling”

2.- Sistemes Operatius

[2.a] "Sistemas Operativos", William Stallings, 4* edicién. Prentice-Hall, 2001
[2.b] Andrew S. Tanenbaum y Albert S. Woodhull. "Sistemas Operativos: Disefio e Implementacién

(Segunda Edicién)". Prentice-Hall, 1998.

3.- Sistemes Operatius de Temps Real

[3.a] Facultad de Ciencias Exactas y Naturales y Agrimensura.

http://exa.unne.edu.ar/

[3.b] Depto. Lenguajes y Sistemas Informaicos. (Universidad de Granada)

http://Isi.ugr.es/~jagomez/disisop_archivos/

[3.c] Ciclope Group “Analisis de Sistemas Operativos de Tiempo Real Libres”

http://www.ciclope.info/

[3.d] Article “Comparing real-time Linux alternatives” , Kevin Dankwardt, of K Computing
http://www.linuxdevices.com/

[3.e] Article “WP1 - RTOS State of the Art Analysis”, OCERA

http://www.mnis.fr/opensource/ocera/rtos/

[3.f] “Adaptive Domain Environment for Operating Systems”

http://www.opersys.com/adeos/

[3.g] “School of Computer science / Carnegie Mellon University”
http://www.cs.cmu.edu/~aml/chimera/chimera.html

[3.h] “RTAI - the RealTime Application Interface for Linux from DIAPM”
https://www.rtai.org/

[3.i] “RTLinux Portal at Valencia”

http://rtportal.upv.es/

- 183 -

[3.j] “QNX Software Systems”
http://www.gnx.com/
[3.k] “Wind River” VxWorks OS

http://www.windriver.com/vxworks/

4.- RTLinux

[4.a] “RTLinux Portal at Valencia”

http://rtportal.upv.es/

[4.b] Web de OS3, empresa de implementaci6 de software en codi lliure

http://www.o0s3sl.com/

[4.c] “OCERA Project, Open Components for Embedded Real-time Applications”

http://www.ocera.org/

[4.d] Plana personal de Sergio Pérez (Univerisada Politecnica de Valenia)

http://www.rtlinux-gpl.org/~serpeal/

[4.e] Plana personal de Ismael Ripoll (Univerisada Politecnica de Valenia)
http://www.gii.upv.es/personal/iripoll/

[4.f] Manual instal-lacié RTLinux

http://www.ciclope.info/doc/rtos/cache/doc/man_instal RTLinux.htm

[4.g] Article “The RTLinux Manifesto”, Victor Yodaiken

http://www.it.iitb.ac.in/~venkat/rtimanifesto.html
[4.h] Article “RTLinux Whitepaper”, Victor Yodaiken

http://www.vmlinux.org/rtl/docs/RTLinux-Approach.pdf

[4.i]] Conjunt d’articles sobre RTLinux, web de “vmlinux”
http://www.vmlinux.org/

[4j] “Getting Started with RTLinux” FSM Labs, Inc
http://courses.engr.uky.edu/fall0S/ECE/ee599-004/rtldoc-3.2-pre1/doc/html/Getting Started/

[4.k] Article “ Desarrollo cruzado de sistemas empotradors, basados en RTLinux”,
Pau Mendoza, Ismael Ripoll, Joan Vila, Alfons Crespo. (Univerisada Politecnica de Valenia)
http://trecom.upv.es/articles/Sist empotrados en RTLinux Jornadas RT-2001.pdf

[4.1] RTLinux Lightweight TCP/IP Stack (RTL-IwIP)

http://rtl-lwip.sourceforge.net/

5.- Tel/TK

[5.a] “Tutorial de Tcl/Tk” Universidad de Oviedo
http://www6.uniovi.es/tcl/tutorial/

[5.b] Web de “Tcl Developer Xchange”
http://www.tcl.tk/

- 184 -

[5.c] Wiki de Tcl/Tk “The Tcler’s Wiki”

http://wiki.tcl.tk/
[5.d] Exemples d’aplicacions Tcl/Tk

http://tcltk.free.fr/
[5.e] Visual Tcl

http://vtcl.sourceforge.net/

6.- Control computacional

[6.a] Control PID (Tutorial Matlab)
http://ib.cnea.gov.ar/~control2/Links/Tutorial Matlab_esp/PID.html
[6.b] Apunts Sistemes de control (Sistemas Realimentados)

http://avellano.fis.usal.es/~bcurto/docencia/controllIQ/pdf/RepresM-1V.pdf
[6.c] Apunts professor.

- 185 -

Universitat
A Autonoma e t se

de Barcelona Escola Técnica Superior d’Enginyeria

[’alumne, Marc Franco i Farré
CERTIFICA:
Que el treball a que correspon aquesta memoria ha estat realitzat per ell.

I per tal que consti firma la present.

SINAL: v

Bellaterra, 11 de Juny de 2007

- Resum -

El projecte “Analisi del sistema operatiu RTLinux e implementacio
d’un entorn de desenvolupament de tasques en temps real” analitza
la possibilitat de crear un entorn de desenvolupament de tasques en
temps real per poder crear sistemes de control complex, tot aixo es
fa utilitzant codi lliure. Inicialment es fa un aprenentatge sobre el
concepte de temps real, després s’elegeix el sistema operatiu en
temps real RTLinux per a crear l’entorn de desenvolupament
utilitzant el llenguatge de programacio Tcl/Tk. Es creen un conjunt
d’aplicacions (pel control computacional) per estudiar la viabilitat
de la construccio de I’entorn desitjat per facilitar la tasca de 'usuari
final. Aquest projecte obre multitud de possibles camins a continuar:
comunicacié remota, implementacié de planificadors, estudi de
controladors, etc.

s o i

- Resumen -

El proyecto “Andlisis del sistema operativo RTLinux e
implementacion de un entorno de desarrollo de tareas en tiempo
real” analiza la posibilidad de crear un entorno de desarrollo de
tareas en tiempo real para poder crear sistemas de control
complejos, todo esto se hace usando codigo libre. Inicialmente se
hace un aprendizaje del concepto de tiempo real, después se elige el
sistema operativo RTLinux para crear el entorno de desarrollo
usando el lenguaje de programacion Tcl/Tk. Se crean un conjunto de
aplicaciones (para el control computacional) para estudiar la
viabilidad de la construccion del entorno deseado para facilitar la
tarea del usuario final. Este proyecto abre multitud de posibles
caminos a seguir: comunicacion remota, implementacion de
planificadores, estudio de controladores, etc.

eIt

- Summary -

This project, “Analysis of the RTLiunx operative system and
implementation of a real time task-development environment”,
analyses the posibility to create a real time task development
environment to create complex real time control systems using a free
code. Initially, the concept of "real time" is learned; afterwards,
RTLinux operative system is chosen to create the real time task
development environment with Tcl/Tk language. A set of aplications
are created(for control computation) to study the feasibility of the
construction of the desired environment to make tasks easier for the
final user. This project opens a great range of paths to carry on the
research: remote communication, schedulers development, contorller
study, etc.

- 188 -

