
INVARIANTS DE MATRIUS HADAMARD EN
MAGMA

Memòria del projecte de �nal de carrera correspo-
nent als estudis d'Enginyeria Superior en Informà-
tica presentat per Francesc Díez Aquilué i dirigit
per Mercè Villanueva.

Bellaterra, 19 de Setembre de 2007

La �rmant, Mercè Villanueva, professora del De-
partament d'Enginyeria de la Informació i de les
Comunicacions de la Universitat Autònoma de Barcelona

CERTIFICA:

Que la present memòria ha estat realitzada sota la seva
direcció per Francesc Díez Aquilué

Bellaterra, 19 de Setembre de 2007

Firmat: Mercè Villanueva

ii

A la meva mare que ens va deixar enguany.
A la Núria, la Irene i l'Helena per la seva paciència.

iii

iv

Índex

1 Introducció 1
1.1 Objectius . 4
1.2 Contingut de la memòria . 5

2 Fonaments Teòrics 7
2.1 Matrius de Hadamard . 7
2.2 Codis Hadamard . 9
2.3 Construccions de matrius o codis Hadamard 10

2.3.1 A partir de codis Hamming 10
2.3.2 Transposada . 11
2.3.3 Producte de Kronecker 12
2.3.4 Tècnica del Switching 14

2.4 Invariants: 4-pro�le . 14
2.5 Invariants: SHDE . 17
2.6 Invariants: Rang i Nucli . 20

2.6.1 Rang dels codis Hadamard 20
2.6.2 Dimensió del nucli dels codis Hadamard 21
2.6.3 Rang i nucli dels codis Hadamard 22
2.6.4 Construcció de matrius Hadamard d'ordre n = 2t · s

amb rang i dimensió de nucli 23

3 Plani�cació del projecte 27
3.1 Objectius . 27
3.2 Tasques a realitzar . 28

v

3.3 Plani�cació inicial i �nal . 29
3.3.1 Plani�cació temporal inicial 29
3.3.2 Plani�cació temporal �nal 30

4 Entorn de desenvolupament 33
4.1 Sistema de computació simbòlica Magma 33
4.2 Estructura del Magma . 34

4.2.1 Creació de funcions i procediments en Magma 35
4.2.2 Creació d'un package en Magma 37

4.3 Funcions del Magma . 40
4.4 Regles per executar grans càlculs. 45

5 Desenvolupament del projecte 47
5.1 Codi extern . 47

5.1.1 Matrius Hadamard i conversió de codis 47
5.1.2 Invariants de codis Hadamard 48
5.1.3 Construccions de les matrius de Hadamard 63
5.1.4 Altres funcions . 81

5.2 Pas de codi extern a Package 82
5.3 Test de proves . 84

5.3.1 Test unitari . 84
5.3.2 Test d'integració . 87

5.4 Proves de �abilitat . 90
5.4.1 Proves de �abilitat de la funció KernelZ2(C) 90
5.4.2 Proves de �abilitat de les funcions que implementen la

invariant SHDE de Kai-Tai Fang i Gennian Ge 91
5.4.3 Proves de �abilitat de la funció que implementa la cons-

trucció de matrius Hadamard d'ordre n = 2t · s 97
5.5 Proves de rendiment . 100

6 Resultats 103
6.1 Invariants: 4-pro�le, rang i nucli i SHDE 103

vi

6.2 Construcció de matrius amb rang i nucli 110

7 Conclusions 115
7.1 Conclusions . 115

8 Handbook of Magma Functions 119
8.1 Introduction . 119
8.2 Hadamard matrices and codes converting 120
8.3 Invariants of (Hadamard) codes 122
8.4 Construction of (Hadamard) matrices 126
8.5 Hadamard Database . 134

Bibliogra�a 135

vii

viii

Índex de �gures

2.1 Switching . 15

3.1 Llegenda de colors de les tasques 29
3.2 Plani�cació temporal inicial. 30
3.3 Plani�cació temporal �nal. 30

ix

x

Capítol 1

Introducció

En el 1893, el �dépisté� Jacques Hadamard va trobar unes matrius quadrades
d'ordres 12 i 20 amb valors ±1 que tenien totes les seves �les (i columnes)
ortogonals. Aquestes matrius, X = (xij), satisfeien la igualtat de la següent
desigualtat |detX|2 ≤ ∏n

i=1

∑n
j=1 |xij|2 i maximitzen el determinant. Mal-

grat que Hadamard es preguntava de fet quines matrius amb valors en el
cercle unitari complex la satisfeien, el seu nom paradoxalment ha esdevingut
de�nitivament associat als tipus de matrius reals que va trobar.

Hadamard no va ser pas el primer en estudiar aquestes matrius. J.J.
Sylvester en el 1867 en el seu escrit titulat salvatgement (o pot ser hauria
de dir �silvestrement�) �Thoughts on inverse orthogonal matrices, simulta-
neous sign-successions and tessellated pavements in two or more colours with
application to Newton's rule, ornamental tile work and the theory of numbers�
troba aquestes matrius per tots els ordres potències de 2. Nogensmenys
Hadamard conjectura que les matrius quadrades amb valors ±1, ortogonals
en �les (i columnes), i màxim determinant podrien existir pels ordres 1, 2, i
4m.

Així doncs la conjectura de Hadamard estableix que per tot n enter positiu
i divisible per 4, existeix una matriu quadrada H d'ordre n, amb tots els seus
valors ±1, tal que HHT = nI. Encara que pugui semblar que la conjectura

1

2 CAPÍTOL 1. INTRODUCCIÓ

de Hadamard és un problema similar als més difícils problemes matemàtics
per la simplicitat decebedora del seu plantejament, no obstant això és de
naturalesa diferent. És diferent per les seves extenses conseqüències en molts
camps de recerca, tal com la teoria del disseny, la teoria de la informació i la
teoria de grafs. Mentre que el valor dels grans problemes matemàtics, com
l'últim teorema de Fermat per exemple, rau en els subproductes matemàtics
que han resultat de l'intent per resoldre'ls.

Quan el 14 de Novembre de 1971 el prototip espacial d'orbitador de la
NASA Mariner 9, després de 5 mesos i mig de viatge, va arribar a Mart,
va esdevenir la primera nau espacial en orbitar un altre planeta diferent de
la Terra. Degut a una turmenta de pols, l'ordinador de la nau es va haver
de reprogramar des de la Terra per tal de posposar un parell de mesos la
retransmissió de les 7.329 imatges en blanc i negre d'una qualitat sorprenent
del 80% de la superfície del planeta vermell des d'una alçada de 1.500Km

durant 349 dies, una resolució de 1.000 a 100 metres per pixel, i amb 6 bits
de dades per pixel que representaven 64 valors de l'escala de grisos.

El Mariner 9 és petit 1, mitja tona destinada quasi tota al potent sistema
de propulsió per controlar la nau espacial en la orbita marciana. Un dels
sis instruments que portava era l'aparell fotogrà�c que, pels problemes de
càrrega esmentats, havia d'incloure un transmissor petit, per tant la senyal
transmesa havia de ser direccional. Però, en tant llargues distàncies, la senyal
té problemes d'alineament. En la transmissió cada aproximadament 5 vega-
des la mida de les dades originals se havia de realinear el transmissor. A més
a més, la senyal que arribava a la Terra era molt feble i havia d'ampli�car-se,
el soroll de l'espai afegit al soroll tèrmic de l'ampli�cador produïen errors en
la transmissió.

La correcció d'errors en la transmissió d'imatges es va adequar als 30 bits
de màxima longitud útil. Enlloc d'un fàcilment implementable codi de repe-
tició de 5 bits que nomès en corregeix 2, es va utilitzar un codi Hadamard
lineal (32, 6, 16) que podia corregir �ns a 7 bits per paraula codi. La proba-

1Esgotat i erm, encara dóna voltes �ns al 2020 que entrarà en l'atmosfera marciana.

3

bilitat d'error en la imatge es reduïa només al 0.01% (el codi de repetició de
5 bits la tindria del 1%). Gràcies a la linealitat del codi Hadamard triat, re-
sultava més econòmic en espai i pes, enlloc d'emmagatzemar les 64 paraules
codi de 32 bits, dissenyar circuits que calculin les paraules codi mitjançant la
matriu generadora del codi. A més a més, la matriu de Hadamard s'obtenia
recursivament pel producte directe amb la matriu de Hadamard d'ordre 2 i
els seus ordres potències de 2 eren anàlogues a les funcions de Walsh, per
tant tot el tractament per ordinador és podia aconseguir utilitzant suma-
dors, que són més ràpids i fàcils d'implementar a nivell de hardware, enlloc
de multiplicadors que són molt més lents.

A més de la utilització dels codis Hadamard lineals per a la detecció i
correcció d'errors, el processament del senyal, el multiplexatge òptic, el dis-
seny i anàlisis estadístics, ... [3], últimament s'estan usant amb tècniques de
�ngerprinting que permeten fer còpies autoritzades de música i video digital
inserint un conjunt únic i diferent de marques que les �del.litza.

De tots aquests antecedents esmentats en clau novel.lística es dedueix que
un projecte que parli de les matrius Hadamard és prou interessant. I és per
això que em vaig decidir a fer el PFC sobre matrius i codis de Hadamard
dins del marc de la teoria de codis.

La implementació del projecte es realitza amb el paquet de software com-
putacional algebraic Magma perquè ja té funcions per treballar amb ma-
trius Hadamard, i perquè és un dels que empra el Grup de Combinatòria i
Codi�cació, CCG, del Departament d'Enginyeria de la Informació i de les
Comunicacions. Aquest projecte utilitzarà la infraestructura del grup per as-
segurar la �abilitat tècnica, operativa i legal. I els resultats obtinguts podran
ser utilitzats pel grup.

El projecte, els objectius del qual els descriuré a continuació, tracta de la
construcció de noves matrius i codis Hadamard utilitzant dues invariants de
tipus estructural o algebraic que són el rang i la dimensió del nucli.

4 CAPÍTOL 1. INTRODUCCIÓ

L'any passat es van iniciar dos projectes en aquest sentit [10, 11]. L'un
era per la construcció de matrius i codis de Hadamard de mida n = 2t, i
l'altre per la resta que són els de mida n = 2t·s, on s 6= 1 i senar. Aquest
segón projecte també incluïa l'anàlisi del rang i la dimensió del nucli com
invariants i veure el grau de classi�cació que aportaven en les matrius de
Hadamard.

Aquest projecte és la continuació d'aquests en el sentit de generalitzar
e integrar la funcionalitat dels dos projectes anteriors. Això ha comportat
haver de crear noves funcions, modi�car-ne d'altres, i també substituir funci-
ons especí�ques per casos per una sola funció recursiva. També, de passada,
analitzarem un nou invariant proposat pels xinesos Kai-Tai Fang i Gennian
Ge.

1.1 Objectius

• Estudiar les propietats i característiques de les matrius i codis Hada-
mard, així com alguns dels seus invariants que ens ajuden a classi�car-
les. Aprendre a utilitzar el Magma i conèixer el treball dels dos projec-
tistes anteriors [10, 11] sobre la funcionalitat que ofereix el Magma per
treballar amb matrius i codis Hadamard. Saber per quins ordres exis-
teixen i quines matrius de Hadamard no equivalents conté la llibreria
del Magma.

• Dissenyar e implementar funcions que construeixin totes les matrius
de Hadamard no equivalents amb diferents rangs i dimensions del nu-
cli per un ordre donat, generalitzant i racionalitzant algunes funcions
desenvolupades en els projectes anteriors. Millorar la funció que calcula
el nucli d'un codi binari: KernelZ2(C), tot provant la seva �abilitat i
rapidesa.

1.2. CONTINGUT DE LA MEMÒRIA 5

• Analitzar la invariant 4-pro�le implementada en el Magma i les invari-
ants rang i dimensió del nucli introduïts en els articles [8, 9]. Dissenyar,
implementar i analitzar la invariant de Kai-Tai Fang i Gennian Ge en el
seus articles [5, 4]. Comparar aquestes invariants esmentades sobre la
base de dades de matrius Hadamard del Magma, i en algun cas, sobre
un grup de matrius de Hadamard no equivalents d'altres procedències.

• Construir matrius de Hadamard inequivalents a les matrius Hadamard
de la llibreria del Magma.

1.2 Contingut de la memòria

El contingut de la memòria està organitzat de la següent manera:

• Capítol 2. Fonaments teòrics: En aquest capítol rau la part teòrica
en que es fonamenta aquest projecte. Matrius i codis de Hadamard,
i diferents construccions de les matrius de Hadamard segons les dues
invariants rang i dimensió del nucli. També farem una breu explicació
de la invariant 4-pro�le i de la invariant de Kai-Tai Fang i Gennian Ge.

• Capítol 3. Plani�cació del projecte: En aquest capítol es detallen els
objectius del projecte, els quals generen les tasques a realitzar. Sobre
elles es fa una plani�cació temporal inicial segons els recursos disponi-
bles.

• Capítol 4. Entorn de desenvolupament: En aquest capítol explicarem
la màquina i la part del Magma que utilitzarem excepte el llenguat-
ge: funcions i procediments, packages i les funcions del Magma per
treballar amb les matrius de Hadamard.

6 CAPÍTOL 1. INTRODUCCIÓ

• Capítol 5. Desenvolupament del projecte: En aquest capítol explica-
rem les funcions que hem implementat, els criteris que hem seguit per
a la seva realització, com fer un package amb aquestes funcions i la re-
alització dels tests per assegurar la correcció, la integritat, la �abilitat
i el rendiment de les funcions implementades.

• Capítol 6. Resultats: En aquest capítol es mostren els resultats obtin-
guts en l'assoliment dels objectius del projecte.

• Capítol 7. Conclusions: En aquest capítol resumim els resultats ob-
tinguts, relacionem els objectius assolits del projecte, i es proposen
ampliacions o noves línies de treball a seguir de cara al futur.

• Capítol 8. Handbook of Magma Functions: Hadamard matrices and
codes. Aquest capítol en anglès conté el manual d'aquelles funcions que
hem implementat, executables per l'usuari i d'acord amb la estructu-
ració seguida pels manuals del Magma.

• Bibliogra�a.

• Apèndix A : CD amb codi font, tests, exemples i manual.

Capítol 2

Fonaments Teòrics

Aquesta secció està extreta pràcticament en la seva totalitat dels respectius
fonaments teòrics dels dos projectes anteriors sobre matrius i codis Hada-
mard [10, 11]. Hem afegit la part teòrica corresponent a la invariant nova
implementada, batejada com SHDE, proposada pels xinesos Kai-Tai Fang i
Gennian Ge, i l'algorisme per a la construcció de matrius Hadamard d'ordre
n = 2t · s amb rang i dimensió de nucli.

2.1 Matrius de Hadamard

Una matriu Hadamard H d'ordre n és una matriu quadrada n×n amb valors
±1 tal que HHT = nI, on I és la matriu identitat del mateix ordre. En altres
paraules, el producte escalar de qualsevol �la per ella mateixa és n i les �les
distintes són ortogonals. De nH−1 = HT , tenim que HT H = nI, per tant les
columnes també són ortogonals i la transposada d'una matriu de Hadamard
és també matriu Hadamard.

Els exemples de matrius Hadamard no binàries que mostrarem en aquest
capítol, representem per simplicitat el valor −1 per −. Alguns exemples de
matrius Hadamard són:

7

8 CAPÍTOL 2. FONAMENTS TEÒRICS

H1 =

(
− 1

− −

)
H2 =




− 1 1 1

1 1 − 1

− − − 1

− 1 − −




H3 =




1 1 − 1 1 1 − 1

1 − − − − 1 1 1

1 1 − 1 − − 1 −
− − − 1 − − − 1

1 1 1 − − − − 1

1 − − − 1 − − −
− 1 − − − 1 − −
1 − 1 1 − 1 − −




De l'ortogonalitat de les �les (columnes) de les matrius de Hadamard
es dedueix que qualsevol parella de �les (columnes) coincideix i difereix en
n/2 components, això fa necessari en principi que l'ordre d'una matriu de
Hadamard, fora de l'ordre 1, sigui parell. Concriguraetant més, en [7] es
demostra que si una matriu Hadamard H d'ordre n existeix, llavors n és 1,
2 o 4m.

Dues matrius de Hadamard són equivalents si una pot obtenir-se de l'altre
permutant i/o negant, �les i/o columnes. Si utilitzem aquestes transforma-
cions podem obtenir una matriu Hadamard equivalent, on la primera �la i
columna són tot 1's, anomenada normalitzada. Les corresponents matrius
normalitzades dels exemples anteriors són:

H ′
1 =

(
1 1

1 −

)
H ′

2 =




1 1 1 1

1 1 − −
1 − 1 −
1 − − 1




H ′
3 =




1 1 1 1 1 1 1 1

1 1 1 1 − − − −
1 1 − − 1 1 − −
1 1 − − − − 1 1

1 − 1 − 1 − 1 −
1 − 1 − − 1 − 1

1 − − 1 1 − − 1

1 − − 1 − 1 1 −




2.2. CODIS HADAMARD 9

A partir d'ara, utilitzarem H ′ per denotar una matriu Hadamard norma-
litzada d'ordre n.

2.2 Codis Hadamard
Direm que Fn representa el conjunt de tots els vectors binaris de longitud n.
La distància de Hamming entre dos vectors x, y ∈ Fn, d(x, y), és el número de
coordenades on x i y difereixen. Un codi binari C(n,M, d) és un subconjunt
de Fn on |C| = M i d(cl, c2) ≥ d per tota parella cl, c2 ∈ C. Els elements
d'un codi s'anomenen paraules codi i d és la distancia mínima. Denotem 〈C〉
el subespai lineal i binari generat per C. Si C = 〈C〉, aleshores direm que el
codi C és lineal.

Si substituïm els 1's per 0's i els −1's per 1's obtindrem la matriu binària
Hadamard, que escriurem c(H ′). A partir d'una matriu binària Hadamard es
pot construir el codi Hadamard amb les �les de la matriu binària i els seus
complementaris. El codi binari Hadamard és (n, 2n, n/2), és a dir, és un codi
de longitud n, amb 2n paraules codi i distància mínima n/2.

Seguint amb els exemples proposats �ns ara, obtenim les següents matrius
binàries i els seus corresponents codis Hadamard:

c(H ′
1) =

(
0 0

0 1

)
H1 =




0 0

0 1

1 1

1 0




c(H ′
2) =




0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0




H2 =




0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1




10 CAPÍTOL 2. FONAMENTS TEÒRICS

c(H ′
3) =




0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 0 1 1 1 1 0 0

0 1 0 1 0 1 0 1

0 1 0 1 1 0 1 0

0 1 1 0 0 1 1 0

0 1 1 0 1 0 0 1




H3 =




0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 0 1 1 1 1 0 0

0 1 0 1 0 1 0 1

0 1 0 1 1 0 1 0

0 1 1 0 0 1 1 0

0 1 1 0 1 0 0 1

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 1 0 0 0 0 1 1

1 0 1 0 1 0 1 0

1 0 1 0 0 1 0 1

1 0 0 1 1 0 0 1

1 0 0 1 0 1 1 0




2.3 Construccions de matrius o codis Hadamard

2.3.1 A partir de codis Hamming

Un codi 1-perfecte C de longitud n és un subconjunt de Fn, amb distància
mínima d = 3, de manera que qualsevol vector de Fn es troba a una distància
menor o igual que 1 d'una paraula codi. Per qualsevol t > 1 existeix exac-
tament un codi 1-perfecte lineal de longitud 2t − 1 conegut com a codi de
Hamming. El codi estès del codi C és un codi que resulta d'afegir un dígit
de paritat per a cada paraula codi de C, per tant serà un codi de longitud
n = 2t. Donat un codi lineal C de longitud n, direm que el seu codi dual és
C⊥ = {v ∈ Fn|∀x ∈ C, v · x = 0} i que també és lineal.

La construcció més simple d'una matriu Hadamard de mida n = 2t s'obté
si considerem el codi dual d'un codi estès de Hamming. Per exemple, el dual
del codi de Hamming estès de longitud 4, que és el codi lineal amb una matriu
generadora,

2.3. CONSTRUCCIONS DE MATRIUS O CODIS HADAMARD 11



1 1 1 1

0 0 1 1

0 1 0 1




és un codi Hadamard H. En aquest cas:

H =




0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1




c(H ′) =




0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0




H ′ =




1 1 1 1

1 1 − −
1 − 1 −
1 − − 1




2.3.2 Transposada
Com ja s'ha vist a l'apartat 2.1, en una matriu Hadamard les columnes
tenen les mateixes propietats d'ortogonalitat que les �les, HT H = nI, per
tant la transposada de qualsevol matriu Hadamard, H, és també una matriu
Hadamard.

Per exemple, si utilitzem el Magma podem veure que com que la matriu
a és de Hadamard, la seva transposada at també ho és.

> D:=HadamardDatabase();
> a:=Matrix(D,8,1);
> a;
[1 1 1 1 1 1 1 1]
[1 1 1 1 -1 -1 -1 -1]
[1 1 -1 -1 1 1 -1 -1]
[1 1 -1 -1 -1 -1 1 1]
[1 -1 1 -1 1 -1 1 -1]
[1 -1 1 -1 -1 1 -1 1]
[1 -1 -1 1 1 -1 -1 1]
[1 -1 -1 1 -1 1 1 -1]
> at:=Transpose(a);
> at;

12 CAPÍTOL 2. FONAMENTS TEÒRICS

[1 1 1 1 1 1 1 1]
[1 1 1 1 -1 -1 -1 -1]
[1 1 -1 -1 1 1 -1 -1]
[1 1 -1 -1 -1 -1 1 1]
[1 -1 1 -1 1 -1 1 -1]
[1 -1 1 -1 -1 1 -1 1]
[1 -1 -1 1 1 -1 -1 1]
[1 -1 -1 1 -1 1 1 -1]
> IsHadamard(at);
true

2.3.3 Producte de Kronecker

Les matrius Hadamard també es poden construir utilitzant el producte de
Kronecker. Així és, si H ′ = (hij) és una matriu Hadamard n×n i B1, B2, . . . , Bn

són matrius Hadamard k × k, la matriu que s'obté

H ′ ⊗ [B1, B2, . . . , Bn] =




h11B1 h12B1 · · · h1nB1

h21B2 h22B2 · · · h2nB2

...
hn1Bn hn2Bn · · · hnnBn




és d'ordre nk × nk i és, per construcció, també matriu Hadamard [8]. Si
B1 = · · · = Bn = B, es pot escriure H ′ ⊗ [B1, B2, . . . , Bn] = H ′ ⊗B.

Tot seguit s'expliquen les formes concretes on utilitzarem el producte de
Kronecker en el projecte.

Producte de Kronecker amb matrius Sylvester

Considerem que S és la matriu Hadamard
(

1 1

1 −

)
.

Començant des d'una matriu Hadamard S0 podem de�nir recursivament St

per a t ≥ 1, amb l'equació recurrent St = S ⊗ [St−1, St−1] = S ⊗ St−1.
Agafem S0 = (1), la successió corresponent S1, S2, S3, . . ., St, ens dóna
matrius Hadamard de totes les mides que són potències de dos, concretament

2.3. CONSTRUCCIONS DE MATRIUS O CODIS HADAMARD 13

S0 = (1) S1 = S ⊗ S0 =

(
1 1
1 −

)
S2 = S ⊗ S1 =




1 1 1 1
1 − 1 −
1 1 − −
1 − − 1




S2 = H ′ c(H ′) =




0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0


 H =




0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0
1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1




la matriu Hadmard St és de mida n = 2t. Aquestes matrius s'anomenen
matrius Sylvester. Sabem que el codi binari d'aquestes matrius Hadamard,
St, és el dual del codi de Hamming estès de longitud n = 2t. Per tant són
equivalents als codis Hadamard vistos a l'apartat 2.3.1 A l'exemple següent
es pot veure com el codi obtingut és equivalent a l'obtingut a l'exemple de
l'apartat 2.3.1.

Producte de Kronecker amb dues matrius Hadamard

El producte de Kronecker, com ja hem vist, es pot utilitzar de formes dife-
rents, ja sigui amb una o més matrius de Hadamard. Així doncs, aquesta
construcció, concretament, consisteix en fer el producte de Kronecker amb la
matriu S i dues matrius (diferents) de la mateixa mida n, és a dir S⊗[B1, B2].

Sabem que si es permutem les columnes d'una matriu Hadamard, conti-
nua essent una matriu Hadamard, per tant un cas particular de la construc-
ció anterior que també s'utilitzarà, consisteix en fer el producte de Kronecker
amb la matriu S i dues matrius Hadamard B1 i π(B2), on π és una permuta-
ció de n coordenades i π(B2) és la matriu B2 amb les columnes permutades,
és a dir S ⊗ [B1, π(B2)].

14 CAPÍTOL 2. FONAMENTS TEÒRICS

2.3.4 Tècnica del Switching
Podem construir matrius Hadamard fent servir la tècnica del Switching.
Aquesta tècnica consisteix en agafar un subconjunt S0 de vectors d'un codi
i intercanviar-lo per un nou subconjunt S1. Explicat de forma matemàtica
seria, (C\S0) ∪ S1.

En el cas concret de les matrius Hadamard construïdes amb aquesta tèc-
nica, es pot triar que el subconjunt del codi Hadamard a substituir sigui un
traslladat d'un subespai de dimensió 3 del nucli , S0 en aquest cas. A més,
també es pot triar que el nou subconjunt, S1 sigui la suma per cada vector
pertanyent a S0 amb v1v2, on v1 i v2 són els dos vectors base del nucli diferents
al vector tot uns, (1, 1, · · · , 1) i v1v2 (= v1 and v2) representa el vector amb
1's a les coordenades on els dos vectors tenen un 1 i 0 a la resta de coorde-
nades. Per exemple, si C és un codi Hadamard amb nucli K(C) = 〈1, v1, v2〉
on

v1 = (1, 1, 1, 1, 1, ..., 1︸ ︷︷ ︸
n/2

, 0, 0, 0, 0, 0, ..., 0︸ ︷︷ ︸
n/2

),

v2 = (1, 1, ..., 1︸ ︷︷ ︸
n/4

, 0, ..., 0︸ ︷︷ ︸
n/4

, 1, ..., 1︸ ︷︷ ︸
n/4

, 0, ..., 0︸ ︷︷ ︸
n/4

),

v1v2 = (1, 1, ..., 1︸ ︷︷ ︸
n/4

, 0, 0, 0, 0, 0, 0, ..., 0, 0, 0︸ ︷︷ ︸
3n/4

),

(2.1)

, aleshores C\(K(C) + x) ∪ (K(C) + x + v1v2) és també un codi Hadamard
en aquest cas concret.

A la Figura 2.1 es mostra de forma grà�ca la tècnica del Switching.

2.4 Invariants: 4-pro�le
El problema per identi�car l'equivalència entre dues matrius Hadamard és
un problema NP-hard ja que es podrien arribar a fer (2nn!)2 comparacions.
La invariant com a condició necessària (però no su�cient) en l'equivalència
entre matrius Hadamard, serveix per identi�car les matrius Hadamard ine-

2.4. INVARIANTS: 4-PROFILE 15

 C

 K=<1,v1,v2>

.x S0=K+x S1=S0+v1v2

Figura 2.1: Switching

quivalents. A [5] es proposa una invariant més sensible que pot servir per
identi�car dues matrius Hadamard inequivalents, ja que si dues matrius Ha-
damard són equivalents tenen el mateix 4-pro�le, 1'invers, però, no és cert.
Aquesta invariant és e1 4-pro�le.

Suposem que H ′ = (hij) és una matriu Hadamard de mida n ≥ 8. Es
de�neix

pijkl =

∣∣∣∣∣
n∑

x=1

hixhjxhkxhlx

∣∣∣∣∣ (2.2)

Diem que π(m) és el numero de conjunts, {i, j, k, l}, de quatre �les dife-
rents on m = pijkl, π(m) és el 4-pro�le d'H. De forma similar es pot de�nir
el 6-pro�le, el 8-pro�le, etc.

La complexitat d'un algorisme per calcular aquesta invariant, 4-pro�le
és: kn

(
n
k

)
. El Magma implementa aquest algorisme per calcular el 4-pro�le

amb la funció HadamardInvariant(H).
Tot seguit es mostra un exemple de com calcular el 4-pro�le i el resultat

que se n'obté amb el Magma.

16 CAPÍTOL 2. FONAMENTS TEÒRICS

H ′ =




1 1 1 1 1 1 1 1

1 1 1 1 − − − −
1 1 − − 1 1 − −
1 1 − − − − 1 1

1 − 1 − 1 − 1 −
1 − 1 − − 1 − 1

1 − − 1 1 − − 1

1 − − 1 − 1 1 −




p1234 = |
8∑

x=1

h1xh2xh3xh4x| = |(h11h21h31h41) + (h12h22h32h42) + (h13h23h33h43)+

· · ·+ (h18h28h38h48)| = |81| = 8

(2.3)

p1235 = |
8∑

x=1

h1xh2xh3xh5x| = |(h11h21h31h51) + (h12h22h32h52) + (h13h23h33h53)+

· · ·+ (h18h28h38h58)| = |0| = 0

(2.4)

p1236 = |
8∑

x=1

h1xh2xh3xh6x| = |(h11h21h31h61) + (h12h22h32h62) + (h13h23h33h63)+

· · ·+ (h18h28h38h68)| = |0| = 0

(2.5)
etc.
Es segueix així amb totes les combinacions possibles de 4 �les i al �nal s'han
de sumar el nombre de 8's i 0's que han sortit, el resultat coincideix amb
l'obtingut amb el Magma.
> D:=HadamardDatabase();
> a:=Matrix(D,8,1);
> a;
[1 1 1 1 1 1 1 1]
[1 1 1 1 -1 -1 -1 -1]
[1 1 -1 -1 1 1 -1 -1]
[1 1 -1 -1 -1 -1 1 1]
[1 -1 1 -1 1 -1 1 -1]
[1 -1 1 -1 -1 1 -1 1]
[1 -1 -1 1 1 -1 -1 1]
[1 -1 -1 1 -1 1 1 -1]

2.5. INVARIANTS: SHDE 17

> HadamardInvariant(a);
[56, 14]

Comprovem que 56 + 14 = 70 que són les combinacions de 8 elements
agafats de 4 en 4,

(
8
4

)
.

2.5 Invariants: SHDE
Això és un resum dels fonaments teòrics necessaris per la presentació d'a-
questa invariant extret de l'article dels xinesos Kai-Tai Fang i Gennian Ge
[5]. Es de�neix la distància simètrica de Hamming entre dos �les qualse-
vol com el menor entre el número de posicions amb el mateix valor i dife-
rent valor. Per exemple la distància simètrica de Hamming entre les �les
(1, 1,−,−, 1, 1,−,−) i (1,−, 1,−,−,−, 1, 1) és 2, mentre que la distància de
Hamming és 6. De la de�nició es dedueix que el valor màxim de la distància
simètrica de Hamming és la meitat de la longitud de les �les.

Per la detecció de la inequivalència entre matrius de Hadamard, de�nim
ara un conjunt de magnituds que són funcions de les distàncies simètriques
de Hamming i les distàncies simètriques de Hamming projectades d'una ma-
triu Hadamard. Donada una matriu Hadamard H d'ordre n, sigui Si(H) el
número de parelles de �les distintes que la distància simètrica de Hamming
és i. Ens referirem a (S0(H), ..., Sn/2(H)) com la distribució de distància de
H. De�nim

Ba(H) =

n/2∑
i=0

Si(H)(ai + an−i) (2.6)

com l'enumerador de distància de H, on a és un número positiu.
Donada una k(1 ≤ k ≤ n), de�nim

Ba(H
K) =

k/2∑
i=0

Si(H
K)(ai + ak−i) (2.7)

com el valor Ba sobre una projecció de k columnes, on Si(H
K) és la distribució

de distància de HK (només considerem la distància simètrica de Hamming

18 CAPÍTOL 2. FONAMENTS TEÒRICS

de k columnes de les �les de H).
La distància simètrica està íntimament lligada al producte escalar. Sigui

K un subconjunt de k elements de X = {1, 2, . . . , n}. Sigui uK , vK la i-èssima
i la j-èssima �la de HK respectivament, aleshores:

〈uK , vK〉 =
∑
c∈K

hichjc

.
Sigui d la distància simètrica de uK i vK . Quan d és el número de posicions

on uK i vK són idèntics, k − d és el número de posicions on uK i vK són
diferents. I també a l'inrevés, quan d és el número de posicions on uK i
vK són diferents, k − d és el número de posicions on uK i vK són idèntics.
En qualsevol cas, k − 2d = |〈uK , vK〉|. Per tant, d = (k − |〈uK , vK〉|)/2.
En Ba(H

K), podem substituir ai i ak−i per a(k−|〈uK ,vK〉|)/2 i a(k+|〈uK ,vK〉|)/2

respectivament. Això redueix el càlcul de Ba(H
K), doncs és més fàcil de

calcular el producte escalar que la distància simètrica i l'equació 2.7 ara
queda

Ba(H
K) =

k/2∑
i=0

Si(H
K)(ad + ak−d). (2.8)

Donada una k (1 ≤ k ≤ n), de�nim FBa,k
(H) com la distribució de valors

Ba sobre totes les projeccions de k columnes. Resulta que FBa,k
(H) és un

invariant a les permutacions i negacions de �les i columnes. Per tant, a con-
tinuació aquest teorema estableix la condició necessària per la equivalència
de matrius Hadamard.

Teorema 2.5.1 Si les matrius de Hadamard H1 i H2 són equivalents, ales-
hores FBa,k

(H1) = FBa,k
(H2) per k = 1, 2, . . . , n/2.

Del Teorema 2.5.1 podem concloure que H1 i H2 són inequivalents si per
alguna k tenim que FBa,k

(H1) 6= FBa,k
(H2).

Els següents dos lemes que veurem, ens poden estalviar molt cost com-
putacional en la classi�cació de les matrius de Hadamard.

2.5. INVARIANTS: SHDE 19

Lema 2.5.2 Les relacions FBa,k
(H1) = FBa,k

(H2), k = 1, 2. es compleixen
per qualsevol matrius de Hadamard H1 i H2 del mateix ordre.

Donat que dos �les qualsevol d'una matriu Hadamard d'ordre n són orto-
gonals, tenim que la distància de Hamming entre elles és n/2. Notem que el
residu d'una projecció de k columnes de H correspon a una projecció n− k

columnes de H i a l'inrevés. Per tant, tenim:

Lema 2.5.3 Siguin H1 i H2 dos matrius de Hadamard d'ordre n. Per qual-
sevol k (1 ≤ k ≤ n) FBa,k

(H1) = FBa,k
(H2) si i només si FBa,n−k

(H1) =

FBa,n−k
(H2).

A partir del Teorema 2.5.1 i els Lemes 2.5.2 i 2.5.3, es proposa el se-
güent algorisme per detectar matrius Hadamard inequivalents, on s'assigna
un número irracional pel paràmetre a.

Un algorisme per detectar matrius de Hadamard inequivalents
Pas 1. Posem k = 4.
Pas 2. Comparem FBa,k

(H1) amb FBa,k
(H2). Si no són iguals anem al pas 4.

Pas 3. Si k = n/2 hem fracasat intentant trobar la inequivalència entre H1 i
H2 i sortim. Sinó posem k = k + 2 i tornem al pas 2.
Pas 4. Conclourem que H1 i H2 no són equivalents i hem acabat.

Comentaris:

• Aquest algorisme quan fracassa vol dir que no sap si H1 i H2 són ine-
quivalents o equivalents.

• Comencem des de k = 4 enlloc de començar des de k = 3 e incrementem
k = k+2 enlloc de k = k+1, perquè des de l'experiència computacional
es descobreix que el càlcul de FBa,2i+1

(H) quasi té el mateix efecte que el
de FBa,2i

(H) a l'hora de distingir les matrius Hadamard inequivalents.

20 CAPÍTOL 2. FONAMENTS TEÒRICS

2.6 Invariants: Rang i Nucli
Dues propietats estructurals més dels codis no-lineals són el rang i el nucli
(en anglès, rank i kernel).

El rang d'un codi binari C de longitud n, rank(C), és simplement la
dimensió del subespai lineal generat per C. El nucli d'un codi binari C és

K(C) = {x ∈ Fn | x + C = C}

Si el vector tot zero pertany al codi, és a dir, si (0, 0, · · · , 0) ∈ C llavors
K(C) és un subespai lineal de C. Direm que ker(C) és la dimensió de K(C).
En general, C es pot escriure com una unió de cosets de K(C), i K(C) és el
codi lineal més gran pel qual això és cert.

En el pitjor dels casos, la complexitat dels algorismes utilitzats per calcu-
lar el rang i la dimensió del nucli és equivalent a resoldre un sistema d'equaci-
ons, per tant és d'ordre n3. Tot i això, és possible que la funció Dimension()
implementada pel Magma sigui més e�cient.

Aquestes dues invariants també poden servir per identi�car dues matrius
Hadamard inequivalents, ja que si dues matrius Hadamard són equivalents
els seus respectius codis Hadamard tenen el mateix rang i dimensió del nucli.

2.6.1 Rang dels codis Hadamard

Com es demostra a [8] podem dir que existeix un codi Hadamard de longitud
n = 2t, amb rang r, ∀r ∈ {t+1, · · · , n/2}. Per a codis Hadamard de longitud
4s i 8s on s > 1 i senar, se sap que el seu rang és 4s− 1 i 4s, respectivament
[9]. Per la resta de longituds, si existeix un codi Hadamard de longitud 4s,
amb s > 1 i senar, per tot t ≥ 3, llavors existeix un codi Hadamard de
longitud n = 2t.s amb rang r, ∀r ∈ {4s + t− 3, · · · , n/2} [9].

Per exemple, els codis Hadamard de longitud n = 12 tenen rang 11, els
de longitud n = 24 tenen rang 12 i els de longitud n = 243 = 48 se sap que
tenen rang r ∈ {13, 14, · · · , 24}.

2.6. INVARIANTS: RANG I NUCLI 21

2.6.2 Dimensió del nucli dels codis Hadamard

A [8] queda demostrat que la dimensió del nucli d'un codi Hadamard de
longitud n = 2t és k ∈ {1, 2, · · · , t − 1, t + 1}. A més, existeix un codi
Hadamard de longitud n = 2t per cada possible dimensió del nucli.

Per aquests codis Hadamard de longitud 2t, sempre n'existeix un de lineal
amb dimensió t+1, St. Es pot assumir que St està generat pels vectors binaris
1, vl, v2, · · · , vt de longitud 2t, on els vectors vi, ∀i ∈ {1, · · · , t}, són:

v1 = (1, 1, 1, 1, 1, ..., 1︸ ︷︷ ︸
n/2

, 0, 0, 0, 0, 0, ..., 0︸ ︷︷ ︸
n/2

),

v2 = (1, 1, ..., 1︸ ︷︷ ︸
n/4

, 0, ..., 0︸ ︷︷ ︸
n/4

, 1, ..., 1︸ ︷︷ ︸
n/4

, 0, ..., 0︸ ︷︷ ︸
n/4

),

...
vt = (1, ..., 1︸ ︷︷ ︸

n/2t

, 0, ..., 0︸ ︷︷ ︸
n/2t

, 1, ..., 1︸ ︷︷ ︸
n/2t

, ..., 0, ..., 0︸ ︷︷ ︸
n/2t

).

(2.9)

En general, si n = 2t · s, es poden considerar els vectors 1, v1, v2, . . . , vt

de longitud 2t · s construïts de la mateixa manera. Se sap que no sempre
〈1, v1, v2, . . . , vt〉 ⊆ 〈H〉 [9], però si un codi Hadamard H té ker(H) = k es pot
veure que el nucli esta generat per k vectors (independents) de 1, v1, v2, . . . , vt,
per tant podem assumir que K(C) = 〈1, v1, v2, . . . , vk−1〉.

Un codi Hadamard de longitud n = 2t·s (t ≥ 2), on s > 1 i senar, té
dimensió del nucli k, on k ∈ {1, 2, . . . , t − 1}. A més si existeix un codi
Hadamard de longitud 4s, amb s > 1 i senar, per tot t ≥ 3 existeix un codi
Hadamard de longitud n = 2t ·s amb nucli de dimensió k, ∀k ∈ {1, . . . , t−1}
[9].

Per exemple, se sap que els codis Hadamard de longitud n = 24.3 = 48

tenen dimensió del nucli k ∈ {1, 2, 3}.

22 CAPÍTOL 2. FONAMENTS TEÒRICS

2.6.3 Rang i nucli dels codis Hadamard

Un cop de�nits i donats els límits del rang i el nucli per codis Hadamard,
tant si són de longitud n = 2t com de longitud n = 2t·s, es donaran els límits
superiors del rang, en funció de la dimensió del nucli.

Per un codi Hadamard de longitud n = 2t, apart del codi lineal que té
rang r = t + 1 i dimensió del nucli k = t + 1 per qualsevol longitud n (per
t < 4 només existeix un codi de Hadamard), per t = 4 les combinacions de
rang i dimensió del nucli són aquestes: r = 6 i k = 3, r = 7 i k = 2, r = 8

i k = 2 i r = 8 i k = 1. Per t > 4 les combinacions de rang i dimensió del
nucli són aquestes [8]:

{
t + 2 ≤ r ≤ 2t+1−k + k − 1 si 3 ≤ k ≤ t− 1

t + 3 ≤ r ≤ 2t−1 si 1 ≤ k ≤ 2
(2.10)

I per un codi Hadamard (no lineal) de longitud n = 2t·s (t ≥ 3), on s és
senar, amb rang r i dimensió del nucli k es compleix:

r ≤
{

2t+1−k·s + k − 1 si 3 ≤ k ≤ t− 1

2t−1·s si 1 ≤ k ≤ 2

Els límits inferiors exactes del rang, en funció de la dimensió del nucli,
només es coneixen per codis Hadamard de longitud n = 2t (desigualtats
2.10). Per a codis Hadamard de longitud n = 2t·s, on s > 1 i senar no es
coneixen, però a [9] també es demostra que existeix un codi Hadamard amb
rang r i dimensió del nucli k sempre que es compleixi:

4s + t− 3 ≤ r ≤
{

2t+1−k·s + k − 1 si 3 ≤ k ≤ t− 1

2t−1·s si 1 ≤ k ≤ 2
(2.11)

A la Taula 2.1 es mostren totes les combinacions possibles de rang i
dimensió del nucli per a codis Hadamard de longitud n = 24 · 3 = 48 (t =

2.6. INVARIANTS: RANG I NUCLI 23

4, s = 3). Els símbols que apareixen representen les diferents construccions
de les matrius Hadamard que generen aquest codis.

Taula 2.1: Combinacions de rang i dimensió del nucli per a n = 48.

rank(C)
ker(C) 13 14 15 16 17 18 19 20 21 22 23 24

3 ? •
2 ? ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
1 ◦ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2.6.4 Construcció de matrius Hadamard d'ordre n = 2t·s
amb rang i dimensió de nucli

L'algorisme, en funció de t, construeix les matrius de Hadamard d'ordre
n = 2t · s (t ≥ 2 i s 6= 1 senar) amb un rang r i dimensió de nucli k

donats. Les construccions que s'utilitzen es troben en la referència [9]. En
aquest algorisme denotem amb Hn

r,k una matriu Hadamard d'ordre n, rang r

i dimensió del nucli k.

• Si t = 2, existeix una única matriu de Hadamard d'ordre n = 4s

tal que el seu codi té rang r = 4s − 1 i dimensió de nucli k = 1.
Aquesta matriu Hadamard, H4s

4s−1,1, caldrà construir-la o trobar-la en
alguna base de dades, sinó no podrem construir cap matriu de la seva
seqüència 8s, 16s, 32s,

• Si t = 3, existeixen dues matrius Hadamard d'ordre n = 8s amb el
mateix rang r = 4s− 1 però diferent dimensió de nucli k = 1, 2, que es
poden construir de la manera següent:

1. H8s
4s−1,1 = S ⊗ [H4s

4s−1,1, π(H4s
4s−1,1)] on π és una permutació de 2

columnes linealment independents.

2. H8s
4s−1,2 = S ⊗ [H4s

4s−1,1, H
4s
4s−1,1].

24 CAPÍTOL 2. FONAMENTS TEÒRICS

• Si t > 3 denotem amb rmin = 4 · s + t − 3 el rang mínim, i les
construccions de les matrius de Hadamard es poden dividir en 5 casos:

1. Si r = rmin i k = 1 aleshores

Hn
rmin,1 = S ⊗ [H

n/2
rmin−1,1, H

n/2
rmin−1,2].

2. Si Existeix H
n/2
r−1,k−1 aleshores

Hn
r,k = S ⊗H

n/2
r−1,k−1.

3. Si r ≥ (n/4) + 2 i k = 2 aleshores

Hn
r,2 = (HadamardNormalize(Hn

r,1))
T .

4. Si r = (n/4)+2 i k = 3 llavors utilitzem el switching: Es comença
amb el codi C de la matriu de Hadamard Hn

r−1,3, que té, evident-
ment, longitud n, rang r − 1 i dimensió de nucli dim(K) = 3.
Transformen la base del nucli per tal que un dels vectors base si-
gui el tot uns, és a dir, K = 〈1, v1, v2〉. Sigui x ∈ C, x /∈ K i
considerem el traslladat de K, K +x inclòs en C. Denotem per L

el codi C on s'ha substituït el conjunt de paraules codi K + x per
K + x + v1v2 amb rang r = (n/4) + 2 i dimensió de nucli k = 3.
llavors Hn

r,3 és la matriu de Hadamard del codi L.

5. Si k = 1 llavors utilitzem les permutacions

� Si r ≥ rmin + 1 i r < (n/4) + 2 aleshores

Hn
r,1 = S ⊗ [H

n/2
r−2,1, π(H

n/2
r−2,1)]

on π és una permutació de 2 columnes linealment indepen-
dents.

2.6. INVARIANTS: RANG I NUCLI 25

� Si r ≥ (n/4) + 2 aleshores

Hn
r,1 = S ⊗ [H

n/2
n/4,1, π(H

n/2
n/4,1)]

on π és una permutació de n/4 columnes linealment indepen-
dents.

26 CAPÍTOL 2. FONAMENTS TEÒRICS

Capítol 3

Plani�cació del projecte

En aquest capítol es detallaran els objectius que s'han proposat en la intro-
ducció, i a partir d'aquesta relació detallada generem les tasques a realitzar.
Sobre les tasques i segons els recursos disponibles farem una plani�cació
temporal inicial que es veurà corregida �nalment per la plani�cació temporal
�nal.

3.1 Objectius
Tal com hem dit, anem a marcar primer els diferents objectius que es volen
assolir. Els objectius d'aquest projecte són els següents:

1. Estudiar les matrius i codis Hadamard.

2. Estudiar les invariants 4-pro�le, rang i dimensió del nucli.

3. Estudiar la invariant SHDE dels xinesos Kai-Tai Fang i Gennian Ge.

4. Estudiar el Magma.

5. Estudiar els treballs dels dos projectistes anteriors.

27

28 CAPÍTOL 3. PLANIFICACIÓ DEL PROJECTE

6. Implementar la llibreria amb les noves funcions actualitzant la versió
anterior, això també inclou, en especial, millorar i realitzar les proves de
rendiment de la funció KernelZ2(C), i implementar la invariant SHDE.

7. Implementar el package de la llibreria anteriorment esmentada.

8. Actualitzar el manual incorporant les funcions creades o modi�cades i
eliminant les obsoletes.

9. Actualitzar els test de proves i els exemples de les noves funcions.

10. Analitzar les invariants 4-pro�le, rang i dimensió del nucli, i SHDE
sobre les matrius de Hadamard de la base de dades del Magma.

11. Analitzar les invariants 4-pro�le, rang i dimensió del nucli, i SHDE
sobre algunes matrius de Hadamard inequivalents proporcionades per
Ilias Kotsireas i Cristos Koukouvinos.

12. Ampliar la base de dades del Magma amb la construcció de noves
matrius de Hadamard utilitzant les noves funcions genèriques imple-
mentades i tenint en compte el rang i la dimensió del nucli.

13. Redactar la memòria.

3.2 Tasques a realitzar
• Tasca 1: Estudi de les matrius i codis Hadamard i els diferents cons-

tructors que utilitzarem per crear-ne de noves, així com les invariants
4-pro�le, rang i dimensió del nucli i la invariant SHDE de Kai-Tai Fang
i Gennian Ge.

• Tasca 2: Estudi del Magma. És un requeriment del departament, el
llenguatge d'aquest sistema algebraic simbólic és en el que codi�quem
les funcions. Després farem el muntatge de la llibreria amb aquestes
funcions, empaquetant-les en els packages del Magma.

3.3. PLANIFICACIÓ INICIAL I FINAL 29

Tasca 1 Tasca 2 Tasca 3 Tasca 4 Tasca 5 Tasca 6 Tasca 7 Tasca 8 Tasca 9 Tasca 10

Figura 3.1: Llegenda de colors de les tasques

• Tasca 3: Estudi del treball dels projectistes anteriors. Doncs aquest
treball és la seva continuació.

• Tasca 4: Implementació de les funcions (llibreria i package). Establerts
els criteris de disseny, escriure el codi de les funcions i empaquetar-les.

• Tasca 5: Proves de rendiment de la funció revisada KernelZ2(C).

• Tasca 6: Test de proves. Per tal de comprovar la �abilitat de les
funcions implementades i la seva integració en la llibreria.

• Tasca 7: Analitzar les invariants 4-pro�le, rang i dimensió del nucli, i
la invariant SHDE; tant sobre la base de dades del Magma com sobre
algunes matrius de Hadamard inequivalents de Ilias Kotsireas i Cristos
Koukouvinos.

• Tasca 8: Obtenir noves matrius Hadamard per tal d'ampliar la base de
dades del Magma utilitzant les funcions implementades.

• Tasca 9: Redacció del manual i realització dels exemples.

• Tasca 10: Redacció de la memòria.

En la Figura 3.1 mostrem la taula del codi de colors de les diferents
tasques.

3.3 Plani�cació inicial i �nal

3.3.1 Plani�cació temporal inicial
En la següent Figura 3.2 es mostra la taula de la plani�cació temporal que es
va fer en un principi. Enguany, degut al calendari acadèmic, vam començar

30 CAPÍTOL 3. PLANIFICACIÓ DEL PROJECTE

Novembre Desembre Gener Febrer Març Abril Maig

Figura 3.2: Plani�cació temporal inicial.

Novembre Desembre Gener Febrer Març Abril Maig Juny Juliol Agost

Figura 3.3: Plani�cació temporal �nal.

a principis de Novembre.

3.3.2 Plani�cació temporal �nal
La Figura 3.3 mostra la taula de la temporització que al �nal s'ha dut a
terme.

S'han produït bàsicament tres canvis respecte a la plani�cació temporal
inicial:

• Un fet greu familiar va provocar que els mesos d'Abril a Maig no poqués
dedicar-me gaire bé gens al projecte o, al menys, amb la intensitat que
calia.

• Les proves de rendiment de la funció KernelZ2(C) es desplaça a un mes
més tard quan la implementació de les funcions està més avançada, i

3.3. PLANIFICACIÓ INICIAL I FINAL 31

ja hem passat de la primera versió millorada de la funció KernelZ2(C)
amb retorn del nucli en tipus llista, a la versió de�nitiva amb retorn
tipus espai vectorial.

• El test de proves també es desplaça a un mes més tard, i a més, s'escurça
a un sol mes. Això és degut a la reducció del nombre de funcions en
la versió millorada de la llibreria, el test és menys extensiu, però més
intensiu en les poques funcions que hem de provar unitàriament.

32 CAPÍTOL 3. PLANIFICACIÓ DEL PROJECTE

Capítol 4

Entorn de desenvolupament

4.1 Sistema de computació simbòlica Magma
El Magma és un sistema d'àlgebra dissenyat per proporcionar un entorn
software a la computació amb estructures, que poden aparèixer en àrees com
l'àlgebra, la teoria dels números, la geometria algebraica i la combinatòria.
També el Magma permet als usuaris de�nir altres estructures com grups,
anells, ..., codis en el nostre cas. Algunes característiques importants del
Magma són:

• Intenta aproximar-se tant com pot al tipus de pensament i notació
matemàtica habituals, per tal de proporcionar un entorn matemàtic
rigurós.

• Té tipus explícits, és a dir, l'usuari ha de de�nir explícitament la major
part d'estructures algebraiques on ha de tenir lloc un càlcul.

• Té un gran kernel escrit en C per aconseguir e�ciència, i una cada
vegada més extensa llibreria de funcions empaquetades, programades
en el llenguatge Magma, per aconseguir més funcionalitat.

• Té un llenguatge que és imperatiu, la crida a funcions per valor i dinà-
micament tipat.

33

34 CAPÍTOL 4. ENTORN DE DESENVOLUPAMENT

• Té un interpret que permet els càlculs interactius.

• Disposa d'un gran nombre de bases de dades matemàtiques que conte-
nen informació que pot ser útil.

4.2 Estructura del Magma
La versió del software que utilitzarem nosaltres és la Magma 2.13-12. El
Magma està instal.lat en la màquina anomenada MacWilliams, l'accés a la
qual és remot. Per exemple en el meu cas, l'accés es feia des de casa o des
d'alguna de les estacions de treball de la sala de projectistes. La màquina
MacWilliams té les següents característiques:

• 2 processadors de doble nucli �Intel(R) Core(TM)2 CPU� de 1.86GHz
de freqüència i 2028 Kb de memòria cache.

• 2 Gb de memòria RAM.

El Magma està organitzat en diferents directoris. Aquests els podem
trobar a la ruta /usr/local/magma2.13-12. Els principals directoris són:

• /libs:

� /data: en aquest directori s'hi troben totes les bases de dades de
què disposa el Magma. Concretament aquí és on hi ha la base de
dades de matrius Hadamard.

� /examples: aquí s'hi troben tots els exemples que es proposen en
el manual per tal de poder-los executar.

� /test: en aquest directori s'hi troben els tests que ha passat el
magma per comprovar el correcte funcionament de les seves funci-
ons.

• /package: directori on es troben tots els package de què està format
el Magma. Aquí trobarem entre d'altres tant el hadamard.sig com el
hadamard.m.

4.2. ESTRUCTURA DEL MAGMA 35

• /pdf, /ps i /dvi: en aquest directoris podem trobar els manuals en
format pdf, ps i dvi.

Per tal de poder treballar amb el Magma és necessari executar la coman-
da Magma. Un cop s'ha fet això, davant del prompt, ja podem començar a
treballar de forma interactiva realitzant alguns càlculs manuals, o bé carre-
gant programes per executar-los.

Si ens cal, podem interrompre l'execució de programes pitjant <Crtl>-C,
la interrupció pot trigar una estoneta.

Per �nalitzar la sessió en el Magma es pot fer de tres maneres igualment
vàlides: Escrivint al prompt quit;, o bé fent <Ctrl>-D, o bé dos cops seguits
<Crtl>-C.

4.2.1 Creació de funcions i procediments en Magma

Una forma més còmoda de treballar és escrivint el codi de les funcions i pro-
cediments en un �txer a part amb extensió .m, així cada cop que comencem
una nova sessió i necessitem les funcions implementades les podrem carregar
amb la comanda load �nom_fitxer.m�;.

Les funcions són un dels elements més importants del llenguatgeMagma.
La forma de crear-ne una és la següent:

f:= function(x1, ..., xn : y1:=expr1, ...)
local w1, ..., ws;
statements;
return z1, ..., zr, _, ..., _;

end function;

Els paràmetres x són obligatoris, i els y són opcionals que prenen el valor
per defecte de expr. Les w són les variables locals de la funció. Les z són els
paràmetres de retorn, i els _ són valors de retorn no de�nits que s'utilitzen
per proporcionar un conjunt consistent de valors de retorn.

36 CAPÍTOL 4. ENTORN DE DESENVOLUPAMENT

La crida a funcions és:

z1, ..., zm := f(x1, ..., xn : y1:=expr1, ...);

Qualsevol de les y es pot ometre en la crida, aquells que ho estiguin assumiran
el valor per defecte dins la funció. Qualsevol de les z podem ser _ , en
aquest cas el resultat d'aquesta z no es retorna. Per exemple en la funció
Valuation(x,p) podem fer varies crides segons ens interessi l'exponent t i/o
el factor senar s tal que n = 2t · s:

t,s:= Valuation(n,2);
t,_:= Valuation(n,2);
_,s:= Valuation(n,2);

Els procediments són com les funcions però sense valors de retorn. A més
els paràmetres poden ser referències �x, les quals permeten retornar resultats
mitjançant els arguments.

La de�nició del procediment és la següent:

f:= procedure([~]x1, ..., [~]xn : y1:=expr1, ...)
local w1, ..., ws;
statements;

end procedure;

La crida a procediment és:

f([~]x1, ..., [~]xn : y1:=expr1, ...);

Per exemple el procediment UpdateHadamardDatabase(R,S : parameters)
modi�ca el registre R que conté la informació de la base de dades amb les
noves matrius de S. Aquest register R està en un format no descrit i només
és manipulable per referència en les poques funcions que actualitzant la base
de dades.

4.2. ESTRUCTURA DEL MAGMA 37

Les funcions i els procediments també es poden declarar d'aquesta altre
manera:

function f(x1, ..., xn : y1:=expr1, ...)
...

end function;

procedure f([~]x1, ..., [~]xn : y1:=expr1, ...)
...

end function;

La única diferència respecte la primera forma rau en la recursivitat; doncs en
aquesta segona forma de declarar, el nom de la funció o procediment forma
part de la sintaxi, i això li permet cridar-se a si mateix pel seu propi nom.

Les funcions i procediments recursius es de�neixen de tal manera que:

• Si la funció o procediment està declarat de la segona forma, les refe-
rències a la funció o procediment dintre del seu propi cos es poden fer
amb el propi nom.

• Sinó, les referències a la funció o procediment dintre del seu propi cos
es fan amb nomès $$.

• Si, per contra, es vol per claredat que la referència a la funció o pro-
cediment hi sigui, aleshores caldrà posar la comanda forward f abans
de la de�nició de la funció o procediment.

4.2.2 Creació d'un package en Magma
Un paquet o package consisteix en varis �txers .m que de�neixen funcions i
procediments, no intrínseques e intrínseques.

A partir d'ara, en aquesta subsecció, ens referim a les funcions i proce-
diments intrínsics com tan sols intrínsics. I a les funcions i procediments no
intrínsics com nomès no intrínsics.

38 CAPÍTOL 4. ENTORN DE DESENVOLUPAMENT

Un paquet doncs disposa de intrínsics visibles per a l'usuari, i no intrínsics
que són necessàris per executar-los però als quals l'usuari no pot accedir.

Ara bé, els intrínsics requereixen a més:

• La especi�cació de tipus dels paràmetres d'entrada i sortida (la signa-
tura), per prevenir la sobrecàrrega de identi�cadors en els paquets.

• Uns breus comentaris explicatius del intrínsic.

Hi han dos tipus de intrínsics: els ja contruïts o de sistema que contenen
les funcions del kernel C, i les de�nits per l'usuari.

La de�nició dels intrínsics requereixen doncs d'una sintaxi especial. Un
cop s'ha decidit quines seran les funcions o procediments intrínsics, s'han de
modi�car de la següent manera:

intrinsic nom(llista-arguments) [-> llista retorn]
{Comentaris de la funci\'{o}}
sentencies;

end intrinsic;

on la llista d'arguments ha de ser:

argl::tipus,arg2::tipus,...,argn::tipus

Així doncs, ja no és necessari realitzar el control del tipus dels paràmetres al
codi. Si els paràmetres, però, han de complir alguna altra restricció, aquesta
s'ha d'especi�car utilitzant les següents comandes:

• require condició: print_args;
On a condició s'especi�ca el tipus de restricció que s'ha d'aplicar i a
print_args el text que s'imprimirà en cas de no complir-se la restricció,
un exemple seria:
require IsHadamard(H): la matriu H no és Hadamard;

• requirerange v, L, U;
On v és la variable de tipus sencer i [L, U] és el rang al qual han
de pertànyer els valors d'aquesta variable.

4.2. ESTRUCTURA DEL MAGMA 39

• requirege v, L;
On v és també de tipus sencer i ha de ser més gran o igual que L.

Tenim les següents comandes per tal de treballar amb els �txers un cop
modi�cats i escrits en format package:

• Attach (�fitxer.m�)
Aquesta comanda carrega el �txer (és la comanda equivalent al load),
el precompila i en genera dos de nous d'extensió .dat i .sig:

� fitxer.dat que conté el codi compilat.

� fitxer.sig que conté la signatura dels intrínsics, la informació
d'aquest �txer es guarda en una taula de signatures.

Per tal que, �nalment, aquest packet es converteix-hi en una llibreria
interna hem d'agafar el fitxer.sig i el fitxer.m i afegir-los al direc-
tori que abans hem explicat, amb la resta de signatures de què disposa
el Magma. Els canvis en el �txer .m es detecten automàticament i els
seus corresponents �txers .sig i .dat són actualitzats.

• Detach (�fitxer.m�)
Aquesta comanda serveix per deixar d'utilitzar un package.

• freeze
Aquesta comanda afegida al principi d'un �txer evita que aquest es
compil.li quan es fa un Attach, per tant els canvis que faci al �txer .m
no afectaran als seus homólegs precompilats.

L'avantatge que ens proporciona el package és que podem treballar amb
les funcions i procediments de la llibreria com si fossin pròpies del Magma.

40 CAPÍTOL 4. ENTORN DE DESENVOLUPAMENT

4.3 Funcions del Magma
En aquesta secció es veuran les funcions per treballar amb matrius Hadamard
que ja estan de�nides en Magma i que hem utilitzat en aquest projecte. 1

IsHadamard(H)

Aquesta funció ha estat molt utilitzada per tal de comprovar si
l'entrada era realment una matriu Hadamard, en aquest cas re-
tornarà true.

HadamardNormalize(H)

Aquesta funció ens normalitza la matriu Hadamard que li pas-
sem. És a dir, ens retorna una matriu normalitzada equivalent a
H. Això és molt útil ja que si treballem amb només matrius nor-
malitzades són moltes les matrius equivalents que es descarten.

HadamardCanonicalForm(H)

Aquesta funció, donada una matriu de Hadamard H, retorna una
d'equivalent H ′ juntament amb les matrius de transformació X

i Y tal que H ′ = XHY . H ′ és canònica en el sentit que totes
les matrius de Hadamard equivalents a H generaran la mateixa
matriu H ′.

HadamardInvariant(H)

Aquesta funció és la que ens retorna el 4-pro�le d'una matriu
Hadamard, el 4-pro�le és una seqüència de sencers calculats a
partir de les �les de la matriu 2. Donat que si dos matrius no tenen

1Per a més informació [2].
2Per més detalls 2.4.

4.3. FUNCIONS DEL MAGMA 41

el mateix 4-pro�le, no són equivalents; ha estat molt utilitzada
per tal de trobar noves matrius no equivalents que no estiguessin
a la base de dades.

IsHadamardEquivalent(H, J : parameters)

Aquesta funció ens retorna si dues matrius són equivalents, en
aquest cas retornarà true. En cas de cridar-la amb el paràmetre
�nauty�, que és el valor per defecte; llavors, si les matrius són
equivalents, retorna també les matrius de transformació X i Y

tal que J = XHY .

HadamardMatrixToInteger(H)

Aquesta funció ens retorna un sencer que codi�ca els valors de la
matriu Hadamard d'una forma més compacte, per tal d'estalviar
temps en el tractament d'aquestes matrius.

HadamardMatrixFromInteger(X,n)

Aquesta funció, que la inversa de HadamardMatrixToInteger(),
ens retorna la matriu Hadamard d'ordre n obtinguda del sencer
X.

HadamardDatabase()

Aquesta funció ens permet recuperar totes les matrius Hadamard
de la primera base de dades que té actualment el Magma, doncs
retorna un apuntador en aquesta que s'usa com a primer parà-
metre en les funcions d'obtenció dels nombres, ordres i matrius
d'aquesta base de dades. Aquesta primera base de dades inclou
totes les matrius inequivalents �ns l'ordre 28, i alguns exemples

42 CAPÍTOL 4. ENTORN DE DESENVOLUPAMENT

de tots els altres ordres �ns el 256; els representants són canònics
i ordenats lexicogrà�cament.
La segona base de dades de matrius Hadamard que té el Mag-
ma és la skew-symmetric, l'apuntador de la qual obtenim amb
la funció SkewHadamardDatabase(), però que no són del nostre
interés en aquest treball.

Matrix(D, n, k)

Aquesta funció retorna de la base de dades D, la matriu k-èssima
d'ordre n. Permet recuperar qualsevol matriu Hadamard de la
base de dades individualment.

Matrices(D, n)

Aquesta funció ens retorna una llista amb totes les matrius de
mida n que estiguin a la base de dades D.

DegreeRange(D)

Aquesta funció retorna el interval dels ordres de les matrius Ha-
damard de la base de dades D. És a dir, el més petit i el gran
més ordre existent a la base de dades.

Degrees(D)

Aquesta funció ens retorna una llista amb els ordres de les matrius
Hadamard de la base de dades D, com a mínim ha d'existir una
per cada ordre a la base de dades.

4.3. FUNCIONS DEL MAGMA 43

NumberOfMatrices(D, n)

Aquesta funció retorna el nombre de matrius d'ordre n disponibles
a la base de dades D.

Donat que la base de dades de les matrius de Hadamard en el Magma
és notablement incompleta com ja hem comentat anteriorment, i per tal de
crear noves versions de la base de dades incloent matrius que actualment no
hi són sense haver d'esperar les noves versions o�cials de la base de dades;
utilitzarem aquest conjunt de funcions per ampliar la base de dades de ma-
trius Hadamard.
Aquestes funcions usen un registre de format no descrit, així nomès serà
manipulable per aquestes.

HadamardDatabaseInformation(D : parameters)

Aquesta funció extrau la informació de la base de dades apunta-
da per D, a una format intern per tal de ser utilitzat pels altres
intrínsics. El paràmetre canonical quan és true, que és el valor
per defecte, indica que les matrius guardades a la base de dades
estàn en forma canònica.
Aquest paràmetre també controla si la base de dades creada les
guardarà en la forma canònica o en la forma original. Si vols
recuperar les matrius des d'una base de dades canònica però
emmagatzemar-la en una forma no canònica, s'hauria de crear
primer la base de dades no canònica - ja sia usant aquest in-
trínsic o HadamardDatabaseInformationEmpty amb el paràme-
tre canonical posat a false, i després afegir les matrius de la
base de dades amb UpdateHadamardDatabase i canonical posat
a true.

44 CAPÍTOL 4. ENTORN DE DESENVOLUPAMENT

HadamardDatabaseInformationEmpty(: parameters)

Aquesta funció retorna la informació en format intern correspo-
nent a una base de dades buida. El paràmetre canonical serveix
per indicar si les matrius en la base de dades seran guardades en
la forma canónica o no.
Això permet la creació d'una nova base de dades , o un troç d'una
d'existent sense incloure-la tota sencera.

UpdateHadamardDatabase(�R, S : parameters)

Aquesta funció actualitza el registre R que conté la informació de
la base de dades amb la de les matrius de S. Aquestes matrius
seran afegides nomès si són inequivalents amb les que ja hi són.
Això requereix trobar les formes canòniques, la qual cosa pot ser
costós. Per això, si sabem que les matrius de S ja estan en forma
canònica aleshores el paràmetre canonical hauria de ser posat a
true.
Si de les matrius del mateix ordre que les que ja hi són en R,
no sabem que siguin canòniques, llavors caldrà també calcular
les seves formes canòniques, que un altre vegada pot arribar a
durar un temps signi�catiu. Per tractar amb això hem de veure
la funció WriteRawHadamardData.

WriteHadamardDatabase(S, �R)

Aquesta funció crea els �txers de la base de dades name.dat i
name.ind del registre de dades d'informació de la base de dades
R, on name es pren del string S. El registre de dades es passa per
referència perquè pot ser necessari calcular les formes canòniques,
així aquest càlcul no es perd.

4.4. REGLES PER EXECUTAR GRANS CÀLCULS. 45

WriteRawHadamardData(S, R)

Aquesta guarda les dades de R al �txer el nom del qual ve donat
pel string S. Un cop carregat, aquest �txer de�nirà una única
variable de dades que esdevindrà idèntica a R. Això és desitjable
per les bases de dades no canòniques, ja que les formes canòniques
no han de ser recalculades.
Aquesta rutina destrueix els continguts originals, si existien, del
�txer.

SetVerbose(�HadamardDB�, v)

Aquest procediment canvia el nivell de impressió �verbose� per les
rutines d'actualització de la base de dades Hadamard. El valor
�verbose� v hauria de ser un sencer en el interval de 0 a 3. Això
pot suministrà indicacions segures de progrés quan un llarg procés
d'actualització s'està efectuant.

4.4 Regles per executar grans càlculs.
Dintre d'un entorn operatiu Linux, que és en el que hem treballat, les regles
són les següents:

1. Reduir la prioritat, realitzant els càlculs amb la prioritat de programa-
ció més baixa no hauria de tenir un impacte signi�catiu en el temps
d'execució, sempre que no s'estigui executant un altre procés amb pri-
oritat més alta a la mateixa estació de treball. La prioritat en la plani-
�cació de processos va de -20 a 19. La més baixa o lenta és 19. Haurem
d'usar la comanda nice -n 19 COMMAND.

2. Incloure punts de control en el codi (checkpoints) : D'aquesta manera
podrem fer un seguiment del procés, detectarem �bucles�, i si es reinicia
la màquina podrem reprendre el càlcul potser des del punt de tall i amb
la mínima pèrdua de dades.

46 CAPÍTOL 4. ENTORN DE DESENVOLUPAMENT

3. Apuntar-se, si existeix, a la llista de usuaris els processos dels quals no
es poden matar (DONTKILL LIST) en cada una de les estacions de
treball on penses realitzar els teus càlculs.

4. Minimitzar el trà�c de xarxa fent directament les operacions I/O al
disc local, doncs l'accés local és 10 vegades més ràpid que el emmagat-
zemament en xarxa.

5. Executar la tasca no interactivament, ja que en alguns entorns interac-
tius, al gestionar-se la memòria com una pila, pot fragmentar-se en el
temps.

6. Plani�car la tasca per que s'executi tard quan la càrrega del sistema és
baixa.

7. Utilitzar la comanda �NOHUP� per executar la tasca, doncs el procés
continuarà encara que es talli la connexió.

8. Executar la tasca en background, adreçant els canals d'errors i d'output
a �txers del disc dur local

9. Utilitzar una màquina ràpida.

Amb aquestes regles la tasca es podria llançar d'aquesta manera:

nohup nice -n 19 magma <infile >& outfile &

• En el infile tindrem la càrrega dels �txers .m necessaris per la crida
a la funció o procediment amb els valors escollits dels paràmetres.

• En el outfile es guarden els checkpoints i els possibles errors de la
funció o procediment i de la tasca.

Capítol 5

Desenvolupament del projecte

Mostrem el codi implementat, els criteris que hem adoptat durant la im-
plementació i les di�cultats que hem trobat. Les funcions que no tenen el
codi, tan sols la descripció en anglés tal com està en el manual, són les que
han estat implementades per les dos projectistes anteriors [10, 11] i no s'han
modi�cat.

5.1 Codi extern

5.1.1 Matrius Hadamard i conversió de codis

HadamardMatrixToBinary(H)

/**
HadamardMatrixToBinary: AlgMatElt -> AlgMatElt
Given a Hadamard matrix H, returns the corresponding Hadamard binary matrix.
This function is the inverse of HadamardBinaryToMatrix().
**/

HadamardBinaryToMatrix(H)

/**
HadamardBinaryToMatrix: AlgMatElt -> AlgMatElt
Given a binary Hadamard matrix H, returns the corresponding Hadamard matrix.
This function is the inverse of HadamardMatrixToBinary().
**/

47

48 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

HadamardMatrixToCode(H)

/**
HadamardMatrixToCode : AlgMatElt -> [ModTupFldElt]
Given a Hadamard matrix H, returns the corresponding
Hadamard code. The code is represented as a list of binary vectors
of length n. This function is the inverse of HadamardCodeToMatrix().
**/

HadamardCodeToMatrix(C)

/**
HadamardCodeToMatrix: [ModTupFldElt] -> AlgMatElt
Given a Hadamard code represented as a list of binary vectors of length n,
returns the corresponding normalized Hadamard matrix of degree n. This function
is the inverse of HadamardMatrixToCode().
**/

IsHadamardCode(C)

/**
IsHadamardCode: [ModTupFldElt] -> BoolElt
Returns true if and only if C is a Hadamard code.
**/

5.1.2 Invariants de codis Hadamard
Les primeres funcions, que són les que tenen com a únic paràmetre d'entrada
el codi C, representat com una llista de vectors binaris; són generals en el
sentit que podem servir per a qualsevol codi binari, no cal que sigui un co-
di binari Hadamard. Això és perquè implementen i utilitzen dos propietats
estructurals de l'àlgebra lineal: el rang i la dimensió del nucli. Estem par-
lant de les funcions: RankZ2(C), KernelZ2(C), DimensionOfKernelZ2(C) i
InvariantsRankKernelZ2(C).

5.1. CODI EXTERN 49

RankZ2(C)

/**
RankZ2: [ModTupFldElt] -> RngIntElt
Given a code C represented as a list of binary vectors of length n,
returns its rank. The rank of a code C is the dimension of the linear
span of C, <C>, over GF(2).
**/

KernelZ2(C)

Aquesta nova versió de KernelZ2(C) és més ràpida i requereix menys memò-
ria perquè retorna el nucli com a subespai vectorial. Les proves de rendiment
d'aquesta funció ho certi�quen. Efectivament, donat que per de�nició el nucli
és un espai vectorial; podem apro�tar la representació interna i les funcions
de que disposa el Magma per treballar amb espais vectorials en el mòdul
d'àlgebra lineal.

Comentem de passada que aquesta funció sempre ha suposat que el vector
tot zeros forma part del codi C, dit d'una altre manera, estem suposant que
el nucli està inclòs en el codi. Això implica dues coses importants:

1. La construcció del nucli es redueix en aquest cas a buscar possibles
vectors en el propi codi tal que c + C = C.

2. Si dóna la casualitat que la llista de vectors binaris que formen el codi
C també té estructura d'espai vectorial, llavors el codi C, el nucli K(C)

i el generat del codi 〈C〉 coincideixen.

Per això mirem, primer de tot, si la llista de vectors binaris que formen
el codi C és un subespai vectorial. Si és així, el retornen transformat com
subespai vectorial i ja hem acabat. La manera de mirar-ho és comprovant
que el codi com a conjunt tindria el mateix nombre d'elements que el seu
propi subespai vectorial generat.

Construïm el primer nucli a partir del vector tot zeros que hauria per
hipòtesi d'estar inclòs en el codi. Acte seguit, si el vector tot uns pertany al
codi, llavors mirem si també pertany al nucli comprovant que 1 + C = C.

50 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

Si el vector tot uns és del nucli quedaran inclosos automàticament tots els
complementaris.

Engrandim el nucli, afegint més vectors c de C si compleixen que c+C =

C. Per això sumem cada vector del codi, que no estigui ja en el nucli per
combinacions lineals anteriors, amb cadascun dels vectors del propi codi.
A cada nou vector del nucli trobat, reconstruïm el subespai vectorial nucli
combinant-lo linealment amb el subespai vectorial del nou vector del nucli.

Totes les funcions que criden a la funció KernelZ2(C) les haurem de
revisar perquè ara rebran un espai vectorial enlloc d'una subllista de vectors
binaris del codi, que és el que retornava la versió anterior.

/**

KernelZ2: [ModTupFldElt] -> ModTupFld
Given a code C represented as a list of binary vectors of length n and such
that the zero vector belongs to C, returns its kernel as a VectorSubspace.
Then the kernel of C are the codewords v such that v+C=C.

**/

KernelZ2:=function (C)

if ((Type(C) eq SeqEnum) and (ElementType(C) eq ModTupFldElt)) then
if (VectorSpace(GF(2),Degree(C[1]))!0 in C) then

n:=Degree(C[1]); V:=VectorSpace(GF(2),n);

// If C is a subspace then return it as the kernel
if (#Set(C) eq 2^(Dimension(sub<V|C>))) then

return sub<V|C>;
end if;

// first kernel is the vectorsubspace with only Zero and maybe the One vector
ZeroVector:=V!0; OneVector:=V![1:i in [1..n]]; numElt:=#(C); isKernel:= true;
if (OneVector in C) then

for j in [1..numElt] do
aux:=OneVector+C[j];
isKernel:=aux in C;
if (not isKernel) then

break;
end if;

end for;
if (isKernel) then

kernel:=sub<V|[ZeroVector,OneVector]>;

5.1. CODI EXTERN 51

else
kernel:=sub<V|ZeroVector>;

end if;
else

kernel:=sub<V|ZeroVector>;
end if;

// add the others possible vectors of C for the kernel
for i in [1..numElt] do

if C[i] notin kernel then
isKernel:= true;
for j in [1..numElt] do

if C[j] notin kernel then
aux:=C[i]+C[j];
isKernel:=aux in C;
if (not isKernel) then

break;
end if;

end if;
end for;
if (isKernel) then

kernel:=sub<V|[kernel,sub<V|C[i]>]>; // posar generadors
end if;

end if;
end for;

else
error "Runtime error in 'KernelZ2': ZeroVector not in code";

end if;
else

error "Runtime error in 'KernelZ2': Argument 1 is not a code";
end if;
return kernel;

end function;

DimensionOfKernelZ2(C)

S'ha modi�cat aquesta funció DimensionOfKernelZ2(C) com a conseqüèn-
cia d'haver modi�cat la funció KernelZ2(C). Ja que ara simplement aquesta
funció avalua directament la dimensió de l'espai vectorial retornat per la fun-
ció KernelZ2(C), mentre que abans havia de calcular prèviament el subespai
vectorial generat de la llista nucli per trobar la dimensió.

52 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

/**

DimensionOfKernelZ2: [ModTupFldElt] -> RngIntElt
Given a code C represented as a list of binary vectors of length n,
returns the dimension of its kernel. The code C must contain the zero
vector to assure that its kernel is a linear subspace of C over GF(2).

**/

DimensionOfKernelZ2:=function (C)

//Returns the dimension of kernel of this code
if((Type(C)eq SeqEnum) and (ElementType(C) eq ModTupFldElt)) then

return Dimension(KernelZ2(C));
else

error "Runtime error in 'DimensionOfKernelZ2':
Argument 1 is not a code";

end if;

end function;

InvariantsRankKernelZ2(C)

/**
InvariantsRankKernelZ2: [ModTupFldElt] -> [RngIntElt]
Given a code C represented as a list of binary vectors of length n,
returns its rank and dimension of the kernel.
***/

HadamardThreeInvariants(H)

/**
HadamardThreeInvariants: AlgMatElt -> [RngIntElt]
Given a Hadamard matrix H, returns the invariants 4-profile, rank and
dimension of the kernel.
**/

5.1. CODI EXTERN 53

ExistsHadamardRankKernel(n,r,k)

/**
ExistsHadamardRankKernel: RngIntElt,RngIntElt,RngIntElt -> BoolElt
Given positive integers n, r and k, returns true if there exists a
Hadamard code (or equivalently a Hadamard matrix) of length n with
rank r and kernel of dimension k.
When n is not a power of two, returns also false if we do not know
whether or not there exists a Hadamard code with these parameters.
**/

Invariant SHDE

Aquest invariant proposat per Kai-Tai Fang i Gennian Ge, es basa en una
propietat anomenada Enumerador de la Distància Simètrica de Hamming
(�Symmetric Hamming Distance Enumerator� en anglès i �SHDE� com acrò-
nim). De fet la invariant és la distribució de freqüències dels valors d'aquesta
propietat per totes les projeccions de k columnes de n d'una matriu de Ha-
damard H d'ordre n i per un número a positiu. Les funcions públiques són:

• HadamardInvariantSHDE(H:a:=3.1415926,k:=4)

• HadamardInequivalentMatricesSHDE(H1,H2:a:=3.1415926)

• HadamardClassificationSHDE(n:a:=3.1415926,k:=4,lr:="",file:="")

Totes elles criden a la funció auxiliar principal SHDEDistribution(a,k,H),
que a la vegada crida a las seves funcions auxiliars:

• SHDkDistribution(kcol,H)

• SHDkEnumerator(a,kcol,H)

• nextComb(n,k,c)

54 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

SHDkDistribution(kcol,H)

Sigui kcol una llista concreta de columnes i notem k com el nombre de colum-
nes de la llista (k = #kcol), aleshores aquesta funció calcula la distribució
de freqüències de la Distància Simètrica de Hamming d'una matriu de Hada-
mard H d'ordre n per les k columnes de n guardada en la llista kcol. Retorna
doncs un vector de freqüències de k/2 + 1 components, perquè la Distància
Simètrica de Hamming té un interval de valors que va de 0 �ns a k/2, i cada
component és el nombre de parelles de �les distintes de la matriu de Hada-
mard amb el mateix valor de Distància Simètrica de Hamming sobre aquesta
llista kcol de k columnes.

Si cridem a la funció amb la llista única de totes les n columnes, kcol :=

[1..n] i k = n, aleshores calcula la distribució de freqüències de la Distància
Simètrica de Hamming de la matriu Hadamard. El vector de freqüències
retornat, anomenat distribució de distància de H, té n/2 + 1 components
perquè la Distància Simètrica de Hamming té un interval de 0 a n/2 (Per
més detalls veure la secció 2.5 del capítol 2).

En l'article dels xinesos Kai-Tai Fang i Gennian Ge [5], per simpli�car el
càlcul, es relaciona la Distància Simètrica de Hamming amb el valor absolut
del producte escalar de les �les en les components que pertanyen a la llista
kcol.

/**

SHDkDistribution: [RngIntElt],AlgMatElt -> [RngIntElt]
Given a list of columns kcol (k=\#kcol) and given a Hadamard matrix H, returns
the Symmetric Hamming Distance distribution of H over the k-dimensional column
projection, (S0(H),...,Sk/2(H)), where Si(H) is the number of pairs of two distinct
rows whose Symmetric Hamming Distance over the given k-dimensional column projection
is i.

**/

SHDkDistribution:=function(kcol,H)
k:=#kcol; n:=NumberOfColumns(H);
S:=[0:d in [0..(k div 2)]];
for i:=1 to n-1 do
for j:=i+1 to n do

5.1. CODI EXTERN 55

// Absolute value of the inner product |<Uk,Vk>|
UkVk:=0;for l in kcol do UkVk:=UkVk+(H[i][l]*H[j][l]);end for;UkVk:=Abs(UkVk);
// symmetric distance d in terms of the inner product
d:=(k-UkVk) div 2;
S[d+1]:=S[d+1]+1;

end for;
end for;
return S;

end function;

SHDkEnumerator(a,kcol,H)

Sigui kcol una llista concreta de columnes i notem k com el nombre de colum-
nes de la llista (k = #kcol), aleshores aquesta funció calcula l'Enumerador
de la Distància Simètrica de Hamming d'una matriu de Hadamard H d'ordre
n per les k columnes de n guardada en la llista kcol.

Aquest Enumerador de la Distància Simètrica de Hamming és un número,
que s'obté ponderant les components del vector distribució de freqüències de
la Distància Simètrica de Hamming per la mateixa projecció de k columnes,
amb les potències d'un nombre positiu a, ai i ak−i, on i pren els diferents
valors de la Distància Simètrica de Hamming. En aquest article [5], un valor
aproximat del nombre pi, 3.1415926, es assignat al paràmetre a.

Si cridem a la funció amb la llista única de totes les n columnes, kcol :=

[1..n] i k = n, aleshores calcula l'Enumerador de la Distància Simètrica de
Hamming de la matriu Hadamard, i el número obtingut s'anomena l'enume-
rador de distància de H.

/**

SHDkEnumerator: RngIntElt,[RngIntElt],AlgMatElt -> FldReElt
Given a ponderator positive number a, a list of columns kcol (k=\#kcol)
and a Hadamard matrix H, returns the Symmetric Hamming Distance Enumerator
of H over the k-dimensional column projection:
Bak(H)=Sum(i=0..k/2) Si(H)(a^(i)+a^(k-i)), where Si(H) is the Symmetric
Hamming Distance distribution of H over the k-dimensional column
projection.

**/

56 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

SHDkEnumerator:=function(a,kcol,H)

// k-column distance enumerator for a given k-column projection
k:=#kcol; S:=SHDkDistribution(kcol,H);
Bak:=0;

for d:=0 to (k div 2) do
Bak:=Bak+(S[d+1]*((a^(d))+(a^(k-d))));

end for;
return Bak;

end function;

nextComb(n,k,c)

Si considerem les combinacions de n elements agafats de k en k, aquesta
funció retorna la combinació següent a la combinació entrada c seguint l'ordre
creixent. Entrant-li la llista buida retorna la primera combinació, i entrant-li
la última retorna la llista buida.

Mostrarem un exemple:

> nextComb(4,2,[]);
[1, 2]
> nextComb(4,2,[1, 2]);
[1, 3]
> nextComb(4,2,[3, 4]);
[]

/**

nextComb: RngIntElt,RngIntElt,[RngIntElt] -> [RngIntElt]
Given positive integers n, k (k<=n) and a list of an especific k-combination of n elements
c, returns the next combination. If c is an empty list, returns the first combination,
and if c is the last combination, returns the empty list.

**/

nextComb:=function(n,k,c)
if IsEmpty(c) then

return [i:i in [1..k]];
elif (k eq 1) then

if (c[k] ge 1) and (c[k] le n-1) then
return [c[k]+1];

else
return [];

end if;

5.1. CODI EXTERN 57

else
next:=false;
while (not next) do

c[k]:=c[k]+1;
if (c[k] le n) then

next:=true;
else

npc:=$$(n,k-1,Prune(c));
if (IsEmpty(npc)) then

c:=[];
next:=true;

else
c:=npc cat [npc[#npc]];

end if;
end if;

end while;
return c;

end if;
end function;

SHDEDistribution(a,k,H)

Aquesta funció calcula la distribució de la part entera de l'Enumerador de la
Distància Simètrica de Hamming, ponderada amb el nombre positiu a, d'una
matriu de Hadamard H d'ordre n per totes les projeccions de k columnes.
Segons l'article [5], aquesta distribució és manté invariant a les permutacions
i negacions de �les o columnes d'una matriu de Hadamard.

Al realitzar el càlcul per totes les col.leccions de k columnes de n, obtenim
molts valors de la part entera de l'Enumerador, alguns valors estan repetits
i per tant caldrà comptabilitzar-los en forma de distribució de freqüències.

La funció retorna doncs una llista de parelles. Els primers elements de
les parelles són els diferents valors de la part entera de l'Enumerador de
la Distància Simètrica de Hamming de la matriu de Hadamard per totes
les projeccions de k columnes, i els segons elements de les parelles són les
respectives freqüències d'aquests valors.

En el programa implementat, per cada una de les combinacions de k

columnes de n, calculem la part entera de l'Enumerador de la Distància
Simètrica de Hamming i incrementem en un el comptador del seu valor. I

58 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

si és el primer aparegut d'aquest valor, creem la parella [valor, comptador]
amb el comptador a un.

És necessari la utilització de la funció auxiliar nextComb(n,k,c) que gene-
ra la següent combinació a partir de l'anterior, d'aquesta manera, iterant-la,
ens dóna una a una totes les combinacions sense esgotar la memòria. Això és
el que passaria si les volguéssim guardar en local 1 amb la comanda Magma
Subsets(Set([1..n]),k) per un n relativament gran respecte k. Pensem
que, per exemple, el número de col.leccions diferents de 8 columnes d'una
matriu de Hadamard d'ordre 32 és 10.518.300. Ara bé, és més ràpid llegir
la següent combinació d'una llista de combinacions ja construïda, sempre
que es pugui guardar en local, que cridar cada cop a una funció auxiliar per
generar-la.

Adoptem doncs el criteri d'estalviar memòria, millor dit de salvar-nos
d'un exhauriment de memòria, a canvi d'augmentar el temps de càlcul.

/**

SHDEDistribution: AlgMatElt,RngIntElt,RngIntElt -> [[RngIntElt,RngIntElt]]
Given a ponderator positive number a, a positive integer k and a Hadamard matrix H
returns the values of the integer part of the Symmetric Hamming Distance Enumerator of
H over all k-dimensional columns projections and their frequencies.

**/

SHDEDistribution:=function(a,k,H)
n:=NumberOfColumns(H);
FiBak:=[];
kcol:=nextComb(n,k,[]);
while (kcol ne []) do

// integer part of the k-column distance enumerator for a given k-column projection
iBak:=Floor(SHDkEnumerator(a,kcol,H));
listed:=false;
for i in [1..#FiBak] do

if (FiBak[i][1] eq iBak) then
FiBak[i][2]:=FiBak[i][2]+1;
listed:=true;
break;

end if;
end for;

1Per local volem dir en la partició de memòria assignada al procés.

5.1. CODI EXTERN 59

if (not listed) then
Append(~FiBak,[iBak,1]);

end if;
kcol:=nextComb(n,k,kcol);

end while;
Sort(~FiBak);
return FiBak;

end function;

HadamardInvariantSHDE(H : a:=3.1415926 ,k:=4)

Aquesta funció retorna només les freqüències de la distribució de la part
entera de l'Enumerador de la Distància Simètrica de Hamming, ponderada
amb el nombre positiu a, d'una matriu de Hadamard H d'ordre n per totes
les projeccions de k columnes.

Després de comprovar la correció dels paràmetres d'entrada, crida a la
funció SHDEDistribution:=function(a,k,H) i s'agafa la segona part de les
llistes de parelles [valor,comptador]. És a dir, ens retorna les freqüències de
la distribució de l'Enumerador de la Distància Simètrica de Hamming d'una
matriu de Hadamard H d'ordre n per totes les projeccions de k columnes.

Retorna el mateix tipus de sortida que la funció HadamardInvariant(H)
que calcula la invariant 4-pro�le, és a dir, una llista de freqüències ordenada
de forma creixent pel valor freqüènciat.

Comprovarem més endavant que la funció HadamardInvariantSHDE(H:a,k),
per a = 3.1415926 i k = 4, dóna les mateixes freqüències que la funció
HadamardInvariant(H) del 4-pro�le.

Assignem el números 3.1415926 i 4 com valors per defecte dels paràmetres
d'entrada a i k respectivament.

/**
HadamardInvariantSHDE: AlgMatElt: FldReElt, RngIntElt -> [RngIntElt]
Given a Hadamard matrix H, a ponderator positive number a and a positive
integer k, returns only the frequencies of the Symmetric Hamming Distance
Enumerator distribution of H over all k-dimensional columns projections.
Invariant proposed by Kai-Tai Fang and Gennian Ge. It defaults a to 3.1415926
and k to 4.
**/

60 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

HadamardInvariantSHDE:=function(H : a:=3.1415926 ,k:=4)
if ((Type(a) eq FldReElt) and (a gt 0)) then

if ((Type(k) eq RngIntElt) and (k gt 0)) then
if((Type(H) eq AlgMatElt) and IsHadamard(H)) then

if (k le NumberOfColumns(H)) then
FiBak:=SHDEDistribution(a,k,H);
FG:=[]; for i:=1 to #FiBak do Append(~FG,FiBak[i][2]); end for;

return FG;
else

error "Runtime error in 'HadamardInvariantSHDE':
Argument 3 is greater than the number of columns of Hadamard matrix";

end if;
else

error "Runtime error in 'HadamardInvariantSHDE':
Argument 1 is not a Hadamard matrix";

end if;
else

error "Runtime error in 'HadamardInvariantSHDE':
Argument 3 is not greater than 0";

end if;
else

error "Runtime error in 'HadamardInvariantSHDE':
Argument 2 is not greater than 0";

end if;
end function;

HadamardInequivalentMatricesSHDE(H1,H2 : a:=3.1415926)

Aquesta funció implementa l'algorisme que els xinesos Kai-Tai Fang i
Gennian Ge relaten en el seu article [5], basant-se en la seva conclusió de
que dos matrius de Hadamard H1 i H2 d'ordre n són inequivalents quan
existeix una k per la qual no tenen la mateixa distribució de la part entera
de l'Enumerador de la Distància Simètrica de Hamming, ponderada amb el
mateix nombre positiu a.

Començant per k = 4, la funció repeteix el càlcul de la distribució de
la part entera de l'Enumerador de la Distància Simètrica de Hamming per
les dos matrius, incrementant la k en 2 a cada repetició, �ns que deixen de
ser iguals o bé hem arribat al valor màxim de la k possible, k/2. En cas de

5.1. CODI EXTERN 61

que deixin de ser iguals per alguna k sense d'haver sobrepassat el seu llindar,
sortim del bucle marcant la inequivalència, en cas contrari sortim sense saber
res de la inequivalència d'aquestes dues matrius per aquest algorisme.

La k s'incrementa en 2 a cada repetició, perquè el valor de la magnitud
en dos iteracions consecutives quasi té el mateix efecte a l'hora de distingir
la inequivalència de les matrius de Hadamard.

Per defecte assignem al paràmetre d'entrada a el valor 3.1415926.

/**

HadamardInequivalentMatricesSHDE: AlgMatElt, AlgMatElt: RngIntElt -> BoolElt
Given two Hadamard matrices H1, H2 and a ponderator positive integer a, returns true
if they are inequivalent and false if is not possible to prove their inequivalence by
this method. It defaults a to 3.1415926.

**/

HadamardInequivalentMatricesSHDE:=function(H1,H2 : a:=3.1415926)
if ((Type(H1) eq AlgMatElt) and IsHadamard(H1)) then

if ((Type(H2) eq AlgMatElt) and IsHadamard(H2)) then
n:=NumberOfColumns(H1);
if (n ne NumberOfColumns(H2)) then

if ((Type(a) eq FldReElt) and (a gt 0)) then
Inequivalence:=false; k:=2;
repeat

k:=k+2;
FBak1:=SHDEDistribution(a,k,H1);
FBak2:=SHDEDistribution(a,k,H2);
if (FBak1 ne FBak2) then

Inequivalence:=true;
break;

end if;
until (k eq (n div 2));
return Inequivalence;

else
error "Runtime error in 'HadamardInequivalentMatricesSHDE':
Argument 3 is not greater than 0";

end if;
else

error "Runtime error in 'HadamardInequivalentMatricesSHDE':
different order of the Hadamard matrices";

end if;
else

error "Runtime error in 'HadamardInequivalentMatricesSHDE':
Argument 2 is not a Hadamard matrix";

62 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

end if;
else

error "Runtime error in 'HadamardInequivalentMatricesSHDE':
Argument 1 is not a Hadamard matrix";

end if;
end function;

HadamardClassificationSHDE(n:a:=3.1415926,k:=4,lr:="",file:="")

Aquesta funció classi�ca les matrius Hadamard d'ordre n de la base de dades
Hadamard ubicada en l'arrel de la llibreria lr segons la distribució de la part
entera de l'Enumerador de la Distància Simètrica de Hamming, ponderada
amb el mateix nombre positiu a, per totes les projeccions de k columnes.
Retorna la llista de les distribucions (valors de l'enumerador i freqüències)
amb les matrius que donen la mateixa distribució. La llista també és guarda
en un �txer amb nom per defecte HadClaSHDE<n>. Per defecte: a pren el
valor 3.1415926, k pren el valor 4 i lr l'arrel de la llibreria de la base de
dades Hadamard estàndard del Magma.

La classi�cació regeix quan el nombre d'elements de la llista és igual al
nombre de matrius d'ordre n que estem classi�cant, llavors cada distribució
té una sola matriu amb aquest valor.

/***

HadamardClassificationSHDE:RngIntElt:RngIntElt,RngIntElt,MonStgElt,MonStgElt->[[[[RngIntElt]]]]
Given an order n, a ponderator positive number a, a positive integer k, a library root lr and
a filename file, returns and saves in the file the list of the values of the integer part of
the Symmetric Hamming Distance Enumerator over all k-dimensional columns projections and their
frequencies of all the Hadamard matrices of order n from the hadamard database of the library
root. The classification is perfect when the number of elements of the list equals number of
Hadamard matrices. It defaults a to 3.1415926, k to 4, lr to the standard Magma HadamardDatabase
and file to HadClaSHDE<n>.

**/

HadamardClassificationSHDE:=function(n:a:=3.1415926,k:=4,lr:="",file:="")
if (lr eq "") then

D:=HadamardDatabase();
else

stdlibroot:=GetLibraryRoot();

5.1. CODI EXTERN 63

SetLibraryRoot(lr);
D:=HadamardDatabase();
SetLibraryRoot(stdlibroot);

end if;
if (file eq "") then file:="HadClaSHDE" cat IntegerToString(n); end if;

// United list of |Bak| values for all the Hadamard matrices
NFiBak:=[];
for num:=1 to NumberOfMatrices(D,n) do

H:=Matrix(D,n,num);
FiBak:=SHDEDistribution(a,k,H);
listed:=false;
for i in [1..#NFiBak] do

if (NFiBak[i][1] eq FiBak) then
Append(~NFiBak[i][2],[n,num]);
listed:=true;
break;

end if;
end for;
if (not listed) then

Append(~NFiBak,[FiBak,[[n,num]]]);
end if;

end for;
fprintf file,"n=%o a=%o k=%o lr=%o\n",n,a,k,lr;
for i in [1..#NFiBak] do

fprintf file,"%o\n",NFiBak[i];
end for;
return NFiBak;

end function;

5.1.3 Construccions de les matrius de Hadamard

HadamardKroneckerSylvester(t)

/**
HadamardKroneckerSylvester: RngIntElt -> AlgMatElt
Given a positive integer t, returns the Hadamard-Sylvester matrix of
degree n=2^t.
**/

64 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

HadamardKronecker(H1,H2)

/**
HadamardKronecker: AlgMatElt,AlgMatElt -> AlgMatElt
Given two Hadamard matrices H1 and H2 of degree n, returns a Hadamard
matrix of degree 2n. This matrix is constructed with the Kronecker
product S x [H1,H2], where S is the Hadamard-Sylvester matrix of degree 2.
**/

HadamardKroneckerPermutation(H1,H2,g)

/**
HadamardKroneckerPermutation: AlgMatElt,AlgMatElt,GrpPermElt -> AlgMatElt
Given two Hadamard matrices H1 and H2 of degree n and a permutation g in
Sym(n), returns a Hadamard matrix of degree 2n. This matrix is
constructed with the Kronecker product S x [H1,g(H2)], where S is the
Hadamard-Sylvester matrix of degree 2 and g(H2) is H2 with the columns
permuted by g.
**/

SwitchCode(C,S,x)

/**
SwitchCode:[ModTupFldElt],[ModTupFldElt],ModTupFldElt -> [ModTupFldElt]
Given a code C represented as a list of binary vectors, a subset S of C
and a codeword x, returns a code where the codewords of S are
substituted by the binary vectors of S+x.
**/

FindPermutation(H2,n)

/**
FindPermutation: AlgMatElt, RngIntElt -> GrpPermElt
Given a matrix H2 and a number of columns returns the positions of the
columns that have to be permuted.
**/

5.1. CODI EXTERN 65

FindVectorNotInKernel(C,V,w)

/**
FindVectorNotInKernel: [ModTupFldElt],ModTupFld,ModTupFld -> ModTupFldElt
Given a code C, a vector space V and a kernel returns a vector that is
not in the kernel.
**/

ListConstruction(n,d)

/**
ListConstruction: RngIntElt,RngIntElt -> [RngIntElt]
Given n and d returns a binary list of length n with d divisions.
**/

HadamardRankKernelNPower2(n,r,k)

/**
HadamardRankKernelNPower2: RngIntElt,RngIntElt,RngIntElt -> AlgMatElt
Given integers n(=2^t), r and k returns a Hadamard matrix that have length n,
rank r and kernel k.
**/

HadamardRankKernelNNotPower2(n,r,k)

Aquesta funció auxiliar permet obtenir una matriu de Hadamard d'ordre n

per a cada parella de rang r i dimensió de nucli k, però tan sols per aquelles
matrius que l'ordre no és una potència estricta de dos, és a dir: n = 2t·s
(t ≥ 2), on s 6= 1 senar.

La funció utilitza unes construccions fonamentades en el treball sobre el
rang i el nucli dels codis binaris Hadamard de longitud n = 2t·s (s senar)
de [9]. I l'algorisme que s'ha implementat, basat en aquestes construccions,
està descrit en la subsecció 2.6.4 del capítol 2. Destaquem tres aspectes:

• La funció és bàsicament recursiva, construeix en la majoria dels casos la
matriu actual a partir de matrius d'ordre la meitat i així successivament
�ns arribar a buscar la matriu d'ordre 4s. Si aquesta no la tenim a la
base de dades Hadamard del Magma, no es podrà construir la matriu
Hadamard d'ordre n i la funció retorna un missatge d'error.

66 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

• Es diferencien el casos n = 4s i n = 8s perquè és regeixen per teoremes
especials de rang i dimensió del nucli en les matrius Hadamard d'ordre
no potència de dos. A més el cas n = 8s és el punt d'in�exió del camí
recursiu, si bé es construeix a partir del n = 4s buscat a la base de
dades Hadamard del Magma com ja s'ha comentat. Així doncs el cas
n = 4s està especi�cat per si es demana de forma directa a la funció.

• Per la resta de casos s'apliquen 5 construccions diferents de matrius
Hadamard, la majoria recursives. Si Hn

r,k és una matriu Hadamard
d'ordre n, rang r i dimensió del nucli k tenim que:

1. [∗] Aplica el producte de Kronecker amb matrius Hadamard:

S ⊗H
n/2
r−1,k−1.

2. [◦] Aplica el producte de Kronecker amb matrius Hadamard:

S ⊗ [H
n/2
r−1,1, H

n/2
r−1,2].

3. [•] Aplica la tècnica del switching.

4. [?] Aplica el producte de Kronecker amb dues matrius Hadamard
més una permutació π:

S ⊗ [H
n/2
r−2,k, π(H

n/2
r−2,k)].

5. [¦] Transposada d'una matriu Hadamard Hn
r,1.

Aquesta funció generalitza i per tant inclou totes les funcions especials per
casos que s'havien fet en el projecte anterior en relació a la construcció de
matrius Hadamard del mateix tipus (veure [11]). Hem tret doncs del �txer
hadamardfile.m les funcions següents:

• s = 3 i t = 2, 3, 4, 5 :

� HadamardRankKernelN12(r,k)

5.1. CODI EXTERN 67

� HadamardRankKernelN24(r,k)

� HadamardRankKernelN48(r,k)

� HadamardRankKernelN96(r,k)

� HadamardRankKernelN192(r,k)

• s = 5 i t = 2, 3, 4, 5, 6 :

� HadamardRankKernelN20(r,k)

� HadamardRankKernelN40(r,k)

� HadamardRankKernelN80(r,k)

� HadamardRankKernelN160(r,k)

� HadamardRankKernelN320(r,k)

• s = 7 i t = 2, 3, 4, 5 :

� HadamardRankKernelN28(r,k)

� HadamardRankKernelN56(r,k)

� HadamardRankKernelN112(r,k)

/***
HadamardRankKernelNNotPower2: RngIntElt,RngIntElt,RngIntElt -> AlgMatElt
Given integers n(=2^t.s), r and k returns a Hadamard matrix
that have length n, rank r and kernel k.
***/

function HadamardRankKernelNNotPower2(n,r,k)

t,s:=Valuation(n,2);

//
// Distinguishes the first two cases of the sequence (4s i 8s) //
// in whatever other case recursion calls are used //
// case 4s : r=4s-1, k=1 (only one) //
// case 8s : r=4s, k=1,2 (two) //
// other case : whiteO, aster6, rombo, blackO, aster5 //
//

case n:
when (4*s):

return Matrix(HadamardDatabase(),n,1);
when (8*s):

m4s:=Matrix(HadamardDatabase(),(4*s),1);

68 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

if (k eq 1) then
return HadamardKroneckerPermutation(m4s,m4s,FindPermutation(m4s,2));

else
return HadamardKronecker(m4s,m4s);

end if;
else:

// whiteO single case: H(n,r(=rmin),1) = S x [H(n/2,r-1,1),H(n/2,r-1,2)]
rmin:=4*s+t-3;
if ((r eq rmin) and (k eq 1)) then

return HadamardKronecker($$(n div 2,rmin-1,1),$$(n div 2,rmin-1,2));

// aster6 case: H(n,r,k) = S x H(n/2,r-1,k-1)
elif (ExistsHadamardRankKernel(n div 2,r-1,k-1)) then

return KroneckerProduct(HadamardKroneckerSylvester(1),$$(n div 2,r-1,k-1));

// rombo case: H(n,r,2) = Transpose(H(n,r,1))
elif ((r ge ((n div 4)+2)) and (k eq 2)) then

return Transpose(HadamardNormalize($$(n,r,1)));

// blackO single case: H(n,r(=n/4+2),3) = switching code of H(n,r-1,3)
elif ((r eq ((n div 4)+2)) and (k eq 3)) then

C:=HadamardMatrixToCode($$(n,((n div 4)+1),3));
V:=VectorSpace(GF(2),n);kernel:=KernelZ2(C);
Basis:=ExtendBasis([V![1:i in [1..n]]],kernel);
v1v2:=V![Basis[2][i]*Basis[3][i]:i in [1..n]];
x:=FindVectorNotInKernel(C,V,kernel);
S:=[v+x:v in kernel];
return HadamardCodeToMatrix(SwitchCode(C,S,v1v2));

// aster5 case: permutations H(n,r,1)=Sx[H(n/2,r-2,1),perm(H(n/2,r-2,1))]
elif (k eq 1) then

rper1:=rmin+1;rper2:=(n div 4)+2;
if ((r ge rper1) and (r lt rper2)) then

H:=$$((n div 2),(r-2),1);
columns:=2;
perm:=FindPermutation(H,columns);
return HadamardKroneckerPermutation(H,H,perm);

elif (r ge rper2) then
H:=$$((n div 2),(rper2-2),1);
columns:=r-(rper2-2);
perm:=FindPermutation(H,columns);
return HadamardKroneckerPermutation(H,H,perm);

end if;
else

error "Runtime error in 'HadamardRankKernelNNotPower2':
lost in recursion by other cases";

5.1. CODI EXTERN 69

end if;

end case;

end function;

HadamardAllRankKernel(n: swint:=false)

Aquesta funció retorna una llista de matrius Hadamard d'ordre n, n'hi ha
una per cada possible valor de rang r i dimensió del nucli k compatibles
amb l'ordre. Com a opció les pot retornar convertides a enters, mitjançant
la funció HadamardMatrixToInteger(H) si activem el paràmetre opcional
swint.

Aquesta funció en relació a la versió anterior (veure [10, 11]):

• Millora la part que l'ordre n no és potència de dos. Doncs abans,
en aquest suposit, es cridava a les funcions especí�ques per casos.
Per tant nomès es podien construir les matrius Hadamard per certs
valors de t i s esmentats anteriorment en els comentaris de la fun-
ció HadamardRankKernelNNotPower2(n,r,k). Ara es podrà construir
qualsevol matriu Hadamard d'ordre no potència de dos sempre que el
seu ordre primigeni n = 4s estigui a la base de dades Hadamard del
Magma.

• L'opció de convertir la sortida de la llista de matrius Hadamard a llista
d'enters.

Després de comprovar que l'ordre és 1, 2 o múltiple de 4; esbrina en quin dels
dos possibles escenaris estem: O bé l'ordre és una potència de dos (n = 2t,
t ≥ 0), o bé l'ordre no és una potència de dos (n = 2t·s, t ≥ 2 i s 6= 1 senar).

• Si l'ordre és una potència de dos (n = 2t, t ≥ 0):

� Tracta apart el cas lineal, que té el rang i la dimensió del nucli
igual a t + 1 i sempre existeix per qualsevol valor de n potència
de dos. Aquest cas inclou els ordres 1 i 2 completament.

70 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

� Tracta apart el cas d'ordre 16 (t = 4) per generar les quatre ma-
trius de codis Hadamard no lineals que té:

(r, k) ∈ {(6, 3), (7, 2), (8, 1), (8, 2)}

� Per els altres casos (t > 4) aplica els límits en el rang i la dimensió
del nucli per a la construcció de matrius Hadamard d'un ordre
potència de dos donat:

{
t + 2 ≤ r ≤ 2t+1−k + k − 1 si 3 ≤ k ≤ t− 1

t + 3 ≤ r ≤ 2t−1 si 1 ≤ k ≤ 2
(5.1)

� En qualsevol cas cridem a HadamardRankKernelNPower2(n,r,k)

• Si l'ordre no és una potència de dos (n = 2t·s, t ≥ 2 i s 6= 1 senar):

� Comprova que l'ordre 4s existeix a la base de dades Hadamard
del Magma, preguntant-li el nombre de matrius que té d'ordre 4s

amb la funció NumberOfMatrices(HadamardDatabase(),4*s).

� Tracta apart el cas n = 4s (t = 2), perquè és un cas especial que
té el rang i la dimensió del nucli igual a 4s− 1 i 1 respectivament.

� Per els altres casos n = 2t·s (t > 2), aplica els límits en el rang
i la dimensió del nucli per a la construcció de matrius Hadamard
d'un ordre no potència de dos donat:

4s + t− 3 ≤ r ≤
{

2t+1−k·s + k − 1 si 3 ≤ k ≤ t− 1

2t−1·s si 1 ≤ k ≤ 2

(5.2)

� En qualsevol cas cridem a HadamardRankKernelNNotPower2(n,r,k)

5.1. CODI EXTERN 71

/***

HadamardAllRankKernel: RngIntElt : BoolElt -> [AlgMatElt] (optionally [RngIntElt])
Given a positive interger n, returns a list of Hadamard matrices of degree n. There is
one Hadamard matrix with rank r and kernel of dimension k, for each possible pair (r,k).
Optionally be returned to integer conversion if boolean parameter swint is set to true,
it defaults to false.

***/

HadamardAllRankKernel:=function(n: swint:=false)

if ((Type(n) eq RngIntElt) and (n gt 0)) then
if ((n eq 1) or (n eq 2) or (IsDivisibleBy(n,4))) then

t,s:=Valuation(n,2);

//case power of 2
if(s eq 1)then

//for all n it exists a Hadamard Matrix with rank and kernel equal to t+1
H:=HadamardRankKernelNPower2(n,t+1,t+1);
if (not swint) then Hseq:=[H]; else Hseq:=[HadamardMatrixToInteger(H)]; end if;

// case n=1
if t eq 0 then

return Hseq;
elif t eq 4 then
//for t = 4 this matrices are defined

H:=HadamardRankKernelNPower2(16,6,3);
if swint then H:=[HadamardMatrixToInteger(H)]; end if;
Append(~Hseq,H);
H:=HadamardRankKernelNPower2(16,7,2);
if swint then H:=[HadamardMatrixToInteger(H)]; end if;
Append(~Hseq,H);
H:=HadamardRankKernelNPower2(16,8,2);
if swint then H:=[HadamardMatrixToInteger(H)]; end if;
Append(~Hseq,H);
H:=HadamardRankKernelNPower2(16,8,1);
if swint then H:=[HadamardMatrixToInteger(H)]; end if;
Append(~Hseq,H);

else
for k:=1 to 2 do

for r:=t+3 to 2^(t-1) do
//t+3 <= r <= 2^(t-1) if 1 <= k <= 2
H:=HadamardRankKernelNPower2(n,r,k);
if swint then H:=[HadamardMatrixToInteger(H)]; end if;
Append(~Hseq,H);

72 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

end for;
end for;
for k:=3 to t-1 do

for r:=t+2 to 2^(t+1-k)+k-1 do
//t+2 <= r <= 2^(t+1-k)+k-1 if 3 <= k <= t-1
H:=HadamardRankKernelNPower2(n,r,k);
if swint then H:=[HadamardMatrixToInteger(H)]; end if;
Append(~Hseq,H);

end for;
end for;

end if;

//case 4s
elif (NumberOfMatrices(HadamardDatabase(),4*s) ge 1) then

Hseq:=[];
case n:

when (4*s):
H:=HadamardRankKernelNNotPower2(n,n-1,1);
if swint then H:=[HadamardMatrixToInteger(H)]; end if;
Append(~Hseq,H);

else:
rmin:=(4*s)+t-3;
for k:=1 to t-1 do

if (k le 2) then
rmax:=2^(t-1)*s;

else
rmax:=(2^(t+1-k)*s)+k-1;

end if;
for r:=rmin to rmax do

H:=HadamardRankKernelNNotPower2(n,r,k);
if swint then H:=[HadamardMatrixToInteger(H)]; end if;
Append(~Hseq,H);

end for;
end for;

end case;
else

error "Runtime error in 'HadamardAllRankKernel': First Hadamard matrix of sequence\\
is not in Database";

end if;
else

error "Runtime error in 'HadamardAllRankKernel': n must be 1, 2 or multiple of 4";
end if;

else
error "Runtime error in 'HadamardAllRankKernel': Argument 1 is not greater than 0";

end if;
return Hseq;

end function;

5.1. CODI EXTERN 73

HadamardAllRankKernelFile(n : swint:=false)

Aquesta funció és la mateixa que l'anterior HadamardAllRankKernel(n),
però com el seu nom indica retorna un �txer.

Es a dir, guarda en un �txer amb nom �HadamardMatrix<n>� una llista
de matrius Hadamard d'ordre n, n'hi ha una per cada possible valor de rang
r i dimensió del nucli k compatibles amb l'ordre. Opcionalment les pot
convertir a enters, mitjançant la funció HadamardMatrixToInteger(H), si
activem el paràmetre opcional swint.

/***

HadamardAllRankKernelFile: RngIntElt : BoolElt
Given a positive interger n, saves in a file called "HadamardMatrix<n>" Hadamard matrices of
degree n. There is one Hadamard matrix with rank r and kernel of dimension k, for each possible
pair (r,k). Optionally be returned to integer conversion if boolean parameter swint is set to
true, it defaults to false.
***/

HadamardAllRankKernelFile:=procedure(n : swint:=false)

if ((Type(n) eq RngIntElt) and (n gt 0)) then
if ((n eq 1) or (n eq 2) or (IsDivisibleBy(n,4))) then

t,s:=Valuation(n,2);
FileName:="HadamardMatrix" cat IntegerToString(n);
if swint then regint:="["; end if;

//case power of 2
if(s eq 1)then

//for all n it exists a Hadamard Matrix with rank and kernel equal to t+1
H:=HadamardRankKernelNPower2(n,t+1,t+1);
if (not swint) then

PrintFile(FileName,"\n Rank: " cat IntegerToString(t+1) cat\\
", Kernel Dimension: " cat IntegerToString(t+1));
PrintFile(FileName,H);

else
PrintFile(FileName,regint);
regint:=IntegerToString(HadamardMatrixToInteger(H)) cat ",";

end if;

// case n=1
if t eq 0 then

elif t eq 4 then

74 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

//for t = 4 this matrices are defined

H:=HadamardRankKernelNPower2(16,6,3);
if (not swint) then
PrintFile(FileName,"\n Rank: " cat IntegerToString(6) cat\\
", Kernel Dimension: " cat IntegerToString(3));

PrintFile(FileName,H);
else
PrintFile(FileName,regint);
regint:=IntegerToString(HadamardMatrixToInteger(H)) cat ",";
end if;
H:=HadamardRankKernelNPower2(16,7,2);
if (not swint) then
PrintFile(FileName,"\n Rank: " cat IntegerToString(7) cat\\
", Kernel Dimension: " cat IntegerToString(2));

PrintFile(FileName,H);
else
PrintFile(FileName,regint);
regint:=IntegerToString(HadamardMatrixToInteger(H)) cat ",";
end if;
H:=HadamardRankKernelNPower2(16,8,2);
if (not swint) then
PrintFile(FileName,"\n Rank: " cat IntegerToString(8) cat\\
", Kernel Dimension: " cat IntegerToString(2));

PrintFile(FileName,H);
else
PrintFile(FileName,regint);
regint:=IntegerToString(HadamardMatrixToInteger(H)) cat ",";
end if;
H:=HadamardRankKernelNPower2(16,8,1);
if (not swint) then
PrintFile(FileName,"\n Rank: " cat IntegerToString(8) cat\\
", Kernel Dimension: " cat IntegerToString(1));

PrintFile(FileName,H);
else
PrintFile(FileName,regint);
regint:=IntegerToString(HadamardMatrixToInteger(H)) cat ",";
end if;

else
for k:=1 to 2 do

for r:=t+3 to 2^(t-1) do
//t+3 <= r <= 2^(t-1) if 1 <= k <= 2
H:=HadamardRankKernelNPower2(n,r,k);
if (not swint) then
PrintFile(FileName,"\n Rank: " cat IntegerToString(r) cat\\
", Kernel Dimension: " cat IntegerToString(k));

5.1. CODI EXTERN 75

PrintFile(FileName,H);
else
PrintFile(FileName,regint);
regint:=IntegerToString(HadamardMatrixToInteger(H)) cat ",";
end if;

end for;
end for;
for k:=3 to t-1 do

for r:=t+2 to 2^(t+1-k)+k-1 do
//t+2 <= r <= 2^(t+1-k)+k-1 if 3 <= k <= t-1
H:=HadamardRankKernelNPower2(n,r,k);
if (not swint) then
PrintFile(FileName,"\n Rank: " cat IntegerToString(r) cat\\
", Kernel Dimension: " cat IntegerToString(k));
PrintFile(FileName,H);
else
PrintFile(FileName,regint);
regint:=IntegerToString(HadamardMatrixToInteger(H)) cat ",";
end if;

end for;
end for;

end if;

//case 4s
elif (NumberOfMatrices(HadamardDatabase(),4*s) ge 1) then

case n:
when (4*s):

H:=HadamardRankKernelNNotPower2(n,n-1,1);
if (not swint) then
PrintFile(FileName,"\n Rank: " cat IntegerToString(n-1) cat\\
", Kernel Dimension: " cat IntegerToString(1));
PrintFile(FileName,H);
else
PrintFile(FileName,regint);
regint:=IntegerToString(HadamardMatrixToInteger(H)) cat ",";
end if;

else:
rmin:=(4*s)+t-3;
for k:=1 to t-1 do

if (k le 2) then
rmax:=2^(t-1)*s;

else
rmax:=(2^(t+1-k)*s)+k-1;

end if;
for r:=rmin to rmax do

H:=HadamardRankKernelNNotPower2(n,r,k);

76 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

if (not swint) then
PrintFile(FileName,"\n Rank: " cat IntegerToString(r) cat\\
", Kernel Dimension: " cat IntegerToString(k));
PrintFile(FileName,H);

else
PrintFile(FileName,regint);
regint:=IntegerToString(HadamardMatrixToInteger(H)) cat ",";

end if;
end for;

end for;
end case;

else
error "Runtime error in 'HadamardAllRankKernelFile': First Hadamard matrix of sequence\\

is not in Database";
end if;

else
error "Runtime error in 'HadamardAllRankKernelFile': n must be 1,2 or multiple of 4";

end if;
else

error "Runtime error in 'HadamardAllRankKernelFile':
Argument 1 is not greater than 0";

end if;
if swint then

PrintFile(FileName,Substring(regint,1,#regint-1));
PrintFile(FileName,"]");

end if;
end procedure;

HadamardRankKernel(n,r,k: swint:=false)

Donats l'ordre n, el rang r i la dimensió del nucli k, aquesta funció re-
torna una matriu Hadamard amb aquestes característiques. És a dir, re-
torna una matriu Hadamard d'ordre n, en la qual el seu codi té rang r

i la dimensió del nucli és k. Integra la funcionalitat de les funcions au-
xiliars HadamardRankKernelNPower2(n,r,k) pel cas de n = 2t, t ≥ 0 i
HadamardRankKernelNNotPower2(n,r,k) pel cas de n = 2t·s, t ≥ 2 i s 6= 1

senar. L'algorisme utilitzat és el següent:

• Comprova la correcció dels valors dels paràmetres d'entrada. És a dir,
si l'ordre n, el rang r i la dimensió del nucli k són enters positius.

5.1. CODI EXTERN 77

• Comprova si existeix una matriu Hadamard amb aquest ordre n , rang
r i dimensió del nucli k mitjançant la funció ExistsHadamardRankKer-
nel(n,r,k).

• Comprova si es troba en el cas potència de dos amb t,s:=Valuation(n,2),
que ens calcula l'exponent t i el factor senar s quan descomposem n en
potències de 2.

• Si és potència de dos crida a la funció HadamardRankKernelNPower2(n,r,k),
sinó a la funció HadamardRankKernelNNotPower2(n,r,k); en passant-
les hi els mateixos paràmetres.

/**

HadamardRankKernel: RngIntElt,RngIntElt,RngIntElt:BoolElt->AlgMatElt (optionally RngIntElt)
Given positive integers n, r and k, returns a Hadamard matrix of degree n such that its
corresponding Hadamard code of length n has rank r and kernel of dimension k. Optionally to
integer conversion if boolean parameter swint is set to true, it defaults to false.

***/

HadamardRankKernel:=function(n,r,k: swint:=false)
if ((Type(n) eq RngIntElt) and (n gt 0)) then

if((Type(r) eq RngIntElt) and (r gt 0)) then
if((Type(k) eq RngIntElt) and (k gt 0)) then

if (ExistsHadamardRankKernel(n,r,k)) then

t,s:=Valuation(n,2);
if (s eq 1) then

// NPower2-case (n=2^(t))
H:=HadamardRankKernelNPower2(n,r,k);

elif (NumberOfMatrices(HadamardDatabase(),4*s) ge 1) then
// NNotPower2-case (n=2^(t).s): the first 4s must exist in DB
H:=HadamardRankKernelNNotPower2(n,r,k);
else

error "Runtime error in 'HadamardRankKernel':
First Hadamard matrix of sequence is not in Database";

end if;

else
error "Runtime error in 'HadamardRankKernel':
Impossible construction with these parameters";

end if;

78 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

else
error "Runtime error in 'HadamardRankKernel':
Argument 3 is not greater than 0";

end if;
else

error "Runtime error in 'HadamardRankKernel':
Argument 2 is not greater than 0";

end if;
else

error "Runtime error in 'HadamardRankKernel':
Argument 1 is not greater than 0";

end if;

if (not swint) then return H; else return HadamardMatrixToInteger(H); end if;

end function;

HadamardRandomMatrix(n: swint:=false)

Donat un ordre n, aquesta funció retorna una matriu Hadamard qualsevol
d'aquest ordre, amb el rang r i dimensió del nucli k arbitraris però correctes
i compatibles amb l'ordre n. L'algorisme utilitzat és el següent:

• Comprova que l'ordre n sigui un enter positiu 1, 2 o un múltiple de 4.

• Comprova si té matrius Hadamard d'aquest ordre n a la base de dades
Hadamard del Magma mitjançant la funció NumberOfMatrices(D,n).

• Si en té de matrius a la base de dades, llavors en retorna una qualse-
vol fent un Random(1,NumberOfMatrices(HadamardDatabase(),n))
sobre el nombre de matrius d'aquest ordre que té guardades en la base
de dades Hadamard del Magma.

• Si no en té de matrius Hadamard a la base de dades delMagma, llavors
l'ha de construir. Per fer-ho, comprova si es troba en el cas potència
de dos mitjançant t,s:=Valuation(n,2).

� Si l'ordre és una potència de dos (n = 2t, t ≥ 0):

5.1. CODI EXTERN 79

∗ Busca una dimensió del nucli k arbitrària entre
{1, 2, . . . , t− 1, t + 1} (alerta, el valor t està exclòs) amb
k:=Random(Setseq(k: k in Exclude([1..t+1],t)));

∗ En el cas lineal (k = t + 1) no hi ha arbitrarietat, el rang té
el mateix valor que la dimensió del nucli.

∗ Per els altres casos aplica els límits en el rang i la dimensió
del nucli per a la construcció de matrius Hadamard d'un or-
dre potència de dos. En aquest sistema de dos inequacions,
la inequació que s'aplica per la determinació del rang depèn
del valor de la dimensió del nucli (com si fos la variable inde-
pendent):

{
t + 2 ≤ r ≤ 2t+1−k + k − 1 si 3 ≤ k ≤ t− 1

t + 3 ≤ r ≤ 2t−1 si 1 ≤ k ≤ 2
(5.3)

Obtindrem un rang r arbitrari i compatible, �randomitzant�
entre el limits inferior i superior de la inequació corresponent
al valor de la dimensió del nucli que hem �randomitzat� abans.

� Si l'ordre no és una potència de dos (n = 2t·s):
∗ Comprova que el cas n = 4s existeix a la base de dades Ha-

damard del Magma, preguntant-li el nombre de matrius que
té d'ordre 4s amb la funció
NumberOfMatrices(HadamardDatabase(),4*s).

∗ Per el cas concret n = 4s (t = 2), no hi ha arbitrarietat, el
rang i la dimensió del nucli són iguals a 4s− 1 i 1 respectiva-
ment.

∗ Per els altres casos n = 2t·s (t > 2): Busca una dimensió del
nucli k arbitrària entre {1, . . . , t − 1}. I aplica els límits en
el rang i la dimensió del nucli per a la construcció de matrius
Hadamard d'un ordre no potència de dos. En aquest sistema,
la inequació que s'aplica per determinar el rang depèn també

80 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

de la dimensió del nucli:

4s + t− 3 ≤ r ≤
{

2t+1−k·s + k − 1 si 3 ≤ k ≤ t− 1

2t−1·s si 1 ≤ k ≤ 2

(5.4)

Obtindrem un rang r arbitrari i compatible, �randomitzant�
entre el limits inferior i superior de la inequació corresponent
al valor de la dimensió del nucli que hem �randomitzat� abans.

• En qualsevol cas, al �nal, cridem a la funció HadamardRankKernel(n,r,k)
per tal de construir la matriu de Hadamard d'ordre n amb el rang r i
dimensió del nucli k escollits arbitràriament.

/**

HadamardRandomMatrix: RngIntElt : BoolElt -> AlgMatElt (optionally RngIntElt)
Given positive integer n, returns a random Hadamard matrix of degree n.
Optionally to integer conversion if boolean parameter swint is set to true,
it defaults to false.

**/

HadamardRandomMatrix:=function(n: swint:=false)
if ((Type(n) eq RngIntElt) and (n gt 0)) then

if ((n eq 1) or (n eq 2) or (IsDivisibleBy(n,4))) then

D:=HadamardDatabase(); NOM:=NumberOfMatrices(D,n);
if (NOM ge 1) then

H:=Matrix(D,n,Random(1,NOM));
else

t,s:=Valuation(n,2);

//case power of 2
if (s eq 1) then

k:=Random(Setseq({k: k in Exclude([1..t+1],t)}));
// lineal case
if (k eq (t+1)) then

r:=k;
//t+3 <= r <= 2^(t-1) if 1 <= k <= 2
elif ((k ge 1) and (k le 2)) then

r:=Random(t+3,2^(t-1));
//t+2 <= r <= 2^(t+1-k)+k-1 if 3 <= k <= t-1

5.1. CODI EXTERN 81

else
r:=Random(t+2,2^(t+1-k)+k-1);

end if;

// case not power of 2, the first (4s) must exist in DB
elif (NumberOfMatrices(D,4*s) ge 1) then

//t=2, r=4s-1, k=1 (case 4s)
if (t eq 2) then

r:=4*s-1;k:=1;
else

k:=Random(1,t-1);
//t>=3, r=4s+t-3..n/2, k=1,2
if ((k ge 1) and (k le 2)) then

r:=Random(4*s+t-3,2^(t-1)*s);
//t>3, r=4s+t-3..2^(t+1-k)s+k-1, k>2
else

r:=Random(4*s+t-3,2^(t+1-k)*s+k-1);
end if;

end if;
else

error "Runtime error in 'HadamardRandomMatrix': First Hadamard matrix of sequence\\
is not in Database";

end if;
H:=HadamardRankKernel(n,r,k);

end if;

else
error "Runtime error in 'HadamardRandomMatrix': n must be 1, 2 or multiple of 4";

end if;
else

error "Runtime error in 'HadamardRandomMatrix': Argument is not greater than 0";
end if;

if (not swint) then return H; else return HadamardMatrixToInteger(H); end if;

end function;

5.1.4 Altres funcions

CCGHadamardDatabase()

/**
CCGHadamardDatabase: : MonStgElt -> DB
Returns the database of Hadamard matrices.
***/

82 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

5.2 Pas de codi extern a Package
Hem de muntar una llibreria interna o package amb totes les funcions imple-
mentades, i actualitzar el manual Hadamard de l'usuari (capitol 8) amb les
funcions implementades que són públiques o d'usuari.

Mostrem un exemple d'una d'aquestes funcions d'usuari, explicarem els
canvis que s'han de fer per passar-la al package, i �nalment la mostrem ja
convertida per al package.

1. En la declaració de la funció hem de canviar la paraula reservada
function per intrinsic, i també al �nal de la funció end function
per end intrinsic.

2. Hem de treure el codi que comprova la correcció dels paràmetres d'en-
trada, ja que posarem els seus tipus de variable acompanyant als argu-
ments de la funció després de �::�, i també el tipus que la funció retorna
després de �->�.

3. Adjuntem una breu explicació de la funció entre claus �{...}�.

4. Per les possibles condicions inicials o requeriments en el valors dels pa-
ràmetres d'entrada, s'ha de extreure el codi corresponent del programa
i posar-lo en les comandes:

• require condició: missatge_error;

• requirerange variable, limit_inferior, limit_superior;

• requirege variable, limit_inferior;

intrinsic HadamardInvariantSHDE(H::AlgMatElt : a:=3.1415926 ,k:=4) -> SeqEnum[RngIntElt]
{Given a Hadamard matrix H, a ponderator positive number a and a positive integer k,
returns only the frequencies of the Symmetric Hamming Distance Enumerator
distribution of H over all k-dimensional columns projections. Invariant
proposed by Kai-Tai Fang and Gennian Ge. It defaults a to 3.1415926 and k to 4.}

require IsHadamard(H):"Argument is not a Hadamard matrix";
requirege k, 1;
require k le NumberOfColumns(H):"Argument 3 is greater than the number of columns of Hadamard matrix";
require ((Type(a) eq FldReElt) and (a gt 0)):"Argument 2 is not greater than 0";
FiBak:=SHDEDistribution(a,k,H);

5.2. PAS DE CODI EXTERN A PACKAGE 83

FG:=[]; for i:=1 to #FiBak do Append(~FG,FiBak[i][2]); end for;
return FG;

end intrinsic;

En el procés de correcció dels errors al passar les funcions d'usuari a
intrínsics del nou package utilitzarem aquestes comandes:

• Per carregar el package s'utilitza la comanda Attach: Attach("hadamard.m");.
Al fer això es crearan automàticamnent dos �txers: hadamard.dat i
hadamard.sig.

• I per descarregar-lo s'utilitza la comanda Dettach;.

• Després d'haver depurat el package posarem la comanda freeze; al
començament del �txer per indicar al Magma que la versió ja és de�-
nitiva i que no caldrà recompilar-lo cada cop que fem el Attach.

Tots els packages es troben en el directori /package de la distribució de
Magma. Per instal.lar-hi el nou package d'aquest projecte cal seguir els
passos següents:

1. Crear un subdirectori /Hadamard.

2. Copiar a aquesta carpeta els �txers hadamard.m i hadamard.sig.

3. Crear el �txer d'especi�cacions hadarmard.spec. Aquest �txer només
conté la informació següent:
{

hadamard.m

}

4. Modi�car el �txer /package/spec per afegir la informació del package
Hadamard
{

+hadamard.spec

}

84 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

5.3 Test de proves
Per tal de comprovar la correció i la �abilitat de les funcions implementades,
hem dissenyat una sèrie de tests. En el projecte s'han realitzat dos tipus de
tests: tests unitaris i tests d'integració.

5.3.1 Test unitari
El test unitari serveix per validar un mòdul, fent passar el test per totes les
línies de codi. No nomès hem de comprovar que la resposta de la funció
és correcta quan la cridem amb els paràmetres correctes, sinó també que
els errors són els esperats. Per tant, hem de dissenyar-lo per tots el casos
possibles, correctes i erronis.

Hem implementat test unitaris bastant exhaustius per cadascuna de les
vuit funcions.

1. KernelZ2(C) : test unitari unittestKernelZ2.m

2. HadamardInvariantSHDE(H) : unittestHadamardInvariantSHDE.m

3. HadamardInequivalentMatricesSHDE(H1,H2) : unittestHadamardInequivalentMatricesSHDE.m

4. HadamardRankKernelNNotPower2(n,r,k) : unittestHadamardRankKernelNNotPower2.m

5. HadamardRankKernel(n,r,k) : unittestHadamardRankKernel.m

6. HadamardRandomMatrix(n) : unittestHadamardRandomMatrix.m

7. HadamardAllRankKernelFile(n) : unittestHadamardAllRankKernelFile.m

8. HadamardAllRankKernel(n) : unittestHadamardAllRankKernel.m

També hem implementat un procediment general unittestHadamard(option)
que engloba tots els tests unitaris de cadascuna de les vuit funcions. Triant
l'opció pertinent podrem realitzar el test unitari de la funció que vulguem o
de totes (opció 0). També, si volguéssim, podrem guardar els resultats a un
�txer.

Per fer-nos una idea i no carregar excessivament de codiMagma la memò-
ria, mostrem només el procediment unittestHadamardRankKernelNNotPower2.
Aquest i tots els altres tests unitaris estan gravats al CD que acompanya la
memòria.

5.3. TEST DE PROVES 85

print "HadamardRankKernelNNotPower2 ...";

//Correct case: n=4s (12,20,28,36,44,52,...,63)
print "\n 4s case ...";
//read pause," press <Enter> to continue";
for s:=3 to 63 by 2 do

n:=4*s;
print "\n H(" cat IntegerToString(n) cat "," cat IntegerToString(n-1) cat\\

"," cat IntegerToString(1) cat ")";
//read pause," press <Enter> to continue";
HadamardRankKernelNNotPower2(n,n-1,1);

end for;

//Correct case: n=8s (24,40,56,72,88,104,...,31)
print "\n 8s case ...";
//read pause,"press <Enter> to continue";
for s:=3 to 31 by 2 do

n:=8*s;
print "\n H(" cat IntegerToString(n) cat "," cat IntegerToString(n div 2) cat\\

"," cat IntegerToString(1) cat ")";
HadamardRankKernelNNotPower2(n,(n div 2),1);
print "\n H(" cat IntegerToString(n) cat "," cat IntegerToString(n div 2) cat\\

"," cat IntegerToString(2) cat ")";
HadamardRankKernelNNotPower2(n,(n div 2),2);

end for;

//Correct case: whiteO single: H(n,r(=rmin),1) = S x [H(n/2,r-1,1),H(n/2,r-1,2)]
print "\n H(n,r(=rmin),1) = S x [H(n/2,r-1,1),H(n/2,r-1,2)] case ...";
//read pause,"press <Enter> to continue";
n:=48;
while (n le 256) do

t,s:=Valuation(n,2);
if ((s ne 1) and (t gt 3)) then

print "\n H(" cat IntegerToString(n) cat "," cat IntegerToString(4*s+t-3) cat\\
"," cat IntegerToString(1) cat ")";

HadamardRankKernelNNotPower2(n,(4*s+t-3),1);
end if;
n:=n+4;

end while;

//Correct case: aster6 case H(n,r,k) = S x H(n/2,r-1,k-1)
print "\n H(n,r,k) = S x H(n/2,r-1,k-1) case ...";
//read pause,"press <Enter> to continue";
n:=24;
while (n le 128) do

t,s:=Valuation(n,2);
if ((s ne 1) and (t ge 3)) then

rmin:=(4*s)+t-3;
for k:=1 to t-1 do
if (k le 2) then rmax:=2^(t-1)*s; else rmax:=(2^(t+1-k)*s)+k-1; end if;
for r:=rmin to rmax do

if (ExistsHadamardRankKernel(n,r,k)) then
print "\n H(" cat IntegerToString(2*n) cat "," cat IntegerToString(r+1) cat\\

"," cat IntegerToString(k+1) cat ")";
HadamardRankKernelNNotPower2((2*n),(r+1),(k+1));

end if;
end for;

end for;
end if;
n:=n+4;

end while;

//Correct case: rombo case H(n,r,2) = Transpose(H(n,r,1))
print "\n H(n,r,2) = Transpose(H(n,r,1)) case ...";

86 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

//read pause,"press <Enter> to continue";
n=48;
while (n le 256) do

t,s:=Valuation(n,2);
if ((s ne 1) and (t gt 3)) then

rmin:=(4*s)+t-3; rmax:=2^(t-1)*s;
for r:=rmin to rmax do

if (r ge ((n div 4)+2)) then
print "\n H(" cat IntegerToString(n) cat "," cat IntegerToString(r) cat\\

"," cat IntegerToString(2) cat ")";
HadamardRankKernelNNotPower2(n,r,2);

end if;
end for;

end if;
n:=n+4;

end while;

//Correct case: blackO single case H(n,r(=n/4+2),3) = switching code of H(n,r-1,3)
print "\n H(n,r(=n/4+2),3) = switching code of H(n,r-1,3) case ...";
//read pause,"press <Enter> to continue";
n:=48;
while (n le 256) do

t,s:=Valuation(n,2);
if ((s ne 1) and (t gt 3)) then

rmin:=(4*s)+t-3; rmax:=(2^(t-2)*s)+2;
for r:=rmin to rmax do

if (r eq ((n div 4)+2)) then
print "\n H(" cat IntegerToString(n) cat "," cat IntegerToString(r) cat\\

"," cat IntegerToString(3) cat ")";
HadamardRankKernelNNotPower2(n,r,3);

end if;
end for;

end if;
n:=n+4;

end while;

//Correct case: aster5 permutations H(n,r,1)=Sx[H(n/2,r-2,1),perm(H(n/2,r-2,1))]
print "\n permutations H(n,r,1)=Sx[H(n/2,r-2,1),perm(H(n/2,r-2,1))] case ...";
//read pause,"press <Enter> to continue";
n:=48;
while (n le 256) do

t,s:=Valuation(n,2);
if ((s ne 1) and (t gt 3)) then

rmin:=(4*s)+t-3; rmax:=2^(t-1)*s;
for r:=rmin to rmax do

rper1:=rmin+1; rper2:=(n div 4)+2;
if (r ge rper1) then

print "\n H(" cat IntegerToString(n) cat "," cat IntegerToString(r) cat\\
"," cat IntegerToString(1) cat ")";

HadamardRankKernelNNotPower2(n,r,1);
end if;

end for;
end if;
n:=n+4;

end while;

//Error case: lost in recursion, n=260 (4s with s=65, not in HadamardDatabase)
print "\n lost in recursion, n=260 (4s with s=65, not in HadamardDatabase) case ...";
//read pause,"press <Enter> to continue";
print "\n H(" cat IntegerToString(260) cat "," cat IntegerToString(259) cat "," cat IntegerToString(1) cat ")";
HadamardRankKernelNNotPower2(260,259,1);

5.3. TEST DE PROVES 87

5.3.2 Test d'integració
El test d'integració veri�ca la integració dels diferents mòduls que participen
en les funcions, des de les auxiliars més importants �ns arribar a les públi-
ques o d'usuari. És per això que hem implementat un test d'integració per
cadascuna d'aquestes tres funcions importants:

1. HadamardRankKernelNPower2(n,r,k) : testHadamardRankKernelNNotPower2.m

2. HadamardRankKernelNNotPower2(n,r,k) : testHadamardRankKernelNNotPower2.m

3. HadamardRankKernel(n,r,k) : testHadamardRankKernel.m

Mostrarem només el codi del procediment testHadamardRankKernel.m
que veri�ca la integració de la funció HadamardRankKernel(n,r,k) que, de
fet, es com si féssim també un test de integració de les altres, perquè són
cridades per la primera. Tots els procediments tests de integració estan
gravats al CD que acompanya la memòria.

En el test testHadamardRankKernel(nmax) comprovem totes les matrius
Hadamard de tots els orders n �ns a l'ordre màxim entrat nmax, que pot
construir la funció HadamardRankKernel(n,r,k) per tots els rangs r i di-
mensions del nucli possibles k. I, a més, comprovem que la matriu retornada
sigui realment de rang r i dimensió del nucli k. La única limitació serà els
recursos de càlcul i de memòria de que disposi el nostre procés.

Els resultats els podrem guardar a un �txer que per defecte té el nom
"testHadRanKer<nmax>.txt".
/***
testHadamardRankKernel: RgnIntElt (,MonStgElt)
Given a positive integer as the maximun order, tests in a file the Hadamard matrices
until this order generated by the general function 'HadamardRankKernel'.
***/
testHadamardRankKernel:=procedure(nmax: file:="testHadRanKer" cat IntegerToString(nmax) cat ".txt")

fprintf file,"testing HadamardRankKernel ... \n";

n:=1;
while (n le nmax) do

t,s:=Valuation(n,2);
if (s eq 1) then

//for all n=2^t it exists a Hadamard Matrix with rank and kernel equal to t+1
// includes completely the only lineal orders (n=1,2,4,8)

88 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

H:=HadamardRankKernel(n,t+1,t+1);
H2:=HadamardMatrixFromInteger(HadamardRankKernel(n,t+1,t+1: swint:=true),n);
fprintf file," n=%o, r=%o, k=%o -> ",IntegerToString(n),IntegerToString(t+1),IntegerToString(t+1);
fprintf file,"%o ",InvariantsRankKernelZ2(HadamardMatrixToCode(H2)) eq [t+1, t+1];
fprintf file,"%o \n",H eq H2;

if t lt 4 then

elif t eq 4 then
//for t = 4 this matrices are defined
H:=HadamardRankKernel(n,6,3);
H2:=HadamardMatrixFromInteger(HadamardRankKernel(n,6,3: swint:=true),n);
fprintf file," n=%o, r=%o, k=%o -> ",IntegerToString(n),IntegerToString(6),IntegerToString(3);
fprintf file,"%o ",InvariantsRankKernelZ2(HadamardMatrixToCode(H2)) eq [6, 3];
fprintf file,"%o \n",H eq H2;

H:=HadamardRankKernel(n,7,2);
H2:=HadamardMatrixFromInteger(HadamardRankKernel(n,7,2: swint:=true),n);
fprintf file," n=%o, r=%o, k=%o -> ",IntegerToString(n),IntegerToString(7),IntegerToString(2);
fprintf file,"%o ",InvariantsRankKernelZ2(HadamardMatrixToCode(H2)) eq [7, 2];
fprintf file,"%o \n",H eq H2;

H:=HadamardRankKernel(n,8,2);
H2:=HadamardMatrixFromInteger(HadamardRankKernel(n,8,2: swint:=true),n);
fprintf file," n=%o, r=%o, k=%o -> ",IntegerToString(n),IntegerToString(8),IntegerToString(2);
fprintf file,"%o ",InvariantsRankKernelZ2(HadamardMatrixToCode(H2)) eq [8, 2];
fprintf file,"%o \n",H eq H2;

H:=HadamardRankKernel(n,8,1);
H2:=HadamardMatrixFromInteger(HadamardRankKernel(n,8,1: swint:=true),n);
fprintf file," n=%o, r=%o, k=%o -> ",IntegerToString(n),IntegerToString(8),IntegerToString(1);
fprintf file,"%o ",InvariantsRankKernelZ2(HadamardMatrixToCode(H2)) eq [8, 1];
fprintf file,"%o \n",H eq H2;

else
for k:=1 to 2 do
for r:=t+3 to 2^(t-1) do
//t+3 <= r <= 2^(t-1) if 1 <= k <= 2
H:=HadamardRankKernel(n,r,k);
H2:=HadamardMatrixFromInteger(HadamardRankKernel(n,r,k: swint:=true),n);
fprintf file," n=%o, r=%o, k=%o -> ",IntegerToString(n),IntegerToString(r),IntegerToString(k);
fprintf file,"%o ",InvariantsRankKernelZ2(HadamardMatrixToCode(H2)) eq [r, k];
fprintf file,"%o \n",H eq H2;

end for;
end for;
for k:=3 to t-1 do
for r:=t+2 to 2^(t+1-k)+k-1 do
//t+2 <= r <= 2^(t+1-k)+k-1 if 3 <= k <= t-1
H:=HadamardRankKernel(n,r,k);
H2:=HadamardMatrixFromInteger(HadamardRankKernel(n,r,k: swint:=true),n);
fprintf file," n=%o, r=%o, k=%o -> ",IntegerToString(n),IntegerToString(r),IntegerToString(k);
fprintf file,"%o ",InvariantsRankKernelZ2(HadamardMatrixToCode(H2)) eq [r, k];
fprintf file,"%o \n",H eq H2;

end for;
end for;

end if;

elif (NumberOfMatrices(HadamardDatabase(),4*s) ge 1) then

case n:
when (4*s):

H:=HadamardRankKernel(n,n-1,1);
H2:=HadamardMatrixFromInteger(HadamardRankKernel(n,n-1,1: swint:=true),n);
fprintf file," n=%o, r=%o, k=%o -> ",IntegerToString(n),IntegerToString(n-1),IntegerToString(1);

5.3. TEST DE PROVES 89

fprintf file,"%o ",InvariantsRankKernelZ2(HadamardMatrixToCode(H2)) eq [n-1, 1];
fprintf file,"%o \n",H eq H2;

else:
rmin:=(4*s)+t-3;
for k:=1 to t-1 do
if (k le 2) then rmax:=2^(t-1)*s; else rmax:=(2^(t+1-k)*s)+k-1; end if;
for r:=rmin to rmax do

H:=HadamardRankKernel(n,r,k);
H2:=HadamardMatrixFromInteger(HadamardRankKernel(n,r,k: swint:=true),n);
fprintf file," n=%o, r=%o, k=%o -> ",IntegerToString(n),IntegerToString(r),IntegerToString(k);
fprintf file,"%o ",InvariantsRankKernelZ2(HadamardMatrixToCode(H2)) eq [r, k];
fprintf file,"%o \n",H eq H2;

end for;
end for;

end case;

end if;

if (n eq 1) then n:=n+1;
elif (n eq 2) then n:=n+2;
else n:=n+4;
end if;

end while;

end procedure;

90 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

5.4 Proves de �abilitat
Provar que les noves funcions donen els resultats correctes, és a dir, que les
sortides són les que s'esperen obtenir en cada cas; ja ho hem fet en els tests
de proves unitàries. Ara provem que els resultats obtinguts coincideixen amb
els que s'obtenien amb les versions anteriors de les mateixes funcions.

5.4.1 Proves de �abilitat de la funció KernelZ2(C)

Comprovarem que la nova funció KernelZ2(C) construeix els mateixos nuclis
que la seva versió anterior. Per això hem realitzat aquest procediment que
veurem a continuació anomenat ProvaFiabilitatKernelZ2. Aquest proce-
diment es repassa tota la base de dades Hadamard estàndard del Magma i
per cada matriu Hadamard comprova els nuclis i les seves dimensions del seu
corresponent codi Hadamard per cada una de les dos versions de la funció
KernelZ2.

//Fiability test of KernelZ2
load "KernelZ2Ori.m";
load "hadamarfile.m";

FileName:="fiatestKernelZ2.txt";
SetLogFile(FileName);
printf "\n Fiability Test KernelZ2 over HadamardDatabase\n";
D:=HadamardDatabase();
for n in Degrees(D) do

V:=VectorSpace(GF(2),n); ZeroVector:=V!0;
for m:=1 to NumberOfMatrices(D,n) do

C:=HadamardMatrixToCode(Matrix(D,n,m));
if (ZeroVector in C) then

K:=KernelZ2(C); KA:=KernelZ2Ori(C); KAsub:=sub<V|KA>;
ka:=Dimension(KAsub); k:=Dimension(K); r:=RankZ2(C);
printf "n=%o,m=%o,#C=%o,r=%o,k=%o: %o,%o\n",n,m,#C,r,k,(#KA eq #K),(KAsub eq K);

end if;
end for;

end for;
UnsetLogFile();

Un exemple de la sortida de comprovació que s'obté d'aquest procediment
és:

Fiability Test KernelZ2 over HadamardDatabase
n=1,m=1,#C=2,r=1,k=1: true,true
n=2,m=1,#C=4,r=2,k=2: true,true
n=4,m=1,#C=8,r=3,k=3: true,true

5.4. PROVES DE FIABILITAT 91

n=8,m=1,#C=16,r=4,k=4: true,true
n=12,m=1,#C=24,r=11,k=1: true,true
n=16,m=1,#C=32,r=5,k=5: true,true
n=16,m=2,#C=32,r=8,k=1: true,true
n=16,m=3,#C=32,r=8,k=2: true,true
n=16,m=4,#C=32,r=6,k=3: true,true
n=16,m=5,#C=32,r=7,k=2: true,true
n=20,m=1,#C=40,r=19,k=1: true,true
.
.
.
n=208,m=1,#C=416,r=53,k=3: true,true
n=212,m=1,#C=424,r=211,k=1: true,true
n=216,m=1,#C=432,r=108,k=2: true,true
n=220,m=1,#C=440,r=219,k=1: true,true
n=224,m=1,#C=448,r=112,k=1: true,true
n=228,m=1,#C=456,r=227,k=1: true,true
n=232,m=1,#C=464,r=116,k=2: true,true
n=236,m=1,#C=472,r=235,k=1: true,true
n=240,m=1,#C=480,r=120,k=1: true,true
n=244,m=1,#C=488,r=243,k=1: true,true
n=248,m=1,#C=496,r=124,k=2: true,true
n=252,m=1,#C=504,r=251,k=1: true,true
n=256,m=1,#C=512,r=9,k=9: true,true

5.4.2 Proves de �abilitat de les funcions que implemen-
ten la invariant SHDE de Kai-Tai Fang i Gennian
Ge

En l'article dels xinesos Kai-Tai Fang i Gennian Ge [5] no només es de�nia
aquesta nova invariant, sinó que per demostrar la seva sensibilitat en la clas-
si�cació de les matrius Hadamard, també es parlava dels resultats dels càlculs
fets amb aquest invariant sobre les 60 matrius de Hadamard inequivalents
d'ordre 24 i també sobre les 192 d'ordre 36, per diferents valors de la k (ja que
el càlcul es fa per totes les col.leccions diferents de k columnes de n) i agafant

92 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

el número a com a 3.1415926. Aquests càlculs estaven tabul.lats en un altre
article seu, més antic, del qual els autors feien esment [4] i que nosaltres no
disposarem, �ns que amablement ens el van fer arribar per correu electrònic.

Aquests resultats que els autors comentaven en l'article [5] i les taules dels
càlculs de l'article [4], per les matrius Hadamard d'ordre 24, ens serviran per
provar la �abilitat de les funcions implementades d'aquest invariant.

Les nostres proves es fonamenten en dos resultats a comprovar que s'es-
menten en el primer article:

1. Hi ha 35 classes inequivalents de matrius de Hadamard d'ordre 24 quan
es calcula la invariant per k = 4. I, de resultes del càlcul, han quedat
38 matrius sense separar.

2. Aplicant el càlcul de la invariant amb k = 6 per les 38 inseparables i
només comprovant la seva freqüència per el valor 34953, podrem iden-
ti�car �nalment les 60 matrius Hadamard inequivalents d'ordre 24.

HadamardClassificationSHDE(24:file:=�HadClaSHDE24.txt�) classi-
�ca les 60 matrius de Hadamard inequivalents d'ordre 24 per la k = 4 i
a = 3.1415926, la seva sortida és ordenada per obtenir la Taula 5.1, que ens
mostra millor les 35 classes d'equivalència que s'han creat i les matrius que
pertanyen a cada classe.

• Observem que hi han 35 valors de distribució SHDE diferents amb els
números de matrius d'ordre 24 associats, corresponents a les 35 classes
inequivalents que identi�ca.

• Si comptem les matrius en les distribucions SHDE que tenen més d'una
matriu associada, en resulten 38 matrius no separades. Aquestes són:
1, 10, 51, 52, 57, 58, 59, 60, 4, 8, 5, 7, 11, 12, 13, 40, 15, 38, 16, 20, 22,
31, 55, 18, 45, 19, 53, 26, 35, 28, 44, 29, 30, 37, 39, 42, 32 i 50.

5.4. PROVES DE FIABILITAT 93

Taula 5.1: Classi�cació de les 60 matrius Hadamard d'ordre 24 i k = 4.

[Floor(SHDEa=3.1415926,k=4), frequency], ... matrices
[9410, 6600],[9495, 3960],[10168, 66] 1, 10, 51, 52, 57, 58, 59, 60
[9410, 6960],[9495, 3420],[9747, 216],[10168, 30] 2
[9410, 7260],[9495, 2970],[9747, 396] 3
[9410, 7140],[9495, 3150],[9747, 324],[10168, 12] 4, 8
[9410, 7200],[9495, 3060],[9747, 360],[10168, 6] 5, 7
[9410, 7080],[9495, 3240],[9747, 288],[10168, 18] 6
[9410, 6072],[9495, 4554] 9
[9410, 6696],[9495, 3752],[9747, 160],[10168, 18] 11, 12
[9410, 6720],[9495, 3700],[9747, 200],[10168, 6] 13, 40
[9410, 6528],[9495, 3956],[9747, 136],[10168, 6] 14
[9410, 6564],[9495, 3918],[9747, 132],[10168, 12] 15, 38
[9410, 6504],[9495, 4008],[9747, 96],[10168, 18] 16, 20, 22, 31, 55
[9410, 6600],[9495, 3880],[9747, 128],[10168, 18] 17
[9410, 6480],[9495, 4060],[9747, 56],[10168, 30] 18, 45
[9410, 6576],[9495, 3932],[9747, 88],[10168, 30] 19, 53
[9410, 6624],[9495, 3828],[9747, 168],[10168, 6] 21
[9410, 6384],[9495, 4168],[9747, 56],[10168, 18] 23
[9410, 6360],[9495, 4200],[9747, 48],[10168, 18] 24
[9410, 6408],[9495, 4136],[9747, 64],[10168, 18] 25
[9410, 6432],[9495, 4104],[9747, 72],[10168, 18] 26, 35
[9410, 6480],[9495, 4020],[9747, 120],[10168, 6] 27
[9410, 6708],[9495, 3726],[9747, 180],[10168, 12] 28, 44
[9410, 6492],[9495, 4014],[9747, 108],[10168, 12] 29, 30, 37, 39, 42
[9410, 6528],[9495, 3996],[9747, 72],[10168, 30] 32, 50
[9410, 6504],[9495, 3988],[9747, 128],[10168, 6] 33
[9410, 6516],[9495, 3982],[9747, 116],[10168, 12] 34
[9410, 6552],[9495, 3944],[9747, 112],[10168, 18] 36
[9410, 6444],[9495, 4078],[9747, 92],[10168, 12] 41
[9410, 6672],[9495, 3804],[9747, 120],[10168, 30] 43
[9410, 6336],[9495, 4212],[9747, 72],[10168, 6] 46
[9410, 6348],[9495, 4206],[9747, 60],[10168, 12] 47
[9410, 6456],[9495, 4072],[9747, 80],[10168, 18] 48
[9410, 6432],[9495, 4094],[9747, 88],[10168, 12] 49
[9410, 6528],[9495, 3976],[9747, 104],[10168, 18] 54
[9410, 6408],[9495, 4116],[9747, 96],[10168, 6] 56

El procediment HadamardTableSHDE6024B46(a) reprodueix la taula núm.
1 de l'article [4] per identi�car totes les 60 matrius de Hadamard d'ordre 24

combinant la invariant SHDE per k = 4 i k = 6. Usa les funcions implemen-
tades HadamardClassificationSHDE(24,a,k) per k = 4, 6 i a = 3.1415926.

94 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

/***
HadamardTableSHDE6024B46:RngIntElt
Given a positive number a, saves in a file called "HadTabSHDE6024B46" the table of
the integer part of the values of the distance enumerator of H over all 4-dimensional and
6-dimensional columns |Ba4| and |Ba6| respectively of the 60 Hadamard matrices of order 24.
***/
HadamardTableSHDE6024B46:=procedure(a)

NFiBa46:=HadamardClassificationSHDE(24:a:=a,k:=4);
NFiBa6:=HadamardClassificationSHDE(24:a:=a,k:=6);
for i in [1..#NFiBa46] do

NFiBa46[i][3]:=[];
if (#NFiBa46[i][2] gt 1) then

for j in [1..#NFiBa46[i][2]] do
for l in [1..#NFiBa6] do

if (NFiBa6[l][2][1] eq NFiBa46[i][2][j]) then

listed:=false;
for m in [1..#NFiBa6[l][1]] do

if (NFiBa6[l][1][m][1] eq 34953) then
Append(~NFiBa46[i][3],NFiBa6[l][1][m]);
listed:=true;
break;

end if;
end for;
if (not listed) then

Append(~NFiBa46[i][3],[34953,0]);
end if;

end if;
end for;

end for;
else

Append(~NFiBa46[i][3],[34953,999994]);
end if;

end for;
T6024B46:=[];
for i in [1..#NFiBa46] do

Bk4Bk6m:=[0,0,0,0,0,0];
for j in [1..#NFiBa46[i][1]] do

case NFiBa46[i][1][j][1]:
when 9410:

Bk4Bk6m[4]:=NFiBa46[i][1][j][2];
when 9495:

Bk4Bk6m[3]:=NFiBa46[i][1][j][2];
when 9747:

Bk4Bk6m[2]:=NFiBa46[i][1][j][2];
//10168

else:
Bk4Bk6m[1]:=NFiBa46[i][1][j][2];

end case;
end for;
for j in [1..#NFiBa46[i][2]] do

Bk4Bk6m[6]:=NFiBa46[i][2][j][2];
Bk4Bk6m[5]:=NFiBa46[i][3][j][2];
Append(~T6024B46,Bk4Bk6m);

end for;
end for;
Sort(~T6024B46);
FileName:="HadTabSHDE6024B46";
PrintFile(FileName,"\n HadamardTableSHDE6024B46");
PrintFile(FileName,a);
PrintFile(FileName,"CLASSIFICATION OF THE HADAMARD MATRICES");
PrintFile(FileName,"Table 1. FBa,k(H) for the 60 Hadamard matrices of order 24");
PrintFile(FileName,"No [Ba,4]=10168 [Ba,4]=9747 [Ba,4]=9495 [Ba,4]=9410 [Ba,6]=34953");

5.4. PROVES DE FIABILITAT 95

for i in [1..#T6024B46] do
Bk4Bk6m:=Rotate(T6024B46[i],1);
PrintFile(FileName,Bk4Bk6m);

end for;
end procedure;

Mostrem un extracte de la taula guardada en el �txer HadTabSHDE6024B46.txt:

HadamardTableSHDE6024B46
3.14159260000000000000000000000
CLASSIFICATION OF THE HADAMARD MATRICES
Table 1. FBa,k(H) for the 60 Hadamard matrices of order 24
No [Ba,4]=10168 [Ba,4]=9747 [Ba,4]=9495 [Ba,4]=9410 [Ba,6]=34953
[9, 0, 0, 4554, 6072, 999994]
[3, 0, 396, 2970, 7260, 999994]
[46, 6, 72, 4212, 6336, 999994]
[56, 6, 96, 4116, 6408, 999994]
[27, 6, 120, 4020, 6480, 999994]
[33, 6, 128, 3988, 6504, 999994]
[14, 6, 136, 3956, 6528, 999994]
[21, 6, 168, 3828, 6624, 999994]
[13, 6, 200, 3700, 6720, 6312]
[40, 6, 200, 3700, 6720, 6370]
[5, 6, 360, 3060, 7200, 11440]
[7, 6, 360, 3060, 7200, 11488]
.
.
.
[1, 66, 0, 3960, 6600, 0]
[59, 66, 0, 3960, 6600, 1080]
[52, 66, 0, 3960, 6600, 1096]
[10, 66, 0, 3960, 6600, 1100]
[58, 66, 0, 3960, 6600, 1116]
[51, 66, 0, 3960, 6600, 1120]
[57, 66, 0, 3960, 6600, 1164]
[60, 66, 0, 3960, 6600, 1184]

En La Taula 5.2 mostrem la classi�cació total de les 60 matrius de Hada-
mard inequivalents d'ordre n = 24 per la k = 4, 6 i a = 3.1415926. La hem
obtingut del �txer sencer gravat pel procediment HadamardTableSHDE6024B46,
resumit a dos columnes i tret el valor convingut 999994.

• Observem que amb només un valor de la distribució SHDE per k = 6 és
su�cient per separar les 38 matrius que ens quedaven sense identi�car.

96 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

Taula 5.2: Classi�cació de les 60 matrius Hadamard d'ordre 24 i k = 4, 6.

No [Ba,4] [Ba,4] [Ba,4] [Ba,4] [Ba,6] No [Ba,4] [Ba,4] [Ba,4] [Ba,4] [Ba,6]
10168 9747 9495 9410 34953 10168 9747 9495 9410 34953

90 0 0 4554 6072 35 18 72 4104 6432 4308
3 0 396 2970 7260 26 18 72 4104 6432 4310
46 6 72 4212 6336 48 18 80 4072 6456
56 6 96 4116 6408 16 18 96 4008 6504 3176
27 6 120 4020 6480 20 18 96 4008 6504 3872
33 6 128 3988 6504 55 18 96 4008 6504 3940
14 6 136 3956 6528 31 18 96 4008 6504 4020
21 6 168 3828 6624 22 18 96 4008 6504 4860
13 6 200 3700 6720 6312 54 18 104 3976 6528
40 6 200 3700 6720 6370 36 18 112 3944 6552
5 6 360 3060 7200 11440 17 18 128 3880 6600
7 6 360 3060 7200 11488 12 18 160 3752 6696 5464
47 12 60 4206 6348 11 18 160 3752 6696 5624
49 12 88 4094 6432 6 18 288 3240 7080
41 12 92 4078 6444 18 30 56 4060 6480 2808
37 12 108 4014 6492 4134 45 30 56 4060 6480 2880
30 12 108 4014 6492 4176 32 30 72 3996 6528 3366
29 12 108 4014 6492 4278 50 30 72 3996 6528 3378
42 12 108 4014 6492 4918 53 30 88 3932 6576 3600
39 12 108 4014 6492 4924 19 30 88 3932 6576 3864
34 12 116 3982 6516 43 30 120 3804 6672
15 12 132 3918 6564 4704 2 30 216 3420 6960
38 12 132 3918 6564 4720 1 66 0 3960 6600 0
28 12 180 3726 6708 5976 59 66 0 3960 6600 1080
44 12 180 3726 6708 6012 52 66 0 3960 6600 1096
4 12 324 3150 7140 10416 10 66 0 3960 6600 1100
8 12 324 3150 7140 10512 58 66 0 3960 6600 1116
24 18 48 4200 6360 51 66 0 3960 6600 1120
23 18 56 4168 6384 57 66 0 3960 6600 1164
25 18 64 4136 6408 60 66 0 3960 6600 1184

Aquest valor és el 34953, i per això és el únic que hem posat a la taula
de k = 6 darrera dels altres de k = 4.

• Quan en alguna matriu, el valor 34953 pren la freqüència 999994, aques-
ta no és una freqüència. Amb això, el nostre procediment indica que
no s'ha calculat perquè les freqüències per k = 4 són su�cients per

5.4. PROVES DE FIABILITAT 97

identi�car la matriu en aquest cas.

• En canvi, hi han 38 matrius on el valor 34953 pren una freqüència sig-
ni�cativa, que serveix per identi�car les matrius que no havien quedat
separades per les freqüències de k = 4. Per exemple: Les matrius 1,
59, 52, 10, 58, 51, 57 i 60 comparteixen la mateixa distribució SHDE
per k = 4, que són els valors 10168, 9747, 9495, 9410 amb freqüències
66, 0, 3960, 6600 respectivament. Només el valor 34953 de k = 6 agafa
una freqüència diferent per cada matriu d'aquest cas.

• Aquesta taula coincideix amb la taula 1 de l'article [4]. L'única dife-
rència rau en la numeració de les matrius. La nostra taula segueix la
numeració de la base de dades Hadamard estàndard del Magma, i la
seva segueix la ordenació de la pàgina web d'on van descarregar-se les
matrius d'ordre 24.

5.4.3 Proves de �abilitat de la funció que implementa la
construcció de matrius Hadamard d'ordre n = 2t ·s

Es tracta ara de provar que les matrius Hadamard construïdes per alguns
ordres amb la funció auxiliar HadamardRankKernelNNotPower2(n,r,k) son
iguals o, si més no, equivalents a les generades amb les funcions per casos
concrets de n = 2t·s (t ≥ 2 i s 6= 1 senar) de la versió anterior, com per
exemple:

• HadamardRankKernelN12(r,k), HadamardRankKernelN24(r,k), ...

• HadamardRankKernelN20(r,k), HadamardRankKernelN20(r,k), ...

• HadamardRankKernelN28(r,k), HadamardRankKernelN56(r,k), ...

• etc.

Amb el procediment fiatestHadamardRankKernelNNotPower2 exhaurim
totes les proves de �abilitat possibles per els ordres no potències de dos
n = 12, 24, 48, 96, 192, 20, 40, 80, 160, 320, 28, 56, 112. Hem de tenir cura d'e-
xecutar les funcions de la versió anterior amb el seu entorn. És a dir, quan

98 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

aquestes criden a la funció KernelZ2(C) per construir alguna de les seves
matrius per la tècnica del switching, ens hem d'assegurar que criden a la que
retorna el nucli com a tipus llista.

Com mostrem en la sortida d'aquest procediment, es curiós comprovar
que les matrius del mateix ordre construïdes per la funció actual amb les
construïdes per les altres funcions de la versió anterior no tenen perquè ser
iguals, ni tampoc perquè ser equivalents Hadamard (és per això que ensenyo
les dues condicions). Ara bé, tenen el mateix rank i dimensió del nucli (per
exemple el casos n = 48, r = 18, 19, 20 i k = 1).
/***
fiatestHadamardRankKernelNNotPower2:
Fiability tests of function 'HadamardRankKernelNNotPower2' with especial functions
for 12, 24, 48, 96, 192, 20, 40, 80, 160, 320, 28, 56, 112 orders.
***/
fiatestHadamardRankKernelNNotPower2:=procedure()

for n in [12, 24, 48, 96, 192, 20, 40, 80, 160, 320, 28, 56, 112] do
t,s:=Valuation(n,2);
if (n eq 4*s) then

H1:=HadamardRankKernelNNotPower2(n,n-1,1);
IRK1:=InvariantsRankKernelZ2(HadamardMatrixToCode(H1));
case n:

when 12: H2:=HadamardRankKernelN12(n-1,1);
when 20: H2:=HadamardRankKernelN20(n-1,1);
else: H2:=HadamardRankKernelN28(n-1,1);

end case;
if (IRK1 eq InvariantsRankKernelZ2(HadamardMatrixToCode(H2))) then

printf " n=%o,r=%o,k=%o: %o,%o\n",n,n-1,1,H1 eq H2,IsHadamardEquivalent(H1,H2: Al:="Leon");
else

printf " n=%o,r=%o,k=%o: Different Rank-Kernel Error\n",n,n-1,1;
end if;

else
rmin:=(4*s)+t-3;
for k:=1 to t-1 do

if (k le 2) then
rmax:=2^(t-1)*s;

else
rmax:=(2^(t+1-k)*s)+k-1;

end if;
for r:=rmin to rmax do

H1:=HadamardRankKernelNNotPower2(n,r,k);
IRK1:=InvariantsRankKernelZ2(HadamardMatrixToCode(H1));
case n:

when 24: H2:=HadamardRankKernelN24(r,k);
when 48: H2:=HadamardRankKernelN48(r,k);
when 96: H2:=HadamardRankKernelN96(r,k);
when 192: H2:=HadamardRankKernelN192(r,k);
when 40: H2:=HadamardRankKernelN40(r,k);
when 80: H2:=HadamardRankKernelN80(r,k);
when 160: H2:=HadamardRankKernelN160(r,k);
when 320: H2:=HadamardRankKernelN320(r,k);
when 56: H2:=HadamardRankKernelN56(r,k);
else: H2:=HadamardRankKernelN112(r,k);

end case;
if (IRK1 eq InvariantsRankKernelZ2(HadamardMatrixToCode(H2))) then

5.4. PROVES DE FIABILITAT 99

printf " n=%o,r=%o,k=%o: %o,%o\n",n,r,k,H1 eq H2,IsHadamardEquivalent(H1,H2: Al:="Leon");
else

printf " n=%o,r=%o,k=%o: Different Rank-Kernel Error\n",n,n-1,1;
end if;

end for;
end for;

end if;
end for;

end procedure;

Un troç de la sortida que dóna aquest procediment és:

n=12,r=11,k=1: true,true
n=24,r=12,k=1: false,true
n=24,r=12,k=2: true,true
n=48,r=13,k=1: false,true
n=48,r=14,k=1: false,true
n=48,r=15,k=1: false,true
n=48,r=16,k=1: false,true
n=48,r=17,k=1: false,true
n=48,r=18,k=1: false,false
n=48,r=19,k=1: false,false
n=48,r=20,k=1: false,false

.

.

.

100 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

5.5 Proves de rendiment
Les proves de rendiment s'han enfocat per veure com la nova versió de la fun-
ció KernelZ2(C) que retorna el nucli com un subespai vectorial, és més ràpi-
da. Per això creem el procediment TimesKernelZ2BigNoLinear(order,rep).

El procediment construeix codis binaris C no lineals a partir de codis line-
als quaternaris sobre Z4 arbitraris C4 mitjançant la funció GrayMapImage(C4).
Ens assegurem que aquesta no generarà un codi binari lineal, testant amb
la funció HasLinearGrayMapImage(C4). Per un sèrie d'ordres menors que
order, i després de comprovar que el vector tot zeros pertany al codi binari
C, calculem els temps de creació dels dos nuclis amb la repetició rep perquè
aquest càlcul no és sempre el mateix ja que depèn de la CPU de la màquina
a més CPU's més ràpides, més repeticions). Ensenyem els temps calculats i
els acumulem per treure al �nal un total. Aquests càlculs també es guarden
en el �txer "TempsKernelZ2BigNoLinear<order>-<rep>.txt".

timesKernelZ2BigNoLinear:=procedure(order,rep)
FileName:="timesKernelZ2BigNoLinear" cat IntegerToString(order) cat "-" cat IntegerToString(rep) cat ".txt";
T1:=0; T2:=0;
SetLogFile(FileName);
printf "timesKernelZ2BigNoLinear: order=%o rep=%o\n",order,rep;
printf "%5o%5o%5o%10o%10o%10o\n","n","#ker","k","times_old","times_new","decrement";
Z4:=IntegerRing(4); n4max:=order div 2;
for n4:=1 to n4max do
for k4:=1 to n4 do

C4:=RandomLinearCode(Z4,n4,k4);
if (not HasLinearGrayMapImage(C4)) then

C:=GrayMapImage(C4);
n:=Degree(C[1]);
if n le order then

V:=VectorSpace(GF(2),n); ZeroVector:=V!0;
if (ZeroVector in C) then

t:=Cputime();
for i:=1 to rep do

kernelori:=KernelZ2Ori(C);
end for;
t1:=Cputime(t); T1:=T1+t1;
t:=Cputime();
for i:=1 to rep do

kernel:=KernelZ2(C);
end for;
t2:=Cputime(t); T2:=T2+t2;
num:=#kernel; k:=Dimension(kernel);
printf "%5o%5o%5o%10o%10o%10o\n",n,#kernel,Dimension(kernel),t1,t2,t1-t2;

end if;
end if;

end if;
end for;

end for;
//print "\nTotal"; T1; T2; T1-T2;

5.5. PROVES DE RENDIMENT 101

printf "%15o%10o%10o%10o\n","Total ",T1,T2,T1-T2;
UnsetLogFile();

end procedure;

Si executem aquest procediment �ns l'ordre 18 i sense repetició, obtenim
aquesta taula :

TempsKernelZ2BigNoLinear: order=18 rep=1
n #ker k times_old times_new decrement
8 8 3 0.000 0.000 0.000

10 16 4 0.000 0.000 0.000
10 64 6 0.120 0.010 0.110
12 8 3 0.010 0.000 0.010
12 32 5 0.070 0.020 0.050
12 256 8 7.080 0.870 6.210
14 8 3 0.000 0.000 0.000
14 64 6 0.120 0.020 0.100
14 128 7 4.600 1.580 3.020
14 256 8 6.270 0.410 5.860
16 4 2 0.000 0.000 0.000
16 16 4 0.000 0.000 0.000
16 32 5 0.060 0.010 0.050
16 32 5 0.860 0.230 0.630
16 128 7 45.570 4.620 40.950
16 256 8 1485.260 196.130 1289.130
18 4 2 0.000 0.000 0.000
18 8 3 0.000 0.000 0.000
18 16 4 0.070 0.060 0.010
18 32 5 0.940 0.330 0.610
18 128 7 46.610 6.160 40.450
18 256 8 1587.830 309.280 1278.550

En ella, es mostra clarament que la nova versió de la funció KernelZ2(C)
és més ràpida. En general quant més gran és la longitud del codi binari no
lineal, més és l'avantatge (decrement en micro-segons de CPU) que en treu
en la construcció dels nuclis. I �xada una longitud de codi binari no lineal,
quant més gran és la dimensió del nucli a construir, és a dir quants més
elements té el nucli, més gran és també el decrement.

102 CAPÍTOL 5. DESENVOLUPAMENT DEL PROJECTE

Ho hem provat expressament amb els codis no lineals, perquè amb els
codis lineals no paga la pena provar-ho, segur que és més ràpida. Doncs en
les primeres línies de codi de la nova funció, quan detecta que la llista de
vectors binaris que formen el codi C té estructura d'espai vectorial, retornen
ràpidament el subespai vectorial generat de la llista com a nucli. No perd
el temps aplicant la de�nició de nucli, i, per tant, fent una doble iteració
exhaustiva provant tots els vectors del codi, sumant cada vector del codi
amb tots els vectors del codi comprovant si el resultat és un vector també
del codi (c + C = C).

Capítol 6

Resultats

Un cop fet el disseny, millora i desenvolupament del package a que es feia
referència en els punts 6, 7, 8 i 9 dels objectius detallats del capítol 3. En
aquest capítol veurem, analitzarem i obtindrem resultats, que corresponen
als punts 10, 11 i 12 dels següents objectius detallats de l'esmentat capítol.

És per això que aquest capítol de resultats està dedicat a dos aspectes:

• Analitzar les invariants 4-pro�le, rang i dimensió del nucli i SHDE en
la classi�cació de les matrius Hadamard.

• Ampliar la base de dades de matrius Hadamard com a conseqüència
de la generalizació de la funció que construeix matrius Hadamard de
qualsevol ordre n per cada rang r i dimensió del nucli k.

6.1 Invariants: 4-pro�le, rang i nucli i SHDE
El procediment HadamardFourInvariantsTable(n:file,lr) compara les
quatre invariants. Fixat l'ordre n, per cada invariant calcula el nombre de
matrius Hadamard inequivalents d'aquest ordre que reconeix i el temps que
triga en segons. Les característiques d'aquest procediment són:

• Calcula els temps de les invariants de totes les matrius d'un ordre n,
així com el nombre de matrius inequivalents que reconeixen.

103

104 CAPÍTOL 6. RESULTATS

• Guarda els resultats en el �txer file que per defecte s'anomena FIT<n>.

• Permet escollir la base de dades amb la que volem treballar mitjançant
el library root lr que per defecte és el de la base de dades Hadamard
estàndard del Magma.

• Si utilitzem la base de dades estàndard del Magma, sabem que totes
les seves matrius de cadascun dels ordres són inequivalents. Per tant,
en aquest cas, el número de matrius de cada ordre és un bon indicador
de la sensibilitat de les invariants per classi�car les matrius, doncs és
la �ta que les invariants han d'assolir.

• Per la invariant SHDE comencem per k = 4 i fem un tractament in-
cremental. Mentre no haguem reconegut com inequivalents el mateix
nombre de matrius de l'ordre tractat, o bé no haguem sobrepassat el
límit teòric de la k que és n/2; anem incrementant la k de dos en dos i
tornem a calcular la invariant SHDE per totes les matrius de l'ordre.

/***
HadamardFourInvariantsTable: RgnIntEl : MonStgElt : MonStgElt
Given a positive integer as the order, tabulates in a file the number of HadamardDatabase
matrices of the order from the Library Root recognized as inequivalent for each of the
four invariants (4-profile, rank and kernel, and Fang&Ge's SHDEDistribution with k-value).
***/

HadamardFourInvariantsTable:=procedure(n : file:="", lr:="")

if (lr eq "") then
D:=HadamardDatabase();

else
stdlibroot:=GetLibraryRoot();
SetLibraryRoot(lr);
D:=HadamardDatabase();
SetLibraryRoot(stdlibroot);

end if;
if (file eq "") then file:="FIT" cat IntegerToString(n); end if;

NOM:=NumberOfMatrices(D,n);
printf "Checkpoint-FourInvariantsTable n=%o: start\n",n;
fprintf file,"FourInvariantsTable n=%o\n",IntegerToString(n);
fprintf file," n Mat 4-p r-k F&G <-k t(4-p) t(r-k) t(F&G)\n";
// 4-profile, rank-kernel and Fang-Ge(a=pi,k=4,6,...,n/2) invariants

6.1. INVARIANTS: 4-PROFILE, RANG I NUCLI I SHDE 105

L4p:=[];Lrk:=[];LFG:=[]; t4p:=0;trk:=0;tFG:=0; a:=3.1415926; k:=4;
if (NOM eq 1) then

fprintf file,"%4o%4o%4o%4o%4o%4o%15o%15o%15o\n",n,NOM,1,1,1,k,t4p,trk,tFG;
else

for m:=1 to NOM do
H:=Matrix(D,n,m); C:=HadamardMatrixToCode(H);
t:=Cputime(); L4p:=L4p cat [HadamardInvariant(H)]; t4p:=t4p+Cputime(t);
t:=Cputime(); Lrk:=Lrk cat [InvariantsRankKernelZ2(C)]; trk:=trk+Cputime(t);
t:=Cputime(); LFG:=LFG cat [HadamardInvariantSHDE(H:a:=a,k:=k)];tFG:=tFG+Cputime(t);
printf "Checkpoint-FourInvariantsTable n=%o: m=%o/%o k=%o\n",n,m,NOM,k;

end for;
neFG:=#Set(LFG);
fprintf file,"%4o%4o%4o%4o%4o%4o%15o%15o%15o\n"

,n,NOM,#Set(L4p),#Set(Lrk),neFG,k,t4p,trk,tFG;

while ((neFG lt NOM) and (k lt (n div 2))) do
LFG:=[]; k:=k+2; tFG:=0;
for m:=1 to NOM do

H:=Matrix(D,n,m);
t:=Cputime(); LFG:=LFG cat [HadamardInvariantSHDE(H:a:=a,k:=k)];
tFG:=tFG+Cputime(t);
printf "Checkpoint-FourInvariantsTable n=%o: m=%o/%o k=%o\n",n,m,NOM,k;

end for;
neFG:=#Set(LFG);
fprintf file,"%20o%4o%45o\n",neFG,k,tFG;

end while;

end if;
printf "Checkpoint-FourInvariantsTable n=%o: end",n;
end procedure;

Hem agrupat en la taula que es mostra a continuació, els resultats de tots
els �txers guardats pel procediment quan s'executa per alguns ordres de la
base de dades estàndard del Magma en quasi tots els casos, doncs també hi
ha una entrada a la taula calculada a partir d'unes matrius Hadamard d'ordre
32 proporcionades amablement per Ilias Kotsireas i Cristos Koukouvinos.

106 CAPÍTOL 6. RESULTATS

FourInvariantsTable
n Mat 4-p r-k SHDE <-k t(4-p) t(r-k) t(SHDE)
1 1 1 1 1 4 0 0 0
2 1 1 1 1 4 0 0 0
4 1 1 1 1 4 0 0 0
8 1 1 1 1 4 0 0 0
12 1 1 1 1 4 0 0 0
16 5 4 5 4 4 0.000 0.020 5.440
16 4 6 31.750
16 5 8 62.960
20 3 1 1 1 4 0.000 0.000 13.340
20 3 6 140.750
24 60 35 2 35 4 0.020 0.230 870.810
24 60 6 14400.230
28 487 60 1 60 4 0.190 3.090 18452.360
28 487 6 443711.970
32 23 18 13 18 4 0.010 0.190 1963.410
32 22 6 67527.000
32 23 8 948840.400 el job triga 11 dies!

KE32 10 8 7 8 4 0.000 0.030 854.860 10ineq32 I.Kotsireas i C.Koukouvinos
KE32 10 6 27702.790

48 55 53 2 53 4 0.190 0.970 56787.600

Conclusions que es dedueixen al examinar la taula FourInvariantsTable:

• La invariant 4-pro�le té la mateixa sensibilitat que la invariant SHDE
per a := 3.1415926, k := 4 perquè les dues invariants calculen la matei-
xa distribució de freqüències, però la invariant SHDE tarda més temps
perquè és més complexa de calcular. Per ser més precisos direm que,
a diferència de la 4-pro�le, la invariant SHDE no re�exa la freqüència
nul.la en la seva distribució de freqüències. Mirem per exemple aquesta
sessió de Magma:

> H:=Matrix(HadamardDatabase(),16,1);
> HadamardInvariant(H);
[1680, 0, 140]
> HadamardInvariantSHDE(H : a:=3.1415926,k:=4);
[1680, 140]

• La invariant SHDE, incrementant la k, acaba sent sempre la més sen-
sible; però també és la més costosa en temps de CPU.

6.1. INVARIANTS: 4-PROFILE, RANG I NUCLI I SHDE 107

• Nogensmenys hi ha l'excepció del cas d'ordre n = 16, la invariant rank
i dimensió de nucli reconeix ràpidament les 5 matrius inequivalents
d'aquest ordre, i mentre que la invariant 4-pro�le és queda en 4, la
invariant SHDE ha d'arribar �ns a la k = 8 per reconèixer-les totes,
trigant, considerant només el càlcul de k = 8, de l'ordre de 106 vegades
més!

• El cas d'order n = 24 és el que ens ha servit per comprovar la �abilitat
de la implementació de la invariant SHDE, al coincidir amb les taules de
classi�cació d'aquest ordre que es donaven en els articles introductoris
d'aquesta nova invariant [5, 4]. Recordem que per k = 4 ja en reconeix
35 matrius Hadamard inequivalents i per k = 6 totes les 60.

• El cas d'ordre n = 32 és aquell en que la combinació de les invariants
4-pro�le i rang i dimensió de nucli, amb HadamardThreeInvariants,
reconeix una matriu Hadamard inequivalent més que la invariant SHDE
per k = 4 (per més detalls veure el projecte [11]). Per identi�car les 23

matrius d'aquest ordre que té la base de dades de matrius Hadamard
estàndard del Magma va trigar 11 dies, i ho va assolir per un valor de
k = 8.

• De les 10 matrius de Hadamard inequivalents d'ordre n = 32 proporci-
onades per Ilias Kotsireas i Cristos Koukouvinos [6], 8 es van reconèixer
per la 4-pro�le i la SHDE per k = 4 com era d'esperar; la SHDE va
reconèixer totes 10 només a la k = 6 següent.

Com exemple d'execució d'aquest procediment per una base de dades de
matrius Hadamard que no sigui la estàndard, vàrem seleccionar 10 matrius
inequivalents d'ordre n = 32 d'un grapat de �txers de matrius Hadamard de
diferents ordres que ens van proporcionar amablement Ilias Kotsireas i Cristos
Koukouvinos. Aquestes 10 matrius Hadamard gregues són inequivalents entre
elles, però només la meitat són inequivalents amb les de la base de dades
estàndard (mala sort perquè hi han més de 66.000 matrius de Hadamard

108 CAPÍTOL 6. RESULTATS

inequivalents d'ordre n = 32), perquè al actualitzar la base de dades només
admetia 5, com es pot veure en aquesta sessió de Magma.

> D:=HadamardDatabase();
> #D;
3491
> data:=HadamardDatabaseInformation(D);
> SetVerbose("HadamardDB",1);
> load "matrixfile32ineq10.m";
Loading "matrixfile32ineq10.m"
> UpdateHadamardDatabase(~data,S);
5 new matrices added

El �txer matrixfile32ineq10.m és el mateix que vaig descarregar de la
web de Ilias Kotsireas i Cristos Koukouvinos [6] amb les 10 matrius inequiva-
lents d'ordre 32 en format llista d'enters carregat a la variable order32ineq10,
però modi�cat per tal que ompli la variable S amb la llista de les matrius.
Per això es va comentar el codi Magma originari que ve després de la llista
i es va executar aquest:
S:=[HadamardMatrixFromInteger(i,32):i in order32ineq10];

order32ineq10 := \\
[17878192447832605036863095254629242828791987994639169972663784266536475666220\
3559490076587870970124834831691553683854621428370404477668582028504074677511871\
0770331954532028040269267648909035039053784571041656416840172014675825983024170\
95397846399881240357823602327971292259087509761535980580813975597832149375,
1787819459922098065349501328355454625677736559614297622792858010220195143225291\
7942857701844993992435857290977887509777289461752280178840469277486273948022130\
4467159200626323985228638354914516559843604701846891797084589286690617941766134\
028695065085124855998839447803809300713384804320380274179881420192684415,
1787820098641681954645283834091065316324806500432253158111414813473310020975351\
4160183218665616038348793046059553361372020647834441142784896376036894700351838\
5722403477142550530629115152039158500336465694878289282989227822945169787661126\
212484980269179739789404798273566545975840370826110259507210956121250175,
1786502441068020823990620451469864484111017615942891297279665488462012095169033\
7640749946615517914168662958440720864851438194097010433434508267687574445528189\
4314853941016339852385894651614934051253340659674235368276943956497028915812428\
126210219695785202287424693449695604887924553140174670829933807530874495,
1786502798516595294146974639133751492708246183143904695380762601934500990386156\
3592458011838252483324467317553707506698482662484440945674354782858171099879504\
0753466605885626594084453111021792371295136632832260303217304045570515740348561\
196870644020149818224987500327448283445930072091577784708633229878302335,
1786503294926442274949594760098005517556625316911227458124701875281674549522349\
5851925506494036940033972835344905840761316004891003809361201793317001394692920\

6.1. INVARIANTS: 4-PROFILE, RANG I NUCLI I SHDE 109

3004061964956086356088244912750588646211349250386882967248970311859600401056458\
940848800083724584253227163751969891776255162430304349523169165819975295,
1785953507208495394930180219077568334219963740644029464576894554817732039622784\
9629859144780608973384387364984529089702677968097233556614218569547969238368861\
7966901084305407036621230589579927519587850717949420319967059868834834859110319\
144683384799966809503738543996552943898087498245039280469321951574174335,
1785953862145721566701361696389658332436569278017783863347942108768235436280143\
6767248310658516682007839074141018375305521324634338554981576681699360421853317\
4937588134905501316510988020664317337453311048907113130285201613596551310599537\
969854427019777349994473518982593605232895882347941647103396254818708095,
1787820313780519516308475636983595659123344260582633783637894397039857597578607\
6154033261723513018301167167882072485687167272546273554767162803115700897186861\
3156367224566070488930988616050171154801613292559539396056615642053189427010164\
843333645473064237964641918106083587601715413610509952873116778481785215,
1786503332596666750727195824334490861246860268069671823302747700102216724323872\
0482991802833488991275684786233735077528988568210832686190646602163774765656779\
1651544543048206122353795559917129592088940683049598923046654293032195414955734\
225713769501826360597856960035605032672773348269155536649341301958317695];

/***
n := #order32ineq10;
for i in [1..n-1] do
for j in [i+1..n] do
print i,j,IsHadamardEquivalent(HadamardMatrixFromInteger(order32ineq10[i],32)\\

,HadamardMatrixFromInteger(order32ineq10[j],32));
end for;
end for;
**/
//To code the "matrixfile.m" that generates the list S of these Hadamard matrices when loaded:
// 1st. Delete, if exists, the '^M' characters behind '\' in the integer list.
// 2nd. Comment the magma code after the integer list and execute:
S:=[HadamardMatrixFromInteger(i,32):i in order32ineq10];

El procediment HadamardDB32ineq10 crea la nova base de dades a par-
tir de les matrius Hadamard d'una llista S que li ha preparat el programa
anterior.

//************ HadamardDB32ineq10 **************************************
// new database creation with the "32ineq10" Cristos Koukouvinos's Hadamard matrices
// "matrixfile32ineq10.m" generates the list S of these Hadamard matrices when loaded
// previously we must create the directory "data" in our default directory

data:=HadamardDatabaseInformationEmpty();
SetVerbose("HadamardDB",1);
load "matrixfile32ineq10.m";

110 CAPÍTOL 6. RESULTATS

UpdateHadamardDatabase(~data,S);
WriteHadamardDatabase("~/data/hadamard",~data);

I a partir d'aquí ja es pot executar el procediment HadamardFourInvariantsTable(n)
per la base de dades de 10 matrius Hadamard inequivalents d'ordre 32 de
Ilias Kotsireas i Cristos Koukouvinos.

6.2 Construcció de matrius amb rang i nucli
En el projecte [10] s'implementà amb les funcions HadamardAllRankKernel(n)
i HadamardRankKernelNPower2(n,r,k) un algorisme recurrent complet per
a la construcció de matrius Hadamard de qualsevol ordre n = 2t. Per cada
ordre n es construeix tantes matrius, inequivalents, com rang r i dimensió
del nucli k possibles i compatibles amb l'ordre. Aquest algorisme es troba en
la pàgina 17 de [10] i es basa en les construccions descrites en l'article [8].

En aquest projecte, la nova HadamardRankKernelNNotPower2(n,r,k)
completa la generalització de la funció principal HadamardAllRankKernel(n)
perquè li atorga un nou algorisme recurrent que s'afegeix a l'anterior, i que li
permet ara, a més a més, la construcció de matrius Hadamard de qualsevol
ordre n = 2t · s sempre que disposem del cas n = 4s a la base de dades de
matrius Hadamard del Magma . De la mateixa manera per cada ordre n

es construeix tantes matrius, inequivalents, com rang r i dimensió del nu-
cli k possibles i compatibles amb l'ordre. Aquest algorisme es troba en la
subsecció 2.6.4, capítol 2, i es basa en les construccions descrites en l'article
[9].

La construcció de noves matrius de Hadamard surt doncs de la explotació
de l'algorisme recurrent per la construcció de matrius de Hadamard d'ordre
n = 2t · s. L'ordre n = 252 (252 = 4 · 63) és el cas n = 4s més gran que es
troba actualment a la base de dades de matrius Hadamard del Magma. Per
tant, a partir de l'actual base de dades, podem construir in�nites matrius
Hadamard d'ordre {n = 2t · s, t ≥ 2, s ∈ {3, 5, ..., 63}}. Anem a veure, per
alguns ordres, quantes d'aquestes matrius Hadamard, inequivalents, ja hi són

6.2. CONSTRUCCIÓ DE MATRIUS AMB RANG I NUCLI 111

a la base de dades i quantes són noves.
En resum, podem incrementar la base de dades utilitzant només el rang

i la dimensió del nucli, per el cas de les matrius d'ordre no potència de dos,
sempre que el seu graó primigeni n = 4s on s 6= 1 i senar estigui a la base de
dades Hadamard i els recursos de càlcul del sistema siguin su�cients.

El procediment HadamardRankKernelNNotPower2Table(nmax:file) cons-
trueix moltes matrius de Hadamard que no estan en la base de dades estàn-
dard d'ordre n = 2t·s, amb la funció HadamardRankKernelNNotPower2(n,r,k).
Les característiques principals d'aquest procediment són:

• Busca les matrius de Hadamard per tots els orders que no són potències
de dos, �ns arribar a l'ordre màxim nmax.

• Filtra aquells ordres que el seu cas n = 4s no estigui a la base de dades
estàndard del Magma.

• Per cada ordre, comptabilitza les matrius �inicials� que són les que ja
tenim a la base de dades, les �actuals� que són les que tenim més les
que construeix, i la diferència entre les dues que és el �increment�.

• Al nombre de matrius construïdes per rang i dimensió de nucli se li
descompte el nombre de matrius �inicials� inequivalents per la invari-
ant rang i dimensió de nucli, abans de sumar-les a les �actuals�. Per
exemple, en el cas n = 72, d'entrada tenim 105 matrius inicials a la
base de dades que són inequivalents, però totes tenen el mateix rang i
dimensió de nucli, per tant només hi ha 1 de inequivalent per aquest
invariant. Mitjançant la funció HadamardAllRankKernel(n) per rang
i dimensió de nucli en construïm 2, de les quals 1 ja la tenim a les �ini-
cials�. Per això el nombre de matrius �actuals� és 105 + (2− 1) = 106

i, per tant, el increment és 106− 105 = 1.

• Guarda la taula d'aquests acumuladors per cada ordre en el �txer file,
que per defecte s'anomena HadRankKerNNotPow2Tab<nmax>.

112 CAPÍTOL 6. RESULTATS

/**
HadamardRankKernelNNotPower2Table: RgnIntElt [,MonStgElt]
Given a positive integer n as the maximum order, tabulates in a file the new Hadamard n=s.2^(t)
matrices with diferent rang and kernel, that they are not in the Hadamard Database.
**/

HadamardRankKernelNNotPower2Table:=procedure(nmax:file:="HadRankKerNNotPow2Tab" cat IntegerToString(nmax))
D:=HadamardDatabase(); Ln:=Degrees(D);
printf "Checkpoint-HadamardRankKernelNNotPower2Table(%o): start\n",nmax;
// Number of Matrices calculation
T:=[];TInici:=0;TAct:=0;TInc:=0;
n:=12;
while (n le nmax) do

t,s:=Valuation(n,2);
if (s ne 1) then
if (NumberOfMatrices(D,4*s) ge 1) then

// Hadamard matrices in the HadamardDatabase
if (n in Ln) then NOM:=NumberOfMatrices(D,n); else NOM:=0; end if;
Inici:=NOM; TInici:=TInici+Inici;
// Hadamard matrices by Rank-Kernel construction not in HadamardDatabase
Lrk:=[];
for m:=1 to NOM do

Lrk:=Lrk cat [InvariantsRankKernelZ2(HadamardMatrixToCode(Matrix(D,n,m)))];
end for;
Act:=#HadamardAllRankKernel(n);
if (Act gt #Set(Lrk)) then

Act:=NOM+(Act-#Set(Lrk));
end if;
TAct:=TAct+Act; Inc:=Act-Inici; TInc:=TInc+Inc;
Append(~T,[n,Inici,Act,Inc]);
printf "Checkpoint-HadamardRankKernelNNotPower2Table(%o): n=%o Inici=%o Act=%o Inc=%o\n"

,nmax,n,Inici,Act,Inc;
end if;

end if;
n:=n+4;

end while;
printf "Checkpoint-HadamardRankKernelNNotPower2Table(%o): Total TInici=%o TAct=%oTInc=%o\n"

,nmax,TInici,TAct,TInc;
printf "Checkpoint-HadamardRankKernelNNotPower2Table(%o): end\n",nmax;
Sort(~T);
fprintf file,"HadamardRankKernelNNotPower2Table hasta %o\n",IntegerToString(nmax);
fprintf file," n Inici Act Inc\n";
for i in [1..#T] do

fprintf file,"%5o%10o%10o%10o\n",T[i][1],T[i][2],T[i][3],T[i][4];
end for;
fprintf file,"Total%10o%10o%10o\n",TInici,TAct,TInc;
end procedure;

6.2. CONSTRUCCIÓ DE MATRIUS AMB RANG I NUCLI 113

La Taula 6.1 resumeix la sortida del procediment executat �ns l'ordre
720, ja que només apareixen els ordres que mostren un increment del nombre
de matrius.

Taula 6.1: Construcció matrius de Hadamard �ns n = 720.

n Inici Act Inc Tinc n Inici Act Inc n Inici Act Inc
72 105 106 1 1 280 0 2 2 456 0 2 2
80 1 42 41 42 288 0 253 253 464 0 234 234
96 1 85 84 126 296 0 2 2 472 0 2 2
104 1 2 1 127 304 0 154 154 480 0 421 421
112 2 59 57 184 312 0 2 2 488 0 2 2
120 3 4 1 185 320 0 359 359 496 0 250 250
136 2 3 1 186 328 0 2 2 504 0 2 2
152 1 2 1 187 336 0 170 170 528 0 266 266
160 1 141 140 327 344 0 2 2 544 0 477 477
168 1 2 1 328 352 0 309 309 560 0 282 282
176 2 91 89 417 360 0 2 2 576 0 647 647
184 1 2 1 418 368 0 186 186 592 0 298 298
192 1 215 214 632 376 0 2 2 608 0 533 533
200 1 2 1 633 384 0 488 488 624 0 314 314
208 1 106 105 738 392 0 2 2 640 0 816 816
216 1 2 1 739 400 0 202 202 656 0 330 330
224 1 197 196 935 408 0 2 2 672 0 589 589
232 1 2 1 936 416 0 365 365 688 0 346 346
240 1 122 121 1057 424 0 2 2 704 0 791 791
248 1 2 1 1058 432 0 218 218 720 0 362 362
264 0 2 2 440 0 2 2
272 0 138 138 448 0 503 503 Tot. 129 11520 11391

Al examinar la Taula 6.1 podem extreure els següents resultats:

• Donat que la base de dades de matrius Hadamard del Magma arriba
actualment �ns l'ordre n = 256, en la taula a partir de l'ordre n = 264

cap endavant totes les matrius construïdes per rang i dimensió del nucli
són increment net.

• Per contra, �xem-nos en l'ordre n = 80 (és el tercer ordre de la seqüèn-
cia del 4s = 20, 40, 80, ...) del qual la base de dades de matrius Hada-

114 CAPÍTOL 6. RESULTATS

mard del Magma disposa de 1 matriu, que naturalment té un rang
i dimensió de nucli concret. Les matrius construïdes d'ordre n = 80

per rang i dimensió del nucli són 42, per tant hem aconseguit 41 noves
matrius Hadamard que juntament amb la 1 de la base de dades fan un
total de 42 matrius Hadamard inequivalents per l'ordre 80.

• Si fem el mateix plantejament per tots els ordres de la taula que ja
tenen matrius a la base de dades de matrius Hadamard del Magma,
obtenim 1.058 noves matrius Hadamard inequivalents que es podrien
incorporar a la actual base de dades.

• Tan sols amb aquesta execució hem aconseguit un total de 11.391 noves
matrius de Hadamard.

Capítol 7

Conclusions

7.1 Conclusions
En aquest projecte hem assolit els següents objectius:

1. Hem estudiat les matrius i codis Hadamard.

2. Hem estudiat les invariants 4-pro�le, rang i dimensió del nucli.

3. Hem estudiat la proposta d'una nova invariant més sensible a la ine-
quivalència de matrius Hadamard proposada pels xinesos Kai-Tai Fang
i Gennian Ge.

4. Hem estudiar els treballs dels dos projectistes anteriors.

5. Hem après a utilitzar el Magma.

6. Hem après a llençar processos de grans càlculs seguint un protocol d'us.

7. Hem optimitzat la funció KernelZ2(C) apro�tant la seva estructura
d'espai vectorial.

8. Hem implementat una nova invariant per a la detecció de matrius Ha-
damard no equivalents: la distribució de l'enumerador de la distància
simètrica de Hamming, SHDE.

115

116 CAPÍTOL 7. CONCLUSIONS

9. Hem implementat una funció que construeix matrius Hadamard per a
qualsevol ordre n = 2t·s on s 6= 1 i senar, per cada rang i una dimensió
de nucli vàlides.

10. Hem implementat procediments per executar tests de �abilitat i rendi-
ment.

11. Hem actualitzat el manual Hadamard d'usuari amb les noves funcions
i les modi�cades.

12. Hem actualitzat els exemples d'ús de les funcions.

13. Hem actualitzat la llibreria.

14. Hem actualitzat el package.

15. Hem analitzat les invariants 4-pro�le, rang i dimensió del nucli, i SHDE.

16. Hem ampliat la base de dades del Magma construint noves matrius
Hadamard d'ordre n = 2t·s utilitzant les funcions implementades i
tenint en compte el rang i la dimensió del nucli, �ns el 4s més gran que
es troba actualment a la base de dades Hadamard del Magma.

17. I �nalment, hem redactat la memòria.

Les futures línies de continuació per a aquest projecte podrien ser:

• Optimitzar encara més la funció KernelZ2(C) tenint en compte les
propietats de codi lineal del nucli: la idea és alhora que es construeix el
nucli, anar buidant del codi a examinar els cosets del nucli per reduir
el camp de la iteració exhaustiva.

• Fer que la funció que construeix les matrius Hadamard per qualsevol
ordre n = 2t·s i per un rang i una dimensió de nucli pugui buscar la
d'ordre 4s, que és el primer graó de la cadena, en qualsevol library
root, sense està restringit a la base de dades Hadamard estàndard del
Magma.

7.1. CONCLUSIONS 117

• Implementar altres construccions conegudes com la construcció de Pa-
ley, la construcció de Williamson o els arrays de Baumert-Hall [7].

118 CAPÍTOL 7. CONCLUSIONS

Capítol 8

Handbook of Magma Functions

8.1 Introduction

A Hadamard matrix is an n × n matrix of +1's and −1's such that every
pair of rows and every pair of columns di�er in exactly n/2 places. Two such
matrices are considered equivalent if one can be transformed into the other
by performing row swaps, column swaps, row negations or column negations.
The problem of deciding whether two Hadamard matrices are equivalent is
hard.

A binary Hadamard matrix is a n× n Hadamard matrix, where the +1's
are replaced by 0's and the −1's by 1's. A Hadamard code is a binary
(n, 2n, n/2)-code consisting of the rows of a binary Hadamard matrix and
their complements.

Two structural properties of non-linear codes are the rank and kernel.
The rank of a binary code C, r = rank(C), is simply the dimension of
the linear span, 〈C〉, of C. The kernel of a binary code C is de�ned as
K(C) = {x ∈ Fn | x + C = C}, where F = {0, 1}. If the zero word is in
C, then K(C) is a linear subspace of C. We will denote the dimension of
the kernel of C by k = ker(C). These parameters can be used to distinguish
between non-equivalent Hadamard matrices, since equivalent ones have the
same parameters r and k.

119

120 CAPÍTOL 8. HANDBOOK OF MAGMA FUNCTIONS

Magma contains several functions for Hadamard matrices. In section 8.2,
new functions to work with them and the corresponding binary Hadamard
matrices and Hadamard codes are given. In section 8.3, new functions to
compute the invariants rank, r, and dimension of the kernel, k, for any
non-linear code are presented, speci�cally they can be used to increase the
number of invariants computed for Hadamard matrices in Magma. Finally,
in section 8.4, functions to construct new Hadamard matrices from existing
Hadamard matrices or codes, as well as from given invariants r and k, are
described.

8.2 Hadamard matrices and codes converting

HadamardMatrixToBinary(H)

Given a Hadamard matrix H, returns the corresponding Hada-
mard binary matrix. This function is the inverse of HadamardBinaryToMatrix().

HadamardBinaryToMatrix(H)

Given a binary Hadamard matrix H, returns the corresponding
Hadamard matrix. This function is the inverse of HadamardMatrixToBinary().

HadamardMatrixToCode(H)

Given a Hadamard matrix H, returns the corresponding Hada-
mard code. The code is represented as a list of binary vectors of
length n. This function is the inverse of HadamardCodeToMatrix().

8.2. HADAMARD MATRICES AND CODES CONVERTING 121

HadamardCodeToMatrix(C)

Given a Hadamard code represented as a list of binary vectors of
length n, returns the corresponding normalized Hadamard matrix
of degree n. This function is the inverse of HadamardMatrixToCode().

IsHadamardCode(C)

Returns true if and only if C is a Hadamard code.

Example E1
The following example converts a Hadamard matrix to a binary Hadamard matrix

and to a Hadamard code.

> H:=Matrix([[1,1,1,1],[1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]]);
> IsHadamard(H);
true
> Hb:=HadamardMatrixToBinary(H);
> Hb;
[0 0 0 0]
[0 1 0 1]
[0 0 1 1]
[0 1 1 0]
> H eq HadamardBinaryToMatrix(Hb);
true
> C:=HadamardMatrixToCode(H);
> C;
[

(0 0 0 0),
(1 1 1 1),
(0 1 0 1),
(1 0 1 0),
(0 0 1 1),
(1 1 0 0),
(0 1 1 0),
(1 0 0 1)

122 CAPÍTOL 8. HANDBOOK OF MAGMA FUNCTIONS

]
> IsHadamardCode(C);
true
> H eq HadamardCodeToMatrix(C);
true

8.3 Invariants of (Hadamard) codes

RankZ2(C)

Given a code C represented as a list of binary vectors of length
n, returns its rank. The rank of a code C is the dimension of the
linear span of C, 〈C〉, over GF (2).

KernelZ2(C)

Given a code C represented as a list of binary vectors of length
n and such that the zero vector belongs to C, returns its kernel
as a VectorSubspace. Then the kernel of C are the codewords v

such that v + C = C.

DimensionOfKernelZ2(C)

Given a code C represented as a list of binary vectors of length
n, returns the dimension of its kernel. The code C must contain
the zero vector to assure that its kernel is a linear subspace of C

over GF (2).

8.3. INVARIANTS OF (HADAMARD) CODES 123

InvariantsRankKernelZ2(C)

Given a code C represented as a list of binary vectors of length
n, returns its rank and dimension of the kernel.

HadamardThreeInvariants(H)

Given a Hadamard matrix H, returns the invariants 4-pro�le,
rank and dimension of the kernel.

ExistsHadamardRankKernel(n,r,k)

Given positive integers n, r and k, returns true if there exists a
Hadamard code (or equivalently a Hadamard matrix) of length n

with rank r and kernel of dimension k. When n is not a power of
two, returns also false if we do not know whether or not there
exists a Hadamard code with these parameters.

HadamardInvariantSHDE(H,a,k)

Given a Hadamard matrix H, a ponderator positive number a

and a positive integer k, returns only the frequencies of the Sym-
metric Hamming Distance Enumerator distribution of H over all
k-dimensional columns projections. Invariant proposed by Kai-
Tai Fang and Gennian Ge. It defaults a to 3.1415926 and k to
4.

HadamardInequivalentMatricesSHDE(H1,H2 :a)

Given two Hadamard matrices H1, H2 and a ponderator positive
integer a, returns true if they are inequivalent and false if is not
possible to prove their inequivalence by this method. It defaults
a to 3.1415926.

124 CAPÍTOL 8. HANDBOOK OF MAGMA FUNCTIONS

HadamardClassificationSHDE(n:a,k,lr,file)

Given an order n, a ponderator positive number a, a positive
integer k, a library root lr and a �lename file, returns and saves
in the �le the list of the values of the integer part of the Symmetric
Hamming Distance Enumerator over all k-dimensional columns
projections and their frequencies of all the Hadamard matrices
of order n from the hadamard database of the library root. The
classi�cation is perfect when the number of elements of the list
equals number of Hadamard matrices. It defaults a to 3.1415926,
k to 4, lr to the standard Magma HadamardDatabase and file

to HadClaSHDE<n>.

Example E2
In this example the rank, the kernel and the dimension of the kernel of a Hadamard

code are computed. Kai-Tai Fang and Gennian Ge's SHDEDistribution invariant and ine-
quivalent matrices algorism of Hadamard matrices are computed too. All using Hadamard
matrices from a HadamardDatabase1.

> D:=HadamardDatabase();
> H:=Matrix(D,12,1);
> H;
[1 1 1 1 1 1 1 1 1 1 1 1]
[1 1 1 1 1 1 -1 -1 -1 -1 -1 -1]
[1 1 1 -1 -1 -1 1 1 1 -1 -1 -1]
[1 1 -1 1 -1 -1 1 -1 -1 1 1 -1]
[1 1 -1 -1 1 -1 -1 1 -1 1 -1 1]
[1 1 -1 -1 -1 1 -1 -1 1 -1 1 1]
[1 -1 -1 -1 1 1 1 1 -1 -1 1 -1]
[1 -1 1 1 -1 -1 -1 1 -1 -1 1 1]
[1 -1 1 -1 -1 1 1 -1 -1 1 -1 1]
[1 -1 -1 1 -1 1 -1 1 1 1 -1 -1]
[1 -1 -1 1 1 -1 1 -1 1 -1 -1 1]

1For more information consult chapter 115 from [2].

8.3. INVARIANTS OF (HADAMARD) CODES 125

[1 -1 1 -1 1 -1 -1 -1 1 1 1 -1]
> C:=HadamardMatrixToCode(H);
> RankZ2(C);
11
> KernelZ2(C);
Vector space of degree 12, dimension 1 over GF(2)
Generators:
(1 1 1 1 1 1 1 1 1 1 1 1)
Echelonized basis:
(1 1 1 1 1 1 1 1 1 1 1 1)
> DimensionOfKernelZ2(C);
1
> InvariantsRankKernelZ2(C);
[11, 1]
> HadamardThreeInvariants(H);
[495, 0, 11, 1]
> Inv1:=HadamardInvariant(Matrix(D,32,3));
> Inv2:=HadamardInvariant(Matrix(D,32,14));
> Inv1 eq Inv2;
true
> Inv3:=HadamardThreeInvariants(Matrix(D,32,3));
> Inv4:=HadamardThreeInvariants(Matrix(D,32,14));
> Inv3 eq Inv4;
false
> ExistsHadamardRankKernel(12,11,1);
true
> ExistsHadamardRankKernel(12,12,1);
false
> ExistsHadamardRankKernel(32,6,6);
true
> ExistsHadamardRankKernel(32,6,7);
false
> Inv5:=HadamardThreeInvariants(Matrix(D,20,2));
> Inv6:=HadamardThreeInvariants(Matrix(D,20,3));
> Inv5 eq Inv6;
true
> Inv7:=HadamardInvariantSHDE(Matrix(D,20,2):k:=6);
> Inv8:=HadamardInvariantSHDE(Matrix(D,20,3):k:=6);

126 CAPÍTOL 8. HANDBOOK OF MAGMA FUNCTIONS

> Inv7 eq Inv8;
false
> HadamardInequivalentMatricesSHDE(Matrix(D,20,2),Matrix(D,20,3));
true
> HadamardInequivalentMatricesSHDE(Matrix(D,20,2),Matrix(D,20,2));
false

8.4 Construction of (Hadamard) matrices

HadamardKroneckerSylvester(t)

Given a positive integer t, returns the Hadamard-Sylvester matrix
of degree n = 2t.

HadamardKronecker(H1,H2)

Given two Hadamard matrices H1 and H2 of degree n, returns a
Hadamard matrix of degree 2n. This matrix is constructed with
the Kronecker product S ⊗ [H1, H2], where S is the Hadamard-
Sylvester matrix of degree 2.

HadamardKroneckerPermutation(H1,H2,g)

Given two Hadamard matrices H1 and H2 of degree n and a
permutation g in Sym(n), returns a Hadamard matrix of degree
2n. This matrix is constructed with the Kronecker product S ⊗
[H1, g(H2)], where S is the Hadamard-Sylvester matrix of degree
2 and g(H2) is H2 with the columns permuted by g.

8.4. CONSTRUCTION OF (HADAMARD) MATRICES 127

SwitchCode(C,S,x)

Given a code C represented as a list of binary vectors, a subset
S of C and a codeword x, returns a code where the codewords of
S are substituted by the binary vectors of S + x.

HadamardAllRankKernel(n : swint)

Given a positive interger n, returns a list of Hadamard matrices
of degree n. There is one Hadamard matrix with rank r and
kernel of dimension k, for each possible pair (r, k). Optionally be
returned to integer conversion if boolean parameter swint is set
to true, it defaults to false.

HadamardAllRankKernelFile(n : swint)

Given a positive interger n, saves in a �le called "HadamardMa-
trix<n>"Hadamard matrices of degree n. There is one Hadamard
matrix with rank r and kernel of dimension k, for each possible
pair (r, k). Optionally be returned to integer conversion if boole-
an parameter swint is set to true, it defaults to false.

HadamardRankKernel(n,r,k : swint)

Given positive integers n, r and k, returns a Hadamard matrix
of degree n such that its corresponding Hadamard code of length
n has rank r and kernel of dimension k. Optionally to integer
conversion if boolean parameter swint is set to true, it defaults
to false.

128 CAPÍTOL 8. HANDBOOK OF MAGMA FUNCTIONS

HadamardRandomMatrix(n : swint)

Given positive interger n, returns a random Hadamard matrix of
degree n. Optionally to integer conversion if boolean parameter
swint is set to true, it defaults to false.

Example E3
Here there are some examples that show how to construct Hadamard matrices using

the Kronecker product and the Switching tecnique.

> H:=HadamardKroneckerSylvester(2);
> H;
[1 1 1 1]
[1 -1 1 -1]
[1 1 -1 -1]
[1 -1 -1 1]
> HadamardKronecker(H,H);
[1 1 1 1 1 1 1 1]
[1 -1 1 -1 1 -1 1 -1]
[1 1 -1 -1 1 1 -1 -1]
[1 -1 -1 1 1 -1 -1 1]
[1 1 1 1 -1 -1 -1 -1]
[1 -1 1 -1 -1 1 -1 1]
[1 1 -1 -1 -1 -1 1 1]
[1 -1 -1 1 -1 1 1 -1]
> g:=Random(Sym(4));
> g;
(1, 3, 2)
> HadamardKroneckerPermutation(H,H,g);
[1 1 1 1 1 1 1 1]
[1 -1 1 -1 1 -1 1 -1]
[1 1 -1 -1 1 1 -1 -1]
[1 -1 -1 1 1 -1 -1 1]
[1 1 1 1 -1 -1 -1 -1]
[-1 1 1 -1 1 -1 -1 1]
[1 -1 1 -1 -1 1 -1 1]
[-1 -1 1 1 1 1 -1 -1]

8.4. CONSTRUCTION OF (HADAMARD) MATRICES 129

> V:=VectorSpace(GF(2),48);
> C:=HadamardMatrixToCode(HadamardRankKernel(48,13,3));
> w:=C[5];
> a:=[1:j in [1..12]];
> b:=[0:j in [1..36]];
> K:=KernelZ2(C);
> S:=[k+w : k in K];
> x:=V!Vector(a cat b);
> IsHadamardCode(SwitchCode(C,S,x));
true

Example E4
This example shows how construct new Hadamard matrices given only the degree n,

all o one randomly; or given the degree n, rank r and kernel k, both to integer conversion
optionally.

> H:=HadamardAllRankKernel(16);
> H;
[

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
[1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1]
[1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1]
[1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1]
[1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1]
[1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1]
[1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1]
[1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1]
[1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1]
[1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1]
[1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1]
[1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1]
[1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1]
[1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1]
[1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1]
[1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1],

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

130 CAPÍTOL 8. HANDBOOK OF MAGMA FUNCTIONS

[1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1]
[1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1]
[1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1]
[1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1]
[1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1]
[1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1]
[1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1]
[1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1]
[1 1 -1 -1 1 -1 1 -1 -1 -1 1 1 -1 1 -1 1]
[1 -1 1 -1 1 1 -1 -1 -1 1 -1 1 -1 -1 1 1]
[1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1]
[1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1]
[1 1 -1 -1 -1 1 -1 1 -1 -1 1 1 1 -1 1 -1]
[1 -1 1 -1 -1 -1 1 1 -1 1 -1 1 1 1 -1 -1]
[1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1],

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
[1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1]
[1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1]
[1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1]
[1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1]
[1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1]
[1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1]
[1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1]
[1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1]
[1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1]
[1 -1 1 -1 1 1 -1 -1 -1 1 -1 1 -1 -1 1 1]
[1 1 -1 -1 1 -1 -1 1 -1 -1 1 1 -1 1 1 -1]
[1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1]
[1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1]
[1 -1 1 -1 -1 -1 1 1 -1 1 -1 1 1 1 -1 -1]
[1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 1 -1 -1 1],

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
[1 -1 1 -1 1 -1 1 -1 1 1 1 1 -1 -1 -1 -1]
[1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1]
[1 -1 -1 1 1 -1 -1 1 1 1 -1 -1 1 1 -1 -1]
[1 1 1 1 -1 -1 -1 -1 1 -1 -1 1 1 -1 -1 1]

8.4. CONSTRUCTION OF (HADAMARD) MATRICES 131

[1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1]
[1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1]
[1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1]
[1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1]
[1 -1 1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1]
[1 1 -1 -1 1 1 -1 -1 -1 1 -1 1 -1 1 -1 1]
[1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 1]
[1 1 1 1 -1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1]
[1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1]
[1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1]
[1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1],

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
[1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1]
[1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1]
[1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1]
[1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1]
[1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1]
[1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1]
[1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1]
[1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1]
[1 1 -1 1 -1 -1 1 -1 -1 -1 1 -1 1 1 -1 1]
[1 1 1 -1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 1]
[1 1 -1 -1 1 -1 -1 1 -1 -1 1 1 -1 1 1 -1]
[1 -1 1 1 1 -1 -1 -1 -1 1 -1 -1 -1 1 1 1]
[1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1]
[1 -1 1 -1 -1 -1 1 1 -1 1 -1 1 1 1 -1 -1]
[1 -1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 -1 1]

]
> Hi:=HadamardAllRankKernel(16:swint:=true);
> Hi;
[47759223636507730209801550344371119078934783318887441289834004656231277002752,
47759237385870728625569392599528516546879602350522879431642977946653103357952,
45055961377389206094335763848454946448064973475394380227595374820951581130752,
47759223636507951964750638082846635227084035329193748005583684082487203069952,
51363605398648060560201326038917033511655159526839310082134710873913916260352]
> for i in [1..#H]do
> InvariantsRankKernelZ2(HadamardMatrixToCode(H[i]));

132 CAPÍTOL 8. HANDBOOK OF MAGMA FUNCTIONS

> end for;
[5, 5]
[6, 3]
[7, 2]
[8, 2]
[8, 1]
> for i in [1..#Hi]do
> InvariantsRankKernelZ2(HadamardMatrixToCode(HadamardMatrixFromInteger(Hi[i],16)));
> end for;
[5, 5]
[6, 3]
[7, 2]
[8, 2]
[8, 1]
> HadamardRankKernel(16,8,1);
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
[1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1]
[1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1]
[1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1]
[1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1]
[1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1]
[1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1]
[1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1]
[1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1]
[1 1 -1 1 -1 -1 1 -1 -1 -1 1 -1 1 1 -1 1]
[1 1 1 -1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 1]
[1 1 -1 -1 1 -1 -1 1 -1 -1 1 1 -1 1 1 -1]
[1 -1 1 1 1 -1 -1 -1 -1 1 -1 -1 -1 1 1 1]
[1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1]
[1 -1 1 -1 -1 -1 1 1 -1 1 -1 1 1 1 -1 -1]
[1 -1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 -1 1]
> HadamardRankKernel(16,8,1:swint:=true);
51363605398648060560201326038917033511655159526839310082134710873913916260352
> HadamardRankKernel(16,8,1) eq\\

HadamardMatrixFromInteger(HadamardRankKernel(16,8,1:swint:=true),16);
true
> HadamardRankKernel(20,19,1);
[1]

8.4. CONSTRUCTION OF (HADAMARD) MATRICES 133

[1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1]
[1 1 1 1 -1 -1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 1]
[1 1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 1 1 -1 1 -1 1 -1]
[1 1 1 -1 -1 -1 -1 1 1 -1 1 -1 1 -1 1 1 1 -1 -1 -1]
[1 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 -1 -1 1 1 1 -1]
[1 -1 1 1 1 -1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 1 -1 -1]
[1 1 -1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 -1]
[1 -1 1 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1]
[1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 -1 1 -1 1 1 -1 -1 1]
[1 1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 -1 1 -1 1 -1 -1]
[1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 1 -1 -1 1 -1 1 -1]
[1 -1 1 -1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 1 1 -1]
[1 1 -1 -1 1 -1 -1 -1 1 -1 1 1 -1 -1 1 -1 -1 1 1 1]
[1 -1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 -1 1 1 -1 1]
[1 -1 1 -1 -1 1 -1 1 -1 -1 -1 1 -1 1 1 -1 1 1 -1 1]
[1 -1 1 -1 1 -1 -1 1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 1]
[1 1 -1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 1 1]
[1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 1 -1 -1 1 1]
[1 -1 -1 -1 1 1 1 1 -1 1 1 1 1 -1 1 -1 -1 -1 -1 -1]
> HadamardRankKernel(20,19,1:swint:=true);
25223937835263715470350932190029787546882139903965080362052812856254546081236/\\

80370995571103980967787230602651441655971840
> HadamardRankKernel(20,19,1) eq\\

HadamardMatrixFromInteger(HadamardRankKernel(20,19,1:swint:=true),20);
true
> HadamardRandomMatrix(16);
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
[1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1]
[1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1]
[1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1]
[1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1]
[1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1]
[1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1]
[1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1]
[1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1]
[1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1]
[1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1]
[1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1]

134 CAPÍTOL 8. HANDBOOK OF MAGMA FUNCTIONS

[1 -1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1]
[1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1]
[1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1]
[1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1]
> HadamardRandomMatrix(20:swint:=true);
25223937835263715470350932190029787546882139903965080362052812856254546081236/\\

80370995571103980967787230602651441655971840

8.5 Hadamard Database

CCGHadamardDatabase()

Returns the database of Hadamard matrices.

Bibliogra�a

[1] E. F. Assmus Jr. i J. D. Key, Designs and their codes, Cambridge
University Press, 1992.

[2] W. Bosma, J. J. Cannon, Handbook of Magma Functions, Syd-
ney: School of Mathematics and Statistics, University of Sydney
(1995) <http://magma.maths.usyd.edu.au>.

[3] H. Evangelaras, C. Koukouvinos i J. Seberry, Applications of Ha-
damard matrices, Journal of Telecommunications and Informati-
on Technology (2003).

[4] K. T. Fang i Gennian Ge, An e�cient algorithm for the clas-
si�cation of Hadamard matrices, Technical Report MATH-298,
Hong Kong Baptist University, 2001.

[5] K. T. Fang i Gennian Ge, A sensitive algorithm for detecting the
inequivalence of Hadamard matrices, Mathematics of computati-
on, Vol. 73, No. 46 (2003) pp. 843-851.

[6] I. Kotsireas, C. Koukouvinos, Hadamard ide-
als and inequivalent Hadamard matrices from
two circulant submatrices, updated March (2006)
<http://www.cargo.wlu.ca/circulantSubmatrices/>.

[7] F. J. MacWilliams i N. J. Sloane, The theory of Error-Correcting
codes, North-Holland, New York (1977).

135

136 BIBLIOGRAFIA

[8] K. T. Phelps, J. Rifà i M. Villanueva, Rank and Kernel of binary
Hadamard codes, IEEE Transactions on Information Theory, Vol.
51, No. 11 (2005) pp. 3931-3937.

[9] K. T. Phelps, J. Rifà i M. Villanueva, Hadamard codes of length
2ts (s odd). Rank and Kernel, Lectures Notes in Computer Sci-
ence. 3857 (2006), 328-337.

[10] M. Pujol, Ranq i nucli de matrius Hadamard n = 2t en MAGMA,
Bellaterra (2006).

[11] L. Rodríguez, Invariants de matrius Hadamard de mida n = 2ts

en MAGMA, Bellaterra (2006).

[12] E. Tressler, A survey of the Hadamard Conjecture, Blacksburg,
Virginia (2004).

Firmat: Francesc Díez Aquilué
Bellaterra, 19 de Setembre de 2007

137

Resum
L'objectiu d'aquest projecte ha estat generalitzar e integrar la funcio-

nalitat de dos projectes anteriors que ampliaven el tractament que oferia el
Magma respecte a les matrius de Hadamard. Hem implementat funcions ge-
nèriques que permeten construir noves matrius Hadamard de qualsevol mida
per cada rang i dimensió de nucli, i així ampliar la seva base de dades. També
hem optimitzat la funció que calcula el nucli, i hem desenvolupat funcions
que calculen la invariant Symmetric Hamming Distance Enumerator (SH-
DE) proposada per Kai-Tai Fang i Gennian Ge i que és més sensible per a
la detecció de la no equivalència de les matrius Hadamard.

Resumen
El objetivo de este proyecto ha sido generalizar e integrar la funcionali-

dad de dos proyectos anteriores que ampliaban el tratamiento que ofrecía el
Magma respecto a las matrices Hadamard. Hemos implementado funciones
genéricas que permiten construir nuevas matrices Hadamard de cualquier or-
den para cada rango y dimensión de núcleo, y así ampliar su base de datos.
También hemos optimizado la función que calcula el núcleo, y hemos des-
arrollado funciones que calculan el invariante Symmetric Hamming Distance
Enumerator (SHDE) propuesta por Kai-Tai Fang y Gennian Ge que es más
sensible en la detección de la no equivalencia de las matrices Hadamard.

Abstract
The aim of this project has been to generalize and to integrate the former

two projects' functionality which extended Magma's treatement in relation
to Hadamard matrices. We have implemented generic functions that allow
us to construct new Hadamard matrices of any order for each possible pair
of rank and dimension of kernel, and thus to extend its database. We have
also optimized the function that computes the kernel, and we have develo-
ped functions that compute the Symmetric Hamming Distance Enumerator
invariant proposed by Kai-Tai Fang and Gennian Ge, which is more sensitive
for detecting the inequivalence of Hadamard matrices.

