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Capitol 1
Introduccid

En el 1893, el “dépisté” Jacques Hadamard va trobar unes matrius quadrades
d’ordres 12 i 20 amb valors £1 que tenien totes les seves files (i columnes)
ortogonals. Aquestes matrius, X = (z;;), satisfeien la igualtat de la segiient
desigualtat |detX|* < [[iL, "7, [#;|* i maximitzen el determinant. Mal-
grat que Hadamard es preguntava de fet quines matrius amb valors en el
cercle unitari complex la satisfeien, el seu nom paradoxalment ha esdevingut

definitivament associat als tipus de matrius reals que va trobar.

Hadamard no va ser pas el primer en estudiar aquestes matrius. J.J.
Sylvester en el 1867 en el seu escrit titulat salvatgement (o pot ser hauria
de dir “silvestrement”) “Thoughts on inverse orthogonal matrices, simulta-
neous sign-successions and tessellated pavements in two or more colours with
application to Newton’s rule, ornamental tile work and the theory of numbers”
troba aquestes matrius per tots els ordres poténcies de 2. Nogensmenys
Hadamard conjectura que les matrius quadrades amb valors £1, ortogonals
en files (i columnes), i maxim determinant podrien existir pels ordres 1, 2, i

4m.

Aixi doncs la conjectura de Hadamard estableix que per tot n enter positiu
i divisible per 4, existeix una matriu quadrada H d’ordre n, amb tots els seus

valors £1, tal que HH? = nl. Encara que pugui semblar que la conjectura
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de Hadamard és un problema similar als més dificils problemes matematics
per la simplicitat decebedora del seu plantejament, no obstant aixo és de
naturalesa diferent. Es diferent per les seves extenses conseqiiéncies en molts
camps de recerca, tal com la teoria del disseny, la teoria de la informacié i la
teoria de grafs. Mentre que el valor dels grans problemes matematics, com
I'altim teorema de Fermat per exemple, rau en els subproductes matematics

que han resultat de I'intent per resoldre’ls.

Quan el 14 de Novembre de 1971 el prototip espacial d’orbitador de la
NASA Mariner 9, després de 5 mesos i mig de viatge, va arribar a Mart,
va esdevenir la primera nau espacial en orbitar un altre planeta diferent de
la Terra. Degut a una turmenta de pols, 'ordinador de la nau es va haver
de reprogramar des de la Terra per tal de posposar un parell de mesos la
retransmissio de les 7.329 imatges en blanc i negre d'una qualitat sorprenent
del 80% de la superficie del planeta vermell des d’una al¢ada de 1.500Km
durant 349 dies, una resolucié de 1.000 a 100 metres per pixel, i amb 6 bits
de dades per pixel que representaven 64 valors de I'escala de grisos.

El Mariner 9 és petit *, mitja tona destinada quasi tota al potent sistema
de propulsié per controlar la nau espacial en la orbita marciana. Un dels
sis instruments que portava era l'aparell fotografic que, pels problemes de
carrega esmentats, havia d’incloure un transmissor petit, per tant la senyal
transmesa havia de ser direccional. Pero, en tant llargues distancies, la senyal
té problemes d’alineament. En la transmissio cada aproximadament 5 vega-
des la mida de les dades originals se havia de realinear el transmissor. A més
a més, la senyal que arribava a la Terra era molt feble i havia d’amplificar-se,
el soroll de 'espai afegit al soroll térmic de "amplificador produien errors en
la transmissio.

La correccio d’errors en la transmissié d’imatges es va adequar als 30 bits
de maxima longitud util. Enlloc d’un facilment implementable codi de repe-
ticié de 5 bits que nomeés en corregeix 2, es va utilitzar un codi Hadamard

lineal (32,6, 16) que podia corregir fins a 7 bits per paraula codi. La proba-

!Esgotat i erm, encara déna voltes fins al 2020 que entrara en I’atmosfera marciana.



bilitat d’error en la imatge es reduia només al 0.01% (el codi de repetici6 de
5 bits la tindria del 1%). Gracies a la linealitat del codi Hadamard triat, re-
sultava més economic en espai i pes, enlloc d’emmagatzemar les 64 paraules
codi de 32 bits, dissenyar circuits que calculin les paraules codi mitjangant la
matriu generadora del codi. A més a més, la matriu de Hadamard s’obtenia
recursivament pel producte directe amb la matriu de Hadamard d’ordre 2 i
els seus ordres poténcies de 2 eren analogues a les funcions de Walsh, per
tant tot el tractament per ordinador és podia aconseguir utilitzant suma-
dors, que so6n més rapids i facils d’implementar a nivell de hardware, enlloc

de multiplicadors que s6n molt més lents.

A més de la utilitzacié dels codis Hadamard lineals per a la deteccio i
correcci6 d’errors, el processament del senyal, el multiplexatge optic, el dis-
seny i analisis estadistics, ... [3], dltimament s’estan usant amb técniques de
fingerprinting que permeten fer copies autoritzades de misica i video digital

inserint un conjunt tnic i diferent de marques que les fidellitza.

De tots aquests antecedents esmentats en clau novellistica es dedueix que
un projecte que parli de les matrius Hadamard és prou interessant. I és per
aixo que em vaig decidir a fer el PFC sobre matrius i codis de Hadamard

dins del marc de la teoria de codis.

La implementacio del projecte es realitza amb el paquet de software com-
putacional algebraic MAGMA perqué ja té funcions per treballar amb ma-
trius Hadamard, i perque és un dels que empra el Grup de Combinatoria i
Codificacio, CCG, del Departament d’Enginyeria de la Informacio i de les
Comunicacions. Aquest projecte utilitzara la infraestructura del grup per as-
segurar la fiabilitat técnica, operativa i legal. I els resultats obtinguts podran

ser utilitzats pel grup.

El projecte, els objectius del qual els descriuré a continuacio, tracta de la
construccid de noves matrius 1 codis Hadamard utilitzant dues invariants de

tipus estructural o algebraic que son el rang i la dimensio del nucli.
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L’any passat es van iniciar dos projectes en aquest sentit [10, 11]. L’'un
era per la construcci6 de matrius i codis de Hadamard de mida n = 2', i
laltre per la resta que son els de mida n = 2%-s, on s # 1 i senar. Aquest
segon projecte també incluia l'analisi del rang i la dimensio del nucli com

invariants i veure el grau de classificacié que aportaven en les matrius de
Hadamard.

Aquest projecte és la continuacié d’aquests en el sentit de generalitzar
e integrar la funcionalitat dels dos projectes anteriors. Aixd ha comportat
haver de crear noves funcions, modificar-ne d’altres, i també substituir funci-
ons especifiques per casos per una sola funcio recursiva. També, de passada,
analitzarem un nou invariant proposat pels xinesos Kai-Tai Fang i Gennian

Ge.

1.1 Objectius

e LEistudiar les propietats i caracteristiques de les matrius i codis Hada-
mard, aixi com alguns dels seus invariants que ens ajuden a classificar-
les. Aprendre a utilitzar el MAGMA i conéixer el treball dels dos projec-
tistes anteriors [10, 11] sobre la funcionalitat que ofereix el MAGMA per
treballar amb matrius i codis Hadamard. Saber per quins ordres exis-
teixen i1 quines matrius de Hadamard no equivalents conté la llibreria

del MAGMA.

e Dissenyar e implementar funcions que construeixin totes les matrius
de Hadamard no equivalents amb diferents rangs i dimensions del nu-
cli per un ordre donat, generalitzant i racionalitzant algunes funcions
desenvolupades en els projectes anteriors. Millorar la funcié que calcula
el nucli d’un codi binari: KernelZ2(C), tot provant la seva fiabilitat i

rapidesa.
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e Analitzar la invariant 4-profile implementada en el MAGMA i les invari-
ants rang i dimensid del nucliintroduits en els articles [8, 9]. Dissenyar,
implementar i analitzar la invariant de Kai-Tai Fang i Gennian Ge en el
seus articles [5, 4]. Comparar aquestes invariants esmentades sobre la
base de dades de matrius Hadamard del MAGMA, i en algun cas, sobre

un grup de matrius de Hadamard no equivalents d’altres procedéncies.

e Construir matrius de Hadamard inequivalents a les matrius Hadamard

de la llibreria del MAGMA.

1.2 Contingut de la memoria

El contingut de la memoria esta organitzat de la segiient manera:

e Capitol 2. Fonaments teorics: En aquest capitol rau la part teorica
en que es fonamenta aquest projecte. Matrius i codis de Hadamard,
i diferents construccions de les matrius de Hadamard segons les dues
invariants rang i dimensio del nucli. També farem una breu explicacio

de la invariant 4-profile i de la invariant de Kai-Tai Fang i Gennian Ge.

e Capitol 3. Planificacié del projecte: En aquest capitol es detallen els
objectius del projecte, els quals generen les tasques a realitzar. Sobre
elles es fa una planificaci6 temporal inicial segons els recursos disponi-
bles.

e Capitol 4. Entorn de desenvolupament: En aquest capitol explicarem
la maquina i la part del MAGMA que utilitzarem excepte el llenguat-
ge: funcions i procediments, packages i les funcions del MAGMA per

treballar amb les matrius de Hadamard.
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Capitol 5. Desenvolupament del projecte: En aquest capitol explica-
rem les funcions que hem implementat, els criteris que hem seguit per
a la seva realitzacio, com fer un package amb aquestes funcions i la re-
alitzacio dels tests per assegurar la correccio, la integritat, la fiabilitat

i el rendiment de les funcions implementades.

Capitol 6. Resultats: En aquest capitol es mostren els resultats obtin-

guts en ’assoliment dels objectius del projecte.

Capitol 7. Conclusions: En aquest capitol resumim els resultats ob-
tinguts, relacionem els objectius assolits del projecte, i es proposen

ampliacions o noves linies de treball a seguir de cara al futur.

Capitol 8. Handbook of MAGMA Functions: Hadamard matrices and
codes. Aquest capitol en anglés conté el manual d’aquelles funcions que
hem implementat, executables per I'usuari i d’acord amb la estructu-

raci6 seguida pels manuals del MAGMA.
Bibliografia.

Apéndix A : CD amb codi font, tests, exemples i manual.
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Fonaments Teorics

Aquesta secci6 esta extreta practicament en la seva totalitat dels respectius
fonaments teorics dels dos projectes anteriors sobre matrius i codis Hada-
mard [10, 11]. Hem afegit la part teorica corresponent a la invariant nova
implementada, batejada com SHDE, proposada pels xinesos Kai-Tai Fang i
Gennian Ge, i I’algorisme per a la construccié de matrius Hadamard d’ordre

n = 2'- s amb rang i dimensi6 de nucli.

2.1 Matrius de Hadamard

Una matriu Hadamard H d’ordre n és una matriu quadrada n x n amb valors
+1 tal que HHT = nl, on I és la matriu identitat del mateix ordre. En altres
paraules, el producte escalar de qualsevol fila per ella mateixa és n i les files
distintes son ortogonals. De nH ' = HT, tenim que HT H = nl, per tant les
columnes també séon ortogonals i la transposada d’'una matriu de Hadamard

és també matriu Hadamard.

Els exemples de matrius Hadamard no binaries que mostrarem en aquest
capitol, representem per simplicitat el valor —1 per —. Alguns exemples de

matrius Hadamard sén:
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-1 1 1

-1 1 1 - 1
- 1 - =

1 1 — 1 1 1 — 1
1 — — — — 1 1 1
11 - 1 - — 1 -
[ B 1 - — — 1
1 11 — — — — 1
1 - - - 1 - - -
-1 - - - 1 = -
1 -1 1 - 1 - -

De l'ortogonalitat de les files (columnes) de les matrius de Hadamard
es dedueix que qualsevol parella de files (columnes) coincideix i difereix en
n/2 components, aix0 fa necessari en principi que lordre d’una matriu de
Hadamard, fora de l'ordre 1, sigui parell. Concriguraetant més, en [7] es
demostra que si una matriu Hadamard H d’ordre n existeix, llavors n és 1,
2 0 4m.

Dues matrius de Hadamard s6n equivalents si una pot obtenir-se de I’altre
permutant i/o negant, files i/o columnes. Si utilitzem aquestes transforma-
cions podem obtenir una matriu Hadamard equivalent, on la primera fila i
columna soén tot 1’s, anomenada normalitzada. Les corresponents matrius

normalitzades dels exemples anteriors son:

11 1 1

(11 P

! 1 — 2 1 - 1 -

1 - — 1

111 1 1 1 1 1

11 1 1 — — — —

11 — — 1 1 — —

, 11 — — — — 1 1
H, =

1 - 1 - 1 - 1 —

1 — 1 — — 1 — 1

1 — — 1 1 — — 1

1 - — 1 - 1 1 -
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A partir d’ara, utilitzarem H' per denotar una matriu Hadamard norma-

litzada d’ordre n.

2.2 Codis Hadamard

Direm que F" representa el conjunt de tots els vectors binaris de longitud n.
La distancia de Hamming entre dos vectors x,y € F", d(x,y), és el nimero de
coordenades on x i y difereixen. Un codi binari C(n, M,d) és un subconjunt
de F" on |C| = M i d(¢;,c2) > d per tota parella ¢, co € C. Els elements
d’un codi s’anomenen paraules codii d és la distancia minima. Denotem (C')
el subespai lineal i binari generat per C. Si C' = (C), aleshores direm que el
codi C' és lineal.

Si substituim els 1’s per 0’s i els —1’s per 1’s obtindrem la matriu binaria
Hadamard, que escriurem c¢(H'). A partir d’'una matriu binaria Hadamard es
pot construir el codi Hadamard amb les files de la matriu binaria i els seus
complementaris. El codi binari Hadamard és (n,2n,n/2), és a dir, és un codi
de longitud n, amb 2n paraules codi i distancia minima n/2.

Seguint amb els exemples proposats fins ara, obtenim les segiients matrius

binaries i els seus corresponents codis Hadamard:

0 0
(00 o
C(H1)<01>H111
10
00 0 0
00 1 1
000 0 010 1
, 00 1 1 01 1 0
=106 1 0 1 =111
0110 110 0
101 0
100 1
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000 O0O0O0OTO0OTF O

00001111

001 10011

00111100

0 000O0O0OTO0TF© 010101601
0 0001111 01 011010
001 10011 01100110
o(HY) = 00111100 Hy = 01101001
01010101 11111111
01011010 11110000
01100110 1100 1 1 00
01101001 1100 0 0 1 1
101 01010

10100101

1001 1001

1001 01 10

2.3 Construccions de matrius o codis Hadamard

2.3.1 A partir de codis Hamming

Un codi 1-perfecte C' de longitud n és un subconjunt de F", amb distancia
minima d = 3, de manera que qualsevol vector de F” es troba a una distancia
menor o igual que 1 d’una paraula codi. Per qualsevol ¢ > 1 existeix exac-
tament un codi 1-perfecte lineal de longitud 2! — 1 conegut com a codi de
Hamming. El codi estés del codi C és un codi que resulta d’afegir un digit
de paritat per a cada paraula codi de C', per tant sera un codi de longitud
n = 2!, Donat un codi lineal C de longitud n, direm que el seu codi dual és
Ct={velF'VWzeCv-z=0}1ique també és lineal.

La construccié més simple d’una matriu Hadamard de mida n = 2¢ s’obté
si considerem el codi dual d’'un codi estés de Hamming. Per exemple, el dual
del codi de Hamming estés de longitud 4, que és el codi lineal amb una matriu

generadora,



2.3. CONSTRUCCIONS DE MATRIUS O CODIS HADAMARD 11

11 1 1
0 0 1 1
01 01

és un codi Hadamard H. En aquest cas:

000 0

00 11

010 1 000 0 11 1 1
gl o1 1o =] 0011 p_ |t -

1111 010 1 R -

110 0 0110 1 - - 1

1010

100 1

2.3.2 Transposada

Com ja s’ha vist a l'apartat 2.1, en una matriu Hadamard les columnes
tenen les mateixes propietats d’ortogonalitat que les files, HTH = nl, per
tant la transposada de qualsevol matriu Hadamard, H, és també una matriu
Hadamard.

Per exemple, si utilitzem el MAGMA podem veure que com que la matriu

a és de Hadamard, la seva transposada at també ho és.

D:=HadamardDatabase() ;
:=Matrix(D,8,1);

)

I

11 1 1 1 1]
1 1-1-1-1-1]
-1 -1 1 1-1-1]
-1 -1-1-1 1 1]
-1 1-1 1-1 1-1]
-1 1-1-1 1-1 1]
-1 -1 1 1-1-1 1]
-1 -1 1-1 1 1-1]

at:=Transpose(a);

YV V /A /A =/ esaessa VoV
e i

at;
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[1 1 1 1 1 1 1 1]
[1 1 1 1 -1 -1 -1 -1]
[1T 1 -1-1 1 1-1-1]
[T 1 -1-1-1-1 1 1]
[1 -1 1-1 1 -1 1-1]
[1 -1 1-1-1 1-1 1]
[1-1-1 1 1-1-1 1]
[1 -1 -1 1-1 1 1-1]
> IsHadamard(at);

true

2.3.3 Producte de Kronecker

Les matrius Hadamard també es poden construir utilitzant el producte de
Kronecker. Aixiés, si H' = (hij) és una matriu Hadamard nxni By, B, ..., B,

son matrius Hadamard & x k, la matriu que s’obté

hlllgl h&2131 e hlnlgl
H' @ [By, Ba,..., B — ho1By  haogBy -+ hapBs
hnan hn?-Bn e hnan

és d’ordre nk x nk i és, per construccio, també matriu Hadamard [8]|. Si
By =:--= B, = B, es pot escriure H' ® [By, Bs,...,B,| = H ® B.
Tot seguit s’expliquen les formes concretes on utilitzarem el producte de

Kronecker en el projecte.

Producte de Kronecker amb matrius Sylvester

. , . 1
Considerem que S és la matriu Hadamard

Comencant des d'una matriu Hadamard Sy podem definir recursivament .S;
per a t > 1, amb Pequacié recurrent S; = S ® [S;_1,51] = S ® S;_1.
Agafem Sy = (1), la successié corresponent Sy, Si, S3, ..., S ens dona

matrius Hadamard de totes les mides que son poténcies de dos, concretament
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11 1 1
11 1 - 1 —
So = (1) 51=S®50:(1_> Sy =5®85; = 11 - —
1 — — 1

0000

010 1

0000 001 1

010 1 0110

g/ N __ _

Sp=H'cH)=1 7 (1 H=11111

0110 1010

1100

100 1

la matriu Hadmard S; és de mida n = 2'. Aquestes matrius s’anomenen
matrius Sylvester. Sabem que el codi binari d’aquestes matrius Hadamard,
S;, és el dual del codi de Hamming estés de longitud n = 2¢. Per tant son
equivalents als codis Hadamard vistos a 'apartat 2.3.1 A I'exemple segiient
es pot veure com el codi obtingut és equivalent a 'obtingut a ’exemple de
I’apartat 2.3.1.

Producte de Kronecker amb dues matrius Hadamard

El producte de Kronecker, com ja hem vist, es pot utilitzar de formes dife-
rents, ja sigui amb una o més matrius de Hadamard. Aixi doncs, aquesta
construccid, concretament, consisteix en fer el producte de Kronecker amb la
matriu S i dues matrius (diferents) de la mateixa mida n, és a dir S® By, Bs.

Sabem que si es permutem les columnes d’una matriu Hadamard, conti-
nua essent una matriu Hadamard, per tant un cas particular de la construc-
ci6 anterior que també s’utilitzara, consisteix en fer el producte de Kronecker
amb la matriu S i dues matrius Hadamard By i 7(Bs), on 7 és una permuta-
ci6 de n coordenades i w(Bsy) és la matriu By amb les columnes permutades,
és a dir S ® [By, m(By)].



14 CAPITOL 2. FONAMENTS TEORICS

2.3.4 Técnica del Switching

Podem construir matrius Hadamard fent servir la técnica del Switching.
Aquesta técnica consisteix en agafar un subconjunt Sy de vectors d’un codi
i intercanviar-lo per un nou subconjunt S;. Explicat de forma matematica
seria, (C'\\Sp) U S;.

En el cas concret de les matrius Hadamard construides amb aquesta téc-
nica, es pot triar que el subconjunt del codi Hadamard a substituir sigui un
traslladat d’un subespai de dimensié 3 del nucli , Sy en aquest cas. A més,
també es pot triar que el nou subconjunt, S; sigui la suma per cada vector
pertanyent a Sy amb vvy, on vy i vy 86n els dos vectors base del nucli diferents
al vector tot uns, (1,1,--- 1) i vjve (= v1 and vq) representa el vector amb
1’s a les coordenades on els dos vectors tenen un 11i 0 a la resta de coorde-
nades. Per exemple, si C' és un codi Hadamard amb nucli K(C') = (1, vy, v2)

on

v =(1,1,1,1,1,..,1,0,0,0,0,0,...,0),

n/2 n/2
vw=(1,1,..,1,0,..,0,1,...,1,0,...,0),
n/4 n/4 n/4 n/4
vivs = (1,1,...,1,0,0,0,0,0,0, ...,0,0,0),
N—— ~ d
n/4 3n/4

, aleshores C\ (K (C) 4+ z) U (K(C) + x + v1v2) és també un codi Hadamard
en aquest cas concret.

A la Figura 2.1 es mostra de forma grafica la técnica del Switching.

2.4 Invariants: 4-profile

El problema per identificar ’equivaléncia entre dues matrius Hadamard és
un problema NP-hard ja que es podrien arribar a fer (2"n!)? comparacions.
La invariant com a condici6 necessaria (perd no suficient) en l'equivaléncia

entre matrius Hadamard, serveix per identificar les matrius Hadamard ine-
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C

K=<1,vl,v2>

X S0=K+x S1=S0+v1v2

Figura 2.1: Switching

quivalents. A [5] es proposa una invariant més sensible que pot servir per
identificar dues matrius Hadamard inequivalents, ja que si dues matrius Ha-
damard son equivalents tenen el mateix 4-profile, 1’invers, perd, no és cert.

Aquesta invariant és el 4-profile.

Suposem que H' = (h;;) és una matriu Hadamard de mida n > 8. Es

defineix

> hihjahiahug (2.2)

z=1

Pijkl =

Diem que 7(m) és el numero de conjunts, {4, j, k, [}, de quatre files dife-
rents on m = p;j, m(m) és el 4-profile d’H. De forma similar es pot definir

el 6-profile, el 8-profile, etc.

La complexitat d’un algorisme per calcular aquesta invariant, 4-profile
és: kn (Z) El MAGMA implementa aquest algorisme per calcular el 4-profile
amb la funci6 HadamardInvariant (H).

Tot seguit es mostra un exemple de com calcular el 4-profile i el resultat
que se n’obté amb el MAGMA.
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11 1 1 1 1 1 1
111 1 - - — -
11 — — 1 1 — —

P I

Sl -1 -1 - 1 -
1 — 1 — — 1 — 1
1 — — 1 1 — — 1
1 — — 1 — 1 1 -

8
Di2sa = | Z hizhoghsshae| = |(Ri1haihgihar) + (hi2haohsahas) + (hishoshsshas)+

z=1

te + (h18h28h38h48)’ — ‘81’ — 8

(2.3)
8
P1235 = ‘ Z hl:ththth):p‘ = |(h11h21h31h51) + (h12h22h32h52) + (h13h23h33h53)—|—
=1
-+ + (highashsshss)| = [0] = 0
(2.4)
8
P1236 = ‘ Z hlxh2xh3$h6x‘ = |(h11h21h31h61) —+ (h12h22h32h62) + <h13h23h33h63)—|—
x=1
-+ + (highashsshes)| = [0] = 0
(2.5)

etc.

Es segueix aixi amb totes les combinacions possibles de 4 files i al final s’han
de sumar el nombre de 8’s i 0's que han sortit, el resultat coincideix amb
I'obtingut amb el MAGMA.

D:=HadamardDatabase() ;
a:=Matrix(D,8,1);

)

11 1 1 1 1]

1 1-1-1-1-1]
-1 -1 1 1-1-1]
-1 -1-1-1 1 1]
-1 1-1 1-1 1-1]
-1 1-1-1 1-1 1]
-1 -1 1 1-1-1 1]
-1 -1 1-1 1 1-1]

L T s N s Y s T e T s T s Y e T VAR VAR V4

L e
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> HadamardInvariant(a);

[ 56, 14 1]

Comprovem que 56 + 14 = 70 que son les combinacions de 8 elements
agafats de 4 en 4, (i).

2.5 Invariants: SHDE

Aix0 és un resum dels fonaments teorics necessaris per la presentacié d’a-
questa invariant extret de ’article dels xinesos Kai-Tai Fang i Gennian Ge
[5]. Es defineix la distancia simétrica de Hamming entre dos files qualse-
vol com el menor entre el nimero de posicions amb el mateix valor i dife-
rent valor. Per exemple la distancia simétrica de Hamming entre les files
(1,1, —,— 1,1, —, —)i(l,—,1,—, —, —,1,1) és 2, mentre que la distancia de
Hamming és 6. De la definici6 es dedueix que el valor maxim de la distancia
simétrica de Hamming és la meitat de la longitud de les files.

Per la detecci6 de la inequivaléncia entre matrius de Hadamard, definim
ara un conjunt de magnituds que séon funcions de les distancies simeétriques
de Hamming i les distancies simétriques de Hamming projectades d’una ma-
triu Hadamard. Donada una matriu Hadamard H d’ordre n, sigui S;(H) el
ntimero de parelles de files distintes que la distancia simétrica de Hamming
és 1. Ens referirem a (So(H), ..., Sn/2(H)) com la distribucid de distancia de

H. Definim
n/2

Bo(H) = Z Si(H)(a* + a™™) (2.6)

com l’enumerador de distancia de H, on a és un nimero positiu.
Donada una k(1 < k < n), definim

k/2
B,(H") =" S;(H")(a' + a*™) (2.7)

1=0

com el valor B, sobre una projecci6 de k columnes, on S;( HY) és la distribucio

de distancia de H® (només considerem la distancia simétrica de Hamming
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de k columnes de les files de H).
La distancia simeétrica esta intimament lligada al producte escalar. Sigui
K un subconjunt de k elements de X = {1,2,...,n}. Sigui ug, vk la i-éssima

i la j-éssima fila de H¥ respectivament, aleshores:

<uK7 UK) = Z hichjc

ceK

Sigui d la distancia simétrica de ug i vx. Quan d és el niumero de posicions
on ux i vix son idéntics, k — d és el ntmero de posicions on ugx i vg séOn
diferents. I també a l'inrevés, quan d és el nimero de posicions on ug i
vi son diferents, k — d és el nimero de posicions on ux i vx son idéntics.
En qualsevol cas, k — 2d = |(uk,vk)|. Per tant, d = (k — |(ug,vK)|)/2.
En B,(HY), podem substituir a' i a*= per a*-Iurwl/2 j qk+lurcv)l)/2
respectivament. Aixo redueix el calcul de B,(H¥), doncs és més facil de
calcular el producte escalar que la distancia simétrica i 'equaci6 2.7 ara

queda
k)2

B.(H®) =) Si(H*)(a" + a*%). (2.8)

i=0

Donada una k (1 < k < n), definim Fj,,(H) com la distribucié de valors
Ba sobre totes les projeccions de k columnes. Resulta que Fp, , (H) és un
invariant a les permutacions i negacions de files i columnes. Per tant, a con-
tinuaci6é aquest teorema estableix la condicié necessaria per la equivaléncia

de matrius Hadamard.

Teorema 2.5.1 Si les matrius de Hadamard Hy 1 Hy son equivalents, ales-
hores Fp,,(H1) = Fp, ,(Ha) per k=1,2,...,n/2.

Del Teorema 2.5.1 podem concloure que H; i Hy sén inequivalents si per
alguna k tenim que Fp,, (H1) # Fp,,(Ha).
Els segiients dos lemes que veurem, ens poden estalviar molt cost com-

putacional en la classificacié de les matrius de Hadamard.
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Lema 2.5.2 Les relacions Fp,, (H) = Fp,,(H2), k = 1,2. es compleizen

per qualsevol matrius de Hadamard Hy 1 Hy del mateix ordre.

Donat que dos files qualsevol d’'una matriu Hadamard d’ordre n sén orto-
gonals, tenim que la distancia de Hamming entre elles és n/2. Notem que el
residu d’'una projeccioé de k columnes de H correspon a una projeccié n — k

columnes de H i a 'inrevés. Per tant, tenim:

Lema 2.5.3 Siguin H, i Hy dos matrius de Hadamard d’ordre n. Per qual-
sevol k (1 < k < n) Fp,,(H) = Fp,,(H2) si i només si Fp,,  (Hy) =
Fp, ., .(H).

A partir del Teorema 2.5.1 i els Lemes 2.5.2 i 2.5.3, es proposa el se-
giient algorisme per detectar matrius Hadamard inequivalents, on s’assigna
un ntmero irracional pel parametre a.

Un algorisme per detectar matrius de Hadamard inequivalents
Pas 1. Posem k = 4.

Pas 2. Comparem Fp,, (H:) amb Fp, , (H2). Sino son iguals anem al pas 4.
Pas 3. Si k = n/2 hem fracasat intentant trobar la inequivaléncia entre H; i
Hs i sortim. Sin6 posem k = k 4 2 i tornem al pas 2.

Pas 4. Conclourem que H; i Hy no son equivalents i hem acabat.

Comentaris:

e Aquest algorisme quan fracassa vol dir que no sap si H; i Hy sén ine-

quivalents o equivalents.

e Comencem des de k = 4 enlloc de comencar des de k£ = 3 e incrementem
k = k+2 enlloc de k = k+1, perqué des de ’experiéncia computacional

es descobreix que el calcul de Fiz H) quasi té el mateix efecte que el

a,2'L+1<

de F'g,,,(H) a I'hora de distingir les matrius Hadamard inequivalents.
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2.6 Invariants: Rang i Nucli

Dues propietats estructurals més dels codis no-lineals son el rang i el nucli
(en anglés, rank i kernel).
El rang d’un codi binari C' de longitud n, rank(C'), és simplement la

dimensi6 del subespai lineal generat per C. El nucli d’un codi binari C' és
KC)={zelF" |z+C=C}

Si el vector tot zero pertany al codi, és a dir, si (0,0,---,0) € C llavors
K(C) és un subespai lineal de C'. Direm que ker(C') és la dimensi6 de K(C).
En general, C' es pot escriure com una uni6 de cosets de K(C'), i K(C) és el
codi lineal més gran pel qual aixo és cert.

En el pitjor dels casos, la complexitat dels algorismes utilitzats per calcu-
lar el rang i la dimensi6 del nucli és equivalent a resoldre un sistema d’equaci-
ons, per tant és d’ordre n3. Tot i aix0, és possible que la funcié Dimension()
implementada pel MAGMA sigui més eficient.

Aquestes dues invariants també poden servir per identificar dues matrius
Hadamard inequivalents, ja que si dues matrius Hadamard son equivalents

els seus respectius codis Hadamard tenen el mateix rang i dimensi6 del nucli.

2.6.1 Rang dels codis Hadamard

Com es demostra a [8] podem dir que existeix un codi Hadamard de longitud
n =2 amb rang r, Vrr € {t+1,--- ,n/2}. Per a codis Hadamard de longitud
451 8s on s > 11 senar, se sap que el seu rang és 4s — 1 i 4s, respectivament
[9]. Per la resta de longituds, si existeix un codi Hadamard de longitud 4s,
amb s > 1 i senar, per tot ¢ > 3, llavors existeix un codi Hadamard de
longitud n = 2'.s amb rang r, Vr € {4s +¢t—3,--- ,n/2} [9].

Per exemple, els codis Hadamard de longitud n = 12 tenen rang 11, els
de longitud n = 24 tenen rang 12 i els de longitud n = 243 = 48 se sap que
tenen rang r € {13,14,--- 24},
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2.6.2 Dimensidé del nucli dels codis Hadamard

A [8] queda demostrat que la dimensio del nucli d'un codi Hadamard de
longitud n = 2" és k € {1,2,--- ,t — 1,t + 1}. A més, existeix un codi

Hadamard de longitud n = 2' per cada possible dimensi6 del nucli.

Per aquests codis Hadamard de longitud 2¢, sempre n’existeix un de lineal
amb dimensi6é t41, S;. Es pot assumir que S; esta generat pels vectors binaris
1,v,v9,- -, vy de longitud 2¢, on els vectors v;, Vi € {1,--- ,t}, son:

vi=(1,1,1,1,1,..,1,0,0,0,0,0, ..., 0),

P Y Y Y
L

n72 n72
vy =(1,1,..,1,0,...,0,1,...,1,0,...,0),
— N Y Y
n/4 n/4 n/4 n/4 (29)

v=(1,..,1,0,..,0,1,...,1,..,0,...,0).
S—— Y Y~ N——

n/2t n/2t n/2t n/2t

En general, si n = 2! - s, es poden considerar els vectors 1,vq, vy, ..., v,
de longitud 2 - s construits de la mateixa manera. Se sap que no sempre
(1,v1,v9,...,v:) C (H) [9], pero si un codi Hadamard H té ker(H) = k es pot
veure que el nucli esta generat per k vectors (independents) de 1, vy, v, ..., vy,

per tant podem assumir que K(C) = (1, vy,v9,...,U_1)-

Un codi Hadamard de longitud n = 2%-s (¢ > 2), on s > 1 i senar, té
dimensio del nucli k£, on k € {1,2,...,t — 1}. A més si existeix un codi
Hadamard de longitud 4s, amb s > 1 i senar, per tot ¢ > 3 existeix un codi

Hadamard de longitud n = 2'-s amb nucli de dimensio6 k, Vk € {1,...,t—1}

[9].

Per exemple, se sap que els codis Hadamard de longitud n = 2%.3 = 48

tenen dimensio6 del nucli k& € {1,2,3}.
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2.6.3 Rang i nucli dels codis Hadamard

Un cop definits i donats els limits del rang i el nucli per codis Hadamard,
tant si son de longitud n = 2! com de longitud n = 2'-s, es donaran els limits
superiors del rang, en funci6 de la dimensi6é del nucli.

Per un codi Hadamard de longitud n = 2°, apart del codi lineal que té
rang r = t 4+ 1 i dimensi6é del nucli k = ¢ + 1 per qualsevol longitud n (per
t < 4 només existeix un codi de Hadamard), per ¢t = 4 les combinacions de
rang i dimensioé del nucli sén aquestes: r =61k =3, r=71ik=2,r=238
ik=2ir=8ik=1. Pert > 4 les combinacions de rang i dimensi6 del

nucli son aquestes [8]:

t+2<r<ottl=kFi L1 s 3<k<t-—1
{ - = - - (2.10)

t+3<r<2tt si 1<k<2

I per un codi Hadamard (no lineal) de longitud n = 2"-s (¢ > 3), on s és

senar, amb rang 7 i dimensi6 del nucli k£ es compleix:

ottl—k.g 4 Lk —1 si 3<k<t—1
2t=l.g si 1<k<?2

Els limits inferiors exactes del rang, en funci6é de la dimensié del nucli,
només es coneixen per codis Hadamard de longitud n = 2' (desigualtats
2.10). Per a codis Hadamard de longitud n = 2%-s, on s > 1 i senar no es
coneixen, pero a [9] també es demostra que existeix un codi Hadamard amb

rang 7 i dimensi6 del nucli k£ sempre que es compleixi:

ottl=k.g 4 Lk —1 si 3<k<t—1

2.11
2t=l.g si 1<k<?2 (2.11)

43+t—3§r§{

A la Taula 2.1 es mostren totes les combinacions possibles de rang i

dimensi6 del nucli per a codis Hadamard de longitud n = 2% -3 = 48 (t =
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4,s = 3). Els simbols que apareixen representen les diferents construccions

de les matrius Hadamard que generen aquest codis.

Taula 2.1: Combinacions de rang i dimensi6é del nucli per a n = 48.

rank(C')

ker(C) |13 14 15 16 17 18 19 20 21 22 23 24
3
2
1

* [}
* < < <
©) * * * * * * * * * * *

2.6.4 Construccié de matrius Hadamard d’ordre n = 2¢-s

amb rang i dimensi6é de nucli

L’algorisme, en funci6 de ¢, construeix les matrius de Hadamard d’ordre
n=2.s(>2is # 1 senar) amb un rang r i dimensi6 de nucli k
donats. Les construccions que s’utilitzen es troben en la referéncia [9]. En
aquest algorisme denotem amb H;"; una matriu Hadamard d’ordre n, rang r

i dimensi6 del nucli k.

e Si t = 2, existeix una unica matriu de Hadamard d’ordre n = 4s
tal que el seu codi té rang r = 4s — 1 i dimensi6 de nucli £ = 1.
Aquesta matriu Hadamard, Hi‘j,m, caldra construir-la o trobar-la en
alguna base de dades, sind no podrem construir cap matriu de la seva

seqiiéncia 8s, 16s,32s, ....

e Si t = 3, existeixen dues matrius Hadamard d’ordre n = 8s amb el
mateix rang r = 4s — 1 pero diferent dimensié de nucli £ = 1,2, que es

poden construir de la manera segiient:

8s _ 4s 4s 4 s 2
LoHys 1, = S®[H (1, m(Hg 1 ;)] on 7 és una permutacié de 2

columnes linealment independents.

2. Hfss—lz =5® [Hiss—l,p Hﬁ—u]-
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e Sit > 3 denotem amb rmin = 4-s+ 1t — 3 el rang minim, i les

construccions de les matrius de Hadamard es poden dividir en 5 casos:

1. Sir=rminik =1 aleshores

= S®[HY L H': .

rmin—1,17 “Trmin—1,2

H’I’L

rmin,l
. 2
2. Si Existeix Hffl . aleshores

n n/2
Hp), =S®H 11,1#1-

3. Sir>(n/4)+ 21k = 2 aleshores

H', = (HadamardNormalize(H]",))".

4. Sir = (n/4)+21ik = 3 llavors utilitzem el switching: Es comenga
amb el codi C' de la matriu de Hadamard H,' ; 3, que té, evident-
ment, longitud n, rang r — 1 i dimensi6é de nucli dim(K) = 3.
Transformen la base del nucli per tal que un dels vectors base si-
gui el tot uns, és a dir, K = (1,v1,v2). Sigui x € C,z ¢ K i
considerem el traslladat de K, K + z inclos en C'. Denotem per L
el codi C on s’ha substituit el conjunt de paraules codi K + x per
K + z 4 v1v2 amb rang r = (n/4) + 2 i dimensi6é de nucli k& = 3.

llavors H'3 és la matriu de Hadamard del codi L.
5. Si k =1 llavors utilitzem les permutacions

— Sir>rmin+11ir < (n/4)+ 2 aleshores
Hly =S @ [, m(H] 5 )

on 7 és una permutacié de 2 columnes linealment indepen-

dents.
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— Sir > (n/4) + 2 aleshores

n n/2 n/2
Hr,l =S5® [Hn//4,1’ 7T<Hn//4,1)]

on 7 és una permutacio de n/4 columnes linealment indepen-

dents.
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Capitol 3
Planificacié del projecte

En aquest capitol es detallaran els objectius que s’han proposat en la intro-
duccio, i a partir d’aquesta relacié detallada generem les tasques a realitzar.
Sobre les tasques i segons els recursos disponibles farem una planificacié

temporal inicial que es veura corregida finalment per la planificacié temporal
final.

3.1 Objectius

Tal com hem dit, anem a marcar primer els diferents objectius que es volen

assolir. Els objectius d’aquest projecte son els segiients:

1. Estudiar les matrius i codis Hadamard.

2. Estudiar les invariants 4-profile, rang i dimensi6 del nucli.

3. Estudiar la invariant SHDE dels xinesos Kai-Tai Fang i Gennian Ge.
4. Estudiar el MAGMA.

5. Estudiar els treballs dels dos projectistes anteriors.

27
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10.

11.

12.

13.

3.2

CAPITOL 3. PLANIFICACIO DEL PROJECTE

. Implementar la llibreria amb les noves funcions actualitzant la versio

anterior, aix0 també inclou, en especial, millorar i realitzar les proves de

rendiment de la funci6 KernelZ2(C), i implementar la invariant SHDE.

. Implementar el package de la llibreria anteriorment esmentada.

. Actualitzar el manual incorporant les funcions creades o modificades i

eliminant les obsoletes.

. Actualitzar els test de proves i els exemples de les noves funcions.

Analitzar les invariants 4-profile, rang i dimensié del nucli, i SHDE

sobre les matrius de Hadamard de la base de dades del MAGMA.

Analitzar les invariants 4-profile, rang i dimensié del nucli, i SHDE
sobre algunes matrius de Hadamard inequivalents proporcionades per

Ilias Kotsireas i Cristos Koukouvinos.

Ampliar la base de dades del MAGMA amb la construcci6 de noves
matrius de Hadamard utilitzant les noves funcions genériques imple-

mentades i tenint en compte el rang i la dimensié del nucli.

Redactar la memoria.

Tasques a realitzar

Tasca 1: Estudi de les matrius i codis Hadamard i els diferents cons-
tructors que utilitzarem per crear-ne de noves, aixi com les invariants
4-profile, rang i dimensi6 del nucli i la invariant SHDE de Kai-Tai Fang

i Gennian Ge.

Tasca 2: Estudi del MAGMA. Es un requeriment del departament, el
llenguatge d’aquest sistema algebraic simbolic és en el que codifiquem
les funcions. Després farem el muntatge de la llibreria amb aquestes

funcions, empaquetant-les en els packages del MAGMA.
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Tasca 1 | Tasca 2 | Tasca 3 | Tasca 4 | Tasca 5 | Tasca 6 | Tasca 7 | Tasca 8 | Tasca 9 | Tasca 10

Figura 3.1: Llegenda de colors de les tasques

e Tasca 3: Estudi del treball dels projectistes anteriors. Doncs aquest

treball és la seva continuacio.

e Tasca 4: Implementacio6 de les funcions (llibreria i package). Establerts

els criteris de disseny, escriure el codi de les funcions i empaquetar-les.
e Tasca 5: Proves de rendiment de la funcié revisada KernelZ2(C).

e Tasca 6: Test de proves. Per tal de comprovar la fiabilitat de les

funcions implementades i la seva integraci6 en la llibreria.

e Tasca 7: Analitzar les invariants 4-profile, rang i dimensi6 del nucli, i
la invariant SHDE; tant sobre la base de dades del MAGMA com sobre
algunes matrius de Hadamard inequivalents de Ilias Kotsireas i Cristos

Koukouvinos.

e Tasca 8: Obtenir noves matrius Hadamard per tal d’ampliar la base de

dades del MAGMA utilitzant les funcions implementades.
e Tasca 9: Redacci6 del manual i realitzaci6é dels exemples.
e Tasca 10: Redacci6 de la memoria.

En la Figura 3.1 mostrem la taula del codi de colors de les diferents

tasques.

3.3 Planificaci6 inicial 1 final

3.3.1 Planificacié temporal inicial

En la segiient Figura 3.2 es mostra la taula de la planificacié temporal que es

va fer en un principi. Enguany, degut al calendari académic, vam comencar
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Novembre Desembre Gener Febrer Marg Abril Maig

e

Figura 3.2: Planificaci6 temporal inicial.

Novembre | Desembre | Gener | Febrer Marg Abril Maig Juny Juliol Agost

——— e

Figura 3.3: Planificaci6 temporal final.

a principis de Novembre.

3.3.2 Planificacié temporal final

La Figura 3.3 mostra la taula de la temporitzaci6 que al final s’ha dut a
terme.
S’han produit basicament tres canvis respecte a la planificacié temporal

inicial:

e Un fet greu familiar va provocar que els mesos d’Abril a Maig no poqués
dedicar-me gaire bé gens al projecte o, al menys, amb la intensitat que

calia.

e Les proves de rendiment de la funcié KernelZ2(C) es desplaca a un mes

meés tard quan la implementacié de les funcions esta més avancgada, i
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ja hem passat de la primera versié millorada de la funci6 KernelZ2(C)
amb retorn del nucli en tipus llista, a la versié definitiva amb retorn

tipus espai vectorial.

e El test de proves també es desplaca a un mes més tard, i a més, s’escurca
a un sol mes. Aix0 és degut a la reduccidé del nombre de funcions en
la versi6 millorada de la llibreria, el test és menys extensiu, perd més

intensiu en les poques funcions que hem de provar unitariament.
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Capitol 4

Entorn de desenvolupament

4.1 Sistema de computaci6é simbolica MAGMA

El MAGMA és un sistema d’algebra dissenyat per proporcionar un entorn
software a la computacié amb estructures, que poden aparéixer en arees com
I’algebra, la teoria dels ntimeros, la geometria algebraica i la combinatoria.
També el MAGMA permet als usuaris definir altres estructures com grups,
anells, ..., codis en el nostre cas. Algunes caracteristiques importants del

MAGMA soOn:

e Intenta aproximar-se tant com pot al tipus de pensament i notacid
matematica habituals, per tal de proporcionar un entorn matematic

riguros.

e Té tipus explicits, és a dir, 'usuari ha de definir explicitament la major

part d’estructures algebraiques on ha de tenir lloc un calcul.

e Té un gran kernel escrit en C per aconseguir eficiéncia, i una cada
vegada més extensa llibreria de funcions empaquetades, programades

en el llenguatge MAGMA, per aconseguir més funcionalitat.

e Té un llenguatge que és imperatiu, la crida a funcions per valor i dina-

micament tipat.

33
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e Té un interpret que permet els calculs interactius.

e Disposa d’un gran nombre de bases de dades matematiques que conte-

nen informacié que pot ser tutil.

4.2 Estructura del MAGMA

La versio del software que utilitzarem nosaltres és la MAGMA 2.13-12. El
MAGMA esta installat en la maquina anomenada Mac Williams, I'accés a la
qual és remot. Per exemple en el meu cas, 'accés es feia des de casa o des
d’alguna de les estacions de treball de la sala de projectistes. La maquina

MacWilliams té les seglients caracteristiques:

e 2 processadors de doble nucli “Intel(R) Core(TM)2 CPU” de 1.86GHz

de freqiiéncia i 2028 Kb de memoria cache.
e 2 Gb de memoria RAM.

El MAGMA esta organitzat en diferents directoris. Aquests els podem

trobar a la ruta /usr/local/magma2.13-12. Els principals directoris son:
e /1ibs:

— /data: en aquest directori s’hi troben totes les bases de dades de
queé disposa el MAGMA. Concretament aqui és on hi ha la base de

dades de matrius Hadamard.

— /examples: aqui s’hi troben tots els exemples que es proposen en

el manual per tal de poder-los executar.

— /test: en aquest directori s’hi troben els tests que ha passat el
magma per comprovar el correcte funcionament de les seves funci-

ons.

e /package: directori on es troben tots els package de que esta format
el MAGMA. Aqui trobarem entre d’altres tant el hadamard.sig com el

hadamard.m.
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e /pdf, /ps i /dvi: en aquest directoris podem trobar els manuals en

format pdf, psi dvi.

Per tal de poder treballar amb el MAGMA és necessari executar la coman-
da MAGMA. Un cop s’ha fet aixo, davant del prompt, ja podem comencar a
treballar de forma interactiva realitzant alguns calculs manuals, o bé carre-
gant programes per executar-los.

Si ens cal, podem interrompre I'execuci6é de programes pitjant <Crt1>-C,
la interrupcioé pot trigar una estoneta.

Per finalitzar la sessio en el MAGMA es pot fer de tres maneres igualment
valides: Escrivint al prompt quit;, o bé fent <Ctrl>-D, o bé dos cops seguits
<Crtl1>-C.

4.2.1 Creaci6 de funcions i procediments en MAGMA

Una forma més comoda de treballar és escrivint el codi de les funcions i pro-
cediments en un fitxer a part amb extensié .m, aixi cada cop que comencem
una nova sessio i necessitem les funcions implementades les podrem carregar

amb la comanda load ‘“‘nom_fitxer.m’’;.

Les funcions s6n un dels elements més importants del llenguatge MAGMA.

La forma de crear-ne una és la segiient:

f:= function(xl, ..., xn : yl:=exprl, ... )
local wil, ..., ws;
statements;
return z1, ..., zr, _, ..., _;

end function;

Els parametres x sén obligatoris, i els y sén opcionals que prenen el valor
per defecte de expr. Les w son les variables locals de la funcié. Les z sén els
parametres de retorn, i els _ son valors de retorn no definits que s’utilitzen

per proporcionar un conjunt consistent de valors de retorn.



36 CAPITOL 4. ENTORN DE DESENVOLUPAMENT

La crida a funcions és:
zl, ..., zm := £( x1, ..., xn : yl:=exprl, ... );

Qualsevol de les y es pot ometre en la crida, aquells que ho estiguin assumiran
el valor per defecte dins la funci6. Qualsevol de les z podem ser _ , en
aquest cas el resultat d’aquesta z no es retorna. Per exemple en la funcio6
Valuation(x,p) podem fer varies crides segons ens interessi 'exponent t i/o

el factor senar s tal que n = 2 - s:

t,s:= Valuation(n,2);
t,_:= Valuation(n,2);
_,s:= Valuation(n,2);

Els procediments sén com les funcions pero sense valors de retorn. A més
els parametres poden ser referéncies %, les quals permeten retornar resultats

mitjancant els arguments.

La definici6 del procediment és la segiient:

f:= procedure( [“1x1, ..., [Tlxn : yl:=exprl, ... )
local wil, ..., ws;
statements;

end procedure;

La crida a procediment és:
fC [“1x1, ..., [TIxn : yl:=exprl, ... );

Per exemple el procediment UpdateHadamardDatabase( R,S : parameters)
modifica el registre R que conté la informaci6 de la base de dades amb les
noves matrius de S. Aquest register R esta en un format no descrit i només

és manipulable per referéncia en les poques funcions que actualitzant la base
de dades.
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Les funcions i els procediments també es poden declarar d’aquesta altre

manera:

function f(x1, ..., xn : yl:=exprl, ... )
end function;
procedure f( [“]1x1, ..., [“]xn : yl:=exprl, ... )

end function;

La tunica diferéncia respecte la primera forma rau en la recursivitat; doncs en
aquesta segona forma de declarar, el nom de la funci6 o procediment forma

part de la sintaxi, i aix0 li permet cridar-se a si mateix pel seu propi nom.

Les funcions i procediments recursius es defineixen de tal manera que:

e Si la funci6 o procediment esta declarat de la segona forma, les refe-
réncies a la funci6é o procediment dintre del seu propi cos es poden fer

amb el propi nom.

e Sino, les referéncies a la funcié o procediment dintre del seu propi cos

es fan amb només $$.

e Si, per contra, es vol per claredat que la referéncia a la funcié o pro-
cediment hi sigui, aleshores caldra posar la comanda forward f abans

de la definici6 de la funcié o procediment.

4.2.2 Creaci6 d’un package en MAGMA

Un paquet o package consisteix en varis fitxers .m que defineixen funcions i

procediments, no intrinseques e intrinseques.

A partir d’ara, en aquesta subseccid, ens referim a les funcions i proce-
diments intrinsics com tan sols intrinsics. I a les funcions i procediments no

intrinsics com només no intrinsics.
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Un paquet doncs disposa de intrinsics visibles per a I'usuari, i no intrinsics
que sOn necessaris per executar-los pero als quals 'usuari no pot accedir.

Ara bé, els intrinsics requereixen a més:

e La especificacio de tipus dels parametres d’entrada i sortida (la signa-

tura), per prevenir la sobrecarrega de identificadors en els paquets.

e Uns breus comentaris explicatius del intrinsic.

Hi han dos tipus de intrinsics: els ja contruits o de sistema que contenen

les funcions del kernel C, i les definits per 'usuari.

La definici6 dels intrinsics requereixen doncs d’una sintaxi especial. Un
cop s’ha decidit quines seran les funcions o procediments intrinsics, s’han de

modificar de la segiient manera:

intrinsic nom(llista-arguments) [-> llista retorn]
{Comentaris de la funci\’{o}}
sentencies;

end intrinsic;
on la llista d’arguments ha de ser:
argl::tipus,arg2::tipus,...,argn::tipus

Aixi doncs, ja no és necessari realitzar el control del tipus dels parametres al
codi. Si els parametres, pero, han de complir alguna altra restriccio, aquesta

s’ha d’especificar utilitzant les segiients comandes:

e require condicié: print_args;
On a condicid s’especifica el tipus de restriccié que s’ha d’aplicar i a
print_args el text que s’imprimira en cas de no complir-se la restriccio,
un exemple seria:

require IsHadamard(H): la matriu H no és Hadamard;

e requirerange v, L, U;
On v és la variable de tipus sencer i [ L, U ] és el rang al qual han

de pertanyer els valors d’aquesta variable.
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e requirege v, L;

On v és també de tipus sencer i ha de ser més gran o igual que L.

Tenim les segiients comandes per tal de treballar amb els fitxers un cop

modificats i escrits en format package:

e Attach (“‘fitxer.m”)
Aquesta comanda carrega el fitxer (és la comanda equivalent al load),

el precompila i en genera dos de nous d’extensi6 .dat i .sig:

— fitxer.dat que conté el codi compilat.

— fitxer.sig que conté la signatura dels intrinsics, la informaci6

d’aquest fitxer es guarda en una taula de signatures.

Per tal que, finalment, aquest packet es converteix-hi en una llibreria
interna hem d’agafar el fitxer.sigiel fitxer.m i afegir-los al direc-
tori que abans hem explicat, amb la resta de signatures de queé disposa
el MAGMA. Els canvis en el fitxer .m es detecten automaticament i els

seus corresponents fitxers .sig i .dat son actualitzats.

e Detach (“‘“fitxer.m’’)

Aquesta comanda serveix per deixar d’utilitzar un package.

e freeze
Aquesta comanda afegida al principi d’'un fitxer evita que aquest es
compilli quan es fa un Attach, per tant els canvis que faci al fitxer .m

no afectaran als seus homolegs precompilats.

L’avantatge que ens proporciona el package és que podem treballar amb

les funcions i procediments de la llibreria com si fossin propies del MAGMA.



40 CAPITOL 4. ENTORN DE DESENVOLUPAMENT

4.3 Funcions del MAGMA

En aquesta secci6 es veuran les funcions per treballar amb matrius Hadamard

que ja estan definides en MAGMA i que hem utilitzat en aquest projecte. !

IsHadamard (H) |

Aquesta funcié ha estat molt utilitzada per tal de comprovar si
I’entrada era realment una matriu Hadamard, en aquest cas re-

tornara true.

HadamardNormalize (H) ‘

Aquesta funcié ens normalitza la matriu Hadamard que li pas-
sem. Es a dir, ens retorna una matriu normalitzada equivalent a
H. Aix0 és molt 1til ja que si treballem amb només matrius nor-

malitzades s6n moltes les matrius equivalents que es descarten.

HadamardCanonicalForm(H) ‘

Aquesta funcié, donada una matriu de Hadamard H, retorna una
d’equivalent H’ juntament amb les matrius de transformacio X
iY tal que H = XHY. H’ és canonica en el sentit que totes
les matrius de Hadamard equivalents a H generaran la mateixa

matriu H'.

HadamardInvariant (H) ‘

Aquesta funcié és la que ens retorna el 4-profile d’'una matriu
Hadamard, el 4-profile és una seqiiéncia de sencers calculats a

partir de les files de la matriu 2. Donat que si dos matrius no tenen

!Per a més informacio6 [2].
2Per més detalls 2.4.
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el mateix 4-profile, no sén equivalents; ha estat molt utilitzada
per tal de trobar noves matrius no equivalents que no estiguessin

a la base de dades.

IsHadamardEquivalent (H, J : parameters)

Aquesta funcié ens retorna si dues matrius sén equivalents, en
aquest cas retornara true. En cas de cridar-la amb el parametre
“nauty”, que és el valor per defecte; llavors, si les matrius son

equivalents, retorna també les matrius de transformacio X i Y
tal que J = XHY.

HadamardMatrixToInteger (H)

Aquesta funcid ens retorna un sencer que codifica els valors de la
matriu Hadamard d’una forma més compacte, per tal d’estalviar

temps en el tractament d’aquestes matrius.

HadamardMatrixFromInteger (X,n)

Aquesta funci6, que la inversa de HadamardMatrixToInteger (),

ens retorna la matriu Hadamard d’ordre n obtinguda del sencer
X.

HadamardDatabase () ‘

Aquesta funcié ens permet recuperar totes les matrius Hadamard
de la primera base de dades que té actualment el MAGMA, doncs
retorna un apuntador en aquesta que s’usa com a primer para-
metre en les funcions d’obtencié dels nombres, ordres i matrius
d’aquesta base de dades. Aquesta primera base de dades inclou

totes les matrius inequivalents fins 'ordre 28, i alguns exemples

41
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de tots els altres ordres fins el 256; els representants son canonics
i ordenats lexicograficament.

La segona base de dades de matrius Hadamard que té el MAG-
MA és la skew-symmetric, 'apuntador de la qual obtenim amb
la funci6 SkewHadamardDatabase(), perd que no séon del nostre

interés en aquest treball.

’MatriX(D, n, k)‘

Aquesta funci6 retorna de la base de dades D, la matriu k-éssima
d’ordre n. Permet recuperar qualsevol matriu Hadamard de la

base de dades individualment.

Matrices(D, n)

Aquesta funci6 ens retorna una llista amb totes les matrius de

mida n que estiguin a la base de dades D.

DegreeRange (D)

Aquesta funci6 retorna el interval dels ordres de les matrius Ha-
damard de la base de dades D. Es a dir, el més petit i el gran

més ordre existent a la base de dades.

Aquesta funci6 ens retorna una llista amb els ordres de les matrius
Hadamard de la base de dades D, com a minim ha d’existir una

per cada ordre a la base de dades.
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NumberOfMatrices (D, n) \

Aquesta funcio retorna el nombre de matrius d’ordre n disponibles
a la base de dades D.

Donat que la base de dades de les matrius de Hadamard en el MAGMA
és notablement incompleta com ja hem comentat anteriorment, i per tal de
crear noves versions de la base de dades incloent matrius que actualment no
hi son sense haver d’esperar les noves versions oficials de la base de dades;
utilitzarem aquest conjunt de funcions per ampliar la base de dades de ma-
trius Hadamard.

Aquestes funcions usen un registre de format no descrit, aixi nomeés sera

manipulable per aquestes.

HadamardDatabaseInformation(D : parameters)

Aquesta funci6 extrau la informacié de la base de dades apunta-
da per D, a una format intern per tal de ser utilitzat pels altres
intrinsics. El parametre canonical quan és true, que és el valor
per defecte, indica que les matrius guardades a la base de dades
estan en forma canonica.

Aquest parametre també controla si la base de dades creada les
guardara en la forma canonica o en la forma original. Si vols
recuperar les matrius des d’una base de dades canonica perd
emmagatzemar-la en una forma no canonica, s’hauria de crear
primer la base de dades no canonica - ja sia usant aquest in-
trinsic o HadamardDatabaseInformationEmpty amb el parame-
tre canonical posat a false, i després afegir les matrius de la
base de dades amb UpdateHadamardDatabase i canonical posat

a true.
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HadamardDatabaseInformationEmpty(: parameters)

Aquesta funcié retorna la informacié en format intern correspo-
nent a una base de dades buida. El parametre canonical serveix
per indicar si les matrius en la base de dades seran guardades en
la forma canénica o no.

Aix0 permet la creacié d’una nova base de dades , o un tro¢ d’una

d’existent sense incloure-la tota sencera.

UpdateHadamardDatabase (R, S : parameters)

Aquesta funci6 actualitza el registre R que conté la informacio de
la base de dades amb la de les matrius de S. Aquestes matrius
seran afegides només si son inequivalents amb les que ja hi son.
Aix0 requereix trobar les formes canoniques, la qual cosa pot ser
costos. Per aixo, si sabem que les matrius de S ja estan en forma
canonica aleshores el parametre canonical hauria de ser posat a
true.

Si de les matrius del mateix ordre que les que ja hi son en R,
no sabem que siguin canoniques, llavors caldra també calcular
les seves formes canoniques, que un altre vegada pot arribar a
durar un temps significatiu. Per tractar amb aixo hem de veure

la funci6é WriteRawHadamardData.

WriteHadamardDatabase (S, R)

Aquesta funcio crea els fitxers de la base de dades name.dat i
name.ind del registre de dades d’informaci6 de la base de dades
R, on name es pren del string S. El registre de dades es passa per
referéncia perqueé pot ser necessari calcular les formes canoniques,

aixi aquest calcul no es perd.
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WriteRawHadamardData(S, R) \

Aquesta guarda les dades de R al fitxer el nom del qual ve donat
pel string S. Un cop carregat, aquest fitxer definird una tnica
variable de dades que esdevindra idéntica a R. Aix0 és desitjable
per les bases de dades no canoniques, ja que les formes canoniques
no han de ser recalculades.

Aquesta rutina destrueix els continguts originals, si existien, del
fitxer.

SetVerbose (‘‘HadamardDB’’, v) ‘

Aquest procediment canvia el nivell de impressié “verbose” per les
rutines d’actualitzacié de la base de dades Hadamard. EI valor
“verbose” v hauria de ser un sencer en el interval de 0 a 3. Aix0
pot suministra indicacions segures de progrés quan un llarg procés

d’actualitzacio s’esta efectuant.

4.4 Regles per executar grans calculs.

Dintre d’un entorn operatiu Linuz, que és en el que hem treballat, les regles

son les segiients:

1. Reduir la prioritat, realitzant els calculs amb la prioritat de programa-
ci6 més baixa no hauria de tenir un impacte significatiu en el temps
d’execucio, sempre que no s’estigui executant un altre procés amb pri-
oritat més alta a la mateixa estaci6 de treball. La prioritat en la plani-
ficacié de processos va de -20 a 19. La més baixa o lenta és 19. Haurem
d’usar la comanda nice -n 19 COMMAND.

2. Incloure punts de control en el codi (checkpoints) : D’aquesta manera
podrem fer un seguiment del procés, detectarem “bucles”; i si es reinicia
la maquina podrem reprendre el calcul potser des del punt de tall i amb

la minima pérdua de dades.
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3. Apuntar-se, si existeix, a la llista de usuaris els processos dels quals no
es poden matar (DONTKILL LIST) en cada una de les estacions de

treball on penses realitzar els teus calculs.

4. Minimitzar el trafic de xarxa fent directament les operacions I1/O al
disc local, doncs 'accés local és 10 vegades més rapid que el emmagat-

zemament en xarxa.

5. Executar la tasca no interactivament, ja que en alguns entorns interac-
tius, al gestionar-se la memoria com una pila, pot fragmentar-se en el

temps.

6. Planificar la tasca per que s’executi tard quan la carrega del sistema és

baixa.

7. Utilitzar la comanda “NOHUP” per executar la tasca, doncs el procés

continuara encara que es talli la connexio.

8. Executar la tasca en background, adregant els canals d’errors i d’output

a fitxers del disc dur local
9. Utilitzar una maquina rapida.
Amb aquestes regles la tasca es podria llancar d’aquesta manera:

nohup nice -n 19 magma <infile >& outfile &

e En el infile tindrem la carrega dels fitxers .m necessaris per la crida

a la funci6 o procediment amb els valors escollits dels parametres.

e En el outfile es guarden els checkpoints i els possibles errors de la

funci6 o procediment i de la tasca.
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Desenvolupament del projecte

Mostrem el codi implementat, els criteris que hem adoptat durant la im-
plementaci6 i les dificultats que hem trobat. Les funcions que no tenen el
codi, tan sols la descripcié en anglés tal com esta en el manual, sén les que
han estat implementades per les dos projectistes anteriors |10, 11] i no s’han

modificat.

5.1 Codi extern

5.1.1 Matrius Hadamard 1 conversidé de codis

HadamardMatrixToBinary (H) ‘

[ kokok ok koot ok ok ok skokok ok sk oksk ook sk ok ook ok sk ook sk ok skt sk ok ok sk kb ok ok sk ook ok ok ok sk ook ok ok ok
HadamardMatrixToBinary: AlgMatElt -> AlgMatElt

Given a Hadamard matrix H, returns the corresponding Hadamard binary matrix.
This function is the inverse of HadamardBinaryToMatrix().

**********************************************************************/

HadamardBinaryToMatrix (H)

/s ks ke sk ks ks ok ke sk s ke sk sk ks ok sk sk o s ke o sk sk ke ok sk s ok s ke sk sk ke ok sk s ok s ke o sk ks ko ok ok
HadamardBinaryToMatrix: AlgMatElt -> AlgMatElt

Given a binary Hadamard matrix H, returns the corresponding Hadamard matrix.
This function is the inverse of HadamardMatrixToBinary().

**********************************************************************/

47
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HadamardMatrixToCode (H) |

[k ook sk ok ook ok ook ok ok sk ok sk sk ok ok sk ok ok sk koo ook ok stk ok ok sk ook ok ko ko ok ok ko sk ok ok ok
HadamardMatrixToCode : AlgMatElt -> [ModTupFldElt]

Given a Hadamard matrix H, returns the corresponding

Hadamard code. The code is represented as a list of binary vectors

of length n. This function is the inverse of HadamardCodeToMatrix().

**********************************************************************/

HadamardCodeToMatrix (C) |

[k ook kok ook ok ook ook ok sk ok ko sk ok ok sk ok ok sk ko ook ok stk sk ok sk ok ko ko sk ok sk ok ok ok
HadamardCodeToMatrix: [ModTupFldElt] -> AlgMatElt

Given a Hadamard code represented as a list of binary vectors of length n,
returns the corresponding normalized Hadamard matrix of degree n. This function
is the inverse of HadamardMatrixToCode().

**********************************************************************/

IsHadamardCode (C) |
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IsHadamardCode: [ModTupFldElt] -> BoolElt
Returns true if and only if C is a Hadamard code.

**********************************************************************/

5.1.2 Invariants de codis Hadamard

Les primeres funcions, que son les que tenen com a tnic parametre d’entrada
el codi C, representat com una llista de vectors binaris; son generals en el
sentit que podem servir per a qualsevol codi binari, no cal que sigui un co-
di binari Hadamard. Aixo és perqué implementen i utilitzen dos propietats
estructurals de ’algebra lineal: el rang i la dimensi6 del nucli. Estem par-
lant de les funcions: RankZ2(C), KernelZ2(C), Dimension0fKernelZ2(C) i

InvariantsRankKernelZ2(C).
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RankZ2(C)
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RankZ2: [ModTupFldElt] -> RngIntElt

Given a code C represented as a list of binary vectors of length n,
returns its rank. The rank of a code C is the dimension of the linear
span of C, <C>, over GF(2).

**********************************************************************/

KernelZ2(C) |

Aquesta nova versié de KernelZ2(C) és més rapida i requereix menys memo-
ria perqué retorna el nucli com a subespai vectorial. Les proves de rendiment
d’aquesta funcié ho certifiquen. Efectivament, donat que per definicié el nucli
és un espai vectorial; podem aprofitar la representacié interna i les funcions
de que disposa el MAGMA per treballar amb espais vectorials en el modul
d’algebra lineal.

Comentem de passada que aquesta funcié sempre ha suposat que el vector
tot zeros forma part del codi C, dit d’una altre manera, estem suposant que

el nucli esta inclos en el codi. Aixo implica dues coses importants:

1. La construcci6é del nucli es redueix en aquest cas a buscar possibles

vectors en el propi codi tal que ¢+ C = C.

2. Si dona la casualitat que la llista de vectors binaris que formen el codi
C' també té estructura d’espai vectorial, llavors el codi C, el nucli K(C')

i el generat del codi (C) coincideixen.

Per aix0 mirem, primer de tot, si la llista de vectors binaris que formen
el codi C és un subespai vectorial. Si és aixi, el retornen transformat com
subespai vectorial i ja hem acabat. La manera de mirar-ho és comprovant
que el codi com a conjunt tindria el mateix nombre d’elements que el seu
propi subespai vectorial generat.

Construim el primer nucli a partir del vector tot zeros que hauria per
hipotesi d’estar inclos en el codi. Acte seguit, si el vector tot uns pertany al

codi, llavors mirem si també pertany al nucli comprovant que 1 + C = C.
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Si el vector tot uns és del nucli quedaran inclosos automaticament tots els
complementaris.

Engrandim el nucli, afegint més vectors c de C si compleixen que c+C =
C. Per aixo sumem cada vector del codi, que no estigui ja en el nucli per
combinacions lineals anteriors, amb cadascun dels vectors del propi codi.
A cada nou vector del nucli trobat, reconstruim el subespai vectorial nucli
combinant-lo linealment amb el subespai vectorial del nou vector del nucli.

Totes les funcions que criden a la funcié KernelZ2(C) les haurem de
revisar perqué ara rebran un espai vectorial enlloc d’una subllista de vectors

binaris del codi, que és el que retornava la versié anterior.
/****************************************************************************

KernelZ2: [ModTupF1ldElt] -> ModTupFld
Given a code C represented as a list of binary vectors of length n and such
that the zero vector belongs to C, returns its kernel as a VectorSubspace.

Then the kernel of C are the codewords v such that v+C=C.

R I O I ™
KernelZ2:=function (C)

if ((Type(C) eq SeqEnum) and (ElementType(C) eq ModTupF1ldElt)) then
if (VectorSpace(GF(2),Degree(C[11))!0 in C) then
n:=Degree(C[1]); V:=VectorSpace(GF(2),n);

// If C is a subspace then return it as the kernel
if (#Set(C) eq 2~ (Dimension(sub<V|C>))) then
return sub<V|C>;

end if;

// first kernel is the vectorsubspace with only Zero and maybe the One vector
ZeroVector:=V!0; OneVector:=V![1:1i in [1..n]]; numElt:=#(C); isKernel:= true;
if (OneVector in C) then
for j in [1..numElt] do
aux:=0neVector+C[j];
isKernel:=aux in C;
if (not isKernel) then
break;
end if;
end for;
if (isKernel) then

kernel:=sub<V| [ZeroVector,OneVector]>;
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else
kernel:=sub<V|ZeroVector>;
end if;
else
kernel:=sub<V|ZeroVector>;

end if;

// add the others possible vectors of C for the kernel
for i in [1..numElt] do
if C[i] notin kernel then
isKernel:= true;
for j in [1..numElt] do
if C[j] notin kernel then
aux:=C[1]+C[j];
isKernel:=aux in C;
if (not isKernel) then
break;
end if;
end if;
end for;
if (isKernel) then
kernel:=sub<V| [kernel,sub<V|C[il>]1>; // posar generadors
end if;
end if;
end for;
else
error "Runtime error in ’KernelZ2’: ZeroVector not in code";
end if;
else
error "Runtime error in ’KernelZ2’: Argument 1 is not a code";
end if;
return kernel;

end function;

DimensionOfKernelZ2(C) ‘

S’ha modificat aquesta funci6 Dimension0fKernelZ2(C) com a conseqiién-
cia d’haver modificat la funci6 KernelZ2(C). Ja que ara simplement aquesta
funci6 avalua directament la dimensi6 de I’espai vectorial retornat per la fun-
ci6 KernelZ2(C), mentre que abans havia de calcular préviament el subespai

vectorial generat de la llista nucli per trobar la dimensi6.
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/**********************************************************************

DimensionOfKernelZ2: [ModTupFldElt] -> RnglIntElt
Given a code C represented as a list of binary vectors of length n,
returns the dimension of its kernel. The code C must contain the zero

vector to assure that its kernel is a linear subspace of C over GF(2).
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DimensionOfKernelZ2:=function (C)

//Returns the dimension of kernel of this code

if ((Type(C)eq SeqEnum) and (ElementType(C) eq ModTupFldElt)) then
return Dimension(KernelZ2(C));

else
error "Runtime error in ’Dimension0fKernelZ2’:
Argument 1 is not a code";

end if;

end function;

InvariantsRankKerne1Z2(C) |
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InvariantsRankKernelZ2: [ModTupFldElt] -> [RngIntElt]

Given a code C represented as a list of binary vectors of length n,
returns its rank and dimension of the kernel.

***********************************************************************/

HadamardThreeInvariants(H)‘
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HadamardThreeInvariants: AlgMatElt -> [RngIntElt]

Given a Hadamard matrix H, returns the invariants 4-profile, rank and
dimension of the kernel.

**********************************************************************/
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ExistsHadamardRankKernel (n,r,k) \
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ExistsHadamardRankKernel: RngIntElt,RngIntElt,RngIntElt -> BoolElt
Given positive integers n, r and k, returns true if there exists a
Hadamard code (or equivalently a Hadamard matrix) of length n with
rank r and kernel of dimension k.

When n is not a power of two, returns also false if we do not know
whether or not there exists a Hadamard code with these parameters.

**********************************************************************/

Invariant SHDE

Aquest invariant proposat per Kai-Tai Fang i Gennian Ge, es basa en una
propietat anomenada Enumerador de la Distancia Simétrica de Hamming
(“Symmetric Hamming Distance Enumerator” en anglés i “SHDE” com acro-
nim). De fet la invariant és la distribuci6 de freqiiéncies dels valors d’aquesta
propietat per totes les projeccions de k£ columnes de n d’una matriu de Ha-

damard H d’ordre n i per un niimero a positiu. Les funcions publiques son:
e HadamardInvariantSHDE(H:a:=3.1415926,k:=4)
e HadamardInequivalentMatricesSHDE(H1,H2:a:=3.1415926)
e HadamardClassificationSHDE(n:a:=3.1415926,k:=4,1r:="" file:="")

Totes elles criden a la funci6 auxiliar principal SHDEDistribution(a,k,H),

que a la vegada crida a las seves funcions auxiliars:
e SHDkDistribution(kcol,H)
e SHDkEnumerator (a,kcol,H)

e nextComb(n,k,c)
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SHDkDistribution (kcol,H) \

Sigui kcol una llista concreta de columnes i notem & com el nombre de colum-
nes de la llista (k = #kcol), aleshores aquesta funci6 calcula la distribucio
de freqiiéncies de la Distancia Simétrica de Hamming d’una matriu de Hada-
mard H d’ordre n per les k columnes de n guardada en la llista kcol. Retorna
doncs un vector de freqiiéncies de k/2 + 1 components, perqué la Distancia
Simétrica de Hamming té un interval de valors que va de 0 fins a k/2, i cada
component és el nombre de parelles de files distintes de la matriu de Hada-
mard amb el mateix valor de Distancia Simétrica de Hamming sobre aquesta
llista kcol de k columnes.

Si cridem a la funcié amb la llista tinica de totes les n columnes, kcol :=
[1..n] i k = n, aleshores calcula la distribuci6 de freqiiéncies de la Distancia
Simetrica de Hamming de la matriu Hadamard. El vector de freqiiéncies
retornat, anomenat distribucid de distancia de H, té n/2 + 1 components
perqué la Distancia Simétrica de Hamming té un interval de 0 a n/2 (Per
més detalls veure la seccio 2.5 del capitol 2).

En Particle dels xinesos Kai-Tai Fang i Gennian Ge [5], per simplificar el
calcul, es relaciona la Distancia Simeétrica de Hamming amb el valor absolut
del producte escalar de les files en les components que pertanyen a la llista
kcol.

/**********************************************************************************

SHDkDistribution: [RngIntElt],AlgMatElt -> [RngIntElt]

Given a list of columns kcol (k=\#kcol) and given a Hadamard matrix H, returns

the Symmetric Hamming Distance distribution of H over the k-dimensional column
projection, (SO(H),...,Sk/2(H)), where Si(H) is the number of pairs of two distinct
rows whose Symmetric Hamming Distance over the given k-dimensional column projection

is 1i.
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SHDkDistribution:=function(kcol,H)
k:=#kcol; n:=Number0fColumns(H);
S:=[0:d in [0..(k div 2)1];
for i:=1 to n-1 do

for j:=i+l to n do
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// Absolute value of the inner product |<Uk,Vk>|
UkVk:=0;for 1 in kcol do UkVk:=UkVk+(H[i][1]1*H[j]1[1]);end for;UkVk:=Abs(UkVk);
// symmetric distance d in terms of the inner product
d:=(k-UkVk) div 2;
S[d+1]:=S[d+1]1+1;
end for;
end for;
return S;

end function;

SHDkEnumerator (a,kcol,H) ‘

Sigui kcol una llista concreta de columnes i notem k& com el nombre de colum-
nes de la llista (k = #kcol), aleshores aquesta funcié calcula I'Enumerador
de la Distancia Simétrica de Hamming d’una matriu de Hadamard H d’ordre
n per les k columnes de n guardada en la llista kcol.

Aquest Enumerador de la Distancia Simétrica de Hamming és un niimero,
que s’obté ponderant les components del vector distribuci6é de freqiiéncies de
la Distancia Simétrica de Hamming per la mateixa projeccié de k columnes,

k=i on i pren els diferents

amb les poténcies d’'un nombre positiu a, a’ i a
valors de la Distancia Simétrica de Hamming. En aquest article [5], un valor
aproximat del nombre pi, 3.1415926, es assignat al parametre a.

Si cridem a la funcié amb la llista tinica de totes les n columnes, kcol :=
[1..n] i k = n, aleshores calcula 'Enumerador de la Distancia Simétrica de
Hamming de la matriu Hadamard, i el nimero obtingut s’anomena I’'enume-

rador de distancia de H.

/**********************************************************************

SHDkEnumerator: RngIntElt, [RngIntElt],AlgMatElt -> FldReElt

Given a ponderator positive number a, a list of columns kcol (k=\#kcol)
and a Hadamard matrix H, returns the Symmetric Hamming Distance Enumerator
of H over the k-dimensional column projection:

Bak (H)=Sum(i=0..k/2) Si(H)(a~(i)+a~(k-1i)), where Si(H) is the Symmetric
Hamming Distance distribution of H over the k-dimensional column

projection.

**********************************************************************/
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SHDkEnumerator:=function(a,kcol,H)

// k-column distance enumerator for a given k-column projection
k:=#kcol; S:=SHDkDistribution(kcol,H);
Bak:=0;
for d:=0 to (k div 2) do
Bak:=Bak+(S[d+11*((a~(d))+(a~(k-d))));
end for;
return Bak;

end function;

nextComb(n,k,c) ‘

Si considerem les combinacions de n elements agafats de k£ en k, aquesta
funci6 retorna la combinacié segiient a la combinaci6 entrada c seguint I'ordre
creixent. Entrant-li la llista buida retorna la primera combinacid, i entrant-li

la dltima retorna la llista buida.
Mostrarem un exemple:

nextComb(4,2,[1);

1, 2]
nextComb(4,2,[ 1, 2 1);
1, 31
nextComb(4,2,[ 3, 4 1);

vV /P VvV /& Vv

/****************************************************************************************

nextComb: RngIntElt,RngIntElt, [RngIntElt] -> [RngIntElt]
Given positive integers n, k (k<=n) and a list of an especific k-combination of n elements
c, returns the next combination. If ¢ is an empty list, returns the first combination,

and if ¢ is the last combination, returns the empty list.

****************************************************************************************/

nextComb:=function(n,k,c)
if IsEmpty(c) then
return [i:i in [1..k]];
elif (k eq 1) then
if (c[k] ge 1) and (c[k] le n-1) then
return [c[k]+1];
else
return [];

end if;
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else
next:=false;
while (not next) do
c[k]:=c[k]+1;
if (c[k] le n) then
next:=true;
else
npc:=$$(n,k-1,Prune(c));
if (IsEmpty(npc)) then
c:=[1;
next:=true;
else
c:=npc cat [npc[#npcl];
end if;
end if;
end while;
return c;
end if;

end function;

SHDEDistribution(a,k,H)

Aquesta funcio calcula la distribucié de la part entera de I’Enumerador de la
Distancia Simétrica de Hamming, ponderada amb el nombre positiu a, d’'una
matriu de Hadamard H d’ordre n per totes les projeccions de k columnes.
Segons 'article [5], aquesta distribuci6 és manté invariant a les permutacions
i negacions de files o columnes d’'una matriu de Hadamard.

Al realitzar el calcul per totes les colleccions de k columnes de n, obtenim
molts valors de la part entera de I’Enumerador, alguns valors estan repetits
i per tant caldra comptabilitzar-los en forma de distribuci6 de freqiiéncies.

La funci6 retorna doncs una llista de parelles. Els primers elements de
les parelles son els diferents valors de la part entera de 'Enumerador de
la Distancia Simétrica de Hamming de la matriu de Hadamard per totes
les projeccions de k columnes, i els segons elements de les parelles son les
respectives freqiiéncies d’aquests valors.

En el programa implementat, per cada una de les combinacions de k
columnes de n, calculem la part entera de I’Enumerador de la Distancia

Simeétrica de Hamming i incrementem en un el comptador del seu valor. I
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si és el primer aparegut d’aquest valor, creem la parella [valor, comptador|
amb el comptador a un.

Es necessari la utilitzacio de la funcié auxiliar nextComb(n,k,c) que gene-
ra la segiient combinaci6 a partir de I’anterior, d’aquesta manera, iterant-la,
ens dona una a una totes les combinacions sense esgotar la memoria. Aix0 és
el que passaria si les volguéssim guardar en local ' amb la comanda MAGMA
Subsets(Set([1..n]),k) per un n relativament gran respecte k. Pensem
que, per exemple, el nimero de colleccions diferents de 8 columnes d’una
matriu de Hadamard d’ordre 32 és 10.518.300. Ara bé, és més rapid llegir
la segiient combinaci6 d'una llista de combinacions ja construida, sempre
que es pugui guardar en local, que cridar cada cop a una funcié auxiliar per
generar-la.

Adoptem doncs el criteri d’estalviar memoria, millor dit de salvar-nos

d’un exhauriment de memoria, a canvi d’augmentar el temps de calcul.

/**************************************************************************************

SHDEDistribution: AlgMatElt,RngIntElt,RngIntElt -> [[RngIntElt,RngIntElt]]
Given a ponderator positive number a, a positive integer k and a Hadamard matrix H
returns the values of the integer part of the Symmetric Hamming Distance Enumerator of

H over all k-dimensional columns projections and their frequencies.

**************************************************************************************/

SHDEDistribution:=function(a,k,H)
n:=Number0fColumns (H) ;
FiBak:=[];
kcol:=nextComb(n,k, [1);
while (kcol ne []) do
// integer part of the k-column distance enumerator for a given k-column projection
iBak:=Floor (SHDkEnumerator(a,kcol,H));
listed:=false;
for i in [1..#FiBak] do
if (FiBak[i][1] eq iBak) then
FiBak([i] [2] :=FiBak[i] [2]+1;
listed:=true;
break;
end if;

end for;

!Per local volem dir en la particié de memoria assignada al procés.
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if (not listed) then
Append (“FiBak, [iBak,1]);
end if;
kcol:=nextComb(n,k,kcol);
end while;
Sort ("FiBak);
return FiBak;

end function;

HadamardInvariantSHDE(H : a:=3.1415926 ,k:=4)

Aquesta funcié retorna només les freqiiéncies de la distribucié de la part
entera de 'Enumerador de la Distancia Simétrica de Hamming, ponderada
amb el nombre positiu a, d'una matriu de Hadamard H d’ordre n per totes
les projeccions de k columnes.

Després de comprovar la correcié dels parametres d’entrada, crida a la
funci6 SHDEDistribution:=function(a,k,H) i s’agafa la segona part de les
llistes de parelles [valor,comptador]. Es a dir, ens retorna les freqiiéncies de
la distribucié de I’Enumerador de la Distancia Simeétrica de Hamming d’una
matriu de Hadamard H d’ordre n per totes les projeccions de k& columnes.

Retorna el mateix tipus de sortida que la funcié HadamardInvariant (H)
que calcula la invariant 4-profile, és a dir, una llista de freqiiéncies ordenada
de forma creixent pel valor freqiiénciat.

Comprovarem més endavant que la funci6 HadamardInvariantSHDE(H: a,k),
per a = 3.1415926 i k = 4, dona les mateixes freqiiéncies que la funci6
HadamardInvariant (H) del 4-profile.

Assignem el niimeros 3.1415926 i 4 com valors per defecte dels parametres
d’entrada a i k respectivament.
/**************************************************************************
HadamardInvariantSHDE: AlgMatElt: FldReElt, RngIntElt -> [RngIntElt]

Given a Hadamard matrix H, a ponderator positive number a and a positive
integer k, returns only the frequencies of the Symmetric Hamming Distance
Enumerator distribution of H over all k-dimensional columns projections.
Invariant proposed by Kai-Tai Fang and Gennian Ge. It defaults a to 3.1415926

and k to 4.

**************************************************************************/
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HadamardInvariantSHDE:=function(H : a:=3.1415926 ,k:=4)
if ((Type(a) eq F1dReElt) and (a gt 0)) then
if ((Type(k) eq RngIntElt) and (k gt 0)) then
if ((Type(H) eq AlgMatElt) and IsHadamard(H)) then
if (k le Number0fColumns(H)) then
FiBak:=SHDEDistribution(a,k,H);
FG:=[]; for i:=1 to #FiBak do Append(“FG,FiBak[i][2]); end for;
return FG;
else
error "Runtime error in ’HadamardInvariantSHDE’:
Argument 3 is greater than the number of columns of Hadamard matrix";
end if;
else
error "Runtime error in ’HadamardInvariantSHDE’:
Argument 1 is not a Hadamard matrix";
end if;
else
error "Runtime error in ’HadamardInvariantSHDE’:
Argument 3 is not greater than 0";
end if;
else
error "Runtime error in ’HadamardInvariantSHDE’:
Argument 2 is not greater than 0";
end if;

end function;

HadamardInequivalentMatricesSHDE(H1,H2 : a:=3.1415926)

Aquesta funcié implementa ['algorisme que els xinesos Kai-Tai Fang i
Gennian Ge relaten en el seu article |5|, basant-se en la seva conclusio de
que dos matrius de Hadamard H1 i H2 d’ordre n sén inequivalents quan
existeix una k per la qual no tenen la mateixa distribucié de la part entera
de I’Enumerador de la Distancia Simétrica de Hamming, ponderada amb el
mateix nombre positiu a.

Comencant per £ = 4, la funcié repeteix el calcul de la distribucio de
la part entera de ’'Enumerador de la Distancia Simétrica de Hamming per
les dos matrius, incrementant la k£ en 2 a cada repeticio, fins que deixen de

ser iguals o bé hem arribat al valor maxim de la k possible, k/2. En cas de
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que deixin de ser iguals per alguna £ sense d’haver sobrepassat el seu llindar,
sortim del bucle marcant la inequivaléncia, en cas contrari sortim sense saber
res de la inequivaléncia d’aquestes dues matrius per aquest algorisme.

La k s’incrementa en 2 a cada repeticio, perqueé el valor de la magnitud
en dos iteracions consecutives quasi té el mateix efecte a ’hora de distingir
la inequivaléncia de les matrius de Hadamard.

Per defecte assignem al parametre d’entrada a el valor 3.1415926.

/************************************************************************************

HadamardInequivalentMatricesSHDE: AlgMatElt, AlgMatElt: RngIntElt -> BoolElt

Given two Hadamard matrices Hl, H2 and a ponderator positive integer a, returns true
if they are inequivalent and false if is not possible to prove their inequivalence by
this method. It defaults a to 3.1415926.

************************************************************************************/

HadamardInequivalentMatricesSHDE:=function(H1,H2 : a:=3.1415926)
if ((Type(H1) eq AlgMatElt) and IsHadamard(H1)) then
if ((Type(H2) eq AlgMatElt) and IsHadamard(H2)) then
n:=Number0fColumns(H1);
if (n ne NumberOfColumns(H2)) then
if ((Type(a) eq F1ldReElt) and (a gt 0)) then
Inequivalence:=false; k:=2;
repeat
k:=k+2;
FBak1:=SHDEDistribution(a,k,H1);
FBak2:=SHDEDistribution(a,k,H2);
if (FBakl ne FBak2) then
Inequivalence:=true;
break;
end if;
until (k eq (n div 2));
return Inequivalence;
else
error "Runtime error in ’HadamardInequivalentMatricesSHDE’:
Argument 3 is not greater than 0";
end if;
else
error "Runtime error in ’HadamardInequivalentMatricesSHDE’:
different order of the Hadamard matrices";
end if;
else
error "Runtime error in ’HadamardInequivalentMatricesSHDE’:

Argument 2 is not a Hadamard matrix";



62 CAPITOL 5. DESENVOLUPAMENT DEL PROJECTE

end if;

else
error "Runtime error in ’HadamardInequivalentMatricesSHDE’:
Argument 1 is not a Hadamard matrix";

end if;

end function;

HadamardClassificationSHDE(n:a:=3.1415926,k:=4,1r:="" file:="")

Aquesta funcié classifica les matrius Hadamard d’ordre n de la base de dades
Hadamard ubicada en I'arrel de la llibreria [r segons la distribucio6 de la part
entera de 'Enumerador de la Distancia Simétrica de Hamming, ponderada
amb el mateix nombre positiu a, per totes les projeccions de k columnes.
Retorna la llista de les distribucions (valors de I’enumerador i freqiiéncies)
amb les matrius que donen la mateixa distribuci6. La llista també és guarda
en un fitxer amb nom per defecte HadClaSHDE<n>. Per defecte: a pren el
valor 3.1415926, k pren el valor 4 i [r I'arrel de la llibreria de la base de
dades Hadamard estandard del MAGMA.

La classificacio regeix quan el nombre d’elements de la llista és igual al
nombre de matrius d’ordre n que estem classificant, llavors cada distribucio

té una sola matriu amb aquest valor.

/*******************************************************************************************************

HadamardClassificationSHDE:RngIntElt:RngIntElt,RngIntElt,MonStgElt,MonStgElt->[[[[RngIntE1t]1]]]
Given an order n, a ponderator positive number a, a positive integer k, a library root lr and

a filename file, returns and saves in the file the list of the values of the integer part of

the Symmetric Hamming Distance Enumerator over all k-dimensional columns projections and their
frequencies of all the Hadamard matrices of order n from the hadamard database of the library
root. The classification is perfect when the number of elements of the list equals number of
Hadamard matrices. It defaults a to 3.1415926, k to 4, 1lr to the standard Magma HadamardDatabase
and file to HadClaSHDE<n>.

********************************************************************************************************/

HadamardClassificationSHDE:=function(n:a:=3.1415926,k:=4,1r:="" file:="")
if (1r eq "") then
D:=HadamardDatabase() ;
else

stdlibroot:=GetLibraryRoot();
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SetLibraryRoot(1lr);

D:=HadamardDatabase() ;

SetLibraryRoot (stdlibroot);
end if;

if (file eq "") then file:="HadClaSHDE" cat IntegerToString(n); end if;

// United list of |Bak| values for all the Hadamard matrices
NFiBak:=[];
for num:=1 to NumberOfMatrices(D,n) do
H:=Matrix(D,n,num);
FiBak:=SHDEDistribution(a,k,H);
listed:=false;
for i in [1..#NFiBak] do
if (NFiBak[i][1] eq FiBak) then
Append ("NFiBak[i] [2], [n,num]);
listed:=true;
break;
end if;
end for;
if (not listed) then
Append ("NFiBak, [FiBak, [[n,num]]]);
end if;
end for;
fprintf file,"n=%o a=%o k=%o 1lr=o\n",n,a,k,lr;
for i in [1..#NFiBak] do
fprintf file,"%o\n",NFiBak[i];
end for;
return NFiBak;

end function;

5.1.3 Construccions de les matrius de Hadamard

’HadamardKroneckerSylvester(t)‘

[ okok ok kokokok ok ok ok ook ok skokok ook sk ok sk ook ok skokok ook ok stk sk ok ok sk kb ook sk ook ok ok skokok ok ok ok
HadamardKroneckerSylvester: RngIntElt -> AlgMatElt

Given a positive integer t, returns the Hadamard-Sylvester matrix of
degree n=2"t.

**********************************************************************/
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HadamardKronecker(Hl,HQ)‘

[k ook sk ok ook ok ook ok ok sk ok sk sk ok ok sk ok ok sk koo ook ok stk ok ok sk ook ok ko ko ok ok ko sk ok ok ok
HadamardKronecker: AlgMatElt,AlgMatElt -> AlgMatElt

Given two Hadamard matrices Hl and H2 of degree n, returns a Hadamard
matrix of degree 2n. This matrix is constructed with the Kronecker
product S x [H1,H2], where S is the Hadamard-Sylvester matrix of degree 2.

**********************************************************************/

HadamardKroneckerPermutation(H1,H2,g)

/e kot s ke ok ks s ok s ke ok sk s ke ok sk s ok s ke o sk sk ke ok sk ks ok ek o sk ks ke ke sk ks ok ek sk ok s ok ok ke sk ok ok ek
HadamardKroneckerPermutation: AlgMatElt,AlgMatElt,GrpPermElt -> AlgMatElt
Given two Hadamard matrices Hl and H2 of degree n and a permutation g in
Sym(n), returns a Hadamard matrix of degree 2n. This matrix is
constructed with the Kronecker product S x [H1,g(H2)], where S is the
Hadamard-Sylvester matrix of degree 2 and g(H2) is H2 with the columns
permuted by g.

**********************************************************************/

SwitchCode(C,S,x)‘

[k ok skokokokokok s skok ok ok ko ok ook kb ko koo sskok o sk koo ook kb ko sk ook kb o ko ok
SwitchCode: [ModTupF1dElt], [ModTupF1dE1t] ,ModTupF1dE1lt -> [ModTupFldElt]
Given a code C represented as a list of binary vectors, a subset S of C
and a codeword x, returns a code where the codewords of S are
substituted by the binary vectors of S+x.

**********************************************************************/

FindPermutation(HQ,n)‘

3k sk sk sk ok ks s ok ok sk s ok sk s ok ok sk s sk sk s of sk sk sk ok sk ke sk sk sk ok sk s ok sk s o sk s sk sk sk s ok sk sk s ok sk ke sk sk s ok sk sk ok ok ok
FindPermutation: AlgMatElt, RngIntElt -> GrpPermElt

Given a matrix H2 and a number of columns returns the positions of the
columns that have to be permuted.

**********************************************************************/
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FindVectorNotInKernel(C,V,w) \

3K K k3 ok ok sk o o oK o o R K o o K sk ok ok ok o R K o o K 3K o ok oK o K oK ok R K o o K sk o ok ok o oK K ok o K 3K o ok ok o K ok ok o K oK ok K ok oK
FindVectorNotInKernel: [ModTupFldElt],ModTupFld,ModTupFld -> ModTupFldElt
Given a code C, a vector space V and a kernel returns a vector that is
not in the kermel.

**********************************************************************/

ListConstruction(n,d)

[ okk ok kokokok ook ok ook ok ook ook ok sk ok ook ok skokok ook ok sk ko sk ook ok skokok ok ok sk ok ok ok skokok ok ko ok
ListConstruction: RngIntElt,RngIntElt -> [RngIntElt]
Given n and d returns a binary list of length n with d divisioms.

**********************************************************************/

HadamardRankKernelNPower2(n,r,k)

[RERk ok Rk ok kR ok Kok ok ok okokok ok ok Kok ok ok Rk ok ok ok Kok ok ok Rk ok Rk ok Kok ok ok Rk ok Rk K
HadamardRankKernelNPower2: RngIntElt,RngIntElt,RngIntElt -> AlgMatElt

Given integers n(=2"t), r and k returns a Hadamard matrix that have length n,
rank r and kernel k.

**********************************************************************/

HadamardRankKernelNNotPower2(n,r,k)

Aquesta funcié auxiliar permet obtenir una matriu de Hadamard d’ordre n
per a cada parella de rang r i dimensié de nucli k, pero tan sols per aquelles
matrius que l'ordre no és una poténcia estricta de dos, és a dir: n = 25
(t > 2), on s # 1 senar.

La funcié utilitza unes construccions fonamentades en el treball sobre el
rang i el nucli dels codis binaris Hadamard de longitud n = 2'-s (s senar)
de [9]. I l'algorisme que s’ha implementat, basat en aquestes construccions,

esta descrit en la subseccié 2.6.4 del capitol 2. Destaquem tres aspectes:

e [a funci6 és basicament recursiva, construeix en la majoria dels casos la
matriu actual a partir de matrius d’ordre la meitat i aixi successivament
fins arribar a buscar la matriu d’ordre 4s. Si aquesta no la tenim a la
base de dades Hadamard del MAGMA, no es podra construir la matriu

Hadamard d’ordre n i la funci6 retorna un missatge d’error.
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e Es diferencien el casos n = 4s i n = 8s perqué és regeixen per teoremes
especials de rang i dimensi6é del nucli en les matrius Hadamard d’ordre
no poténcia de dos. A més el cas n = 8s és el punt d’inflexié del cami
recursiu, si bé es construeix a partir del n = 4s buscat a la base de
dades Hadamard del MAGMA com ja s’ha comentat. Aixi doncs el cas

n = 4s esta especificat per si es demana de forma directa a la funcio.

e Per la resta de casos s’apliquen 5 construccions diferents de matrius
Hadamard, la majoria recursives. Si H, és una matriu Hadamard

d’ordre n, rang r i dimensié del nucli £ tenim que:

1. [#] Aplica el producte de Kronecker amb matrius Hadamard:

n/2
SoH", |

2. [o] Aplica el producte de Kronecker amb matrius Hadamard:
n/2 n/2
S ® [H'r—/l,h Hr—/1,2]'

3. [e] Aplica la técnica del switching.

4. [*] Aplica el producte de Kronecker amb dues matrius Hadamard

més una permutacio m:
n/2 n/2
S® [Hr—zka W(Hr—zk)]-

5. [0] Transposada d’una matriu Hadamard H';.

Aquesta funcié generalitza i per tant inclou totes les funcions especials per

casos que s’havien fet en el projecte anterior en relacié a la construccié de

matrius Hadamard del mateix tipus (veure [11]). Hem tret doncs del fitxer

hadamardfile.m les funcions segiients:

e s=3it=2,3,4,5:

— HadamardRankKernelN12(r,k)
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— HadamardRankKernelN24(r,k)
— HadamardRankKernelN48(r,k)
— HadamardRankKernelN96(r,k)
— HadamardRankKernelN192(r,k)
e s=5it=2,3,4,5,6:
— HadamardRankKernelN20(r,k)
— HadamardRankKernelN40(r,k)
— HadamardRankKernelN8O0(r,k)
— HadamardRankKernelN160(r,k)

— HadamardRankKernelN320(r,k)
e s=7it=2,3,4,5:
— HadamardRankKernelN28(r,k)

— HadamardRankKernelN56(r,k)

— HadamardRankKernelN112(r,k)

[ E ok rokkokokskok ok ok kok ok ok kokok ok Kok Rk ok ok ok ok ok ok ok Kok ok ok ok ok ok kR Kok ok kbR ok ok R okok ok Kok Rk ok K
HadamardRankKernelNNotPower2: RngIntElt,RngIntElt,RngIntElt -> AlgMatElt

Given integers n(=2"t.s), r and k returns a Hadamard matrix

that have length n, rank r and kernel k.

Kok kR kok ok Kk Kok KRk Rk kKR Kok KR Kok Kok ok kKR Kok kR kR ok ok kKRR ok Kk Rk ok ok ok kR Rk Rk Rk ok [
function HadamardRankKernelNNotPower2(n,r,k)
t,s:=Valuation(n,2);

L111000707777717770777777771117710777777171777777777771711117777177/

// Distinguishes the first two cases of the sequence (4s i 8s) //

// in whatever other case recursion calls are used //
// case 4s : r=4s-1, k=1 (only one) //
// case 8s : r=4s, k=1,2 (two) //
// other case : white0, aster6, rombo, black0, aster5 //

IIILLLIITTTII7000 00077777 7777077777771777717777777717111177777777

case n:
when (4%s):
return Matrix(HadamardDatabase(),n,1);
when (8%s):
mé4s:=Matrix(HadamardDatabase(), (4*s),1);

67
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if (k eq 1) then
return HadamardKroneckerPermutation(m4s,m4s,FindPermutation(m4s,2));
else
return HadamardKronecker(mé4s,mds);
end if;
else:
// white0 single case: H(n,r(=rmin),1) = S x [H(n/2,r-1,1),H(n/2,r-1,2)]
rmin:=4%s+t-3;
if ((r eq rmin) and (k eq 1)) then

return HadamardKronecker($$(n div 2,rmin-1,1),%$$(n div 2,rmin-1,2));

// aster6 case: H(n,r,k) = S x H(n/2,r-1,k-1)
elif (ExistsHadamardRankKernel(n div 2,r-1,k-1)) then
return KroneckerProduct(HadamardKroneckerSylvester(1),$$(n div 2,r-1,k-1));

// rombo case: H(n,r,2) = Transpose(H(n,r,1))
elif ((r ge ((n div 4)+2)) and (k eq 2)) then

return Transpose(HadamardNormalize($$(n,r,1)));

// black0 single case: H(n,r(=n/4+2),3) = switching code of H(n,r-1,3)

elif ((r eq ((n div 4)+2)) and (k eq 3)) then
C:=HadamardMatrixToCode ($$(n, ((n div 4)+1),3));
V:=VectorSpace(GF(2),n) ;kernel:=KernelZ2(C);
Basis:=ExtendBasis([V![1:1i in [1..n]]],kernel);
v1v2:=V![Basis[2][i]*Basis[3][i]:i in [1..n]];
x:=FindVectorNotInKernel(C,V,kernel);
S:=[v+x:v in kernel];

return HadamardCodeToMatrix(SwitchCode(C,S,viv2));

// asterb case: permutations H(n,r,1)=Sx[H(n/2,r-2,1),perm(H(n/2,r-2,1))]
elif (k eq 1) then
rperl:=rmin+l;rper2:=(n div 4)+2;
if ((r ge rperl) and (r 1t rper2)) then
H:=$$((n div 2),(r-2),1);
columns:=2;
perm:=FindPermutation(H, columns);

return HadamardKroneckerPermutation(H,H,perm);

elif (r ge rper2) then
H:=$$((n div 2),(rper2-2),1);
columns:=r-(rper2-2);
perm:=FindPermutation(H,columns);
return HadamardKroneckerPermutation(H,H,perm);

end if;

else
error "Runtime error in ’HadamardRankKernelNNotPower2’:

lost in recursion by other cases";
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end if;
end case;

end function;

HadamardAllRankKernel(n: swint:=false) ‘

Aquesta funcié retorna una llista de matrius Hadamard d’ordre n, n’hi ha
una per cada possible valor de rang r i dimensi6é del nucli k£ compatibles
amb l'ordre. Com a opci6 les pot retornar convertides a enters, mitjancant
la funci6 HadamardMatrixToInteger (H) si activem el parametre opcional
swint.

Aquesta funci6 en relacié a la versio anterior (veure [10, 11]):

e Millora la part que 'ordre n no és poténcia de dos. Doncs abans,
en aquest suposit, es cridava a les funcions especifiques per casos.
Per tant nomeés es podien construir les matrius Hadamard per certs
valors de ¢t i s esmentats anteriorment en els comentaris de la fun-
ci6 HadamardRankKernelNNotPower2(n,r,k). Ara es podra construir
qualsevol matriu Hadamard d’ordre no poténcia de dos sempre que el
seu ordre primigeni n = 4s estigui a la base de dades Hadamard del

MAGMA.

e L’opci6 de convertir la sortida de la llista de matrius Hadamard a llista

d’enters.

Després de comprovar que 'ordre és 1, 2 o maltiple de 4; esbrina en quin dels
dos possibles escenaris estem: O bé Pordre és una poténcia de dos (n = 2¢,

t > 0), o bé lordre no és una poténcia de dos (n =2"s, ¢t > 21 s # 1 senar).
e Si l'ordre és una poténcia de dos (n = 2', ¢t > 0):

— Tracta apart el cas lineal, que té el rang i la dimensi6 del nucli
igual a t + 1 i sempre existeix per qualsevol valor de n poténcia

de dos. Aquest cas inclou els ordres 1 i 2 completament.
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— Tracta apart el cas d’ordre 16 (¢ = 4) per generar les quatre ma-

trius de codis Hadamard no lineals que té:

(r, k) € {(6,3),(7,2),(8,1),(8,2)}

— Per els altres casos (¢ > 4) aplica els limits en el rang i la dimensio
del nucli per a la construccié de matrius Hadamard d’un ordre

poténcia de dos donat:

{t+2§r§2ﬁkk+k—1 si 3<k<t—1 5.1

t+3<r<2tl si 1<k<?2

— En qualsevol cas cridem a HadamardRankKernelNPower2(n,r,k)
e Si lordre no és una poténcia de dos (n = 2%s, ¢ > 21 s # 1 senar):

— Comprova que 'ordre 4s existeix a la base de dades Hadamard
del MAGMA, preguntant-li el nombre de matrius que té d’ordre 4s

amb la funci6 NumberOfMatrices (HadamardDatabase() ,4x*s).

— Tracta apart el cas n = 4s (t = 2), perqué és un cas especial que

té el rang i la dimensi6 del nucli igual a 4s — 1 i 1 respectivament.

— Per els altres casos n = 2%-s (t > 2), aplica els limits en el rang
i la dimensi6 del nucli per a la construccié de matrius Hadamard

d’un ordre no poténcia de dos donat:

ol—kg 4+ k—1 si 3<k<t-—-1

ds+t—-3<r<
2t=l.g si 1<k<?2

(5.2)

— En qualsevol cas cridem a HadamardRankKernelNNotPower2(n,r,k)
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/*******************************************************************************************

HadamardAllRankKernel: RngIntElt : BoolElt -> [AlgMatElt] (optionally [RngIntElt])
Given a positive interger n, returns a list of Hadamard matrices of degree n. There is
one Hadamard matrix with rank r and kernel of dimension k, for each possible pair (r,k).
Optionally be returned to integer conversion if boolean parameter swint is set to true,

it defaults to false.
ok sk ok ok ok ok o o K oK sk ok ok ok ok o K K sk ok ok ok ok o o K ok sk ok ok ok o o K K sk sk ok ok ok o K K ok ok ok ok ok o o K oK sk ok ok ok o o K K ok ok ok ok ok o K K ok sk ok ok ok ok ok K K sk ok ok ok ok ko ok ok ok ok ok /
HadamardAllRankKernel:=function(n: swint:=false)

if ((Type(n) eq RngIntElt) and (n gt 0)) then
if ((n eq 1) or (n eq 2) or (IsDivisibleBy(n,4))) then

t,s:=Valuation(n,2);

//case power of 2

if(s eq 1)then
//for all n it exists a Hadamard Matrix with rank and kernel equal to t+1
H:=HadamardRankKernelNPower2(n,t+1,t+1);
if (not swint) then Hseq:=[H]; else Hseq:=[HadamardMatrixToInteger(H)]; end if;

// case n=1
if t eq O then
return Hseq;
elif t eq 4 then
//for t = 4 this matrices are defined
H:=HadamardRankKernelNPower2(16,6,3);
if swint then H:=[HadamardMatrixToInteger(H)]; end if;
Append(“Hseq,H);
H:=HadamardRankKernelNPower2(16,7,2);
if swint then H:=[HadamardMatrixToInteger(H)]; end if;
Append(“Hseq,H);
H:=HadamardRankKernelNPower2(16,8,2);
if swint then H:=[HadamardMatrixToInteger(H)]; end if;
Append(“Hseq,H) ;
H:=HadamardRankKernelNPower2(16,8,1);
if swint then H:=[HadamardMatrixToInteger(H)]; end if;
Append(“Hseq,H) ;
else
for k:=1 to 2 do
for r:=t+3 to 2°(t-1) do
//t+3 <=1 <= 2°(t-1) if 1 <=k <= 2
H:=HadamardRankKernelNPower2(n,r,k);
if swint then H:=[HadamardMatrixToInteger(H)]; end if;
Append(~Hseq,H) ;
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end for;
end for;
for k:=3 to t-1 do
for r:=t+2 to 2~ (t+l-k)+k-1 do
//t+2 <= r <= 27 (t+1-k)+k-1 if 3 <= k <= t-1
H:=HadamardRankKernelNPower2(n,r,k);
if swint then H:=[HadamardMatrixToInteger(H)]; end if;
Append(“Hseq,H) ;
end for;
end for;

end if;

//case 4s
elif (NumberOfMatrices(HadamardDatabase(),4*s) ge 1) then
Hseq:=[];
case n:
when (4%s):
H:=HadamardRankKernelNNotPower2(n,n-1,1);
if swint then H:=[HadamardMatrixToInteger(H)]; end if;
Append(“Hseq,H);
else:
rmin:=(4*s)+t-3;
for k:=1 to t-1 do
if (k le 2) then
rmax:=2"(t-1)*s;
else
rmax:=(2"(t+1-k)*s)+k-1;
end if;
for r:=rmin to rmax do
H:=HadamardRankKernelNNotPower2(n,r,k);
if swint then H:=[HadamardMatrixToInteger(H)]; end if;
Append(“Hseq,H) ;
end for;
end for;
end case;
else
error "Runtime error in ’HadamardAllRankKernel’: First Hadamard matrix of sequence\\
is not in Database";
end if;
else
error "Runtime error in ’HadamardAllRankKernel’: n must be 1, 2 or multiple of 4";
end if;
else
error "Runtime error in ’HadamardAllRankKernel’: Argument 1 is not greater than 0";
end if;
return Hseq;

end function;
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HadamardAllRankKernelFile(n : swint:=false)‘

Aquesta funci6 és la mateixa que l'anterior HadamardAllRankKernel (n),
perd com el seu nom indica retorna un fitxer.

Es a dir, guarda en un fitxer amb nom “HadamardMatrix<n>" una llista
de matrius Hadamard d’ordre n, n’hi ha una per cada possible valor de rang
r i dimensi6 del nucli & compatibles amb ’ordre. Opcionalment les pot
convertir a enters, mitjancant la funci6 HadamardMatrixToInteger (H), si

activem el parametre opcional swint.

/*******************************************************************************************

HadamardAllRankKernelFile: RngIntElt : BoolElt

Given a positive interger n, saves in a file called "HadamardMatrix<n>" Hadamard matrices of
degree n. There is one Hadamard matrix with rank r and kernel of dimension k, for each possible
pair (r,k). Optionally be returned to integer conversion if boolean parameter swint is set to
true, it defaults to false.

sk ok o ks o ok o sk ok K ok s ok ok sk o ok o s ok ko ok s ok ok sk o ok ok s o sk ks ok sk sk ok sk ok s o sk sk s ks sk ok sk ok ok sk ok sk sk s ks sk ok sk o ok sk ok sk sk sk sk ok o/
HadamardAllRankKernelFile:=procedure(n : swint:=false)

if ((Type(n) eq RngIntElt) and (n gt 0)) then
if ((n eq 1) or (n eq 2) or (IsDivisibleBy(n,4))) then

t,s:=Valuation(n,2);
FileName:="HadamardMatrix" cat IntegerToString(n);

if swint then regint:="["; end if;

//case power of 2
if(s eq 1)then
//for all n it exists a Hadamard Matrix with rank and kernel equal to t+1
H:=HadamardRankKernelNPower2(n,t+1,t+1);
if (not swint) then
PrintFile(FileName,"\n Rank: " cat IntegerToString(t+1) cat\\
", Kernel Dimension: " cat IntegerToString(t+1));
PrintFile(FileName,H);
else
PrintFile(FileName,regint);
regint:=IntegerToString(HadamardMatrixToInteger(H)) cat ",";

end if;

// case n=1

if t eq O then

elif t eq 4 then
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//for t = 4 this matrices are defined

H:=HadamardRankKernelNPower2(16,6,3);
if (not swint) then
PrintFile(FileName,"\n Rank: " cat IntegerToString(6) cat\\
", Kernel Dimension: " cat IntegerToString(3));
PrintFile(FileName,H);
else
PrintFile(FileName,regint);
regint:=IntegerToString(HadamardMatrixToInteger(H)) cat ",";
end if;
H:=HadamardRankKernelNPower2(16,7,2);
if (not swint) then
PrintFile(FileName,"\n Rank: " cat IntegerToString(7) cat\\
", Kernel Dimension: " cat IntegerToString(2));
PrintFile(FileName,H);
else
PrintFile(FileName,regint);
regint:=IntegerToString(HadamardMatrixToInteger(H)) cat ",";
end if;
H:=HadamardRankKernelNPower2(16,8,2);
if (not swint) then
PrintFile(FileName,"\n Rank: " cat IntegerToString(8) cat\\
", Kernel Dimension: " cat IntegerToString(2));
PrintFile(FileName,H);
else
PrintFile(FileName,regint);
regint:=IntegerToString(HadamardMatrixToInteger(H)) cat ",";
end if;
H:=HadamardRankKernelNPower2(16,8,1);
if (not swint) then
PrintFile(FileName,"\n Rank: " cat IntegerToString(8) cat\\
", Kernel Dimension: " cat IntegerToString(1));
PrintFile(FileName,H);
else
PrintFile(FileName,regint);
regint:=IntegerToString(HadamardMatrixToInteger(H)) cat ",";

end if;

else
for k:=1 to 2 do
for r:=t+3 to 2~(t-1) do
//t+3 <=1 <= 2°(t-1) if 1 <=k <= 2
H:=HadamardRankKernelNPower2(n,r,k);
if (not swint) then
PrintFile(FileName,"\n Rank: " cat IntegerToString(r) cat\\

", Kernel Dimension: " cat IntegerToString(k));
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PrintFile(FileName,H);
else
PrintFile(FileName,regint);
regint:=IntegerToString(HadamardMatrixToInteger(H)) cat ",";
end if;
end for;
end for;
for k:=3 to t-1 do
for r:=t+2 to 2~ (t+1-k)+k-1 do
/7142 <= r <= 2~ (t+1-k)+k-1 if 3 <= k <= t-1
H:=HadamardRankKernelNPower2(n,r,k);
if (not swint) then
PrintFile(FileName,"\n Rank: " cat IntegerToString(r) cat\\
", Kernel Dimension: " cat IntegerToString(k));
PrintFile(FileName,H);
else
PrintFile(FileName,regint) ;
regint:=IntegerToString(HadamardMatrixToInteger(H)) cat ",";

end if;
end for;
end for;
end if;
//case 4s

elif (NumberOfMatrices(HadamardDatabase(),4*s) ge 1) then

case n:
when (4%s):
H:=HadamardRankKernelNNotPower2(n,n-1,1);
if (not swint) then
PrintFile(FileName,"\n Rank: " cat IntegerToString(n-1) cat\\
", Kernel Dimension: " cat IntegerToString(1));
PrintFile(FileName,H);
else
PrintFile(FileName,regint);
regint:=IntegerToString(HadamardMatrixToInteger(H)) cat ",";
end if;
else:

rmin:=(4*s)+t-3;
for k:=1 to t-1 do
if (k le 2) then
rmax:=2"(t-1)*s;
else
rmax:=(2" (t+1-k)*s)+k-1;
end if;
for r:=rmin to rmax do

H:=HadamardRankKernelNNotPower2(n,r,k);

)
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if (not swint) then
PrintFile(FileName,"\n Rank: " cat IntegerToString(r) cat\\
", Kernel Dimension: " cat IntegerToString(k));
PrintFile(FileName,H);
else
PrintFile(FileName,regint);
regint:=IntegerToString(HadamardMatrixToInteger(H)) cat ",";
end if;
end for;
end for;
end case;
else
error "Runtime error in ’HadamardAllRankKernelFile’: First Hadamard matrix of sequence\\
is not in Database";
end if;
else
error "Runtime error in ’HadamardAllRankKernelFile’: n must be 1,2 or multiple of 4";
end if;
else
error "Runtime error in ’HadamardAllRankKernelFile’:
Argument 1 is not greater than 0";
end if;
if swint then
PrintFile(FileName,Substring(regint,1,#regint-1));
PrintFile(FileName,"]");
end if;

end procedure;

HadamardRankKernel (n,r,k: swint:=false) \

Donats l'ordre n, el rang r i la dimensi6é del nucli k, aquesta funci6 re-
torna una matriu Hadamard amb aquestes caracteristiques. Es a dir, re-
torna una matriu Hadamard d’ordre n, en la qual el seu codi té rang r
i la dimensi6 del nucli és k. Integra la funcionalitat de les funcions au-
xiliars HadamardRankKernelNPower2(n,r,k) pel cas de n = 2/, t > 0 i
HadamardRankKernellNNotPower2(n,r,k) pel casde n =25, t >2is# 1

senar. L’algorisme utilitzat és el segilient:

e Comprova la correccié dels valors dels parametres d’entrada. Es a dir,

si 'ordre n, el rang r i la dimensi6 del nucli £ sén enters positius.
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e Comprova si existeix una matriu Hadamard amb aquest ordre n , rang
r i dimensi6 del nucli £ mitjancant la funcié ExistsHadamardRankKer-
nel(n,r.k).

e Comprova si es troba en el cas poténcia de dos amb t,s:=Valuation(n,2),
que ens calcula ’exponent ¢ i el factor senar s quan descomposem n en

poténcies de 2.

e Si és poténcia de dos crida a la funci6 HadamardRankKernelNPower2(n,r,k),
sin6 a la funci6 HadamardRankKernelNNotPower2(n,r,k); en passant-

les hi els mateixos parametres.
/************************************************************************************************

HadamardRankKernel: RngIntElt,RngIntElt,RngIntElt:BoolElt->AlgMatElt (optionally RngIntElt)
Given positive integers n, r and k, returns a Hadamard matrix of degree n such that its
corresponding Hadamard code of length n has rank r and kernel of dimension k. Optionally to

integer conversion if boolean parameter swint is set to true, it defaults to false.

*************************************************************************************************/

HadamardRankKernel:=function(n,r,k: swint:=false)
if ((Type(n) eq RngIntElt) and (n gt 0)) then
if ((Type(r) eq RngIntElt) and (r gt 0)) then
if ((Type(k) eq RngIntElt) and (k gt 0)) then

if (ExistsHadamardRankKernel(n,r,k)) then

t,s:=Valuation(n,2);
if (s eq 1) then
// NPower2-case (n=2"(t))
H:=HadamardRankKernelNPower2(n,r,k);
elif (NumberOfMatrices(HadamardDatabase(),4*s) ge 1) then
// NNotPower2-case (n=2"(t).s): the first 4s must exist in DB
H:=HadamardRankKernelNNotPower2(n,r,k);
else
error "Runtime error in ’HadamardRankKernel’:
First Hadamard matrix of sequence is not in Database";

end if;

else
error "Runtime error in ’HadamardRankKernel’:
Impossible construction with these parameters";

end if;
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else
error "Runtime error in ’HadamardRankKernel?:
Argument 3 is not greater than 0";
end if;
else
error "Runtime error in ’HadamardRankKernel’:
Argument 2 is not greater than 0";
end if;
else
error "Runtime error in ’HadamardRankKernel’:
Argument 1 is not greater than 0";

end if;
if (not swint) then return H; else return HadamardMatrixToInteger(H); end if;

end function;

HadamardRandomMatrix(n: swint:=false) ‘

Donat un ordre n, aquesta funcié retorna una matriu Hadamard qualsevol
d’aquest ordre, amb el rang r i dimensié del nucli k arbitraris pero correctes

i compatibles amb 'ordre n. L’algorisme utilitzat és el segiient:
e Comprova que 'ordre n sigui un enter positiu 1, 2 o un miltiple de 4.

e Comprova si té matrius Hadamard d’aquest ordre n a la base de dades

Hadamard del MAGMA mitjancant la funci6 NumberOfMatrices(D,n).

e Si en té de matrius a la base de dades, llavors en retorna una qualse-
vol fent un Random(1,NumberOfMatrices (HadamardDatabase(),n))
sobre el nombre de matrius d’aquest ordre que té guardades en la base

de dades Hadamard del MAGMA.

e Sino en té de matrius Hadamard a la base de dades del MAGMA, llavors
I’ha de construir. Per fer-ho, comprova si es troba en el cas poténcia

de dos mitjancant t,s:=Valuation(n,2).

— Sil'ordre és una poténcia de dos (n = 2', ¢t > 0):
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* Busca una dimensi6é del nucli k& arbitraria entre
{1,2,...,t —1,t 4+ 1} (alerta, el valor ¢ esta exclos) amb
k:=Random(Setseq(k: k in Exclude([1..t+1]1,t)));

* En el cas lineal (k =t + 1) no hi ha arbitrarietat, el rang té

el mateix valor que la dimensi6 del nucli.

x Per els altres casos aplica els limits en el rang i la dimensio6
del nucli per a la construcci6 de matrius Hadamard d’un or-
dre poténcia de dos. En aquest sistema de dos inequacions,
la inequacié que s’aplica per la determinaci6 del rang depén
del valor de la dimensi6 del nucli (com si fos la variable inde-

pendent):

t4+2<r<tl-kF L1 si 3<k<t-—1
{ ="= o= (5.3)

t+3<r<2t-t si 1<k<?2

Obtindrem un rang r arbitrari i compatible, “randomitzant”
entre el limits inferior i superior de la inequacié corresponent

al valor de la dimensi6 del nucli que hem “randomitzat” abans.

— Si lordre no és una poténcia de dos (n = 2"-s):

x Comprova que el cas n = 4s existeix a la base de dades Ha-
damard del MAGMA, preguntant-li el nombre de matrius que
té d’ordre 4s amb la funcio

NumberOfMatrices (HadamardDatabase () ,4*s)

« Per el cas concret n = 4s (t = 2), no hi ha arbitrarietat, el
rang i la dimensi6 del nucli sén iguals a 4s — 11 1 respectiva-
ment.

* Per els altres casos n = 2s (t > 2): Busca una dimensi6 del
nucli k arbitraria entre {1,...,¢ — 1}. T aplica els limits en
el rang i la dimensi6é del nucli per a la construcci6 de matrius
Hadamard d’un ordre no poténcia de dos. En aquest sistema,

la inequacié que s’aplica per determinar el rang depén també
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de la dimensi6 del nucli:

Rtk g4k —1 si 3<k<t-—-1

ds+t—-—3<r<
2t=l.g si 1<k<2

(5.4)

Obtindrem un rang r arbitrari i compatible, “randomitzant”
entre el limits inferior i superior de la inequaci6é corresponent

al valor de la dimensi6 del nucli que hem “randomitzat” abans.

e En qualsevol cas, al final, cridem a la funci6 HadamardRankKernel (n,r,k)
per tal de construir la matriu de Hadamard d’ordre n amb el rang r i

dimensi6 del nucli & escollits arbitrariament.
/******************************************************************************

HadamardRandomMatrix: RngIntElt : BoolElt -> AlgMatElt (optionally RngIntElt)
Given positive integer n, returns a random Hadamard matrix of degree n.
Optionally to integer conversion if boolean parameter swint is set to true,

it defaults to false.
ok Kok ok ok ok ok o o K oK oK oK ok o o o K K ok ok ok ok ok o K K K ok ok ok o o o K K sk ok ok ok o o K K sk ok ok ok ok o o K oK sk ok ok o ok ok K sk ok ok ok ok ok kK ok ok ok ok ok kK /

HadamardRandomMatrix:=function(n: swint:=false)
if ((Type(n) eq RngIntElt) and (n gt 0)) then
if ((n eq 1) or (n eq 2) or (IsDivisibleBy(n,4))) then

D:=HadamardDatabase(); NOM:=Number(fMatrices(D,n);
if (NOM ge 1) then

H:=Matrix(D,n,Random(1,NOM));
else

t,s:=Valuation(n,2);

//case power of 2
if (s eq 1) then
k:=Random(Setseq({k: k in Exclude([1..t+1],t)}));
// lineal case
if (k eq (t+1)) then
r:=k;
//t+3 <=1 <= 27(t-1) if 1 <=k <= 2
elif ((k ge 1) and (k le 2)) then
r:=Random(t+3,2°(t-1));
//t+2 <= r <= 2" (t+1-k)+k-1 if 3 <= k <= t-1
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else
r:=Random(t+2,2~ (t+1-k)+k-1);

end if;

// case not power of 2, the first (4s) must exist in DB
elif (NumberOfMatrices(D,4*s) ge 1) then
//t=2, r=4s-1, k=1 (case 4s)
if (t eq 2) then
r:=4*xs-1;k:=1;
else
k:=Random(1,t-1);
//t>=3, r=4s+t-3..n/2, k=1,2
if ((k ge 1) and (k le 2)) then
r:=Random(4*s+t-3,2"(t-1)*s);
//t>3, r=4s+t-3..2"(t+1-k)s+k-1, k>2
else
r:=Random(4*s+t-3,2" (t+1-k) *s+k-1);
end if;
end if;
else
error "Runtime error in ’HadamardRandomMatrix’: First Hadamard matrix of sequence\\
is not in Database";
end if;
H:=HadamardRankKernel(n,r,k);

end if;

else
error "Runtime error in ’HadamardRandomMatrix’: n must be 1, 2 or multiple of 4";
end if;
else
error "Runtime error in ’HadamardRandomMatrix’: Argument is not greater than 0";

end if;
if (not swint) then return H; else return HadamardMatrixToInteger(H); end if;

end function;

5.1.4 Altres funcions

cCGHadamardDatabase () |

K3k sk ok ok ok o K KoK 3K oK oK ok o K K K 3K oK oK ok o o K K 3K 3K oK oK o o K K K 3K oK oK ok o o K K 3K oK oK o o o K K K 3K oK oK o o o K K 3K oK oK ok o o K K 3K oK oK oK o o K K K oK oK oK ok ok o K K K K oK ok ok
CCGHadamardDatabase: : MonStgElt -> DB
Returns the database of Hadamard matrices.

*******************************************************************************************/
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5.2 Pas de codi extern a Package

Hem de muntar una llibreria interna o package amb totes les funcions imple-
mentades, i actualitzar el manual Hadamard de I'usuari (capitol 8) amb les
funcions implementades que s6n pibliques o d’usuari.

Mostrem un exemple d’una d’aquestes funcions d’usuari, explicarem els
canvis que s’han de fer per passar-la al package, i finalment la mostrem ja

convertida per al package.

1. En la declaraci6 de la funci6 hem de canviar la paraula reservada
function per intrinsic, i també al final de la funci6 end function

per end intrinsic.

2. Hem de treure el codi que comprova la correccié dels parametres d’en-

trada, ja que posarem els seus tipus de variable acompanyant als argu-

W

ments de la funcié després de “::”, i també el tipus que la funci6 retorna

després de “->7".
3. Adjuntem una breu explicacié de la funci6 entre claus “{...}".

4. Per les possibles condicions inicials o requeriments en el valors dels pa-
rametres d’entrada, s’ha de extreure el codi corresponent del programa
i posar-lo en les comandes:

e require condicidé: missatge_error;
e requirerange variable, limit_inferior, limit_superior;

® requirege variable, limit_inferior;

intrinsic HadamardInvariantSHDE(H::AlgMatElt : a:=3.1415926 ,k:=4) -> SeqEnum[RngIntElt]
{Given a Hadamard matrix H, a ponderator positive number a and a positive integer k,
returns only the frequencies of the Symmetric Hamming Distance Enumerator

distribution of H over all k-dimensional columns projections. Invariant

proposed by Kai-Tai Fang and Gennian Ge. It defaults a to 3.1415926 and k to 4.}

require IsHadamard(H):"Argument is not a Hadamard matrix";

requirege k, 1;

require k le NumberOfColumns(H):"Argument 3 is greater than the number of columns of Hadamard matrix";
require ((Type(a) eq F1dReElt) and (a gt 0)):"Argument 2 is not greater than 0";
FiBak:=SHDEDistribution(a,k,H);
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FG:=[]; for i:=1 to #FiBak do Append(“FG,FiBak[i][2]); end for;
return FG;

end intrinsic;

En el procés de correccié dels errors al passar les funcions d’usuari a

intrinsics del nou package utilitzarem aquestes comandes:

e Per carregar el package s’utilitza la comanda Attach: Attach("hadamard.m") ;.
Al fer aixo es crearan automaticamnent dos fitxers: hadamard.dat i

hadamard.sig.
e [ per descarregar-lo s’utilitza la comanda Dettach;.

e Després d’haver depurat el package posarem la comanda freeze; al
comencament del fitxer per indicar al MAGMA que la versio ja és defi-

nitiva i que no caldra recompilar-lo cada cop que fem el Attach.

Tots els packages es troben en el directori /package de la distribucié de
MAGMA. Per installar-hi el nou package d’aquest projecte cal seguir els

passos segilients:
1. Crear un subdirectori /Hadamard.
2. Copiar a aquesta carpeta els fitxers hadamard.m i hadamard.sig.

3. Crear el fitxer d’especificacions hadarmard.spec. Aquest fitxer només

conté la informaci6 segiient:

{

hadamard.m

}

4. Modificar el fitxer /package/spec per afegir la informaci6 del package
Hadamard

{

+hadamard.spec
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5.3 Test de proves

Per tal de comprovar la correci6 i la fiabilitat de les funcions implementades,
hem dissenyat una série de tests. En el projecte s’han realitzat dos tipus de

tests: tests unitaris i tests d’integracio.

5.3.1 Test unitari

El test unitari serveix per validar un modul, fent passar el test per totes les
linies de codi. No només hem de comprovar que la resposta de la funcio
és correcta quan la cridem amb els parametres correctes, sin6 també que
els errors son els esperats. Per tant, hem de dissenyar-lo per tots el casos

possibles, correctes i erronis.
Hem implementat test unitaris bastant exhaustius per cadascuna de les
vuit funcions.

1. KernelZ2(C) : test unitari unittestKernelZ2.m

2. HadamardInvariantSHDE(H) : unittestHadamardInvariantSHDE.m

3. HadamardInequivalentMatricesSHDE(H1,H2) : unittestHadamardInequivalentMatricesSHDE.m
4. HadamardRankKernelNNotPower2(m,r,k) : unittestHadamardRankKernelNNotPower2.m

5. HadamardRankKernel(n,r,k) : unittestHadamardRankKernel.m

6. HadamardRandomMatrix(n) : unittestHadamardRandomMatrix.m

7. HadamardAllRankKernelFile(n) : unittestHadamardAllRankKernelFile.m

8. HadamardAllRankKernel(n) : unittestHadamardAllRankKernel.m

També hem implementat un procediment general unittestHadamard (option)

que engloba tots els tests unitaris de cadascuna de les vuit funcions. Triant
Iopci6 pertinent podrem realitzar el test unitari de la funcié que vulguem o
de totes (opci6 0). També, si volguéssim, podrem guardar els resultats a un
fitxer.

Per fer-nos una idea i no carregar excessivament de codi MAGMA la memo-

ria, mostrem només el procediment unittestHadamardRankKernelNNotPower?2.

Aquest i tots els altres tests unitaris estan gravats al CD que acompanya la

memoria.
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print "HadamardRankKernelNNotPower2 ...";
//Correct case: n=4s (12,20,28,36,44,52,...,63)
print "\n 4s case ...";
//read pause," press <Enter> to continue";
for s:=3 to 63 by 2 do

n:=4xs;

print "\n H(" cat IntegerToString(n) cat "," cat IntegerToString(n-1) cat\\
"," cat IntegerToString(1l) cat ")";

//read pause," press <Enter> to continue";

HadamardRankKernelNNotPower2(n,n-1,1);

end for;

//Correct case: n=8s (24,40,56,72,88,104,...,31)
print "\n 8s case ...'";
//read pause,'press <Enter> to continue";
for s:=3 to 31 by 2 do
n:=8%s;
print "\n H(" cat IntegerToString(n) cat "," cat IntegerToString(n div 2) cat\\
"," cat IntegerToString(1l) cat ")'";
HadamardRankKernellNotPower2(n, (n div 2),1);
print "\n H(" cat IntegerToString(n) cat "," cat IntegerToString(n div 2) cat\\
", cat IntegerToString(2) cat ")'";
HadamardRankKernelNNotPower2(n, (n div 2),2);

end for;

//Correct case: whitel single: H(n,r(=rmin),1) = S x [H(n/2,r-1,1),H(n/2,r-1,2)]
print "\n H(n,r(=rmin),1) = § x [H(n/2,r-1,1),H(n/2,r-1,2)] case ...'";
//read pause,"press <Enter> to continue";
n:=48;
while (n le 256) do
t,s:=Valuation(n,2);
if ((s ne 1) and (t gt 3)) then
print "\n H(" cat IntegerToString(n) cat "," cat IntegerToString(4*s+t-3) cat\\
"," cat IntegerToString(1l) cat ")";
HadamardRankKernelNNotPower2(n, (4*s+t-3),1);
end if;
n:=n+4;

end while;

//Correct case: aster6 case H(n,r,k) = § x H(n/2,r-1,k-1)
print "\n H(n,r,k) = S x H(n/2,r-1,k-1) case ...";
//read pause,''press <Enter> to continue'";
n:=24;
while (n le 128) do
t,s:=Valuation(n,2);
if ((s ne 1) and (t ge 3)) then
rmin:=(4%s)+t-3;
for k:=1 to t-1 do
if (k le 2) then rmax:=2"(t-1)*s; else rmax:=(2"(t+1-k)*s)+k-1; end if;
for r:=rmin to rmax do
if (ExistsHadamardRankKernel(n,r,k)) then

print "\n H(" cat IntegerToString(2*n) cat "," cat IntegerToString(r+1) cat\\

"," cat IntegerToString(k+l) cat ')";
HadamardRankKernelNNotPower2((2*n), (r+1), (k+1));

end if;
end for;
end for;
end if;
n:=n+4;

end while;

//Correct case: rombo case H(n,r,2) = Transpose(H(n,r,1))

print "\n H(n,r,2) = Transpose(H(n,r,1)) case ...";

85
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//read pause,"press <Enter> to continue';
n=48;
while (n le 256) do
t,s:=Valuation(n,2);
if ((s ne 1) and (t gt 3)) then
rmin:=(4*s)+t-3; rmax:=2"(t-1)*s;
for r:=rmin to rmax do
if (r ge ((n div 4)+2)) then
print "\n H(" cat IntegerToString(n) cat "," cat IntegerToString(r) cat\\
"," cat IntegerToString(2) cat ')";
HadamardRankKernelNNotPower2(n,r,2);

end if;
end for;
end if;
n:=n+4;

end while;

//Correct case: black0 single case H(n,r(=n/4+2),3) = switching code of H(n,r-1,3)
print "\n H(n,r(=n/4+2),3) = switching code of H(n,r-1,3) case ...";
//read pause,"press <Enter> to continue';
n:=48;
while (n le 256) do
t,s:=Valuation(n,2);
if ((s ne 1) and (t gt 3)) then
rmin:=(4*s)+t-3; rmax:=(2"(t-2)*s)+2;
for r:=rmin to rmax do
if (r eq ((n div 4)+2)) then
print "\n H(" cat IntegerToString(n) cat "," cat IntegerToString(r) cat\\
"," cat IntegerToString(3) cat ")";
HadamardRankKernelNNotPower2(n,r,3);

end if;
end for;
end if;
n:=n+4;

end whilse;

//Correct case: asterb permutations H(n,r,1)=Sx[H(n/2,r-2,1),perm(H(n/2,r-2,1))]
print "\n permutations H(n,r,1)=5x[H(n/2,r-2,1),perm(H(n/2,r-2,1))] case ...";
//read pause,'press <Enter> to continue";
n:=48;
while (n le 256) do
t,s:=Valuation(n,2);
if ((s ne 1) and (t gt 3)) then
rmin:=(4*s)+t-3; rmax:=2"(t-1)*s;
for r:=rmin to rmax do
rperl:=rmin+l; rper2:=(n div 4)+2;
if (r ge rperl) then
print "\n H(" cat IntegerToString(n) cat "," cat IntegerToString(r) cat\\
"," cat IntegerToString(1l) cat ")";
HadamardRankKernelNNotPower2(n,r,1);
end if;
end for;
end if;
n:=n+4;

end while;

//Error case: lost in recursion, n=260 (4s with s=65, not in HadamardDatabase)

print "\n lost in recursiomn, n=260 (4s with s=65, not in HadamardDatabase) case ...";

//read pause,"press <Enter> to continue';

print "\n H(" cat IntegerToString(260) cat "," cat IntegerToString(259) cat "," cat IntegerToString(l) cat ")";

HadamardRankKernelNNotPower2(260,259,1);
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5.3.2 Test d’integracié

El test d’integraci6 verifica la integraci6 dels diferents moduls que participen
en les funcions, des de les auxiliars més importants fins arribar a les publi-
ques o d’usuari. Es per aixo que hem implementat un test d’integracié per

cadascuna d’aquestes tres funcions importants:

1. HadamardRankKernelNPower2(m,r,k) : testHadamardRankKernelNNotPower2.m
2. HadamardRankKernellNNotPower2(n,r,k) : testHadamardRankKernelNNotPower2.m

3. HadamardRankKernel(n,r,k) : testHadamardRankKernel.m

Mostrarem només el codi del procediment testHadamardRankKernel.m
que verifica la integracié de la funci6 HadamardRankKernel (n,r,k) que, de
fet, es com si féssim també un test de integracio de les altres, perqué séon
cridades per la primera. Tots els procediments tests de integracié estan

gravats al CD que acompanya la memoria.

En el test testHadamardRankKernel (nmax) comprovem totes les matrius
Hadamard de tots els orders n fins a 'ordre maxim entrat nmax, que pot
construir la funcié HadamardRankKernel(n,r,k) per tots els rangs r i di-
mensions del nucli possibles k. I, a més, comprovem que la matriu retornada
sigui realment de rang r i dimensi6 del nucli k. La tnica limitaci6 sera els
recursos de calcul i de memoria de que disposi el nostre procés.

Els resultats els podrem guardar a un fitxer que per defecte té el nom

"testHadRanKer<nmax>.txt".

/
testHadamardRankKernel: RgnIntElt (,MonStgElt)

Given a positive integer as the maximun order, tests in a file the Hadamard matrices

until this order generated by the general function ’HadamardRankKernel’.
/

testHadamardRankKernel:=procedure(nmax: file:="testHadRanKer" cat IntegerToString(mmax) cat '".txt")

fprintf file,"testing HadamardRankKernel ... \n";

n:=1;
while (n le nmax) do
t,s:=Valuation(n,2);

if (s eq 1) then

//for all n=2"t it exists a Hadamard Matrix with rank and kernel equal to t+1

// includes completely the only lineal orders (n=1,2,4,8)
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H:=HadamardRankKernel(n,t+1,t+1);

H2:=HadamardMatrixFromInteger (HadamardRankKernel(n,t+1,t+1: swint:=true),n);

fprintf file," n=Yo, r=fo, k=fo -> ",IntegerToString(n),IntegerToString(t+1l),IntegerToString(t+1);

fprintf file,"%o ",InvariantsRankKernelZ2(HadamardMatrixToCode(H2)) eq [t+1, t+1];
fprintf file,"%o \n",H eq H2;

if t 1t 4 then

elif t eq 4 then
//for t = 4 this matrices are defined
H:=HadamardRankKernel(n,6,3);

H2:=HadamardMatrixFromInteger (HadamardRankKernel(n,6,3: swint:=true),n);

fprintf file," n=lo, r=%o, k=%o -> ",IntegerToString(n),IntegerToString(6),IntegerToString(3);

fprintf file,"%o ",InvariantsRankKernelZ2(HadamardMatrixToCode(H2)) eq [6, 31;
fprintf file,"%o \n'",H eq H2;

H:=HadamardRankKernel(n,7,2);

H2:=HadamardMatrixFromInteger (HadamardRankKernel(n,7,2: swint:=true),n);

fprintf file," n=lo, r=fo, k=%o -> ",IntegerToString(n),IntegerToString(7),IntegerToString(2);

fprintf file,"%o ",InvariantsRankKernelZ2(HadamardMatrixToCode(H2)) eq [7, 21;
fprintf file,"%o \n",H eq H2;

H:=HadamardRankKernel(n,8,2);

H2:=HadamardMatrixFromInteger (HadamardRankKernel(n,8,2: swint:=true),n);

fprintf file," n=Jo, r=fo, k=jo -> ",IntegerToString(n),IntegerToString(8),IntegerToString(2);

fprintf file,"%o ",InvariantsRankKernelZ2(HadamardMatrixToCode(H2)) eq [8, 21;
fprintf file,"%o \n",H eq H2;

H:=HadamardRankKernel(n,8,1);

H2:=HadamardMatrixFromInteger (HadamardRankKernel(n,8,1: swint:=true),n);

fprintf file," n=Jo, r=fo, k=%o -> ",IntegerToString(n),IntegerToString(8),IntegerToString(1);

fprintf file,"%o ",InvariantsRankKernelZ2(HadamardMatrixToCode(H2)) eq [8, 11;
fprintf file,"%o \n",H eq H2;

else
for k:=1 to 2 do
for r:=t+3 to 2" (t-1) do
/7443 <=1 <= 27(t-1) if 1 <= k <= 2
H:=HadamardRankKernel(n,r,k);

H2:=HadamardMatrixFromInteger (HadamardRankKernel(n,r,k: swint:=true),n);

fprintf file," n=Yo, r=fo, k=fo -> ",IntegerToString(n),IntegerToString(r),IntegerToString(k);

fprintf file,"%o ",InvariantsRankKernelZ2(HadamardMatrixToCode(H2)) eq [r, kl;
fprintf file,"%o \n",H eq H2;
end for;
end for;
for k:=3 to t-1 do
for r:=t+2 to 2" (t+1-k)+k-1 do
//t42 <= r <= 2°(t+1-k)+k-1 if 3 <= k <= -1
H:=HadamardRankKernel(n,r,k);

H2:=HadamardMatrixFromInteger (HadamardRankKernel(n,r,k: swint:=true),n);

fprintf file," n=Yo, r=fo, k=fo -> ",IntegerToString(n),IntegerToString(r),IntegerToString(k);

fprintf file,"%o ",InvariantsRankKernelZ2(HadamardMatrixToCode(H2)) eq [r, kl;
fprintf file,"%o \n",H eq H2;
end for;
end for;

end if;

elif (NumberOfMatrices(HadamardDatabase(),4*s) ge 1) then

case n:
when (4%s):
H:=HadamardRankKernel(n,n-1,1);

H2:=HadamardMatrixFromInteger (HadamardRankKernel(n,n-1,1: swint:=true),n);

fprintf file," n=Yo, r=fo, k=%o -> ",IntegerToString(n),IntegerToString(n-1),IntegerToString(1);
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fprintf file,"%o ",InvariantsRankKernelZ2(HadamardMatrixToCode(H2)) eq [n-1, 11;
fprintf file,"%o \n",H eq H2;

else:
rmin:=(4*s)+t-3;
for k:=1 to t-1 do
if (k le 2) then rmax:=2"(t-1)*s; else rmax:=(2"(t+1-k)*s)+k-1; end if;
for r:=rmin to rmax do
H:=HadamardRankKernel (m,r,k);
H2:=HadamardMatrixFromInteger (HadamardRankKernel(n,r,k: swint:=true),n);
fprintf file," n=lo, r=fo, k=%o -> ",IntegerToString(n),IntegerToString(r),IntegerToString(k);
fprintf file,"%o ",InvariantsRankKernelZ2(HadamardMatrixToCode(H2)) eq [r, kl;
fprintf file,"%o \n",H eq H2;
end for;
end for;
end case;
end if;

if (n eq 1) then n:=n+l;
elif (n eq 2) then n:=n+2;
else n:=n+4;

end if;

end while;

end procedure;

89
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5.4 Proves de fiabilitat

Provar que les noves funcions donen els resultats correctes, és a dir, que les
sortides son les que s’esperen obtenir en cada cas; ja ho hem fet en els tests
de proves unitaries. Ara provem que els resultats obtinguts coincideixen amb

els que s’obtenien amb les versions anteriors de les mateixes funcions.

5.4.1 Proves de fiabilitat de la funcié KernelZ2(C)

Comprovarem que la nova funcié KernelZ2(C) construeix els mateixos nuclis
que la seva versio6 anterior. Per aixo hem realitzat aquest procediment que
veurem a continuacié anomenat ProvaFiabilitatKernelZ2. Aquest proce-
diment es repassa tota la base de dades Hadamard estandard del MAGMA i
per cada matriu Hadamard comprova els nuclis i les seves dimensions del seu
corresponent codi Hadamard per cada una de les dos versions de la funcio
KernelZ2.

//Fiability test of KernelZ2
load "KernelZ20ri.m";
load "hadamarfile.m";
FileName:='"fiatestKernelZ2.txt";
SetLogFile(FileName);
printf "\n Fiability Test KernelZ2 over HadamardDatabase\n";
D:=HadamardDatabase() ;
for n in Degrees(D) do
V:=VectorSpace(GF(2),n); ZeroVector:=V!0;
for m:=1 to NumberOfMatrices(D,n) do
C:=HadamardMatrixToCode (Matrix(D,n,m));
if (ZeroVector in C) then
K:=KernelZ2(C); KA:=KernelZ20ri(C); KAsub:=sub<V|(KA>;
ka:=Dimension(XAsub); k:=Dimension(X); r:=RankZ2(C);
printf "n=Yo,m=%o,#C=Y%o,r=Yo,k=Yo: %o,%o\n",n,m,#C,r,k, (#KA eq #K), (KAsub eq K);
end if;
end for;
end for;
UnsetLogFile();

Un exemple de la sortida de comprovacié que s’obté d’aquest procediment

Fiability Test KernelZ2 over HadamardDatabase
n=1,m=1,#C=2,r=1,k=1: true,true
n=2,m=1,#C=4,r=2,k=2: true,true
n=4,m=1,#C=8,r=3,k=3: true,true
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n=8,m=1,#C=16,r=4,k=4: true,true

n=12,m=1,#C=24,r=11,k=1: true,true
n=16 ,m=1,#C=32,r=5,k=5: true,true
n=16 ,m=2,#C=32,r=8,k=1: true,true
n=16,m=3,#C=32,r=8,k=2: true,true

n=16,m=4,#C=32,r=6,k=3: true,true
n=16 ,m=5,#C=32,r=7,k=2: true,true
n=20,m=1,#C=40,r=19,k=1: true,true

n=208,m=1,#C=416,r=53,k=3: true,true

n=212,m=1,#C=424,r=211,k=1:
n=216,m=1,#C=432,r=108,k=2:
n=220,m=1,#C=440,r=219,k=1:
n=224,m=1,#C=448,r=112,k=1:
n=228,m=1,#C=456 ,r=227 ,k=1:
n=232,m=1,#C=464,r=116,k=2:
n=236,m=1,#C=472,r=235,k=1:
n=240,m=1,#C=480,r=120,k=1:
n=244 ,m=1,#C=488,r=243,k=1:
n=248,m=1,#C=496,r=124 ,k=2:
n=252,m=1,#C=504,r=251,k=1:

true,true
true,true
true,true
true,true
true,true
true,true
true,true
true,true
true,true
true,true

true,true

n=256,m=1,#C=512,r=9,k=9: true,true
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5.4.2 Proves de fiabilitat de les funcions que implemen-

ten la invariant SHDE de Kai-Tai Fang i Gennian

Ge

En 'article dels xinesos Kai-Tai Fang i Gennian Ge [5| no només es definia

aquesta nova invariant, sin6 que per demostrar la seva sensibilitat en la clas-

sificaci6 de les matrius Hadamard, també es parlava dels resultats dels calculs

fets amb aquest invariant sobre les 60 matrius de Hadamard inequivalents

d’ordre 24 i també sobre les 192 d’ordre 36, per diferents valors de la k (ja que

el calcul es fa per totes les colleccions diferents de k columnes de n) i agafant
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el niimero a com a 3.1415926. Aquests calculs estaven tabullats en un altre
article seu, més antic, del qual els autors feien esment [4] i que nosaltres no
disposarem, fins que amablement ens el van fer arribar per correu electronic.
Aquests resultats que els autors comentaven en I'article [5] i les taules dels
calculs de Particle [4], per les matrius Hadamard d’ordre 24, ens serviran per
provar la fiabilitat de les funcions implementades d’aquest invariant.
Les nostres proves es fonamenten en dos resultats a comprovar que s’es-

menten en el primer article:

1. Hi ha 35 classes inequivalents de matrius de Hadamard d’ordre 24 quan
es calcula la invariant per £ = 4. I, de resultes del calcul, han quedat

38 matrius sense separar.

2. Aplicant el calcul de la invariant amb k = 6 per les 38 inseparables i
només comprovant la seva freqiiéncia per el valor 34953, podrem iden-

tificar finalment les 60 matrius Hadamard inequivalents d’ordre 24.

HadamardClassificationSHDE(24:file:=“HadClaSHDE24.txt’’) classi-
fica les 60 matrius de Hadamard inequivalents d’ordre 24 per la k = 4 i
a = 3.1415926, la seva sortida és ordenada per obtenir la Taula 5.1, que ens
mostra millor les 35 classes d’equivaléncia que s’han creat i les matrius que

pertanyen a cada classe.

e Observem que hi han 35 valors de distribuci6 SHDE diferents amb els
niumeros de matrius d’ordre 24 associats, corresponents a les 35 classes

inequivalents que identifica.

e Si comptem les matrius en les distribucions SHDE que tenen més d’una
matriu associada, en resulten 38 matrius no separades. Aquestes son:
1, 10, 51, 52, 57, 58, 59, 60, 4, 8, 5, 7, 11, 12, 13, 40, 15, 38, 16, 20, 22,
31, 55, 18, 45, 19, 53, 26, 35, 28, 44, 29, 30, 37, 39, 42, 32 i 50.
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Taula 5.1: Classificacid de les 60 matrius Hadamard d’ordre 24 1 k = 4.
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H [ FlOOr(SHDEa:3_141592611624), frequency ], H matrices H
[ 9410, 6600 |,[ 9495, 3960 |,[ 10168, 66 | 1, 10, 51, 52, 57, 58, 59, 60
[9410, 6960 |,[ 9495, 3420 |,[ 9747, 216 |,[ 10168, 30 | | 2
[ 9410, 7260 [,[ 9495, 2970 |,[ 9747, 396 | 3
[9410, 7140 |,[ 9495, 3150 |,[ 9747, 324 |,[ 10168, 12] || 4, 8
[ 9410, 7200 |,[ 9495, 3060 |,[ 9747, 360 |,[ 10168, 6| | 5, 7
[9410, 7080 |,[ 9495, 3240 |,[ 9747, 288 |,[ 10168, 18 | || 6
[ 9410, 6072 [,[ 9495, 4554 | 9
[ 9410, 6696 |,[ 9495, 3752 |,[ 9747, 160 |,[ 10168, 18] | 11, 12
[ 9410, 6720 |,[ 9495, 3700 |,[ 9747, 200 |,[ 10168, 6 | || 13, 40
[ 9410, 6528 |,[ 9495, 3956 |,[ 9747, 136 |,[ 10168, 6 | | 14
[ 9410, 6564 |,[ 9495, 3918 |,[ 9747, 132 |,[ 10168, 12] || 15, 38
[ 9410, 6504 ],[ 9495, 4008 ],[ 9747, 96 ],[ 10168, 18 | 16, 20, 22, 31, 55
[ 9410, 6600 || 9495, 3880 |,| 9747, 128 |,[ 10168, 18 | || 17
9410, 6480 |,] 9495, 4060 |,[ 9747, 56 |,[ 10168, 30 18, 45
9410, 6576 |,[ 9495, 3932 |,| 9747, 88 |,| 10168, 30 19, 53

[ 9410, 6624 |,[ 9495, 3828 |,[ 9747, 168 |,[ 10168, 6 | || 21

[9410, 6384 |,[ 9495, 4168 |,[ 9747, 56 |,[ 10168, 18| | 23

[ 9410, 6360 |,[ 9495, 4200 |,[ 9747, 48 | 10168, 18 | || 24

[9410, 6408 |,[ 9495, 4136 |,[ 9747, 64 |,[ 10168, 18 | | 25

[ 9410, 6432 |, 9495, 4104 |,[ 9747, 72 |,[ 10168, 18 | || 26, 35

[9410, 6480 |,[ 9495, 4020 |,[ 9747, 120 |,[ 10168, 6 | | 27

[ 9410, 6708 |, 9495, 3726 |,[ 9747, 180 |,[ 10168, 12| || 28, 44

[9410, 6492 |,[ 9495, 4014 |,[ 9747, 108 |,[ 10168, 12| | 29, 30, 37, 39, 42

[ 9410, 6528 |,[ 9495, 3996 |,[ 9747, 72 ],[ 10168, 30 ] 32, 50

[ 9410, 6504 |,[ 9495, 3988 |,[ 9747, 128 |,[ 10168, 6 | | 33

[ 9410, 6516 |,[ 9495, 3982 |,[ 9747, 116 |,[ 10168, 12| || 34

[ 9410, 6552 |,[ 9495, 3944 |,[ 9747, 112 ],[ 10168, 18| | 36

[ 9410, 6444 |,[ 9495, 4078 |,[ 9747, 92 |,[ 10168, 12| || 41

[ 9410, 6672 |,[ 9495, 3804 |,[ 9747, 120 |,[ 10168, 30 | | 43

[ 9410, 6336 || 9495, 4212 |,[ 9747, 72 |,[ 10168, 6 | 16

[ 9410, 6348 |,[ 9495, 4206 |,[ 9747, 60 |,[ 10168, 12| | 47

[ 9410, 6456 || 9495, 4072 |,[ 9747, 80 |,| 10168, 18 | || 48
9410, 6432 |,[ 9495, 4094 |,[ 9747, 88 |,[ 10168, 12| || 49
9410, 6528 |,[ 9495, 3976 |,[ 9747, 104 |,[ 10168, 18 | || 54

[ 9410, 6408 |,[ 9495, 4116 |,[ 9747, 96 |,[ 10168, 6 | 56

El procediment HadamardTableSHDE6024B46 (a) reprodueix la taula nim.
1 de larticle 4| per identificar totes les 60 matrius de Hadamard d’ordre 24

combinant la invariant SHDE per k =41 k = 6. Usa les funcions implemen-
tades HadamardClassificationSHDE(24,a,k) per k = 4,6 i a = 3.1415926.
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/
HadamardTableSHDE6024B46 :RngIntElt

Given a positive number a, saves in a file called "HadTabSHDE6024B46" the table of

the integer part of the values of the distance enumerator of H over all 4-dimensional and
6-dimensional columns |Ba4| and |Ba6| respectively of the 60 Hadamard matrices of order 24.

/

HadamardTableSHDE6024B46 : =procedure (a)
NFiBa46:=HadamardClassificationSHDE(24:a:=a,k:=4);
NFiBa6:=HadamardClassificationSHDE(24:a:=a,k:=6);
for i in [1..#NFiBa46] do

NFiBa46[i][3]:=[1;
if (#NFiBa46[i]1[2] gt 1) then
for j in [1..#NFiBa46[i]1[2]] do
for 1 in [1..#NFiBa6] do
if (NFiBa6[1]1[2][1] eq NFiBa46[i][2]1[j]) then

listed:=false;
for m in [1..#NFiBa6[11[1]1] do
if (NFiBa6[1]1[1][m]1[1] eq 34953) then
Append ("NFiBa46[i] [3] ,NFiBa6[1][1][m]);
listed:=true;
break;
end if;
end for;
if (not listed) then
Append ("NFiBa46[1] [3], [34953,0]);

end if;

end if;
end for;
end for;
else
Append (“NFiBa46[i][3], [34953,999994]);
end if;
end for;
T6024B46:=[];
for i in [1..#NFiBa46] do
Bk4Bkém:=[0,0,0,0,0,0];
for j in [1..#NFiBa46[i]l[1]] do
case NFiBa46[il[1]1[j1[1]:

when 9410:
Bk4Bk6m[4] :=NFiBa46[i] [1][j1[2];

when 9495:
Bk4Bk6m[3]:=NFiBa46[i][1]1[j1[2];

when 9747:
Bk4Bk6m[2] :=NFiBa46[i] [1][j1[2];
//10168

else:
Bk4Bk6m[1]:=NFiBa46[i][1]1[j1[2];

end case;
end for;

for j in [1..#NFiBa46[i]1[2]] do
Bk4Bk6m[6] : =NFiBa46[i]1[2] [j1[2];
Bk4Bk6m[5] : =NFiBa46 [i]1[31 [j1[2];
Append (“T6024B46 ,Bk4Bk6m) ;
end for;
end for;
Sort ("T6024B46) ;
FileName:='"HadTabSHDE6024B46" ;
PrintFile(FileName,'\n HadamardTableSHDE6024B46");
PrintFile(FileName,a);
PrintFile(FileName,"CLASSIFICATION OF THE HADAMARD MATRICES");
PrintFile(FileName,"Table 1. FBa,k(H) for the 60 Hadamard matrices of order 24');
PrintFile(FileName,"No [Ba,4]1=10168 [Ba,4]=9747 [Ba,4]=9495 [Ba,4]=9410 [Ba,6]=34953");
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for i in [1..#T6024B46] do
Bk4Bk6m:=Rotate (T6024B46[i],1);
PrintFile(FileName,Bk4Bk6m) ;
end for;

end procedure;

Mostrem un extracte de la taula guardada en el fitxer HadTabSHDE6024B46 . txt:

HadamardTableSHDE6024B46

3.14159260000000000000000000000

CLASSIFICATION OF THE HADAMARD MATRICES

Table 1. FBa,k(H) for the 60 Hadamard matrices of order 24
No [Ba,4]=10168 [Ba,4]=9747 [Ba,4]=9495 [Ba,4]=9410 [Ba,6]=34953
9, 0, 0, 4554, 6072, 999994 ]

3, 0, 396, 2970, 7260, 999994 ]

46, 6, 72, 4212, 6336, 999994 ]

56, 6, 96, 4116, 6408, 999994 ]

27, 6, 120, 4020, 6480, 999994 ]

33, 6, 128, 3988, 6504, 999994 ]

14, 6, 136, 3956, 6528, 999994 ]

21, 6, 168, 3828, 6624, 999994 ]

13, 6, 200, 3700, 6720, 6312 ]

40, 6, 200, 3700, 6720, 6370 ]

5, 6, 360, 3060, 7200, 11440 ]

7, 6, 360, 3060, 7200, 11488 ]

L T Y e Y e Y e Y s Y e Y e Y e Y e T s B |

[ 1, 66, 0, 3960, 6600, O ]

[ 569, 66, 0, 3960, 6600, 1080 ]
[ 62, 66, 0, 3960, 6600, 1096 ]
[ 10, 66, 0, 3960, 6600, 1100 ]
[ 68, 66, 0, 3960, 6600, 1116 ]
[ 51, 66, 0, 3960, 6600, 1120 ]
[ 67, 66, 0, 3960, 6600, 1164 ]
[ 60, 66, 0, 3960, 6600, 1184 ]

En La Taula 5.2 mostrem la classificacio total de les 60 matrius de Hada-
mard inequivalents d’ordre n = 24 per la k = 4,6 i a = 3.1415926. La hem
obtingut del fitxer sencer gravat pel procediment HadamardTableSHDE6024B46,

resumit a dos columnes i tret el valor convingut 999994.

e Observem que amb només un valor de la distribucié SHDE per k = 6 és

suficient per separar les 38 matrius que ens quedaven sense identificar.
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Taula 5.2: Classificaci6 de les 60 matrius Hadamard d’ordre 24 i k = 4, 6.

No | [Ba4] | [Ba,4] | [Ba,4] | [Ba,4] | [Ba,6] || No | [Ba,4] | [Ba,4] | [Ba,4] | [Ba,4] | [Ba,6]
10168 | 9747 | 9495 | 9410 | 34953 10168 | 9747 | 9495 | 9410 | 34953
90 0 0 4554 6072 35 18 72 4104 6432 4308
3 0 396 | 2970 | 7260 26 18 72 | 4104 | 6432 | 4310
46 6 72 4212 6336 48 18 80 4072 6456
56 6 96 | 4116 | 6408 16 18 96 | 4008 | 6504 | 3176
27 6 120 4020 6480 20 18 96 4008 6504 3872
33 6 128 | 39838 | 6504 55 18 96 | 4008 | 6504 | 3940
14 6 136 3956 6528 31 18 96 4008 6504 4020
21 6 168 | 3828 | 6624 22 18 96 | 4008 | 6504 | 4860
13 6 200 3700 6720 6312 || 54 18 104 3976 6528
40 6 200 | 3700 | 6720 | 6370 || 36 18 112 | 3944 | 6552
) 6 360 3060 7200 | 11440 || 17 18 128 3880 6600
7 6 360 | 3060 | 7200 | 11488 || 12 18 160 | 3752 | 6696 | 5464
47 12 60 4206 6348 11 18 160 3752 6696 5624
49 12 88 | 4094 | 6432 6 18 288 | 3240 | 7080
41 12 92 4078 6444 18 30 56 4060 6480 2808
37 12 108 | 4014 | 6492 | 4134 || 45 30 56 | 4060 | 6480 | 2880
30 12 108 4014 6492 4176 || 32 30 72 3996 6528 3366
29 12 108 | 4014 | 6492 | 4278 || 50 30 72| 3996 | 6528 | 3378
42 12 108 4014 6492 4918 || 53 30 88 3932 6576 3600
39 12 108 4014 6492 4924 || 19 30 88 3932 6576 3864
34 12 116 | 3982 | 6516 43 30 120 | 3804 | 6672
15 12 132 3918 6564 | 4704 2 30 216 3420 6960
38 12 132 | 3918 | 6564 | 4720 || 1 66 0| 3960 | 6600 0
28 12 180 3726 6708 5976 || 59 66 0 3960 6600 1080
44 12 180 | 3726 | 6708 | 6012 || 52 66 0| 3960 | 6600 | 1096
4 12 324 3150 7140 | 10416 || 10 66 0 3960 6600 1100
8 12 324 | 3150 | 7140 | 10512 || 58 66 0| 3960 | 6600 | 1116
24 18 48 4200 6360 o1 66 0 3960 6600 1120
23 18 56 | 4168 | 6384 57 66 0| 3960 | 6600 | 1164
25 18 64 4136 6408 60 66 0 3960 6600 1184

Aquest valor és el 34953, i per aix0 és el tinic que hem posat a la taula
de k = 6 darrera dels altres de k = 4.

e QQuan en alguna matriu, el valor 34953 pren la freqiiéncia 999994, aques-
ta no és una freqiiéncia. Amb aix0, el nostre procediment indica que

no s’ha calculat perqué les freqiiéncies per k = 4 soén suficients per
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identificar la matriu en aquest cas.

e En canvi, hi han 38 matrius on el valor 34953 pren una freqiiéncia sig-
nificativa, que serveix per identificar les matrius que no havien quedat
separades per les freqiiéncies de k = 4. Per exemple: Les matrius 1,
59, 52, 10, 58, 51, 57 i 60 comparteixen la mateixa distribuci6 SHDE
per k = 4, que son els valors 10168, 9747, 9495, 9410 amb freqiiéncies
66, 0, 3960, 6600 respectivament. Només el valor 34953 de k = 6 agafa

una freqiiéncia diferent per cada matriu d’aquest cas.

e Aquesta taula coincideix amb la taula 1 de l'article |[4]. L’anica dife-
réncia rau en la numeracié de les matrius. La nostra taula segueix la
numeracié de la base de dades Hadamard estandard del MAGMA, i la
seva segueix la ordenaci6 de la pagina web d’on van descarregar-se les

matrius d’ordre 24.

5.4.3 Proves de fiabilitat de la funci6é que implementa la

construccié de matrius Hadamard d’ordre n = 2¢-s

Es tracta ara de provar que les matrius Hadamard construides per alguns
ordres amb la funcié auxiliar HadamardRankKernelNNotPower2(n,r,k) son
iguals o, si més no, equivalents a les generades amb les funcions per casos
concrets de n = 2%s (t > 21 s # 1 senar) de la versié anterior, com per
exemple:

e HadamardRankKernelN12(r,k), HadamardRankKernellN24(r, k), ...

e HadamardRankKernelN20(r,k), HadamardRankKernellN20(r,k), ...

o HadamardRankKernelN28(r,k), HadamardRankKernelN56(r,k), ...

e etc.

Amb el procediment fiatestHadamardRankKernelNNotPower2 exhaurim
totes les proves de fiabilitat possibles per els ordres no poténcies de dos
n = 12,24,48,96, 192, 20, 40, 80, 160, 320, 28, 56, 112. Hem de tenir cura d’e-

xecutar les funcions de la versi6é anterior amb el seu entorn. Es a dir, quan
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aquestes criden a la funci6 KernelZ2(C) per construir alguna de les seves
matrius per la técnica del switching, ens hem d’assegurar que criden a la que
retorna el nucli com a tipus llista.

Com mostrem en la sortida d’aquest procediment, es curiés comprovar
que les matrius del mateix ordre construides per la funcié actual amb les
construides per les altres funcions de la versi6 anterior no tenen perqué ser
iguals, ni tampoc perqué ser equivalents Hadamard (és per aixo que ensenyo
les dues condicions). Ara bé, tenen el mateix rank i dimensi6 del nucli (per
exemple el casos n =48, r =18,19,20i k = 1).

/
fiatestHadamardRankKernellNNotPower2:

Fiability tests of function ’HadamardRankKernelNNotPower2’ with especial functions

for 12, 24, 48, 96, 192, 20, 40, 80, 160, 320, 28, 56, 112 orders.

fiatestHadamardRankKerne1NNotPower2:=procedure()

for m in [12, 24, 48, 96, 192, 20, 40, 80, 160, 320, 28, 56, 112] do
t,s:=Valuation(n,2);
if (n eq 4*s) then
H1:=HadamardRankKernelNNotPower2(n,n-1,1);
IRK1:=InvariantsRankKernelZ2(HadamardMatrixToCode (H1));
case n:
when 12: H2:=HadamardRankKernelNi12(n-1,1);
when 20: H2:=HadamardRankKernelN20(n-1,1);
else: H2:=HadamardRankKernellN28(n-1,1);
end case;
if (IRK1 eq InvariantsRankKernelZ2(HadamardMatrixToCode(H2))) then
printf " n=Y%o,r=Y%o,k=%o: %o,%o\n",n,n-1,1,H1 eq H2,IsHadamardEquivalent (H1,H2: Al:="Leon");
aelse
printf " n=Yo,r=Yo,k=Y%o: Different Rank-Kernel Error\n",n,n-1,1;
end if;
else
rmin:=(4%s)+t-3;
for k:=1 to t-1 do
if (k le 2) then
rmax:=2"(t-1)*s;
else
rmax:={(2" (t+1-k)*s)+k-1;
end if;
for r:=rmin to rmax do
H1:=HadamardRankKernelNNotPower2(n,r,k);
IRK1:=InvariantsRankKernelZ2(HadamardMatrixToCode (H1));
case n:
when 24: H2:=HadamardRankKernellN24(r,k);
when 48: H2:=HadamardRankKernellN48(r,k);
when 96: H2:=HadamardRankKernelN96(r,k);
when 192: H2:=HadamardRankKernelN192(r,k);
when 40: H2:=HadamardRankKernellN40(r,k);
when 80: H2:=HadamardRankKernelN80(r,k);
when 160: H2:=HadamardRankKernelN160(r,k);
when 320: H2:=HadamardRankKernelN320(r,k);
when 56: H2:=HadamardRankKernellN56(r,k);
else: H2:=HadamardRankKernelN112(r,k);
end case;
if (IRK1 eq InvariantsRankKernelZ2(HadamardMatrixToCode(H2))) then
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printf " n=Y%o,r=Y%o,k=%o: %o,%o\n",n,r,k,H1 eq H2,IsHadamardEquivalent(H1,H2: Al:="Leon");

else
printf " n=Yo,r=Yo,k=%o: Different Rank-Kernel Error\n",n,n-1,1;

end if;

end for;
end for;
end if;
end for;

end procedure;

Un trog de la sortida que dona aquest procediment és:

n=12,r=11,k=1: true,true

n=24,r=12,k=1: false,true
n=24,r=12,k=2: true,true

n=48,r=13,k=1: false,true
n=48,r=14,k=1: false,true
n=48,r=15,k=1: false,true
n=48,r=16,k=1: false,true
n=48,r=17,k=1: false,true
n=48,r=18,k=1: false,false
n=48,r=19,k=1: false,false
n=48,r=20,k=1: false,false
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5.5 Proves de rendiment

Les proves de rendiment s’han enfocat per veure com la nova versio de la fun-
ci6 KernelZ2(C) que retorna el nucli com un subespai vectorial, és més rapi-
da. Per aix0 creem el procediment TimesKernelZ2BigNoLinear (order,rep).
El procediment construeix codis binaris C' no lineals a partir de codis line-
als quaternaris sobre Z4 arbitraris C'4 mitjangant la funcié GrayMapImage (C4).
Ens assegurem que aquesta no generara un codi binari lineal, testant amb
la funci6 HasLinearGrayMapImage(C4). Per un serie d’ordres menors que
order, i després de comprovar que el vector tot zeros pertany al codi binari
C, calculem els temps de creaci6 dels dos nuclis amb la repeticio rep perqueé
aquest calcul no és sempre el mateix ja que depén de la CPU de la maquina
a més CPU’s més rapides, més repeticions). Ensenyem els temps calculats i
els acumulem per treure al final un total. Aquests calculs també es guarden

en el fitxer "TempsKernelZ2BigNoLinear <order>-<rep>.txt".

timesKernelZ2BigNoLinear:=procedure(order,rep)

FileName:='"timesKernelZ2BigNoLinear" cat IntegerToString(order) cat "-" cat IntegerToString(rep) cat ".txt";
T1:=0; T2:=0;

SetLogFile(FileName);

printf "timesKernelZ2BigNoLinear: order=Yo rep=/o\n",order,rep;

printf "%50%50%50%100%100%100\n","n", "#ker", k", "times_old","times_new","decrement’;
Z4:=IntegerRing(4); ndmax:=order div 2;
for n4:=1 to n4max do
for k4:=1 to n4 do
C4:=RandomLinearCode (Z4,n4,k4);
if (not HasLinearGrayMapImage(C4)) then
C:=GrayMapImage (C4);
n:=Degree(C[1]);
if n le order then
V:=VectorSpace(GF(2),n); ZeroVector:=V!0;
if (ZeroVector in C) then
t:=Cputime();
for i:=1 to rep do
kernelori:=KernelZ20ri(C);
end for;
t1:=Cputime(t); T1:=T1+t1;
t:=Cputime();
for i:=1 to rep do
kernel:=Kernelz2(C);
end for;
t2:=Cputime(t); T2:=T2+t2;
num:=#kernel; k:=Dimension(kernel);
printf "}5o%5o%50%100%100%100\n" ,n,#kernel,Dimension(kernel),t1,t2,t1-t2;
end if;
end if;
end if;
end for;
end for;
//print "\nTotal"; T1; T2; T1-T2;
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printf "%150%100%100%100\n","Total ",Ti,T2,T1-T2;
UnsetLogFile();

end procedure;

Si executem aquest procediment fins I'ordre 18 i sense repeticié, obtenim
aquesta taula :

TempsKernelZ2BigNoLinear: order=18 rep=1

n #ker k times_old times_new decrement
8 8 3 0.000 0.000 0.000
10 16 4 0.000 0.000 0.000
10 64 6 0.120 0.010 0.110
12 8 3 0.010 0.000 0.010
12 32 5 0.070 0.020 0.050
12 2566 8 7.080 0.870 6.210
14 8 3 0.000 0.000 0.000
14 64 6 0.120 0.020 0.100
14 128 7 4.600 1.580 3.020
14 256 8 6.270 0.410 5.860
16 4 2 0.000 0.000 0.000
16 16 4 0.000 0.000 0.000
16 32 5 0.060 0.010 0.050
16 32 5 0.860 0.230 0.630
16 128 7 45.570 4.620 40.950
16 256 8 1485.260 196.130 1289.130
18 4 2 0.000 0.000 0.000
18 8 3 0.000 0.000 0.000
18 16 4 0.070 0.060 0.010
18 32 5 0.940 0.330 0.610
18 128 7 46.610 6.160 40.450
18 2566 8 15687.830 309.280 1278.550

En ella, es mostra clarament que la nova versié de la funcié KernelZ2(C)
és més rapida. En general quant més gran és la longitud del codi binari no
lineal, més és l'avantatge (decrement en micro-segons de CPU) que en treu
en la construccio dels nuclis. I fixada una longitud de codi binari no lineal,
quant més gran és la dimensié del nucli a construir, és a dir quants més

elements té el nucli, més gran és també el decrement.
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Ho hem provat expressament amb els codis no lineals, perqué amb els
codis lineals no paga la pena provar-ho, segur que és més rapida. Doncs en
les primeres linies de codi de la nova funcid, quan detecta que la llista de
vectors binaris que formen el codi C' té estructura d’espai vectorial, retornen
rapidament el subespai vectorial generat de la llista com a nucli. No perd
el temps aplicant la definicié de nucli, i, per tant, fent una doble iteracio
exhaustiva provant tots els vectors del codi, sumant cada vector del codi

amb tots els vectors del codi comprovant si el resultat és un vector també
del codi (c+C =C).



Capitol 6

Resultats

Un cop fet el disseny, millora i desenvolupament del package a que es feia
referéncia en els punts 6, 7, 8 i 9 dels objectius detallats del capitol 3. En
aquest, capitol veurem, analitzarem i obtindrem resultats, que corresponen
als punts 10, 11 i 12 dels segiients objectius detallats de 'esmentat capitol.

Es per aixo que aquest capitol de resultats esta dedicat a dos aspectes:

e Analitzar les invariants 4-profile, rang i dimensi6 del nucli i SHDE en

la classificacio de les matrius Hadamard.

e Ampliar la base de dades de matrius Hadamard com a conseqiiéncia
de la generalizaci6 de la funcié que construeix matrius Hadamard de

qualsevol ordre n per cada rang r i dimensio del nucli k.

6.1 Invariants: 4-profile, rang i nucli i SHDE

El procediment HadamardFourInvariantsTable(n:file,lr) compara les
quatre invariants. Fixat 'ordre n, per cada invariant calcula el nombre de
matrius Hadamard inequivalents d’aquest ordre que reconeix i el temps que

triga en segons. Les caracteristiques d’aquest procediment son:

e Calcula els temps de les invariants de totes les matrius d’un ordre n,

aixi com el nombre de matrius inequivalents que reconeixen.

103
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e Guarda els resultats en el fitxer file que per defecte s’anomena FIT<n>.

e Permet escollir la base de dades amb la que volem treballar mitjancant
el library root Ir que per defecte és el de la base de dades Hadamard

estandard del MAGMA.

e Si utilitzem la base de dades estandard del MAGMA, sabem que totes
les seves matrius de cadascun dels ordres son inequivalents. Per tant,
en aquest cas, el nimero de matrius de cada ordre és un bon indicador
de la sensibilitat de les invariants per classificar les matrius, doncs és

la fita que les invariants han d’assolir.

e Per la invariant SHDE comencem per £ = 4 i fem un tractament in-
cremental. Mentre no haguem reconegut com inequivalents el mateix
nombre de matrius de 'ordre tractat, o bé no haguem sobrepassat el
limit teoric de la k que és n/2; anem incrementant la k de dos en dos i

tornem a calcular la invariant SHDE per totes les matrius de 1'ordre.

/e kot s ke ke ks s o s ko ok ks ks ok o sk sk s ke e ok ok sk e ke sk sk s ke e ok ok sk ks e sk sk s ke e ok ks ks ks sk sk s ke ok sk ks ke sk o sk sk ek ok sk s o
HadamardFourInvariantsTable: RgnIntEl : MonStgElt : MonStgElt

Given a positive integer as the order, tabulates in a file the number of HadamardDatabase
matrices of the order from the Library Root recognized as inequivalent for each of the

four invariants (4-profile, rank and kernel, and Fang&Ge’s SHDEDistribution with k-value).

sokokokskokskok sk ok ook ok koot ook ok sk ok skokok ok sk okesk ook ok sk ok sk ook ok sk kst sk ok skokok ok kst ook ok sk ok skokok ok kb ook ok ok ok sk ook ok ok ok ook /
HadamardFourInvariantsTable:=procedure(n : file:="", lr:="")

if (1r eq "") then
D:=HadamardDatabase();

else
stdlibroot:=GetLibraryRoot();
SetLibraryRoot(1lr);
D:=HadamardDatabase();
SetLibraryRoot (stdlibroot);

end if;

if (file eq "") then file:="FIT" cat IntegerToString(n); end if;

NOM:=NumberOfMatrices(D,n);

printf "Checkpoint-FourInvariantsTable n=jo0: start\n",n;

fprintf file,"FourInvariantsTable n=%o\n",IntegerToString(n);

fprintf file," n Mat 4-p r-k F&G <-k t(4-p) t(r-k) t (F&G)\n";
// 4-profile, rank-kernel and Fang-Ge(a=pi,k=4,6,...,n/2) invariants
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Ldp:=[1;Lrk:=[];LFG:=[]; t4p:=0;trk:=0;tFG:=0; a:=3.1415926; k:=4;
if (NOM eq 1) then
fprintf file,"%4o%40%40%4o0%4o0%40%150%150%150\n" ,n,NOM,1,1,1,k,t4p,trk, tFG;
else
for m:=1 to NOM do
H:=Matrix(D,n,m); C:=HadamardMatrixToCode(H);
t:=Cputime(); Ldp:=L4p cat [HadamardInvariant(H)]; t4p:=t4p+Cputime(t);
t:=Cputime(); Lrk:=Lrk cat [InvariantsRankKernelZ2(C)]; trk:=trk+Cputime(t);
t:=Cputime(); LFG:=LFG cat [HadamardInvariantSHDE(H:a:=a,k:=k)];tFG:=tFG+Cputime(t);
printf "Checkpoint-FourInvariantsTable n=jo: m=}o/%o k=Yo\n",n,m,NOM,k;
end for;
neFG:=#Set (LFG) ;
fprintf file,"%4o0%40%40%40%40%40%150%150%150\n"
,n,NOM, #Set (L4p) ,#Set (Lrk) ,neFG,k, t4p, trk,tFG;

while ((neFG 1t NOM) and (k 1t (n div 2))) do
LFG:=[1; k:=k+2; tFG:=0;
for m:=1 to NOM do
H:=Matrix(D,n,m);
t:=Cputime(); LFG:=LFG cat [HadamardInvariantSHDE(H:a:=a,k:=k)];
tFG:=tFG+Cputime(t);
printf "Checkpoint-FourInvariantsTable n=jo: m=%o/%o k=Yo\n",n,m,NOM,k;
end for;
neFG:=#Set (LFG) ;
fprintf file,"%200%40%450\n",neFG,k,tFG;

end while;

end if;
rintf "Checkpoint-FourInvariantsTable n=%o: end",n;
1% P

end procedure;

Hem agrupat en la taula que es mostra a continuacio, els resultats de tots
els fitxers guardats pel procediment quan s’executa per alguns ordres de la
base de dades estandard del MAGMA en quasi tots els casos, doncs també hi
ha una entrada a la taula calculada a partir d’unes matrius Hadamard d’ordre

32 proporcionades amablement per Ilias Kotsireas i Cristos Koukouvinos.
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FourInvariantsTable
n Mat 4-p r-k SHDE <-k

1

2

4

8

12
16
16
16
20
20
24
24
28
28
32
32
32
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0.000

0.000
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o O © © O

0.020

0.000

0.230

3.090

0.190

0.030

0.970
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£ (SHDE)

5.

31.

62.

13.
140.
870.
14400.
18452.
443711.
1963.
67527.
948840.
854.
27702.
56787.

o O O O O

440
750
960
340
750
810
230
360
970
410
000
400
860
790
600

el job triga 11 dies!

10ineq32 I.Kotsireas i C.Koukouvinos

Conclusions que es dedueixen al examinar la taula FourInvariantsTable:

e La invariant 4-profile té la mateixa sensibilitat que la invariant SHDE

per a := 3.1415926, k := 4 perqué les dues invariants calculen la matei-

xa distribuci6 de freqiiéncies, pero la invariant SHDE tarda més temps

perqué és més complexa de calcular. Per ser més precisos direm que,

a diferéncia de la 4-profile, la invariant SHDE no reflexa la freqiiéncia

nulla en la seva distribuci6 de freqiiéncies. Mirem per exemple aquesta

sessid de MAGMA:

> H:=Matrix(HadamardDatabase(),16,1);

> HadamardInvariant (H);

[ 1680, 0, 140 ]
> HadamardInvariantSHDE (H

[ 1680, 140 ]

: a:=3.1415926,k:=4);

e La invariant SHDE, incrementant la k, acaba sent sempre la més sen-

sible; pero també és la més costosa en temps de CPU.
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e Nogensmenys hi ha ’excepcio6 del cas d’ordre n = 16, la invariant rank
i dimensi6 de nucli reconeix rapidament les 5 matrius inequivalents
d’aquest ordre, i mentre que la invariant 4-profile és queda en 4, la
invariant SHDE ha d’arribar fins a la k = 8 per reconéixer-les totes,
trigant, considerant només el calcul de k = 8, de I'ordre de 10° vegades

més!

e El cas d’order n = 24 és el que ens ha servit per comprovar la fiabilitat
de la implementacio de la invariant SHDE, al coincidir amb les taules de
classificacié d’aquest ordre que es donaven en els articles introductoris
d’aquesta nova invariant |5, 4]. Recordem que per k = 4 ja en reconeix

35 matrius Hadamard inequivalents i per k = 6 totes les 60.

e El cas d’ordre n = 32 és aquell en que la combinaci6 de les invariants
4-profile i rang i dimensi6 de nucli, amb HadamardThreeInvariants,
reconeix una matriu Hadamard inequivalent més que la invariant SHDE
per k = 4 (per més detalls veure el projecte [11]). Per identificar les 23
matrius d’aquest ordre que té la base de dades de matrius Hadamard
estandard del MAGMA va trigar 11 dies, i ho va assolir per un valor de
k=8.

e De les 10 matrius de Hadamard inequivalents d’ordre n = 32 proporci-
onades per Ilias Kotsireas i Cristos Koukouvinos [6], 8 es van reconéixer
per la 4-profile i la SHDE per & = 4 com era d’esperar; la SHDE va

reconéixer totes 10 només a la k = 6 segiient.

Com exemple d’execucié d’aquest procediment per una base de dades de
matrius Hadamard que no sigui la estandard, varem seleccionar 10 matrius
inequivalents d’ordre n = 32 d’un grapat de fitxers de matrius Hadamard de
diferents ordres que ens van proporcionar amablement Ilias Kotsireas i Cristos
Koukouvinos. Aquestes 10 matrius Hadamard gregues son inequivalents entre
elles, perd només la meitat son inequivalents amb les de la base de dades

estandard (mala sort perqué hi han més de 66.000 matrius de Hadamard
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inequivalents d’ordre n = 32), perqué al actualitzar la base de dades només

admetia 5, com es pot veure en aquesta sessi6 de MAGMA.

> D:=HadamardDatabase() ;

> #D;

3491

> data:=HadamardDatabaseInformation(D);
> SetVerbose("HadamardDB",1);

> load "matrixfile32ineqlO.m";

Loading "matrixfile32ineql0.m"

> UpdateHadamardDatabase(~data,S);

5 new matrices added

El fitxer matrixfile32ineql10.m és el mateix que vaig descarregar de la
web de Ilias Kotsireas i Cristos Koukouvinos [6] amb les 10 matrius inequiva-
lents d’ordre 32 en format llista d’enters carregat a la variable order32ineq10,
pero modificat per tal que ompli la variable S amb la llista de les matrius.
Per aixo es va comentar el codi MAGMA originari que ve després de la llista
i es va executar aquest:

S:=[HadamardMatrixFromInteger(i,32):i in order32ineq10];

order32ineql0 := \\

[ 17878192447832605036863095254629242828791987994639169972663784266536475666220\
3559490076587870970124834831691553683854621428370404477668582028504074677511871\
0770331954532028040269267648909035039053784571041656416840172014675825983024170\
95397846399881240357823602327971292259087509761535980580813975597832149375,
1787819459922098065349501328355454625677736559614297622792858010220195143225291\
7942857701844993992435857290977887509777289461752280178840469277486273948022130\
4467159200626323985228638354914516559843604701846891797084589286690617941766134\
028695065085124855998839447803809300713384804320380274179881420192684415,
1787820098641681954645283834091065316324806500432253158111414813473310020975351\
4160183218665616038348793046059553361372020647834441142784896376036894700351838\
5722403477142550530629115152039158500336465694878289282989227822945169787661126\
212484980269179739789404798273566545975840370826110259507210956121250175,
1786502441068020823990620451469864484111017615942891297279665488462012095169033\
7640749946615517914168662958440720864851438194097010433434508267687574445528189\
4314853941016339852385894651614934051253340659674235368276943956497028915812428\
126210219695785202287424693449695604887924553140174670829933807530874495,
1786502798516595294146974639133751492708246183143904695380762601934500990386156\
3592458011838252483324467317553707506698482662484440945674354782858171099879504\
0753466605885626594084453111021792371295136632832260303217304045570515740348561\
196870644020149818224987500327448283445930072091577784708633229878302335,
1786503294926442274949594760098005517556625316911227458124701875281674549522349\
5851925506494036940033972835344905840761316004891003809361201793317001394692920\
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3004061964956086356088244912750588646211349250386882967248970311859600401056458\
940848800083724584253227163751969891776255162430304349523169165819975295,
1785953507208495394930180219077568334219963740644029464576894554817732039622784\
96298659144780608973384387364984529089702677968097233556614218569547969238368861\
7966901084305407036621230589579927519587850717949420319967059868834834859110319\
144683384799966809503738543996552943898087498245039280469321951574174335,
1785953862145721566701361696389658332436569278017783863347942108768235436280143\
6767248310658516682007839074141018375305521324634338554981576681699360421853317\
4937588134905501316510988020664317337453311048907113130285201613596551310599537\
969854427019777349994473518982593605232895882347941647103396254818708095,
1787820313780519516308475636983595659123344260582633783637894397039857597578607\
61540332617235613018301167167882072485687167272546273554767162803115700897186861\
3156367224566070488930988616050171154801613292559539396056615642053189427010164\
843333645473064237964641918106083587601715413610509952873116778481785215,
1786503332596666750727195824334490861246860268069671823302747700102216724323872\
0482991802833488991275684786233735077528988568210832686190646602163774765656779\
1651544543048206122353795559917129592088940683049598923046654293032195414955734\
225713769501826360597856960035605032672773348269155536649341301958317695 1;

[ kskok sk ko sk ok ok ok sk sk ok sk sk ok sk ok ok sk ok sk ok sk sk ok sk ok sk sk ok sk sk sk sk ok sk ok ok sk ok sk skok sk sk ok sk sk ok sk ok ok sk ok ok sk ok
n := #order32ineql0;
for i in [1..n-1] do
for j in [i+1..n] do
print i,j,IsHadamardEquivalent(HadamardMatrixFromInteger(order32ineq10[i],32)\\
,HadamardMatrixFromInteger (order32ineq10[j]1,32));
end for;
end for;
sk ok o oo ok o sk o oo ok o ok o o ok ok s ok o o sk o o s ok o o sk o ook ok s ok o o ok o o sk ok o o ok ok o sk ok sk ok o o sk o sk ok o ok sk ok ok sk ok ok ok /
//To code the "matrixfile.m" that generates the list S of these Hadamard matrices when loaded:
// 1st. Delete, if exists, the "M’ characters behind ’\’ in the integer list.
// 2nd. Comment the magma code after the integer list and execute:

S:=[HadamardMatrixFromInteger(i,32):i in order32ineqi0];

El procediment HadamardDB32ineq10 crea la nova base de dades a par-
tir de les matrius Hadamard d’una llista S que li ha preparat el programa

anterior.

[ /#*kkkxkxx4%%  HadamardDB32ineqlQ  skskkkskkkkidkskrkkkiodkskiokkkkkidhkrhkkhtkk
// new database creation with the "32ineq10" Cristos Koukouvinos’s Hadamard matrices
// "matrixfile32ineql0.m" generates the list S of these Hadamard matrices when loaded

// previously we must create the directory "data" in our default directory

data:=HadamardDatabaseInformationEmpty();
SetVerbose("HadamardDB",1);

load "matrixfile32ineql0.m";
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UpdateHadamardDatabase(~data,S);
WriteHadamardDatabase("~/data/hadamard",~data);

[ a partir d’aqui ja es pot executar el procediment HadamardFourInvariantsTable (n)
per la base de dades de 10 matrius Hadamard inequivalents d’ordre 32 de

Ilias Kotsireas i Cristos Koukouvinos.

6.2 Construcci6 de matrius amb rang i nucli

En el projecte [10] s’'implementa amb les funcions HadamardAl1RankKernel (n)
i HadamardRankKernelNPower2(n,r,k) un algorisme recurrent complet per

a la construccié de matrius Hadamard de qualsevol ordre n = 2. Per cada

ordre n es construeix tantes matrius, inequivalents, com rang r i dimensio

del nucli k£ possibles i compatibles amb 'ordre. Aquest algorisme es troba en

la pagina 17 de [10] i es basa en les construccions descrites en l'article [8].

En aquest projecte, la nova HadamardRankKernellNNotPower2(n,r,k)
completa la generalitzaci6 de la funci6 principal HadamardAl11RankKernel (n)
perqué li atorga un nou algorisme recurrent que s’afegeix a ’anterior, i que li
permet ara, a més a més, la construcci6 de matrius Hadamard de qualsevol
ordre n = 2! - s sempre que disposem del cas n = 4s a la base de dades de
matrius Hadamard del MAGMA . De la mateixa manera per cada ordre n
es construeix tantes matrius, inequivalents, com rang r i dimensi6 del nu-
cli k£ possibles i compatibles amb l'ordre. Aquest algorisme es troba en la
subseccid 2.6.4, capitol 2, i es basa en les construccions descrites en I’article
[9].

La construcci6é de noves matrius de Hadamard surt doncs de la explotacio
de l'algorisme recurrent per la construccié de matrius de Hadamard d’ordre
n=2"-s. Lordre n = 252 (252 = 4 -63) és el cas n = 4s més gran que es
troba actualment a la base de dades de matrius Hadamard del MAGMA. Per
tant, a partir de 'actual base de dades, podem construir infinites matrius
Hadamard d’ordre {n = 2'-s,t > 2,s € {3,5,...,63}}. Anem a veure, per

alguns ordres, quantes d’aquestes matrius Hadamard, inequivalents, ja hi son
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a la base de dades i quantes sén noves.

En resum, podem incrementar la base de dades utilitzant només el rang
i la dimensi6 del nucli, per el cas de les matrius d’ordre no poténcia de dos,
sempre que el seu grad primigeni n = 4s on s # 1 i senar estigui a la base de
dades Hadamard i els recursos de calcul del sistema siguin suficients.

El procediment HadamardRankKernelNNotPower2Table (nmax:file) cons-
trueix moltes matrius de Hadamard que no estan en la base de dades estan-
dard d’ordre n = 2¢-s, amb la funcié HadamardRankKernelNNotPower2(n,r,k).

Les caracteristiques principals d’aquest procediment soén:

e Busca les matrius de Hadamard per tots els orders que no sén poténcies

de dos, fins arribar a ’ordre maxim nmax.

e Filtra aquells ordres que el seu cas n = 4s no estigui a la base de dades

estandard del MAGMA.

e Per cada ordre, comptabilitza les matrius “inicials” que séon les que ja
tenim a la base de dades, les “actuals” que séon les que tenim més les

que construeix, i la diferéncia entre les dues que és el “increment”.

e Al nombre de matrius construides per rang i dimensié de nucli se li
descompte el nombre de matrius “inicials” inequivalents per la invari-
ant rang i dimensié de nucli, abans de sumar-les a les “actuals”. Per
exemple, en el cas n = 72, d’entrada tenim 105 matrius inicials a la
base de dades que s6n inequivalents, pero totes tenen el mateix rang i
dimensié de nucli, per tant només hi ha 1 de inequivalent per aquest
invariant. Mitjancant la funci6 HadamardAllRankKernel(n) per rang
i dimensi6 de nucli en construim 2, de les quals 1 ja la tenim a les “ini-
cials”. Per aix0 el nombre de matrius “actuals” és 105+ (2 — 1) = 106

i, per tant, el increment és 106 — 105 = 1.

e Guarda la taula d’aquests acumuladors per cada ordre en el fitxer file,

que per defecte s’anomena HadRankKerNNotPow2Tab<nmax>.
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[k skskokskok koo stk ok ok sk okt sk ok sk ok stk ok ok kst sk ok sk ok skokok ok kb ok sk ok sk ok kst ok sk ok skoksk ok kb sk ok sk ok sk kok ok ok sk ook ok ok ok
HadamardRankKernelNNotPower2Table: RgnIntElt [,MonStgElt]

Given a positive integer n as the maximum order, tabulates in a file the new Hadamard n=s.2"~(t)
matrices with diferent rang and kernel, that they are not in the Hadamard Database.

**********************************************************************************************/

HadamardRankKernelNNotPower2Table:=procedure (nmax:file:="HadRankKerNNotPow2Tab" cat IntegerToString(nmax))
D:=HadamardDatabase(); Ln:=Degrees(D);
printf "Checkpoint-HadamardRankKernelNNotPower2Table(%o0): start\n",nmax;
// Number of Matrices calculation
T:=[];TInici:=0;TAct:=0;TInc:=0;
n:=12;
while (n le nmax) do
t,s:=Valuation(n,2);
if (s ne 1) then
if (NumberOfMatrices(D,4#*s) ge 1) then
// Hadamard matrices in the HadamardDatabase
if (n in Ln) then NOM:=NumberOfMatrices(D,n); else NOM:=0; end if;
Inici:=NOM; TInici:=TInici+Inici;
// Hadamard matrices by Rank-Kernel construction not in HadamardDatabase
Lrk:=[];
for m:=1 to NOM do
Lrk:=Lrk cat [InvariantsRankKernelZ2(HadamardMatrixToCode(Matrix(D,n,m)))];
end for;
Act:=#HadamardAllRankKernel(n);
if (Act gt #Set(Lrk)) then
Act :=NOM+(Act-#Set (Lrk));
end if;
TAct:=TAct+Act; Inc:=Act-Inici; TInc:=TInc+Inc;
Append(~T, [n,Inici,Act,Inc]);
printf "Checkpoint-HadamardRankKernelNNotPower2Table(%o): n=%o Inici=%o Act=%o Inc=Yo\n"
,amax,n,Inici,Act,Inc;
end if;
end if;
n:=n+4;
end while;
printf "Checkpoint-HadamardRankKernelNNotPower2Table(%o): Total TInici=Yo TAct=}oTInc=Yo\n"
,amax,TInici,TAct,TInc;
printf "Checkpoint-HadamardRankKernelNNotPower2Table(%o0): end\n" ,nmax;
Sort(°T);
fprintf file,"HadamardRankKernelNNotPower2Table hasta %o\n",IntegerToString(nmax);
fprintf file," n Inici Act Inc\n";
for i in [1..#T] do
fprintf file,"%50%100%100%100\n",T[i]1[1],T[1i]1[2],T[i]1[3],T[i][4];
end for;
fprintf file,"Total%100%100%100\n",TInici,TAct,TInc;

end procedure;
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La Taula 6.1 resumeix la sortida del procediment executat fins l'ordre

720, ja que només apareixen els ordres que mostren un increment del nombre

de matrius.

Taula 6.1: Construccié matrius de Hadamard fins n = 720.

’ n \ Inici \ Act \ Inc \ Tinc H n \ Inici \ Act \ Inc H n \ Inici \ Act \ Inc
72 105 | 106 1 1 || 280 0 2 2 || 456 0 2 2
80 1 42 41 42 || 288 0] 253 | 253 464 0 234 234
96 1 8 | 84 126 || 296 0 2 2 || 472 0 2 2
104 1 2 1 127 || 304 0| 154 | 154 || 480 0 421 421
112 2 59 57 184 || 312 0 2 2 488 0 2 2
120 3 4 1 185 || 320 0| 359 | 359 || 496 0 250 250
136 2 3 1 186 || 328 0 2 2 || 504 0 2 2
152 1 2 1 187 || 336 0| 170 | 170 || 528 0 266 266
160 1| 141 | 140 327 || 344 0 2 2 544 0 477 477
168 1 2 1 328 || 352 0| 309 | 309 || 560 0 282 282
176 2 91 | 89 417 || 360 0 2 2| 576 0 647 647
184 1 2 1 418 || 368 0| 186 | 186 || 592 0 298 298
192 1| 215 | 214 632 || 376 0 2 2 || 608 0 533 533
200 1 2 1 633 || 384 0| 488 | 488 || 624 0 314 314
208 1| 106 | 105 738 || 392 0 2 2 || 640 0 816 816
216 1 2 1 739 || 400 0| 202 | 202 || 656 0 330 330
224 1| 197 | 196 935 || 408 0 2 21 672 0 589 589
232 1 2 1 936 || 416 0| 365 | 365 || 688 0 346 346
240 1| 122 | 121 1057 || 424 0 2 2 704 0 791 791
248 1 2 1] 1058 || 432 0| 218 | 218 || 720 0 362 362
264 0 2 2 440 0 2 2
272 0| 138 | 138 448 0] 503 | 503 || Tot. | 129 | 11520 | 11391

Al examinar la Taula 6.1 podem extreure els segiients resultats:

e Donat que la base de dades de matrius Hadamard del MAGMA arriba

actualment fins 'ordre n = 256, en la taula a partir de 'ordre n = 264

cap endavant totes les matrius construides per rang i dimensi6 del nucli

sOn increment net.

e Per contra, fixem-nos en 'ordre n = 80 (és el tercer ordre de la seqiién-
cia del 4s = 20,40, 80, ...) del qual la base de dades de matrius Hada-
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mard del MAGMA disposa de 1 matriu, que naturalment té un rang
i dimensié de nucli concret. Les matrius construides d’ordre n = 80
per rang i dimensié del nucli s6n 42, per tant hem aconseguit 41 noves
matrius Hadamard que juntament amb la 1 de la base de dades fan un

total de 42 matrius Hadamard inequivalents per 'ordre 80.

Si fem el mateix plantejament per tots els ordres de la taula que ja
tenen matrius a la base de dades de matrius Hadamard del MAGMA,
obtenim 1.058 noves matrius Hadamard inequivalents que es podrien

incorporar a la actual base de dades.

Tan sols amb aquesta execucié hem aconseguit un total de 11.391 noves

matrius de Hadamard.
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Conclusions

7.1 Conclusions
En aquest projecte hem assolit els segiients objectius:

1. Hem estudiat les matrius i codis Hadamard.
2. Hem estudiat les invariants 4-profile, rang i dimensié del nucli.

3. Hem estudiat la proposta d’una nova invariant més sensible a la ine-
quivaléncia de matrius Hadamard proposada pels xinesos Kai-Tai Fang

i Gennian Ge.
4. Hem estudiar els treballs dels dos projectistes anteriors.
5. Hem aprés a utilitzar el MAGMA.
6. Hem apres a llencar processos de grans calculs seguint un protocol d’us.

7. Hem optimitzat la funci6 KernelZ2(C) aprofitant la seva estructura

d’espai vectorial.

8. Hem implementat una nova invariant per a la deteccié de matrius Ha-
damard no equivalents: la distribucié de I’enumerador de la distancia

simeétrica de Hamming, SHDE.

115
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10.

11.

12.

13.

14.

15.

16.

CAPITOL 7. CONCLUSIONS

Hem implementat una funcié que construeix matrius Hadamard per a
qualsevol ordre n = 2'-s on s # 1 i senar, per cada rang i una dimensi6

de nucli valides.

Hem implementat procediments per executar tests de fiabilitat i rendi-

ment.

Hem actualitzat el manual Hadamard d’usuari amb les noves funcions

i les modificades.

Hem actualitzat els exemples d’is de les funcions.

Hem actualitzat la llibreria.

Hem actualitzat el package.

Hem analitzat les invariants 4-profile, rang i dimensio6 del nucli, i SHDE.

Hem ampliat la base de dades del MAGMA construint noves matrius
Hadamard d’ordre n = 2'-s utilitzant les funcions implementades i
tenint en compte el rang i la dimensi6 del nucli, fins el 4s més gran que

es troba actualment a la base de dades Hadamard del MAGMA.

17. T finalment, hem redactat la memoria.

Les futures linies de continuaci6 per a aquest projecte podrien ser:

e Optimitzar encara més la funci6 KernelZ2(C) tenint en compte les

propietats de codi lineal del nucli: la idea és alhora que es construeix el
nucli, anar buidant del codi a examinar els cosets del nucli per reduir

el camp de la iteracié exhaustiva.

Fer que la funci6 que construeix les matrius Hadamard per qualsevol
ordre n = 2%-s i per un rang i una dimensié de nucli pugui buscar la
d’ordre 4s, que és el primer grad de la cadena, en qualsevol 1library
root, sense esta restringit a la base de dades Hadamard estandard del

MAGMA.
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e Implementar altres construccions conegudes com la construccié de Pa-

ley, la construccié de Williamson o els arrays de Baumert-Hall |7].
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Capitol 8

Handbook of MAGMA Functions

8.1 Introduction

A Hadamard matriz is an n X n matrix of +1’s and —1’s such that every
pair of rows and every pair of columns differ in exactly n/2 places. Two such
matrices are considered equivalent if one can be transformed into the other
by performing row swaps, column swaps, row negations or column negations.
The problem of deciding whether two Hadamard matrices are equivalent is
hard.

A binary Hadamard matriz is a n X n Hadamard matrix, where the +1’s
are replaced by 0’s and the —1's by 1’'s. A Hadamard code is a binary
(n,2n,n/2)-code consisting of the rows of a binary Hadamard matrix and
their complements.

Two structural properties of non-linear codes are the rank and kernel.
The rank of a binary code C, r = rank(C), is simply the dimension of
the linear span, (C), of C. The kernel of a binary code C' is defined as
K({C)={x € F" | 24+ C = C}, where F = {0,1}. If the zero word is in
C, then K(C) is a linear subspace of C. We will denote the dimension of
the kernel of C' by k = ker(C). These parameters can be used to distinguish
between non-equivalent Hadamard matrices, since equivalent ones have the

same parameters 7 and k.

119
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MAGMA contains several functions for Hadamard matrices. In section 8.2,
new functions to work with them and the corresponding binary Hadamard
matrices and Hadamard codes are given. In section 8.3, new functions to
compute the invariants rank, r, and dimension of the kernel, k, for any
non-linear code are presented, specifically they can be used to increase the
number of invariants computed for Hadamard matrices in MAGMA. Finally,
in section 8.4, functions to construct new Hadamard matrices from existing
Hadamard matrices or codes, as well as from given invariants r and k, are

described.

8.2 Hadamard matrices and codes converting

HadamardMatrixToBinary (H) |

Given a Hadamard matrix H, returns the corresponding Hada-

mard binary matrix. This function is the inverse of HadamardBinaryToMatrix ().

HadamardBinaryToMatrix (H)

Given a binary Hadamard matrix H, returns the corresponding

Hadamard matrix. This function is the inverse of HadamardMatrixToBinary ().

HadamardMatrixToCode (H) |

Given a Hadamard matrix H, returns the corresponding Hada-
mard code. The code is represented as a list of binary vectors of

length n. This function is the inverse of HadamardCodeToMatrix ().



8.2. HADAMARD MATRICES AND CODES CONVERTING 121

HadamardCodeToMatrix (C) |

Given a Hadamard code represented as a list of binary vectors of
length n, returns the corresponding normalized Hadamard matrix

of degree n. This function is the inverse of HadamardMatrixToCode ().

IsHadamardCode (C) ‘

Returns true if and only if C' is a Hadamard code.

Example E1

The following example converts a Hadamard matrix to a binary Hadamard matrix

and to a Hadamard code.

> H:=Matrix([[1,1,1,1],[1,-1,1,-1],[1,1,-1,-1]1,[1,-1,-1,111);
> IsHadamard(H) ;
true

> Hb:=HadamardMatrixToBinary (H) ;

> Hb;
[0 0 0 0]
[0 10 1]
[0 01 1]
[0110]
> H eq HadamardBinaryToMatrix(Hb);
true
> C:=HadamardMatrixToCode (H) ;
> C;
L
(0000,
1111,
(0101,
1010,
(0011,
(1100,
o110,
(1001
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]

> IsHadamardCode(C) ;

true

> H eq HadamardCodeToMatrix(C);

true

8.3 Invariants of (Hadamard) codes

RankZ2(C)

Given a code C' represented as a list of binary vectors of length
n, returns its rank. The rank of a code C'is the dimension of the
linear span of C, (C), over GF(2).

KernelZ2(C) |

Given a code C' represented as a list of binary vectors of length
n and such that the zero vector belongs to C', returns its kernel
as a VectorSubspace. Then the kernel of C' are the codewords v

such that v+ C = C.

Dimension0fKernelZ2(C) |

Given a code C represented as a list of binary vectors of length
n, returns the dimension of its kernel. The code C' must contain
the zero vector to assure that its kernel is a linear subspace of C
over GF'(2).
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InvariantsRankKernelZ2(C) |

Given a code C' represented as a list of binary vectors of length

n, returns its rank and dimension of the kernel.

HadamardThreeInvariants (H) ‘

Given a Hadamard matrix H, returns the invariants 4-profile,

rank and dimension of the kernel.

ExistsHadamardRankKernel(n,r,k)‘

Given positive integers n, r and k, returns true if there exists a
Hadamard code (or equivalently a Hadamard matrix) of length n
with rank r and kernel of dimension k. When n is not a power of
two, returns also false if we do not know whether or not there

exists a Hadamard code with these parameters.

HadamardInvariantSHDE(H,a,k)‘

Given a Hadamard matrix H, a ponderator positive number «a
and a positive integer k, returns only the frequencies of the Sym-
metric Hamming Distance Enumerator distribution of H over all
k-dimensional columns projections. Invariant proposed by Kai-
Tai Fang and Gennian Ge. It defaults a to 3.1415926 and £ to
4.

HadamardInequivalentMatricesSHDE (H1,H2 :a)

Given two Hadamard matrices H1, H2 and a ponderator positive
integer a, returns true if they are inequivalent and false if is not
possible to prove their inequivalence by this method. It defaults
a to 3.1415926.
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HadamardClassificationSHDE(n:a,k,1lr,file) ‘

Given an order n, a ponderator positive number a, a positive
integer k, a library root Ir and a filename file, returns and saves
in the file the list of the values of the integer part of the Symmetric
Hamming Distance Enumerator over all k-dimensional columns
projections and their frequencies of all the Hadamard matrices
of order n from the hadamard database of the library root. The
classification is perfect when the number of elements of the list
equals number of Hadamard matrices. It defaults a to 3.1415926,
k to 4, Ir to the standard Magma HadamardDatabase and file
to HadClaSHDE<n>.

Example E2

In this example the rank, the kernel and the dimension of the kernel of a Hadamard
code are computed. Kai-Tai Fang and Gennian Ge’s SHDEDistribution invariant and ine-
quivalent matrices algorism of Hadamard matrices are computed too. All using Hadamard

matrices from a HadamardDatabase!.

> D:=HadamardDatabase();

> H:=Matrix(D,12,1);

> H;

[1 1 1 1 1 1 1 1 1 1 1 1]
[1 1 1 1 1 1-1-1-1-1-1-1]
[1 1 1-1-1-1 1 1 1-1-1-1]
[1 1 -1 1-1-1 1-1-1 1 1-1]
[1 1 -1-1 1-1-1 1-1 1-1 1]
[1 1 -1-1-1 1-1-1 1-1 1 1]
[1-1-1-1 1 1 1 1-1-1 1-1]
[1-1 1 1-1-1-1 1-1-1 1 1]
[1-1 1-1-1 1 1-1-1 1-1 1]
[1-1-1 1-1 1-1 1 1 1-1-1]
[1-1-1 1 1-1 1-1 1-1-1 1]

'For more information consult chapter 115 from [2].
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[1-1 1-1 1-1-1-1 1 1 1-1]
> C:=HadamardMatrixToCode (H) ;

> RankZ2(C);

11

> KernelZ2(C);

Vector space of degree 12, dimension 1 over GF(2)
Generators:

111111111111)

Echelonized basis:
111111111111

> DimensionOfKernelZ2(C);

1

> InvariantsRankKernelZ2(C) ;

[ 11, 1]

> HadamardThreeInvariants (H) ;

[ 495, 0, 11, 1]

> Invl:=HadamardInvariant (Matrix(D,32,3));

> Inv2:=HadamardInvariant (Matrix(D,32,14));

> Invl eq Inv2;

true

> Inv3:=HadamardThreelInvariants(Matrix(D,32,3));
> Inv4:=HadamardThreelInvariants(Matrix(D,32,14));
> Inv3 eq Inv4;

false

> ExistsHadamardRankKernel(12,11,1);

true

> ExistsHadamardRankKernel(12,12,1);

false

> ExistsHadamardRankKernel(32,6,6);

true

> ExistsHadamardRankKernel(32,6,7);

false

> Invb:=HadamardThreelInvariants(Matrix(D,20,2));
> Inv6:=HadamardThreelInvariants(Matrix(D,20,3));
> Invb eq Inv6;

true

> Inv7:=HadamardInvariantSHDE(Matrix(D,20,2) :k:=6);
> Inv8:=HadamardInvariantSHDE(Matrix(D,20,3):k:=6);

125
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> Inv7 eq Inv8;

false

> HadamardInequivalentMatricesSHDE (Matrix(D,20,2) ,Matrix(D,20,3));
true

> HadamardInequivalentMatricesSHDE (Matrix(D,20,2) ,Matrix(D,20,2));

false

8.4 Construction of (Hadamard) matrices

’ HadamardKroneckerSylvester(t) ‘

Given a positive integer ¢, returns the Hadamard-Sylvester matrix

of degree n = 2.

HadamardKronecker (H1,H2)

Given two Hadamard matrices H1 and H2 of degree n, returns a
Hadamard matrix of degree 2n. This matrix is constructed with
the Kronecker product S @ [H1, H2], where S is the Hadamard-

Sylvester matrix of degree 2.

HadamardKroneckerPermutation (H1,H2,g) |

Given two Hadamard matrices H1 and H2 of degree n and a
permutation g in Sym(n), returns a Hadamard matrix of degree
2n. This matrix is constructed with the Kronecker product S ®
[H1,g(H2)], where S is the Hadamard-Sylvester matrix of degree
2 and g(H?2) is H2 with the columns permuted by g.
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SwitchCode(C,S,x)‘

Given a code C' represented as a list of binary vectors, a subset
S of C' and a codeword x, returns a code where the codewords of

S are substituted by the binary vectors of S + x.

|HadamardAllRankKernel(n : swint)

Given a positive interger n, returns a list of Hadamard matrices
of degree n. There is one Hadamard matrix with rank r and
kernel of dimension k, for each possible pair (r, k). Optionally be
returned to integer conversion if boolean parameter swint is set

to true, it defaults to false.

HadamardAllRankKernelFile(n : swint)‘

Given a positive interger n, saves in a file called "HadamardMa-
trix<<n>"Hadamard matrices of degree n. There is one Hadamard
matrix with rank r and kernel of dimension k, for each possible
pair (r, k). Optionally be returned to integer conversion if boole-

an parameter swint is set to true, it defaults to false.

HadamardRankKernel(n,r,k : swint)

Given positive integers n, r and k, returns a Hadamard matrix
of degree n such that its corresponding Hadamard code of length
n has rank r and kernel of dimension k. Optionally to integer
conversion if boolean parameter swint is set to true, it defaults

to false.
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HadamardRandomMatrix(n : swint)‘

Given positive interger n, returns a random Hadamard matrix of
degree n. Optionally to integer conversion if boolean parameter

swint is set to true, it defaults to false.

Example E3

Here there are some examples that show how to construct Hadamard matrices using

the Kronecker product and the Switching tecnique.

H:=HadamardKroneckerSylvester(2);
H;
11 1 1]
1 -1 1 -1]
1 1 -1 -1]
1-1-1 1]
HadamardKronecker (H,H) ;
11 1 1 1 1 1]
-1 1-1 1-1 1-1]
1-1-1 1 1-1-1]
-1 -1 1 1-1-1 1]
1 1 1-1-1-1-1]
-1 1-1-1 1-1 1]
1 -1-1-1-1 1 1]
1-1-1 1-1 1 1-1]
g:=Random(Sym(4));
> 85
(1, 3, 2)
> HadamardKroneckerPermutation(H,H,g) ;
11 1 1 1 1 1 1]
1 -1 1-1 1-1 1-1]
i 1-1-1 1 1-1-1]
1-1-1 1 1-1-1 1]
11 1 1-1-1-1-1]
-1
1
-1

L i e

>
>
L
L
[
L
>
L
L
L
L
L
[
L
L
>

1 1-1 1-1-1 1]
-1 1-1-1 1-1 1]

L
L
L
L
L
L
L
(1 -1 1 1 1 1-1-1]
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:=VectorSpace(GF(2),48);

:=HadamardMatrixToCode (HadamardRankKernel (48,13,3));
:=C[5];

:=[1:j in [1..121];

:=[0:j in [1..36]1]1;

:=KernelZ2(C) ;

:=[k+w : k in KJ;

x:=V!Vector(a cat b);

IsHadamardCode (SwitchCode(C,S,x));

vV V vV VvV V V V V V
0 X o P =5 <

true

Example E4
This example shows how construct new Hadamard matrices given only the degree n,
all o one randomly; or given the degree n, rank r and kernel k, both to integer conversion

optionally.

> H:=HadamardAllRankKernel(16) ;
> H;
L
11 1 1 1 1 1
-1 1-1 1-1 1-1
1-1-1 1 1-1-1
-1-1 1 1-1-1 1
11 1-1-1-1-1
-1 1-1-1 1-1 1
1-1-1-1-1 1 1
-1-11-1 1 1-1 1-1-1 1-1 1 1-1]
i1 11111 1-1-1-1-1-1-1-1-1]
-1 1-1 1-1 1-1-1 1-1 1-1 1-1 1]
1-1-1 1 1-1-1-1-1 1 1-1-1 1 1]
-1-1 1 1-1-11-1 1 1-1-1 1 1-1]
i 1 1-1-1-1-1-1-1-1-1 1 1 1 1]
-1 1-1-1 1-1 1-1 1-1 1 1-1 1-1]
1-1-1-1-1 1 1-1-1 1 1 1 1-1-1]
-1-11-1 1 1-1-1 1 1-1 1-1-1 11,

11 1 1 1 1 1]
-1 1-1 1-1 1-1]
1-1-1 1 1-1-1]
-1 -1 1 1-1-1 1]

-1 1-1-1 1-1 1]

e i

rnr M M DD/
L e e i e e e T e i
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-1 1 -1]
1 -1 -1]

1
1

-1

1

[1-1
[1

1 1-1-1 1 1-1-1

1-1-1

1 1-1-1 1]
1-1-1-1-1]

1 -1 -1

1
1
1

1 1-1-1 1

[1-1-1

[1

1

1
-1

1-1-1-1-1

1

1

-1 1]

1]

1 -1]
1-1-1-1-1-1-1-1-1]

1

1-1-1

-1 1
1
-1

1

1-1-1

[1-1
[1

1

1-1-1-1-1

1
1
1

1-1-1-1-1

-1 1

1

1 -1 -1

-1 1

1

[1-1-1

[1
[1

1]
1]
1 -1]

1 1-1
-1

1-1-1-1

-1

1
1

1-1-1

1

1-1-1

1
1

1-1-1-1

-1

1

[1-1

1
1
-1

1 1-1-1 1-1 1 -1 -1

[1-1-1

[1
[1

1]
1 -1]
1 -1 -1]

1

1
1
1

1-1-1-1-1-1-1-1-1

1

1

1
1
-1

1-1 1-1-1 1
1-1-1-1 1 -1

1-1-1-1

1
1

-1

1

[1-1

11,

1 1-1-1

-1 1 1 -1 -1

1

[1-1-1

1]
1 -1]
1 -1 -1]

[1

-1

1
1

-1

1

[1-1
[1

i 1-1-1 1 1-1-1

1 -1 -1

1-1-1 1 1-1-1 1]
1-1-1-1-1]

1
1
1

1 1-1-1 1

[1-1-1

[1

1

1
-1

1-1-1-1-1

1

1

-1 1]

1]

1 -1]
1-1-1-1-1-1-1-1-1]

1

1-1-1

-1 1
1
-1

1

1-1-1

[1-1
[1

1

1-1-1-1-1

1
1
1

1-1-1-1-1

-1 1

1

1 -1 -1

-1 1

1

[1-1-1

[1

-1 1]
1]
1 -1]

1

1 1-1-1
1 -1

1-1-1

[1-1-1 1 1-1
-1 1

[1-1
[1
[1

1

1-1-1

1-1-1-1
1

1

1
1
-1

1 -1

1 -1 -1

1-1-1 1-1-1
1-1-1-1-1-1-1-1-1
1

1

1]
1 -1]
1 -1 -1]

1

1
1
1

1

-1

[1-1-1

[1-1
[1

1-1 1-1 1
1

1

1-1-1-1

1 1-1-1-1 1 1 -1 -1 11,

1 -1-1-1

1]

1-1-1-1-1]

[1

1
1

-1

1

[1-1
[1

1 -1]
1 -1 -1]

-1

1
1

-1

1-1-1 1-1
1

1

1 -1 -1

1-1-1

1 1-1-1 1

[1-1-1

[1

1 1-1-1 1]

1-1-1-1-1 1-1-1

1

1
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[t-+ ¢t -¢-1 1-1 1 1-1 1-1-11-1 1]
i1 1-1-1-1-1 111 1-1-1-1-1 1 1]
-1-11-1 1 1-1 1-1-1 1-1 1 1-1]
11111 1 1-1-1-1-1-1-1-1-1]
-1 1-11-1 1-1-1-1-1-1 1 1 1 1]
t1-1-111-1-1-11-1 1-1 1-1 1]
-1-1 1 1-1-1 1-1-1 1 1-1-1 1 1]
11 1-1-1-1-1-1 1 1-1-1 1 1-1]
-1 1-1-11-1 1-1 1-1 1 1-1 1-1]
t1-1-1-1-1 1 1-1-1 11 1 1-1-1]
-1-11-1 1 ¢1-1-1 1 1-1 1-1-1 17,

M o,
i

1 1 1
-1 1-1 -1 1 -1
1 -1 -1 1 -1 -1
-1-1 1 1-1-1 1
11 1-1-1-1-1

1 1 1 11 1 1 1 1 1]
-1 1-1 1-1 1-1]
1-1-1 1 1-1-1]
-1 -1 1 1-1-1 1]
11 1-1-1-1-1]
-1 1-1-1 1-1 1 -1 1-1-1 1-1 1]
1-1-1-1-1 1 1 1-1-1-1-1 1 1]
-1-11-1 1 1-1 1-1-1 1-1 1 1-1]
11111 1 1-1-1-1-1-1-1-1-1]
1-11-1-11-1-1-11-1 1 1-1 1]
i1 1-1-11-1-1-1-1-1 1 1-1 1 1]
1-1-11-1-1 1-1-1 1 1-1 1 1-1]
-11 1 1-1-1-1-11-1-1-1 1 1 1]
-1-11-11-1 1-1 1 1-1 1-1 1-1]
-1 1-1-1-1 1 1-1 1-1 1 1 1-1-1]
-1-1-1 11 1-1-1 1 1 1-1-1-1 1]

[ S

i

M ;M
e i e e e e T T T

]

> Hi:=HadamardAllRankKernel (16:swint:=true);

> Hi;

[ 47759223636507730209801550344371119078934783318887441289834004656231277002752,
47759237385870728625569392599528516546879602350522879431642977946653103357952,
450559613773892060943357638484549464480649734753943802275953748209515681130752,
47759223636507951964750638082846635227084035329193748005583684082487203069952,
51363605398648060560201326038917033511655159526839310082134710873913916260352 ]
> for i in [1..#H]do

> InvariantsRankKernelZ2(HadamardMatrixToCode(H[i]));
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8, 21

8, 11

for i in [1..#Hildo
InvariantsRankKernelZ2 (HadamardMatrixToCode (HadamardMatrixFromInteger (Hi[i],16)));

end for;

, 5]

, 31

, 2]

, 2]

, 1]

HadamardRankKernel (16,8,1);

it 11 1 1 1 1 1 1 1 1 1 1 1 1]

-1 1-1 1-1 1-1 -1 1-1 1-1 1-1]
1-1-1 1 1-1-1 1-1-1 1 1-1-1]

-1-1 1 1-1-1 1 -1 -1 1 1-1-1 1]
11 1-1-1-1-1 11 1-1-1-1-1]

-1 1-1-1 1-1 1 -1 1-1-1 1-1 1]
1-1-1-1-1 1 1 1 -1-1-1-1 1 1]

-1-11-1 1 1-1 1-1-1 1-1 1 1-1]
i 11 1 1 1 1-1-1-1-1-1-1-1-1]
1-11-1-11-1-1-11-1 1 1-1 1]
i 1-1-11-1-1-1-1-111-1 1 1]
1-1-1 1-1-11-1-1 1 1-1 1 1-1]

-1 11 1-1-1-1-11-1-1-1 1 1 1]

-1-11-11-11-1 1 1-1 1-1 1-1]

-1 1-1-1-111-11-1 1 1 1-1-1]

-1-1-1 11 1-1-1 1 1 1-1-1-1 1]

HadamardRankKernel (16,8,1:swint:=true);

51363605398648060560201326038917033511655159526839310082134710873913916260352

> HadamardRankKernel(16,8,1) eq\\

c 0 ~N O O»

i e

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

HadamardMatrixFromInteger (HadamardRankKernel(16,8,1:swint:=true),16);
true
> HadamardRankKernel (20,19,1);
[1 1 1 1 1 1 1 1 1 1 1 11 11 1 1 1 1 1]
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1]
1]
1 -1]

1 -1 -1 -1]

1i-1-1-1-1-1-1-1-1-1-1

1

1
1-1-1-1-1-1

-1
1-1-1-1-1

[1

1-1-1-1-1-1

1 1 1
1

1

1

1

[1

-1 1 -1

1
1

1-1-1-1-1-1
1

1 -1-1-1

1 -1 -1

-1

1

[1

1

1

1
1-1-1-1

1

[1

1 1 -1]
1 -1 -1]
1 -1 -1]

1
1
-1

1

-1

1
1

1-1-1-1

-1

1
1
-1
1

1
1
1

1
-1
1

[1-1

[1

1
1 -1 -1

1-1-1-1-1-1-1

1-1-1
1-1-1

1

1 -1]

1 -1 -1
1
1

1
-1
1-1-1

1 -1
1

1
1

[1 -1

1]

1 1-1-1
-1 1 -1 -1]

1-1-1

[1-1-1-1

[1

1 1
1
-1

1 -1 -1

1-1-1-1-1

-1 1 -1]
1 -1]

1

1
1

1
-1

1-1-1

1

[1-1-1
[1 -1

[1

1
1

1-1-1-1

1
1

1

1

1-1-1

1]

1-1-1 1-1-1

-1

1
1

1-1-1-1
1-1-1

1-1-1

1 -1
-1

1-1-1

-1

1
-1

[1-1-1

[1 -1

1

1-1-1-1 1
1 1 -1 -1

1-1-1-1-1

1-1-1 1
1-1-1
1

1

-1 1]

1]

1]
1-1-1-1-1-1]

1
1

1 -1-1
1-1-1

-1

-1

[1 -1

[1

-1 1
1

1

1
1-1-1

1
1-1-1

1-1-1-1

1-1-1

1

1
-1

1-1-1

[1-1-1

1

1

1

1

[1-1-1-1

> HadamardRankKernel (20,19,1:swint:=true);

25223937835263715470350932190029787546882139903965080362052812856254546081236/\\

80370995571103980967787230602651441655971840

> HadamardRankKernel (20,19,1) eq\\

HadamardMatrixFromInteger (HadamardRankKernel (20,19,1:swint:=true),20);

true

> HadamardRandomMatrix (16) ;

[1

1]

1-1-1-1-1-1-1-1-1]

1

1
1-1-1-1-1

[1

1-1-1-1-1]

1 1

1

1
1

1
1

[1

11 1 1]
1 -1 -1]

1
1 -1 -1

1-1-1-1-1-1-1-1-1

[1

i 1-1-1 1 1-1-1

1

1-1-1
1 -1-1

[1

1]

1
1

1
1-1-1-1-1

1-1-1-1-1

[1

1]

1 -1 -1]

1 1

1
1

1 -1-1-1-1

1-1-1-1-1

[1

1 1
1
-1

1

1-1-1

[1

1 -1]
1 -1]

-1

-1
-1

1
1

[1-1

1
1
1-1-1

1
1-1-1

1 -1 1
1-1-1 1
-1 1-1-1

1 -1 -1

[1 -1

1]

-1

1
1

1-1-1

1-1-1

[1 -1

1 1]

1

[1-1
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[1-1-1 1 1-1 1-1 1-1-11-1 1-1 1]

[1-1-1 1 1-1-1 1-1 1 1-1 1-1-1 1]

[1-1 -1 1-1 1 1-1-1 1-1 1 1-1 1-1]

[1-1-1 1-1 1-1 1 1-1 1-1-1 1 1-1]

> HadamardRandomMatrix (20:swint:=true);

25223937835263715470350932190029787546882139903965080362052812856254546081236/\\
80370995571103980967787230602651441655971840

8.5 Hadamard Database

[cCGHadamardDatabase () |

Returns the database of Hadamard matrices.



Bibliografia

1]

2]

3]

[4]

[5]

[6]

17l

E. F. Assmus Jr. i J. D. Key, Designs and their codes, Cambridge
University Press, 1992.

W. Bosma, J. J. Cannon, Handbook of Magma Functions, Syd-
ney: School of Mathematics and Statistics, University of Sydney
(1995) <http://magma.maths.usyd.edu.au>.

H. Evangelaras, C. Koukouvinos i J. Seberry, Applications of Ha-
damard matrices, Journal of Telecommunications and Informati-
on Technology (2003).

K. T. Fang i Gennian Ge, An efficient algorithm for the clas-
sification of Hadamard matrices, Technical Report MATH-298,
Hong Kong Baptist University, 2001.

K. T. Fang i Gennian Ge, A sensitive algorithm for detecting the
wnequivalence of Hadamard matrices, Mathematics of computati-
on, Vol. 73, No. 46 (2003) pp. 843-851.

L. Kotsireas, C. Koukouvinos, Hadamard ide-
als and inequivalent Hadamard matrices from
two  circulant  submatrices, updated ~ March  (2006)

<http://www.cargo.wlu.ca/circulantSubmatrices/ >.

F. J. MacWilliams i N. J. Sloane, The theory of Error-Correcting
codes, North-Holland, New York (1977).

135



136

8]

19]

[10]

[11]

[12]

BIBLIOGRAFIA

K. T. Phelps, J. Rifa i M. Villanueva, Rank and Kernel of binary
Hadamard codes, IEEE Transactions on Information Theory, Vol.
51, No. 11 (2005) pp. 3931-3937.

K. T. Phelps, J. Rifa i M. Villanueva, Hadamard codes of length
2's (s odd). Rank and Kernel, Lectures Notes in Computer Sci-
ence. 3857 (2006), 328-337.

M. Pujol, Rang i nucli de matrius Hadamard n = 2 en MAGMA,
Bellaterra (2006).

L. Rodriguez, Invariants de matrius Hadamard de mida n = 2's
en MAGMA, Bellaterra (2006).

E. Tressler, A survey of the Hadamard Conjecture, Blacksburg,
Virginia (2004).



Firmat: Francesc Diez Aquilué
Bellaterra, 19 de Setembre de 2007

137



Resum

L’objectiu d’aquest projecte ha estat generalitzar e integrar la funcio-
nalitat de dos projectes anteriors que ampliaven el tractament que oferia el
MAGMA respecte a les matrius de Hadamard. Hem implementat funcions ge-
nériques que permeten construir noves matrius Hadamard de qualsevol mida
per cada rang i dimensi6 de nucli, i aixi ampliar la seva base de dades. També
hem optimitzat la funcié que calcula el nucli, i hem desenvolupat funcions
que calculen la invariant Symmetric Hamming Distance Enumerator (SH-
DE) proposada per Kai-Tai Fang i Gennian Ge i que és més sensible per a

la detecci6 de la no equivaléncia de les matrius Hadamard.

Resumen

El objetivo de este proyecto ha sido generalizar e integrar la funcionali-
dad de dos proyectos anteriores que ampliaban el tratamiento que ofrecia el
MAGMA respecto a las matrices Hadamard. Hemos implementado funciones
genéricas que permiten construir nuevas matrices Hadamard de cualquier or-
den para cada rango y dimension de ntcleo, y asi ampliar su base de datos.
También hemos optimizado la funcién que calcula el ntcleo, y hemos des-
arrollado funciones que calculan el invariante Symmetric Hamming Distance
Enumerator (SHDE) propuesta por Kai-Tai Fang y Gennian Ge que es més

sensible en la deteccién de la no equivalencia de las matrices Hadamard.

Abstract

The aim of this project has been to generalize and to integrate the former
two projects’ functionality which extended MAGMA'’s treatement in relation
to Hadamard matrices. We have implemented generic functions that allow
us to construct new Hadamard matrices of any order for each possible pair
of rank and dimension of kernel, and thus to extend its database. We have
also optimized the function that computes the kernel, and we have develo-
ped functions that compute the Symmetric Hamming Distance Enumerator
invariant proposed by Kai-Tai Fang and Gennian Ge, which is more sensitive

for detecting the inequivalence of Hadamard matrices.



