RADIC I

A Fault Tolerant Architecture with
Flexible Dynamic Redundancy

By Guna Santos




Key Points

» The increasing number of applications demanding high
performance and availability (performability)

» Fault tolerance plays a major role in order to keep high
availability

> A fault tolerant solution must generates minimal
overhead in its activities, in order to not affect the
application performance

> After a fault ocurrence, some fault tolerant system
generate system degradation, affecting the performance.




Challenges

® To provide a fault tolerant solution able to mitigate or to
avoid the system degradation

> Restoring the system configuration

> Avoiding changes in humber of active nodes
> Allowing perform maintenance tasks, preventing faults




> Goals

» Fault Tolerance and the RADIC Architecture
» Recovery Side-Effect

> Protecting the System

> Implementation and Experimental Results

» Conclusions

> Future Work and Open Lines




® To incorporate the ability to control the system
degradation to a fault tolerant architecture with following
characteristics:

- Flexible, Decentralized, Transparent, Scalable

> To extend the functionality of this architecture
implementation




Approach

® Fault tolerant architecture
for message-passir

DifferentiEaradisims

v |t based on Rollb:
protocol

> |t creates a layer
application from 5ok
failures r




e

Approach

® Fault tolerant architecture

for message-passing systems
Parallel Application

° |t based on Rollback-recovery

<

“’ SHIE S

rotocol :
P Fault Masking Functions
° |t creates a layer isolating the : = —
au olerance runction

application from the cluster
failures

Parallel Computer Structure (Fault-probable)




Architec

» RADIC is a
architecture
passing systems

detect communication failures

> Two kind of process
perform the fault

toler~
e It performs fault detection tasks using

2 a heartbeat/watchdog scheme

O It stores the redundancy data
(checkpoints and logs)

e |t starts the recovery process

Caos



Architecture
» RADIC in Practice




Architecture

» RADIC functioning

®» Protectors establish
the heartbeat/
watchdog

» Observers connect
with Protectors

o |t sends . e d
checkpoints and
event logs

> |t manages the
message delivery
using the radictable

Caos



Architecture

® The recovery process
> N3 fails




Architecture

® The recovery process
> N3 fails

» T8 detects the faults and

waits the T4 and O4
connection

> T8 launches P3 using it
checkpoint

> O3 start the recovery
process of P3




Side-Effect

» The sytem configuration
was changed

» Processes P3 and P8
slowdown their activities

o Protector 17 now
protects two processes

> The memory usage
in N8 rises p

NO




Side-Effect

° In order to quantify these side-effects facing different
scenarios, we performed some experiments:

> We applied three variations of a matrix product
program:

> Dynamic M/VV — Loosely coupled

> SPMD — High coupling in all processes
> Static M/VV — High dependency.




Side- Effect Dynamic M/W — different number ot nodes

1000x1000 Matrix product in different cluster sizes- Dynamic distribution -100 loops -

1 fault at 25%

1 Without Faults
631,40 2.67%

M With Faults

=
o
£
[
c
2
3
@
i

8 Nodes
Cluster Size




“Rec
Side-Effect

SPMD — one fault in different moments

1500x1500 Matrix product using 9 nodes - SPMD cannon algorithm- 1 fault

160 loops ckpt each 60s

72,61%

i Without failures

M Failures without spare |

27,05%

50%
Fault moment




Side-Effect

Static M/W

1000x1000 Matrix product in different cluster sizes- Static distribution - 1 fault at 25%

 Without failures

. ¥ Failures wi pare

BNodes
Cluster Size




Side-Effect

Static M/W

1000x1000 Matrix product in different cluster siz
1600,0 100 loops - ckpt ea

Execution Time (s)

400

300 -

200 -

100 +

1000x1000 Matrix product with 8 nodes- Static distribution - 1 fault at 25%

100 loops - ckpt each 45s |

M Without faults

{ I M With Faults |
PO P1 P2 P3 P4 P5 P6 P7

Processes

M Failures without spare

E

i

Time (s)

73.07%

93.65%
.. 707,30
— 73.38%
00,0 - 324
000 |
0,0

4 Nodes

SNodes
Cluster Size

11 Nodes




the System

® We incorporate a new protection level in RADIC using a
dynamic redundancy functionality, allowing to mitigate or
to avoid the recovery side-effects
> Restoring the system configuration
> Avoiding system configuration changes

o Allowing to prevent faults
> It incorporates a transparent management of spare nodes
> It does not mantain any central information about the spare nodes

> The spare nodes use does not affect the scalability




the System

V) Restoring the
configuration

Insert a replacement node
running a protector in spare
mode

The Protector announces
itself by message forwarding
18 requests the new node
because it is overloaded
The new node incorporates
the protecting scheme

T8 tells to P3 to take its
checkpointin N9

118 commands 19 to

forwardinginforms thie new
spare state



Protecting
the System

» Avoiding changes in
number of active nodes

N9
Insert a new node
running a Protector in
spare mode (waiting a
request)
The spare Protector
announces itself by
message forwarding
Each Protector adds
the new spare in its

Spare Table

- 2 —
: m —




“Protecting
the System

» Recovering with spare
node

| /g ___|

18 detects a fault and Y

V.
connects to spare, )
activating it '

|t queries about its

state (if still is a spare)

|t commands the spare

to join to the

protecting scheme

©O4 also connects the

spare

18 sends the check-

point and log to spare
) 18 commands to




the System

V) Restoring the
configuration




the System

» Preventing Faults

/ * N3 is a fault probable
node
* Insert a spare node
» Oportuniscally inject a
fault in N3




“Protecting
the System

® Preventing Faults

R

N9

N3 is a fault probable

: -
o ®
Insert a spare node :

Oportuniscally inject a
fault in N3
P3 will recover in N9




Implementation

® We adapted the RADIC prototype (RADICMPI) in order
to incorporate the Flexible Dynamic Redundancy
> Creation of management functions
> Definition of a new protocol to communicate with spares

> Increment of communication between observers and local
protector

> Changes in the RADIC fault masking procedure including search in
the spare nodes




Implementation

> We also implemented a set of MPIl non-blocking functions,
allowing to run more kind of application

We take care about the fault tolerance issues

We had to change the message management kernel of RADICMPI
to deal with asynchronous communications

Other issues are solved too:

We changed the original message log approach of RADICMPI to an
event log approach in order to assure the determinism of the
rECOVEry Process.




Experiments Methodology

® We conduced two kind of experiments:

> Validation
° Spare adding task { Using the RADICMPI Debug Log

> Recovery task using spare Running a Ping-Pong program

> Evaluation

> According with the fault moment * Matrix Product — Static

. According with the number of nodes * Matrix Product — Dynamic

> Throughput behavior in * Matrix Product — SPMD
continuous running applications « N-Body simulation




Experiments Methodology

® Validation metodology

Define test Define expected 8 _ i Identlfles the Event
scenario Log results _ : .

Elapsed time since

Define Events to Rank of Observer/Protector
be logged

Internal Function trigg

Execute tests event

Description of the event

Analyze Debug Log




Experiment Design

» Evaluating according the fault moment

> The experiments were conduced in a twelve node cluster

> We executed a product of two |500x 1500 matrix using the
SPMD paradigm over 9 nodes and a product of two
1000x 1000 matrixes using a static distribution over | | nodes

> We injected one fault at 25%, 50% and 75%

b We measured the execution times in three situations
> Fault-free
> Without spare
> With spare




""" Experlmental Results

® Evaluating according with the fault moment

1500x1500 Matrix product using 9 nodes - SPMD cannon algorithm- 1 fault
160 loops -ckpt each 60s

72,61%  Without failures

M Failures without spare

49,37% id Failures with spare

27,05%
13,93% 14,19% 14,82%

50%
Fault moment




Experlmental Results

® Evaluating according with the fault moment

1000x1000 Matrix product using 11 nodes - Master/Worker static distribution - 1 fault
160 loops - ckpt each 60s

 Without falures

H Failures without spare

i Failures with spare

0%

Fault moment




Experiment Design

> Evaluating according the number of nodes
> The experiments were conduced in a twelve node cluster

> We executed a product of two 1000x 1000 matrix using a dynamic
distribution and a product of two 1000x 1000 matrixes using a
static distribution

> We injected one fault at 25%

> We ran the programs over three cluster sizes
> 4 nodes + spare
> 8 nodes + spare
> |l nodes + spare
o VWe measured the execution times in three situations
. Fault-free
> Without spare
> With spare




Experlmental Results

® Evaluating according with the number of nodes

1000x1000 Matrix product in different cluster sizes- Static distribution - 1 fault at 25%
100loops - ckpt each 45s

M Without failures

M Failures without spare

i Failures with spare

8 Nodes
Cluster Size




Experlmental Results

® Evaluating according with the number of nodes

1000x1000 Matrix product in different cluster sizes- Dynamic distribution -100 loops -

1 fault at 25%

2.67% 3.24% 1 Without failures
631,40

M Failures without spare

i Failures with spare

271'80413(}7—9&0113%

196,70 0-07% g g4

4 Nodes 8 Nodes 11 Nodes
ClusterSize




Experimental Results

® We implemented a N-Body simulation in order to study
the behavior of our solution over continuous running
applications




Experimental Results

® We implemented a N-Body simulation in order to study
the behavior of our solution over continuous running
applications




Experiment Design

> Throughput of 24x7 applications

> We executed this application simulating 2000 particles in a
ten node pipeline

> We measured the throughput (in simulation steps per
minute) in four scenarios
> Fault-free
> Injecting three faults without spare:
. Processes recovering in different nodes
> Process recovering in same node without spare

> Injecting three faults using two initial spares and re-insert a
“repaired” one after the first fault.

Caos




Experlmental Results

® Throughput of 24x7 applicai

N-Body Simulatiopof 200¢ A Jeks deddisisosidd Hpeline
without affects the

performance

caused by:

-Moement of fault (large
log to process)

-No optimized code

Simulation Steps per minute

=>&=Fault Free

—s=— Different Nodes

—e—Same Nodes

—4— Using Spare

123456 7 8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950515253
Elapsed time (in minutes)




Conclusions

® We implemented a dynamic redundancy functionality that
avoids or mitigates the recovery side-effects

» This functionality is flexible because

- It allows system configuration restablishment by dynamic insertion
of spare nodes - RESTORING

o It allows a transparent management of the spare nodes use -
AVOIDING

o It incorporates a maintenance feature that also allows to

prevent failures by replacing fault-probable nodes —
PREVENTING

o Configurable, allowing from 0 to N number: of spares

> We extend the RADICMPI functionality, implementing a set of

MPI non-blocking functions
Caos

L




Conclusions

® Our results show the benefits of the dynamic redundancy
solution in different scenarios.

» The results also show a strong dependency between the

recovery side-effects and the application characteristics
and how we can adapt to each one.




Future Work

® To study the spare nodes allocating facing factors like
degradation level acceptable or memory limits of a node

> To integrate a fault prediction mechanism in the
maintenance feature

> To continue expanding the RADICMPI functionality




Open Lines

® To investigate how adapt and use RADIC Il with new
HPC trends like the clusters of multicore computers.

® To achieve a RADIC || analytical model, allowing to
determine better parameter values.

> To develop a RADIC Il simulator allowing to assess its
behavior in large clusters

> To incorporate other features towards an autonomic
fault tolerant system.




Thank you




