
A Fault Tolerant Architecture with A Fault Tolerant Architecture with
Flexible Dynamic RedundancyFlexible Dynamic Redundancy

By Guna SantosBy Guna Santos

caos

Key PointsKey Points
The increasing number of applications demanding high The increasing number of applications demanding high
performance and availability (performance and availability (performability)performability)
Fault tolerance plays a major role in order to keep high Fault tolerance plays a major role in order to keep high
availabilityavailability
A fault tolerant solution must A fault tolerant solution must generatesgenerates minimal minimal
overhead in its activities, in order to not affect the overhead in its activities, in order to not affect the
application performanceapplication performance
After a fault ocurrence, some fault tolerant system After a fault ocurrence, some fault tolerant system
generate system degradation, affecting the performance.generate system degradation, affecting the performance.

2

caos

ChallengesChallenges
To provide a fault tolerant solution able to mitigate or to To provide a fault tolerant solution able to mitigate or to
avoid the system degradationavoid the system degradation

Restoring the system configuration Restoring the system configuration
Avoiding changes in number of active nodesAvoiding changes in number of active nodes
Allowing perform maintenance tasks, preventing faultsAllowing perform maintenance tasks, preventing faults

3

caos

ContentsContents
GoalsGoals
Fault Tolerance and the RADIC ArchitectureFault Tolerance and the RADIC Architecture
Recovery SideRecovery Side--EffectEffect
Protecting the SystemProtecting the System
Implementation and Experimental ResultsImplementation and Experimental Results
ConclusionsConclusions
Future Work and Open LinesFuture Work and Open Lines

4

caos

GoalsGoals
To incorporate the ability to control the system To incorporate the ability to control the system
degradation to a fault tolerant architecture with following degradation to a fault tolerant architecture with following
characteristics:characteristics:

Flexible, Decentralized, Transparent, ScalableFlexible, Decentralized, Transparent, Scalable

To extend the functionality of this architecture To extend the functionality of this architecture
implementationimplementation

5

caos

A Fault Tolerance A Fault Tolerance
ApproachApproach

Fault tolerant architecture Fault tolerant architecture
for messagefor message--passing systemspassing systems
It based on RollbackIt based on Rollback--recovery recovery
protocolprotocol
It creates a layer isolating the It creates a layer isolating the
application from the cluster application from the cluster
failuresfailures

Parallel Computer Structure (FaultParallel Computer Structure (Fault--probable)probable)

MessageMessage--passing Standardpassing Standard

Parallel ApplicationParallel Application

Different ParadigmsDifferent Paradigms

P P P

P P P

P P P

P P P

P P P

P P P

SPMDSPMD

Master/WorkeMaster/Worke
rr

M

W W W W

M

W W W W

P

6

caos

Parallel ApplicationParallel ApplicationParallel ApplicationParallel Application

A Fault Tolerance A Fault Tolerance
ApproachApproach

Parallel Computer Structure (FaultParallel Computer Structure (Fault--probable)probable)

Fault Masking Functions

Message-passing Standard

Fault Tolerance Functions

Fault tolerant architecture Fault tolerant architecture
for messagefor message--passing systemspassing systems
It based on RollbackIt based on Rollback--recovery recovery
protocolprotocol
It creates a layer isolating the It creates a layer isolating the
application from the cluster application from the cluster
failuresfailures

7

caos

The RADIC The RADIC
ArchitectureArchitecture

NodeNode
RADIC is a fault tolerant RADIC is a fault tolerant
architecture for messagearchitecture for message--
passing systemspassing systems

Two kind of process Two kind of process
perform the fault perform the fault
tolerance activitiestolerance activities

ProtectorsProtectors
ObserversObservers

ProtectProtect
oror

ObserverObserver

ApplicationApplication
ProcessProcess

•• It performs fault detection tasks using It performs fault detection tasks using
a heartbeat/watchdog schemea heartbeat/watchdog scheme

•• It stores the redundancy data It stores the redundancy data
(checkpoints and logs)(checkpoints and logs)

•• It starts the recovery processIt starts the recovery process

• It manages the communications
between processes

• It takes checkpoints and event logs
and sends to storage

• It masks the faults using a table of the
processes.

• It detect communication failures

8

caos

The RADIC The RADIC
ArchitectureArchitecture

RADIC in PracticeRADIC in Practice NodeNode

ProtectProtect
oror

ObserverObserver

Application
Process

9

caos

The RADIC The RADIC
ArchitectureArchitecture

RADIC functioningRADIC functioning
Protectors establish Protectors establish
the heartbeat/ the heartbeat/
watchdogwatchdog
Observers connect Observers connect
with Protectorswith Protectors

It sends It sends
checkpoints and checkpoints and
event logsevent logs
It manages the It manages the
message delivery message delivery
using the using the radictableradictable

N1N1

T1T1

O1O1

P1P1

N0N0

T0T0

O0O0

P0P0

N2N2

T2T2

O2O2

P2P2

CommunicationsCommunications

10

caos

The RADIC The RADIC
ArchitectureArchitecture

The recovery processThe recovery process
N3 failsN3 fails

N1N1

T1T1

O1O1

P1P1

N0N0

T0T0

O0O0

P0P0

N2N2

T2T2

O2O2

P2P2

N4N4

T4T4

O4O4

P4P4

N3N3

T3T3

O3O3

P3P3

N5N5

T5T5

O5O5

P5 P5

N7N7

T7T7

O7O7

P7P7

N6N6

T6T6

O6O6

P6P6

N8N8

T8T8

O8O8

P8P8

11

caos

The RADIC The RADIC
ArchitectureArchitecture

The recovery processThe recovery process
N3 failsN3 fails
T8 detects the faults and T8 detects the faults and
waits the T4 and O4 waits the T4 and O4
connectionconnection
T8 launches P3T8 launches P3 using itusing it
checkpoint checkpoint
O3 start the recovery O3 start the recovery
process of P3process of P3

N1N1

T1T1

O1O1

P1P1

N0N0

T0T0

O0O0

P0P0

N2N2

T2T2

O2O2

P2P2

N4N4

T4T4

O4O4

P4P4

N5N5

T5T5

O5O5

P5 P5

N7N7

T7T7

O7O7

P7P7

N6N6

T6T6

O6O6

P6P6

N8N8

T8T8

O8O8

P8P8O8O8

P8P8

O3O3

P3P3

12

caos

Recovery Recovery
SideSide--EffectEffect

The sytem configurationThe sytem configuration
was changedwas changed

Processes P3Processes P3 and P8and P8
slowdown their activitiesslowdown their activities
Protector T7 now Protector T7 now
protects two processesprotects two processes
The memory usageThe memory usage
in N8 risesin N8 rises N1N1

T1T1

O1O1

P1P1

N0N0

T0T0

O0O0

P0P0

N2N2

T2T2

O2O2

P2P2

N7N7

T7T7

O7O7

P7P7

N6N6

T6T6

O6O6

P6P6

N8N8

T8T8

N4N4

T4T4

O4O4

P4P4

O8O8

P8P8

O3O3

P3P3

N5N5

T5T5

O5O5

P5 P5

13

caos

Recovery Recovery
SideSide--EffectEffect

In order to quantify these sideIn order to quantify these side--effects facing different effects facing different
scenarios, we performed some experiments:scenarios, we performed some experiments:

We applied three variations of a matrix product We applied three variations of a matrix product
program:program:

Dynamic M/W Dynamic M/W –– Loosely coupledLoosely coupled
SPMD SPMD –– High coupling in all processesHigh coupling in all processes
Static M/W Static M/W –– High dependency High dependency

14

caos

Recovery Recovery
SideSide--EffectEffect Dynamic M/W Dynamic M/W –– different number of nodesdifferent number of nodes

15

M

W W W W

caos

Recovery Recovery
SideSide--EffectEffect SPMD SPMD –– one fault in different momentsone fault in different moments

16

P P P

P P P

P P P

caos

Recovery Recovery
SideSide--EffectEffect

Static M/WStatic M/W

17

caos

Recovery Recovery
SideSide--EffectEffect

Static M/WStatic M/W

18

0

100

200

300

400

500

600

P0 P1 P2 P3 P4 P5 P6 P7

Ex
ec
ut
io
n
Ti
m
e
(s
)

Processes

1000x1000 Matrix product with 8 nodes‐ Static distribution ‐ 1 fault at 25%
100 loops ‐ ckpt each 45s

Without faults

With Faults

caos

Protecting Protecting
the Systemthe System

We incorporate a new protection level in RADIC using a We incorporate a new protection level in RADIC using a
dynamic redundancy functionality, allowing to mitigate or dynamic redundancy functionality, allowing to mitigate or
to avoid the recovery sideto avoid the recovery side--effectseffects

Restoring the system configurationRestoring the system configuration
Avoiding system configuration changesAvoiding system configuration changes
Allowing to prevent faultsAllowing to prevent faults

It incorporates a transparent management of It incorporates a transparent management of spare nodesspare nodes
It does not mantain any central information about the spare nodeIt does not mantain any central information about the spare nodess
The spare nodes use does not affect the scalabilityThe spare nodes use does not affect the scalability

19

caos

Protecting Protecting
the Systemthe System

Restoring the Restoring the
configurationconfiguration

N1N1

T1T1

O1O1

P1P1

N0N0

T0T0

O0O0

P0P0

N2N2

T2T2

O2O2

P2P2

N7N7

T7T7

O7O7

P7P7

N6N6

T6T6

O6O6

P6P6

N8N8

T8T8

N4N4

T4T4

O4O4

P4P4

O8O8

P8P8

O3O3

P3P3

N5N5

T5T5

O5O5

P5 P5

N9N9

T9T9T9T9

O3O3

P3P3

20

caos

Protecting Protecting
the Systemthe System

Avoiding changes in Avoiding changes in
number of active nodesnumber of active nodes

N1N1

T1T1

O1O1

P1P1

N0N0

T0T0

O0O0

P0P0

N2N2

T2T2

O2O2

P2P2

N4N4

T4T4

O4O4

P4P4

N3N3

T3T3

O3O3

P3P3

N5N5

T5T5

O5O5

P5 P5

N7N7

T7T7

O7O7

P7P7

N6N6

T6T6

O6O6

P6P6

N8N8

T8T8

O8O8

P8P8

N9N9

T9T9

21

caos

Protecting Protecting
the Systemthe System

Recovering with spare Recovering with spare
nodenode

N1N1

T1T1

O1O1

P1P1

N0N0

T0T0

O0O0

P0P0

N2N2

T2T2

O2O2

P2P2

N4N4

T4T4

O4O4

P4P4

N5N5

T5T5

O5O5

P5 P5

N7N7

T7T7

O7O7

P7P7

N6N6

T6T6

O6O6

P6P6

N8N8

T8T8

O8O8

P8P8

N9N9

T9T9T9T9

O3O3

P3P3

22

caos

Protecting Protecting
the Systemthe System

Restoring the Restoring the
configurationconfiguration

N1N1

T1T1

O1O1

P1P1

N0N0

T0T0

O0O0

P0P0

N2N2

T2T2

O2O2

P2P2

N4N4

T4T4

O4O4

P4P4

N5N5

T5T5

O5O5

P5 P5

N7N7

T7T7

O7O7

P7P7

N6N6

T6T6

O6O6

P6P6

N8N8

T8T8

O8O8

P8P8

N9N9

O3O3

P3P3

N10N10

T10T10

T9T9

23

caos

Protecting Protecting
the Systemthe System

Preventing FaultsPreventing Faults

N1N1

T1T1

O1O1

P1P1

N0N0

T0T0

O0O0

P0P0

N2N2

T2T2

O2O2

P2P2

N4N4

T4T4

O4O4

P4P4

N3N3

T3T3

O3O3

P3P3

N5N5

T5T5

O5O5

P5 P5

N7N7

T7T7

O7O7

P7P7

N6N6

T6T6

O6O6

P6P6

N8N8

T8T8

O8O8

P8P8

N9N9

T9T9

24

caos

Protecting Protecting
the Systemthe System

Preventing FaultsPreventing Faults

N1N1

T1T1

O1O1

P1P1

N0N0

T0T0

O0O0

P0P0

N2N2

T2T2

O2O2

P2P2

N4N4

T4T4

O4O4

P4P4

N5N5

T5T5

O5O5

P5 P5

N7N7

T7T7

O7O7

P7P7

N6N6

T6T6

O6O6

P6P6

N8N8

T8T8

O8O8

P8P8

N9N9

T9T9T9T9

O3O3

P3P3

25

caos

ImplementationImplementation
We adapted the RADIC prototype (RADICMPI) in order We adapted the RADIC prototype (RADICMPI) in order
to incorporate the Flexible Dynamic Redundancyto incorporate the Flexible Dynamic Redundancy

Creation of management functions Creation of management functions
Definition of a new protocol to communicate with sparesDefinition of a new protocol to communicate with spares
Increment of communication between observers and local Increment of communication between observers and local
protectorprotector
Changes in the RADIC fault masking procedure including search inChanges in the RADIC fault masking procedure including search in
the spare nodesthe spare nodes

26

caos

ImplementationImplementation
We also implemented a set of MPI nonWe also implemented a set of MPI non--blocking functions, blocking functions,
allowing to run more kind of applicationallowing to run more kind of application

We take care about the fault tolerance issuesWe take care about the fault tolerance issues
We had to change the message management kernel of RADICMPI We had to change the message management kernel of RADICMPI
to deal with asynchronous communicationsto deal with asynchronous communications
Other issues are solved too:Other issues are solved too:
We changed the original message log approach of RADICMPI to an We changed the original message log approach of RADICMPI to an
event log approach in order to assure the determinism of the event log approach in order to assure the determinism of the
recovery process.recovery process.

27

caos

Experiments MethodologyExperiments Methodology
We conduced two kind of experiments:We conduced two kind of experiments:

ValidationValidation
Spare adding taskSpare adding task
Recovery task using spareRecovery task using spare

EvaluationEvaluation
According with the fault momentAccording with the fault moment
According with the number of nodesAccording with the number of nodes
Throughput behavior in Throughput behavior in
continuous running applicationscontinuous running applications

•• Matrix Product Matrix Product –– StaticStatic

•• Matrix Product Matrix Product –– DynamicDynamic

•• Matrix Product Matrix Product –– SPMDSPMD

•• NN--Body simulationBody simulation

Using the RADICMPI Debug LogUsing the RADICMPI Debug Log

Running a PingRunning a Ping--Pong programPong program

28

caos

Experiments MethodologyExperiments Methodology
Validation metodologyValidation metodology

29

caos

Experiment DesignExperiment Design
Evaluating according the fault momentEvaluating according the fault moment

The experiments were conduced in a twelve node clusterThe experiments were conduced in a twelve node cluster
We executed a product of two 1500x1500 matrix using the We executed a product of two 1500x1500 matrix using the
SPMD paradigm over 9 nodes and a product of two SPMD paradigm over 9 nodes and a product of two
1000x1000 matrixes using a static distribution over 11 nodes1000x1000 matrixes using a static distribution over 11 nodes
We injected one fault at 25%, 50% and 75%We injected one fault at 25%, 50% and 75%
We measured the execution times in three situationsWe measured the execution times in three situations

FaultFault--freefree
Without spareWithout spare
With spareWith spare

30

caos

Experimental ResultsExperimental Results
Evaluating according with the fault momentEvaluating according with the fault moment

434,57 434,57 434,57

72,61%

49,37%

27,05%

13,93% 14,19% 14,82%

0,0

100,0

200,0

300,0

400,0

500,0

600,0

700,0

800,0

25% 50% 75%

Ti
m
e
(s
)

Fault moment

1500x1500 Matrix product using 9 nodes ‐ SPMD cannon algorithm‐ 1 fault
160 loops ‐ckpt each 60s

Without failures

Failures without spare

Failures with spare

31

caos

Experimental ResultsExperimental Results
Evaluating according with the fault momentEvaluating according with the fault moment

32

caos

Experiment DesignExperiment Design
Evaluating according the number of nodesEvaluating according the number of nodes

The experiments were conduced in a twelve node clusterThe experiments were conduced in a twelve node cluster
We executed a product of two 1000x1000 matrix using a dynamic We executed a product of two 1000x1000 matrix using a dynamic
distribution and a product of two 1000x1000 matrixes using a distribution and a product of two 1000x1000 matrixes using a
static distributionstatic distribution
We injected one fault at 25%We injected one fault at 25%
We ran the programs over three cluster sizesWe ran the programs over three cluster sizes

4 nodes + spare4 nodes + spare
8 nodes + spare8 nodes + spare
11 nodes + spare11 nodes + spare

We measured the execution times in three situationsWe measured the execution times in three situations
FaultFault--freefree
Without spareWithout spare
With spareWith spare

33

caos

Experimental ResultsExperimental Results
Evaluating according with the number of nodesEvaluating according with the number of nodes

34

caos

Experimental ResultsExperimental Results
Evaluating according with the number of nodesEvaluating according with the number of nodes

35

caos

Experimental ResultsExperimental Results
We implemented a NWe implemented a N--Body simulation in order to study Body simulation in order to study
the behavior of our solution over continuous running the behavior of our solution over continuous running
applicationsapplications

P P P P

36

caos

Experimental ResultsExperimental Results
We implemented a NWe implemented a N--Body simulation in order to study Body simulation in order to study
the behavior of our solution over continuous running the behavior of our solution over continuous running
applicationsapplications

P P P P

37

caos

Experiment DesignExperiment Design
Throughput of 24x7 applications Throughput of 24x7 applications

We executed this application simulating 2000 particles in a We executed this application simulating 2000 particles in a
ten node pipelineten node pipeline
We measured the throughput (in simulation steps per We measured the throughput (in simulation steps per
minute) in four scenariosminute) in four scenarios

FaultFault--freefree
Injecting three faults without spare:Injecting three faults without spare:

Processes recovering in different nodesProcesses recovering in different nodes
Process recovering in same node without spareProcess recovering in same node without spare

Injecting three faults using two initial spares and reInjecting three faults using two initial spares and re--insert a insert a
““repairedrepaired”” one after the first fault.one after the first fault.

38

caos0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

Si
m
ul
at
io
n
St
ep

s
pe

r m
in
ut
e

Elapsed time (in minutes)

N‐Body Simulation of 2000 particles in a 10 nodes pipeline
with 3 faults

Fault Free

Different Nodes

Same Nodes

Using Spare

Experimental ResultsExperimental Results
Throughput of 24x7 applications with three faults Throughput of 24x7 applications with three faults

A spare node is inserted A spare node is inserted
without affects the without affects the

performanceperformance

Recovery overhead Recovery overhead
caused by:caused by:
--Moment of fault (large Moment of fault (large
log to process)log to process)
--No optimized codeNo optimized code

39

caos

ConclusionsConclusions
We implemented a dynamic redundancy functionality that We implemented a dynamic redundancy functionality that
avoids or mitigates the recovery sideavoids or mitigates the recovery side--effectseffects
This functionality is flexible becauseThis functionality is flexible because

It allows system configuration restablishment by dynamic insertiIt allows system configuration restablishment by dynamic insertion on
of spare nodes of spare nodes -- RESTORINGRESTORING
It allows a transparent management of the spare nodes use It allows a transparent management of the spare nodes use --
AVOIDINGAVOIDING
It incorporates a It incorporates a maintenancemaintenance feature that also allows to feature that also allows to
prevent failures by replacing faultprevent failures by replacing fault--probable nodes probable nodes ––
PREVENTINGPREVENTING
Configurable, allowing from 0 to N number of sparesConfigurable, allowing from 0 to N number of spares

We extend the RADICMPI functionality, implementing a set of We extend the RADICMPI functionality, implementing a set of
MPI nonMPI non--blocking functionsblocking functions

40

caos

ConclusionsConclusions
Our results show the benefits of the dynamic redundancy Our results show the benefits of the dynamic redundancy
solution in different scenarios.solution in different scenarios.
The results also show a strong dependency between the The results also show a strong dependency between the
recovery siderecovery side--effects and the application characteristics effects and the application characteristics
and how we can adapt to each one.and how we can adapt to each one.

41

caos

Future WorkFuture Work
To study the spare nodes allocating facing factors like To study the spare nodes allocating facing factors like
degradation level acceptable or memory limits of a nodedegradation level acceptable or memory limits of a node
To integrate a fault prediction mechanism in the To integrate a fault prediction mechanism in the
maintenance featuremaintenance feature
To continue expanding the RADICMPI functionalityTo continue expanding the RADICMPI functionality

42

caos

Open LinesOpen Lines
To investigate how adapt and use RADIC II with new To investigate how adapt and use RADIC II with new
HPC trends like the clusters of multicore computers.HPC trends like the clusters of multicore computers.
To achieve a RADIC II analytical model, allowing to To achieve a RADIC II analytical model, allowing to
determine better parameter values.determine better parameter values.
To develop a RADIC II simulator allowing to assess its To develop a RADIC II simulator allowing to assess its
behavior in large clustersbehavior in large clusters
To incorporate other features towards an autonomic To incorporate other features towards an autonomic
fault tolerant system.fault tolerant system.

43

