

Departament d'Arquitectura de Computadors i

Sistemes Operatius

Màster en Computació d'Altes Prestacions

System Analysis of a Peer-to-Peer Video-on-

Demand Architecture: Kangaroo

2008

Memoria del trabajo de investigación
del “Máster en Computación de Altas
Prestaciones”, realizada por ALVARO
CHALAR ZÚÑIGA, bajo la dirección
de ANA RIPOLL Presentada en la
Escuela Técnica Superior de Ingeniería
(Departamento de Arquitectura de
Computadores y Sistemas Operativos)

Trabajo de investigación

Máster en Computación de Altas Prestaciones

Curso 2007-08

Título System Analysis of a Peer-to-Peer Video-on-Demand Architecture:
 Kangaroo

 Autor: Alvaro Chalar Zúñiga

Director: Ana Ripoll

Departamento Arquitectura de Computadores y Sistemas Operativos

Escuela Técnica Superior de Ingeniería (ETSE)

Universidad Autónoma de Barcelona

Firmado

Autor Director

A Zeynep…

…por aguantar todas mis manías

Çok teşekkür ederim!

I

Acknowledgments

First and foremost I want to thank to Emilio Luque and Dolores Rexachs (a.k.a

Lola) for opening the ETSE doors for me and receiving me with their arms open.

I also want to show my appreciation to my tutor Ana Ripoll and Porfidio

Hernández for their valuable help and guidance during the development of this

dissertation.

Special thanks to Xiaoyuan Yang at Telefónica for making me see what brain-

storming really is and for helping me with the conclusion of this work.

To all my friends at the CAOS Department, thank you for making me feel like

home from day one, or maybe two…well you got the point!

Last but not least, to my wonderful family and friends spread around the

world. I am grateful for your endless love and support; and for making

distance……”transparent to the user”.

Muchas gracias,

Alvaro

II

III

Abstract

Architectural design and deployment of Peer-to-Peer Video-on-Demand (P2P-
VoD) systems which support VCR functionalities is attracting the interest of an
increasing number of research groups within the scientific community;
especially due to the intrinsic characteristics of such systems and the benefits
that peers could provide at reducing the server load. This work focuses on the
performance analysis of a P2P-VoD system considering user behaviors obtained
from real traces together with other synthetic user patterns. The experiments
performed show that it is feasible to achieve a performance close to the best
possible. Future work will consider monitoring the physical characteristics of
the network in order to improve the design of different aspects of a VoD system.

Resum

El diseny arquitectònic i el desplegament de sistemes de Video Sota Demanda
"Peer-to-Peer" que soporten funcionalitats VCR està captant l'interès d'un
nombre creixent de grups de recerca a la comunitat científica, degut
especialment a les caracteristiques intrinsiques dels mencionats sistemes i als
beneficis que els peers podrien proporcionar a la reducció de la càrrega en el
servidor. Aquest treball tracta l'analisis del rendiment d'un sistema P2P-VoD
considerantel comportament d'usuaris obtingut amb traçes reals i amb patrons
sintètics. Els experiments realitzats mostren que es viable asolir un rendiment
proper al cas més óptim. Com treball futur es considerarà la monitorització de
les caracteristiques físiques de la xarxa per a poder millorar el diseny dels
diferents aspectes que formen un sistema de VoD.

Resumen

El diseño arquitectónico y el despliegue de sistemas de Video bajo Demanda
“Peer-to-Peer” que soportan funcionalidades VCR está captando el interés de un
número creciente de grupos de investigación dentro de la comunidad científica;
especialmente debido a las características intrínsecas de tales sistemas y a los
beneficios que los peers podrían proporcionar en la reducción de la carga en el
servidor. Este trabajo se enfoca en el análisis de rendimiento de un sistema P2P-
VoD considerando el comportamiento de usuarios obtenido de trazas reales,
junto a otros patrones sintéticos. Los experimentos realizados muestran que es
viable lograr un rendimiento cercano al caso más óptimo. El trabajo futuro
considerará la monitorización de las características físicas de la red para poder
mejorar el diseño de los diferentes aspectos que conforman un sistema de VoD.

IV

V

Contents

Peer-to-Peer Video-on-Demand Systems .. 1

1.1 Introduction .. 3

1.2 P2P Live Streaming ... 4

1.2.1 Tree-based systems ... 5

1.2.2 Mesh-based systems .. 8

1.3 P2P Video-on-Demand .. 10

1.3.1 Tree-based P2P VoD ... 12

1.3.2 Mesh-based P2P-VoD ... 13

1.4 Design issues in P2P-VoD systems .. 14

1.4.1 Major System Components .. 14

1.4.2 Segment sizes ... 14

1.4.3 Replication Strategy ... 15

1.4.4 Content Discovery .. 15

1.4.5 Piece selection .. 16

1.5.6 Transmission Strategy .. 16

1.5 Current Approaches to P2P-VoD systems ... 16

1.6 Objectives of the dissertation ... 19

1.7 Dissertation Organization... 20

Kangaroo ... 23

2.1 Introduction ... 25

2.1.1 Tracker Modules .. 26

VI

2.1.2 Peer Core Modules ... 27

2.1.3 Metadata Generation .. 33

2.2 Communication Protocol .. 33

2.2.1 Tracker - Peer communication protocol ... 33

2.2.2 Communication protocol amongst peers .. 36

2.3 Block Diagram .. 40

User Behavior Analysis in Imagenio ... 41

3.1 Introduction ... 43

3.2 Imagenio VoD Traces .. 45

3.3 Workload Testing .. 50

Experimentation ... 55

4.1 Introduction ... 56

4.2 Experiments .. 56

4.2.1 Sequential Playback ... 57

4.2.2 Random and Anchor Jumps ... 60

4.2.3 Imagenio Traces ... 61

4.2.4 Tracker Load .. 62

Conclusions .. 65

5.1 Conclusions ... 67

5.2 Future Lines of Research .. 68

References .. 69

VII

List of Figures

Figure 1.1 – Application Layer Multicast P2P video streaming 6

Figure 1.2 – Multi-tree based streaming ... 8

Figure 1.3 – Application Layer Multicast - P2Cast policy 12

Figure 2.1 – Collaboration neighborhoods in Kangaroo 25

Figure 2.2 – Segment scheduling .. 30

Figure 2.3 – Content announcement message format ... 34

Figure 2.4 – Peer search message format .. 35

Figure 2.5 – Reply message format to a peer search ... 35

Figure 2.6 –Message format for statistical information request 36

Figure 2.7 – Content announcement message format ... 36

Figure 2.8 – Control protocol between peers .. 37

Figure 2.9 – Data exchange protocol .. 39

Figure 2.10 – Block diagram of Kangaroo .. 40

Figure 3.1 – Imagenio Network Architecture ... 44

Figure 3.2 – Imagenio VoD traces video length ... 46

Figure 3.3 – Markov model of expected user behavior 47

Figure 3.4 – Original entry of traces ... 47

Figure 3.5 – Parsed traces containing a subset of interest 48

VIII

Figure 3.6 – Data for movies larger than 10 minutes .. 49

Figure 3.7 – Setup delay time for user arrival patterns: (a) flash-crowd and (b)
batched-join ... 51

Figure 3.8 – Load expected at the source .. 52

Figure 4.1 – Playback rate obtained for flash-crowd arrival pattern 57

Figure 4.2 – System throughput during flash-crowd arrival pattern 58

Figure 4.3 – Playback rate obtained for batched-join arrival pattern 59

Figure 4.4 – Kangaroo’s performance related to source capacity 59

Figure 4.5 – Kangaroo’s performance with jump operations 60

Figure 4.6 – Kangaroo’s performance using Imagenio traces 61

Figure 4.7 – Threshold values for the neighborhood health factor 62

Figure 4.8 – Demand at the source for different workloads and user arrivals 63

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

1

Chapter 1

Peer-to-Peer Video-on-Demand Systems

Abstract

This chapter introduces the Peer-to-Peer (P2P) paradigm in Video-on-

Demand (VoD) systems. It describes existing P2P media streaming

systems, more specifically P2P Live Streaming and Video-on-Demand

systems, providing a comparison of design requirements that influence

their system architecture. A study of the most important challenges,

current approaches for providing P2P-VoD services and how these

systems manage to implement VCR functionalities is also presented along

with their pros and cons. The chapter ends presenting the objectives of

this dissertation.

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

 2

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

3

1.1 Introduction

Peer-to-peer (P2P) systems have emerged as a new paradigm and have become

very successful in distributing content by encouraging an important number of

users to behave as both clients and servers, commonly known as peers. A peer is

considered to be a provider and a consumer of resources, bringing along serving

capacity into the system. These systems significantly reduce the load in the

server, proving to be highly scalable when various peers have common media

interests.

Unlike client-server based schemes, P2P systems are distributed systems

consisting of nodes interconnected with each other, able to self organize into

network topologies in order to share resources like content, bandwidth, CPU

cycles and storage.

P2P technologies were designed initially for generic file distribution, such as the

popular BitTorrent [1] and Emule [2] applications. In these file sharing

applications, users need to wait until the complete video is downloaded in order

to start watching it, causing long delays in most cases due to the intrinsic

characteristics of the file, network bandwidth, and so on.

However, several P2P streaming systems have been deployed lately to offer live

and on-demand video streaming services over the Internet. Systems like

Coolstreaming [23] and PPLive [7] have been very successful delivering live

media content over the Internet to a large number of users.

As a result, P2P-based VoD (P2P-VoD) emerged as a new challenge for

researchers and P2P technology itself. These systems are much more

challenging to design and deploy than live streaming approaches because a VoD

service should allow users to arrive at arbitrary times to watch media content or

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

 4

to use VCR-like functionalities, for example, while guaranteeing good

performance at all times.

“In general, the main challenge resides in designing systems that ensure that

users can start watching a movie at any point in time, with small start-up times

and sustainable playback rates” [8]. Users are given the control of what to

watch and when to watch it, without worrying about long start-up delays or low

quality of service (QoS) issues.

Current studies focus on P2P-VoD systems that support VCR functionalities

using different techniques, and considering the Internet always as a cloud. Our

proposal comes from the idea that in order to provide more efficient system

architectures, it is necessary to take into consideration the physical

characteristics of the real network. Having precise information of the real

network topology (i.e. what is behind the cloud), will help us determine new

bottleneck locations, something that has not been considered in recent

approaches.

In order to support VCR operations more efficiently, we believe that content-

aware models which consider user-behavior according to the content being

watched are necessary. Designing a P2P-VoD system with this kind of

characteristics and information will improve better system performance allowing

it to predict, more accurately, a jump operation before it even takes place.

1.2 P2P Live Streaming

As mentioned before, video streaming services can be divided into two groups:

live streaming and video-on-demand streaming. Live streaming allows video

content to be transmitted in real time to all requesting users. One or more users

have their playbacks synchronized to provide their stored content to other peers.

On the other hand, video-on-demand users have the flexibility to watch any

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

5

video at any moment in time, meaning that they do not need to synchronize their

playback times. Moreover, they are capable to perform operations such as

forward or backward on the media file.

This section gives a brief overview of the existing overlay network structures for

P2P live streaming systems.

1.2.1 Tree-based systems

The tree-based P2P delivery has its origins in IP multicast [4], where a single

block is transmitted from the source and replicated by the routers along a

distribution tree rooted at the source node. In Cooperative Networking

(CoopNet) [18], for example, each node in the tree forwards the received stream

to each of its children. This way, the load on the server is alleviated by

distributing content between cooperative users. The presence of a source node

simplifies the task of locating content, since the root has all the essential

information for constructing and maintaining the tree structure.

Although an efficient solution for streaming audio and video, the use of

computation and bandwidth resources along with the complexity of transport

control for multicast sessions resulted in router overhead, causing IP level

multicast to never materialize entirely over the Internet. Consequently, an

implementation was done at the application layer, commonly known as

Application-Level Multicast or simply ALM.

� Single-tree streaming

Analogous to the scheme described above, users taking part of a streaming

session can get together to form an ALM tree having the source video server as

the root. Figure 1.1 shows the tree structure with peers distributed at different

levels receiving and forwarding information in a top-bottom direction.

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

 6

Overcast [15] and ESM [11] are considered pioneer works of single-tree based

streaming. Both of them use a single ALM tree to distribute content; where each

non-leaf peer in the tree has the function to retrieve and forward media content

upon its arrival.

Figure 1.1 – Application Layer Multicast P2P video streaming

The figure above shows an ALM streaming tree with nine participating peers

rooted at the source server node. The top level (L1), immediately below the

root, is formed by only two peers receiving media content directly from the

source server. At the same time, these two peers push the content one level

below, towards L2, that includes four peers which receive the data, but only two

of them forward it to end-leaf nodes located at the bottom level of the tree.

Because leaf nodes usually account for a large portion of peers in the system,

and they do not make any upload bandwidth contribution to it, the peer

bandwidth utilization efficiency is affected to a great extent.

Considering that peers at lower levels are the last ones to receive video content,

the construction of a streaming tree with fewest levels possible is preferred;

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

7

meaning that the tree topology should spread as much as possible at every level.

Nonetheless, it is important to consider that a peer forming part of an internal

node has uploading constraints which will determine its maximum fan-out

degree.

Maintaining this type of tree structures is also very important since users

forming part of a P2P streaming session are known to be very dynamic. Users

can join and leave the session at any moment. Therefore, the sudden departure

of one of these peers, either gracefully or unexpectedly (e.g. machine crashes),

has a great impact in all its descendants since there is only one available path of

streaming flow coming from the source. To handle this kind of disruption, the

streaming tree needs to be recovered and recalculated by reassigning the affected

nodes to the source server or other available peers.

Unfortunately, for a large streaming system, the source server becomes the

performance bottleneck and single point of failure. To address this problem,

distributed algorithms such as ZIGZAG [19] have been developed for

constructing and maintaining streaming trees in a distributed manner. Despite of

all the efforts, tree-based streaming has shown to be unable to recover fast

enough to deal with frequent peer churn.

� Multi-tree streaming

Multi-tree based techniques such as Bullet [16] have been proposed to handle

problems related to leaf nodes. In this approach, the source server divides the

stream into multiple sub-streams, as shown in Figure 1.2. A single streaming

tree is split into various sub-trees, one for each sub-stream. Each peer joins all

sub-trees available to retrieve sub-streams and has different positions in each one

of them.

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

 8

The upload bandwidth of a peer is utilized to upload a sub-stream whenever it is

considered to be an internal node in some sub-tree. In order to have a fully

balanced multi-tree streaming, a single peer is positioned on an internal node

(L2) in only one sub-tree (uploading one sub-stream from the level below), while

positioned on a leaf node on the remaining sub-trees (downloading a sub-stream

from the level above).

Figure 1.2 – Multi-tree based streaming

1.2.2 Mesh-based systems

Tree-based systems only allow peers to have one parent in a single streaming

tree to download from; introducing a single point of failure. If the peer’s parent

leaves, the peer and all its children stop retrieving information until the peer

connects to a different parent over again.

To deal with this problem, many P2P streaming systems adopt a mesh-based

approach, such as DONet/Coolstreaming [23]. The main characteristic of mesh-

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

9

based streaming system is that there is no static streaming topology. At any

given time, a peer collaborates with multiple neighboring peers,

uploading/downloading video to/from multiple peers concurrently. Finding new

peers to keep a desired level of connectivity is possible, and it is exactly what

makes them particularly robust against peer churn.

Analogous to P2P file sharing systems like BitTorrent [1], a mesh streaming

system includes a tracker to keep track of peer activities during the video

session. Every new peer wanting to join the session needs to contact the tracker

and report its own information (i.e. IP address, port number). Afterward, the

tracker provides a list of peers containing the information of a random subset of

active peers available. Using this list, the peer attempts to initiate peering

connections; and if successful, it starts exchanging video content with its

neighbors. To handle unexpected peer departures, peers regularly exchange

keep-alive messages. At the same time, depending on system’s peering

strategies, a peer does not only connect to new neighbors in response to peer

departures, but also when better streaming performance can be achieved.

In mesh-based systems, the concept of video stream becomes invalid due to the

mesh topology. The basic data unit in this kind of systems is video chunk. The

origin server divides the media content into small media chunks of a small time

interval, each of them with a unique sequence number that serves as a sequence

identifier. Later, each chunk is disseminated to all peers through the mesh.

Since chunks may take different paths in order to reach a peer, they may arrive

to destination in a non-sequential order. To deal with this matter, received

chunks are normally buffered into memory and sequentially rearranged before

delivering them to its media player, ensuring continuous playback.

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

 10

There are two different ways to exchange data in mesh-based systems: push and

pull. In a mesh-push system, a peer constantly pushes a received chunk to the

rest of neighbors who need it. However, due to system topology, redundant

pushes could be responsible for wasting peer uploading bandwidth.

As a result, a mesh-pull system is used to avoid the situation described earlier.

This technique allows peers to periodically exchange chunk availability

according to buffer maps. A buffer map holds the sequence number of chunks

currently available in a peer´s buffer; this way a peer can decide from which

peers to download which chunks, avoiding redundant chunk transmissions that

were present using push.

A disadvantage of the pull technique is that both frequent buffer map exchanges

and pull requests produce more signaling overhead and introduce additional

delays while retrieving a chunk.

1.3 P2P Video-on-Demand

Video-on-demand (VoD) systems provide multimedia services offering more

flexibility and convenience to users by allowing them to watch any kind of video

at any point in time. Such systems are capable of delivering the requested

information and responsible for providing continuous multimedia visualization.

Contrary to live streaming, in VoD systems the user has complete control over

the media by making use of VCR operations such as pause, forward and

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

11

backward functionalities (also known as jump operations); the same way as if

the functionalities were used in a VHS or a DVD player.

VoD systems need to accommodate a large number of users watching the same

video asynchronously, watching different parts of the same video at any given

time. This is a very challenging design situation for tree-based P2P systems

because users using this kind of overlay are synchronized and receive the content

directly from the source server, and exactly in the same order it left the root

node.

Mesh-based P2P systems were successfully introduced to distribute large files

and later applied to live streaming. In this kind of systems a large file is usually

broken into many small blocks. Both the system throughput and the rate, at

which the content can be distributed to users, greatly depend on the diversity of

the blocks contained at different peers. The challenge of providing VoD services

using mesh-based P2P networks lies in the fact that the blocks have to be

received at the peer-side in a sequential order, and time constraints have to be

considered at all times to guarantee continuous visualization. Therefore,

supporting VoD services using mesh-based P2P is also a great endeavor.

As shown earlier, in Section 1.2, tree-based and mesh-based P2P systems for live

streaming have their own advantages and disadvantages. In this section, the

different ways of how to adapt these two approaches to providing VoD services

are presented.

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

 12

Figure 1.3 – Application Layer Multicast - P2Cast policy

1.3.1 Tree-based P2P VoD

Patching [13] is one of the first IP multicast policies introduced for

supporting VoD services. Inspired on this scheme, P2Cast [12] was

designed for distributing video content among asynchronous users, where

every user behaves as a server while retrieving media content.

As shown in Figure 1.3, users arriving within a threshold form part of a

session. Along with the source server, users belonging to the same

session form an ALM tree, known as the base tree. The entire video is

then streamed from the source server using this base tree; just the same

way as in tree-based P2P live streaming. Users joining the session join

the base tree and retrieve the base stream from it. In contrast, new clients

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

13

who missed the initial part of the video must obtain a patch directly from

the server or other users who have already cached the required content.

Users behave just like peers in a P2P network, and provide two main

functions: (i) base stream forwarding, where users participating in the

tree-based overlay should be capable of forwarding the received base

stream to others; and (ii) patch stream serving, where users cache the

initial part of the video and serve the patch to latecomers.

1.3.2 Mesh-based P2P-VoD

In mesh-based P2P file sharing networks, a file is typically divided into a set of

small size data blocks. The server, or better known as seeder, is in charge of

distributing the blocks to different peers. Later, peers gather information of

other users sharing the same content interests and form neighborhoods that

allows them to exchange the blocks they are missing or willing to share. To

maximize users upload bandwidth and consequently achieving the highest

downloading throughput possible, block diversity needs to be taken into account

at each one of the peers.

Block diversity improves the systems throughput, but could become a problem

during playback time since video blocks have to provide continuity and be

played in sequential order. Users need to receive blocks sequentially and not in

a random order to watch the movie while downloading [8]. Additionally, the

nature of VoD systems demands the availability of different media blocks at any

given time, especially if users decide to perform VCR operations during

playback and expect high level of service with low startup delays in return.

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

 14

1.4 Design issues in P2P-VoD systems

P2P-VoD systems also deliver content by streaming, but unlike live streaming,

peers are able to watch different parts of the video at the same time while

collaborating with each other and offloading the server. To make this

collaboration possible, users need to contribute with a small amount of storage

instead of just the playback buffer in memory.

This section presents a general architecture and taxonomy for P2P-VoD systems,

considering issues like service scheduling, replication strategies, and so on.

1.4.1 Major System Components

A P2P-VoD system has the following major components: a set of servers which

act as source of content; a set of trackers in charge of helping peers connect to

other peers to share the same content; a bootstrap server to help peers to find a

suitable tracker (e.g. based on the geographical location), and other

bootstrapping functions; other servers such as log servers used for data

measurement purposes, and transit servers for helping peers located behind NAT

boxes; finally, a set of peers running software downloaded from the P2P-VoD

operator.

1.4.2 Segment sizes

Segmentation of content is fundamental in the design of P2P-VoD systems.

There are some considerations to have in mind for making this decision. From

the scheduling point of view, content should be divided into as many pieces as

possible for flexibility reasons at the time of finding which piece to upload from

which neighbor. From the overhead point of view, the larger the segment the

better since it helps to minimize overheads (e.g. content headers, bitmaps, etc.).

Another consideration is related to the real-time nature of streaming. The video

player or set-top-box at the user-side expects a certain minimum size for a piece

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

15

of content to be viewable and delivered according to some deadline, namely a

chunk. If units are too large, the chances of not fulfilling this deadline increase.

1.4.3 Replication Strategy

Assuming each peer contributes with some amount of hard disc storage, a

distributed P2P storage system is formed by the entire viewer population, each of

them containing chunks. Once all pieces in a chunk are available locally, the

chunk is advertised to other peers. The aim of replication strategy is to make

chunks available to every user in the shortest time possible in order to meet with

viewing demands. Design issues regarding replication strategies contemplate: (i)

allowing multiple movies to be cached if there is room on the hard disc. This is

referred as multiple movie cache (MVC); and lets a peer watching a movie

upload a different movie at the same time. (ii) to pre-fetch or not to pre-fetch;

while pre-fetching could improve performance, it could also waste uplink

bandwidth resources of the peer. (iii) selecting which chunk or movie to remove

when the disc cache is full; preferred choices for many caching algorithms are

least recently used (LRU) or least frequent used (LFU).

1.4.4 Content Discovery

Together with a good replication strategy, peers must also be able to learn who is

holding the content they need without introducing too much overhead into the

system. P2P systems depend on the following methods for content discovery:

(i) a tracker; to keep track of which peers are replicating what part of the movie;

(ii) DHT; used to assign movies to trackers for load balancing purposes; (iii)

gossiping method; used for chunk discovery even if the tracker is not available, a

peer asks its neighbors for their chunk bitmaps and with this information, it

selects which neighbor to download from.

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

 16

1.4.5 Piece selection

In order to download chunks from other collaborators, a peer uses a pull method

and takes into account three important considerations for selecting which piece

to download first: (i) sequential, selects the piece that is closest and necessary

for playback; (ii) rarest first, selects the rarest piece in the system which in turn

helps speeding up the proliferation of pieces; and (iii) anchor-based, fixed points

defined to support VCR features (e.g. forward jumps), commonly found in VoD.

Some approaches implant a hybrid strategy for piece selection, combining

sequential and rarest first. Such is the case of Kangaroo, for example.

1.5.6 Transmission Strategy

Once a particular chunk has been selected for download, what happens if more

than one neighbor has a copy of it? To answer this question, P2P-VoD systems

rely on transmission strategy algorithms. This kind of algorithms are designed

based on two objectives: (i) maximize download rate; and (ii) minimize the

overhead caused by duplicate requests and transmissions.

1.5 Current Approaches to P2P-VoD systems

As mentioned previously, the P2P paradigm has been successfully used for

providing content distribution as well as live streaming [1, 2, 7, 19x]. Recent

interest towards P2P-VoD systems had led to research groups such as Microsoft

to elaborate detailed analysis of a current client-server VoD system.

In [14], the authors collect traces for a period of nine months and conclude that

there are many potential benefits of peer-assisted video-on-demand, such as

significant cost savings in server loading. Moreover, issues related to data

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

17

prefetching and ISP-friendly considerations should also be taken into account for

a successful deployment of a Large- VoD system.

Sharing the same ideas, P2P-VoD developers have been deploying their systems

in the last year [3, 5, 6] obtaining a growing number of viewer population in a

short period of time. Below, we focus on approaches found within the research

community and briefly describe them.

� BitTorrent Streaming (BiToS)

Being one of the most successful P2P mechanisms for content distribution in the

last years, BitTorrent [1] has the particularity of distributing time insensitive

content in a fast and efficient way by using swarming techniques, and by

applying incentives to peers to contribute with the community preventing the

appearance of free-riders. The media distributed in BitTorrent is referred as a

torrent file, which is split in pieces of 256KB each, usually known as chunks.

While a peer is downloading chunks, it is also uploading other acquired pieces to

its neighbors.

Authors in BiToS [20] concentrated their efforts in making the original

BitTorrent protocol, a support streaming protocol. During their work, they

identified that a piece selection mechanism is the only thing that needs

modification in order to achieve that goal. BiToS considers the streaming order

of pieces as the more important factor, thus preferring pieces that are closer to

the current playback point. BiToS shows to be a feasible approach for enabling

BitTorrent to support time sensitive content.

This study does not contemplate VCR operations, but it is considered to be the

first attempt to design a mesh-based P2P video-on-demand system.

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

 18

� BulletMedia

BulletMedia [21] uses proactive caching to provide features such as back or

forward operations that other deployed peer-assisted VoD systems are able to

offer only with the help of very well provisioned source servers.

In this approach, blocks are also decomposed into a set of equal size pieces and

grouped into chunks (e.g. 100 blocks in a chunk), which are unselfishly

replicated by peers with the solely purpose of increasing the number of replicas

in the system. This way, content replication helps ensure block availability in-

overlay, thus reducing source dependency.

By using proactive caching, BulletMedia combines traditional overlay mesh

approach, used to fetch blocks at a high rate under normal playback; with a

structured overlay, responsible to enable efficient block discovery and control

block replication.

A DHT is used to store meta-data about the content location within the peers of

the mesh overlay. Whenever a peer performs a jump operation, it needs to

rapidly discover a sender peer and fetch the required blocks for continuous

visualization. If unsuccessful, the peer fetches directly from the source server.

Immediate playback of the media is not taken as a priority; instead this study

actively attempts to replicate all blocks from the media file in the overlay.

� GridCast

The authors in [10] found that the popularity of channels and a reasonable

number of concurrent users can derive in satisfactory user experience. Their

experiment was done through the study of logs during a two-month period, using

a deployed experimental P2P VoD system over the China Education Network

(CERNET).

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

19

GridCast uses a set of source servers (or server farms) to distribute media files to

participating peers, who asynchronously play the files while data is exchanged

among each other. To solve the problem of peer seeking operations (i.e. forward

jumps), GridCast peer maintains a routing table consisting of some peers placed

in a set of concentric rings with power law radii [22], distanced using relative

playback positions, and uses gossips to keep the routing table up-to-date. There

is a tracker or stationary peer whose playback position does not change and

remains fixed at time zero; in charge of bootstrapping new arriving peers.

The peer caches played content onto its disk, data that will be served to other

peers or used in case of backward jump operations. Media is divided into

chunks of one second play time. Chunks are exchanged between peers from the

innermost ring and outwards, or from the origin server if necessary. If possible,

the peer also tries to fetch anchors which are segments consisting of ten

continuous seconds each, and distributed through the video file at fixed intervals.

When a seek operation occurs, the playback position is automatically adjusted to

the closest anchor if the anchor has been already downloaded.

Good network bandwidth at peers and sufficient server provisioning are

considered critical. The slowest peer determines the startup latency.

1.6 Objectives of the dissertation

Architectural design and deployment of P2P-VoD systems which support VCR

functionalities is attracting the interest of an increasing number of research

groups within the scientific community; especially due to the intrinsic

characteristics of such systems and the benefits that peers could provide at

reducing the server load.

In spite of all the efforts, research groups have not been able to deploy a large

P2P-VoD system that provides VCR operations optimally. Some existing

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

 20

approaches rely on highly over-provisioned servers and peers to deal with such

jumping operations; others focus their efforts on structured overlays to quickly

find the segments needed by a peer. Additionally, these state-of-the-art

approaches do not take into account system performance using real network

topology; they see the network as a cloud.

The objective of this dissertation work is to analyze a P2P-VoD system

performance according with the user behavior using real traces as well as

synthetic user patterns.

Imagenio traces are studied using a P2P-VoD system developed at Telefónica

R&D, named Kangaroo.

In order to perform these analyses, 3 main points are taken into account:

1) Evaluate the impact that VCR functionalities can have on a real P2P-

VoD system for various arrival and viewing patterns such as flash-

crowd, batched-join and random jumps.

2) Determine how these viewing patterns affect the performance of the

system.

3) Use real video traces captured from a live VoD system to characterize

the performance of the P2P system under realistic workloads and events.

The fact that there is a growing interest for video-on-demand based on the

P2P paradigm within research groups is a motivating factor for the

development of the current work.

1.7 Dissertation Organization

The rest of this dissertation is composed of four chapters and organized as

follows:

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

21

Chapter 2 presents Kangaroo, a P2P-VoD system developed at Telefónica R&D.

We describe the way Kangaroo achieves to build good collaboration

neighborhoods by using a mesh-based overlay structure and its approach to

provide high quality of service at all times.

In Chapter 3 we analyze user behavior in Imagenio. A brief introduction of

Imagenio’s network is provided and the estimation of an optimal P2P model (i.e.

BestP2P) is studied.

In Chapter 4 we study perform some experiments in order to compare the

optimal model presented in Chapter 3 against the implementation of Kangaroo

using real Imagenio traces. Different kinds of workloads and user patterns are

used to evaluate the P2P-VoD system performance.

To conclude, Chapter 5 summarizes the results and contributions of this work

and states future lines of research.

PEER-TO-PEER VIDEO-ON-DEMAND SYSTEMS

 22

KANGAROO

23

Chapter 2

Kangaroo

Abstract

This chapter introduces Kangaroo, a P2P-VoD system capable of

providing VCR functionalities. A description of Kangaroo application is

given along with its most important characteristics.

KANGAROO

 24

KANGAROO

25

2.1 Introduction

Kangaroo is a system focused on providing both P2P video-on-demand services

as well as live streaming content, allowing users to have high quality experience

along with interactive functionalities, such as forward or backward jump

operations. Throughout this work, Kangaroo is studied and used as a P2P-VoD

system only.

The design of Kangaroo comprises two main modules: tracker and peer

modules. The tracker is responsible for providing a centralized mechanism; a

central point where peers gather information regarding others peers with the

solely purpose of establishing future communication relations.

On the other hand, peers manage all the logic necessary to establish

collaborations that allows them to exchange the required data in a timely

manner. Furthermore, within these peers there are peers that stand out for

holding all the segments of the video and are known as source peers or seeds.

Figure 2.1 show a typical collaboration neighborhood in the Kangaroo system.

Figure 2.1 – Collaboration neighborhoods in Kangaroo

KANGAROO

 26

2.1.1 Tracker Modules

In order to establish collaboration neighborhoods, every peer contacts the tracker

whenever it needs to visualize a video or needs to perform a jump operation

during playback. The aim of the tracker is to establish relationships between

peers interested in the same position of the media.

For example, the tracker retrieves the information provided by peer A and

generates a list of peers that considers adequate to become part of its

neighborhood. Based on the position of the video requested by peer A as well as

the video position other peers are visualizing at that moment, the tracker selects

the neighbors.

The most important tracker modules are as follows:

� CCollaboratorManager: this is the main class of the tracker, contains all

the information related to the logic of the tracker. Includes the contact

information, IP address and port number of peers for establishing

communication. Information related to the media that every peer is

willing to share is also given.

� CTrackerCollDescrip: this class represents a collaborator or peer.

� CTrackerMediaDescrip: contains the description of the media published

by the peers.

� CTrackerListener: class that contains all the different services coming

from the outside.

� CUpkeepScheduler: contains the logic in charge of implementing the

timeout process for both published media as well as peers.

� CNewContribution: contains the code for decoding the information in an

announcement of new peer contribution.

KANGAROO

27

� CCollaboratorFinder: contains the code for decoding the parameters of

collaborators search request.

� CTrackerCollSelector: classes that implement the different collaborator

selection algorithms.

� Other support classes.

2.1.2 Peer Core Modules

The core of a peer can be subdivided in four primary blocks: (i) creation of

relationships between peers, (ii) neighboring peer requests planning, (iii) request

admission policy, and (iv) external interface.

The aim of the first block is to create a proper environment for data exchange

and relationship formation amongst peers. Once the environment is set, the

second block is responsible for deciding the order of segment requests. Next, the

requests are accepted or rejected by the peers according with the admission

policy. The design of these three blocks has a great effect on the system’s

performance in terms of transmitted data between peers. The interface block

allows the development of applications that take advantage of Kangaroo’s

capacity for delivering multimedia content.

These four primary blocks depend on a content scheduler that contains all the

metadata related to the media available at a peer. The classes managing the

media are:

� CPublicationManager: the main class of the peer which holds the media

list. For each media, it contains information regarding the segments, the

tracker, the bit rate and the interest a peer has over every media

available.

KANGAROO

 28

� CPublisherScheduler: the publication logic used for periodically

contacting the tracker and announce the media available for

collaboration.

� CSwarmManager: for every media that a peer is interested in retrieving,

an instance of this class is created. The class is in charge of creating all

the necessary handlers for the collaboration process.

� CPeerMediaDescrip: this class represents a media.

� CPeerSegDescrip: contains the state of the media segments and the

techniques for handling them.

2.1.2.1 Modules for creation of relationships between peers

Kangaroo organizes the peers on a mesh-based overlay network where each peer

establishes neighborhood relationships with 10 or 15 other peers. Additionally,

the information of 10 spare peers is saved for the creation of possible future

collaboration relationships. All the peers on the mesh are treated equally, having

no discriminating features; apart from content availability and transmission

capacity. The homogeneity of the peers is critical for the successful design of a

distributed system such as Kangaroo.

The modules that implement the neighborhood management are:

� CNeighbourhoodManager: this is the class that centralizes all the

metadata related with the neighbors. It also provides techniques to

calculate the segment popularity of videos in the neighborhood.

� CNeighbourProcessor: class that manages all the communications with

the neighbors.

� CNeighbourSendingProcess: class that sends the messages to the

neighbors.

KANGAROO

29

� CNatTraversalReq, CNatTraversalProcess, CNatTraversalReqMsg:

classes that perform the Nat traversal requests from a neighbor.

� CPeerCollDescrip: class that describes a neighbor.

� CTrackerDescription: description of the tracker.

2.1.2.2 Modules for Request Planning

The request planning policy decides the order in which each peer performs video

segment requests from its neighbors, as well as to which one of them to present

such request.

Kangaroo has a hybrid planning policy made of sequential and local-rarest

segments. The former always searches for immediate necessary segments to

achieve continuous playback and achieve the deadline. In contrast, the local-

rarest policy comes more as an altruistic policy where the peer gives more

preference to the least replicated segments in the neighborhood.

Kangaroo considers segments replicated in less than 25% of the neighbors as

“rare” segments and orders them with respect to the current playback point of the

peer. Amongst all rare segments, the one located closer to the playback point is

preferred and chosen. Together with it, four other sequential segments are

added, making a total of five segments the peer tries to receive from the

neighbors at one time.

In order to decide which neighbor will collaborate with media requests, the

policy establishes two rules: (i) give more preference to the neighbors having

less interesting information for the playback of the own peer; (ii) give more

preference to peers with a greater number of free connections. The first rule has

the aim of not saturating the source peer; and the second rule is conceived to

avoid possible rejections due to neighbor connection occupation.

The modules implementing request planning are:

KANGAROO

 30

CDownloadSchedulerPolicy: the central class that performs periodical planning.

CDownloadSchedulerPolicy

 CDownloadSchedulerLRPolicy

CDownloadSchedulerRarestFirstPolicy

CDownloadSchedulerGreedyPolicy

 CDownloadSchedulerHybridPolicy

CDownloadSchedulerHybridRandomPolicy

classes that implement

different planning policies

CDownloader: class in charge of communicating with a neighbor to make

segment petitions.

Figure 2.2 – Segment scheduling

2.1.2.3 Request Admission Modules

The aim of the admission policy is to improve the dissemination speed of

segments between peers, while achieving a continuous reproduction of the

media. This policy is particularly important for the source peer; from the point

of view of this peer, the goal is to minimize the number of copies that must be

KANGAROO

31

sent per segment. This way, maximum efficiency is guaranteed by contributing

new data to the system, thus minimizing the use of upload bandwidth.

However, there are situations in which the added capacity provided by peers is

not enough to guarantee all requests. Two main reasons could lead to such

situations: a) the asymmetry of sending and receiving peer capacities (i.e. ADSL

technology); or b) the information requested is located only in a few number of

peers. The later condition is quite possible in a system like Kangaroo because

users have the possibility of using the VCR operations to perform random jumps

during playback.

Kangaroo presents a solution by incorporating a time-marker in every segment’s

petition, indicating the moment in which the peer needs the data. Moreover, the

system defines a tolerance threshold for segment delivery delays. Based on

these two parameters, the source peer executes the admission policy as follows:

1) Accepts the petition if the time-mark is out of the tolerance threshold; if

not,

2) Accepts the petition if there is a free connection available and if the

segment is one of the least replicated segments of the neighborhood;

otherwise,

3) Accepts the petition if the bandwidth consumption is below 75%; or

else,

4) Rejects, sending the contact information (i.e. IP address and port

number) of a neighbor that holds the requested segment.

When a peer is not a source peer, the admission policy is a bit different and

much simpler. The number of free connections and uplink bandwidth available

are the only parameters taken into account. The classes implementing the

admission policy are:

KANGAROO

 32

CUploaderScheduler: there is one instance per media that a peer is willing to

contribute with. This class is the center of the admission policy.

CUploader: once the request has been admitted, this class is in charge of

transmitting the data to the neighbors.

2.1.2.4 Interface modules with the peer core

The core of Kangaroo is a P2P independent system designed to provide

multimedia content transmission. The communication with the exterior is done

through TCP communications using an interface. The functions offered by the

interface are described below.

1) Monitoring of P2P system status. An example would be the number of

neighbors that a peer is connected to, or the speed for receiving/sending

segments from/to the neighbors.

2) Interactive operation acknowledgments. As mentioned earlier,

Kangaroo is oriented to be a video-on-demand system in which users

have the capability of changing media visualization points at any time

during playback. After a jump operation is performed, the interface

reconfigures the P2P system to provide the requested service with a high

level of QoS.

3) Content recomposition. In Kangaroo, the videos are divided in many

segments of 64 Kbytes each. The interface provides mechanisms for

recomposing these segments into a whole video, making the whole

segmentation process completely transparent for the outside.

Classes implementing these functionalities are the following:

CPlaybackInterfaseReq: this is the class that manages all the interactive

operations. Also, provides information for monitoring purposes (e.g. system’s

status).

KANGAROO

33

CPlaybackReq: the class managing the content (or media) recomposition.

2.1.3 Metadata Generation

In order to playback a media, Kangaroo needs to generate a descriptive file

associated with the media. To achieve this issue, a module automates this

process using a number of input parameters such as: name of the media file,

duration time (in seconds) and IP address of the tracker. Optionally, also accepts

parameters like: a descriptive name for the video, the output file description

name and the segment size. From all the input parameters, the module is capable

of generating all the necessary fields for describing the media.

2.2 Communication Protocol

Different types of messages define the way entities communicate within

Kangaroo. This section describes the network communication protocol between

tracker and peer, and amongst peers.

2.2.1 Tracker - Peer communication protocol

There are three types of messages that are exchanged by the tracker and the

peers, namely content announcement, peer search and statistical information.

� Content announcement. Every time a peer has content that can be shared

with other peers, it sends an announcement to the tracker publishing this

information. The format of the message is specified in Figure 2.3.

NewC identifies the type of message; followed by a set of fields grouped in

two blocks: peer and media. The first block contains contact information of

the peer, such as: identification number (SSRC), IP address, port number,

and software version.

KANGAROO

 34

Figure 2.3 – Content announcement message format

The second block includes a hash message (SHA1) identifying the content; a

Path used for locating the content; Name is the describing name of the

media; CompleteNess indicates the number of segments a peer has;

FirstSegmentId and LastSegmentId hold the smallest and largest segment

number, respectively; CurrentSegmentId is the present segment the peer is

interested in; SwitchOff is set to 1 if the peer wants to stop collaborating with

the media; SuperSeed takes the value of 1 if it is the server; MediaLength

describes the size of the media; and MediaByteRate indicates the media rate

in bytes per second.

� Peer Search. Each time a peer needs collaborators to receive media content,

it contacts the tracker by sending the message shown in Figure 2.4. The

message indicates the information about its own identity (i.e. SSRC, Port

number, SHA1) along with the identification number of the segment of

interest. Also, the media identification is provided.

NewC

<NewCMessage>

 <Peer>

 <SSRC>%lu</SSRC>

 <Port>%i</Port>

 <IP>%s</IP>

 <Version>%s</Version>

 </Peer>

 <Media>

 <SHA1>%s</SHA1>

 <Path>%s</Path>

 <Name>%s</Name>

 <CompleteNess>%f</CompleteNess>

 <FirstSegmentId>%li</FirstSegmentId>

 <LastSegmentId>%li</LastSegmentId>

<CurrentSegmentId>%li</CurrentSegmentId>

 <SwitchOff>%i</SwitchOff>

 <SuperSeed>%i</SuperSeed>

 <MediaLength>%lli</MediaLength>

 <MediaByteRate>%li</MediaByteRate>

KANGAROO

35

Figure 2.4 – Peer search message format

The tracker generates a peer list and returns a message of the format

presented in Figure 2.5. FirstSegmentId and LastSegmentId fields,

immediately following FindAnswer, indicate the first and last segment of

the media. The peer list shows the contact information and other

statistics. AnunceTime specifies user activation time. The meaning of

FirstSegmentId, LastSegmentId and CurrentSegmentId is self-

explanatory, but this time for the own peer.

Figure 2.5 – Reply message format to a peer search

Find

<FindMessage>

 <SSRC>%lu</SSRC>

 <PORT>%i</PORT>

 <SHA1>%s</SHA1>

 <Segment>%li</Segment>

</FindMessage>\n

<FindAnswer>

<FirstSegmentId>%li</FirstSegmentId>

<LastSegmentId>%li</LastSegmentId>

<Peer p="0.9">

<SSRC>%li</SSRC>

 <Address>%s</Address>

 <Port>%i</Port>

 <Path>%s</Path>

 <CompleteNess>%i</CompleteNess>

 <AnunceTime>%li</AnunceTime>

 <FirstSegmentId>%li</FirstSegmentId>

 <LastSegmentId>%li</LastSegmentId>

 <CurrentSegmentId>%li</CurrentSegmentId>

</Peer>

...

KANGAROO

 36

� Statistical information. A peer can obtain statistical information about a

video sending a message containing the media identification number

(SHA1), as shown in Figure 2.6.

Figure 2.6 –Message format for statistical information request

Once the request is received by the tracker, a message containing the

statistical information of the media is sent back. The message has the format

shown in Figure 2.7, and includes the first and last segment id, the number

of peers watching this video, the number of seeds holding this video and the

byte rate of the media.

Figure 2.7 – Content announcement message format

2.2.2 Communication protocol amongst peers

There are two types of communication amongst peers. In the first one, all

messages are associated with the control; the way relationships are established

between peers and the exchange of information according to the availability of

segments. The second type of communication is traffic associated with data

MSTA

<MSTAMessage>

 <SHA1>%s</SHA1>

</MSTAMessage>\n

<MSTAAnswer>

 <FirstSegmentId>%li</FirstSegmentId>

 <LastSegmentId>%li</LastSegmentId>

 <NumPeer>%li</NumPeer>

 <NumSeed>%li</NumSeed>

 <ByteRate>%li</ByteRate>

KANGAROO

37

delivery. Kangaroo uses a standard HTTP/1.1 protocol for data transmission.

The reason of using this standard protocol is to make things easier when

integrating the Kangaroo system with a consolidated Web proxy environment.

� Control protocol

The first step in the collaboration process between peers is a handshake message,

Hand, as shown in Figure 2.8. After receiving the hand message, the peer needs

to decide if it is interested in establishing the relationship request. If interested,

an acknowledgement message is returned including its identification number

together with the media identification number. These two fields are used for

validating the peer’s identity.

Figure 2.8 – Control protocol between peers

KANGAROO

 38

Once there is a relationship established between both peers, messages indicating

the availability of data are exchanged. The previous figure shows all the

different messages exchanged by the peers. Every message includes different

fields that will be described as follows:

Accept: the message is accepted to establish a neighborhood relationship.

(includes peer ID number and media ID number.)

Content Announce: announce message of availability of media segments,

1. Percentage of free output connections

2. Segment ID of current interest

3. value = 1, if interested in receiving data

4. The smallest segment number available

5. Bitmap of segment availability. A value of 1 means that the

segment is available.

New segment: fields 1 and 2 are identical to the content announce message; field

3 is for new segment ID.

Erase segment: message to eliminate or erase a segment that has been

announced as available. All the fields are identical to the new segment message.

Testimony message: the message of testimony.

� Data transmission protocol

In Kangaroo, every segment is an independent file and in order to transmit every

one of them, an HTTP protocol GET operation is initialized by the destination

peer. Additionally to the common parameter used by a GET operation, a

KANGAROO

39

TimeStamp parameter is attached to indicate the moment the segment will be

needed. The TimeStamp value is used by the admission policy.

However, the source peer could reply to such a request either positively

(accepted) or a negatively (rejected). If accepted, it means there are no

differences regarding the HTTP standard. Otherwise, if the petition is rejected

Kangaroo includes some suggestion information to improve content location

like: adding the SuggestPeerAddr, SuggestPeerPort, SuggestPeerSSRC,

SuggestPeerPath. These fields are necessary for establishing future

neighborhood relations. This data exchange process is shown in Figure 2.9.

Figure 2.9 – Data exchange protocol

KANGAROO

 40

2.3 Block Diagram

All Kangaroo classes are grouped in three different namespaces as shown in

Figure 2.10.

The TelP2PVoDTCP space gathers all the functions related to TCP

communication. All the functions are codified to be compatible with the socket

API of both Linux and Microsoft Windows.

The TelP2PVoDBase contains functions and base classes shared between all

other spaces. Additionally, this space offers two important mechanisms: thread

pool and service definitions. Thread-pool is implemented in three classes and

provides an efficient mechanism of creation and termination of threads, in an

environment where the number of threads is unpredictable beforehand. The

service definition is done through three classes, including the base class of

parameter decoding of a service request.

The spaces on top, TelP2PVoDPeer and TelP2PVoDTracker include the peer

and tracker logic, respectively.

Figure 2.10 – Block diagram of Kangaroo

TelP2PVoDTCP

TelP2PVoDBase

TelP2PVoDPeer TelP2PVoDTracker

USER BEHAVIOR ANALYSIS IN IMAGENIO

41

Chapter 3

User Behavior Analysis in Imagenio

Abstract

This chapter makes a brief introduction of the Imagenio architecture. It

also describes the model and the Imagenio traces used in trying to

estimate an optimal P2P model that will serve us in our experimental

phase.

USER BEHAVIOR ANALYSIS IN IMAGENIO

 42

USER BEHAVIOR ANALYSIS IN IMAGENIO

43

3.1 Introduction

Imagenio is a global solution for audiovisual services over ADSL in a TV

environment; providing a complete range of services such as video-on-demand,

digital TV and audio, broadband access to Internet, from both PC and TV and

interactive applications that can be used directly from the television.

The Imagenio design uses standard protocols in order to guarantee

interoperability, evolution, less dependencies and better development time.

Therefore, standards such as MPEG-2, IGMP, HTML and RTSP have been

adopted. This approach allows Imagenio to have great flexibility for supporting

other networks and access technologies different from ADSL. Being entirely

based on the IP protocol, Imagenio architecture is highly compatible with access

types like FTTH (Fiber to the Home) or VDSL (Very high bit-rate Digital

Subscriber Line).

Video-on-demand services in Imagenio allow clients to have TV-quality like

media content experience and absolute control over it at any time, allowing

clients to perform VCR operations like: fast forward, rewind and pause. Unlike

television channel delivery which is broadcast throughout the complete platform,

on-demand content is issued by a video server, having the decoder requesting the

video as the only destination point. ADSL networks are well adapted to provide

this kind of service since every client owns a dedicated channel.

Two logic channels are involved in this type of service: a unidirectional channel

in charge of retrieving the video, and a bidirectional channel responsible for

content control where the client transmits control commands.

Imagenio network architecture consists of different areas, as shown in Figure

3.1. A brief description of the different areas is given as follows:

- Local services area (ASL): includes video servers of type CCOR (former

nCube).

USER BEHAVIOR ANALYSIS IN IMAGENIO

 44

- Central services center (CSC)

- TV Head end: used for unidirectional distribution of content (unicast to

multicast). Consists of a MPEG-2 video channel and one or more stereo

audio channels of MPEG-1 Layer II format.

- Management center (CGMM): in charge of management and control of

the different elements within the platform.

- Customer premise: includes a Set-Top-Box capable of supporting

current and future Imagenio services.

Figure 3.1 – Imagenio Network Architecture

USER BEHAVIOR ANALYSIS IN IMAGENIO

45

These centers are interconnected by the following transport networks:

- SDH network: includes TV channels distribution and content on demand

distribution.

- IP network (Telefónica’s main IP network): Data transport (service and

management), authorization data.

- Backup of management network.

In order to provide video content, a central server, which is not a video server,

gathers the requested files from an external storage device, indexes them and

adds a DRM encryption before sending them via multicast to the servers located

at the local areas. These local area servers receive the files and insert them into

video servers type CCOR (former nCube). In turn, the output of these video

servers (in a local area) is aggregated by IP switches which later connect with

the level 2 network DSLAMs using a link capacity of 1 Gbps. Every DSLAM is

capable of providing service to thousands of users.

The aim of this work is not to study the Imagenio network architecture in detail.

Instead, we will focus on the Imagenio VoD traces analyzed and presented in the

following section.

3.2 Imagenio VoD Traces

For the analysis of user behavior in the Imagenio network, some important

considerations are taken into account.

First, from the traces collected only a number of sessions containing relevant

information are selected. Second, the VCR operations we are concerned about

are: jump forward, jump backward, play and pause. Third, we define different

sets of workloads that will help us measure the impact on the capacity of the

USER BEHAVIOR ANALYSIS IN IMAGENIO

 46

source server. These workloads can be of three types: flash crowds, where a set

of peers make requests all at the same time; batched joins, a set of successive

peers making requests all at once, and random jumps.

� Environment

Imagenio traces from 109 days with over 65,500 sessions are available. As

Figure 3.2 shows, media content of less than 3 minutes in length is abundant; but

not very useful since in such a short period of time is very unlikely a user will

perform many seeking operations. As a result, we focus in sessions longer than

10 minutes (around 12,100 sessions) as they contain interesting jumping patterns

from which we can extract valuable information.

Figure 3.2 – Imagenio VoD traces video length

� Markov Model

Inside the trace file, each session corresponds to a user watching a certain movie

at a certain time and includes a number of events triggered by the user. Based on

USER BEHAVIOR ANALYSIS IN IMAGENIO

47

the Markov model, at each step the system could change its state (i.e. playback

position) from the current state to a new one, according to a certain probability

distribution. According to the Imagenio traces, a user can be in one of four

stages: play, pause, forward or backward, with probability of 0.54, 0.09, 0.31

and 0.04 respectively. The Markov model, shown in Figure 3.3, is more or less

a set of vertices of a graph, including transition steps which involve moving to

any of the neighbors of the current vertex with a certain probability.

Figure 3.3 – Markov model of expected user behavior

� The Trace

Although the Imagenio trace file contains plenty of information regarding user

actions during the visualization of a video; it is worth mentioning that all the

information included here is, in fact, not relevant for our analysis. The original

format of the trace file is shown in Figure 3.4.

Figure 3.4 – Original entry of traces

P(play)

P(for) P(back)

P(pause)

Backward Forward

Play

Pause

20080405|000216.171|mmsvmuvi1|PLAY|10.63.68.|8413251420390209411|/

/172.26.23.12:554/vod1_trl_ yesterday.mpi|1.0|0.000-|||||200|

USER BEHAVIOR ANALYSIS IN IMAGENIO

 48

As a result, the original entry file is parsed using a couple of python scripts

which help us obtain a final subset of useful values that we can work with.

These values of the new parsed file are presented in Figure 3.5 and described as

follows:

� A date stamp (e.g. 20080405)

� A time stamp: (e.g. 17:01:49.313)

� The operation (e.g. PLAY)

� The movie title: vod1_yesterday.mpi

� The play speed that could take the values of -8.0 for backward jumps,

1.0 for normal playback, and 8.0 for forward jumps

� Frame position, 0.000- meaning the beginning of the movie

� RTSP response: 200 (Real-Time Streaming Protocol used for VoD

requests)

Figure 3.5 – Parsed traces containing a subset of interest

20080405 170149.313 PLAY vod1_yesterday.mpi 1.0 0.000 200

20080405 170154.975 PLAY vod1_ yesterday.mpi 8.0 4.800 200

20080405 170215.230 PLAY vod1_ yesterday.mpi 1.0 162.960 200

20080405 170224.541 PLAY vod1_ yesterday.mpi 8.0 171.600 200

20080405 170232.453 PLAY vod1_ yesterday.mpi 1.0 232.560 200

20080405 170318.148 PLAY vod1_ yesterday.mpi 8.0 277.680 200

20080405 170358.477 PLAY vod1_ yesterday.mpi -8.0 594.960 200

20080405 170409.232 PLAY vod1_ yesterday.mpi 1.0 511.920 200

20080405 170453.503 PLAY vod1_ yesterday.mpi 8.0 555.600 200

…….

20080405 171708.531 PLAY vod1_ yesterday.mpi 1.0 4983.120 200

20080405 171713.257 PLAY vod1_ yesterday.mpi 8.0 4986.960 200

20080405 171728.143 PLAY vod1_ yesterday.mpi 1.0 5104.080 200

20080405 171848.885 TEARDOWN vod1_ yesterday.mpi 200

USER BEHAVIOR ANALYSIS IN IMAGENIO

49

Some of the drawbacks found after parsing the Imagenio traces are described as

follows: (i) user identity is hidden because the last octet of its IP address is not

included in the original file. As a result, sessions cannot be grouped to observe

the individual behavior of users. (ii) The total movie length is missing but can be

inferred (but not very precise). (iii) Fast forward and fast backward operations

are translated into jumps since we are only considering 4 states based on the

Markov model described earlier.

Figure 3.6 – Data for movies larger than 10 minutes

(a) Inferred total length

(b) Clip popularity

(c) Percentage of time played

(d) Number of jumps per session

USER BEHAVIOR ANALYSIS IN IMAGENIO

 50

 Figure 3.6 shows results obtained for movies longer than ten minutes

considering the drawbacks found after parsing the original file. Figure 3.6 (a)

shows that the inferred maximum movie length is around 10,000 seconds.

Figure 3.6 (b) shows movie (clip) popularity according to the number of sessions

a movie has. Figure 3.6 (c) presents the percentage of time a movie was played.

Finally, Fig. 3.6 (d) includes the number of jump operations per session.

3.3 Workload Testing

Once we have obtained results using the Imagenio traces, and in order to study

how the server capacity is affected by different workloads, an optimal P2P

model, called BestP2P, is considered.

With this optimal model, we focus on the workloads and assume that peers have

infinite upload bandwidth and upload connections used to disseminate segments

within the neighborhood, once these segments are provided by the source peer.

In every turn, peers request different segments from the source. For this reason,

the source must have enough capacity to provide all the necessary segments that

have not been requested yet. In case of segments that have been served already,

the source relies on the P2P swarm to take care of the distribution.

BestP2P is a tracker-based model. Peers contact the tracker and send current

playback points. The tracker replies with at most 8 peers, 4 randomly chosen

and 4 located as close as possible to that playback position. Minimum state is

kept at the tracker. Moreover, peers calculate a healthiness factor h of their

neighborhood. If this healthiness factor falls below a certain threshold, then the

neighborhood reshuffles in order to obtain better collaborating peers.

As mentioned before, we are interested in understanding the way workload

affects the capacity at the server. For this reason, we consider flash crowd and

batched join arrival patterns during the tests. For both scenarios we use a movie

USER BEHAVIOR ANALYSIS IN IMAGENIO

51

clip of 128 seconds of duration. The playback rate is set to 1Mbps and a

segment size of 0.5 Mbits. The number of neighbors may vary between 15 and

20, while the number of active neighbors, the ones participating as collaborating

peers, varies between 10 and 15. During these experiments only the source peer

is connected to everyone else. Figure 3.7 (a) and 3.7 (b) show the scenarios of

flash-crowd and batched join, respectively.

Scenario 1 – Flash-Crowd (130 peers)

For the first scenario, 130 peers arrive in a flash crowd all at the same time.

Their upload and download rate is the same and equal to 1.2Mbps or “α = 1.2”.

The source peer has α = 2. As soon as the peers finish their playback they exit

the system. Figure 3.7 (a) shows that after waiting for 5seconds of setup delay

100% of the peers arriving in a flash-crowd are able to obtain the content.

(a) (b)

Figure 3.7 – Setup delay time for user arrival patterns:
(a) flash-crowd and (b) batched-join

USER BEHAVIOR ANALYSIS IN IMAGENIO

 52

Scenario 2 – Batched-join

During the second scenario, 75 peers are distributed in groups of 7 each. At time

t=0, one peer joins the system. At times t=30, 60, 90, 120, 140, 160 groups of

peers join the swarm. There is also a homogeneous crowd of α = 1.5, while the

source peer has a value of α = 2. In this case, peers stay for 10 more seconds

after they finish playing. For this case, around 10 seconds are required in order

to have all the peers visualizing the media, as shown in Figure 3.7 (b).

Figure 3.8 – Load expected at the source

Scenario 3 – Random jumps (75 peers)

The third scenario includes random jumps generated with values of 0.99 for play

operations and 0.01 for forward jumps. Jump distances follow a normal

distribution with mean of 25 seconds and variance of 10 seconds. This is a

USER BEHAVIOR ANALYSIS IN IMAGENIO

53

homogeneous crowd with α = 1.6, while the source peer has unlimited capacity.

Each peer follows different assigned schedule and can start jumping at any

moment. In Figure 3.8, the values of load expected on the server are shown. As

it can be seen, the optimal P2P model (i.e. BestP2P) demands less server

capacity compared to the other approaches.

In the following chapter, we will use the results obtained from BestP2P

and will compare them with a real P2P-VoD system.

USER BEHAVIOR ANALYSIS IN IMAGENIO

 54

EXPERIMENTATION

55

Chapter 4

Experimentation

Abstract

In this chapter we compare the optimal P2P model introduced in Chapter

3 to the Kangaroo system applying different workloads and studying how

these affect user performance and system provisioning.

EXPERIMENTATION

 56

4.1 Introduction

Due to the different performance problems that jump operations (user behavior)
generate in Large P2P-VoD systems, we decided to evaluate a real P2P-VoD
system’s behavior as the first step in the analysis of this kind of architectures.

In order to evaluate the effect of jump operations via experiments on a real
system; Kangaroo, a mesh-based P2P-VoD system, was used. Kangaroo
achieves dealing with jumps by making careful design choices in several aspects
of the system as described in Chapter 2.

Particularly, Kangaroo implements a scheduling policy that combines a greedy
and an altruistic behavior to accomplish continuous playback and also to
improve block diversity. A topology manager is implemented for helping peers
at similar playback points to mesh with each other and to quickly find peers with
the desired data segments during jump operations.

The effect produced by various workloads on the system performance are
presented hereafter, showing through a variety of experiments that Kangaroo can
perform well in terms of user delay and server capacity values.

4.2 Experiments

For the experimental setup, a cluster of 10 computers interconnected using a
switch of 100Mbps, were used. In every machine multiple copies of a peer are
executed as well as a total of 300 peers used during the experiments. Also,
videos of approximately 1024 seconds with a bit rate of 1Mbps are used.

In order to measure the performance, a couple of metrics are used. The first one,
to ensure that all segments of a video achieve their deadline and arrive on time.
The delay of a single segment will imply the reduction of this metric. The
second one is related to the upload bandwidth required by the source peer.

During the experiments Kangaroo performance has been analyzed according to
different request arrival patterns, such as: flash-crowd, batched-join and Poisson.
At the same time, two types of jumps have been considered: random jumps and
anchor jumps. Anchor jumps, as mentioned in [10], are a set of well-defined
points along the playback where the user is allow and forced to jump.

EXPERIMENTATION

57

Imagenio traces were also used considering the user behavior of more than
60,000 users. The analysis of these traces with Kangaroo pretend to show the
performance of a real system.

Throughout the experiments, we consider this to be a homogeneous system,
meaning that all the peers will have the same upload and download bandwidth.

4.2.1 Sequential Playback

It is considered as the simplest viewing pattern because peers play the media
sequentially from beginning to end. Here, we combine sequential playback with
two challenging arrival patterns. First, flash-crowd with 172 peers joining the
swarm all at the same time. Second, a batched-join scenario consisting of 7
groups of 25 peers each joining the system every 30 seconds. The upload rate α
at the source varies from 1,25 - 2Mbps.

Figure 4.1 – Playback rate obtained for flash-crowd arrival pattern

EXPERIMENTATION

 58

Figure 4.1 shows the playback rate that can be achieved per user as a function of
the setup delay time caused by the flash-crowd arrival pattern. Using Kangaroo,
only 6 seconds of waiting are necessary for all the peers to achieve 100% of
bitrate. This waiting time is inversely proportional to the network capacity.
With α = 2,0, only 4 waiting seconds are necessary to achieve maximum
performance.

Figure 4.2 – System throughput during flash-crowd arrival pattern

Figure 4.2 shows the system throughput for different values of α (Alfa). To
higher values of α, the system throughput also increases.

The results obtained for the second scenario, batched-join, are presented in
Figure 4.3. The video download times of the peers are very similar; all of them
are able to achieve continuous playback after waiting for only 5 seconds. The
system throughput results are almost identical with the one shown in Figure 4.2,
so we will omit it.

EXPERIMENTATION

59

Figure 4.3 – Playback rate obtained for batched-join arrival pattern

Figure 4.4 – Kangaroo’s performance related to source capacity

EXPERIMENTATION

 60

The performance of Kangaroo as a function of the server network capacity was
taken. In this case, the upload and download capacity of peers was set to 1,75x
while the source bandwidth capacity varied from 2,0x to 4,0x. The results
obtained show that the source has a maximum bandwidth. Once that point is
reached, no more network resources are needed because these won’t provide any
increase in the system’s performance, in terms of response time. Figure 4.4
shows that with α = 1,75x, the maximum bandwidth needed by the server is 2,5x.

4.2.2 Random and Anchor Jumps

The second pattern is related to random jumps and the impact they have on
system resource requirements. Figure 4.5 shows the percentage of jumps that
can achieve 100% of bit rate in function of the waiting time and the bandwidth
value. In this experiment 172 peers arrive in a flash-crowd making 3 jump
operations each. It can be observed that the anchor jumps achieve better results
than random jumps. Within 4 waiting seconds and α=1,75, only 80% of random
jumps can achieve the maximum ratio, compared to 92% of anchor jumps.

Figure 4.5 – Kangaroo’s performance with jump operations

EXPERIMENTATION

61

4.2.3 Imagenio Traces

For this evaluation, 172 Imagenio users were selected randomly. Every user
performs jump operations forward, backward or pauses the playback. The movie
is normalized to 1024 seconds for simplicity. Figure 4.6 (a) and (b) show the
percentage of jumps achieving 100% of bit rate in function of the waiting time
and the load on the source. It can be seen that compared with the optimal P2P,
the load on the source in Kangaroo is very similar if α=1,75. Data shows a better
performance of Kangaroo using real user behaviors, but we have to consider that
the actual Imagenio system presents a very reduced number of jumps.

Figure 4.6 (a) y (b) – Kangaroo’s performance using Imagenio traces

EXPERIMENTATION

 62

4.2.4 Tracker Load

How many requests are received by the tracker should be considered since it is
critical for the scalability of the system. With the purpose of updating their
neighborhood, peers get in contact with the tracker in two cases: (i) at every
jump operation, and (ii) when triggered by neighborhood health evaluation.

The former condition depends on the workload established while the latter
condition relies on the value of the threshold t of acceptable health factor.
Choosing a value of t involves a tradeoff: higher values of t lead to better
neighborhoods but also increase the number of messages sent to the tracker,
which in turn can increase the response time of the tracker and eventually the
delay experienced by peers at each jump.

Figure 4.7 – Threshold values for the neighborhood health factor

EXPERIMENTATION

63

Figure 4.7 shows the number of triggered update messages and the source load
as functions of threshold t, for 172 peers arriving in a flash crowd and doing 2
random jumps forward. For a value of t = 0.2, the best tradeoff between the
tracker response time and topology connectivity is given. A higher value implies
more load on the tracker, what could lead to a bottleneck. In other words, t
should be chosen so as to combine a low number of tracker updates and high
performance.

Finally, Figure 4.8 shows a comparison of the demand at the source peer for
different workloads and Poisson arrivals (λ = 1 peer/sec). Naturally, sequential
playback requires less capacity at the source for its simplicity. Random jumps at
uniformly distributed points of the remaining sequence are the most demanding
workload. Random jumps at uniformly distributed points in the entire sequence
provide an easier workload since backward jumps can be served by the swarm.
Imagenio traces are non-demanding workloads also, requiring server capacity of
α ≤ 10 for 95% of the time.

Figure 4.8 – Demand at the source for different workloads and user arrivals

EXPERIMENTATION

 64

CONCLUSIONS

65

Chapter 5

Conclusions
Abstract

This chapter describes the conclusions obtained from this dissertation work as

well as the future lines of research.

CONCLUSIONS

 66

CONCLUSIONS

67

5.1 Conclusions

The success of the peer-to-peer paradigm in both file distribution and live

streaming application derived in the adoption of this technology for the delivery

of video-on-demand content.

However, providing on-demand services using P2P is a very challenging task;

and has attracted the attention of different research groups and application

developers who are looking for feasible solutions that will consider real-time

constraints, VCR functionalities and high quality of service (QoS).

Some current approaches rely on over-provisioning servers or on structured

overlays to quickly find segments requested by users to provide VoD services.

But regardless of how well the P2P protocol is designed, we believe there are

certain user behaviors as well as jumping patterns that will have an effect on the

server load. For example, if peers in the system decide to jump to different

positions all at the same time, most probably the system will be incapable of

dealing with the load and will crash.

During the realization of this work, we evaluated the effect of different

workloads and user behavior patterns on a real P2P-VoD system performance.

From the results obtained, we can conclude that Kangaroo performs pretty well,

achieving low user delay with small server capacity for all considered

CONCLUSIONS

 68

workloads: flash-crowd, batched-join and random jump; and user patterns

determined from the Imagenio traces.

5.2 Future Lines of Research

Having analyzed the feasibility of a real P2P-VoD system, such as Kangaroo, to

deal with different workloads and user interactivity operations, the following

points are considered as future lines of research:

� Consider the classification of users according to the content being watched,

and study if there is a direct relation between any particular user and a

specific content.

� Take into account ISP-friendly considerations and study how cross-ISP

traffic can be reduced while maintaining P2P performance.

� Study the effect of NAT traversal problems in P2P systems. To solve this

some questions need to be answered : What kind of incentives are feasible?

Under what kind of conditions are peers willing to provide more resources?

REFERENCES

69

References

 [1] BT. BitTorrent Homepage. http://www.bittorrent.com/.

[2] EMULE. Emule Homepage. http://www.emule-project.net/.

[3] GridCast. http://www.gridcast.cn/.

[4] Internet Protocol Multicast, ch 43 of Internetworking Technology Handbook,
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/ipmulti.pdf

 [5] Joost. http://www.joost.com/.

[6] PFSVOD. http://www.pplive.com/subject/20070808pfsvod/.

[7] PPLive. http://www.pplive.com/.

[8] Annapureddy, S., Guha, S., Gkantsidis, C., Gunawardena, D., & Rodriguez,
P. R. (2007). Is high-quality vod feasible using P2P swarming? Proceedings of

the 16th International Conference on World Wide Web, , 903-912.

[9] Cheng, B., Jin, H., & Liao, X. (2007). Supporting VCR functions in P2P
VoD services using ring-assisted overlays. Communications, 2007.ICC'07.IEEE

International Conference on, , 1698-1703.

[10] Cheng, B., Liu, X., Zhang, Z., & Jin, H. (2007). A measurement study of a
peer-to-peer video-on-demand system. IPTPS, Bellevue, WA, Feb,

[11] Chu, Y., Rao, S., Seshan, S., & Zhang, H. (2002). A case for end system
multicast. Selected Areas in Communications, IEEE Journal on, 20(8), 1456-
1471.

[12] Guo, Y., Suh, K., Kurose, J., & Towsley, D. (2003). P2Cast: Peer-to-peer
patching scheme for VoD service. Proceedings of the 12th International

Conference on World Wide Web, , 301-309.

[13] Hua, K. A., Cai, Y., & Sheu, S. (1998). Patching: A multicast technique for
true video-on-demand services. Proceedings of the Sixth ACM International

Conference on Multimedia, , 191-200.

REFERENCES

 70

[14] Huang, C., Li, J., & Ross, K. W. (2007). Can internet video-on-demand be
profitable? Proceedings of the 2007 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communications, , 133-144.

[15] Jannotti, J., Gifford, D. K., Johnson, K. L., Kaashoek, M. F., & O'Toole Jr,
J. W. (2000). Overcast: Reliable multicasting with on overlay network.
Proceedings of the 4th Conference on Symposium on Operating System Design

& Implementation-Volume 4 Table of Contents, , 14-14.

[16] Kostić, D., Rodriguez, A., Albrecht, J., & Vahdat, A. (2003). Bullet: High
bandwidth data dissemination using an overlay mesh. ACM SIGOPS Operating

Systems Review, 37(5), 282-297.

[17] Li, J. (2008). On peer-to-peer (P2P) content delivery. Peer-to-Peer

Networking and Applications, Springer Journal on, 45-63.

[18] Padmanabhan, V. N., Wang, H. J., Chou, P. A., & Sripanidkulchai, K.
(2002). Distributing streaming media content using cooperative networking.
Proceedings of the 12th International Workshop on Network and Operating

Systems Support for Digital Audio and Video, , 177-186.

[19] Tran, D., Hua, K., & Do, T. ZIGZAG: An efficient peer-to-peer scheme for
media streaming. INFOCOM 2003.Twenty-Second Annual Joint Conference of

the IEEE Computer and Communications Societies.IEEE, 2

[20]Vlavianos, A., Iliofotou, M., & Faloutsos, M. (2006). BiToS:
Enhancing BitTorrent for supporting streaming applications. IEEE Global

Internet,

[21]Vratonjić, N., Knežević, N., & Rowstron, A. (2007). Enabling DVD-
like features in P2P video-on-demand systems. Proceedings of the 2007

Workshop on Peer-to-Peer Streaming and IP-TV, , 329-334.

[22]Wong, B., Slivkins, A., & Sirer, E. G. (2005). Meridian: A
lightweight network location service without virtual coordinates.
Proceedings of the 2005 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communications, , 85-96.

REFERENCES

71

[23] Zhang, X., Liu, J., Li, B., & Yum, T. S. P. (2005).
CoolStreaming/DONet: A data-driven overlay network for efficient live
media streaming. Proceedings of IEEE INFOCOM, 3, 13-17.

