
ANÁLISIS DE VIABILIDAD PARA LA
CENTRALIZACIÓN DE ENTORNOS

DISTRIBUIDOS

Memòria del Treball Final de Carrera
d'Enginyeria de Telecomunicació

realitzat per
Robert Requena Rubio

i dirigit per
Jordi Verdú Tirado

Bellaterra, 17 de Setembre de 2008

Escola Tècnica Superior d’Enginyeria

El sotasignat, Jordi Verdú Tirado

Professor/a de l'Escola Tècnica Superior d'Enginyeria de la UAB,

CERTIFICA:

Que el treball a què correspon aquesta memòria ha estat realitzat sota la
seva direcció per en Robert Requena Rubio

I per tal que consti firma la present.

Signat:

Bellaterra, 17 de Setembre de 2008

Índices

I

Índice de contenidos

1. INTRODUCCIÓN.. 4

2. TESTING ... 6

2.1 El ciclo de software ... 6
2.2 Entorno de pruebas... 8
2.3 Errores .. 8
2.4 Alpha y beta... 9
2.5 Detección..10
2.6 Tipos de pruebas ...10

2.6.1 Prueba unitaria ...10
2.6.2 Pruebas de integración...11
2.6.3 Pruebas de sistema ...11
2.6.4 Pruebas funcionales...12
2.6.5 Pruebas de carga ..12
2.6.6 Pruebas de prestaciones...13

3. CENTRALIZACIÓN... 14

3.1 Sistemas distribuidos..15
3.2 Esquema cliente­servidor..16
3.3 Thin Client ..17
3.4 Escritorios Remotos..17
3.5 Ventajas e inconvenientes de la centralización de recursos................18

3.5.1 Ventajas ..18
3.5.2 Inconvenientes ...19

4. PLATAFORMAS DE ACCESO A SERVIDORES REMOTOS..................... 20

4.1 Terminal Service. Microsoft ...20
4.2 Virtual Network Computing. ..21
4.3 MetaFrame. Citrix ..22
4.4 X­Window. Unix...23
4.5 Secure Global Desktop. Sun Microsystems24
4.6 Evaluación de alternativas...25

5. EJEMPLO DE UNA PRUEBA DE CARGA. “TITICACA”......................... 27

5.1 Preparación...27
5.1.1 Requerimientos...27
5.1.2 Asunciones ...29
5.1.3 Propuesta...30

5.2 Desarrollo del código..34
5.2.1 Prueba de concepto ...34
5.2.2 Diseño ...40
5.2.3 Scripting ..40

5.3 Ejecución ..42
5.3.1 Primer test ...43
5.3.2 Segundo test ..44
5.3.3 Tercer test ...45

5.4 Análisis de resultados ...46
5.5 Informe ..47

5.5.1 Primer test ...48
5.5.2 Segundo test ..49
5.5.3 Tercer test ...50

6. CONCLUSIONES .. 51

7. BIBLIOGRAFÍA ... 53

Análisis de viabilidad para la centralización de entornos distribuidos

II

Índice de figuras

Figura 3.1 Esquema habitual cliente­servidor 19
Figura 4.1. Remote Assistance 23
Figura 4.2. Remote Desktop 24
Figura 4.3. Vista de una conexión VNC desde Windows XP 24
Figura 4.4. Pantalla de autenticación a un servidor a través de una conexión
MetaFrame 25
Figura 4.5. Sesión X­Window sobre plataforma Windows 26
Figura 4.6. Vista de una sesión SGD sobre Apple 27
Figura 5.1. Comportamiento de la CPU del servidor durante la ejecución
del primer test 46
Figura 5.2. Comportamiento de la CPU del servidor durante la ejecución
del segundo test 47
Figura 5.3. Comportamiento de la CPU del servidor durante la ejecución
del tercer test 48

Índices

III

Índice de tablas

Tabla 5.1. Requerimientos para el test de la aplicación Titicaca 33
Tabla 5.2. Asunciones para el test de la aplicación Titicaca 34
Tabla 5.3. Ventajas de la Opción 1 de la propuesta 35
Tabla 5.4. Desventajas de la Opción 1 de la propuesta 35
Tabla 5.5. Descripción de la propuesta de la Opción 1 36
Tabla 5.6. Ventajas de la Opción 2 de la propuesta 37
Tabla 5.7. Desventajas de la Opción 2 de la propuesta 37
Tabla 5.8. Descripción de la propuesta de la Opción 2 38
Tabla 5.9. Criterio de evaluación para los resultados obtenidos en el test 52
Tabla 5.10. Valores mínimo, medio y máximo de los consumos de CPU
y Memoria 53
Tabla 5.11. Resultados del primer test. 53
Tabla 5.12. Valores mínimo, medio y máximo de los consumos de CPU
y Memoria. 54
Tabla 5.13. Resultados del segundo test. 54
Tabla 5.14. Valores mínimo, medio y máximo de los consumos de CPU
y Memoria del segundo y tercer test. 55
Tabla 5.15. Comparativa entre los resultados medios de la segunda
y la tercera prueba. 55
Tabla 5.16. Resultados de ambos tests. 55

Análisis de viabilidad para la centralización de entornos distribuidos

4

1. INTRODUCCIÓN

La mayoría de las empresas tienen gran cantidad de aplicaciones que deben
ser distribuidas entre una amplia gama de usuarios, desde empleados en
funciones técnicas con dispositivos de acceso simples hasta los que hacen el
trabajo intelectual, como los gerentes y ejecutivos con ordenadores muy
potentes.

Existen tres tipos principales de aplicaciones a nivel de empresa, las cliente­
servidor, las aplicaciones Web y las de escritorio. Los usuarios necesitan
acceder continuamente a estas aplicaciones y a mucha información (correo
electrónico, páginas Web, documentos…) para hacer su trabajo en una
empresa.

Hay dos formas de afrontar este aumento de necesidades de información: la
primera es sobre la marcha, usuario por usuario y aplicación por aplicación
y la segunda es de modo sistemático. La primera manera ha terminado
siempre con una compleja red de acceso a los datos de forma que es poco
eficiente y difícil de manejar mientras que de la segunda manera todo el
sistema queda definido de forma más clara y permite una escalabilidad y
flexibilidad mucho mayores. Una plataforma de acceso para toda la
organización que conecte todos los puntos donde se reclama información
con todos los puntos donde se encuentra dicha información (centralización),
que ofrezca la información bajo demanda mediante un enfoque orientado al
servicio ha demostrado ser la mejor manera de distribuir la creciente
información necesaria en una empresa.

Es importante, por lo tanto, comprobar que todo funcione correctamente,
que el sistema permite y soporta el acceso a todos los usuarios y que las
aplicaciones que hay no saturan la red ni el servidor de forma que reduzca
la eficiencia del sistema.

Los tests, principalmente los de carga o performance, son los encargados de
comprobar in situ que el sistema centralizado no fallará. El hecho de que el
test tenga que hacerse en un servidor remoto permite una gran variedad de
opciones y de maneras de afrontarlo dependiendo además del tipo de
servidor y del tipo de aplicaciones a testear.

En este proyecto profundizaremos en cada uno de los diferentes conceptos
mostrados en esta introducción trayéndolos al mundo real de una empresa
mostrando que detrás de cada una de las definiciones teóricas podemos y
debemos encontrar una funcionalidad real. Después, comparando las
diferentes opciones que se nos presentan, valorándolas y eligiendo la mejor
entre ellas llegaremos a una opción útil y eficaz que nos permita realizar un
test de carga real a una aplicación real, pues este es el objetivo final de
este proyecto.

Introducción

5

La prueba se realizará sobre una aplicación de gestión bancaria que
denominaremos Titicaca y hemos de comprobar cual es el máximo número
de usuarios que pueden acceder simultáneamente a ella en cada uno de los
servidores en que está instalada, teniendo como número ideal el de 30
usuarios concurrentes en cada servidor para una estimación de entre 5000
y 10000 usuarios finales repartidos por todos los servidores de que dispone
el banco.

Hasta llegar a este test final el proceso que sufre el código es muy largo con
muchas pruebas intermedias que permiten al desarrollador corregir errores
y presentar un producto final que debe superar las exigencias de un test
como el que se plantea en este proyecto. Veremos aquí, en la primera parte
del mismo, todo este proceso de diferentes pruebas internas que sigue la
aplicación antes de someterse a esta última prueba que dictaminará en qué
medida está lista para ser utilizada por los usuarios finales.

Todas estas pruebas internas son siempre realizadas por parte de los
desarrolladores y es por eso que las situaremos en el lado “cliente” mientras
que explicaremos también todo el proceso desde el lado del “proveedor de
servicios” que se encargará del test final y cuyo trabajo comienza una vez
ha finalizado el del cliente. Así pues veremos y evaluaremos las distintas
opciones que se le presentan al proveedor una vez le entregan la aplicación
y cuál es el proceso desde que recibe la petición de realización del test
hasta que lo culmina con la entrega de sus informes de evaluación.

Análisis de viabilidad para la centralización de entornos distribuidos

6

2. TESTING

El testing es el proceso que permite verificar y determinar la calidad de un
programa informático.

En este capítulo veremos qué es el testing en profundidad además de
explicar cuales son los principales tipos de pruebas de software que se
realizan en dicho proceso.

2.1 El ciclo de software

El desarrollo de cualquier programa informático o software requiere una
serie de procesos o etapas. Este conjunto de etapas se denomina Ciclo de
Software.

El testing es la quinta de estas fases del Ciclo de software. El proceso de
testeo consiste en ejecutar el programa a comprobar y mediante diferentes
técnicas descubrir los errores que pueda tener dicho programa.

El primer puesto de este ciclo corresponde al análisis de requisitos en
que el ingeniero establece los requerimientos que el programa ha de tener.
En nuestro caso se parte de un programa ya antiguo de gestión bancaria
que, pese a que ha sufrido gran cantidad de actualizaciones de forma
constante desde su creación se está quedando obsoleto, ya no sólo
funcionalmente si no también estéticamente y en facilidad de manejo y
comprensión. La nueva aplicación se encargará de realizar las mismas
funciones que la antigua pero de una forma más eficiente a la vez que
sencilla y clara para el usuario. Uno de los principales objetivos es el reducir
de forma importante el tiempo de aprendizaje de la herramienta haciéndola
más intuitiva y visual.

Después de este análisis preliminar la siguiente fase es la especificación
donde el ingeniero se encarga de describir detalladamente el software a
crear. La importancia de esta fase es relativa si hablamos del núcleo interno
del programa y cobra la máxima relevancia a la hora de diseñar interfaces
externos, pues estos han de ser, pase lo que pase por debajo, lo más
estables posible. Estamos, con Titicaca, en una de esas ocasiones en que la
importancia de esta fase para el núcleo interno es muy baja ya que el
programa está perfectamente definido desde hace mucho tiempo. En
cambio, como ya hemos comentado, será muy importante el interfaz de
usuario pues es una de las partes que más cambios va a sufrir durante el
proceso de creación del software.

Antes de empezar con la programación propiamente dicha se tiene que
determinar el diseño y la arquitectura del software. En esta parte del
ciclo se han de tener en cuenta elementos como el hardware o la red a la
que estarán conectados los ordenadores donde vaya a correr el programa.
Nuestra herramienta de gestión bancaria ha de estar disponible para todos
los empleados del banco por lo que es importantísima esta fase del ciclo de

Testing

7

software. Titicaca será utilizado por entre 5000 y 10000 usuarios que se
conectaran desde distintos sitios del planeta a un servidor que ha de
ofrecerles el programa de forma rápida y eficiente. El cálculo del número de
servidores dependerá pues del número de usuarios capaces de utilizar cada
uno de ellos simultáneamente. En este caso, si cogemos el número ideal de
30 usuarios/servidor, tendríamos entre 166 y 334 servidores.

Después de estos pasos el ingeniero está listo para la programación en sí
misma, cuya complejidad y duración depende en gran medida del lenguaje
de programación escogido para realizar el código. En nuestro caso el
lenguaje elegido es Java a través de la plataforma Eclipse de IBM.

Cuando el proceso de programación ha terminado es cuando llega el
proceso de testing. El testing se encarga de que el proceso de
especificación no haya sido en balde y permite comprobar que todas las
tareas que indicaba dicha especificación se cumplen correctamente. Esta es
la última fase que evaluaremos en este proyecto y la podemos dividir en
dos fases: la de pruebas internas, que realizará el cliente de forma privada
mientras desarrolla el código y que le permitirá corregir los errores más
importantes. La segunda fase es la de pruebas externas en la que el
proveedor se encarga de realizar una prueba final de forma ajena al cliente
que permite evaluar su trabajo final y establecer, en este caso, el número
de usuarios finales que podrán ser utilizados en cada servidor. Además es
habitual descubrir algún error que haya pasado desapercibido al
desarrollador debido a la naturaleza de las pruebas que realiza durante la
programación.

Completan el ciclo de software la documentación del proyecto (manuales
técnicos, diagramas, pruebas, manuales de usuario…) y el mantenimiento
en que el ingeniero ha de corregir posibles errores y mejorar el software
con sucesivas actualizaciones que recojan nuevos requisitos. Esta fase es la
que mayor tiempo dura en el Ciclo de software siendo habitualmente 2/3
del tiempo total. En nuestro caso esta fase escapa de nuestros objetivos por
lo que no entraremos a evaluarla y será, en todo caso, responsabilidad del
cliente.

Es habitual encontrar empresas encargadas exclusivamente a esta parte del
proceso y casi cualquier consultoría informática o empresa de ingeniería
informática tienen un departamento de testing. Este último caso es el de
nuestra empresa, de cuyo departamento de testing formé parte durante la
realización de este proyecto.

Análisis de viabilidad para la centralización de entornos distribuidos

8

2.2 Entorno de pruebas

Las pruebas de software necesitan un entorno particular aislado diferente al
entorno de producción (donde el usuario final utilizará la aplicación). Este
entorno de pruebas, aún siendo diferente al de producción ha de tener las
mismas condiciones que éste para así recrear perfectamente la situación
con la que ha trabajado el ingeniero y con la que se encontrará el usuario
final. Los propios fabricantes de hardware se encargan habitualmente de
proporcionar las herramientas necesarias para reproducir los entornos
finales.

Es importante esta separación de entornos gemelos para que los errores
que se detecten se deban exclusivamente al diseño del producto y no
vengan causados por diferencias entre dichos entornos que escapen al
control del ingeniero.

Para el test sobre Titicaca el banco nos facilita el acceso a una granja
(conjunto de servidores) dedicada exclusivamente a la realización de tests.
En uno de los servidores de la granja se ha instalado el software y
reproducido el entorno final que encontrará el usuario. Para el acceso nos
facilitan 30 usuarios virtuales con los que realizaremos el test y que se
encargarán de simular el trabajo de 30 personas simultáneas sobre Titicaca.

2.3 Errores

Podemos distinguir dos tipos de errores en una aplicación, los de
programación (bugs) y los defectos de forma. Los defectos de forma se dan
cuando el programa no realiza una acción prevista por el usuario, por
ejemplo cuando al pulsar un botón nos aparece una ventana que no es la
que esperábamos. Los errores de programación, en cambio, tienen que ver
con un fallo en la semántica del código.

Un bug, denominado así porque en 1944 una polilla fue la causante de un
importante error en el ordenador Mark II al haber abierto uno de los
muchos relés que formaban parte de él, muy típico es la aparición de
Memory Leaks o pérdidas de memoria. Estas pérdidas de memoria se
producen cuando una porción de memoria reservada para un proceso no
queda liberada cuando dicho proceso termina de ejecutarse.

Los errores de programación no tienen porqué provocar un defecto de
forma. Siguiendo con el ejemplo de las Memory Leaks, es posible que un
programa funcione correctamente durante un tiempo aún con ese bug
aunque si el tiempo de ejecución de dicho software es lo suficientemente
alto el programa acaba con toda la memoria disponible y deja de funcionar.
No es nada extraño que este tipo de errores se pasen por alto inicialmente
(un test corto en tiempo probablemente no daría con el bug) por lo que es
importante realizar tests como los que vamos a realizar para poder localizar
este tipo de fallos.

Testing

9

No es habitual, en cambio, encontrar con un test como el que llevaremos a
cabo, defectos de forma pues estos errores son fácilmente detectables por
el propio desarrollador. Aún así, en caso de encontrarlos, suelen surgir
durante la preparación de la prueba. Un desarrollador que conoce el
programa que está realizando, sabe lo que ha de pasar y lo que ha de hacer
para que pase, es por eso que las pruebas que puede realizar, aunque él no
lo crea, están destinadas siempre a resultar satisfactorias. Por ejemplo, en
un campo en que te piden el número de una tarjeta de crédito (o en la que
siempre hubiera que poner un número de tarjeta de crédito), es posible que
al programador nunca se le ocurra que alguien que desconozca la aplicación
pueda introducir letras en ese campo. En este caso es muy importante que
el probador externo realice el flujo normal que va a realizar el test de forma
manual y así favorecer el descubrimiento de estos errores que para un
programador que se conoce su software de arriba a abajo resultan, por
obvios, ilocalizables.

2.4 Alpha y beta

A menudo las empresas, además de realizar un proceso de testeo interno,
ya sea en un departamento de la propia empresa o contratando a una
externa, optan por publicar una versión no definitiva que los usuarios finales
se encargaran de probar durante un tiempo. Estas versiones de las
aplicaciones reciben el nombre de beta.

Durante la fase de desarrollo es posible también realizar una versión básica
que permite ir haciendo algunas pruebas iniciales. Esta versión básica es la
versión denominada alpha.

Indudablemente, esta opción de las versiones beta, aunque es útil para
detectar cierto tipo de errores, no puede ser, y de hecho no es, una fase
clave en el proceso de testeo pues la importancia de dicha fase no permite
dejar la responsabilidad de las pruebas en manos del usuario final.

Para el proyecto Titicaca el cliente se encarga de hacer llegar al proveedor
una versión que cree definitiva, habiendo superado las fases alpha y beta
(si es que se realizaron) antes de empezar nuestro test.

Análisis de viabilidad para la centralización de entornos distribuidos

10

2.5 Detección

Hoy en día la detección de errores a tiempo a la hora de desarrollar un
software es clave para el éxito de dicha aplicación. El aumento de la
complejidad y, por lo tanto, de los costes que conlleva hoy en día el
desarrollo de una aplicación obliga a que la detección de errores tenga que
ser una tarea eficaz y rápida. Esto es debido principalmente a que el tiempo
que se tarde en encontrar un fallo es directamente proporcional al dinero
necesario para corregirlo. Conforme vayamos tardando más tiempo en
encontrar el error más se irá encareciendo el proceso de corrección de dicho
error.

Para detectar los errores lo antes posible se realizan diferentes pruebas
durante todo el proceso que, aunque irremediablemente va después de la
programación del código probado, se pueden intercalar en mitad del
proceso mediante la creación de versiones intermedias del software final o
el estudio de módulos de código individuales.

2.6 Tipos de pruebas

Existen muchos y diferentes tipos de pruebas de software de las cuales en
este punto veremos una pequeña muestra en las que destacamos
probablemente las más extendidas en el mundo del testing de empresa.

2.6.1 Prueba unitaria

Una prueba unitaria ha de formar parte de un proceso de prueba que
incluya también al menos una prueba de integración pues es un paso previo
para esta última.

La prueba unitaria permite analizar un módulo aislado del código
implementado de forma que comprobará que dicho módulo funciona
correctamente por separado. El hecho de que todos los módulos funcionen
perfectamente de forma aislada no significa necesariamente que el software
en conjunto también lo haga. De ahí la necesidad de realizar, una vez
pasadas las pruebas unitarias, una prueba de integración que certifique el
correcto funcionamiento de la aplicación.

Las pruebas unitarias suelen ser realizadas por los propios programadores
encargados de desarrollar el código. Sirven como filtro inicial para detectar
los primeros errores rápidamente así como para comprobar que los
pequeños cambios que se puedan introducir en la implementación no
afectan al módulo completo.

Testing

11

Para Titicaca todas estas pruebas están del lado cliente y para nosotros son
transparentes. Hemos de suponer que se han pasado todos estos filtros
durante el desarrollo del código antes de que nos llegue a nosotros el
resultado final. En caso de que esto no hubiera sido así, aunque nuestro
trabajo resultaría más importante si cabe, debería enfocarse de otra manera
para poder abarcar todas las funcionalidades del software y no sólo una
parte, que será lo que nosotros haremos puesto que nuestro objetivo no es
comprobar que el software funcione sino comprobar cuantos usuarios
concurrentes es capaz de soportar sin dejar de funcionar.

2.6.2 Pruebas de integración

Una prueba de integración consiste en verificar el funcionamiento de una
aplicación una vez se han completado las diferentes pruebas unitarias. Para
poder completar la prueba de integración los diferentes módulos testados se
combinan y testan como un sólo módulo.

Estas pruebas, aunque es habitual que se encarguen también a consultores
externos o, al menos, a testers profesionales, en nuestro caso
correspondieron también al cliente de modo que no fue necesario realizar
un esfuerzo mayor y más completo para el diseño del test.

2.6.3 Pruebas de sistema

Las pruebas de sistema nos permiten verificar que el software testado
cumple con los requerimientos iniciales.

Para ello se suele utilizar el método de testeo conocido como de caja negra.
El que realiza la prueba no conoce el contenido del sistema que debe
testear, sólo conoce los requerimientos de dicho sistema. Así pues, con una
determinada entrada la salida debe ser una concreta y solamente una. Con
esta prueba, pues, no es posible detectar errores concretos por parte del
tester y es en este caso el programador el que, interpretando el resultado
de la prueba que le ofrece el tester, debe descubrir donde se produce el
error.

Hemos de suponer que esta prueba la realizó el cliente puesto que tampoco
entraba dentro de nuestros objetivos del proyecto Titicaca.

Análisis de viabilidad para la centralización de entornos distribuidos

12

2.6.4 Pruebas funcionales

Una prueba funcional se encarga de verificar y comprobar las
funcionalidades que se esperan del software. En una prueba funcional se
esperan detectar principalmente defectos de forma aunque también es
posible, por supuesto, detectar bugs.

Para estas pruebas es habitual que se requieran los servicios de alguien
ajeno al programador puesto que el conocer de primera mano la aplicación
perjudica a la hora de realizar las pruebas. Una persona que desconozca la
aplicación puede llegar, por error o desconocimiento, a probar
funcionalidades o casos de error que al programador por absurdos o ilógicos
desde su punto de vista, nunca comprobaría.

Los departamentos de testing de las empresas suelen estar divididos en dos
principales grupos: el de test funcional y el de performance. El
departamento de test funcional se encarga, como ya hemos dicho, de
comprobar que el software funcione perfectamente y responda de forma
correcta a los eventos que se reproduzcan. Este test sí fue realizado por
nuestra misma empresa aunque no es el objetivo de este proyecto entrar
en el proceso ni analizar los resultados que este obtuvo. Cuando la petición
de test llegó a nuestras manos el test funcional ya había sido superado de
forma satisfactoria.

2.6.5 Pruebas de carga

Estas pruebas se encargan de comprobar la estabilidad de una aplicación o
un sistema. Consiste en bombardear la aplicación (o el sistema) con un
número determinado o no de peticiones simultáneas con la intención de
sobrecargarla. El objetivo es comprobar:

Si el número de peticiones está predeterminado: que la aplicación o el
sistema soportan la carga de peticiones (o usuarios) que los requerimientos
exigen sin sobrepasar los límites de consumo de recursos (CPU, Memoria,
tiempo de respuesta, eficiencia…) máximos.

Si el número de peticiones es indeterminado: cuál es el número máximo
de peticiones que la aplicación o el sistema soportan antes de alcanzar los
límites de consumo de recursos.

Este tipo de test es muy importante en los entornos distribuidos ya que
permite conocer las limitaciones del sistema en cuanto a carga de usuarios
se refiere y nos permite así mejorar el balanceo de carga. Es decir, permite
decidir cuantos usuarios y cuando serán dirigidos a un servidor o a otro.

Testing

13

Titicaca es un proyecto en el que principalmente se realiza un test de carga
sobre los servidores y sobre la aplicación. En un primer momento puede
parecer que el número de peticiones está predeterminado puesto que se
espera que cada servidor permita trabajar a 30 usuarios simultáneos. Aún
así, como este número es más un objetivo “utópico” que una realidad, las
pruebas que realizaremos serán con un número de peticiones
indeterminadas. Es decir, empezaremos con un número bajo de usuarios
simultáneos e iremos aumentándolo hasta averiguar cual es el tope del
servidor y de la aplicación. Este tope lo marcará el consumo de recursos de
Titicaca puesto que los recursos de que dispone el servidor son fijos son los
de la aplicación los que hay que optimizar para conseguir el resultado
esperado.

2.6.6 Pruebas de prestaciones

También llamado test de performance, combina el test de carga con el test
funcional.

Así pues permite, a la vez, verificar el correcto funcionamiento de la
aplicación a nivel de concepto (funcionalidades) así como a nivel técnico
(consumo de recursos). Como el test de carga, es especialmente útil en
entornos distribuidos. Es fácil confundirlo con una prueba de carga puesto
que una parte importante del test de performance es estresar la aplicación
aunque, como decimos, es igualmente importante comprobar que la
aplicación funciona tal y como se esperaba.

En las pruebas de carga es normal que, para sobrecargar el sistema o la
aplicación, se ataque determinada funcionalidad de dicho sistema. En este
caso no queremos comprobar la funcionalidad si no sobrecargar el sistema
con peticiones a través de dicha función. Así pues, aunque a priori, un test
de carga pueda parecerse a un test de prestaciones, debemos tener clara la
diferencia.

En el caso que estamos estudiando sólo probaremos un par de
funcionalidades de la aplicación para comprobar como responde ante un
ataque grande. Así pues, la funcionalidad que se prueba no es tan
importante como el hecho de bombardear de peticiones al programa. Es por
eso que el test a Titicaca es un test de carga y no uno de prestaciones.

Análisis de viabilidad para la centralización de entornos distribuidos

14

3. CENTRALIZACIÓN

La centralización es una forma de organización en el entorno de la
informática y las telecomunicaciones. Con la centralización de todos los
servicios que requiere una red (software, impresoras…) se consigue
minimizar gastos y el tiempo de reacción ante cualquier problema o cambio
(p.e. actualización del software). Con esta centralización tenemos una
plataforma de acceso que abarca toda la organización y conecta todos los
puntos desde donde se reclama información con todos los puntos donde se
encuentra dicha información ofreciéndola bajo demanda. Esto es, sólo
dando la información a quien la necesite cuando la necesite. Con esto
evitamos tanto la sobrecarga de la red al minimizar el flujo de datos que
circulan por ella como que los clientes tengan demasiada información en su
PC.

Existen dos modelos de centralización: en el primero, el servidor remoto
provee un escritorio de Windows o de Linux a varias terminales de usuario.
A estos usuarios se les llama thin client. En el otro modelo un ordenador
normal actúa temporalmente como servidor remoto ofreciendo su escritorio
al resto de ordenadores conectados a una WAN (Wide Area Network) que
normalmente es Internet para permitir el teletrabajo. El software utilizado
tanto en el teletrabajo como por los thin clients es conocido como
Aplicaciones de Escritorio Remoto (Remote Desktop Applications).

En el banco nos encontramos básicamente con usuarios thin client. Y es que
todo el trabajo se realiza en los servidores dejando a los usuarios con lo
justo. En nuestro caso particular, como empresa externa que trabaja para el
banco, disponemos de acceso al servidor vía Escritorio Remoto pues
necesitamos, como testers en mi caso particular o desarrolladores en otras
secciones de la empresa, mucha más potencia y prestaciones de las que
puede ofrecer un thin client.

En este capítulo explicaremos porqué la centralización se ha impuesto en el
modelo actual de red en que los Escritorios Remotos son la base así como la
organización de las redes centralizadas.

Testing

15

3.1 Sistemas distribuidos

Los sistemas distribuidos son sistemas cuyos componentes hardware y
software, que están en ordenadores conectados en red, se comunican entre
ellos y son capaces de coordinar sus acciones, para el logro de un objetivo
común. La comunicación entre los componentes se establece mediante un
protocolo prefijado por un esquema cliente­servidor.

Los sistemas distribuidos han de tener tres características imprescindibles:
concurrencia, carencia de reloj global e independencia entre los
componentes.

La concurrencia consiste en que todos los recursos disponibles de la red
puedan utilizarse simultáneamente por los usuarios sin que esto suponga un
conflicto. El hecho de que yo esté utilizando cierto componente software
(p.e. el Word) no ha de impedir que otro usuario que lo solicite después de
mí pueda utilizarlo. En los componentes software (p.e. una impresora)
lógicamente se generarán colas pero éstas no impedirán que el usuario
trabaje normalmente (las colas son transparentes para el usuario).

La siguiente característica, la carencia de un reloj global, obliga a que los
diferentes componentes funcionen asíncronamente. Es decir, se comunican
entre ellos cuando es necesario e independientemente de cuando lo hagan
el resto de componentes. Con esto distribuimos la carga de la red, el
intercambio de datos, de forma constante a lo largo del día y evitamos
sobrecargas del sistema. De todas maneras, es inevitable que a ciertas
horas del día (a primera hora de la mañana y a primera hora de la tarde) la
cantidad de información que circula por la red del sistema es mucho mayor
que durante el resto de la jornada. Es por esto que los momentos iniciales
del test de carga que realizaremos, cuando todos los usuarios se conectan
en una franja de tiempo muy pequeña, son muy importantes y darán una
buena medida de lo que es capaz el servidor y de lo bien o mal
implementado que está Titicaca.

Por último, como ya hemos dicho, también es necesario que dichos
componentes sean independientes entre ellos. El hecho de que un elemento
de la red falle no puede afectar al resto, que han de poder seguir
trabajando con los elementos a los que no haya afectado dicho fallo.

Análisis de viabilidad para la centralización de entornos distribuidos

16

3.2 Esquema cliente­servidor

Para este esquema necesitamos al menos dos máquinas distintas. Una que
hará las tareas de servidor y la otra de cliente. Habitualmente de un
servidor dependen más de un cliente como podemos ver en la figura 3.1.

Un servidor se encarga de proporcionar servicios al cliente que se lo
demande. Estos servicios pueden ser o la ejecución de un programa, el
acceso a una base de datos o el acceso a un dispositivo hardware, como
puede ser una impresora. El cliente no tiene por sí mismo la capacidad de
utilizar estos servicios y requiere la presencia del servidor para poder
obtenerlos.

Fig. 3.1. Esquema habitual cliente­servidor

Un cliente, como vemos en la figura, puede ser un PC que tiene
funcionalidad independiente del servidor, con sus propios recursos (disco
duro, memoria…) y que, en un momento dado requiere los servicios del
servidor, ya sea para imprimir un documento o para acceder a un software
determinado. Otra opción para trabajar con un servidor remoto son los thin
clients, mucho menos independientes que los PCs.

El test lo realizaremos desde un PC que gestionará la conexión de los
usuarios virtuales (teóricamente hasta 30) que realizarán el test sobre el
servidor simulando cada uno de ellos la actuación de un thin client
trabajando sobre el servidor durante un periodo de tiempo prolongado.
Todos ellos demandarán al servidor el acceso a la aplicación Titicaca y
trabajarán simultáneamente sobre ella.

Testing

17

3.3 Thin Client

Un thin client o “cliente liviano” es una máquina que funciona como cliente
en un esquema cliente­servidor de forma totalmente dependiente. El
servidor es el encargado de toda la lógica de programación y, por lo tanto,
de todas las tareas de procesamiento. Un thin client sólo necesita poder
conectarse a la red para poder trabajar remotamente en el servidor.

Aparecen como contraprestación a los ordenadores habituales (ya sean PC’s
u ordenadores portátiles) ya que permiten ahorrar tanto en hardware como
en software.

Los thin clients permiten mantener toda la información centralizada,
reducen el coste de hardware (no tienen disco duro ni un procesador
demasiado potente) y consumen muy poca energía. Su tamaño también
suele ser reducido (no mucho mayor que un módem o un router)
permitiendo así ahorrar todo el espacio que necesita una torre de PC y no
son capaces de almacenar datos mejorando así la seguridad del sistema.

Para un banco parece pues, la mejor forma de trabajar. Todos los
empleados de las sucursales disponen de un thin client desde el que realizar
sus tareas diarias sin problemas y no pueden almacenar y/o robar
información puesto que no disponen de memoria propia. Esta forma de
trabajar es mucho más segura pero exige un control muy severo para que
el sistema funcione perfectamente y es que es impensable que la red de
todo un banco se caiga de forma accidental sin tener controlada una
alternativa. Volvemos a ver, con nuestro ejemplo, lo importante que es
realizar pruebas como las que se nos propuso y que estamos tratando aquí.

3.4 Escritorios Remotos

Los escritorios remotos permiten la centralización de las aplicaciones
habituales para los usuarios (navegadores, procesadores de texto…). Así, no
es necesario que el usuario disponga en su máquina local del software
instalado.

Los thin clients son así simples terminales de entrada/salida mientras que
los PC suelen tener instaladas las aplicaciones más comunes y utilizan los
escritorios remotos para aplicaciones que, ya sea por relevancia, temas de
seguridad o por coste de licencias, la empresa prefiere mantener en un
servidor aparte.

Para el acceso a los escritorios remotos existen varios programas diferentes
que utilizan, cada uno de ellos, un protocolo de comunicaciones propio
permitiendo así la elección entre diversas opciones que, como veremos más
adelante, serán un elemento importante en la elección de alternativas a la
hora de realizar las pruebas de performance sobre un servidor.

Análisis de viabilidad para la centralización de entornos distribuidos

18

3.5 Ventajas e inconvenientes de la centralización
de recursos

Podemos decir sin riesgo a equivocarnos que las ventajas de la
centralización superan ampliamente a las desventajas. A continuación
vamos a ver cuales son estas ventajas que nos ofrece y cuales son los
inconvenientes que, por supuesto, se nos presentan también.

3.5.1 Ventajas

Uno de los motivos más importantes por los que se impone el modelo de
centralización de los recursos es el ahorro económico que supone. Es mucho
más barato añadir un nuevo cliente que conectar al servidor (sobretodo si
se trata de un thin client) que no añadir un nuevo puesto de trabajo
independiente de la red montada. Asimismo, a la hora de actualizar
software o hardware es mucho más barato hacerlo en un sólo servidor que
no tener que ir puesto por puesto, PC por PC, actualizándolo, tanto en
dinero, en recursos humanos como en tiempo.

La escalabilidad de la red también es muy grande, es fácil aumentarla
añadiendo nuevos clientes o, en caso necesario, aumentar el número de
servidores centrales. Tener la información en uno (o en unos pocos
servidores) permite que la duplicación o el aumento del hardware sean
mucho más rápidos, fiables y baratos.

La capacidad de compartir recursos entre diversos usuarios (impresoras,
escáneres, software, dispositivos de almacenamiento...) es otra de las
grandes ventajas de estos sistemas así como el hecho de poder distribuir la
carga de trabajo entre diferentes ordenadores. Puesto que todos tienen
acceso al mismo servidor, la carga para el hardware de cada uno de ellos es
menor mejorando así la eficiencia de trabajo y el tiempo empleado en
completar una misma tarea en el servidor entre varias personas a la vez es
también mucho menor que si el mismo trabajo lo realiza una sola persona
en local, además del riesgo de perder los datos que esto supone.

Testing

19

3.5.2 Inconvenientes

Un problema que se presenta habitualmente en estos entornos de trabajo
es el de decidir cuantas funcionalidades, cuantos servicios o cuanta
información hemos de dejar en el servidor y cuanta ha de estar en el lado
del usuario. Es responsabilidad de los administradores de la red decidirlo
antes de ponerla en marcha y es por tanto un problema de diseño más que
un problema del sistema en sí, una vez solucionado este apartado antes de
construir la red, este inconveniente no se nos volverá a presentar salvo que
se lleve a cabo una reestructuración de los permisos y funcionalidades para
los usuarios.

Es posible que, si no se ha dimensionado bien la red, se puedan producir
problemas con la comunicación cliente­servidor, llegando a sufrir pérdidas
de mensajes, saturación del tráfico... Aunque también es un problema de
diseño y arquitectura previo a la red en sí es importante la realización de
tests de carga o de performance antes de dar por buena una nueva
actualización de un servidor o de una red puesto que, debido a su alta
escalabilidad, el redimensionamiento de la red se realiza relativamente a
menudo.

El principal problema que se presenta es el de la seguridad. El hecho de
compartir datos entre los usuarios la condiciona mucho. Aún así, la multitud
de sistemas de seguridad, encriptaciones y accesos restringidos permiten, a
estas alturas, tener unas redes bastante seguras.

Análisis de viabilidad para la centralización de entornos distribuidos

20

4. PLATAFORMAS DE ACCESO A
SERVIDORES REMOTOS

Existen diversas aplicaciones que permiten el acceso desde la máquina
local, ya sea un PC o un thin client, a los servidores remotos y el control de
este acceso desde el servidor. Estas aplicaciones permiten el acceso a
diferentes aplicaciones y al escritorio de una máquina remota (como cliente)
así como el manejo de las conexiones remotas (como servidor).
Prácticamente cada una de estas aplicaciones utiliza su propio protocolo de
conexión.

En este capítulo veremos las opciones más comunes que podemos
encontrar en cuanto a plataformas de acceso a servidores remotos se
refiere. No entraremos en demasiadas características técnicas y será más
bien una descripción superficial de las herramientas. También veremos una
evaluación de las diferentes alternativas presentadas.

4.1 Terminal Service. Microsoft

Terminal Services es la plataforma de acceso a escritorios remotos que
Microsoft integra en Windows. Terminal Services permite tanto la opción
cliente como la opción servidor.

Terminal Services ofrece, en su opción servidor, el componente Terminal
Server. Este componente se encarga de manejar la autenticación de
clientes, de poner a disposición de éstos las aplicaciones de forma remota
así como de aplicar las restricciones necesarias dependiendo de los
privilegios del grupo de usuarios al que pertenezca el cliente.

En su opción cliente, Terminal Services incluye dos aplicaciones para
Windows: Remote Desktop y Remote Assistance. Como viene integrada en
Windows prácticamente todo el mundo dispone de ella.

Remote Assistance
permite recibir asistencia
técnica a través de la
conexión remota sin
necesidad de que el
técnico se desplace
físicamente adonde esté
el ordenador. A través de
esta aplicación el servicio
técnico adquiere
temporalmente el control
sobre el escritorio del
cliente e intenta resolver

Fig. 4.1. Remote Assistance los problemas surgidos.

Plataformas de acceso a servidores remotos

21

Remote Desktop permite al cliente
utilizar una máquina en red de forma
remota. Para acceder a la máquina
remota son necesarios su usuario y su
contraseña. La máquina a la que
accedemos queda completamente
redirigida al cliente: sonido, recursos
hardware y software, dispositivos
externos como cámaras Web pueden
ser utilizados por el cliente como si
estuvieran en su ordenador. La
apariencia de dicha máquina se
muestra al cliente con la misma
imagen que aparece en local por lo
que el cliente observa e interactúa de
forma remota de la misma manera
que lo haría si lo hiciese en local.

Fig. 4.2. Remote Desktop

4.2 Virtual Network Computing.

Virtual Network Computing (VNC) es una plataforma de acceso a escritorios
remotos realizada bajo el concepto de software.

VNC funciona gráficamente, trabajando sobre la pantalla del servidor en el
cliente de forma que el cliente se mueve sobre píxeles y no sobre botones o
ventanas. Todos los recursos del servidor son redirigidos al cliente que
puede hacer uso de ellos remotamente. El servidor tiene la opción de
funcionar como servidor HTTP permitiendo así que el cliente, sin necesidad
de haber descargado previamente el VNC, pueda ver la pantalla compartida.
En este caso, cuando el navegador intenta acceder al servidor descarga
automáticamente el cliente VNC. El sistema operativo en el que trabajen
cliente y servidor no tiene por qué ser el mismo.

Fig. 4.3. Vista de una conexión VNC desde Windows XP.

Análisis de viabilidad para la centralización de entornos distribuidos

22

4.3 MetaFrame. Citrix

MetaFrame es la plataforma de acceso a escritorios remotos que ofrece la
compañía Citrix. Parte del código fuente de esta empresa lo utiliza Microsoft
para su Terminal Server mientras que otra parte ha permitido lanzar la
plataforma MetaFrame (en otras versiones de Windows se ha llamado
Presentation Server y XenApp). MetaFrame utiliza el protocolo ICA
(Independent Computing Architecture) para establecer las conexiones
remotas y funciona siempre sobre una máquina con Windows como sistema
operativo.

MetaFrame realiza una conexión de alto nivel con la que el cliente trabaja
exactamente igual que en local. La conexión se puede realizar desde
cualquier máquina al servidor Citrix y requiere autenticación propia. Para la
conexión el usuario necesita un cliente ICA que contiene la información
sobre la conexión (derechos del usuario, aplicaciones que tiene
disponibles…)

Fig. 4.4. Pantalla de autenticación a un servidor a través de una conexión
MetaFrame

Plataformas de acceso a servidores remotos

23

4.4 X­Window. Unix

X­Window es una plataforma de acceso a escritorios remotos para los
sistemas Unix. Para ello utiliza el protocolo XProtocol.

En un principio, X­Window era sólo un sistema de ventanas que funcionaba
como interfaz gráfica para Unix. A partir de ahí, aparecen diferentes
componentes que se encargan de que esta interfaz funcione en red
permitiendo el acceso remoto desde diferentes clientes al escritorio de un
servidor. Actualmente se utiliza la versión X11 de este componente.

Como el resto de aplicaciones de software libre, X­Window es independiente
del sistema operativo. En este caso, funciona también de forma gráfica
aunque, a diferencia de VNC, requiere de un gestor de ventanas
independiente para ser operativo. Sin este componente la conexión remota
no funciona. Es decir, el conjunto X11 + gestor de ventanas realiza una
conexión de alto nivel.

Fig. 4.5. Sesión X­Window sobre plataforma Windows

Análisis de viabilidad para la centralización de entornos distribuidos

24

4.5 Secure Global Desktop. Sun Microsystems

Secure Global Desktop, aunque fue diseñado y creado por la compañía
Tarantella, forma parte actualmente de Sun Microsystems.

La mayoría de sistemas operativos permiten utilizar SGD con la única
condición de disponer un navegador (Internet Explorer, Mozilla Firefox o
Safari) con el componente Java Runtime Environment instalado. La primera
vez que el cliente se conecta al servidor a través del navegador, el
componente SGD client se descarga y se instala. Utiliza el protocolo AIP
(Adaptative Internet Protocol).

El hecho de que la conexión sea vía navegador permite que las sesiones se
mantengan y puedan cerrarse en un ordenador (o en un thin client) y
abrirse en otra manteniendo el último estado de la conexión.

Para el control de la conexión desde el servidor presenta el Object Manager
que puede actualizar las aplicaciones que el usuario puede ver sin necesidad
de que dicho cliente cierre su sesión.

Fig. 4.6. Vista de una sesión SGD sobre Apple

Plataformas de acceso a servidores remotos

25

4.6 Evaluación de alternativas

Dependiendo de las características de los equipos de que dispongamos y de
la capacidad económica que tengamos deberemos elegir una opción u otra.

De las opciones que hemos visto VNC es la única que, siendo de libre
acceso, nos permite trabajar en Windows. Sus limitaciones a la hora de
trabajar debido a que sus conexiones son gráficas impiden un gran
desarrollo de las conexiones y un aprovechamiento total de todas las
opciones que una conexión de este tipo nos permite teóricamente. Es por
eso que para cuestiones docentes puede ser una buena herramienta.
Permite las conexiones remotas entre los alumnos y el profesor y sirve para
unos propósitos no demasiados ambiciosos como pueden ser los de una
clase en la universidad o en el instituto.

En caso de disponer de tecnología Unix podría también utilizarse la
plataforma X­Window. En todo caso parece más apropiada para
instituciones públicas más que para empresas privadas ya que el simple
hecho de su filosofía de software libre no permite llegar, por falta de
medios, a los niveles que un desarrollo de una empresa privada y por lo
tanto, al nivel de prestaciones que puede llegar a exigirse. En todo caso es
una buena alternativa, la mejor, si el sistema operativo utilizado es Unix y
no se tiene un presupuesto suficiente. Es por eso que parece más
recomendable para instituciones públicas como ayuntamientos o gobiernos
autonómicos en que los requerimientos del software, en teoría, no han de
ser demasiados.

Los servicios integrados de Microsoft, precisamente por eso, por ser
integrados no presentan muchas de las prestaciones que otros programas.
De hecho, es a partir de estas limitaciones desde donde se desarrollan las
otras plataformas, aprovechando la base que ofrece Windows para ofrecer
un mejor servicio. Aunque es cierto que las opciones que presenta, tanto
desde el lado servidor como el lado cliente son bastante buenas y permiten
realizar conexiones a escritorios remotos y gestionarlas de forma bastante
eficiente, las limitaciones técnicas que presenta y las desventajas que
conlleva la convierten en una herramienta circunstancial y como
complemento de alguna más compleja.

Así pues nos quedan las dos propuestas comerciales que hemos
presentado: Citrix y SGD.

SGD es el producto que ofrece la gigantesca Sun, la gran competidora de
Microsoft. Aunque su plataforma es absolutamente compatible con Windows
utiliza otro de sus propios productos, Java Runtime Environment, para
hacerla funcionar. Esto presenta algunas ventajas, como el hecho de que
sea independiente del sistema operativo puesto que, como ya hemos dicho,
funciona con casi cualquier navegador mientras tengamos instalado el JRE
manteniendo además la sesión de usuario.

Análisis de viabilidad para la centralización de entornos distribuidos

26

MetaFrame, en cambio, basa toda su tecnología en Windows y, aunque es
de una empresa diferente, el acuerdo que tienen Citrix y Microsoft les
permite intentar conseguir el mayor rendimiento que se puede ofrecer de
las bases que ofrece Windows (Terminal Services).

La gran diferencia entre SGD y MetaFrame es la necesidad del primero de
un navegador para funcionar mientras que la plataforma de Citrix nos
permite la conexión a un escritorio remoto sin necesidad de navegadores.
Esta ventaja de MetaFrame respecto a SGD parece más importante que la
ventaja del producto Sun de mantener la sesión y poder retomarla en otro
punto de la red puesto que en las empresas habitualmente las conexiones
de un usuario se realizan siempre desde el mismo PC o thin client.

Es por todas estas razones expuestas que la mejor elección para la mayoría
de las empresas (Sistema Operativo Windows y puestos de trabajo fijos)
considero que es MetaFrame de Citrix o cualquiera de sus versiones que
varían con la versión de Windows instalada.

En nuestro caso, utilizaremos esta conexión de Citrix para acceder al
servidor donde realizaremos el test. Disponemos como sistema operativo
Windows XP mientras que en los servidores encontramos Windows Server
2003. Partiendo de esta base, la opción MetaFrame es la más natural y
también la mejor para nuestros intereses. En todo caso, es el banco el que
gestiona los servidores así pues, ellos son los que eligen la plataforma de
acceso.

Plataformas de acceso a servidores remotos

27

5. EJEMPLO DE UNA PRUEBA DE
CARGA. “TITICACA”

Un test de prestaciones permite verificar el correcto funcionamiento de una
aplicación o un conjunto de ellas tanto a nivel de concepto (funcionalidades)
como técnico (recursos).

Este tipo de pruebas son especialmente útiles en entornos distribuidos
puesto que los servidores remotos van a sufrir un estrés (mayor o menor
dependiendo de su objetivo) debido a los diferentes usuarios que pueden
estar funcionando a la vez y ha de responder a todos por igual.

En este capítulo veremos todo el proceso necesario para la realización de un
test de prestaciones de una forma práctica, con un caso real como ejemplo.

5.1 Preparación

La preparación de un test se divide en tres fases, una primera fase en que
el cliente pide que se comprueben las prestaciones de algún producto suyo,
una segunda fase en que el encargado de realizar del test analiza la petición
y pone las condiciones que considera necesarias y una última parte en que,
una vez de acuerdo, se plasma todo lo acordado en las fases anteriores en
una propuesta que el cliente debe evaluar y aceptar si lo cree conveniente.

5.1.1 Requerimientos

Esta es la primera fase de un test, en ella el cliente contacta con el
proveedor de servicios para comprobar la viabilidad de realizar las pruebas
que han pensado para su producto.

A la hora de definir los requerimientos es importante también la opinión del
tester puesto que la mayoría de las veces, el cliente tiene una idea vaga de
lo que quiere hacer y es el encargado de realizar las pruebas el que tiene
que dar forma a lo que se busca para hacerlo realizable según los medios
que posea.

En el ejemplo que nos ocupa, el del software que llamaremos “Titicaca”, no
fue necesario ese intercambio de impresiones entre cliente y proveedor
puesto que ambos llevan trabajando mucho tiempo juntos y tienen bastante
claro, unos lo que pueden exigir y los otros lo que pueden ofrecer.

A continuación podemos ver una tabla con los requerimientos que pone la
empresa cliente para realizar el test:

Análisis de viabilidad para la centralización de entornos distribuidos

28

ID DESCRIPTION
R01 Based on an GUI and Browser based GUI, perform a load

test only the following FrontEnd:
• Titicaca GUI (rich client GUI)

R02 Test scenarios are :
Scenario I: Concurrent users performing isolated usecase

• 20 concurrent users doing the same usecase,
closing the frontend after each usecase

• Monitoring of
o CPU load
o Memory consumption
o Response time

Scenario II: Concurrent users using the frontend over a
period of time

• 20 concurrent users performing a set of defined
usecases over a defined amount of time without
closing the frontend application after each
usecase

• Monitoring of
o CPU load over time
o Memory consumption over time
o Response time development

R03 Usecase Description for Scenario I
• Start GUI
• Log in
• Open work queue
• Open work item and associated documents (TIFFS)
• Open document functionality only available in the

eclipse FrontEnd
• Close work item
• Log off
• Close GUI

Main objective of this usecase is to check possible
application memory leaks

R04 Usecase Description for Scenario II
• Start GUI
• Log in
• Open work queue
• Open and close multiple windows

o Functionality available by links
(IProcessClient Browser) or Buttons, double­
clicks and menu items (eclipse based
FrontEnd)

Main objective of this usecase is to check the stability
of the application.

R05 Generation of a document reporting the test results (CPU
load, memory consumption, response time, etc.).

Tabla 5.1. Requerimientos para el test de la aplicación Titicaca

Plataformas de acceso a servidores remotos

29

5.1.2 Asunciones

Como respuesta a los requerimientos del cliente, el proveedor del servicio
debe establecer una serie de puntos que se consideran necesarios e
imprescindibles para la realización en perfectas condiciones del test.

Estos puntos son asumidos por el cliente y se compromete a cumplirlos
como parte del contrato que se firmará. En caso de que no sea así el
proveedor no garantiza que el test pueda realizarse correctamente. Es
habitual que estas asunciones por parte del cliente no se cumplan al
completo durante todo el tiempo que dura el test pero en ese caso es
imprescindible que tenga las medios necesarios para remediar el problema
en el menor tiempo posible sin perjuicio para la empresa que se encarga del
test.

Podemos ver debajo de estas líneas la tabla en que quedaron recogidas las
asunciones para el proyecto de este ejemplo:

ID DESCRIPTION
AS01 Test environment infrastructure is available (servers,

etc.).

AS02 20 test users with access to the test environment.

AS03 Test users available and with proper rights to access the
FrontEnd of Titicaca according to described test
scenarios.

AS04 Test environment based on a W2K3 Server platform.

AS05 Detailed testcases will be available at the beginning of
the implementation.

AS06 No changes on the FrontEnd of Titicaca during the load
test cycle (neither versions updates nor configuration
changes).

AS07 Chosen testing tool is available and able to be installed
on a local development computer.

AS08 The sub­application MDS has no special technical feature
that leads to a higher effort to automate the
corresponding testcases.

AS09 The Company is the requester for installations and
assumes product license costs, but since there is not a
special owner for the proposed testing tool, it seems
that the license costs will be charged to the project or
department who use it.

Tabla 5.2. Asunciones para el test de la aplicación Titicaca

Análisis de viabilidad para la centralización de entornos distribuidos

30

5.1.3 Propuesta

Teniendo en cuenta los requerimientos y las asunciones el proveedor debe
realizar una propuesta que satisfaga al cliente presentándole, si es posible,
más de una opción entre las que el cliente pueda elegir la que le mejor le
convenga a sus intereses, indicando en cada caso las ventajas y
desventajas de cada una de las propuestas así como el impacto en el
mantenimiento en caso de que la opción ofertada lo requiera.

Una vez presentada la propuesta el trabajo previo por parte del proveedor
termina y sólo le queda esperar la decisión final del cliente, tanto elegir si el
proveedor es el elegido de entre todos los que se hayan presentado a
concurso como elegir cual es la opción de las presentadas por dicho
proveedor, si es que se han presentado varias, que más se ajusta a sus
intereses (económicos y técnicos).

En el ejemplo que estamos siguiendo encontramos dos diferentes opciones:

Opción 1:

­ Ventajas:

Tabla 5.3. Ventajas de la Opción 1 de la propuesta

­ Desventajas:
ID DESCRIPTION
DAV01 Manual start of test user sessions and also their scripts

makes not possible to measure detailed resource
consumption, only a general average.

DAV02 It is not possible to get the real responses times for
any application or test user, it is only possible to get
measures of general CPU load and memory consumption.

DAV03 No information available about causes of test execution
errors (environment/server, test tool, scripts,
performance, etc.). Wrong values on results cannot be
isolated.

DAV04 No information available about specific test users
activity and in consequence about a specific test
scenario.

DAV05 This is only a temporary solution; it is a workaround
while a corporate testing tool is defined. This means,
efforts invested in this solution will give a unique test
result and cannot be amortized.

DAV06 It is not possible to generate automatic project
documentation with a complete load test analysis.

Tabla 5.4. Desventajas de la Opción 1 de la propuesta

ID DESCRIPTION
AV01 Cost reduction by reusing license of testing tool what is

now in place.
AV02 Low effort for developing, since the current scripts can

be used without less additional effort. Only a new
scenario to include the new scripts for Titicaca must be
created.

AV03 Short timeline to begin development and the load test
execution.

Plataformas de acceso a servidores remotos

31

­ Propuesta:

The overall effort estimation for all scenarios (I+II+III) is 27 MDs,
including analysis, set­up, development, test and delivery
Following a detailed description of the tasks covered:

Tabla 5.5. Descripción de la propuesta de la Opción 1.

effort

TOTAL 27,00
Proof of Concept 1,00
Application Analysis 3,00

Scripts Development 5,00

Scenarios Creation 3,00

Project documentation 0,00

Execution 9,00

Results Analysis 2,00

Report 1,00

Project Management 3,00
project tracking and reporting tasks

After the execution, scripts must be developed to gather values from the perfmon logs. An analysis is
also necessary to extract the meaningful information.

Current management summary will be deliver adding information about Titicaca

In this phase, all applications involved in the Load Test will be analyzed from a performance point of
view. All information sent by each step performed by the user will be examined in order to detect
which fields need to be parameterized or correlated

During the development phase, all business flows will be recorded using Visual Test. Scripts will be
parameterized and correlated.

Once the business flows are developed, scenarios need to be built with scripts. Within the scenarios,
duration, number of users and server monitoring will be configured.

All scenarios previously created will be performed. During the execution phase, a daily execution
report will be delivered with a summary of all executions performed and general results

No automatic project documentation can be generated.

Análisis de viabilidad para la centralización de entornos distribuidos

32

Opción 2:

­ Ventajas:

Tabla 5.6. Ventajas de la Opción 2 de la propuesta.

­ Desventajas:
ID DESCRIPTION
DAV01 All scripts included in the Crosstest must be created for

LoadRunner. Existing scripts can not be reused.
DAV02 Additional LoadRunner license to use Citrix ICA protocol

is required
(see general chapter assumptions)

DAV03 LoadRunner environment is shared by other projects. This
environment must be booked for all Crosstest executions.

Tabla 5.7. Desventajas de la Opción 2 de la propuesta

ID DESCRIPTION
AV01 Highly scalable scenarios.

If a load increase is required, from simulating 20 to 50
users, no additional effort is required.

AV02 All performance results at one side.
LoadRunner lets collect all information from (application
response times and server monitoring) and create graphs
automatically.
Furthermore, following information can be gathered:

• Running Virtual Users
• Error statistics (providing the type of error

and the line number in the script)
• Transactions per second
• Transactions Response Time (Average, Min, Max)
• Windows Resources

o CPU
o Memory
o Paging

• Network Traffic
AV03 Scripts consistency.

As LoadRunner is not a functional test tool, any change
in the presentation layer doesn’t affect to the script.

AV04 Error management.
Information regarding the execution is displayed live,
seeing all users simulated and if there is any error.

AV05 Test Reports.
LoadRunner lets you create HTML reports for any
execution. It also includes a Word Report generation tool
to automatically summarize and display the test's
significant data

Plataformas de acceso a servidores remotos

33

­ Propuesta:

The overall effort estimation for the solution for all scenarios
(I+II+III) is 69,5 MDs, including analysis, set­up, development, test
and delivery
Following a detailed description of the tasks covered:

effort
TOTAL 69,50
Proof of Concept 2,00
Application Analysis 16,00

Scripts Development 33,00

Scenarios Creation 1,00

Project documentation 5,00
Execution 3,00

Results Analysis 2,00

Report 0,50

Project Management 7,00
project tracking and reporting tasks

From the execution, several graphs and tables are created from LoadRunner. An analysis is
necessary to extract the meaningful information.

From the execution, several graphs and tables are created from LoadRunner. An analysis is
necessary to extract the meaningful information.

In this phase, all applications involved in the Load Test will be analyzed from a performance point of
view. All information sent by each step performed by the user will be examined in order to detect
which fields need to be parameterized or correlated

During the development phase, all business flows will be recorded using Mercury Virtual User
Generation through the Cirtrix ICA protocol. Scripts will be parameterized and correlated.

Once the business flows are developed, scenarios need to be built with LoadRunner Controller.
Within the scenarios, duration, number of users and server monitoring will be configured.

All scenarios previously created will be performed. During the execution phase, a daily execution
report will be delivered with a summary of all executions performed and general results

Tabla 5.8. Descripción de la propuesta de la Opción 2

Análisis de viabilidad para la centralización de entornos distribuidos

34

5.2 Desarrollo del código

En esta parte comienza el verdadero trabajo del probador ya que, aunque
en la fase anterior tiene mucho que decir y su opinión tiene que ser muy
tenida en cuenta es ahora donde realmente empieza su trabajo de
probador.

El desarrollo del código también se divide en tres fases, dos previas en que
el probador se encarga de conocer la herramienta a testear y de preparar
teóricamente el test y una última fase en que se desarrolla el código
propiamente dicho.

En nuestro ejemplo el cliente optó por la primera opción por lo que el
trabajo se completó con la herramienta Rational Visual Test de IBM.

5.2.1 Prueba de concepto

La prueba de concepto consiste en una prueba para que el tester se
familiarice con la aplicación para la cual ha de crear el test. Normalmente
consiste en una reunión, ya sea en persona o a través de teleconferencia,
en la que algún desarrollador de la herramienta en cuestión o alguien que la
conozca suficientemente bien muestra al probador como funciona ésta. Es
habitual que se aproveche esta misma reunión para definir los testcases
que quiere que se realicen.

Cada testcase prueba una pequeña parte de la aplicación o un determinado
flujo de acciones dentro de ella. Por ejemplo, abrir una aplicación y a
continuación cerrarla. En este caso tenemos un testcase sencillo que se
encarga de comprobar que la aplicación se abre correctamente y se cierra
sin problemas. Aunque pueda parecer absurdo, este pequeño testcase
puede servir para detectar Memory Leaks (memoria que no se libera
adecuadamente) ocurridos al cerrar.

Una vez realizada esta reunión el probador comprueba por su cuenta que
los testcases realizados de forma manual funcionan y plasma la definición
del testcase en un documento que el responsable del test del lado del
cliente tiene que confirmar. Es esta una forma de evitar problemas de
malentendidos entre lo que quería el cliente y lo que entendió el tester.

Plataformas de acceso a servidores remotos

35

Con el test de Titicaca este documento quedó de esta manera:

Test Scenario
A unique test scenario is defined for this test with following requirements:

• 20 test users are connecting and logging into the Citrix Farm

• All these test users star the Titicaca application

• Each test user selects the same working list

• Each of these test users selects a different work item from the list.

• With the selected work item each test user executes the test case

• The test case execution will be repeated several times but without closing the
Titicaca application

• The test execution will be performed during a whole working day.

Test Cases
There are many functional test cases but they will be executed as a unique one with
following steps:

1. Start the Titicaca application by clicking on the desktop on the icon
[Titicaca]

2. Perform the logon

After the application is started and the test user is logged on,
on the left side a list must be shown.

Análisis de viabilidad para la centralización de entornos distribuidos

36

3. On the Tab list,

click a item from the list.

4. On the right window,

select the work item corresponding to this test user
Remarks: each test user must have an own or different defined test working item.

Plataformas de acceso a servidores remotos

37

5. Double click on the selected item.

The following document will be opened:

6. Minimize this document (keep it opened).

7. On the Tab <Workitem view>,

click on Tab [Partner], and
wait 30 seconds.

Análisis de viabilidad para la centralización de entornos distribuidos

38

8. On the same dialog,

click on Tab [Produkte], and
wait 30 seconds.

9. On the same dialog,

click on Tab [KIM], and
wait 30 seconds.

Plataformas de acceso a servidores remotos

39

10. On the same dialog,

click on Tab [F u. VP], and
wait 30 seconds.

11. On the same dialog,

click on Tab [Vorganssteuerung], and
wait 30 seconds.

12. On the same dialog click on button [Abbrechen]

13. On the confirmation dialog click on button [Ja]

The [Workitem View] will be closed.

At this point the application must be kept open and the test case must be
repeated.

Análisis de viabilidad para la centralización de entornos distribuidos

40

5.2.2 Diseño

Una vez superada la prueba de concepto el tester tiene que decidir como
afrontar la prueba. Dependiendo de la herramienta se elegirá una forma de
actuar u otra, una forma de crear los testcases u otra.

En nuestro caso tenemos que la herramienta es Rational Visual Test. Ya la
hemos utilizado antes así que estamos familiarizados con ella y sabemos
cual es la mejor forma de afrontar el test por experiencias pasadas.

Crearemos pues los escenarios necesarios, en teoría 30 diferentes, que
serán los pasos que seguirá cada usuario virtual mientras dure la prueba.
Además tenemos que separar todo el testcase principal (que hemos visto en
la prueba de concepto) en diferentes testcases más pequeños: login,
selección de elemento de la lista... El objetivo es dividir el test en partes lo
más pequeñas posibles que, sin alterar en exceso el desarrollo normal,
permitan detectar y corregir errores de forma rápida.

En concreto el objetivo diseñado era el siguiente:

­ 30 Escenarios diferentes con dos diferencias básicas:
1. usuario de acceso al servidor
2. elemento de la lista a seleccionar

­ 3 diferentes testcases:
1. login
2. selección de elemento
3. selección de pestañas

5.2.3 Scripting

Esta parte es propiamente el desarrollo del código y consiste en plasmar en
el lenguaje de la herramienta de test todo lo que se ha estado planificando
hasta ahora.

El Rational Visual Test dispone de la posibilidad de grabar la actuación del
usuario y transformarla automáticamente en código. Esta opción es una
buena primera aproximación y permite establecer el esqueleto de lo que
será el test.

Una vez se han grabado las acciones el código que nos presenta la
herramienta ha de ser pulido y completado para tener en cuenta los
posibles errores, retrasos cuando el servidor esté más o menos saturado,
etc.

Este parte del trabajo, aunque requiere de cierta habilidad y experiencia
para minimizarla, se basa bastante en el método ensayo y error. Con el
esqueleto conseguido con la grabación directa, si se ejecuta, no se suele
conseguir más que en el primer momento en que pueda fallar, el test falle.

Plataformas de acceso a servidores remotos

41

Es por eso que una vez detectado el posible fallo del test, que no de la
herramienta, hay que corregirlo, más rápidamente si se tiene experiencia y
menos si apenas se conoce la herramienta. Como ya hemos dicho, ya
hemos trabajado anteriormente con Rational Visual Test por lo que este
proceso, aunque es el más largo de toda la fase de desarrollo se simplificó
bastante gracias a los anteriores tests realizados.

Análisis de viabilidad para la centralización de entornos distribuidos

42

5.3 Ejecución

En nuestro caso se realizaron tres ejecuciones diferentes. El escenario para
todas las ejecuciones fue el mismo mientras que lo que variaba era el
número de usuarios virtuales conectados al servidor. En el primer test se
utilizaron 20 usuarios, en el segundo 10 y en el tercero 15.

El número de ejecuciones teórico es de una por test pero en nuestro caso,
debido a los resultados obtenidos, se optó por realizar la prueba hasta 3
veces diferentes. Después de cada ejecución se realizó el correspondiente
análisis y se entregó un informe al cliente. Por comodidad hemos decidido
agrupar la explicación de cada prueba por fases (ejecución, análisis e
informe) en vez de por ejecución que obligaría a volver adelante y atrás
cada vez.

Plataformas de acceso a servidores remotos

43

5.3.1 Primer test

Como teóricamente se esperaba que los servidores aguantaran hasta 30
usuarios se decidió realizar un test que a priori era conservador,
considerando sólo 20 usuarios simultáneos trabajando con Titicaca en un
mismo servidor.

Al realizar el test resultó que las estimaciones eran demasiado optimistas y
aún con “sólo” 20 usuarios la ejecución no fue tan bien como se esperaba.
Vemos a continuación como, al haber transcurrido tres horas de trabajo con
Titicaca, el servidor quedó saturado, algo inaceptable teniendo en cuenta
que una jornada laboral es de, al menos, 8 horas.

Fig 5.1. Comportamiento de la CPU del servidor durante la ejecucion del primer test

Podemos ver en la figura 5.1 como el consumo se dispara al cabo de unas
tres horas aproximadamente y alcanza el 100% durante la última media
hora en que la aplicación dejó de funcionar correctamente. Además, es
fácilmente apreciable que el consumo medio mientras el programa
trabajaba de forma correcta es de casi un 50%, un porcentaje de CPU muy
elevado si tenemos en cuenta que sólo estamos haciendo funcionar una sola
herramienta.

Análisis de viabilidad para la centralización de entornos distribuidos

44

5.3.2 Segundo test

En vista de los resultados obtenidos con el primer test el cliente se planteó
realizar otra prueba después de hacer algunos cambios en el código de
Titicaca. Así pues, un par de semanas después de realizar la primera
ejecución se preparó una segunda.

El escenario era el mismo (mismo testcase definido sobre una versión
diferente del mismo programa) por lo que lo único que variaba era el
número de usuarios. Esta vez, teniendo en cuenta los resultados anteriores,
se optó por una posición más conservadora aún y se decidió realizar una
prueba con 10 usuarios concurrentes. Así pues diez sesiones diferentes se
abrieron en el servidor para realizar el test.

Los resultadotes fueron esta vez mucho mejores, el consumo medio había
bajado sensiblemente y el servidor no se había saturado en ningún
momento dando esperanzas de que los cambios realizados funcionaban y
habían mejorado la eficiencia de Titicaca.

Fig. 5.2. Comportamiento de la CPU del servidor durante la ejecución del segundo
test

Plataformas de acceso a servidores remotos

45

5.3.3 Tercer test

El resultado del segundo test hizo ser optimista al cliente y éste nos pidió
un tercer test para confirmar la tendencia de mejora. En este tercer test
serían 15 los usuarios virtuales y si los resultados eran tan buenos como en
el anterior se lanzaría un cuarto test que definiría el número de usuarios por
servidor que podrían utilizar.

Pero este tercer test estuvo en la línea del primero. Los cambios no habían
surgido el efecto vislumbrado por el segundo test y, aunque el servidor no
se saturaba con los 15 usuarios simultáneos, el programa dejaba de
funcionar correctamente al cabo de unas tres horas de ejecución.

Fig. 5.3. Comportamiento de la CPU del servidor durante la ejecución del tercer test

Podemos ver en la figura 5.3 como el consumo de CPU cae al cabo de esas
tres horas debido a que el programa deja de funcionar correctamente y, por
lo tanto, de consumir recursos.

Análisis de viabilidad para la centralización de entornos distribuidos

46

5.4 Análisis de resultados

El análisis y tratamiento de resultados nos permitirá siempre elaborar un
informe útil y con información que aporte algo al cliente. Para realizarlo
debemos primero organizar los datos recogidos durante el test.

Como vimos en los requerimientos los datos principales que se piden son el
consumo de CPU, del cual hemos visto los gráficos obtenidos en el apartado
anterior, y la memoria consumida por el programa del total de la memoria
disponible del servidor. Estos datos se obtienen, en nuestro caso, a través
de una herramienta de Windows llamada Performance Monitor. Este servicio
que ofrece Windows permite almacenar los datos de la máquina en un
archivo .csv que es compatible con Excel y con algún otro procesador de
texto simple como Notepad o UltraEdit.

El Performance Monitor se lanza en el servidor para que registre los datos
de consumo de CPU y Memoria durante toda la ejecución. Después estos
datos se guardan, como ya hemos dicho, en un archivo .csv y con él
trabajaremos para el análisis de los resultados que nos ofrezca el test.

A partir de los datos obtenidos, como podemos ver en la figura 5.4, se
generan, con un programa diseñado por nosotros para trabajar con ese
formato de datos, una serie de gráficos y de archivos de texto (Resultados
parciales en la figura 5.4) que nos los presentan de una forma mucho más
legible y visual. A partir de estos archivos y gráficos, trabajando con Excel y
Access generamos nuevos gráficos y documentos que serán muy útiles a la
hora de realizar el informe (Resultados finales en la figura 5.4).

Fig. 5.4. Esquema del proceso de generación de gráficos y documentos útiles a
partir de los obtenidos del test

Plataformas de acceso a servidores remotos

47

5.5 Informe

El objetivo del informe es ofrecer al cliente la suficiente información de
forma clara y concisa. No hay que olvidar que el cliente no ha de saber de
testing e incluso no tiene porqué conocer los detalles de la aplicación sobre
la que se realiza la prueba. Es por eso que el informe ha de mostrar los
resultados de forma visual y rápida, con gráficos y tablas, a poder ser
coloreadas de forma instintiva: verde si el test ha ido bien y rojo se ha ido
mal.

Es importante también, en caso de que el resultado de la prueba no sea el
esperado, justificarlo, indicando cuales pueden ser los errores que han
causado el mal resultado y sugiriendo, siempre dejando al cliente la
decisión final, las posibles soluciones para los problemas detectados.

En nuestro caso presentamos un informe después de la primera ejecución y,
en vista de los resultados, el cliente decidió realizar una segunda y una
tercera pruebas por lo que tuvimos que presentar tres informes diferentes.

Resource usage green amber red

RAM [MB] <= 3400 > 3400 <= 3680 > 3680

CPU [%] <= 55 > 55 <= 65 > 65

Tabla 5.9. Criterio de evaluación para los resultados obtenidos en el test

Análisis de viabilidad para la centralización de entornos distribuidos

48

5.5.1 Primer test

Para el primer test se presentó un informe que incluyó el gráfico expuesto
en la figura 5.1 para mostrar de forma visual el resultado de la prueba, en
este caso sólo el comportamiento de la CPU. Se incluyó también la tabla
5.10 con los valores significativos de la memoria consumida y la CPU
durante la ejecución y la tabla 5.11 donde siguiendo los criterios expuestos
en la tabla 5.9 se evalúan los resultados obtenidos.

Resource Min. Average Max.

CPU 2 % 59 % 100 %

RAM 1916,01 MB 3470,08 MB 3674,12 MB

Tabla 5.10. Valores mínimo, medio y máximo de los consumos de CPU y Memoria.

Measure Status

RAM 3731,53 MB redResource usage

CPU 59 % amber

General performance Not acceptable

Tabla 5.11. Resultados del primer test.

Como los resultados no ofrecen dudas se incluyó también en el informe un
apartado de conclusiones en el que se recomendaba revisar principalmente
el consumo de memoria y se apuntaba la posibilidad de la existencia de
Memory Leaks puesto que aún cuando el programa quedaba colgado y no
hacía nada el consumo de memoria seguía creciendo indefinidamente.

Plataformas de acceso a servidores remotos

49

5.5.2 Segundo test

El segundo test tuvo lugar unas semanas después del primero. Los
desarrolladores del software habían hecho algunos cambios que creían que
podían haber solucionado si no de forma total, al menos en parte, el
problema de consumo de memoria que hacía que el servidor se saturase. El
informe presentado siguió la misma plantilla que el anterior: incluyó el
gráfico expuesto en la figura 5.10 para mostrar de forma visual el
comportamiento de la CPU, la tabla 5.12 de memoria y CPU consumidas y la
tabla 5.13 donde siguiendo los criterios expuestos en la tabla 5.9 se evalúan
los resultados obtenidos.

Resource Min. Average Max.

CPU 0 % 18 % 100 %

RAM 1494,71 MB 2504,18 MB 2646,12 MB

Tabla 5.12. Valores mínimo, medio y máximo de los consumos de CPU y Memoria.

Measure Status

RAM 2504,18 MB greenResource usage

CPU 18 % green

General performance Acceptable

Tabla 5.13. Resultados del segundo test.

En este caso los resultados fueron muy buenos y animaron al cliente a
realizar una tercera prueba para comprobar si el aumento de usuarios hasta
15 mejoraba el resultado obtenido en el primer test.

Análisis de viabilidad para la centralización de entornos distribuidos

50

5.5.3 Tercer test

En este tercer test el informe varió ligeramente ya que decidimos, puesto
que la versión de la herramienta era la misma que en el segundo test,
realizar una comparativa entre los resultados obtenidos. Así pues, el
informe estaba basado en los anteriores pero sustituyendo las tablas
presentadas por unas en que se podían ver los resultados del segundo test
también. Es por eso que, además de figura 5.10 para mostrar de forma
visual el comportamiento de la CPU, presentábamos la tabla 5.14 con los
valores significativos de CPU y memoria, la tabla 5.15 donde se muestra la
variación en % de los valores obtenidos tanto de memoria como de CPU,
Por último incluimos la tabla 5.16 donde siguiendo los criterios expuestos en
la tabla 5.9 se muestran los resultados obtenidos de las dos pruebas.

Resource # users Execution Min. Average Max.

CPU 10 Test­2 0 % 18 % 100 %

CPU 15 Test­3 1 % 22 % 93 %

RAM 10 Test­2 1494,71 MB 2504,18 MB 2646,12 MB

RAM 15 Test­3 1916,01 MB 3470,08 MB 3674,12 MB

Tabla 5.14. Valores mínimo, medio y máximo de los consumos de CPU y Memoria
del segundo y tercer test.

Variation
2­3

Measure
Test­2

Measure
Test­3

RAM + 38,57 % 3470,08 MB 2504,18 MBResource
usage

CPU + 4 % 22 % 18 %

Tabla 5.15. Comparativa entre los resultados medios de la segunda y la tercera
prueba.

Measure 3 Status 3 Measure 2 Status 2

RAM 3470,08 MB amber 2504,18 MB greenResource usage

CPU 22 % green 18 % green

General performance Acceptable Acceptable

Tabla 5.16. Resultados de ambos tests.

Teniendo en cuenta que el test tuvo que pararse al cabo de tres horas de
ejecución debido a que el programa dejó de funcionar y viendo la
progresión del consumo de memoria (casi un 40% más con sólo 5 usuarios
más) se optó por dar por finalizados los tests y dejar en 10 usuarios en vez
de los 30 previstos al principio el número máximo de usuarios por servidor.

Conclusiones

51

6. CONCLUSIONES

Con este proyecto hemos pretendido descubrir, explicar y evaluar las
diferentes opciones que se presentan en un entorno de trabajo real a la
hora de realizar tests, en nuestro caso, de carga.

En este proyecto hemos visto el desarrollo de un test desde el momento en
que surge la necesidad de realizar un test hasta el momento en que se
entrega el informe con los resultados de dicha prueba. Hemos comprobado
como el proceso es mucho más grande que solamente realizar las pruebas
que se piden y que la ejecución de las mismas es sólo una pequeña parte
del global, igual de necesaria e imprescindible que el resto.

También hemos visto en qué consiste el testing desgranando los más
importantes tipos de prueba que podemos realizar y que, de hecho, se
realizan durante la parte de testeo del ciclo de software. Hemos podido
describir qué son y cómo funcionan los sistemas distribuidos y el porqué de
su gran supremacía actual en el mundo de la empresa. Además hemos
evaluado algunas de las diferentes alternativas que se presentan en el
mercado de cara a trabajar en estos entornos centralizados.

Nos hemos decidido, a la hora de elegir una opción para trabar por, en un
entorno distribuido Windows, utilizar la herramienta MetaFrame de Citrix
porque sus características encajan perfectamente con nuestros objetivos.
Estos objetivos, realizar un test en el que 30 usuarios trabajaran
simultáneamente con un programa de gestión bancaria que hemos llamado
Titicaca en un servidor Windows, eran fácilmente accesibles con esta
herramienta que nos ofrece la compañía Citrix y llegamos a la misma
conclusión a la que había llegado el banco y nos decidimos también por
MetaFrame.

Para terminar, hemos entrado en detalle en un test real realizado por una
empresa para comprobar que de la teoría a la realidad, de lo que se plasma
en una propuesta a lo que al final se acaba realizando normalmente hay una
gran diferencia. La realización de tres diferentes ejecuciones con tres
diferentes configuraciones tanto de test como de software a probar nos ha
permitido obtener diferentes conclusiones después de cada una de las
ejecuciones que han obligado al cliente a tomar decisiones inesperadas muy
diferentes a las que teóricamente tenían que tomar.

El proyecto nos ha traído una aproximación al mundo del testing, un mundo
cada vez más extendido hoy en día, tanto con la creación de empresas
dedicadas exclusivamente a esto como en departamentos dentro de las
grandes consultoras informáticas.

Análisis de viabilidad para la centralización de entornos distribuidos

52

El futuro de las grandes empresas pasa por un incremento de su
presupuesto para testing puesto que es este departamento el que permitirá
reducir costes de mantenimiento al minimizar los errores antes de la salida
del producto al mercado. Así mismo el número de empresas dedicadas
exclusivamente a las pruebas de software será cada vez más importante ya
que la realización de los tests se está convirtiendo en un elemento
imprescindible para que cualquier proyecto tenga éxito.

Hemos podido ver, con este proyecto una perspectiva global de un mundo
que se vuelve imprescindible en una sociedad cada vez más informatizada
en el que el I+D y las nuevas tecnologías se están convirtiendo en la base
de una sociedad avanzada como la nuestra y que pretende estar a la altura
del norte de Europa o de Estados Unidos.

Bibliografía

53

7. BIBLIOGRAFÍA

1. http://citrix.com/

2. http://www.sun.com/

3. http://www.microsoft.com/

4. http://www.monografias.com/

5. http://www.csi.map.es/

6. http://www.x.org/

7. http://www.realvnc.com/

ABSTRACT

EVERY DAY IS MORE USUAL TO FIND ALL THE COMMON SOFTWARE AND HARDWARE OF THE COMPANYS
DISTRIBUTED AND MANAGED BY DIFFERENT SERVERS WHAT SERVE TO THE USER ALL THEY NEED ONLY

WHEN THEY ASK FOR IT. THIS INFORMATION DISTRIBUTION SYSTEM IS CALLED CENTRALIZATION.

THIS DISTRIBUTION SYSTME REQUIRES A CONTINUOUS MAINTENANCE IN ORDER TO ATTEND ALL THE USERS
DEMANDS. DUE TO THE CENTRALIZATION THIS MAINTENANCE BECAMES AN EASY PROCESS THAT INVOLVES
ONLY THE SERVER UPDATE. THE SERVER CHECKING IS NOW VERY IMPORTANT BECAUSE IT’S NECESSARY TO

CHECK IF THE UPDATES ANSWER PROPERLY TO THE USERS REMOTE DEMANDS.

IN THIS PROJECT WE HAVE ANALIZED HOW ALL THIS TESTS TO ASSURE THE RIGHT PERFORMANCE OF THE
REMOTE SERVERS ARE DONE. WE HAVE CONSIDERED THE ENVIRONMENT WHERE THE TESTS ARE

PERFORMED AND THE NECESSARY TOOLS TO DO THEM. TO COMPLETE THIS INFORMATION WE HAVE SEEN A
PARTICULAR EXAMPLE OF A LOAD TEST.

RESUMEN

CADA VEZ ES MAS HABITUAL ENCONTRAR TANTO EL SOFTWARE COMO EL HARDWARE COMÚN DE LAS
EMPRESAS DISTRIBUIDO Y GESTIONADO EN DIFERENTES SERVIDORES QUE SE ENCARGAN DE SERVIR AL
USUARIO AQUELLO QUE NECESITA SOLO CUANDO ESTE LO PIDE. ESTE SISTEMA DE DISTRIBUCIÓN DE LA

INFORMACION SE LLAMA CENTRALIZACION.

ESTE SISTEMA DE DISTRIBUCION REQUIERE UN MANTENIMIENTO CONSTANTE PARA ASÍ PODER ATENDER
TODAS LAS DEMANDAS DE LOS USUARIOS. EL MANTENIMIENTO SE CONVIERTE, GRACIAS A LA

CENTRALIZACIÓN EN ALGO RELATIVAMENTE SENCILLO PUESTO QUE SOLO ES EN EL SERVIDOR DONDE SE
TIENEN QUE REALIZAR LOS CAMBIOS, ACTUALIZACIONES O INSTALACION DE NUEVO SOFTWARE. ES

IMPORTANTE ENTONCES COMPROBAR QUE ESTAS NUEVAS ACTUALIZACIONES DEL SERVIDOR RESPONDERAN
CORRECTAMENTE CUANDO LOS USUARIOS LAS REQUIERAN REMOTAMENTE.

EN ESTE PROYECTO NOS HEMOS ENCARGADO DE ANALIZAR COMO SE REALIZAN LAS COMPROBACIONES
NECESARIAS PARA ASEGURAR EL CORRECTO FUNCIONAMIENTO DE LOS SERVIDORES REMOTOS

CONSIDERANDO TANTO EL ENTORNO EN EL QUE SE REALIZAN COMO LAS HERRAMIENTAS NECESARIAS PARA
LLEVARLO A CABO. PARA COMPLETAR LA INFORMACIÓN NOS HEMOS CENTRADO EN UN EJEMPLO

PARTICULAR DE TEST DE CARGA.

RESUM

CADA COP ES MES HABITUAL TROBAR­NOS TANT EL SOFTWARE COM EL HARDWARE COMU D’UNA EMPRESA
DISTRIBUIT I GESTIONAT A DIFERENTS SERVIDORS QUE S’ENCARREGUEN DE SERVIR L’USUARI TOT ALLÒ QUE

NECESSITI NOMES QUAN HO DEMANI. AQUEST SISTEMA DE DISTRIBUCIÓ DE L’ INFORMACIO S’ANOMENA
CENTRALITZACIO.

AQUEST SISTEMA DE DISTRIBUCIO FA NECESSARI UN MANTENIMENT CONSTANT PER PODER ATENDRE TOTES
LES DEMANDES DELS USUARIS. EL MANTENIMENT ARRIBA A SER, GRACIES A LA CENTRALITZACIO, EN UNA

COSA RELATIVAMENT SENZILLA DEGUT A QUE NOMES ES AL SERVIDOR ON S’HAN DE REALITZAR ELS
CANVIS, ACTUALITZACIONS O INSTAL·LACIONS DE NOU SOFTWARE. LLAVORS ES IMPORTANT COMPROVAR

QUE AQUESTAS NOVES ACTUALITZACIONS DEL SERVIDOR RESPONDRAN CORRECTAMENT QUAN ELS
USUARIS LES DEMANDIN REMOTAMENT.

EN AQUEST PROJECTE ENS HEM ENCARREGAT D’ANALITZAR COM ES REALITZEN LES COMPROBACIONS
NECESSARIES PER ASEGURAR EL CORRECTE FUNCIONAMENT DELS SERVIDORS REMOTS TOT CONSIDERANT

L’ENTORN EN EL QUE ES REALITZEN I LES EINES QUE NECESSITAREM PER DUR­LES A TERME. PER COMPLETAR
L’ INFORMACIÓ ENS HEM CENTRAT EN UN EXEMPLE PARTICULAR D’UN TEST DE CÀRREGA.

