Universitat
| < Autonoma
de Barcelona

etse

ANALISIS DE VIABILIDAD PARA LA
CENTRALIZACION DE ENTORNOS
DISTRIBUIDOS

Memoria del Treball Final de Carrera
d'Enginyeriade Telecomunicacio
realitzat per

Robert Requena Rubio

| dirigit per

Jordi Verdu Tirado

Bellaterra, 17 de Setembre de 2008

Universitat
/< Autonoma e t se

de Barcelona Escola Técnica Superior d’Enginyeria

El sotasignat, Jordi Verda Tirado

Professor/a de I'Escola Tecnica Superior d'Enginyeria de la UAB,
CERTIFICA:

Que el treball a qué correspon aquesta memoria ha estat realitzat sota la
seva direccid per en Robert Requena Rubio

| per tal que consti firma la present.

Signat:
Bellaterra, 17 de Setembre de 2008

indices

Indice de contenidos

1. INTRODUCCIONottt e ea 4
2. TESTING . s 6
2.1 El CIClO dE SOTtWAIE ... e 6
2.2 ENtorno de pruebas. ... 8
2.3 Bl O S e 8
2.4 AIPNA Y DEEA. . e 9
2.5 7Y =T o o] T) o 10
2.6 TIPOS d€ PruUEbas ..o s 10
2.6.1 Prueba unitariacoooiiiii i 10
2.6.2 Pruebas de integracion..........oooiiiiiiii e 11
2.6.3 Pruebas de SiStemaoouiiieiii i 11
2.6.4 Pruebas funcionales. ..o 12
2.6.5 Pruebas de Cargaoovvieiiiiii e 12
2.6.6 Pruebas de prestaciones.cvieiviiiiiii i 13

3. CENTRALIZACIONottt 14
3.1 Sistemas distribUIdOS.c.oiiiiii i 15
3.2 Esquema Cliente-Servidor. 16
3.3 I 1T T =T o 17
3.4 ESCHItOrioS REMOTOS. ...ttt e 17
3.5 Ventajas e inconvenientes de la centralizacion de recursos................ 18
3.5.1 = 1 = = T 18
3.5.2 g YoTe] NV g 1= o) = 19

4. PLATAFORMAS DE ACCESO A SERVIDORES REMOTOS..........c.ccue.... 20
4.1 Terminal Service. MIiCroSOftviiii i 20
4.2 Virtual Network COMPULING. «.veieii it vaeraaeeanens 21
4.3 L2 = T =Yg = TR O 22
4.4 DY e (011, Y R U T o T 23
4.5 Secure Global Desktop. Sun MICroSYStEMScviiviiiiiiiiiiiiieeiee e 24
4.6 Evaluacion de alternativas.occviiiiiiiiieiie e aee 25
5. EJEMPLO DE UNA PRUEBA DE CARGA. “TITICACA””. .. i 27
5.1 o (=T o T= L= Lo Lo o 1 27
5.1.1 =0 U= T g 1= o) o 1= 27
5.1.2 =T 1 o [0 1= 29
5.1.3 [0] 01U <1} = 30

5.2 Desarrollo del COIgO ...t 34
5.2.1 Prueba de CONCEPLOvie i 34
5.2.2 3 1S T 40
5.2.3 o3 1 0] 11 o o 40

5.3 = o 8o o o 1 42
5.3.1 o T 0 L= = 43
5.3.2 SEQUNAO TEST ..ttt e 44
5.3.3 L= L] g 1T A T 45

5.4 ANAliSiS de resultadosc.ovieiiiiii e 46
55 1 1] 0 1 47
55.1 o T 0 L= = 48
5.5.2 SEQUNAO TEST ..ttt e e 49
55.3 L= =] g 1T A T 50

6. CONCLUSIONESttt e ee 51
7. BIBLIOGRAFTA ..o 53

Analisis de viabilidad para la centralizacién de entornos distribuidos

Indice de figuras

Figura 3.1 Esquema habitual cliente-servidor

Figura 4.1. Remote Assistance

Figura 4.2. Remote Desktop

Figura 4.3. Vista de una conexion VNC desde Windows XP

Figura 4.4. Pantalla de autenticacion a un servidor a través de una conexiéon
MetaFrame

Figura 4.5. Sesion X-Window sobre plataforma Windows

Figura 4.6. Vista de una sesion SGD sobre Apple

Figura 5.1. Comportamiento de la CPU del servidor durante la ejecucion
del primer test

Figura 5.2. Comportamiento de la CPU del servidor durante la ejecucion
del segundo test

Figura 5.3. Comportamiento de la CPU del servidor durante la ejecucion
del tercer test

19
23
24
24

25
26
27
46
47

48

Indice de

tablas

Tabla 5.1.
Tabla 5.2.
Tabla 5.3.
Tabla 5.4.
Tabla 5.5.
Tabla 5.6.
Tabla 5.7.
Tabla 5.8.
Tabla 5.9.

Tabla 5.10.

y Memoria

Tabla 5.11.
Tabla 5.12.

Requerimientos para el test de la aplicacion Titicaca
Asunciones para el test de la aplicacion Titicaca

Ventajas de la Opcién 1 de la propuesta

Desventajas de la Opcion 1 de la propuesta

Descripcion de la propuesta de la Opcién 1

Ventajas de la Opcién 2 de la propuesta

Desventajas de la Opcion 2 de la propuesta

Descripcion de la propuesta de la Opcién 2

Criterio de evaluacion para los resultados obtenidos en el test
Valores minimo, medio y maximo de los consumos de CPU

Resultados del primer test.
Valores minimo, medio y maximo de los consumos de CPU

y Memoria.

Tabla 5.13.
Tabla 5.14.

y Memoria
Tabla 5.15

Resultados del segundo test.

Valores minimo, medio y maximo de los consumos de CPU
del segundo y tercer test.
. Comparativa entre los resultados medios de la segunda

y la tercera prueba.

Tabla 5.16

. Resultados de ambos tests.

indices

33
34
35
35
36
37
37
38
52

53
53

54
54

55

55
55

Analisis de viabilidad para la centralizacién de entornos distribuidos

1. INTRODUCCION

La mayoria de las empresas tienen gran cantidad de aplicaciones que deben
ser distribuidas entre una amplia gama de usuarios, desde empleados en
funciones técnicas con dispositivos de acceso simples hasta los que hacen el
trabajo intelectual, como los gerentes y ejecutivos con ordenadores muy
potentes.

Existen tres tipos principales de aplicaciones a nivel de empresa, las cliente-
servidor, las aplicaciones Web y las de escritorio. Los usuarios necesitan
acceder continuamente a estas aplicaciones y a mucha informacion (correo
electronico, paginas Web, documentos..) para hacer su trabajo en una
empresa.

Hay dos formas de afrontar este aumento de necesidades de informacion: la
primera es sobre la marcha, usuario por usuario y aplicacion por aplicacion
y la segunda es de modo sistematico. La primera manera ha terminado
siempre con una compleja red de acceso a los datos de forma que es poco
eficiente y dificil de manejar mientras que de la segunda manera todo el
sistema queda definido de forma mas clara y permite una escalabilidad y
flexibilidad mucho mayores. Una plataforma de acceso para toda la
organizacion que conecte todos los puntos donde se reclama informacion
con todos los puntos donde se encuentra dicha informaciéon (centralizacion),
que ofrezca la informacioén bajo demanda mediante un enfoque orientado al
servicio ha demostrado ser la mejor manera de distribuir la creciente
informacion necesaria en una empresa.

Es importante, por lo tanto, comprobar que todo funcione correctamente,
que el sistema permite y soporta el acceso a todos los usuarios y que las
aplicaciones que hay no saturan la red ni el servidor de forma que reduzca
la eficiencia del sistema.

Los tests, principalmente los de carga o performance, son los encargados de
comprobar in situ que el sistema centralizado no fallar4. El hecho de que el
test tenga que hacerse en un servidor remoto permite una gran variedad de
opciones y de maneras de afrontarlo dependiendo ademas del tipo de
servidor y del tipo de aplicaciones a testear.

En este proyecto profundizaremos en cada uno de los diferentes conceptos
mostrados en esta introduccion trayéndolos al mundo real de una empresa
mostrando que detras de cada una de las definiciones tedricas podemos y
debemos encontrar una funcionalidad real. Después, comparando las
diferentes opciones que se nos presentan, valorandolas y eligiendo la mejor
entre ellas llegaremos a una opciéon util y eficaz que nos permita realizar un
test de carga real a una aplicacion real, pues este es el objetivo final de
este proyecto.

Introduccién

La prueba se realizar4 sobre una aplicacion de gestibn bancaria que
denominaremos Titicaca y hemos de comprobar cual es el maximo nimero
de usuarios que pueden acceder simultdneamente a ella en cada uno de los
servidores en que estad instalada, teniendo como numero ideal el de 30
usuarios concurrentes en cada servidor para una estimacion de entre 5000
y 10000 usuarios finales repartidos por todos los servidores de que dispone
el banco.

Hasta llegar a este test final el proceso que sufre el codigo es muy largo con
muchas pruebas intermedias que permiten al desarrollador corregir errores
y presentar un producto final que debe superar las exigencias de un test
como el que se plantea en este proyecto. Veremos aqui, en la primera parte
del mismo, todo este proceso de diferentes pruebas internas que sigue la
aplicacion antes de someterse a esta ultima prueba que dictaminara en qué
medida estd lista para ser utilizada por los usuarios finales.

Todas estas pruebas internas son siempre realizadas por parte de los
desarrolladores y es por eso que las situaremos en el lado “Cliente””’mientras
que explicaremos también todo el proceso desde el lado del “proveedor de
servicios”’que se encargara del test final y cuyo trabajo comienza una vez
ha finalizado el del cliente. Asi pues veremos y evaluaremos las distintas
opciones que se le presentan al proveedor una vez le entregan la aplicacion
y cual es el proceso desde que recibe la peticibn de realizacion del test
hasta que lo culmina con la entrega de sus informes de evaluacion.

Analisis de viabilidad para la centralizacién de entornos distribuidos

2. TESTING

El testing es el proceso que permite verificar y determinar la calidad de un
programa informatico.

En este capitulo veremos qué es el testing en profundidad ademas de
explicar cuales son los principales tipos de pruebas de software que se
realizan en dicho proceso.

2.1 El ciclo de software

El desarrollo de cualquier programa informético o software requiere una
serie de procesos o etapas. Este conjunto de etapas se denomina Ciclo de
Software.

El testing es la quinta de estas fases del Ciclo de software. El proceso de
testeo consiste en ejecutar el programa a comprobar y mediante diferentes
técnicas descubrir los errores que pueda tener dicho programa.

El primer puesto de este ciclo corresponde al analisis de requisitos en
que el ingeniero establece los requerimientos que el programa ha de tener.
En nuestro caso se parte de un programa ya antiguo de gestion bancaria
que, pese a que ha sufrido gran cantidad de actualizaciones de forma
constante desde su creacion se estd quedando obsoleto, ya no sélo
funcionalmente si no también estéticamente y en facilidad de manejo y
comprension. La nueva aplicacibn se encargard de realizar las mismas
funciones que la antigua pero de una forma mas eficiente a la vez que
sencilla y clara para el usuario. Uno de los principales objetivos es el reducir
de forma importante el tiempo de aprendizaje de la herramienta haciéndola
mas intuitiva y visual.

Después de este andlisis preliminar la siguiente fase es la especificacion
donde el ingeniero se encarga de describir detalladamente el software a
crear. La importancia de esta fase es relativa si hablamos del nacleo interno
del programa y cobra la méaxima relevancia a la hora de disefar interfaces
externos, pues estos han de ser, pase lo que pase por debajo, lo mas
estables posible. Estamos, con Titicaca, en una de esas ocasiones en que la
importancia de esta fase para el nucleo interno es muy baja ya que el
programa esta perfectamente definido desde hace mucho tiempo. En
cambio, como ya hemos comentado, sera muy importante el interfaz de
usuario pues es una de las partes que mas cambios va a sufrir durante el
proceso de creacion del software.

Antes de empezar con la programacion propiamente dicha se tiene que
determinar el disefio y la arquitectura del software. En esta parte del
ciclo se han de tener en cuenta elementos como el hardware o la red a la
que estaran conectados los ordenadores donde vaya a correr el programa.
Nuestra herramienta de gestidon bancaria ha de estar disponible para todos
los empleados del banco por lo que es importantisima esta fase del ciclo de

Testing

software. Titicaca sera utilizado por entre 5000 y 10000 usuarios que se
conectaran desde distintos sitios del planeta a un servidor que ha de
ofrecerles el programa de forma rapida y eficiente. El cédlculo del numero de
servidores dependera pues del nUmero de usuarios capaces de utilizar cada
uno de ellos simultaneamente. En este caso, si cogemos el numero ideal de
30 usuarios/servidor, tendriamos entre 166 y 334 servidores.

Después de estos pasos el ingeniero estd listo para la programacioéon en si
misma, cuya complejidad y duracion depende en gran medida del lenguaje
de programacion escogido para realizar el cdédigo. En nuestro caso el
lenguaje elegido es Java a través de la plataforma Eclipse de IBM.

Cuando el proceso de programacion ha terminado es cuando llega el
proceso de testing. El testing se encarga de que el proceso de
especificacion no haya sido en balde y permite comprobar que todas las
tareas que indicaba dicha especificacion se cumplen correctamente. Esta es
la ultima fase que evaluaremos en este proyecto y la podemos dividir en
dos fases: la de pruebas internas, que realizara el cliente de forma privada
mientras desarrolla el cédigo y que le permitird corregir los errores mas
importantes. La segunda fase es la de pruebas externas en la que el
proveedor se encarga de realizar una prueba final de forma ajena al cliente
que permite evaluar su trabajo final y establecer, en este caso, el niumero
de usuarios finales que podran ser utilizados en cada servidor. Ademas es
habitual descubrir algun error que haya pasado desapercibido al
desarrollador debido a la naturaleza de las pruebas que realiza durante la
programacion.

Completan el ciclo de software la documentacion del proyecto (manuales
técnicos, diagramas, pruebas, manuales de usuario..) y el mantenimiento
en que el ingeniero ha de corregir posibles errores y mejorar el software
con sucesivas actualizaciones que recojan nuevos requisitos. Esta fase es la
que mayor tiempo dura en el Ciclo de software siendo habitualmente 2/3
del tiempo total. En nuestro caso esta fase escapa de nuestros objetivos por
lo que no entraremos a evaluarla y serd, en todo caso, responsabilidad del
cliente.

Es habitual encontrar empresas encargadas exclusivamente a esta parte del
proceso y casi cualquier consultoria informatica o empresa de ingenieria
informatica tienen un departamento de testing. Este ultimo caso es el de
nuestra empresa, de cuyo departamento de testing formé parte durante la
realizacion de este proyecto.

Analisis de viabilidad para la centralizacién de entornos distribuidos

2.2 Entorno de pruebas

Las pruebas de software necesitan un entorno particular aislado diferente al
entorno de produccion (donde el usuario final utilizara la aplicacion). Este
entorno de pruebas, aun siendo diferente al de produccion ha de tener las
mismas condiciones que éste para asi recrear perfectamente la situacion
con la que ha trabajado el ingeniero y con la que se encontrara el usuario
final. Los propios fabricantes de hardware se encargan habitualmente de
proporcionar las herramientas necesarias para reproducir los entornos
finales.

Es importante esta separacion de entornos gemelos para que los errores
que se detecten se deban exclusivamente al disefio del producto y no
vengan causados por diferencias entre dichos entornos que escapen al
control del ingeniero.

Para el test sobre Titicaca el banco nos facilita el acceso a una granja
(conjunto de servidores) dedicada exclusivamente a la realizacién de tests.
En uno de los servidores de la granja se ha instalado el software y
reproducido el entorno final que encontrara el usuario. Para el acceso nos
facilitan 30 usuarios virtuales con los que realizaremos el test y que se
encargaran de simular el trabajo de 30 personas simultaneas sobre Titicaca.

2.3 Errores

Podemos distinguir dos tipos de errores en una aplicacion, los de
programacion (bugs) y los defectos de forma. Los defectos de forma se dan
cuando el programa no realiza una accion prevista por el usuario, por
ejemplo cuando al pulsar un botdbn nos aparece una ventana que no es la
que esperdbamos. Los errores de programacion, en cambio, tienen que ver
con un fallo en la seméantica del cédigo.

Un bug, denominado asi porque en 1944 una polilla fue la causante de un
importante error en el ordenador Mark Il al haber abierto uno de los
muchos relés que formaban parte de él, muy tipico es la aparicion de
Memory Leaks o pérdidas de memoria. Estas pérdidas de memoria se
producen cuando una porcion de memoria reservada para un proceso no
queda liberada cuando dicho proceso termina de ejecutarse.

Los errores de programacion no tienen porqué provocar un defecto de
forma. Siguiendo con el ejemplo de las Memory Leaks, es posible que un
programa funcione correctamente durante un tiempo aun con ese bug
aunque si el tiempo de ejecucion de dicho software es lo suficientemente
alto el programa acaba con toda la memoria disponible y deja de funcionar.
No es nada extrafio que este tipo de errores se pasen por alto inicialmente
(un test corto en tiempo probablemente no daria con el bug) por lo que es
importante realizar tests como los que vamos a realizar para poder localizar
este tipo de fallos.

Testing

No es habitual, en cambio, encontrar con un test como el que llevaremos a
cabo, defectos de forma pues estos errores son facilmente detectables por
el propio desarrollador. Aun asi, en caso de encontrarlos, suelen surgir
durante la preparacion de la prueba. Un desarrollador que conoce el
programa que esta realizando, sabe lo que ha de pasar y lo que ha de hacer
para que pase, es por eso que las pruebas que puede realizar, aunque él no
lo crea, estan destinadas siempre a resultar satisfactorias. Por ejemplo, en
un campo en que te piden el numero de una tarjeta de crédito (o en la que
siempre hubiera que poner un nimero de tarjeta de crédito), es posible que
al programador nunca se le ocurra que alguien que desconozca la aplicacion
pueda introducir letras en ese campo. En este caso es muy importante que
el probador externo realice el flujo normal que va a realizar el test de forma
manual y asi favorecer el descubrimiento de estos errores que para un
programador que se conoce su software de arriba a abajo resultan, por
obvios, ilocalizables.

2.4 Alpha y beta

A menudo las empresas, ademas de realizar un proceso de testeo interno,
ya sea en un departamento de la propia empresa o contratando a una
externa, optan por publicar una version no definitiva que los usuarios finales
se encargaran de probar durante un tiempo. Estas versiones de las
aplicaciones reciben el nombre de beta.

Durante la fase de desarrollo es posible también realizar una version basica
que permite ir haciendo algunas pruebas iniciales. Esta version basica es la
version denominada alpha.

Indudablemente, esta opcion de las versiones beta, aunque es util para
detectar cierto tipo de errores, no puede ser, y de hecho no es, una fase
clave en el proceso de testeo pues la importancia de dicha fase no permite
dejar la responsabilidad de las pruebas en manos del usuario final.

Para el proyecto Titicaca el cliente se encarga de hacer llegar al proveedor
una version que cree definitiva, habiendo superado las fases alpha y beta
(si es que se realizaron) antes de empezar nuestro test.

Analisis de viabilidad para la centralizacién de entornos distribuidos

2.5 Deteccidn

Hoy en dia la deteccién de errores a tiempo a la hora de desarrollar un
software es clave para el éxito de dicha aplicacion. EI aumento de la
complejidad y, por lo tanto, de los costes que conlleva hoy en dia el
desarrollo de una aplicacién obliga a que la deteccion de errores tenga que
ser una tarea eficaz y rapida. Esto es debido principalmente a que el tiempo
que se tarde en encontrar un fallo es directamente proporcional al dinero
necesario para corregirlo. Conforme vayamos tardando mas tiempo en
encontrar el error mas se ird encareciendo el proceso de correccion de dicho
error.

Para detectar los errores lo antes posible se realizan diferentes pruebas
durante todo el proceso que, aunque irremediablemente va después de la
programacion del codigo probado, se pueden intercalar en mitad del
proceso mediante la creacion de versiones intermedias del software final o
el estudio de mdédulos de cdédigo individuales.

2.6 Tipos de pruebas

Existen muchos y diferentes tipos de pruebas de software de las cuales en
este punto veremos una pequefia muestra en las que destacamos
probablemente las méas extendidas en el mundo del testing de empresa.

2.6.1 Prueba unitaria

Una prueba unitaria ha de formar parte de un proceso de prueba que
incluya también al menos una prueba de integracion pues es un paso previo
para esta ultima.

La prueba unitaria permite analizar un modulo aislado del cdédigo
implementado de forma que comprobara que dicho moédulo funciona
correctamente por separado. El hecho de que todos los médulos funcionen
perfectamente de forma aislada no significa necesariamente que el software
en conjunto también lo haga. De ahi la necesidad de realizar, una vez
pasadas las pruebas unitarias, una prueba de integracion que certifique el
correcto funcionamiento de la aplicacion.

Las pruebas unitarias suelen ser realizadas por los propios programadores
encargados de desarrollar el codigo. Sirven como filtro inicial para detectar
los primeros errores rapidamente asi como para comprobar que los
pequefios cambios que se puedan introducir en la implementacion no
afectan al médulo completo.

10

Testing

Para Titicaca todas estas pruebas estan del lado cliente y para nosotros son
transparentes. Hemos de suponer que se han pasado todos estos filtros
durante el desarrollo del cédigo antes de que nos llegue a nosotros el
resultado final. En caso de que esto no hubiera sido asi, aunque nuestro
trabajo resultaria méas importante si cabe, deberia enfocarse de otra manera
para poder abarcar todas las funcionalidades del software y no sélo una
parte, que sera lo que nosotros haremos puesto que nuestro objetivo no es
comprobar que el software funcione sino comprobar cuantos usuarios
concurrentes es capaz de soportar sin dejar de funcionar.

2.6.2 Pruebas de integracion

Una prueba de integracion consiste en verificar el funcionamiento de una
aplicacion una vez se han completado las diferentes pruebas unitarias. Para
poder completar la prueba de integracion los diferentes mddulos testados se
combinan y testan como un s6lo moédulo.

Estas pruebas, aunque es habitual que se encarguen también a consultores
externos o, al menos, a testers profesionales, en nuestro caso
correspondieron también al cliente de modo que no fue necesario realizar
un esfuerzo mayor y mas completo para el disefio del test.

2.6.3 Pruebas de sistema

Las pruebas de sistema nos permiten verificar que el software testado
cumple con los requerimientos iniciales.

Para ello se suele utilizar el método de testeo conocido como de caja negra.
El que realiza la prueba no conoce el contenido del sistema que debe
testear, s6lo conoce los requerimientos de dicho sistema. Asi pues, con una
determinada entrada la salida debe ser una concreta y solamente una. Con
esta prueba, pues, no es posible detectar errores concretos por parte del
tester y es en este caso el programador el que, interpretando el resultado
de la prueba que le ofrece el tester, debe descubrir donde se produce el
error.

Hemos de suponer que esta prueba la realizo el cliente puesto que tampoco
entraba dentro de nuestros objetivos del proyecto Titicaca.

11

Analisis de viabilidad para la centralizacién de entornos distribuidos

2.6.4 Pruebas funcionales

Una prueba funcional se encarga de verificar y comprobar las
funcionalidades que se esperan del software. En una prueba funcional se
esperan detectar principalmente defectos de forma aunque también es
posible, por supuesto, detectar bugs.

Para estas pruebas es habitual que se requieran los servicios de alguien
ajeno al programador puesto que el conocer de primera mano la aplicaciéon
perjudica a la hora de realizar las pruebas. Una persona que desconozca la
aplicacion puede llegar, por error o desconocimiento, a probar
funcionalidades o casos de error que al programador por absurdos o ilégicos
desde su punto de vista, nunca comprobaria.

Los departamentos de testing de las empresas suelen estar divididos en dos
principales grupos: el de test funcional y el de performance. El
departamento de test funcional se encarga, como ya hemos dicho, de
comprobar que el software funcione perfectamente y responda de forma
correcta a los eventos que se reproduzcan. Este test si fue realizado por
nuestra misma empresa aungque no es el objetivo de este proyecto entrar
en el proceso ni analizar los resultados que este obtuvo. Cuando la peticion
de test llegé a nuestras manos el test funcional ya habia sido superado de
forma satisfactoria.

2.6.5 Pruebas de carga

Estas pruebas se encargan de comprobar la estabilidad de una aplicacién o
un sistema. Consiste en bombardear la aplicacion (o el sistema) con un
numero determinado o no de peticiones simultaneas con la intencion de
sobrecargarla. El objetivo es comprobar:

Si el nimero de peticiones esta predeterminado: que la aplicaciéon o el
sistema soportan la carga de peticiones (o0 usuarios) que los requerimientos
exigen sin sobrepasar los limites de consumo de recursos (CPU, Memoria,
tiempo de respuesta, eficiencia...)) maximos.

Si el numero de peticiones es indeterminado: cual es el nimero maximo
de peticiones que la aplicacion o el sistema soportan antes de alcanzar los
limites de consumo de recursos.

Este tipo de test es muy importante en los entornos distribuidos ya que
permite conocer las limitaciones del sistema en cuanto a carga de usuarios
se refiere y nos permite asi mejorar el balanceo de carga. Es decir, permite
decidir cuantos usuarios y cuando seran dirigidos a un servidor o a otro.

12

Testing

Titicaca es un proyecto en el que principalmente se realiza un test de carga
sobre los servidores y sobre la aplicacion. En un primer momento puede
parecer que el nimero de peticiones esta predeterminado puesto que se
espera gque cada servidor permita trabajar a 30 usuarios simultadneos. Aun
asi, como este numero es mas un objetivo “Gtopico”’que una realidad, las
pruebas que realizaremos serdn con un numero de peticiones
indeterminadas. Es decir, empezaremos con un numero bajo de usuarios
simultdneos e iremos aumentandolo hasta averiguar cual es el tope del
servidor y de la aplicaciéon. Este tope lo marcara el consumo de recursos de
Titicaca puesto que los recursos de que dispone el servidor son fijos son los
de la aplicacién los que hay que optimizar para conseguir el resultado
esperado.

2.6.6 Pruebas de prestaciones

También llamado test de performance, combina el test de carga con el test
funcional.

Asi pues permite, a la vez, verificar el correcto funcionamiento de la
aplicacion a nivel de concepto (funcionalidades) asi como a nivel técnico
(consumo de recursos). Como el test de carga, es especialmente util en
entornos distribuidos. Es facil confundirlo con una prueba de carga puesto
que una parte importante del test de performance es estresar la aplicacion
aunque, como decimos, es igualmente importante comprobar que la
aplicacion funciona tal y como se esperaba.

En las pruebas de carga es normal que, para sobrecargar el sistema o la
aplicacion, se ataque determinada funcionalidad de dicho sistema. En este
caso no queremos comprobar la funcionalidad si no sobrecargar el sistema
con peticiones a través de dicha funcion. Asi pues, aunque a priori, un test
de carga pueda parecerse a un test de prestaciones, debemos tener clara la
diferencia.

En el caso que estamos estudiando soOlo probaremos un par de
funcionalidades de la aplicaciéon para comprobar como responde ante un
ataque grande. Asi pues, la funcionalidad que se prueba no es tan
importante como el hecho de bombardear de peticiones al programa. Es por
eso que el test a Titicaca es un test de carga y no uno de prestaciones.

13

Analisis de viabilidad para la centralizacién de entornos distribuidos

3. CENTRALIZACION

La centralizacion es una forma de organizacion en el entorno de la
informatica y las telecomunicaciones. Con la centralizacion de todos los
servicios que requiere una red (software, impresoras..) se consigue
minimizar gastos y el tiempo de reaccidon ante cualquier problema o cambio
(p.e. actualizacion del software). Con esta centralizacion tenemos una
plataforma de acceso que abarca toda la organizaciéon y conecta todos los
puntos desde donde se reclama informacion con todos los puntos donde se
encuentra dicha informacién ofreciéndola bajo demanda. Esto es, soélo
dando la informacion a quien la necesite cuando la necesite. Con esto
evitamos tanto la sobrecarga de la red al minimizar el flujo de datos que
circulan por ella como que los clientes tengan demasiada informacion en su
PC.

Existen dos modelos de centralizacion: en el primero, el servidor remoto
provee un escritorio de Windows o de Linux a varias terminales de usuario.
A estos usuarios se les llama thin client. En el otro modelo un ordenador
normal actia temporalmente como servidor remoto ofreciendo su escritorio
al resto de ordenadores conectados a una WAN (Wide Area Network) que
normalmente es Internet para permitir el teletrabajo. El software utilizado
tanto en el teletrabajo como por los thin clients es conocido como
Aplicaciones de Escritorio Remoto (Remote Desktop Applications).

En el banco nos encontramos basicamente con usuarios thin client. Y es que
todo el trabajo se realiza en los servidores dejando a los usuarios con lo
justo. En nuestro caso particular, como empresa externa que trabaja para el
banco, disponemos de acceso al servidor via Escritorio Remoto pues
necesitamos, como testers en mi caso particular o desarrolladores en otras
secciones de la empresa, mucha mas potencia y prestaciones de las que
puede ofrecer un thin client.

En este capitulo explicaremos porqué la centralizacion se ha impuesto en el

modelo actual de red en que los Escritorios Remotos son la base asi como la
organizacion de las redes centralizadas.

14

Testing

3.1 Sistemas distribuidos

Los sistemas distribuidos son sistemas cuyos componentes hardware vy
software, que estan en ordenadores conectados en red, se comunican entre
ellos y son capaces de coordinar sus acciones, para el logro de un objetivo
comun. La comunicacion entre los componentes se establece mediante un
protocolo prefijado por un esquema cliente-servidor.

Los sistemas distribuidos han de tener tres caracteristicas imprescindibles:
concurrencia, carencia de reloj global e independencia entre los
componentes.

La concurrencia consiste en que todos los recursos disponibles de la red
puedan utilizarse simultineamente por los usuarios sin que esto suponga un
conflicto. El hecho de que yo esté utilizando cierto componente software
(p.e. el Word) no ha de impedir que otro usuario que lo solicite después de
mi pueda utilizarlo. En los componentes software (p.e. una impresora)
I6gicamente se generaran colas pero éstas no impedirdn que el usuario
trabaje normalmente (las colas son transparentes para el usuario).

La siguiente caracteristica, la carencia de un reloj global, obliga a que los
diferentes componentes funcionen asincronamente. Es decir, se comunican
entre ellos cuando es necesario e independientemente de cuando lo hagan
el resto de componentes. Con esto distribuimos la carga de la red, el
intercambio de datos, de forma constante a lo largo del dia y evitamos
sobrecargas del sistema. De todas maneras, es inevitable que a ciertas
horas del dia (a primera hora de la mafiana y a primera hora de la tarde) la
cantidad de informacion que circula por la red del sistema es mucho mayor
que durante el resto de la jornada. Es por esto que los momentos iniciales
del test de carga que realizaremos, cuando todos los usuarios se conectan
en una franja de tiempo muy pequefia, son muy importantes y daran una
buena medida de lo que es capaz el servidor y de lo bien o mal
implementado que esta Titicaca.

Por ultimo, como ya hemos dicho, también es necesario que dichos
componentes sean independientes entre ellos. El hecho de que un elemento
de la red falle no puede afectar al resto, que han de poder seguir
trabajando con los elementos a los que no haya afectado dicho fallo.

15

Analisis de viabilidad para la centralizacién de entornos distribuidos

3.2 Esquema cliente-servidor

Para este esquema necesitamos al menos dos maquinas distintas. Una que
hard las tareas de servidor y la otra de cliente. Habitualmente de un
servidor dependen mas de un cliente como podemos ver en la figura 3.1.

Un servidor se encarga de proporcionar servicios al cliente que se lo
demande. Estos servicios pueden ser o la ejecucion de un programa, el
acceso a una base de datos o el acceso a un dispositivo hardware, como
puede ser una impresora. El cliente no tiene por si mismo la capacidad de
utilizar estos servicios y requiere la presencia del servidor para poder
obtenerlos.

Cliente

Escaner

=]
T o

TR ==

= =

Impresora

3
n &0
i

onoon

" [DD0og
unnunm

o

Servidor

Cliente

EEEE

Cliente

Fig. 3.1. Esquema habitual cliente-servidor

Un cliente, como vemos en la figura, puede ser un PC que tiene
funcionalidad independiente del servidor, con sus propios recursos (disco
duro, memoria..) y que, en un momento dado requiere los servicios del
servidor, ya sea para imprimir un documento o para acceder a un software
determinado. Otra opcidén para trabajar con un servidor remoto son los thin
clients, mucho menos independientes que los PCs.

El test lo realizaremos desde un PC que gestionara la conexién de los
usuarios virtuales (tedricamente hasta 30) que realizaran el test sobre el
servidor simulando cada uno de ellos la actuacion de un thin client
trabajando sobre el servidor durante un periodo de tiempo prolongado.
Todos ellos demandaran al servidor el acceso a la aplicaciéon Titicaca y
trabajaran simultaneamente sobre ella.

16

Testing

3.3 Thin Client

Un thin client o “Cliente liviano””’es una maquina que funciona como cliente
en un esquema cliente-servidor de forma totalmente dependiente. El
servidor es el encargado de toda la l6gica de programacioén y, por lo tanto,
de todas las tareas de procesamiento. Un thin client s6lo necesita poder
conectarse a la red para poder trabajar remotamente en el servidor.

Aparecen como contraprestacion a los ordenadores habituales (ya sean PC3
u ordenadores portatiles) ya que permiten ahorrar tanto en hardware como
en software.

Los thin clients permiten mantener toda la informacion centralizada,
reducen el coste de hardware (nho tienen disco duro ni un procesador
demasiado potente) y consumen muy poca energia. Su tamafo también
suele ser reducido (no mucho mayor que un moédem o un router)
permitiendo asi ahorrar todo el espacio que necesita una torre de PC y no
son capaces de almacenar datos mejorando asi la seguridad del sistema.

Para un banco parece pues, la mejor forma de trabajar. Todos los
empleados de las sucursales disponen de un thin client desde el que realizar
sus tareas diarias sin problemas y no pueden almacenar y/o robar
informacion puesto que no disponen de memoria propia. Esta forma de
trabajar es mucho mas segura pero exige un control muy severo para que
el sistema funcione perfectamente y es que es impensable que la red de
todo un banco se caiga de forma accidental sin tener controlada una
alternativa. Volvemos a ver, con nuestro ejemplo, lo importante que es
realizar pruebas como las que se nos propuso y que estamos tratando aqui.

3.4 Escritorios Remotos

Los escritorios remotos permiten la centralizacion de las aplicaciones
habituales para los usuarios (navegadores, procesadores de texto..). Asi, no
es necesario que el usuario disponga en su maquina local del software
instalado.

Los thin clients son asi simples terminales de entrada/salida mientras que
los PC suelen tener instaladas las aplicaciones mas comunes y utilizan los
escritorios remotos para aplicaciones que, ya sea por relevancia, temas de
seguridad o por coste de licencias, la empresa prefiere mantener en un
servidor aparte.

Para el acceso a los escritorios remotos existen varios programas diferentes
que utilizan, cada uno de ellos, un protocolo de comunicaciones propio
permitiendo asi la eleccion entre diversas opciones que, COmo veremos mas
adelante, seran un elemento importante en la eleccion de alternativas a la
hora de realizar las pruebas de performance sobre un servidor.

17

Analisis de viabilidad para la centralizacién de entornos distribuidos

3.5 Ventajas e inconvenientes de la centralizacion
de recursos

Podemos decir sin riesgo a equivocarnos que las ventajas de la
centralizacibn superan ampliamente a las desventajas. A continuacion
vamos a ver cuales son estas ventajas que nos ofrece y cuales son los
inconvenientes que, por supuesto, se nos presentan también.

3.5.1 Ventajas

Uno de los motivos méas importantes por los que se impone el modelo de
centralizacion de los recursos es el ahorro econémico que supone. Es mucho
mas barato afiadir un nuevo cliente que conectar al servidor (sobretodo si
se trata de un thin client) que no afiadir un nuevo puesto de trabajo
independiente de la red montada. Asimismo, a la hora de actualizar
software o hardware es mucho mas barato hacerlo en un sélo servidor que
no tener que ir puesto por puesto, PC por PC, actualizandolo, tanto en
dinero, en recursos humanos como en tiempo.

La escalabilidad de la red también es muy grande, es facil aumentarla
afadiendo nuevos clientes o, en caso necesario, aumentar el niUmero de
servidores centrales. Tener la informacibn en uno (0 en unos pocos
servidores) permite que la duplicacion o el aumento del hardware sean
mucho mas répidos, fiables y baratos.

La capacidad de compartir recursos entre diversos usuarios (impresoras,
escaneres, software, dispositivos de almacenamiento...) es otra de las
grandes ventajas de estos sistemas asi como el hecho de poder distribuir la
carga de trabajo entre diferentes ordenadores. Puesto que todos tienen
acceso al mismo servidor, la carga para el hardware de cada uno de ellos es
menor mejorando asi la eficiencia de trabajo y el tiempo empleado en
completar una misma tarea en el servidor entre varias personas a la vez es
también mucho menor que si el mismo trabajo lo realiza una sola persona
en local, ademas del riesgo de perder los datos que esto supone.

18

Testing

3.5.2 Inconvenientes

Un problema que se presenta habitualmente en estos entornos de trabajo
es el de decidir cuantas funcionalidades, cuantos servicios 0 cuanta
informacion hemos de dejar en el servidor y cuanta ha de estar en el lado
del usuario. Es responsabilidad de los administradores de la red decidirlo
antes de ponerla en marcha y es por tanto un problema de disefio mas que
un problema del sistema en si, una vez solucionado este apartado antes de
construir la red, este inconveniente no se nos volvera a presentar salvo que
se lleve a cabo una reestructuraciéon de los permisos y funcionalidades para
los usuarios.

Es posible que, si no se ha dimensionado bien la red, se puedan producir
problemas con la comunicacion cliente-servidor, llegando a sufrir pérdidas
de mensajes, saturacion del trafico... Aunque también es un problema de
disefio y arquitectura previo a la red en si es importante la realizaciéon de
tests de carga o de performance antes de dar por buena una nueva
actualizacion de un servidor o de una red puesto que, debido a su alta
escalabilidad, el redimensionamiento de la red se realiza relativamente a
menudo.

El principal problema que se presenta es el de la seguridad. El hecho de
compartir datos entre los usuarios la condiciona mucho. Aun asi, la multitud
de sistemas de seguridad, encriptaciones y accesos restringidos permiten, a
estas alturas, tener unas redes bastante seguras.

19

Analisis de viabilidad para la centralizacién de entornos distribuidos

4. PLATAFORMAS DE ACCESO A
SERVIDORES REMOTOS

Existen diversas aplicaciones que permiten el acceso desde la maquina
local, ya sea un PC o un thin client, a los servidores remotos y el control de
este acceso desde el servidor. Estas aplicaciones permiten el acceso a
diferentes aplicaciones y al escritorio de una maquina remota (como cliente)
asi como el manejo de las conexiones remotas (como servidor).
Practicamente cada una de estas aplicaciones utiliza su propio protocolo de
conexion.

En este capitulo veremos las opciones mas comunes que podemos
encontrar en cuanto a plataformas de acceso a servidores remotos se
refiere. No entraremos en demasiadas caracteristicas técnicas y serd mas
bien una descripciéon superficial de las herramientas. También veremos una
evaluacion de las diferentes alternativas presentadas.

4.1 Terminal Service. Microsoft

Terminal Services es la plataforma de acceso a escritorios remotos que
Microsoft integra en Windows. Terminal Services permite tanto la opcién
cliente como la opcidén servidor.

Terminal Services ofrece, en su opcidén servidor, el componente Terminal
Server. Este componente se encarga de manejar la autenticacion de
clientes, de poner a disposicion de éstos las aplicaciones de forma remota
asi como de aplicar las restricciones necesarias dependiendo de los
privilegios del grupo de usuarios al que pertenezca el cliente.

En su opcién cliente, Terminal Services incluye dos aplicaciones para
Windows: Remote Desktop y Remote Assistance. Como viene integrada en
Windows préacticamente todo el mundo dispone de ella.

Remote Assistance
permite recibir asistencia
técnica a través de la
conexioén remota sin
necesidad de que el
técnico se

)] Help and Support Center

5% add to Favorites & change wew Brirt... KS Locate in Contents

[sk a Friend to help

[Get help From Micrasaft

[o ta & Windows Weh sits Forum

See Also

[Abot Support
[My Computer Information
[Advanced System Information

[system Configuration Utility

Remote Assistance

Tnwite somenne you trust ta help you. Using an Internet connection, anyone
running Windows P can chat with you, visw your screen, and with your
permission, wark on your computer,

[E)) trwite someone ko help vou

[E3) view imvitatian status (0}

Tell me more about Remote Assistance

Fig. 4.1. Remote Assistance

desplace
fisicamente adonde esté
el ordenador. A través de
esta aplicacion el servicio
técnico adquiere
temporalmente el control
sobre el escritorio del
cliente e intenta resolver
los problemas surgidos.

20

%2 Remote Desktop Connection

i

/\:}‘"

General | Display | Local Resources | Programs | Experience

Logon zettings
=] Type the name of the computer, or choose a computer from
== the drop-down list

Computer. 1013462191 v

Uszer name: I.fvaSD
Password:
Domair: :|

Connection settings
. W v 2
| Save curment settings, or open saved connection.

[Save bz] [Open...]

[Connect H Cancel][Help] [Options <<]

Fig. 4.2. Remote Desktop

Plataformas de acceso a servidores remotos

Remote Desktop permite al cliente
utilizar una maquina en red de forma
remota. Para acceder a la maquina
remota son necesarios su usuario y su
contrasefia. La méaquina a la que
accedemos queda completamente
redirigida al cliente: sonido, recursos
hardware y software, dispositivos
externos como camaras Web pueden
ser utilizados por el cliente como si
estuvieran en su ordenador. La
apariencia de dicha maquina se
muestra al cliente con la misma
imagen que aparece en local por lo
que el cliente observa e interactia de
forma remota de la misma manera
que lo haria si lo hiciese en local.

4.2 Virtual Network Computing.

Virtual Network Computing (VNC) es

una plataforma de acceso a escritorios

remotos realizada bajo el concepto de software.

VNC funciona graficamente, trabajando sobre la pantalla del servidor en el
cliente de forma que el cliente se mueve sobre pixeles y no sobre botones o
ventanas. Todos los recursos del servidor son redirigidos al cliente que
puede hacer uso de ellos remotamente. El servidor tiene la opcion de
funcionar como servidor HTTP permitiendo asi que el cliente, sin necesidad

de haber descargado previamente el

VNC, pueda ver la pantalla compartida.

En este caso, cuando el navegador intenta acceder al servidor descarga

automaticamente el cliente VNC. El

sistema operativo en el que trabajen

cliente y servidor no tiene por qué ser el mismo.

View Go Bookmarks Help

% .20
up

Location: |home/vncuser

= @

® &

top Reload Home

GNUstep sacking files sacking himl
ems Liter

=] e

testamundo.ixt WNC-Examplel. ixt
68 byte 15k

e ww u A E—
istart] & B (3 * P naserratsi & nauser's RAT deskeo...

VYD TaAO s

Fig. 4.3. Vista de una conexion VNC desde Windows XP.

21

Analisis de viabilidad para la centralizacién de entornos distribuidos

4.3 MetaFrame. Citrix

MetaFrame es la plataforma de acceso a escritorios remotos que ofrece la
compafia Citrix. Parte del codigo fuente de esta empresa lo utiliza Microsoft
para su Terminal Server mientras que otra parte ha permitido lanzar la
plataforma MetaFrame (en otras versiones de Windows se ha llamado
Presentation Server y XenApp). MetaFrame utiliza el protocolo ICA
(Independent Computing Architecture) para establecer las conexiones
remotas y funciona siempre sobre una maquina con Windows como sistema
operativo.

MetaFrame realiza una conexion de alto nivel con la que el cliente trabaja
exactamente igual que en local. La conexion se puede realizar desde
cualquier maquina al servidor Citrix y requiere autenticacion propia. Para la
conexion el usuario necesita un cliente ICA que contiene la informaciéon
sobre la conexiéon (derechos del wusuario, aplicaciones que tiene
disponibles..))

H - MetaFrame Presentation Server Client

Log On to Windows

User name:

passwards

Log on to;

Citrix‘MetaFrame*

Checking your credentials...

I

Fig. 4.4. Pantalla de autenticacion a un servidor a través de una conexion
MetaFrame

22

Plataformas de acceso a servidores remotos

4.4 X-Window. Unix

X-Window es una plataforma de acceso a escritorios remotos para los
sistemas Unix. Para ello utiliza el protocolo XProtocol.

En un principio, X-Window era sé6lo un sistema de ventanas que funcionaba
como interfaz gréfica para Unix. A partir de ahi, aparecen diferentes
componentes que se encargan de que esta interfaz funcione en red
permitiendo el acceso remoto desde diferentes clientes al escritorio de un
servidor. Actualmente se utiliza la version X11 de este componente.

Como el resto de aplicaciones de software libre, X-Window es independiente
del sistema operativo. En este caso, funciona también de forma grafica
aunque, a diferencia de VNC, requiere de un gestor de ventanas
independiente para ser operativo. Sin este componente la conexibn remota
no funciona. Es decir, el conjunto X11 + gestor de ventanas realiza una
conexion de alto nivel.

ace

WebSphere Advanced

tart | @ proseen Nameir - .| sttt tosk @chortout o @
‘ [Eoan adeen .| e | S |
B L

Fig. 4.5. Sesion X-Window sobre plataforma Windows

23

Analisis de viabilidad para la centralizacién de entornos distribuidos

4.5 Secure Global Desktop. Sun Microsystems

Secure Global Desktop, aunque fue disefiado y creado por la compafia
Tarantella, forma parte actualmente de Sun Microsystems.

La mayoria de sistemas operativos permiten utilizar SGD con la Unica
condicion de disponer un navegador (Internet Explorer, Mozilla Firefox o
Safari) con el componente Java Runtime Environment instalado. La primera
vez que el cliente se conecta al servidor a través del navegador, el
componente SGD client se descarga y se instala. Utiliza el protocolo AIP
(Adaptative Internet Protocol).

El hecho de que la conexidn sea via navegador permite que las sesiones se
mantengan y puedan cerrarse en un ordenador (o en un thin client) y
abrirse en otra manteniendo el ultimo estado de la conexion.

Para el control de la conexidon desde el servidor presenta el Object Manager
que puede actualizar las aplicaciones que el usuario puede ver sin necesidad
de que dicho cliente cierre su sesion.

<O 4 @x@ sa1223PM Santhosh DSouza @
walBox

" & Grab Fle Edt_Capure Window Help
560 Tinnotek Virual

[riren1s, samd @

P Getting Started [Latest Headlines £ Getting Started Guide

%-S_u’[_t blogs.sun.com
)

waicane
angthing

nnnnnnn

Soarch Dlogs [FullText <] [Search Terms
Stopped
@ blogs suncom - Moail.. | [sudokul]

[

Fig. 4.6. Vista de una sesién SGD sobre Apple

24

Plataformas de acceso a servidores remotos

4.6 Evaluacion de alternativas

Dependiendo de las caracteristicas de los equipos de que dispongamos y de
la capacidad econdmica que tengamos deberemos elegir una opcién u otra.

De las opciones que hemos visto VNC es la uUnica que, siendo de libre
acceso, nos permite trabajar en Windows. Sus limitaciones a la hora de
trabajar debido a que sus conexiones son gréaficas impiden un gran
desarrollo de las conexiones y un aprovechamiento total de todas las
opciones que una conexion de este tipo nos permite tedricamente. Es por
eso que para cuestiones docentes puede ser una buena herramienta.
Permite las conexiones remotas entre los alumnos y el profesor y sirve para
unos propositos no demasiados ambiciosos como pueden ser los de una
clase en la universidad o en el instituto.

En caso de disponer de tecnologia Unix podria también utilizarse la
plataforma X-Window. En todo caso parece mas apropiada para
instituciones publicas mas que para empresas privadas ya que el simple
hecho de su filosofia de software libre no permite llegar, por falta de
medios, a los niveles que un desarrollo de una empresa privada y por lo
tanto, al nivel de prestaciones que puede llegar a exigirse. En todo caso es
una buena alternativa, la mejor, si el sistema operativo utilizado es Unix y
no se tiene un presupuesto suficiente. Es por eso que parece mAas
recomendable para instituciones publicas como ayuntamientos o gobiernos
autonémicos en que los requerimientos del software, en teoria, no han de
ser demasiados.

Los servicios integrados de Microsoft, precisamente por eso, por ser
integrados no presentan muchas de las prestaciones que otros programas.
De hecho, es a partir de estas limitaciones desde donde se desarrollan las
otras plataformas, aprovechando la base que ofrece Windows para ofrecer
un mejor servicio. Aunque es cierto que las opciones que presenta, tanto
desde el lado servidor como el lado cliente son bastante buenas y permiten
realizar conexiones a escritorios remotos y gestionarlas de forma bastante
eficiente, las limitaciones técnicas que presenta y las desventajas que
conlleva la convierten en una herramienta circunstancial y como
complemento de alguna mas compleja.

Asi pues nos quedan las dos propuestas comerciales que hemos
presentado: Citrix y SGD.

SGD es el producto que ofrece la gigantesca Sun, la gran competidora de
Microsoft. Aunque su plataforma es absolutamente compatible con Windows
utiliza otro de sus propios productos, Java Runtime Environment, para
hacerla funcionar. Esto presenta algunas ventajas, como el hecho de que
sea independiente del sistema operativo puesto que, como ya hemos dicho,
funciona con casi cualquier navegador mientras tengamos instalado el JRE
manteniendo ademas la sesion de usuario.

25

Analisis de viabilidad para la centralizacién de entornos distribuidos

MetaFrame, en cambio, basa toda su tecnologia en Windows y, aunque es
de una empresa diferente, el acuerdo que tienen Citrix y Microsoft les
permite intentar conseguir el mayor rendimiento que se puede ofrecer de
las bases que ofrece Windows (Terminal Services).

La gran diferencia entre SGD y MetaFrame es la necesidad del primero de
un navegador para funcionar mientras que la plataforma de Citrix nos
permite la conexidn a un escritorio remoto sin necesidad de navegadores.
Esta ventaja de MetaFrame respecto a SGD parece mas importante que la
ventaja del producto Sun de mantener la sesion y poder retomarla en otro
punto de la red puesto que en las empresas habitualmente las conexiones
de un usuario se realizan siempre desde el mismo PC o thin client.

Es por todas estas razones expuestas que la mejor eleccion para la mayoria
de las empresas (Sistema Operativo Windows y puestos de trabajo fijos)
considero que es MetaFrame de Citrix o cualquiera de sus versiones que
varian con la version de Windows instalada.

En nuestro caso, utilizaremos esta conexion de Citrix para acceder al
servidor donde realizaremos el test. Disponemos como sistema operativo
Windows XP mientras que en los servidores encontramos Windows Server
2003. Partiendo de esta base, la opcidon MetaFrame es la mas natural y
también la mejor para nuestros intereses. En todo caso, es el banco el que
gestiona los servidores asi pues, ellos son los que eligen la plataforma de
acceso.

26

Plataformas de acceso a servidores remotos

5. EJEMPLO DE UNA PRUEBA DE
CARGA. “TITICACA”?

Un test de prestaciones permite verificar el correcto funcionamiento de una
aplicacion o un conjunto de ellas tanto a nivel de concepto (funcionalidades)
como técnico (recursos).

Este tipo de pruebas son especialmente utiles en entornos distribuidos
puesto que los servidores remotos van a sufrir un estrés (mayor o menor
dependiendo de su objetivo) debido a los diferentes usuarios que pueden
estar funcionando a la vez y ha de responder a todos por igual.

En este capitulo veremos todo el proceso necesario para la realizacién de un
test de prestaciones de una forma préactica, con un caso real como ejemplo.

5.1 Preparacion

La preparacion de un test se divide en tres fases, una primera fase en que
el cliente pide que se comprueben las prestaciones de algun producto suyo,
una segunda fase en que el encargado de realizar del test analiza la peticion
y pone las condiciones que considera necesarias y una ultima parte en que,
una vez de acuerdo, se plasma todo lo acordado en las fases anteriores en
una propuesta que el cliente debe evaluar y aceptar si lo cree conveniente.

5.1.1 Requerimientos

Esta es la primera fase de un test, en ella el cliente contacta con el
proveedor de servicios para comprobar la viabilidad de realizar las pruebas
que han pensado para su producto.

A la hora de definir los requerimientos es importante también la opiniéon del
tester puesto que la mayoria de las veces, el cliente tiene una idea vaga de
lo que quiere hacer y es el encargado de realizar las pruebas el que tiene
que dar forma a lo que se busca para hacerlo realizable segun los medios
que posea.

En el ejemplo que nos ocupa, el del software que llamaremos “Titicaca’; no
fue necesario ese intercambio de impresiones entre cliente y proveedor
puesto que ambos llevan trabajando mucho tiempo juntos y tienen bastante
claro, unos lo que pueden exigir y los otros lo que pueden ofrecer.

A continuacion podemos ver una tabla con los requerimientos que pone la
empresa cliente para realizar el test:

27

Analisis de viabilidad para la centralizacién de entornos distribuidos

I D DESCRI PTI ON

RO1 Based on an QU and Browser based GUI, performa | oad
test only the follow ng FrontEnd:

Titicaca GJ (rich client GQJ)

RO2 Test scenarios are :

Scenario |: Concurrent users performng isolated usecase
20 concurrent users doing the same usecase,
closing the frontend after each usecase
Moni t ori ng of

o CPU |oad
0o Menory consunption
0 Response tine

Scenario |l: Concurrent users using the frontend over a

period of tine
20 concurrent users performng a set of defined
usecases over a defined amount of tine wthout
closing the frontend application after each
usecase
Moni t ori ng of

o CPU Iload over tinme
o Menory consunption over tine
0 Response tine devel opnment

RO3 Usecase Description for Scenario |

Start GU

Log in

Open wor k queue

Open work item and associ ated docunents (Tl FFS)
Open docunent functionality only available in the
ecl i pse Front End

Close work item

Log off

Cl ose QU

Mai n obj ective of this usecase is to check possible
application nmenory | eaks

RO4 Usecase Description for Scenario Il
Start GU

Log in

Open wor k queue

Open and cl ose nultiple w ndows

o Functionality avail abl e by i nks
(1 ProcessClient Browser) or Buttons, doubl e-
clicks and nenu itens (eclipse based
Fr ont End)

Mai n obj ective of this usecase is to check the stability
of the application.

RO5 Generation of a docunment reporting the test results (CPU
| oad, nmenory consunption, response tinme, etc.).

Tabla 5.1. Requerimientos para el test de la aplicacion Titicaca

28

Plataformas de acceso a servidores remotos

5.1.2 Asunciones

Como respuesta a los requerimientos del cliente, el proveedor del servicio
debe establecer una serie de puntos que se consideran necesarios e
imprescindibles para la realizacion en perfectas condiciones del test.

Estos puntos son asumidos por el cliente y se compromete a cumplirlos
como parte del contrato que se firmarda. En caso de que no sea asi el
proveedor no garantiza que el test pueda realizarse correctamente. Es
habitual que estas asunciones por parte del cliente no se cumplan al
completo durante todo el tiempo que dura el test pero en ese caso es
imprescindible que tenga las medios necesarios para remediar el problema
en el menor tiempo posible sin perjuicio para la empresa que se encarga del
test.

Podemos ver debajo de estas lineas la tabla en que quedaron recogidas las
asunciones para el proyecto de este ejemplo:

I D DESCRI PTI ON

AS01 Test environment infrastructure is available (servers,
etc.).

AS02 20 test users with access to the test environnment.

AS03 Test users available and with proper rights to access the
FrontEnd of Titicaca according to described test
scenari os.

AS04 Test environment based on a WPK3 Server platform

AS05 Detailed testcases will be available at the beginning of

t he i npl enent ati on.

AS06 No changes on the FrontEnd of Titicaca during the | oad
test cycle (neither versions updates nor configuration
changes).

ASO7 Chosen testing tool is available and able to be installed

on a |l ocal devel opnent conputer.

AS08 The sub-application MDS has no special technical feature
t hat leads to a higher effort to automate the
correspondi ng testcases.

AS09 The Conpany is the requester for installations and
assunmes product |icense costs, but since there is not a
special owner for the proposed testing tool, it seens
that the license costs will be charged to the project or
department who use it.

Tabla 5.2. Asunciones para el test de la aplicacion Titicaca

29

Analisis de viabilidad para la centralizacién de entornos distribuidos

5.1.3 Propuesta

Teniendo en cuenta los requerimientos y las asunciones el proveedor debe
realizar una propuesta que satisfaga al cliente presentandole, si es posible,
mas de una opcidon entre las que el cliente pueda elegir la que le mejor le
convenga a sus intereses, indicando en cada caso las ventajas y
desventajas de cada una de las propuestas asi como el impacto en el
mantenimiento en caso de que la opcion ofertada lo requiera.

Una vez presentada la propuesta el trabajo previo por parte del proveedor
termina y soélo le queda esperar la decision final del cliente, tanto elegir si el
proveedor es el elegido de entre todos los que se hayan presentado a
concurso como elegir cual es la opcibn de las presentadas por dicho
proveedor, si es que se han presentado varias, que mas se ajusta a sus
intereses (econdmicos y técnicos).

En el ejemplo que estamos siguiendo encontramos dos diferentes opciones:

Opciodn 1:
- Ventajas:
I D DESCRI PTI ON
AV01 Cost reduction by reusing license of testing tool what is
now i n place
AV02 Low effort for devel oping, since the current scripts can
be used without | ess additional effort. Only a new
scenario to include the new scripts for Titicaca nust be
creat ed.
AV03 Short tinmeline to begin devel opnent and the | oad test
execut i on.
Tabla 5.3. Ventajas de la Opcién 1 de la propuesta
- Desventajas:
I D DESCRI PTI ON
DAVO1 Manual start of test user sessions and also their scripts

nmakes not possible to nmeasure detail ed resource
consunption, only a general average.

DAVO2 It is not possible to get the real responses tinmes for
any application or test user, it is only possible to get
neasures of general CPU | oad and nmenory consunption.

DAVO3 No i nformation avail abl e about causes of test execution
errors (environnent/server, test tool, scripts,
performance, etc.). Wong values on results cannot be

i sol at ed.

DAVO4 No i nformation avail abl e about specific test users
activity and in consequence about a specific test
scenari o.

DAVO5 This is only a tenporary solution; it is a workaround

while a corporate testing tool is defined. This neans,
efforts invested in this solution will give a unique test
result and cannot be anortized.

DAVO6 It is not possible to generate automatic project
docunentation with a conplete |oad test analysis.

Tabla 5.4. Desventajas de la Opcidn 1 de la propuesta

30

Plataformas de acceso a servidores remotos

- Propuesta:

The overall effort estimation for all scenarios (I+l1+l11) is 27 MDs,
i ncl udi ng anal ysis, set-up, developnent, test and delivery
Foll owi ng a detail ed description of the tasks covered:

effort
TOTAL 27,00
Proof of Concept 1,00
Application Analysis 3,00
In this phase, all applications involved in the Load Test will be analyzed from a performance point of
view. All information sent by each step performed by the user will be examined in order to detect
which fields need to be parameterized or correlated
Scripts Development 5,00
During the development phase, all business flows will be recorded using Visual Test. Scripts will be
parameterized and correlated.
Scenarios Creation 3,00
Once the business flows are developed, scenarios need to be built with scripts. Within the scenarios,
duration, number of users and server monitoring will be configured.
Project documentation 0,00
No automatic project documentation can be generated.
Execution 9,00
All scenarios previously created will be performed. During the execution phase, a daily execution
report will be delivered with a summary of all executions performed and general results
Results Analysis 2,00
After the execution, scripts must be developed to gather values from the perfmon logs. An analysis is
also necessary to extract the meaningful information.
Report 1,00
Current management summary will be deliver adding information about Titicaca
Project Management 3,00
project tracking and reporting tasks

Tabla 5.5. Descripcion de la propuesta de la Opcion 1.

31

Analisis de viabilidad para la centralizacién de entornos distribuidos

Opcidén 2:
- Ventajas:
I D DESCRI PTI ON
AV01 H ghly scal abl e scenari os.
If a load increase is required, fromsimlating 20 to 50
users, no additional effort is required.
AV02 Al'l performance results at one side.
LoadRunner lets collect all information from (application
response tines and server nmonitoring) and create graphs
automatical ly.
Furthernore, follow ng informati on can be gat hered:
Runni ng Virtual Users
Error statistics (providing the type of error
and the line nunber in the script)
Transacti ons per second
Transacti ons Response Tine (Average, Mn, Max)
W ndows Resources
o CPU
o0 Menory
o Paging
Network Traffic
AV03 Scripts consi stency.
As LoadRunner is not a functional test tool, any change
in the presentation |ayer doesn't affect to the script.
AV04 Error managenent.
Information regardi ng the execution is displayed |ive,
seeing all users simulated and if there is any error
AV05 Test Reports.
LoadRunner lets you create HTM. reports for any
execution. It also includes a Wrd Report generation too
to automatically summari ze and display the test's
significant data
Tabla 5.6. Ventajas de la Opcién 2 de la propuesta.
- Desventajas:
I D DESCRI PTI ON
DAVO1 Al'l scripts included in the Crosstest nust be created for
LoadRunner. Existing scripts can not be reused.
DAV02 Addi ti onal LoadRunner license to use Citrix |ICA protoco
is required
(see general chapter assunptions)
DAVO3 LoadRunner environment is shared by other projects. This
envi ronnent nmust be booked for all Crosstest executions.

Tabla 5.7. Desventajas de la Opcidn 2 de la propuesta

32

Plataformas de acceso a servidores remotos

- Propuesta:

The overall effort estimation for the solution for all scenarios
(I+l1+111) is 69,5 Mds, including analysis, set-up, devel opnent, test
and delivery

Foll owi ng a detail ed description of the tasks covered:

effort
TOTAL 69,50
Proof of Concept 2,00
Application Analysis 16,00

In this phase, all applications involved in the Load Test will be analyzed from a performance point of
view. All information sent by each step performed by the user will be examined in order to detect
which fields need to be parameterized or correlated

Scripts Development 33,00

During the development phase, all business flows will be recorded using Mercury Virtual User
Generation through the Cirtrix ICA protocol. Scripts will be parameterized and correlated.

Scenarios Creation 1,00

Once the business flows are developed, scenarios need to be built with LoadRunner Controller.
Within the scenarios, duration, number of users and server monitoring will be configured.

Project documentation 5,00
Execution 3,00

All scenarios previously created will be performed. During the execution phase, a daily execution
report will be delivered with a summary of all executions performed and general results

Results Analysis 2,00

From the execution, several graphs and tables are created from LoadRunner. An analysis is
necessary to extract the meaningful information.

Report 0,50
From the execution, several graphs and tables are created from LoadRunner. An analysis is
necessary to extract the meaningful information.

Project Management 7,00
project tracking and reporting tasks

Tabla 5.8. Descripcion de la propuesta de la Opcion 2

33

Analisis de viabilidad para la centralizacién de entornos distribuidos

5.2 Desarrollo del cédigo

En esta parte comienza el verdadero trabajo del probador ya que, aunque
en la fase anterior tiene mucho que decir y su opinidon tiene que ser muy
tenida en cuenta es ahora donde realmente empieza su trabajo de
probador.

El desarrollo del codigo también se divide en tres fases, dos previas en que
el probador se encarga de conocer la herramienta a testear y de preparar
tedricamente el test y una ultima fase en que se desarrolla el cédigo
propiamente dicho.

En nuestro ejemplo el cliente optdé por la primera opcion por lo que el
trabajo se completd con la herramienta Rational Visual Test de IBM.

5.2.1 Prueba de concepto

La prueba de concepto consiste en una prueba para que el tester se
familiarice con la aplicacion para la cual ha de crear el test. Normalmente
consiste en una reunion, ya sea en persona o a través de teleconferencia,
en la que algun desarrollador de la herramienta en cuestion o alguien que la
conozca suficientemente bien muestra al probador como funciona ésta. Es
habitual que se aproveche esta misma reunién para definir los testcases
que quiere que se realicen.

Cada testcase prueba una pequefia parte de la aplicacion o un determinado
flujo de acciones dentro de ella. Por ejemplo, abrir una aplicacién y a
continuacion cerrarla. En este caso tenemos un testcase sencillo que se
encarga de comprobar que la aplicacion se abre correctamente y se cierra
sin problemas. Aunque pueda parecer absurdo, este pequefio testcase
puede servir para detectar Memory Leaks (memoria que no se libera
adecuadamente) ocurridos al cerrar.

Una vez realizada esta reunion el probador comprueba por su cuenta que
los testcases realizados de forma manual funcionan y plasma la definicion
del testcase en un documento que el responsable del test del lado del
cliente tiene que confirmar. Es esta una forma de evitar problemas de
malentendidos entre lo que queria el cliente y lo que entendié el tester.

34

Plataformas de acceso a servidores remotos

Con el test de Titicaca este documento quedo6 de esta manera:

Test Scenario
A unique test scenario is defined for this test with followi ng requirenents:
20 test users are connecting and logging into the Citrix Farm

Al these test users star the Titicaca application

Each test user selects the same working |ist

Each of these test users selects a different work itemfromthe Ilist.
Wth the selected work itemeach test user executes the test case

The test case execution will be repeated several tines but w thout closing the
Titicaca application
The test execution will be performed during a whol e worki ng day.

Test Cases

There are many functional test cases but they will be executed as a unique one wth

foll owi ng steps:

1. Start the Titicaca application by clicking on the desktop on the icon
[Titicaca]

Titicaca

2. Performthe |ogon

X
Wargion: V0.2 (SUNLDEY)

Anmeldung
Benutzername i ARVOO7
Passwort [|
Team [orapent =

oK &bbrechen |

Warnung vor unberechtighem Zugriff: Der Zugriff auf diesen Computer ist
verbioten, wenn Sie nicht autorisiert sind. Der Zugriff auf Programme und
Daten, die Sie nicht Fir Thre beruflichen Aufgaben bendtigen, isk verboten,

After the application is started and the test user is |ogged on,
on the left side a |list nust be shown.

35

Analisis de viabilidad para la centralizacién de entornos distribuidos

3. On the Tab Iist,

I - 1]
Tocls Hite
[aMES il
T =
e cllaf
ﬁ?—;”""‘;ﬁ"‘-jfﬂ = orocess Schrtiname Tisnclse: | tismer.. | Vordsrormner | Kimderrans i
FR e L R 131 remsz Hedhundergr.,, Eoarbetung S 6L5 1is! Kariy, Schulze
wwc—;- i (:’] B e Nebunzerg.., Besbebing PG 55 1niE ¥asiny, Sehudse
FC_IJ‘”“”‘SW B rws tbunchrgr,., Besrbeting e 815 100181 Wark, Sehes
=5 I-'W"’“ 2 [ER neundergr., Dewbenng e 615 101 K, Schdzs
Faip nm"’m—s-' B e Nedundergr... Beabebing PHE 15 Laeaizl Kariy, Schulze:
.o __Peatitge Egl] B s Nerduznebirge.., Banbating PG 515 1niE K, Sradn
FE—"MW] B s tunckergn,, besrbehng e 615 100181 Karr, Shnion
glm-iﬁ:‘:é G B Nedundergr... Besbebng e 55 1 Karin, Schubas
b a8 B o0 Neuvndergr.., Eoutening i 518 10z Kasin, Schdze
iyt B moess b, Bt i v
;ﬁ‘:‘;ﬁr“::. B ooses Sedunderpe., Dearbeting e] 10181 e, Schulos
e oy B eosee Neundengr.., Boutenng e 515 2002z ke, Wagnes
i BN] Neuundergr,., Boutening e 515 1c0iE iy, Schae
G b e (0 B o ; : i
B K WY (0]
NEE VA Y [0
HHE Rup ADAC (1)
D R EVAE ()
WEE Rep M)
W R =4 ()
HKE DVAG [
MRS MY (D)
HHE SV ¢4
& Prreoaniiche Hreds (17)
g Res EWE (D) ! &
RenFC 5 Bednft T 7
. e . Bz Ho m Sefte | win 1 ml-ﬂ DIIOT.

click aitemfromthe list.
4. On the right w ndow,

Y - |1]

Toolz Hitie

|asEa L.

B wrel7 2l r—— =]

st | et Ao @ cl@#l 2|

FOAcMuen 2} 2 I [Frozess [schetnere [msndert: | Fiina.. | [unde]

.. Besbebung FEG &L5 10031 Kaginy, Schalze

PR 615 1e0E Ky, Sebrles.

e 815 1caiel Ky, Schukze

FiE a5 1sE! Ktk Schudze

G 415 1000381 Ky, Seldse

Fre b5 1cois! K, Sz

FHE 815 10 Kt Schutze

G 55 intosst Kaniy, Sehvdse

e 815 100181 Kari, Sohdos

g IFC_SC_Reatingen_3 (0]
[FC_SC_Pestirngen_¢ (0}
§ IFC_SC_Reatingan 5 {0)
IFC_5C_Featingen 6 (0]
TFC_RC_Peskiemon 7 (100
I1E_5C_Fatingee 0 {1}
% IFC_5:_Reatingen_3 (0]
Karteng et {7)
& Kumderaufirage 5
NEE DR B0EC (0
NS OF DAAG [0
S b HY)
HEE B 5 ()
HHKE Rep ADAC (1)
G 105 R DA)
S o ep v (0
W Rep S (0
HKE ADAC (451
& e ovac @
KEB MY)
HHES S0 4y
G Prrsourdiche Krects 11) i Bl |

g A EWE (1) =

g S=see Al e ae e e

PIPFIPEINEEE
3

sel ect the work itemcorresponding to this test user
Remarks: each test user must have an own or different defined test working item

Plataformas de acceso a servidores remotos

5. Double click on the selected item

The followi ng docunent will be opened:

8% gham «la/a DEEE & 0 PP
| Neukundenhogen [o1 art
k1 DEMO VERSION OF MULTI-PAGE TIFF EDITOR | DEMO VE|*| '

D
i HOODOOCHX, Auisbatioons bir & Bask Py 02
| Parsnnon- und Adrossdatan H =
1. BEaritednhaker Tl Baburtanst s le=—= A
o Frou 2=
1 Finrrm s bt et e
Yornarss Esburteat — “3___
=5
E Maldoadrassa Worsandadmeso wann atves g
ks Hawnumm e wralta s
ARSI AdrssIsaE 04 [
Land Az on tand Pz pae— =
i i
B Dlune Anganee s el T = =
Bruf Position .5 Argetolbiy sk
05
At bessehstetindi sait b Branch f—
Fernilianstend o Pl Emuain e i T 51
[l i [== — RE -

6. Mnimze this docunent (keep it opened).
7. On the Tab <Workitem vi ew>,

. Bti&j

Tocls Hite

e) &l
vorgergaes [T =3
@lﬁj!ﬂ-:‘-l’; I"?i erggee. [T Pz [Fedindrpmams Seten [Raasetesy. Recesiny [GI 30731 St [Tn awbaniyg P [rn

Mardert [PaE =] o [=]
Fhahurmmer hia Kumndennummer 1 100181 Filldry . prifen
3 cantonr | 20 prodiiee | = | B P vk | B Verpangssteumnng |

® | e 1 | % wekers veces | Gesstchaten | 3 purdant
B kontoinhaber 1| Korkochsber 2|

¥ Forson | 3 smismatnasin | 36 virsarstacksssn | 36 Fraisdige cngaben | 3¢ Logtinaon |

Parsan
fevadn Trau =] sk, T |
vt T o
Bckaisticel I Patmnc [=]
Voeriae Karn dut der Geschiftzbecietung [=]
Nt 5ot Erddfumngichbelatun A
Partres [0 & s T
Stamzangeanchst [Dosiord %] Jshesssteusrmescheriung |
nese Mok
[s =
Geburtsdatum [[skt
2 Fechtsfom [=
£ | Hachvichberios r Hachrichhenks st m
e L) 2 4] bbrechers | dwidiemn | pmie | Fe |

click on Tab [Partner], and
wait 30 seconds.

Analisis de viabilidad para la centralizacién de entornos distribuidos

8.

On the sane dial og,

el =R S S --'.IEI‘][._?) Virgasgre. [3183 Froos [Pebrdrprons. Sobdn [Beabeness Beshesibang [EERMIBT Stans [T Bewbinng Lo

E|

4
J Flshurner [615 Eundsncunmer [1000181 Qﬂm
H patner M Prodbte | = | 5 Fuive | B vorgengssteen |

ventohorent | sparcand | 1l | pep | R

|l stteaien | zwistegn | @i | o

click on Tab [Produkte], and
wait 30 seconds.

9.

On the sane dial og,

1 - =

Toolz Hitle
|2 |
vorgorgaste R L]
e IERESS --'.IEI‘][._?) Vigasgere. [31967 Froowss [Tedrdrprns, Schan [Baameresg. Besheiing [FEONRT S [Tnberbene | P S0
2| -
B n Flshurner [615 Eundsncunmer [1000181 Rl priden
3 patrer | 3 roduite [BE| 5 Fuive | B vorgengssteen |
Mml@mmmum]ﬁlmmlelu che | bedarf Finenzerury
[alguaen--—
Neuanspe achelbpationto =]
|I'F-mwubﬂf
=
|l stteaiteny | zwisiegn | @wiw | oo

click on Tab [KIM, and
wait 30 seconds.

38

10. On the sane di al og,

. __ UK

Tools Hiliz
-0 S
DO e
]2 (23] 2B . [Frvcuas [Pbarckrproaes | S [Baaerens
== Merderk [Pt =] e []
= L] Fshurmver 615 Eundereunener [1000181 Fibie, prifen

B patrer | 3 produite | B e (2 P WP | B vorgengssteunng |
stgemeines | Guthaben | wertpapiranage | Dohuettsvoesonge | Tmcbien |

| @]

sttoacters |

Plataformas de acceso a servidores remotos

Bestheiuny [GE T8 T Sunr [T Bawbining Bia 60

Triddesen | @it | P

click on Tab [F u. and

wait 30 seconds.

VP],

11. On the sane di al og,

s o ——— e
Tools Hille
| i
vorgorgate R T |
e IERESS --'.IEI][._?) Verpasgore. [3187 Froowss [Tedrdrprns, Schan [Baameresg. Besheiing [FEONRT S [Tnberbene | P S0
! g Flshrrer | 615 Eundannumear | 100018] ke priden
F:l e [Towamer ;
R partrer | 3 prodite | B iom| [Fuve 1B Vorgengsstooening |
Repsrahrserics | [3) musfeideofing | Senprifirglogets | Piepfung| laborteemsing| Bt Tedbests
I Wekeristion an sustancgen Reparsarsaries.
Motz File Reparshrseracoes
=
stteaien | zwisiegn | Qi | Fegsben
click on Tab [Vorganssteuerung], and

wait 30 seconds.
12. On the sane dialog click on button [Abbr

13. On the confirmation dialog click on butt

echen]

on [Ja]

Mein

The [Workitem View] will be closed.

At this point the application nust be kept open and the test case nust be

repeat ed.

39

Analisis de viabilidad para la centralizacién de entornos distribuidos

5.2.2 Diseio

Una vez superada la prueba de concepto el tester tiene que decidir como
afrontar la prueba. Dependiendo de la herramienta se elegird una forma de
actuar u otra, una forma de crear los testcases u otra.

En nuestro caso tenemos que la herramienta es Rational Visual Test. Ya la
hemos utilizado antes asi que estamos familiarizados con ella y sabemos
cual es la mejor forma de afrontar el test por experiencias pasadas.

Crearemos pues los escenarios necesarios, en teoria 30 diferentes, que
seran los pasos que seguird cada usuario virtual mientras dure la prueba.
Ademas tenemos que separar todo el testcase principal (que hemos visto en
la prueba de concepto) en diferentes testcases mas pequefios: login,
seleccion de elemento de la lista... El objetivo es dividir el test en partes lo
mas pequefas posibles que, sin alterar en exceso el desarrollo normal,
permitan detectar y corregir errores de forma rapida.

En concreto el objetivo disefiado era el siguiente:

- 30 Escenarios diferentes con dos diferencias basicas:
1. usuario de acceso al servidor
2. elemento de la lista a seleccionar

- 3 diferentes testcases:
1. login
2. selecciéon de elemento
3. seleccion de pestafas

5.2.3 Scripting

Esta parte es propiamente el desarrollo del cédigo y consiste en plasmar en
el lenguaje de la herramienta de test todo lo que se ha estado planificando
hasta ahora.

El Rational Visual Test dispone de la posibilidad de grabar la actuacion del
usuario y transformarla automaticamente en coédigo. Esta opcion es una
buena primera aproximacion y permite establecer el esqueleto de lo que
sera el test.

Una vez se han grabado las acciones el coédigo que nos presenta la
herramienta ha de ser pulido y completado para tener en cuenta los
posibles errores, retrasos cuando el servidor esté mas o menos saturado,
etc.

Este parte del trabajo, aunque requiere de cierta habilidad y experiencia
para minimizarla, se basa bastante en el método ensayo y error. Con el
esqueleto conseguido con la grabacion directa, si se ejecuta, no se suele
conseguir mas que en el primer momento en que pueda fallar, el test falle.

40

Plataformas de acceso a servidores remotos

Es por eso que una vez detectado el posible fallo del test, que no de la
herramienta, hay que corregirlo, mas rdpidamente si se tiene experiencia y
menos si apenas se conoce la herramienta. Como ya hemos dicho, ya
hemos trabajado anteriormente con Rational Visual Test por lo que este
proceso, aunque es el mas largo de toda la fase de desarrollo se simplifico
bastante gracias a los anteriores tests realizados.

41

Analisis de viabilidad para la centralizacién de entornos distribuidos

5.3 Ejecucion

En nuestro caso se realizaron tres ejecuciones diferentes. El escenario para
todas las ejecuciones fue el mismo mientras que lo que variaba era el
nimero de usuarios virtuales conectados al servidor. En el primer test se
utilizaron 20 usuarios, en el segundo 10 y en el tercero 15.

El nimero de ejecuciones tedrico es de una por test pero en nuestro caso,
debido a los resultados obtenidos, se optdé por realizar la prueba hasta 3
veces diferentes. Después de cada ejecucion se realizé el correspondiente
andlisis y se entreg6 un informe al cliente. Por comodidad hemos decidido
agrupar la explicacion de cada prueba por fases (ejecucidon, analisis e
informe) en vez de por ejecucion que obligaria a volver adelante y atras
cada vez.

42

Plataformas de acceso a servidores remotos

5.3.1 Primer test

Como tedricamente se esperaba que los servidores aguantaran hasta 30
usuarios se decidié realizar un test que a priori era conservador,
considerando so6lo 20 usuarios simultdneos trabajando con Titicaca en un
mismo servidor.

Al realizar el test resulté que las estimaciones eran demasiado optimistas y
aun con “86l07720 usuarios la ejecucion no fue tan bien como se esperaba.
Vemos a continuacién como, al haber transcurrido tres horas de trabajo con
Titicaca, el servidor quedd6 saturado, algo inaceptable teniendo en cuenta
que una jornada laboral es de, al menos, 8 horas.

100
96
9z

Lask 11 Average 59 Minirmurm 2 Maximurm 100 Duration BS54
Fig 5.1. Comportamiento de la CPU del servidor durante la ejecucion del primer test

Podemos ver en la figura 5.1 como el consumo se dispara al cabo de unas
tres horas aproximadamente y alcanza el 100% durante la ultima media
hora en que la aplicacion dejoé de funcionar correctamente. Ademas, es
facilmente apreciable que el consumo medio mientras el programa
trabajaba de forma correcta es de casi un 50%, un porcentaje de CPU muy
elevado si tenemos en cuenta que s6lo estamos haciendo funcionar una sola
herramienta.

43

Analisis de viabilidad para la centralizacién de entornos distribuidos

5.3.2 Segundo test

En vista de los resultados obtenidos con el primer test el cliente se planted
realizar otra prueba después de hacer algunos cambios en el cédigo de
Titicaca. Asi pues, un par de semanas después de realizar la primera
ejecucion se prepar6 una segunda.

El escenario era el mismo (mismo testcase definido sobre una version
diferente del mismo programa) por lo que lo Unico que variaba era el
numero de usuarios. Esta vez, teniendo en cuenta los resultados anteriores,
se optd por una posicibn mas conservadora aun y se decidié realizar una
prueba con 10 usuarios concurrentes. Asi pues diez sesiones diferentes se
abrieron en el servidor para realizar el test.

Los resultadotes fueron esta vez mucho mejores, el consumo medio habia
bajado sensiblemente y el servidor no se habia saturado en ningun
momento dando esperanzas de que los cambios realizados funcionaban y
habian mejorado la eficiencia de Titicaca.

100
96
92
a8
a4
a0
76
72
68
64
60
56
52
48
44
40
a6
32
28
24

Lask 14 Average 18 Minirnurn 0 Maxirmurm 100

Fig. 5.2. Comportamiento de la CPU del servidor durante la ejecuciéon del segundo
test

44

Plataformas de acceso a servidores remotos

5.3.3 Tercer test

El resultado del segundo test hizo ser optimista al cliente y éste nos pidio
un tercer test para confirmar la tendencia de mejora. En este tercer test
serian 15 los usuarios virtuales y si los resultados eran tan buenos como en
el anterior se lanzaria un cuarto test que definiria el nUmero de usuarios por
servidor que podrian utilizar.

Pero este tercer test estuvo en la linea del primero. Los cambios no habian
surgido el efecto vislumbrado por el segundo test y, aunque el servidor no
se saturaba con los 15 usuarios simultdneos, el programa dejaba de
funcionar correctamente al cabo de unas tres horas de ejecucion.

100
9%
92
a8
a4
a0
76
72
68
64
60
56
52
48
44
40
a6
3z
28 I -
24

Lask 8 Awerage 22 Minirnrn 1 Maximum 93 Duration 4:05:36
Fig. 5.3. Comportamiento de la CPU del servidor durante la ejecucion del tercer test
Podemos ver en la figura 5.3 como el consumo de CPU cae al cabo de esas

tres horas debido a que el programa deja de funcionar correctamente y, por
lo tanto, de consumir recursos.

45

Analisis de viabilidad para la centralizacién de entornos distribuidos

54 Analisis de resultados

El analisis y tratamiento de resultados nos permitira siempre elaborar un
informe atil y con informacion que aporte algo al cliente. Para realizarlo
debemos primero organizar los datos recogidos durante el test.

Como vimos en los requerimientos los datos principales que se piden son el
consumo de CPU, del cual hemos visto los gréaficos obtenidos en el apartado
anterior, y la memoria consumida por el programa del total de la memoria
disponible del servidor. Estos datos se obtienen, en nuestro caso, a través
de una herramienta de Windows llamada Performance Monitor. Este servicio
que ofrece Windows permite almacenar los datos de la maquina en un
archivo .csv que es compatible con Excel y con algun otro procesador de
texto simple como Notepad o UltraEdit.

El Performance Monitor se lanza en el servidor para que registre los datos
de consumo de CPU y Memoria durante toda la ejecucion. Después estos
datos se guardan, como ya hemos dicho, en un archivo .csv y con él
trabajaremos para el andlisis de los resultados que nos ofrezca el test.

A partir de los datos obtenidos, como podemos ver en la figura 5.4, se
generan, con un programa disefiado por nosotros para trabajar con ese
formato de datos, una serie de graficos y de archivos de texto (Resultados
parciales en la figura 5.4) que nos los presentan de una forma mucho més
legible y visual. A partir de estos archivos y gréficos, trabajando con Excel y
Access generamos nuevos graficos y documentos que serdn muy Uutiles a la
hora de realizar el informe (Resultados finales en la figura 5.4).

Testhesults.csv 3| Software propio

I

EXCEL Resultados parciales

Resultados finales | ACCESS

Fig. 5.4. Esquema del proceso de generacion de graficos y documentos Utiles a
partir de los obtenidos del test

46

Plataformas de acceso a servidores remotos

55 Informe

El objetivo del informe es ofrecer al cliente la suficiente informacion de
forma clara y concisa. No hay que olvidar que el cliente no ha de saber de
testing e incluso no tiene porqué conocer los detalles de la aplicacion sobre
la que se realiza la prueba. Es por eso que el informe ha de mostrar los
resultados de forma visual y rapida, con gréficos y tablas, a poder ser
coloreadas de forma instintiva: verde si el test ha ido bien y rojo se ha ido
mal.

Es importante también, en caso de que el resultado de la prueba no sea el
esperado, justificarlo, indicando cuales pueden ser los errores que han
causado el mal resultado y sugiriendo, siempre dejando al cliente la
decision final, las posibles soluciones para los problemas detectados.

En nuestro caso presentamos un informe después de la primera ejecuciéon vy,
en vista de los resultados, el cliente decidié realizar una segunda y una
tercera pruebas por lo que tuvimos que presentar tres informes diferentes.

RAM [MB] <= 3400 > 3400 <= 3680 > 3680
CPU [% <= 55 > 55 <= 65 > 65

Tabla 5.9. Criterio de evaluacion para los resultados obtenidos en el test

47

Analisis de viabilidad para la centralizacién de entornos distribuidos

5.5.1 Primer test

Para el primer test se presenté un informe que incluyo el grafico expuesto
en la figura 5.1 para mostrar de forma visual el resultado de la prueba, en
este caso soOlo el comportamiento de la CPU. Se incluyé también la tabla
5.10 con los valores significativos de la memoria consumida y la CPU
durante la ejecucion y la tabla 5.11 donde siguiendo los criterios expuestos
en la tabla 5.9 se evaluan los resultados obtenidos.

CPU 2 % 59 % 100 %
RAM 1916, 01 MB 3470, 08 MB 3674,12 MB

Tabla 5.10. Valores minimo, medio y méaximo de los consumos de CPU y Memoria.

Resource usage | RAM 3731,53 MB red
CPU 59 %
General performance Not accept abl e

Tabla 5.11. Resultados del primer test.

Como los resultados no ofrecen dudas se incluyé también en el informe un
apartado de conclusiones en el que se recomendaba revisar principalmente
el consumo de memoria y se apuntaba la posibilidad de la existencia de
Memory Leaks puesto que aun cuando el programa quedaba colgado y no
hacia nada el consumo de memoria seguia creciendo indefinidamente.

48

Plataformas de acceso a servidores remotos

5.5.2 Segundo test

El segundo test tuvo lugar unas semanas después del primero. Los
desarrolladores del software habian hecho algunos cambios que creian que
podian haber solucionado si no de forma total, al menos en parte, el
problema de consumo de memoria que hacia que el servidor se saturase. El
informe presentado siguié la misma plantilla que el anterior: incluy6 el
grafico expuesto en la figura 5.10 para mostrar de forma visual el
comportamiento de la CPU, la tabla 5.12 de memoria y CPU consumidas y la
tabla 5.13 donde siguiendo los criterios expuestos en la tabla 5.9 se evaluan
los resultados obtenidos.

CPU 0 % 18 % 100 %
RAM 1494, 71 MB 2504, 18 MB 2646,12 MB

Tabla 5.12. Valores minimo, medio y méaximo de los consumos de CPU y Memoria.

Resource usage | RAM 2504, 18 MB green

CPU 18 % green

General performance Accept abl e

Tabla 5.13. Resultados del segundo test.
En este caso los resultados fueron muy buenos y animaron al cliente a

realizar una tercera prueba para comprobar si el aumento de usuarios hasta
15 mejoraba el resultado obtenido en el primer test.

49

Analisis de viabilidad para la centralizacién de entornos distribuidos

5.5.3 Tercer test

En este tercer test el informe varié ligeramente ya que decidimos, puesto
que la version de la herramienta era la misma que en el segundo test,
realizar una comparativa entre los resultados obtenidos. Asi pues, el
informe estaba basado en los anteriores pero sustituyendo las tablas
presentadas por unas en que se podian ver los resultados del segundo test
también. Es por eso que, ademas de figura 5.10 para mostrar de forma
visual el comportamiento de la CPU, presentdbamos la tabla 5.14 con los
valores significativos de CPU y memoria, la tabla 5.15 donde se muestra la
variacion en % de los valores obtenidos tanto de memoria como de CPU,
Por ultimo incluimos la tabla 5.16 donde siguiendo los criterios expuestos en
la tabla 5.9 se muestran los resultados obtenidos de las dos pruebas.

CPU 10 Test-2 0 % 18 % 100 %
CPU 15 Test-3 1% 22 % 93 %
RAM 10 Test-2 1494, 71 MB | 2504, 18 MB | 2646, 12 MB
RAM 15 Test -3 1916, 01 MB | 3470,08 MB | 3674, 12 MB

Tabla 5.14. Valores minimo, medio y méaximo de los consumos de CPU y Memoria
del segundo y tercer test.

Resour ce RAM + 38,57 % | 3470,08 MB 2504, 18 MB
usage

CPU +4 % 22 % 18 %

Tabla 5.15. Comparativa entre los resultados medios de la segunda y la tercera
prueba.

Resource usage | RAM | 3470, 08 MB 2504, 18 MB green

CPU 22 % green 18 % green

Gener al perfornance Accept abl e

Tabla 5.16. Resultados de ambos tests.

Teniendo en cuenta que el test tuvo que pararse al cabo de tres horas de
ejecucion debido a que el programa dejé de funcionar y viendo la
progresion del consumo de memoria (casi un 40% mas con soélo 5 usuarios
mas) se optd por dar por finalizados los tests y dejar en 10 usuarios en vez
de los 30 previstos al principio el nUmero maximo de usuarios por servidor.

50

Conclusiones

6. CONCLUSIONES

Con este proyecto hemos pretendido descubrir, explicar y evaluar las
diferentes opciones que se presentan en un entorno de trabajo real a la
hora de realizar tests, en nuestro caso, de carga.

En este proyecto hemos visto el desarrollo de un test desde el momento en
que surge la necesidad de realizar un test hasta el momento en que se
entrega el informe con los resultados de dicha prueba. Hemos comprobado
como el proceso es mucho méas grande que solamente realizar las pruebas
que se piden y que la ejecucion de las mismas es s6lo una pequefia parte
del global, igual de necesaria e imprescindible que el resto.

También hemos visto en qué consiste el testing desgranando los mas
importantes tipos de prueba que podemos realizar y que, de hecho, se
realizan durante la parte de testeo del ciclo de software. Hemos podido
describir qué son y cémo funcionan los sistemas distribuidos y el porqué de
su gran supremacia actual en el mundo de la empresa. Ademéas hemos
evaluado algunas de las diferentes alternativas que se presentan en el
mercado de cara a trabajar en estos entornos centralizados.

Nos hemos decidido, a la hora de elegir una opcion para trabar por, en un
entorno distribuido Windows, utilizar la herramienta MetaFrame de Citrix
porque sus caracteristicas encajan perfectamente con nuestros objetivos.
Estos objetivos, realizar un test en el que 30 usuarios trabajaran
simultdneamente con un programa de gestion bancaria que hemos llamado
Titicaca en un servidor Windows, eran facilmente accesibles con esta
herramienta que nos ofrece la compafia Citrix y llegamos a la misma
conclusion a la que habia llegado el banco y nos decidimos también por
MetaFrame.

Para terminar, hemos entrado en detalle en un test real realizado por una
empresa para comprobar que de la teoria a la realidad, de lo que se plasma
en una propuesta a lo que al final se acaba realizando normalmente hay una
gran diferencia. La realizacion de tres diferentes ejecuciones con tres
diferentes configuraciones tanto de test como de software a probar nos ha
permitido obtener diferentes conclusiones después de cada una de las
ejecuciones que han obligado al cliente a tomar decisiones inesperadas muy
diferentes a las que tedricamente tenian que tomar.

El proyecto nos ha traido una aproximacion al mundo del testing, un mundo
cada vez mas extendido hoy en dia, tanto con la creacibn de empresas
dedicadas exclusivamente a esto como en departamentos dentro de las
grandes consultoras informaticas.

51

Analisis de viabilidad para la centralizacién de entornos distribuidos

El futuro de las grandes empresas pasa por un incremento de su
presupuesto para testing puesto que es este departamento el que permitira
reducir costes de mantenimiento al minimizar los errores antes de la salida
del producto al mercado. Asi mismo el numero de empresas dedicadas
exclusivamente a las pruebas de software serd cada vez mas importante ya
que la realizacion de los tests se estd convirtiendo en un elemento
imprescindible para que cualquier proyecto tenga éxito.

Hemos podido ver, con este proyecto una perspectiva global de un mundo
que se vuelve imprescindible en una sociedad cada vez mas informatizada
en el que el I+D y las nuevas tecnologias se estan convirtiendo en la base
de una sociedad avanzada como la nuestra y que pretende estar a la altura
del norte de Europa o de Estados Unidos.

52

53

7.

N o gk bR

BIBLIOGRAFIA

http://citrix.com/
http://www.sun.com/
http://www.microsoft.com/
http://www.monografias.com/
http://www.csi.map.es/
http://www.x.org/

http://www.realvnc.com/

Bibliografia

ABSTRACT

EVERY DAY ISMORE USUAL TO FIND ALL THE COMMON SOFTWARE AND HARDWARE OF THE COMPANY S
DISTRIBUTED AND MANAGED BY DIFFERENT SERVERS WHAT SERVE TO THE USER ALL THEY NEED ONLY
WHEN THEY ASK FORIT. THISINFORMATION DISTRIBUTION SYSTEM ISCALLED CENTRALIZATION.

THISDISTRIBUTION SYSTME REQUIRES A CONTINUOUS MAINTENANCE IN ORDER TO ATTEND ALL THE USERS

DEMANDS. DUE TO THE CENTRALIZATION THIS MAINTENANCE BECAMES AN EASY PROCESS THAT INVOLVES

ONLY THE SERVER UPDATE. THE SERVER CHECKING ISNOW VERY IMPORTANT BECAUSE IT'SNECESSARY TO
CHECK IF THE UPDATES ANSWER PROPERLY TO THE USERS REMOTE DEMANDS.

IN THISPROJECT WE HAVE ANALIZED HOW ALL THISTESTS TO ASSURE THE RIGHT PERFORMANCE OF THE
REMOTE SERVERS ARE DONE. WE HAVE CONSIDERED THE ENVIRONMENT WHERE THE TESTS ARE
PERFORMED AND THE NECESSARY TOOLSTO DO THEM. TO COMPLETE THISINFORMATION WE HAVE SEEN A

PARTICULAR EXAMPLE OF A LOAD TEST.

RESUMEN

CADA VEZ ESMASHABITUAL ENCONTRAR TANTO EL SOFTWARE COMO EL HARDWARE COMUN DE LAS

EMPRESAS DISTRIBUIDO Y GESTIONADO EN DIFERENTES SERVIDORES QUE SE ENCARGAN DE SERVIR AL

USUARIO AQUELLO QUE NECESITA SOLO CUANDO ESTE LO PIDE. ESTE SISTEMA DE DISTRIBUCION DE LA
INFORMACION SE LLAMA CENTRALIZACION.

ESTE SISTEMA DE DISTRIBUCION REQUIERE UN MANTENIMIENTO CONSTANTE PARA ASI PODER ATENDER
TODAS LAS DEMANDAS DE LOS USUARIOS. EL MANTENIMIENTO SE CONVIERTE, GRACIASA LA
CENTRALIZACION EN ALGO RELATIVAMENTE SENCILLO PUESTO QUE SOLO ESEN EL SERVIDOR DONDE SE
TIENEN QUE REALIZAR LOS CAMBIOS, ACTUALIZACIONES O INSTALACION DE NUEVO SOFTWARE. ES
IMPORTANTE ENTONCES COMPROBAR QUE ESTASNUEVAS ACTUALIZACIONES DEL SERVIDOR RESPONDERAN
CORRECTAMENTE CUANDO LOS USUARIOS LAS REQUIERAN REMOTAMENTE.

EN ESTE PROYECTO NOSHEMOS ENCARGADO DE ANALIZAR COMO SE REALIZAN LAS COMPROBACIONES
NECESARIAS PARA ASEGURAR EL CORRECTO FUNCIONAMIENTO DE LOS SERVIDORES REMOTOS
CONSIDERANDO TANTO EL ENTORNO EN EL QUE SE REALIZAN COMO LAS HERRAMIENTAS NECESARIAS PARA
LLEVARLO A CABO. PARA COMPLETAR LA INFORMACION NOSHEMOS CENTRADO EN UN EJEMPLO

PARTICULAR DE TEST DE CARGA.

RESUM

CADA COPESMESHABITUAL TROBAR-NOSTANT EL SOFTWARE COM EL HARDWARE COMU D’ UNA EMPRESA
DISTRIBUIT | GESTIONAT A DIFERENTS SERVIDORS QUE S ENCARREGUEN DE SERVIR L’ USUARI TOT ALLO QUE
NECESSITI NOMES QUAN HO DEMANI. AQUEST SISTEMA DE DISTRIBUCIO DE L’ INFORMACIO S ANOMENA

CENTRALITZACIO.

AQUEST SISTEMA DE DISTRIBUCIO FA NECESSARI UN MANTENIMENT CONSTANT PER PODER ATENDRE TOTES
LES DEMANDESDELS USUARIS. EL MANTENIMENT ARRIBA A SER, GRACIES A LA CENTRALITZACIO, EN UNA
COSA RELATIVAMENT SENZILLA DEGUT A QUE NOMES ES AL SERVIDOR ON SHAN DE REALITZARELS
CANVIS, ACTUALITZACIONSO INSTAL-LACIONS DE NOU SOFTWARE. LLAVORS ES IMPORTANT COMPROVAR
QUE AQUESTASNOVES ACTUALITZACIONS DEL SERVIDOR RESPONDRAN CORRECTAMENT QUAN ELS

USUARISLES DEMANDIN REMOTAMENT.

EN AQUEST PROJECTE ENSHEM ENCARREGAT D’ ANALITZAR COM ESREALITZEN LES COMPROBACIONS
NECESSARIES PER ASEGURAR EL CORRECTE FUNCIONAMENT DELS SERVIDORSREMOTS TOT CONSIDERANT
L'ENTORN EN EL QUE ESREALITZEN | LES EINES QUE NECESSITAREM PER DUR-LES A TERME. PER COMPLETAR
L’ INFORMACIO ENSHEM CENTRAT EN UN EXEMPLE PARTICULAR D’UN TEST DE CARREGA.

