Universitat
£ Autonoma
de Barcelona

365 — Motor de Veu Natural per Dispositius Mobils

Memoria del Projecte Fi de Carrera
d'Enginyeria en Informatica
realitzat per

Jordi Trujillo Sanchez

I dirigit per

Jordi Roig de Zarate

Bellaterra, 04 de Febrer de 2008

Universitat
£ Autdonoma e t se

de Barcelona Escola Técnica Superior d’Enginyeria

El sotasignat, Jordi Roig de Zarate

Professor/a de 1'Escola Tecnica Superior d'Enginyeria de la UAB,

CERTIFICA:

Que el treball a qué correspon aquesta memoria ha estat realitzat sota la
seva direcci6 per en Jordi Trujillo Sanchez

I per tal que consti firma la present.

Signat: Jordi Roig de Zarate

Bellaterra, 04 de febrer de 2008

Agraiments:

S6n moltes a les persones que directa o indirectament he d’agrair la
realitzaci6 d’aquest Projecte de Final de Carrera, tots ells han col-laborat
de manera diferent a fer-ho possible. A Joan N. que des del primer
moment s’ha interessat de com anava avancant tot el procés de
realitzacié, a Sonia P., a Martina G. i a Cristina L. que sempre m’han
animat a seguir i m’han fet companyia en moments baixos de moral, i per
ultim, perd no menys important, a Alberto A. que sempre ha estat al meu
costat, recolzant-me, aguantant-me i donant-me grans consells que sense

ells no ho hauria aconseguit, a tots, moltes gracies.

index general

CAPITOL 1
INTRODUGCCIO ..ottt Pag. 1
1.1 Plantejament iNICIAL...........ccuoiiiiiiiiee s Pag. 1
1.2 Analisi de VIabilitat............cccoeiieii i Pag. 3
1.3 Planificacio temporal............ccccooveiiiiiiii e Pag. 5
1.4 Estructura de 1a MemMOTIa.........coeieiiiieiieieierese et Pag. 7
CAPITOL 2
ESTAT DE L’ART | PRIMERS CONCEPTES........cccoi e Pag. 9
2.1 Tipus de SONS QUE €S FaN SEIVIF......cc.eiiiiieiiiie e Pag. 9
2.1.1 QUE ESUN FONBMA?......cciiiiieiiere et Pag. 10
2.1.2 QUE &S UN dIfONEMA?......ccoiiiiriiieereeese e, Pag. 11
2.1.3 QUE €S UN trifONEMA?......ccieiecieeee e Pag. 13
2.1.4 QUE &S un quUatFIfONEMA?.......cccvevieieiie e Pag. 13
2.2 LA UNIO UEIS SONS.....uieiieiiiieie ettt Pag. 14
2.3 Sistemes que converteixen el teXt 8N VEU.........ccvovrieieiienenese e Pag. 15
CAPITOL 3
ANALISI DE REQUERIMENTS, RECURSOS | FUNCIONAMENT DE
I = I [0\ [OO Pag. 19
L LRECUISOS. .. vt veeteesteeieeste et et et e e e et et e st e sbeesaesraesteeseesreeteeneesraenaeeneeareenre e Pag. 19
S LLEIHArAWANE.c.ooceieeeeceece e Pag. 19
3.1.2 El SOMWANE....ccueiiiieiiee e Pag. 21
3.1.2.1 Microsoft Visual Studio .NET 2003............cccoovririrnrnnnnnn. Pag. 21
3.1.2.2 Els emuladors........ccccovvvieiiiiiiieieee e Pag. 22
3.1.2.2.1 Emulador de Windows CE .NET............ccccevennne. Pag. 23
3.1.2.2.2 Emulador de Pocket PC 2002...........cccceevvvrniennns Pag. 24
3.1.2.3 MICroSoft ACLIVESYNC.........cccvririeiiieie e Pag.24
3.2 Requeriments fUNCIONAIS..........cccviieiveieiie e Pag. 26

3.3 Funcionament de I’aplicacio............ccccovevevieiieie e Pag. 28

CAPITOL 4

DESENVOLUPAMENT I RESULTATS.....ooiiiiie e Pag. 33

g I Vg oo 1ol of o TSSO PS Pag. 33

4.2 Moduls implementats i les seves Millores.........cccoceveveveiiviiiesieieine Pag. 34

421 ELTOrmat WAVcooiiiieiieeeeeeee e Pag. 34

4.2.2 TransCriptor fONELIC.......ccviveiiee e Pag. 36

4.2.3 FUNCIO aCCENLUACIO........ceevvreieciiecieeie e Pag. 37

4.2.4 Paral-lelisSme.........ccooiiiiiiiie s Pag. 38

4.2.5 Utilitzacio d’arxius de text com entrada............ccoeevverieenennee Pag. 42

4.2.6 UtilitzacCio del XML........cccveviiiiiieiecie e Pag. 43

4.2.7 Utilitzacio de JAVA........ooeeice e Pag. 47

4.2.8 El reproduUCIOr........c.coviiiiiiecie e Pag. 48

4.3 Comparatives i estadistiques dels jocs de proves..........ccocveeveveveereeeene Pag. 53
CAPITOL 5

TREBALL FUTUR I CONCLUSIONS........coii e Pag. 65

5.1 CONCIUSIONS.eiiuiiiiieitieie et Pag. 65

5.2 Treball fULUT ... Pag. 67
CAPITOL 6

ANNEXES | BIBLIOGRAFTA.......ci it Pag. 68

BIDIOGrafia.........cooiiiiiiiece s Pag. 68

ANNEXE Aottt ettt et r et e e e ra e reenre e e nn Pag.71

Capitol 1

Introduccio

En aquesta introduccié s’intenta presentar el projecte de final de carrera
“Motor de veu natural per a dispositius mobils” des d’un punt de vista academic i
tecnic, explicant conceptes sobre fonetica castellana. Es fara un petit estudi de
viabilitat d’aquest projecte amb la possibilitat d’accessibilitat per a usuaris finals i

s’explicara I’estructura de la memoria.

1.1 Plantejament general

Les noves tecnologies ens envaeixen cada dia mes, cada vegada tenim mes
aparells tecnologics a casa i al nostre voltant en general, encara que aquestes tecnologies
intentin ajudar a les persones a facilitar la vida diaria hi ha vegades que no es pensa en
les persones amb discapacitats o aquestes tecnologies no estan fetes per a elles. Per aixo,
aqui s’intenta presentar una petita ajuda a gent amb deficiéncies visuals que les pot

ajudar una mica en una millor integracio social i laboral.

Aqguesta memoria reflecteix els objectius del projecte de final de carrera “Motor
de veu natural per a dispositius mobils”, aquest motor de veu esta basat en la fonetica
espanyola, per tant, s’han de seguir les seves regles al cent per cent. El resultat pretén

ser una reproduccié fidel d’un text, frases o paraules el mes a prop possible de la veu

real d’una persona i no sintetica. Aquest projecte és una continuacié d’un projecte

d’anys anteriors, que intenta millorar-se en el seu rendiment i velocitat d’execucio.

El projecte consisteix en una aplicacié que treballa sobre un dispositiu mobil
com una PDA o un teléfon amb un sistema operatiu Windows CE o Windows Mobile
capac de llegir una paraula i reproduir-la com a veu humana, per aixo s’han de fer servir
sons ja creats anteriorment que formen part de la fonetica castellana. Aquests sons sén
els poden ser fonemes, que son els sons més petits i curts que es poden trobar (com “a”,
“e”, “i”, “0”, “u”, el so de qualsevol lletra, com “b”, “k”,...), els difonemes, que sén la
unié de dos fonemes (“pe”, “ra”,...), també hi ha els trifonemes i quatrifonemes, que
s’explicaran més clarament el que sén al llarg d’aquesta memaria. D’aquests sons,
tenim a I’aplicacio els fonemes i els difonemes, i amb la unié d’ells a través d’un
algorisme de transcripcio, que segueix les regles de la fonetica, podem aconseguir
passar de text a veu i que es reprodueixi. Tot aixo fa que hi hagi una especial atenci6 en
la carrega de memoria de I’aplicacié per a que no es col-lapsi o doni errors i en la
velocitat de processament. Amb aixo0, intentarem arribar a un sistema molt més
optimitzar a I’anterior que faci aquesta conversio de text a veu humana per instaurar-ho

en dispositius mobils electronics.

Per tant, el principal objectiu és millorar el projecte anterior amb la comunicacio
entre un dispositiu mobil y les persones, ja que es podria aconseguir que una PDA o un
mobil llegis correctament un arxiu de text o qualsevol paraula escrita a la pantalla,
inclds es podria aconseguir que un correu electronic que arribi a una PDA es pugui
transcriure i ser recitat per a I’usuari final, la qual cosa podria ajudar a persones amb
discapacitats fisiques a moure’s per la pantalla i saber en tot moment per on estan
ubicades.

Amb tot aixo, i degut a les limitacions que ens trobem, com la competéncia amb
altres aplicacions que existeixen que també tradueixen a veu humana texts en
dispositius mobils pero de forma sintética, per tant, s’intentara fer un model economic,

capac de reproduir veu natural, i que pugui arribar a ser una donacié a una fundacié com

la ONCE!, i que pugui arribar a tothom que ho necessiti, tant fisicament com

economicament.

Per tant, aquest projecte intenta ser util a nivell social per a la gent del voltant
que ho necessiti i puguin fer servir dispositius electronics amb el minim de problemes
per a ells, en especial esta pensat per a persones amb discapacitats visuals, que
respongui en temps real, el maxim d’economic possible, amb una qualitat de veu molt
propera a la humana i amb la seva entonaci6é correcta. Amb aix0 aconseguiriem una
interaccid molt directa entre huma i dispositiu, saber recérrer la pantalla en tot moment i

fer-lo servir de la manera més normal possible.

1.2 Estudi de viabilitat del projecte

Per realitzar el projecte, cal tenir en compte la possibilitat de que sigui 0 no
viable tant a nivell realitzable, economic, temporal i academic. Amb aixo s’intenta que

a la implementacié faci servir pocs recursos de memoria i rapidesa en I’execucio.

Aquest sistema treballa sobre un sistema operatiu Windows CE o Windows
Mobile per a dispositius mobils com un telefon mobil o una Pocket PC que faci servir
aquests sistemes operatius, ja que son els més utilitzats arreu, i s’intentara que funcioni
en un temps acceptable. Actualment existeixen varis sistemes que converteixen texts en
veu perd no s6n economics 0 no assoleixen les maximes que es proposen, ja que no sén
reproductors de veu natural i son amb veu sintetica, a més a més, cars i implementats
per a ordinadors i no per a dispositius mobils, per tant aquests no ens serveixen, ens
interessen aplicacions que corrin sobre aquests dispositius, perd la majoria son
diccionaris i pensats per a que I’usuari aprengui bé la fonética de I’ idioma. Per tant, el
que es proposa es un sistema que transcriu un text que rep des d’un fitxer 0 a la
interficie de I’aplicacio i retorna la lectura en llengua castellana en un temps

relativament real i en una entonacio correcta, respectant els signes de puntuacio.

! ONCE: Organizacién Nacional de Ciegos Espafioles

Per tot aix0 ja tenim un estudi previ i una primera implementacio, amb un estudi
linglistic totalment necessari per a la creacio del projecte, seguint uns algorismes i
regles fonetiques. Basicament, i a grans trets, els passos que fara servir el sistema son:
recollir el text que vol ser reproduit, normalitzar-ho amb un transcriptor fonétic i separar
en unitats més petites i anar a buscar els sons que tenim ja guardats (fonemes i
difonemes, que amb la conjuncié de diversos d’ells podem arribar a formar paraules
amb sentit), tots aquests s’han de concatenar seguint les normes linguistiques i

reproduir-se.

Primer de tot s’ha hagut de recollir tota la informacio del projecte anterior,
entendre el seu funcionament i com poder millorar-ho. S’han fet les proves sobre aquest
projecte, veure les mancances com alguns problemes de memoria, el temps d’execucio,
i llocs a la implementacié que millorar. Al considerar que té una bona finalitat, he
decidit centrar-me en aquest projecte i intentar aconseguir els objectius per millorar

I’estat en el que es troba inicialment I’aplicacio.

Aquest projecte estara implementat amb Visual Studio 2003 en C#, es faran
proves sobre el seu propi emulador amb el sistema operatiu Windows CE i també sobre
una PDA, encara que ja donem per suposat que a la PDA trigara més en executar-se
degut a la quantitat d’accessos a disc. La ra6 de fer servir el Visual Studio en C# és
perqué aixi es podria instaurar aquesta aplicacié en moltissims dispositius mobils, ja que
la majoria d’ells treballen amb Windows Mobile, a més a més, de que fent servir aquest,
es guanyaria temps i recursos del dispositiu ja que podem aconseguir una aplicacio

interpretada i no compilada.

Per aconseguir els proposits especificats, es treballara amb aquests recursos:
e Ordinador portatil ASUS, 0’5 Gb de RAM

e Windows XP Home Edition

e Visual Studio .NET 2003

e Connexio a Internet

e Manuals de programacio en C#

e Manuals de funcionament de Visual Studio :NET

o Llibreria MSDN de Visual Studio :NET 2003’
e Pocket PC €750 WIFI Toshiba

e Microsoft ActiveSync

e Projectista d’enginyeria en informatica

e Professionals que recolzin al projectista

1.3 Planificacio temporal del treball

L’estructura del projecte consta de diferents punts que sén tambe els de la

planificacio temporal:

Documentacid: Estudiar tot el procedent del projecte anterior i comprendre el

funcionament de I’aplicacio.

Disseny: Hem de resoldre les mancances anteriors, per tant, hem de mirar per on

hem d’atacar els problemes, aqui intervenen les reunions amb els professors.

Desenvolupament: Implementar les solucions que creiem convenients per a la

millora del projecte, fer les proves pertinents, tot seguint pautes de disseny.

Avaluacio del projecte: Jocs de proves que demostrin que s’han aconseguit les

fites proposades.
Finalitzacié del projecte: Documentacio final sobre I’aplicacio.
Aquests punts s’han de tenir enllestits dins del periode academic, totes les fases

requereixen el seu temps especific per fer-les, les que poden portar més temps i cal

dedicar més hores és al desenvolupament i a la documentacid, ja que al ser la

2 http://msdn2.microsoft.com

continuacié d’un projecte anterior, hem de saber com funciona la seva implementacio,
les fites que ha arribat a complir provant I’aplicacio, aixo entra dins de la part de
documentacid, llegint tots els annexos, les regles gramaticals i fonétiques en les que

s’ha basat el projectista anterior, i tenir clares les mancances de I’aplicacio.

No es pot considerar com una planificacio lineal ja que per tal d’anar millorant
s’han de tornar a passos anteriors, al fer jocs de proves que demostrin que no hem
arribat al cas que buscavem, s’ha de tornar a fer un nou disseny per atacar el problema,
com per exemple, al trobar nous colls d’ampolla que s’han d’anar solventant poc a poc

amb noves estrategies en el disseny.

Aquestes etapes es poden veure reflectides al seguent esquema (Figura 1):

DOCUMEN- - DESENVO-
TACIO N LUPAMENT

|
v DISSENY

AVALUACIO FINAL

Figura 1: Etapes del procés del projecte

A continuacié podem veure una taula de les hores que es podrien dedicar a cada
una de les tasques, tenint en compte la coordinacié del projectista amb la seva vida

personal i laboral, vacances i festes (Taula 1):

Fase Hores programades
Documentacio 350 hores
Estudi memoria anterior 150 hores
Estudi annexos de la memoria 50 hores
Estudi regles fonetiques 50 hores
Jocs de proves 100 hores
Disseny 200 hores
Desenvolupament 600 hores
Avaluacié del projecte (jocs de proves) 50 hores
Finalitzacio del projecte (memoria) 250 hores
Total 1450 hores

Taula 1: Planificacié temporal en hores de la realitzacié del projecte

1.4 Estructura de la memoria

Aquesta memoria esta dividida en diferents capitols que expliquen el
funcionament i on s’ha aconseguit arribar al llarg de la realitzacié del projecte de final
de carrera “Motor de veu natural per a dispositius mobils”. S6n un total de sis capitols,
on ara mateix estem situats al primer, que és la introduccio, on ens centrem una mica en
el tema i veiem quin és el treball global realitzat, també veiem un estudi de viabilitat per
saber si aquest projecte ho és, també consta una planificacio temporal del treball

realitzat durant el temps donat.

En el capitol segon trobem una explicacié més clara dels conceptes que hem de
tenir clars per saber el funcionament correcte de I’aplicacio, alla s’explicara els tipus de
sons que es fan servir, la unid entre aquests per formar un so que estem esperant. També
s’introdueix I’estat de I’art en el marc actual, s’expliquen alguns dels sistemes que
converteixen texts en veu, les mancances que tenen respecte el nostre motor de veu que

estem presentant.

En el tercer capitol es fa un estudi de tot el que tenim i el que hem necessitat per
a la millora de I’aplicacid inicial, s’expliquen els recursos hardware i software utilitzats,
també es denoten els requeriments funcionals que ha de tenir I’aplicacid, una
aproximacio a com funciona aquesta i les millores que s’han fet respecte a I’aplicacio

inicial.

El quart capitol s’explica la implementacié i modificacio de moduls de
I’aplicacio, de manera interna, crides a funcions noves, les millores realitzades, aixi com
els resultats d’aquests passos, i s’aniran comparant per veure la millora trobada en
temps d’execucid, sobretot inicial, que és la més important: el temps que triga a
reproduir-se una paraula o grup de paraules des de que es llenca la ordre de fer-se fins
que s’escolta per I’altaveu. Per tant, també tindrem tots els jocs de proves que s’han fet

durant la realitzacio del projecte.

El cinque capitol explica les conclusions a les que s’ha arribat durant el
desenvolupament del projecte, aixi com les mancances que té I’aplicacié i per on es pot

atacar per arribar a ser (til.

Per ultim, tenim el sise capitol que mostra els annexes i la bibliografia que s’ha

fet servir durant I’elaboracio del projecte.

Capitol 2

Estat de I’art i primers conceptes

En aquest capitol es recull I’estat de I’art sobre I’aplicacié del motor de veu
natural per a dispositius mobils i uns primers conceptes sobre com interactuen entre
ells els sons fets servir. Primer passarem a explicar qué sén els fonemes, difonemes,
trifonemes i quatrifonemes, i després quins son els sitemes que converteixen el text en

veu natural.

2.1 Tipus de sons que es fan servir

Durant I’execucié del projecte es fan servir diferents sons, ells estan gravats en
format wav dins d’una base de dades, van des de la unitat més petita de so que és el
fonema, passant per la uni6 de dos fonemes, que formaran un difonema, i aixi

successivament fins arribar als quatrifonemes.

Cal tenir em compte que es treballara amb les ones que forma una paraula o so,
d’aquesta manera es muntaran aquests sons. Per tant cal estudiar per on s6n més
estables, la seva longitud, per tal de fer un bon Us d’aquests sons. Com per exemple,

podem veure a la seglient imatge que aquesta és la ona de la paraula “hola” (Figura 2):

‘40 T T T T

20+ .

Amplitud
[l

20k 4

-40 . L L
0 01 0z 03 04 0.5
Temps (segons)

Figura 2: Ona corresponent a la paraula “hola”

2.1.1 Qué és un fonema?

Es la unitat més petita de so que farem servir. En teoria, la unio entre ells
fara un so més llarg i que pugui tenir sentit, dit d’una altra manera, sén tots sons que
composen la frase (en castella tenim 63 fonemes), si agaféssim com exemple la paraula
“mesa” veiem que faria servir quatre fonemes [m]-[e]-[s]-[a], per0 la uni6 d’ells com a
fonema no formen la paraula, 0 més ben dit, so “mesa”, ja que son sons separats. La

unié d’aquests sons es fa amb una sintesi concatenativa que explicarem més endavant.

Podem veure en un exemple amb la paraula “hola” com es trobarien els
fonemes, aquesta és I’ona de veu que forma aquesta paraula i per on es tallen aquests

fonemes; podem observar I’ona tallada en [o]-[I]-[a] (Figura 3)

4 D T I T T

20+ 1

Amplitud
=
=
=
=
2

_40 1 1 1 1
0 0.1 02 03 04 05
Temps (segons)

Figura 3: paraula “hola” separada en fonemes

10

2.1.2 Qué és un difonema?

Basicament és la uni6 de dos fonemes, pero la cosa no és tan senzilla, ja
que és aquesta unié entre tots dos fonemes pero tenint en compte la ona de frequéncia
que crea un fonema, ja que s’han d’unir per la part més estable d’ells, és a dir,
generalment seria per la meitat, i de la mateixa manera, s’haurien d’unir entre ells per la
part més estable de la ona per crear el so amb sentit. Si tornem a agafar I’exemple

“mesa” i el separem en difonemes, quedaria de la seguent manera:

[silenci-m]-[me]-[es]-[sa]-[a-silenci]

De totes maneres, aquestes unions entre difonemes, a vegades no queden
del tot netes i no es crea un so totalment real, ja que existeixen sons molt curts i no
donen temps a tenir part d’ona molt estable i no es poden tallar correctament, aquests

son els fonemes [b], [K].... Per millorar aixo ens calen també els trifonemes.

A la seguent figura veiem el mateix exemple que en el cas anterior pero
fent els talls en difonemes, més o menys per la meitat del so on la ona és més forta i més
estable, veiem que la paraula “hola”, tallada en difonemes correspon a [silenci-o]-[ol]-
[la]-[a-silenci] (Figura 4)

40

20

WM e

Amplitud
i

Aa/ /al

0.1 02 03 04 05
Temps (segons)

Figura 4: Paraula “hola” separada en difonemes

11

Tenint una base de dades sencera de tots els difonemes possibles en castella, ens
és possible representar qualsevol paraula d’aquesta llengua, a la seguent taula podem
observar tots els que hi ha (taula 2), podem observar sons en blanc o buits representats
per “_”, o podem veure la preséncia de nimeros del 1 al 5, aquests representen cada una
de les vocals pero de forma tonica, per tant, seguint amb I’exemple de la paraula “hola”,

la dividiriem correctament en difonemes com:

[4]-[41]-[la]-[a_]

on “4” representa la “0” tonica.

_JpJt k bJd] gJf{m][n @[s[z[=]x[y][([%] # 1 e [alo|u |3 [2[TT4T5%
_ p|_t] k| bl d fl m | n|_ s w | oy (| % #| 4| el al o w| 3] 2| 1] 4] .5
PP pi | pe |pa|po|pu|p3|p2|pl|pd| pS
€|t H|te [talto [|32t] 5
k |k ki | ke |ka ke [ku | k3 |kZ |kl | k4| kS
b bi | ke |ba|bo|bu|b3|b2|bl|bd]|bs
d|d G| de |da|de|du | 434241 4] 45
g gl | ge |ga|go|gu|gs|g2|gl || 5
flf fh i B | fe |fa|fo|fo| B2 |86
m|m_|mp mb . mi | me |ma|mo|mu|m3|[m2|ml|md| md
n|n_ nt nd of nn ns n= nf|n% | m# | ni | ne |nalno|m|n3|n2|nl|nd|nd
H A el |m [32101415
@ @k @e @
s |s_|sp|st] sk st 5% (| 5% si | se | sa|so | su|s3[s2 s8] 54| 55
z zm | zn i
X | ®_ ® | xe |xa|xo|xu | =3 |x2|xl|=d| x5
v yi | ye |ya|yo|vu|y3|y2 |yl || ¥5
(G| ejlajle|@ S|E|(]A]0G
% | %o |%op | %et| Yok %im | %n Yo | Yo | %0a| Yoo | Yiu | 903|902 | 1| g | WS
| # | #e |#a | #o [fu | H#3[H#2#1 | # |
1li |iplit]| ke [|id ig|d]im|in |5 is | iz i iy (0%) # | i | de |da|do [i3 d2 il || 15
e|le_|ep|et| ek |eb|ed| eg|ef| em | en e es | ez ext [ey|e|ebo| eff | el | ee [ea|eo|eu|e3|[e2|el]ed| &5
al|a |ap|at| ak |ab|ad| ag |af| am | an |a, as | az ax |ay|al |a¥| e | a1 | ae |aa|ao|au | a3 |a|al|ad | ad
o|o_|op|ot| ok |ob|od| og|of]|om | on|o; os| oz ox oy ol | o% | off | of | ce |oca|oo|ou|o3 |02 |0l | od| 5
wlu [up|ut| uk |[ub|ud|ug|uf|um|un |u us | uz ug |uy|ul|ube | u# | w | ue [uvauo|uw w3 |u2|ul|uwl]| ud
303 [3p]3] 2k |3b|3d] 32 [3f] 3m | 3n |3, 35| 3z 3 |3y |30 3% 3| 3| 3e|[3a|3e|
202 |Zp|2t] 2k |2b|2d| 2g|2f|2m | 2n |2, Zg)| iz 2|2y |20) 2% | 2| 2| Ze |2a|Ze|2u
)1 | 1p| | W [6]|ld] Ig|1f|lm| 1n]|l, lz| 1z T [Iy |10 1% 1 | L | le|la|le|lu
414 [dp | 4] 4k | 4b[4d] 4 |4 dm | dn |4 LHEH A v |40 40| | h | de [da | de | du
S5 |55t Sk | 5k|5d] 5g|5f] Sm | Sn |5 Sg) 5z S | Sy |50 5% | S# | 5| Se |Ja|de|u

Taula 2: Taula de difonemes posibles dins d’una paraula

Veiem que hi ha moltes cel-les buides, aixo és degut perqué hi ha sons que no es
donen al castella, com per exemple, la preséncia de dos vocals toniques juntes en una

paraula.

12

2.1.3 Qué és un trifonema?

Es podria dir que és la uni6 de tres fonemes pero en realitat el definim
millor com un so que esta format per una ona acustica amb la transicio d’un so a un
altre, d’aquest a un sencer i d’aquest fins a I’altim so. Normalment s6n combinacions
d’una vocal seguida de dos consonants. Veiem la paraula “alpe”, si ho separem en
difonemes i trifonemes, veiem que el formen tres difonemes i un trifonema, quedaria de

la seglient manera:

[silenci-a]-[alp]-[pe]-[e-silenci]

2.1.4 Qué es un quatrifonema?

Son dos difonemes que junts ocupen molt poc temps i si es tallés, la
qualitat seria molt dolenta, agafem la paraula “algo”, en principi la dividiriem en
difonemes aixi:

[silenci-a]-[al]-[lg]-[go]-[0-silenci]
Pero el difonema [lg] és tan curt que no el podem fer servir com a tal, i si
ho ajuntéssim en trifonemes, perdria qualitat de so. Per tant, aquest so es podria dividir

en dos fonemes i un quatrifonema:

[silenci-a]-[alGo]-[o-silenci]

13

2.2 La unio dels sons

Una vegada sabem que son els fonemes, difonemes, trifonemes i quatrifonemes,
i sabem que s’han d’unir, cal explicar el tipus d’unié entre ells, tal com seguia el
projecte anterior, ho fem amb una sintesi concatenativa, no ho fa seguint regles, sind
unicament unint sons que ja han sigut gravats i nosaltres els tenim en diferents bases de
dades (la de cada tipus de fonema). Aixo vol dir, que tenint els sons possibles
emmagatzemats, al unir-se no es poden fer de qualsevol manera, siné que han de seguir
unes regles, aquestes no les aplicara la sintesi sind que ho fara la mateixa aplicacio

seguint un algoritme de transcripcio.

Una uni6 concatenativa de sil-labes tampoc seria correcta ja que hi haurien sons
que no es tindrien en compte com difonemes entre les sil-labes. Per tant, per aconseguir
una concatenacid neta i correcta entre sons i el més real possible, s’haurien de fer servir

tots quatre sons que hem comentat abans.

Pero tots aquests sons que s’han de concatenar han de sortir d’algun lloc, i és a
través d’un corpus, a partir d’uns sons gravats, on s’han estudiat préviament tots els
sons possibles, i s’han tallat, aixo requereix un estudi previ ben a fons i un temps molt
elevat. A més, aqui es tindra en compte I’entonacio, per les comes, punts,
interrogacions, exclamacions... Aquests sons formaran part de diverses bases de dades
del projecte: fonemes, difonemes, trifonemes i quatrifonemes. En aquesta versio actual
del projecte, només treballarem amb fonemes i difonemes. Els trifonemes i

quatrifonemes seran part important de la millora seglent per a futurs estudiants.

14

2.3 Sistemes que converteixen el text en veu natural

Avui en dia, al mercat, hi ha molts sistemes que converteixen text en veu, o
també podem trobar pagines web que ho fan i et deixen escollir diferents idiomes o veus
(masculina o femenina), i depenent de I’ idioma han de seguir unes regles establertes,
propies de cada idioma. Pero la majoria, sén aplicacions que corren dins de I’ordinador,
com per exemple els que treballen directament a la pantalla de I’ordinador (el punter del
ratoli es posa a sobre d’una paraula i aquesta es llegida pel sistema i reproduida) son els
lectors de pantalla, és a dir, llegeixen a partir de I’exploracio de la pantalla. També
existeixen els lectors de texts que reprodueixen una narracié d’un llibre, o un missatge
sencer i amb sentit. La diferéncia que pot haver-hi entre aquests dos és a I’entonacio, en
el primer cas no necessitaria cap entonacié especial, en canvi, en el segon si, ja que €s
troben punts, comes, punts-i-comes, pauses en general i sons entre paraules seguides
que son diferents a si es fan servir si les paraules es llegeixen o es produeixen per

separat.

I podem trobar alguns exemples d’aquestes aplicacions com pot ser ATT
(Advanced Text to Speech) que llegeix texts que es copies en el porta papers (Ctrl+C) i
el programa mostra una finestra per si es vol cancel-lar la lectura i sin6 s’iniciara la

lectura en segons i és capac d’exportar aquest so a un arxiu WAV o MP3 (Figura 5).

Advanced Taxl To Spesch

Fie Edi Search Playboeck Tocks Help BupFegiser

rangie] | sampls? | weilied] uriiedd |

Ha llamaco a la residensis de Jose | Pau=400)
Deje su mensaje despuss de oir 1s seflal:

|\ Chir="Nonotone™, Emp\ ACAPTPOLADEI UANGROKENAGUER PT?E:IIHFI

Figura 5: Aplicacio ATT — Advanced Text to Speech

15

Un altre programa és el “2nd Speech Center” (Figura 6) que també és capag de
reproduir des del porta papers i guardar-ho en format WAV o MP3, originalment té el

seu motor de veu en anglés pero es poden instal-lar en espanyol, francés o italia.

?nd Speech Center — [d:\Program Files\?nd Speech Center\tzt\Samplel.tztl rlﬁlﬁl
File Edit Playback Options Help Buy How! e

@ale]

Ei0pen. || Besd Nlond | | Pawse Stsp || Backsacd Forwacd

Shaaw Hext 5?_&‘:?’

i | ! Fiteh:
Playback [sample1 (| | samplaz i\ | Sar Read from Cursor Aloud Ctrl#Q

ices: Microsoft Wikes B i Speed: |

& Road Selactsd Text Aloud Cirl+d
P ResdAloud U A @FB G
2 . P Read Alond Crl+A1HT
7 Read to WAY What's 2nd Speech Center?]
& S Bead to WAV
e Rastioiba B Read to 23
Read Clipboard Aloud T
Read from Cursor Aloud

FRead Selected Text Aloud Ml For
I robotic voices for over 11 languag 44| e wd

|
- | the Windows Clipboard and autor
feature makes it easy to read wel Voices: Wierozaft Mike (SREIS) L
documents and much more, Addit Control Tags 3
integrated with many useful and = = —
i File alarm clock, talking reminder and * B0 Fiand
=, advanced users. And don't worry,| [Copr Cirl4C
‘ Edit interface is very easy to use, Pilte 14
Plaghack P Delers
By <

e T 'l Select Al1 Cirlth j

Figura 6: Aplicacio “2nd Speech Center”

També tenim webs a Internet que ho fan®, molts d’ells també donen I’opci6 de

descarregar-se I’arxiu en .wav 0 .mp3, o escoltar-ho online (Figura 7).

/= AT&T Labs Text-to-Speech: Demo - Windows Internet Explorer CEX

::/@ + 8] httpijjuman.research.att.com{~ttswebjtts/demo.php RIENEI |2]-
o [g ATRT Labs Text-to-Speech: Dema lil [I] d=h - |-} Pagna - {F Herramientas =
e
— AT&T Labs, Inc. - Research
E atat

Text-To-Speech (TTS) -- Our Demo Speaks Your Text

Heme | =Deme | FaQ | Publications | Centact
Wizzard Software | ATA&T Natural Voices
T Commercial

STEP 1 voice & L ROS& «..... Latin Am. Spanish ¥

STEP 2 Text: [Selected lanquage only | 300 character limit | Help with UTE-8 or Latin-1]

Esto es una prueba

STEP 3 click: SPEAK JEoars BCNEOR [restrictions apply™]

Something mispronounced? SEND FEEDBACK

Something broken? Please consult the FAQ page Diaanastics before sending details
to tts-feedback

Comments, suggestions and questions not answered in the FAQ should also be sent to tts- |

3] @ meernet Wi -

Figura 7: Plana web que transforma de text a veu — AT&R Labs, Inc.

® http://www.research.att.com/~ttsweb/tts/demo.php

16

Aquestes aplicacions mencionades son per executar sobre un ordinador personal,
per tant no arriben a les nostres fites, en canvi, podem trobar algun programa per a
dispositius mobils com el “Flite” (Figura 8) que intenta emular la veu humana
sintetitzant els caracters presents al seu camp de text de la seva finestra principal pero
suporta freqliencies molt baixes. Tampoc serveix, ja que volem aconseguir que en

comptes de veu sintetitzada sigui amb veu natural.

2 |44

Flite for Pocket PC

This is a test of the speech synthesis [«
engine on your Pocket P,C,]

I Play |
123]1[2[3]4[5]6[7][8]09][0]-[=]«
Tabjg[wle[r[t]y[u]i|o[p[[]]
caplafs[d[fla[h]j[k[I][;]"]

shift[z [x [c[v[b[n[m[, [.[/]«
clai] - [\] [V[t]e]>
File [= BB & B |~

Figura 8: Aplicacié “Flite” per a Pocket PC

Els lectors de texts necessiten fer servir les regles gramaticals de la llengua que
estan reproduint; cada llengua té les seves regles, sons que no es poden donar a la
construccid d’una paraula, cadena de lletres que existeixen o no dins la llengua. Un
exemple pot ser que en castella no es doni el cas de trobar o de reproduir-se un so
format per les lletres “mkpo”, o “wwrr”, no hi haura cap regla que arribi a codificar
aixo0. Un altre exemple sobre les regles pot ser que en catala es dona el cas de les vocals
febles, que en castella no existeixen, per tant, si féssim I’aplicacié en catala s’hauria
d’introduir aquests casos. Tot aix0 ha suposat un estudi previ fonetic que un enginyer en
informatica no acostuma a coneixer i necessita ajuda de professionals d’altres doctrines.
Podem veure els moduls que formen un lector de texts en la seglent figura, podem
observar que cal fer un analisis linguistic desprées de processar el text, que sén les regles

que han de fer servir per una correcta pronunciacio (Figura 9):

17

Texto en ortografia Preproceso del texto ‘
coty encicnal

‘ Analisis lingoistico

+

‘ Trascripoidn fondtica |

hdddulo prosddico

Diccionario de
unidades de sintesis

=

Concatenacidn de
unidades

¥
Cadena devalores de parametros aclsticos ‘

l

Generacion de la onda sonora segiin el modelo elegido ‘

l

Figura 9: Moduls que formen un lector de text

Per tant, veiem que hi ha diverses aplicacions que fan el que estem seguint, per
una banda el “Flite”, ja que s’executa sobre un dispositiu mobil, o el ATT, pero aquest
s’executa sobre ordinador, per tant no totes les aplicacions existents compleixen els
requisits que busquem en aquest projecte, com la veu natural, el temps de resposta i la
maquina on s’ha d’executar. Alguns d’aquests programes es poden trobar a Internet,
descarregar i instal-lar, la majoria son versions de proves, d’aquests en trobem pocs per

a dispositius mobils.

18

Capitol 3

Analisi de requeriments, recursos i funcionament de
I’aplicacio

En aquest capitol s’explicara quins sén els recursos hardware i software que
s’han fet servir al llarg del projecte. Tambeé s’explica I’estat de I’aplicacié anterior, el
funcionament i les mancances o defectes que hi havia i que s’han intentat solventar al

llarg de la realitzaci6 de projecte.

3.1 Recursos

3.1.1 El Hardware

L’ordinador fet servir durant el desenvolupament del projecte ha sigut un

ordinador portatil amb les seglients caracteristiques:

e Ordinador portatil ASUS, 0’5 Gb de RAM
e Windows XP Home Edition

A part del desenvolupament del codi en aquest ordinador, també s’han fet en ell
les proves sobre emuladors de dispositius mobils basats en el sistema operatiu Windows
Mobile i Windows CE, aquests sistemes operatius, son els més extensos arreu per a

dispositius mobils.

19

Les altres proves que s’han anat fent, s’han fet fora de I’emulador, ja han sigut
proves fisiques i reals. Per aix0 hem necessitat un dispositiu mobil real, que ha sigut un
Pocket PC €750 WIFI Toshiba (Figura 10), les caracteristiques que més ens interessen
per el desenvolupament del projecte son les seguents:

e Processador Intel PXA 255, 400 MHz

e Pantalla tactil

e 64 MB de RAM

e Flash ROM de 32 MB

e Sistema de so estéreo de 16-bits amb microfon integrat
e Windows Mobile

e Modul de memoria Secure Digital (SD) de 128 MB

e Possibilitat de fer servir modul de memoria Compact Flash

Figura 10: Pocket PC €750 WIFI Toshiba

20

3.1.2 El software

El software que s’ha fet servir durant el temps que ha durat el
desenvolupament del projecte ha sigut el Microsoft Visual Studio .NET 2003
Professional, els emuladors que ell incorpora tant per Pocket PC 2002, com en emulador
de Windows CE .NET. La majoria de les proves s’han fet al voltant d’aquests
emuladors pero també s’ha fet servir el Pocket PC real que tenim, per fer-lo servir
també hem necessitat la instal-lacié del software Microsoft ActiveSync per la

sincronitzacioé entre el Visual i el dispositiu fisic.

3.1.2.1 Microsoft Visual Studio .NET 2003

L’ aplicacid ja estava basada en aquest llenguatge i com que vaig decidir
continuar amb la seva estructura i la seva base, vaig continuar treballant amb el
Microsoft Visual Studio que em va facilitar el departament, ja que no és un software
[liure. Dins d’ell hem treballat amb el llenguatge C#, i a més a més, s’ha pogut incrustar
algun modul en un altre llenguatge com XML i també s’ha intentat utilitzar en algun
moment una integracio d’un modul de JAVA, encara que es va descartar per motius que
ja explicarem més endavant. Per tant, veiem que el Microsoft Visual Studio pot
treballar amb diversos vegades en el mateix projecte, cosa que ens facilita el

desenvolupament.

De totes maneres, el Microsoft Visual Studio (Figura 11) té una extensa
llibreria d’ajuda com MSDN de Visual Studio .NET 2003, on també trobem una versio
online i totalment actualitzada, i moltes ajudes a través de forums i webs que parlen
sobre programacio en .NET. A més, és capa¢ de deixar treballar amb emuladors de

dispositius mobils que és on volem fer servir I’aplicacié final.

21

Microsoft:

& Visual Studio .net

Professional

Jordi

Este programa estd protegido por leyes v tratados internacionales como
se describe en el cuadro de diflogo Acerca de, en el mend de ayuda,
@ 1987 - 2002 Microsoft Corporation. Reserwadas todos los derechos.

Productos instalados de la familia Visual Studio:

o

Microsoft Microsoft Microgeft Microsoft
wisual Basic NET visual CF MET wisual J# NET Wisual ¢+ NET EEEIR LS

Figura 11: Microsoft Visual Studio .net Professional

Perd amb tot aixd també és necessari I’entorn .NET Compact Framework® que
ens ajuda a programar aplicacions per a dispositius mobils, ja que tenen limitacions de
recursos. Es un conjunt de biblioteca de biblioteques de classes que s’han dissenyat
expressament per a ell. Gracies al Compact Framework es poden executar programes
independents del hardware i del sistema operatiu, ha sigut el que ens ha deixat treballar
perfectament amb XML, optimitza els recursos del sistema i intenta obtenir un

rendiment optim quan compilem en temps real.

3.1.2.2 Els emuladors

El Microsoft Visual Studio .NET ens ofereix la possibilitat de treballar
primerament amb emuladors de dispositius mobils, gracies a aix0 s’han pogut trobar
molts errors debbugant I’aplicacié durant la implementacié. Com podem veure a la

figura 12, al compilar el sistema ens deixa quatre opcions on executar el programa.

* http://www.microsoft.com/downloads/details.aspx?displaylang=es&Family|D=262D25E3-F589-4842-
8157-034D1E7CF3A3

22

Implementar SmartDeviceApplication [5_<|

Elija el dispositivo de destino, S5i \MET Compact Framework,
aln no 52 encuentra en el dispositivo seleccionado, se
implementara junto con la aplicacian,

Implementar |

Cancelar
Dispositivo de chket P fwvuda
Dispasitivo de Windows CE MET
Emulador de Pocket PC 2002
Emulador de Windaws ZE \NET (Predeterminada)
Predeterminado |

[v Mostrar este cuadro de didlogo cada vez que se implementa |a aplicacidn

Figura 12: Opcions de Visual per escollir on implementar I’aplicacio

3.1.2.2.1 Emulador de Windows CE .NET

Es a on basicament s’han fet totes les proves, gracies a la similitud de la
interficie tant semblant al Windows al que estem acostumats, ha sigut una part
important per a dur a terme I’execucié del programa i les proves, ja que si feiem servir
logs que guardaven el temps d’execucié durant les proves, sempre ha sigut més facil
obrir-los i estudiar-los amb aquest, i al ser d’unes dimensions més grans, ens ha ajudat a

fer servir més rapidament I’aplicacié(Figura 13).

£: Emulador, de Windows CE .NET
Emulador Ayuda

M,
o i

Windows CE .net
Emulater4.1.

Virtual x86 Hardware Reference Board
Provided by Connectix Corporation of San Mateo, California, USA.

Figura 13: Emulador de Windows CE .NET

23

3.1.2.2.2 Emulador de Pocket PC 2002

Durant el desenvolupament del projecte, gairebé no s’ha fet servir, aquest
emulador (Figura 14) sobretot s’ha fet servir per crear una interficie amb dimensions
correctes per a un Pocket PC, aix0 vol dir, reduir les dimensions de la pantalla principal

de I’aplicacio.

B Pocket PC 2002 FEX
Emulador Avuda

sabado, 19 de enero de 2008
Introducir informacidn de propietal

Mo hay cikas praximas

Mo hay mensajes sin leer

7] Mo hay tareas

Figura 14: Emulador Pocket PC 2002

3.1.2.3 Microsoft ActiveSync

Es el software necessari per a gestio de sincronitzacié entre ordinador i
PDA o dispositiu mobil via USB. Amb ell es transfereixen les dades necessaries d’un
lloc a un altre, com per exemple els correus electronics d’un Oultook, o cites, entre

altres coses.

Nosaltres el fem servir per a descarregar la nostra aplicacio al dispositiu
mobil fisic per comprovar el seu comportament real. Una vegada escollida la opcid
adequada a on implementar I’aplicacio, per tant a un dispositiu de Pocket PC, ja podem
treballar amb el Pocket PC de la mateixa manera que feiem amb I’emulador.

24

Implementar SmartDeviceApplication1 |

Elija el dispositivo de destino. 5i MET Compact Framesork,
alin no se encuentra en el dispositivo seleccionado, se

implementara junto con la aplicacion. e

Implementar

vo de Pocket PC Avuda

Dispositiva de Windows CE HET
Ernulador de Packet PC 2002
Emulador de windows CE JMET (Predeterminado)

Predeterminado

[+ Mostrar este cuadro de didlogo cada vez que se implementa la aplicacion

Figura 15: Implementar aplicaci6 sobre dispositiu fisic

Detalles Opriones
Acerca de Microsoft ActiveSync

Microsoft@ ActiveSync® version 4.5,0 (compilacidn S096)
Id. de producko: §9563-356-9540406-04529

@

Copyright@ 1996 - 2006 Micrasoft Corporation. Reservados todos los
derechos.

Este producto contiene informacion de sequridad con licencia de R34
Daka Security Inc.

‘Wisualizar el contrato de licencia para el usuario final

Advertencia: este programa esta protegido por leyes de
derechos de autor v otros tratados internacionales,

La reproduccian o distribucion no autorizadas de este
programa, o de cualquier parte del misma, puede dar

lugar a severas sanciones civiles v penales, v sera objeto
de todas las acciones judiciales que correspondan, BB

Figura 16: Microsoft ActiveSync

25

3.2 Requeriments funcionals

Tal com es va comentar a la introduccid, un dels aspectes més importants a tenir
en compte a I’hora de millorar I’aplicacié anterior és la utilitzacio de la memoria i el
temps de procés, sobretot I’inicial. Sabem que ha de funcionar sobre dispositius mobils
que treballen sobre el sistema operatiu Windows Mobile, ja que és el més comu i aixi es

podria arribar a més persones amb les necessitats que s’intenta cobrir aquesta aplicacid.

Aquest motor de veu natural per a dispositius ha d’agafar un text, o bé des de la
pantalla o bé des d’un arxiu de text (*.txt), per tant, aquesta sera el parametre d’entrada.
Aquest es processara i sera el que finalment es reprodueixi d’una manera el més fidel
possible a la veu natural, per tant, necessitem una qualitat acceptable d’aquest so, que
no soni tan sintetica i que arribi a tenir una entonacié correcta, i tot aixo s’hauria

d’aconseguir en un temps acceptable o gairebé immediat.

La manera en que funciona I’aplicacié és a través de moduls funcionals que

segueixen I’esquema seguent (Figura 17):

Text d'entrada

I
¥

Transcriptor fonétic

'

Separar en segmentos de smtesis existentes

: e

Ir a buscar las unidades de smtesis grabadas |7
N BEDD

‘ -~

L 4

Indices

Concatenar

!

Reproducir por el altavoz el resultado

L 2
So final

Figura 17: Moduls de I’aplicacid

26

Al seguir aquest esquema, veiem que hem de passar per una série de moduls,
agafant el text d’entrada de la pantalla (lector de pantalla) o des d’un arxiu de text.
Haura de carregar totes les dades externes possibles al principi per tenir més velocitat a
I’aplicacio, com la interficie de I’aplicacid, estructures XML que indiquen on s’han de
buscar els sons a la base de dades (aix0 s’explicara en el segiient capitol), aquesta base
de dades seran sons gravats en format WAV, per ser un estandard i tenir molta
informacié per a poder fer-lo servir, i en espanyol, aquesta base de dades es reparteix en
fonemes, difonemes, trifonemes i quatrifonemes, com ja hem explicat, i s’uniran
concatenant-se i les regles de transcripcid fonétiques ho controla un modul especific. El
reproductor que es fa servir, és un reproductor integrat dins de I’aplicacio i no és un
d’extern, cosa que ens ajuda amb el temps de resposta, i a més a més, treballa
reproduint-se des de la memoria i no des d’un fitxer, per tant, no cal accedir a un fitxer

fisic per reproduir-se.

Aquest sistema ara ja treballa amb paral.lelitzaci6 a I’hora de fer el
processament, aix0 ajuda a també a la velocitat del temps de resposta. En comptes
d’esperar a processar tota una frase, es processen totes les paraules de la frase d’entrada
de manera paral-lela i es reprodueixen per ordre. El problema que trobem aqui és que
quan una persona parla, no deixa “espais blancs” entre cada paraula, nomes ho fa amb
els signes de puntuacié o per agafar aire i continua parlant, aix0 esta contemplat a
I’aplicacio, es llencara la transcripcio d’un grup de paraules fins que es trobi un signe de
puntuacid, o fins un nimero determinat de caracters per tal de poder agafar aire, només
caldria canviar un parametre dins de la codificacio del projecte, aixo ara no és possible i
es fa amb cada paraula ja que hi ha un coll d’ampolla molt important en el transcriptor

fonetic que cal resoldre en els treballs posteriors.

Com es va parlar al capitol anterior, hi ha un quadre de tots els sons dels
difonemes possibles dins d’una paraula, perdo no ens és prou al voler contemplar la

opcid de suprimir els “espais blancs” entre paraules. Recordem el quadre de la taula 2.

Podem agafar el cas de les dues esses juntes “ss”, en castella no hi ha cap
paraula amb elles, per tant, observem a la taula que aquest so no es contempla, per tant,
en un principi no s’hauria de fer servir, pero en el cas que necessitem, podem trobar dos

paraules, una que acabi amb essa i que la seguent comenci amb ella, per tant, si

27

suprimim els “espais blancs” de la pronunciacio, veiem que si que es pot donar aquest
so, per exemple amb les dues paraules “paredes sucias”. Llavors caldria contemplar tots
els sons de la taula, tots els que no hi sén, aixo ajudaria a millorar el so final, i la

concatenacid entre paraules seria més real i creible.

La concatenacio de sons es fara amb fonemes i difonemes, ja que amb ells es pot
aconseguir un so que sigui ben clar i que s’entengui clarament. La concatenacio és
senzilla i ocupa menys espai de memoria. Fer servir trifonemes i quatrifonemes ens

ajudaria a reduir una mica el temps de formacid del so final.

S’ha de tenir clar quins s6n aquests sons gravats i com estan identificats dins de
la base de dades per poder-los tractar. Cal estudiar bé els noms dels fitxer i que
representa cada un. Per tal d’incloure’l bé dins de I’arxiu XML per poder fer una cerca

correcta.

3.3 Funcionament de I’aplicacio

Acabem de veure quins son els requeriments funcionals necessaris per
I’execucio de I’aplicacié i amb un esquema general de com treballa el motor de veu per
a dispositius mobils. Pero podem veure amb més detall el seguent diagrama de flux,
aquest diagrama és el que teniem de I’aplicacio anterior i no hi ha grans canvis en el seu
procés, per tant, per veure el funcionament i presentar el que tenim inicialment el fem

servir (Figura 18)

28

Inicializar:
Tablas;
Parametros "W AW,
Entrada (Texto)

‘ Crear la trascripeoisn fonética del texto ‘ Inicializar:
I Subfrase ="",

i‘ Indice =0,

Onda="",

Subfrase = 4 caracteres
empezando por la Izda

Mo

-

| Eeducir Subfrase a 3 caracteres;

iSubfrase en
indice 47

51

Indice =4,
iSubfrase en LRIE

indice 37

[Reducir Subfrase a 2 caracteres;]

31

Eetrasar 1 -
caracter | Indice = 3; I

ry

iSubfrase en
indice 27

Eeducir Subfrase
a 1 caracter;
Indice =1,

e st

@

- v
‘ Buscar entrada “Subfrase” en la tabla correspondiente a Indice

l

Concatenar sonides:
Onda = Onda + dates (Subfrase)

i CQuedan
caracteres?

Eeproducir Onda

i Mo .
S %m Fin

Figura 18: Diagrama de flux de I’aplicacid

Tenim en compte que treballar amb quatrifonemes i trifonemes faria un so molt
més net amb una bona qualitat final i ajudaria a la rapidesa de I’aplicacio, ja que no
hauria de passar per tants estats. Per tant, s’haurien d’agafar els primers quatre caracters
I processar-los i si no ho troba a la base de dades de quatrifonemes, s’agafarien tres i
aniria a la base de dades de difonemes, i aixi successivament, fins arribar als fonemes, si
és que no s’ha trobat el que s’ha anat cercant durant el procés. Una vegada
s’aconsegueix trobar I’arxiu de so adequat per aquest segment a la seva base de dades
es va concatenant per fer la ona de sortida i reproduir-la. Com que s’ha decidit treballar

amb difonemes i fonemes, I’esquema anterior queda de la seglient manera (Figura 19)

29

Inicializar
Tablas;
Farametros WAV,
Entrada (Texto)

Inicializar
Subfrase="";
Indice =10,
Onda="";

‘ Crear la trascripoién fenética del texto

iSubfrase en
indice 27

Reducir Subfrase
a 1 caracter;
Indice =1;

sIndice=17 Indice =2,

| |

Buscar entrada “Subfrase” en la tabla correspondiente a Indice

l

Concatenar sonidoes
Onda= Onda + datos (Subfrase)

Reproducir Onda

o .
=} £Seguir? Fin

Figura 19: Diagrama de flux real de I’aplicacié

En aquesta fase es treballara seguint aquest esquema, no deixem de banda
recordar que treballar amb quatrifonemes i trifonemes sera una millora en treballs
futurs. Hi ha diversos aspectes que s’han millorat en aquesta versio, tal com s’ha
indicat, ara es treballa fent servir una paral.lelitzacié en el procés amb totes les paraules
i abans s’havia de processar tota la fase sencera i esperar, i podem veure que hi havia un
temps de procés elevat que era una de les coses més importants també a millorar, a la
seglient taula veiem els temps de resposta de I’aplicacid inicial amb els exemples que hi
havia (Taula 3):

PROVA PANTALLA
Apéndice 4 seg
apéndice 2 de mis documentos 18 seg
mis documentos 7 seg
pantalla con mensajes 9 seg
Ventana 3 seg
2 2 seg
documento con mensajes 14 seg
mis mensajes 5 seg

Taula 3: Joc de proves de I’aplicacid inicial

30

A continuaci6 veiem la interficie que teniem inicialment que també s’ha millorat
i s’han afegit funcionalitats com poder llegir arxius de text, ja que en aquest moment

només podia llegir des de pantalla (Figura 20).

Ep| Emulador de Windows CE .NET]

Emulador Avuda

Demo: Texto en Habla.

Salir

Reproducir

apéndice

apéndice 2 de mis documentos
mis documentos

pantalla con mensajes
ventana

2
documento con mensajes
mis mensajes

#4Tricio "Demu: Texto en Habla. L 31837 (@

Figura 20: Interficie de I’aplicaci6 original

Altres millores importants, que s’explicaran en el seguent capitol, és la
introduccié de cerca en arxius XML que ajuden a trobar els arxius wav pregravats per
formar els sons i aixi estalviar-nos la cerca tan complexa a traves de taules que feia
servir. També s’ha canviat el reproductor de I’aplicacio, anava integrat un reproductor
d’un arxiu “tmp.wav” que creava I’aplicacio, aixo feia que trigués un temps addicional
al crear aquest arxiu, s’omplis i es reproduis, en la versié actual s’ha aconseguit fer
desapareixer aquest arxiu i que el so es reprodueixi a partir de ser carregat en memoria.
En algun moment, fins i tot, s’ha intentat treballar amb algun procés en JAVA, ja que el
Microsoft Visual Studio deixa també treballar amb llibreries creades en JAVA, per tal
de poder fer servir funcionalitats que ajudarien a la implementacio, pero es va trobar un
problema, a I’emulador s’havia de carregar un fitxer que pogues interactuar tots els dos
Ilenguatges, pero era tan gran que el dispositiu mobil es quedava sense espai, i s va

decidir prescindir d’ell.

31

En resum, les millores aconseguides es poden reflectir en la segient llista i es

comentaran en el segiient capitol:

e Optimitzacié del codi

e Treballar amb fils en paral-lel

e Modificacio del reproductor wav que millora problemes de memoria
e Treballar fils amb varies paraules a la vegada

e Utilitzaci6 de cerques en XML

e Ultilitzacié de JAVA

e Reproduccid del so final des de la memaria i no des d’un fitxer.

32

Capitol 4

Desenvolupament i resultats

En aquest capitol s’explica com ha millorat I’aplicacié poc a poc, totes les
modificacions realitzades, les proves i millores que s’han anat implementant al llarg del
desenvolupament del projecte. Finalment, es fa una comparativa de tots els resultats
junts i estadistiques d’elles, sobretot fixant-nos en el temps de resposta inicial que és un

dels colls d’ampolla més importants.

4.1 Introducci6

Per a la utilitzacié i realitzacio del present projecte, es va fer anys enrere un
treball previ molt laborids sobre les transcripcions fonétiques, un estudi sobre el parla
humana, la creacio dels sons, com es forma la seva ona acustica, els sons que es formen,
com s’uneixen entre ells. Sabem que el sistema final el que fara sera recitar en veu
natural el text que se li doni d’entrada, ja sigui a partir d’un arxiu de text com des de la
mateixa aplicacio a la pantalla, per aconseguir aixo cal tenir en compte que tenim una
base de dades de sons, que seran els sons possibles en la llengua, i que s’uniran entre
ells, la figura 17 ens recorda I’esquema basic a seguir per aconseguir-ho.

33

4.2 Moduls implementats i les seves millores

4.2.1 Format WAV

Durant tota I’elaboracid del projecte s’ha treballat amb arxius wav, i amb unes
Ilibreries que varen ser implementades en el programa original, i per tant s’han de tenir
en compte a I’hora de fer-los servir. Es va fer servir arxius wav ja que és un estandard i
relativament facils de fer servir per treballar amb ells, ja que normalment no fan servir

cap mena de compressio i tenen bona qualitat de so.

Un arxiu WAV té varis camps que ocupen 44 bytes a la capcalera i la resta son
les dades del so, aquests camps sOn necessaris per a que I’aplicacio pugui treballar amb
els sons de les base de dades per poder-los unir, a continuacié veiem com es composa la
trama d’un arxiu wav, i s’explica el significat dels camps, sense entrar en gaire detall
(Figura 21):

0 Bytes 3 7 11 15
RIFF Size WAVE fint
14 31
FMT Size WEFT NCH SamplesPerSec | AvBvytesPerSec
£ 47
BA BPS data data Size DATONS
48 \

\

Cabecera del formato Campo de datos desde
WAV el byte 44 hasta el final
del fichero

Figura 21: Camps d’un arxiu WAV

34

Nom del camp Significat

RIFF Inici de la capcalera (4 bytes)

Size Tamany des del final del camp al final del
wav (4 bytes)

WAVE Indica el format de les dades (4 bytes)

Fmt Especifica millor el format (4 bytes)

FMT Size Indica el tamany dels sis camps seglients
(4 bytes)

WFT Tipus de codificacié soportat (PCM)

NCH Numero de canals (mono o estereo)

SamplePerSec

Freqguéncia del mostreig del senyal

AvBytesPerSec Mitja de bytes per segon

BPS Bits per mostra

Data Indica que a continuacié apareixen les
dades

DataSize Tamany del camp de les dades a reproduir

Dades Resta del wav amb les dades a reproduir

Taula 4: Significat dels camps d’un arxiu WAV

A la implementacié inicial ja s’emmagatzemava a memoria principal la
capcalera d’un arxiu wav de manera organitzada, gracies a una estructura que es va dir
WAVE_HEADER (veure codi font), juntament amb les funcions que es van crear d’una
llibreria de funcions per a arxius wav per poder-los manipular, aquesta és la classe
WavUtils (veure codi font) on podem trobar el WAVE_HEADER. En aquesta classe de
WavUltils hi ha funcions que ajuden a llegir i transmetre les dades dels arxius guardats a
les bases de dades cap al programa principal, es varen crear en el seu moment per
solventar problemes a I’hora de manipular aquests arxius, ja que s’havia de fer a nivell
de bits per poder reproduir-se correctament. Aquesta classe consta de funcions per a
copiar fitxers wavs d’un lloc a altre de manera identica, moure’s dins de I’arxiu a un
parametre dins de la capcalera, carregar capcalera al WAVE_HEADER, concatenar

fitxers wav, entre d’altres (veure codi font).

35

Gracies a aquestes estructures ja creades ens ha sigut facil poder manipular els
arxius de les bases de dades i com s’ha comprovat durant el procés de millora, no s’ha
hagut de modificar cap d’aquestes classes, ja que no suposava cap cost addicional en el

temps d’execucio de I’aplicacio.

4.2.2 El transcriptor fonétic

Aquest modul és el més llarg de tota I’aplicacio, ja que ha de seguir moltissimes
regles fonétiques que s’han d’aplicar i per tant, s’han de fer moltes comprovacions.
S’havia de tenir clar tots els conceptes provinents de la implementacié inicial, com el
nom dels fitxers wav, s’ha de saber clarament a quin so real pertany, una “rr” equival a

“$” a la seva codificacio, vocals toniques “a”, “e”,”i”, “0”, “u” (amb accent, “a”, “¢”

1)

(154

i, “6”, “0”) son “1”, “27, “3”, “4” i “5”, entre d’altres, com es va explicar a la seva

respectiva memoria.

A grans trets, el comportament del transcriptor és que al arribar una paraula del
programa principal, I’analitza sintacticament llegint els caracters i en funcio dels
seguents, s’apliquen unes determinades regles del castella. Aquest retornara la paraula
transcrita que haura de passar per la funcio d’accentuacio. El transcriptor és cridat des
del programa inicial, al enviar I’ordre de reproduccio, com s’explica més endavant,
s’envia un fil per a cada paraula que la processi independentment i treballar de manera

paral-lela, la crida al transcriptor és aquesta (Figura 22)

//iniciar estructures

//enviar dades al transcriptor

Thread th2 = new Thread(new ThreadStart(t.Transcribe)); //crear fil
th2.Start(); //llencar el fil pel transcriptor

Figura 22: Crida al transcriptor des del programa principal

Aquest transcriptor és capac de llegir nUmeros de “0” a “9”, perd no més enlla,
ja que estan codificats només aquests, si li entra “10”, el reproductor dira “uno cero”, en

comptes de “diez”, només per a caracters numerics. Es un procés dificil de tractar aquest

36

que ens ocuparia molt de temps, ja que caldria veure i estudiar la pronunciacié dels

numeros y com unir els sons veient quan es repeteixen.

El problema que presenta aquest modul és molt important, ja que al millorar-se
diferents colls d’ampolla que hi havia inicialment a tota I’aplicacié i tot haver-se
optimitzat el codi de manera que desapareixessin els bucles i comparacions repetides, és
el que gasta més temps de processament i fa que s’alenteixi tota I’aplicacio al tractar les
paraules, sobretot quan son llargues. Degut a la quantitat d’informacié que es processa
en el transcriptor, es fa dificil acotar aquest temps de resposta, s’ha comprovat que no hi
hagi codi o comprovacions inservibles per a la transcripcié per poder prescindir d’ells,

perd ha sigut impossible, ja que les comprovacions que hi ha sn necessaries.

4.2.3 Funcié accentuacio

Aquesta funcié és I’encarregada de fer la separacié en sil-labes de la frase
transcrita per poder aplicar-li les regles d’accentuacio de les paraules en castella, aixo
vol dir assignar la sil-laba tonica corresponent a la paraula, tenint en compte I’accent
ortografic i tonic. Es tenen en compte regles com per exemple els diftongs, o que les
lletres per pr, pl, br, fr, fl, tr, dr, cl, cr, gr, gl sequides d’una vocal formen una sil-laba, o
la consonant que es troba entre dos vocals forma sil-laba amb la segona vocal,

diferenciacid entre paraules planes, agudes o esdruixoles, entre d’altres.

Basicament, aquesta funcié el que fa és canviar la vocal de la sil-laba tonica pel
seu identificador necessari, aixo vol dir que una paraula que tingui una “A” com a
tonica dins de la sil-laba, la canviara per un “1”, la “E” per un “2” i aixi successivament,
si reprenem I’exemple de la paraula “hola”, al sortir pel transcriptor apareixeria com

“ ola_" i ho recolliria la funcié d’accentuacié quedant com “_4la_”.

Queda clar que el pas previ a aquesta funcio és passar pel transcriptor, i la
sortida, una vegada feta I’accentuacio, ja és la frase o paraula completament ben
transcrita i preparada per a que es pugui processar per buscar els sons adequats per a la

correcta reproduccid que estem esperant.

37

Aquesta part es va optimitzar part del codi, en els bucles es varen eliminar
comparacions i iteracions gue no eren necessaries, com per exemple transcrivint el codi
generat amb “IF” per “SWITCH” que és més eficient, d’aquesta manera, el temps que
triga en executar-se aquesta funcié es pot considerar com despreciable, ja que gracies a

les comprovacions fetes amb ajuda de logs ens indicaven el un temps gairebé nul.

4.2.4 Paral.lelisme

Un dels principals coll d’ampolla trobat a I’inici de la implementacid i que ens
porta a buscar cada vegada més millores és el temps que triga I’aplicacié des de que si
envia I’ordre de que reprodueixi la frase que volem fins a que es reprodueix el primer so
per I’altaveu del nostre dispositiu. A I’aplicacié inicial agafava totes les paraules d’una
frase i les processava de cop, deixant un espai en blanc entre aquestes paraules. Degut a
que aixo era un cost important, es va pensar si seria possible crear fils que anessin
processant totes les paraules a la vegada, es guardessin a un arxiu tmplD.wav (on ID és
la posicid que ocupa la paraula a la frase) i després es reproduis, aixd va comportar que
hi hagués un problema afegit que calia solventar, es comencgaven a reproduir les
paraules tanmateix es creaven els diferents arxius temporals finals wav, per tant, es va
decidir crear un mecanisme d’ordenacid de reproduccié entre ells, consistia en que es
creés un arxiu temporal buit, ID.tmp, a la mateixa vegada que el tmpID.wav i el
reproductor comprovava I’existéncia d’aquest ID.tmp i reproduia el seu corresponent
tmplID.wav, pero aixo no solucionava del tot el problema, ja que a vegades es donava el
cas de que el reproductor intentés reproduir dos sons que arribaven a la vegada i es va
intentar arreglar adormint els fils perd no era la manera optima, aquest era un problema
de sincronia que s’ha arribat a resoldre gracies a fer canvis en la manera de plantejar el
reproductor, a I’apartat del reproductor s’explicara més detalladament per les fases que
ha sofert (Pagina 57 — 4.2.5 EIl Reproductor)

Al fer servir els fils que treballen el paral-lel (Threads) s’ha de treballar amb les
seves llibreries i treballar des de bon principi amb ells, per tant, al enviar I’ordre de

38

reproduir la frase o I’arxiu de text ja es llenca una crida a un fil que fa que el

reproductor es vagi executant, Reproduce és la classe que conté el reproductor:

Reproduce r= new Reproduce(); //inicialitzar estructures
Thread reproducir = new Thread(new ThreadStart(r.ReproduceWav));
reproducir._Start();

Figura 23: Crida al thread del reproductor

De la mateixa manera, es llengava un Thread per cada paraula que forma
la frase que es vol reproduir, amb el seu nimero identificatiu per crear el tmpID.wav i
ID.tmp, pero en aquesta versio final, prescindim tant dels arxius tmplD.wav com dels
ID.tmp, ja que gracies a la utilitzacio de fluxos de dades de memaoria, s’ha aconseguit
que el reproductor faci sonar des d’alla el resultat, en canvi si que necessitem un

identificador dels threads, que ens el dona aquesta variable numth (Figura 24)

numth++;
Thread th2 = new Thread(new ThreadStart(t.Transcribe));
th2.Start();

Figura 24: Crida al thread transcriptor amb I’identificador adequat

Amb I’Gs dels fluxos de memodria (streams) hem aconseguit part de la
sincronitzacié que necessitavem, el reproductor estara a I’espera des de que s’envia
I’ordre d’execucid, aquest conté un array d’streams (buffer), llavors es genera un fil per
cada paraula que s’hagi de processar i col-loca el so transcrit a la seva posicié dins
d’aquest buffer. EI reproductor final va comprovant de mode sequencial el seu buffer
durant tot el proces i quan s’omple la primera posicié la reprodueix i passa a comprovar
si esta plena o no la segient posicid, aixi successivament fins al final de la frase que es

vol reproduir.

Per tant, d’aquesta manera estalviem temps gracies a que ja no es creen arxius
wav amb els resultats que posteriorment s’han d’obrir i tancar per a la seva reproduccid,
ni arxius que serveixin per a la sincronitzacio, tot es fa a la memoria, fent servir els

MemoryStream (Figura 25):

39

MemoryStream sonido=new MemoryStream(); //es crea la variable a

//memoria que contindra el so final a reproduir

Figura 25: Us de MemoryStream

El buffer de fluxos de memoria que es crea en el reproductor és el seglient:

public void Sound(MemoryStream stream)

buf[identificador]=stream;

}

Figura 26: L’stream deixa el seu contingut a la possicié de buffer adequat

I el que fa el control de I’ordre de reproduccio dins d’aquest buffer és el segient:

1 //primera possicié del buffer

n=1;
if (buf[n]!=null)

{

f

MemoryStream stream=buf[n];
Llegim les dades del buffer
Reproduir(buf[n])
buf[n]=null;

n++:

Figura 27: Reproduccié del baffer

Pero a més, es va decidir que fos en aquest punt on es controlés el problema que
hi havia amb els espais en blanc entre paraules, és a dir, que per fer-lo més real, com ja
hem comentat anteriorment, les persones al parlar, no deixen espais buits entre paraules
I parlen seguit fins fer una pausa, per agafar aire, al trobar un punt, una coma o punt i
coma. Es va decidir primer fer les proves unint paraules de la frase de dos en dos, y que
aquestes dues paraules juntes fossin un Thread, com que es va observar que aquesta
concatenacié de paraules era viable es va decidir fer un control sobre un determinat
numero de caracters, i per tant es va fer un control on el Thread eren deu caracters, si es
comencava a llegir i abans del dese caracter es trobava un signe de puntuacio o espai en
blanc, aqui es llencava el Thread, si en canvi la posicié desena estava dins d’una
paraula, es continuava fins a que acabés la paraula. Es va comprovar que aquesta via era
viable, ja que donava un so final acceptable perd deu caracters continuaven sent pocs

per a la parla humana, ja que volta sobre els cent caracters seguits sense agafar aire,

40

pero si feiem servir aquesta mesura, el temps de resposta no era optim ja que el coll

d’ampolla passa a ser el transcriptor fonetic.

A continuacié podem veure la inicialitzacio de les estructures i el pas de

parametres per crear els fils i el control que s’acaba de comentar:

Reproductor = New Thread Reproductor //es crea un Til per al

//reproductor
Reproductor. Iniciar() //s’ inicialitza el reproductor
Comptar els caracters d’entrada

Per a cada paraula{
Transcriptor = New Thread Transcriptor //es llenca un fil
//transcriptor
S’envien les dades al transcriptor
Comenca la fase del transcriptor

}

Figura 28: Inicialitzaci6 d’estructures i pas de parametres per crear els fils

Com ja s’ha comentat, queda implementada la opcidé d’escollir un cert nimero
de caracters per llencar els fils per transcriure’ls. Aquest és un control senzill ja que
només compta fins a un cert nimero de caracters i si no ha trobat cap signe de
puntuacid, llenca un transcriptor, i sing, el llenca abans, només caldra canviar el
parametre de control dins de I’aplicacio en el seu moment oportu abans de la finalitzacio
total de I’aplicacid, per tant, el pseudocodi d’aquesta part, realment queda de la segiient

manera:

41

Reproductor = New Thread Reproductor //es crea un fil per al
//reproductor

Reproductor.Iniciar() //s’inicialitza el reproductor

Comptar els caracters d’entrada

Per a cada caracter{
Transcriptor = New Thread Transcriptor //es llenca un fil
//transcriptor
Si no encara no hem arribat al numero de caracters que volem
pero hem trobat un signe
de puntuacio {
Reiniciem comptador
S’envien les dades al transcriptor
Comenca la fase del transcriptor
} sind {
Continuem processant la frase
by

Figura 29: Pseudocodi que llenca el Reproductor i transcriptor

4.2.5 Utilitzacio d’arxius de text com entrada

En aquest punt ha sigut senzill trobar una solucié adequada; a la interficie s’ha
creat un botd “Examinar” que va a buscar un arxiu del tipus txt, s’encarrega d’obrir-lo i
tractar el seu contingut de la mateixa manera que els exemples que hi ha a la pantalla.
Aixo fa que I’aplicacié sigui també un lector de text, llavors s’ha de tenir molta cura
amb I’entonacio feta servir, els signes d’exclamacid i d’interrogacio, punts, comes... Un
problema afegir a la lectura d’arxius de text és el temps de resposta, és capag
d’incrementar-se en dos segons ja que s’ha de manipular al anar a buscar-lo a disc,

obrir-lo i llegir-lo.

Aqui veiem com tenim reduit a que I’arxiu d’entrada que s’agafi és un *.txt, una
vegada feta aquesta comprovacio, es procedeix a obrir I’arxiu i llegir-ho, i dins de la
seva implementacio treballa exactament igual que si s’agafessin els exemples inicials
des de la pantalla, fent servir el paral-lelisme entre les paraules que formen el contingut
de I’arxiu i les seves respectives inicialitzacions. A continuacié podem veure el codi en

C# d’aquesta part de la implementacio:

42

// openFileDialogl

//

this.openFileDialogl.Filter = "Text Files(C*.txt)|*.txt";
//

private void buttonl_Click(object sender, System.EventArgs e)

{
if(this.openFileDialogl.ShowDialog() == DialogResult.OK)

{

System.10.StreamReader sr = new
System.10.StreamReader (openFileDialogl.FileName);

try
.. //igual que si ho fes des de la pantalla
catch(Exception es)
{
MessageBox.Show(es.ToString());
}
sr.Close();
}
else
MessageBox.Show("'Se canceld la operacién'™);
b5

Figura 30: Us de txt com a entrada

4.2.6 Utilitzacié del XML

En aquesta millora de I’aplicacid, es crea un algoritme de cerca de recursos per
trobar els sons adients basat en Ilenguatge XML, aquesta implementacié és una millora
a I’algoritme de cerca inicial que feia servir I’aplicacid en anys anteriors, estava basat en
un metode que emmagatzemava les dades WAV en taules de dades relacionals a la
memoria, s’havien creat quatre taules la de “Cuatrifonemas”, “Trifonemas”,
“Difonemas” i “Fonemas”. Aquestes taules contenien la informacid necessaria per a
poder manipular els arxius wav, com la seva longitud, el nom... La seva creacio i
ampliacié era facil, ja que feia servir el métode Add per crear camps, i deixaven fer
cerques directes o per patrons. Perd aquestes taules s’havien d’omplir amb les dades
pertinents dels arxius que es tenien guardats, indicant el nom, a la taula que han de

pertanyer i el directori en el que es trobaven. Per fer aix0, hi havia un arxiu de text per a

43

cada taula que es volia crear, que s’havia de processar, obrir-lo, llegir-lo, agafar el nom

dels sons que s’havien d’omplir i omplir la base de dades.

Pero degut a la quantitat d’informacié que s’ha de pujar a la memaria amb les
taules ens trobavem amb problemes, i I’emulador o el dispositiu ens demanava
continuament transformar en memoria per a programes, la memoria
d’emmagatzemament. Es va decidir intentar implementar una manera meés senzilla de
fer aquesta cerca per millorar aquest problema i el rendiment en la cerca dels sons per
poder-los concatenar-los. Per aix0, es va crear una estructura d’arbre amb tots els sons
dels que disposem, i s’ha creat un per a cada taula, basat en el llenguatge XML, podem
veure com s’implementaria I’arbre dels difonemes, on en ell s’indica I’identificador que

ha d’anar a buscar I’aplicacié per formar el so final, i el path on trobar-lo:

<?xml version="1.0" encoding="UTF-8"7>

<I-- tag que engloba los xml -->
<xml>
<I-- tag que engloba a los difnonemas que comienzan por A -->
<grupo id="A">
<elemento id="a

direccion="\Program
Files\SmartDeviceApplicationl\a_.wav" />
<elemento id="an" direccion="\Program
Files\SmartDeviceApplicationl\an.wav" />
<elemento id="ap" direccion="\Program
Files\SmartDeviceApplicationl\ap.wav" />
<elemento id="as" direccion="\Program
Files\SmartDeviceApplicationl\as.wav"' />
</grupo>
<grupo id="1">

<elemento id="1#" direccion="\Program
Files\SmartDeviceApplicationl\1#.wav" />
<elemento id="1n" direccion="\Program
Files\SmartDeviceApplicationl\ln.wav" />
<elemento i1d="1x" direccion="\Program
Files\SmartDeviceApplicationl\lx.wav" />
</grupo>

<I-- tag que engloba a los difnonemas que comienzan por B -->
<grupo id="B">
<elemento id="be" direccion="\Program
Files\SmartDeviceApplicationl\be.wav" />
</grupo>

</grupo>

</xml>

Figura 31: arxiu XML que engloba els difonemes

44

De la mateixa manera es construeixen els demés arbres de cerca per a les altres
bases de dades. Aquestes estructures es carreguen al iniciar I’aplicacio, per tant queden
en memoria la seva localitzacié de manera facil i rapid. Es carreguen tots els fitxers

creats xml amb la seguent rutina:

public XmINodeList CargaXML(string nombreFichero)

{ // Preparem un objecte del tipus XML
XmIDocument xDoc = new XmIDocument();
// Carreguem l’objecte amb la informacié del XML
xDoc.Load(@"\Program

Files\SmartDeviceApplicationl\"+nombreFichero);

// Recollim tots els elements en una llista
XmINodeList xml = xDoc.GetElementsByTagName(*'xml'");
lista = ((XmIElement)xml[0]) -GetElementsByTagName(*'grupo™);
return lista;

}

Figura 32: Funcié que carrega el contingut del XML

Per arribar a fer servir aquesta estructura, I’encarregat és el transcriptor, ja que fa
la cerca de I’element que necessita, tal com es veia al grafic del capitol anterior (Figura
19), al tallar la frase en subfrases de difonemes i fonemes, ha d’anar a buscar a la base

de dades el so adequat, aixo ho fa amb la seguent crida, si és un difonema:

direccion=LeeXML(lista_difo, """ +x,segmento, 'difonemas.xml™);

Figura 33: Crida a la funci6é LeeXML

45

On crida la llista de difonemes que existeixen, amb el segment adequat, que és el

so transcrit, en el seu XML corresponent, la funcio LeeXML és la segiient:

public string LeeXML(XmINodeList lista, string difID, string elemlD,
string nombreFichero)

{

foreach (XmlElement nodo in lista) {
// del <difonema> recollim el seu ID
string difonemalD = nodo.GetAttribute(id");
// busquem el difonema amb 1”1D que volem

if (difonemalD==difID)
{

// llista amb els elements que tingui el TAG “elemento”

XmINodeList lista2 =
((XmIElement)nodo) .GetElementsByTagName(*'elemento™);

// per a cada node de la Ilista, busquem el que volem
foreach (XmlElement subnodo in lista2)
{

//recollim el ID del <elemento>

string elementolD =
subnodo.GetAttribute("'id™);

it (elementolD==elemlD)
{

// recollim la direccio6

string elementoDIR =
subnodo.GetAttribute(*'direccion™);

return elementoDIR;
}

}
+

return null;

Figura 34: Funcié LeeXML

D’aquesta manera hem aconseguit una cerca molt més simple que I’anterior, més

facil d’estendre la base de dades, ja que només s’ha d’indicar la direccié necessaria de

I’arxiu wav i el seu id que volem posar dins de la base de dades, introduint-lo dins del

46

seu TAG corresponent al arxiu xml necessari. No cal recOrrer tota I’estructura ja que va
directe al TAG que necessita, aixo millora el rendiment de I’aplicacié a I’hora de la
cerca, a més, no col-lapsa la memoria. Amb I’Gs del XML fem servir un llenguatge
estandard i el podem fer servir amb altres llenguatges, com el C# que és en el que corre
I’aplicacio, i a més a més, degut a la quantitat de dades que fa servir la base de dades, es

poden manipular aquesta informacio de forma ben estructurada.

4.2.7 Utilitzacio de JAVA

Com ja s’ha comentat, treballar amb Visual Studio .NET i el Framework facilita
la implementacié de noves estructures, perd0 a més a mes s’ha vist que s’ha pogut
incrustar llenguatge XML. Investigant, també s’ha trobat que dins de I’aplicacio es
podria fer servir parts en JAVA®, com classes que ens ajudessin a problemes trobats al
llarg del projecte, com podria ser la utilitzacié de streams per a reproduir sons finals,
que amb JAVA hi ha moltissima informacié i és un llenguatge que avui en dia cada

vegada més gent el fa servir i aconsegueix dominar.

Després de molt investigar es va trobar la manera d’introduir JAVA en
aplicacions que treballen en C#. Per fer aix0 existeix el IKVM.NET que és una
implementacié de codi obert fet en JAVA per a aplicacions que treballen amb el
Framework, consisteix en una maquina virtual de JAVA implementada en .NET, una
implementacié en .NET de classes de llibreries de JAVA i eines que fan que .NET i

JAVA puguin cooperar.

Una vegada instal-lat aquest paquet en c:\ikvm i els executables i llibreries en
C:\ikvm\bin, podem crear i compilar una classe en JAVA, una vegada fet aix0, on es
podria dir aquesta classe JavaToNet.class, des de la linia de comandes cal fer el seguent
(Figura 35):

> http://www.codeproject.com/KB/cs/csharpikvm.aspx

47

Civikumsbindikume —target:library JavaToMet.class
: output fFile iz "JavaToMet.d11"

: automatically adding reference to "civikuemshinsikvm.gnu.classpath.dll™

Czvikvmshbiny -

Figura 35: Compilacid de classes de Java per fer-les servir en .net

Aixo creara una llibreria .dll (JavaToNet.dll) que es podria haver fet servir a la
nostra aplicacid. Pero després de fer diverses proves, on una d’elles nomeés calia que la
classe fes una suma de 2+3 i ho mostrés a la pantalla de I’emulador, es va decidir que no
es faria servir per limitacions del dispositiu, ja que al compilar I’aplicacio, per a poder
concordar aquests dos llenguatges, a I’emulador s’havia de pujar una llibreria dll,
C:Aikvm\bin\IKVM.GNU.Classpath.dll, que ocupa 10MB, per tant, ens quedavem sense
espai fisic al dispositiu, cosa que fa inviable aquesta opcid i es va descartar directament.
Per tant, les ajudes que oferien les APIs de JAVA i forums no ens poden ajudar en

aquest aspecte.

4.2.8 El reproductor

El reproductor és una de les parts que més canvis ha sofert al llarg de la
implementacié degut a la seva evolucio en el transcurs del projecte. De bon principi, es
creava un unic arxiu tmp.wav que reproduia tota la frase sencera de cop, el que feia que
fos un gran problema degut al temps que trigava en comencar a reproduir-se, sabem que
aquest fitxer és la concatenacid de diferents sons que han sigut gravats i que formen la
frase que es vol reproduir, I’estructura WaveHeader ajudava a aquest fet de la seguent

manera, creava el wav i posava tota la informacio a dins per reproduir-la de cop:

//Variables

uint tamanoFichero = tamano + 36;

string fichero_final = directorio + "tmp.wav';

FileStream ftmp = new FileStream(fichero_final, FileMode.Create);
BinaryWriter fBinW = new BinaryWriter(ftmp);

//Crear WAV
wutils_WriteChars(fBinW, "RIFF");
fBinW.Write(tamanoFichero);
WUtils._WriteChars(fBinW, "WAVE™);
WUtils . WriteChars(fBinW, "fmt ');
fBinW._Write(WaveHeader .FmtSize);
fBinW_Write(WaveHeader .wFormatTag) ;
fBinW.Write(WaveHeader .nChannels);

48

fBinW_Write(WaveHeader _nSamplesPerSec);
fBinW._Write(WaveHeader .nAvgBytesPerSec);
fBinW.Write(WaveHeader _nBlockAlign);
fBinW._Write(WaveHeader .wBitsPerSample);
WUtils.WriteChars(fBinW, "data');
fBinW_Write(tamano);
WUtils._WriteChars(fBinW, bufer);

//Cerrar
fBinW.Close();
ftmp.Close();

Figura 36: Estructura WAVE_HEADER

Aqui ja s’utilitzaven fluxos de dades en arxius per crear I’arxiu wav sencer, amb
les seves capcaleres i dades finals, pero veiem el problema comentat, ha de manipular-
se el fitxer de tal manera que al final de posar les dades en ell es tingui que tancar, i no
es pugui accedir a ell, ni reproduir-se durant la seva creacio i tampoc es poden fer servir

aquestes estructures mentre ho faci ell.

Quan ja s’aconseguia el fitxer a reproduir, el mateix programa principal

reprodura el tmp.wav de la seglient manera:

try
{

WaveOut wo = new WaveOut();
wo.Play(fichero_final, 512*1024, Oxffff, Oxffff);

catch(Exception e)

{
}

MessageBox.Show(*'Error al reproducir. " + e_ToString());

Figura 37: Reproducci6 inicial del fitxer tmp.wav

L’avantatja que trobem en aquest reproductor és que esta integrat dins de
I’aplicacio i no cal cap programa extern que obri immediatament I’arxiu per reproduir-
lo. Degut al caire que ha pres el projecte i de provar I’aplicacio, es va decidir prescindir
d’aquest reproductor, una de les principals raons era els problemes que hi havia amb la
memoria, al fer cinc reproduccions seguides, tant I’emulador com el dispositiu es
guedaven sense memoria i calia donar-li més o reiniciar-lo. Per tant, com que a la
mateixa vegada es va decidir utilitzar threads per un treball en paral-lel de I’aplicacio, i
com s’ha explicat, queda llengat un fil reproductor esperant a que li arribi informacid, es
va fer una classe que nomes s’encarregués del reproductor, pero aixo no arreglava els

problemes que hi havia amb la memoria i ens col-lapsava tot el dispositiu.

49

Es va continuar fent proves sobre el reproductor i investigant maneres diferents
d’aconseguir resoldre aquest problema, es va trobar ajuda a la web MSDN®, on fent
servir aquesta classe que proposen ells, usant els flags adequats, I’error de memoria
quedava solventat, tot aixo fent servir llibreries propies del Ilenguatge. Tot i aixi,
quedava present el problema del solapament de sons, no hi havia forma de controlar la
finalitzacio de la reproduccio, per tant, hi havia sons que comencaven a reproduir-se
abans de que I’anterior parés, aixo ens va fer pensar en adormir els fils un cert temps
abans de comengar a reproduir-los perd en moments en els que les paraules eren molt
curtes quedava un gran espai buit entre elles, en aquest punt, encara s’utilitzava el

control dels arxius 1D.tmp per ordenar els diferents arxius tmplD.wav que es creaven.

Aix0 va donar que pensar, en que s’hauria d’aconseguir d’alguna manera fer
servir els fluxos de dades i intentar fer servir la memoria, ja que crear wav’s finals i
reproduir-los, consumia un cert temps i es considerava un dels colls d’ampolla de
I’aplicacio. La idea va ser carregar els arxius wav finals en memoria al crear-los per tal
de reproduir-los des d’alla perd no presentava cap millora important. Fins que es va
decidir prescindir totalment dels arxius finals wav. Tal com s’ha explicat a I’apartat del
paral.lelisme, es va aconseguir crear un array dins d’un MemoryStream i treballar
directament d’alla, per tant, finalment, el reproductor no déna problemes de memoria, es
va aconseguir una millora tant en espai fisic del disc, ja que no es graven arxius wav i es

va aconseguir una bona millora de resposta de I’aplicacid.

Les dades que rep aquest buffer de MemoryStream és enviat des de la classe del
transcriptor al reproductor una vegada ha aconseguit transformar tot el text d’entrada en
les dades de sortida pertinents, sempre treballant amb bdffers interns que van acumulant
aquestes dades mentre es va generant i finalment treballa com s’ha explicat

anteriorment.

Aquests son els Flags i les llibreries que es fan servir a la classe del reproductor

que ens ajuden a la bona utilitzacio d’ell:

¢ http://msdn2.microsoft.com/es-es/library/ms229685(VS.80).aspx

50

private enum Flags

{
SND_SYNC = 0x0000, /* play synchronously (default) */
SND_ASYNC = 0x0001, /* play asynchronously */
SND_NODEFAULT = 0x0002, /* silence (Idefault) if sound not

found */

SND_MEMORY = 0x0004, /* pszSound points to a memory file */
SND_LOOP = 0x0008, /* loop the sound until next sndPlaySound */
SND_NOSTOP = 0x0010, /* don"t stop any currently playing sound
SND_NOWAIT = 0x00002000, /* don"t wait if the driver is busy */

SND_ALIAS = 0x00010000, /* name is a registry alias */
SND_ALIAS_ID = 0x00110000, /* alias is a predefined ID */
SND_FILENAME = 0x00020000, /* name is Ffile name */
SND_RESOURCE 0x00040004 /* name is resource name or atom */

by

[DIlImport(**CoreDIl.DLL"™, EntryPoint="PlaySound", SetLastError=true)]
private extern static int WCE_PlaySound(string szSound, IntPtr hMod,
int flags);

[DITImport(*"CoreDIl_DLL"™, EntryPoint="PlaySound', SetLastError=true)]
private extern static int WCE_PlaySoundBytes (byte[] szSound, IntPtr
hMod, int flags);

Figura 38: Flags i llibreries que fa servir el nou reproductor

I la crida que fa que s’aconsegueixi la reproduccio utilitza aquests flags ja que
ajuda a que I’acci6 es faci de manera sincrona i des de la memoria, aquesta crida és la

seglent:

WCE_PlaySoundBytes (m_soundBytes, IntPtr.Zero, (int)
(Flags.SND_SYNC |Flags.SND_MEMORY)

Figura 39: Crida a la reproduccié de so a través de soundBytes i de manera sincrona

Amb tot aixo han quedat resolts problemes com el del col-lapse de la memoria,
la utilitzaci6 i creacié d’arxius a disc, ara es pot reproduir des de la memoria i el

reproductor ja no és un dels colls d’ampolla de I’aplicacio.

51

Esquematitzant tot aixo, podem resumir el procés del reproductor de la seglient

manera:

Implementacid inicial:

e Ultilitzacié d’un fitxer temporal final wav per a la reproduccid: El transcriptor
s’encarregava d’unir totes les partes en un Unic fitxer que el reproductor
s’encarregava de reproduir.

e Generaci6 de I’arxiu i reproduccié seqiencial: Fins que no s’acabava de crear
completament el fitxer final, no es podia reproduir, aix0 produeix un temps
d’espera no desitjat abans de la reproduccid.

e Un arxiu per un so: La utilitzacié d’un arxiu com a font de so, implica que
només pot reproduir una frase o paraula per arxiu, aixo perjudica seriament la
funcionalitat.

e Problemes de memoria: Mitjancant la classe WaveOut al reproduir, es consumia

molta memoria despreés de realitzar varies proves.

Les millores:

e Generaci6 paral-lela amb reproduccié sequencial: Per a explotar al maxim els
recursos dels que disposem, es va paral-lelitzar la generacié dels sons, pero a
més a més, la reproduccio havia de ser sequiencial i s’havia de sincronitzar, es va
fer amb els identificadors, amb MemoryStream, baffers del reproductor.

e Utilitzacié6 de MemoryStreams per a reproduir, ens permet anar omplint un
stream mentre es reprodueix i treballar des de la memoria, aixi s’eviten els
accessos a discs i la penalitzacio en temps que comporta.

e Buffer d’streams per a varis sons: El reproductor es pot anar utilitzant fins que
s’omplen tots els buffers, aixd implica que amb un unic baffer a memoria, es
reprodueixin tots els sons que desitgem.

e Es solventen els problemes de memoria: Gracies a la nova implementacio de la
classe reproductor recomanat per la llibreria msdn i la utilitzacio de les banderes
corresponents, queden solventats els problemes amb la memoria i ajuda a la

sincronitzaci6 dels sons.

52

4.3 Comparatives i estadistiques dels jocs de proves

Des del principi de la implementaci6 del projecte, sempre s’han fet proves de la
reproduccio, sempre s’ha comprovat la qualitat del so, que el que es reproduia fos
correcte i concordés amb el que s’esperava. Una vegada aix0 ja quedava clar, ens
haviem de centrar en el temps de resposta de I’aplicacié i veure com millorava cada
vegada que s’implementava un dels passos anteriors. A continuacié veurem diferents
quadres on reflecteix aquest temps de resposta (des de que s’envia I’ordre de reproduir,
fins que comenca a fer-ho).

Les proves s’han fet sobre I’emulador de Windows CE i amb el dispositiu mobil,
amb la PDA Toshiba, aquestes proves han sigut amb diferents paraules que sén les

seguents (Taula 5):

PROVES

Apéndice

apéndice 2 de mis documentos

mis documentos

Pantalla con mensajes

Ventana
2

documento con mensajes

| N o O B~ W N

mis mensajes

Taula 5: Proves que es realitzen

53

Inicialment, com sabem, no treballavem amb arxius de text per tant, només es

provava I’aplicacio directament amb els exemples que es tenien a pantalla:

e Emulador (Taula 6):

e PDA (Taula7):

PROVES PANTALLA | TXT
1 | Apéndice 6 seg X
2 | apendice 2 de mis documentos 15 seg X
3 | mis documentos 8seg X
4 | Pantalla con mensajes 9 seg X
5 | Ventana 3 seg X
6 |2 2 seg X
7 | documento con mensajes 12 seg X
8 | mis mensajes 5 seg X

Taula 6: Joc de proves inicial a I’emulador

PROVA PANTALLA | TXT
1 | Apéndice 8 seg X
2 | apéndice 2 de mis documentos 18 seg X
3 | mis documentos 8 seg X
4 | pantalla con mensajes 10 seg X
5 | Ventana 3 seg X
6 |2 2 seg X
7 | Documento con mensajes 14 seg X
8 | mis mensajes 6 seg X

Taula 7: Joc de proves inicial a la PDA

54

Una vegada fetes les comprovacions inicials, s’han fet diversos passos per anar

traient els colls d’ampolla. En aquest pas, s’ha fet una optimitzacié de codi original i

s’han inserit threads els quals treballen per a cada paraula, un thread per paraula i crea

un fitxer per cadascun d’ells, es crea la classe nova que reprodueix els nous fitxers

ordenats i a més ja es pot reproduir a partir de txt. També hi ha un temps d’espera inicial

de 4 segons com a delay per assegurar que s’omple el primer thread per a reproduir-se.

Encara trobem varis problemes de memoria quan s’han de reproduir varis threads, ja

que era a causa de I’emulador que ens I’omplia.

e Emulador (Taula 8):

PROVA PANTALLA TXT

1 | Apéndice 4 seg 4 seg

2 | apéndice 2 de mis documentos 11 seg 11 seg

3 | mis documentos 5seg 9seg

4 | pantalla con mensajes 7 seg 6 seg

5 | Ventana 5 seg 6 seg

6 |2 5 seg 5 seg

7 | documento con mensajes 8 seg 8 seg

8 | mis mensajes 5seg 6 seg

Taula 8: Joc de proves amb txt i paral.lelisme a I’emulador
e PDA (Taula9):
PROVA PANTALLA TXT
1 | Apéndice Problema de memoria | Problema de memoria
2 | apéndice 2 de mis documentos | Problema de memoria | Problema de memoria

3 | mis documentos 7seg 11 seg
4 | pantalla con mensajes 8 seg 10 seg
5 | Ventana 5 seg 10 seg
6 |2 5 seg 5 seg
7 | documento con mensajes 9seg 11 seg
8 | mis mensajes 6 seg 7 seg

Taula 9: Joc de proves amb txt i paral.lelisme a la PDA

55

El seglient pas és el resultat de canviar el nimero de paraules que agafa el

thread, es decideix agafar les paraules de 2 en 2, continua havent problemes de memaoria

i a vegades no es reprodueix bé. Ja que poden haver paraules llargues i que es

sobreposin es va introduir un delay de 5 segons inicial.

e Emulador (Taula 10):

PROVA PANTALLA TXT
1 | Apéndice 5seg 10 seg
2 | apéndice 2 de mis documentos 7 seg Problema de memoria
3 | mis documentos 6 seg 9seg
4 | Pantalla con mensajes 7 seg 11 seg
5 | Ventana 5 seg 10 seg
6 |2 5seg 7 seg
7 | Documento con mensajes 8 seg Problema de memoria
8 | mis mensajes 5 seg 7 seg
Taula 10: Joc de proves agafant paraules de 2 en 2 a I’emulador
e PDA (Taula 11):
PROVA PANTALLA TXT
1 | Apéndice 8 seg Problema de memoria
2 | apéndice 2 de mis documentos | Problema de memoria | Problema de memoria
3 | mis documentos 9seg 11 seg
4 | Pantalla con mensajes 10 seg Problema de memoria
5 | Ventana 7 seg 11 seg
6 |2 5 seg 7 seg
7 | documento con mensajes Problema de memoria | Problema de memoria
8 | mis mensajes 6 seg 8 seg

Taula 11: Joc de proves agafant paraules de 2 en 2 a la PDA

56

Degut a que els temps no milloren gaire, i sabent que una persona pot parlar
sense fer pausa varis caracters seguits sense parar a agafar aire, ara introduim una petita
modificacio i fem la prova agafant threads de 10 caracters, que és facil canviar-ho per
un namero superior que sigui més a prop a la que fan les persones. S’introdueix el
control si troba una coma, punt i coma, punt o qualsevol altre signe de puntuacio. El que
indica el final de la prova i thread és el punt. També tenim el delay de 5 segons.

Continuem tenim problemes amb la memaria.

e Emulador (Taula 12)

PROVA PANTALLA TXT
1 | Apéndice. 5 seg 12 seg
2 | apéndice 2 de mis documentos. 14 seg Problema de memoria
3 | mis documentos. 5seg 11 seg
4 | Pantalla con mensajes. 5 seg 9 seg
5 | Ventana. 5 seg 8 seg
6 |2 5 seg 8 seg
7 | documento con mensajes. 7 seg Problema de memoria
8 | mis mensajes. 5 seg 7 seg

Taula 12: Joc de proves agafant threads de 10 caracters

e PDA (Taula 13)

PROVA PANTALLA TXT
1 | Apéndice. 7 seg 12 seg
2 | apéndice 2 de mis documentos. 16 seg Problema de memoria
3 | mis documentos. 13 seg 18 seg
4 | Pantalla con mensajes. 15 seg 19 seg
5 | Ventana. 7 seg 11 seg
6 |2 7 seg 12 seg
7 | Documento con mensajes. 15 seg Problema de memoria
8 | mis mensajes. 9seg 14 seg

Taula 13: Joc de proves agafant threads de 10 caracters a la PDA

57

En aquest cas continuem amb la mateixa filosofia, agafant threads de 10

caracters, el canvi nou que s’ha fet ha sigut fer servir una implementacié d’un

reproductor més senzill i que ens ha fet estalviar-nos molt de codi. A més, ens estalvia

tot el problema de memadria, encara que a vegades hi ha problemes de solapament de

sons.

e Emulador (Taula 14):

PROVA PANTALLA TXT
1 | apéndice. 5 seg 5 seg
2 | apéndice 2 de mis documentos. 9seg So sol.lapat
3 | mis documentos. 8 seg 8 seg
4 | Pantalla con mensajes. 8 seg 11 seg
5 | Ventana. 5 seg 5 seg
6 |2 5 seg 5 seg
7 | documento con mensajes. 9 seg 13 seg
8 | mis mensajes. 5 seg 5 seg

Taula 14: Joc de proves a I’emulador amb un nou reproductor

e PDA (Taula 15):

PROVA PANTALLA TXT
1 | apéndice. 7 seg 5 seg
2 | apéndice 2 de mis documentos. So sol.lapat | So sol.lapat
3 | mis documentos. 10 seg 13 seg
4 | Pantalla con mensajes. 11 seg 13 seg
5 | Ventana. 7 seg 7 seg
6 |2 7 seg 10 seg
7 | documento con mensajes. 13 seg 15 seg
8 | mis mensajes. 7 seg 9 seg

Taula 15: Joc de proves a la PDA amb un nou reproductor

58

Aqui hem decidit prescindir de les taules que es carreguen a memoria i fer la
cerca a través d’arxius XML en comptes de recOrrer tota la memoria, a meés
s’introdueixen fluxos de dades per reproduir, es continua mantenint I’arxiu wav final

pero es carrega en un stream de dades per a reproduir-lo.

e Emulador (Taula 16):

PROVA PANTALLA TXT
1 | Apéndice. 5seg 7 seg
2 | apéndice 2 de mis documentos. 8 seg 10 seg
3 | mis documentos. 4 seg 5 seg
4 | Pantalla con mensajes. 5 seg 8 seg
5 | Ventana. 3 seg 4 seg
6 |2 3 seg 4 seg
7 | documento con mensajes. 7 seg 9 seg
8 | mis mensajes. 3 seg 5 seg

Taula 16: Joc de proves usant XML a I’emulador

e PDA (Taula 17):

PROVA PANTALLA | TXT
1 | Apéndice. 7seg 9 seg
2 | apéndice 2 de mis documentos. 13 seg 16 seg
3 | mis documentos. 7 seg 9 seg
4 | Pantalla con mensajes. 12 seg 16 seg
5 | Ventana. 5 seg 7 seg
6 |2 3 seg 4 seg
7 | documento con mensajes. 9seg 13 seg
8 | mis mensajes. 5 seg 7 seg

Taula 17: Joc de proves usant XML a la PDA

59

Per Gltim, podem veure les proves finals i el que ha trigat cada un dels exemples

anteriors. En aquest moment, es prescindeix dels arxius finals wavs, recordem que ara

es treballa reproduint des d’un buffer de memoria (MemoryStream) que va reproduint

els sons tan bon punt van arribant a ell i ho fa de manera ordenada, sense problemes de

memoria i solapament de sons entre ells:

e Emulador (Taula 18):

PROVA PANTALLA | TXT
1 | Apéndice. 3 seg 4 seg
2 | apéendice 2 de mis documentos. 7 seg 9 seg
3 | mis documentos. 2 seg 2 seg
4 | Pantalla con mensajes. 4 seg 4 seg
5 | Ventana. 2 seg 2 seg
6 |2 1 seg 1 seg
7 | documento con mensajes. 4 seg 5 seg
8 | mis mensajes. 1 seg 2 seg

Taula 18: Joc de proves final a I’emulador reproduint des de MemoryStreams

e PDA (Taula 19):

PROVA PANTALLA | TXT
1 | Apeéndice. 5 seg 7 seg
2 | apéndice 2 de mis documentos. 14 seg 16 seg
3 | mis documentos. 2 seg 2 seg
4 | Pantalla con mensajes. 7 seg 8 seg
5 | Ventana. 3 seg 3 seg
6 | 2. 2 seg 2 seg
7 | documento con mensajes. 9 seg 11 seg
8 | mis mensajes. 3 seg 3seg

Taula 19: Joc de proves final a la PDA reproduint des de MemoryStreams

60

Per acabar amb aquest tema, a continuacié podem veure les comparacions dels
temps de resposta de I’aplicacio entre la implementacio inicial que calia millorar i

I’actual, si veiem les comparacions entre els temps en I’emulador:

e Inicial (Taula 6):

PROVES PANTALLA | TXT
1 | Apéndice 6 seg X
2 | apéndice 2 de mis documentos 15 seg X
3 | mis documentos 8seg X
4 | pantalla con mensajes 9 seg X
5 | Ventana 3 seg X
6 |2 2 seg X
7 | documento con mensajes 12 seg X
8 | mis mensajes 5 seg X

Taula 6: Joc de proves inicial a I’emulador

e Final (Taula 18):

PROVA PANTALLA | TXT
1 | Apéndice. 3 seg 4 seg
2 | apendice 2 de mis documentos. 7 seg 9 seg
3 | mis documentos. 2 seg 2 seg
4 | Pantalla con mensajes. 4 seg 4 seg
5 | Ventana. 2 seg 2 seg
6 |2 1 seg 1 seg
7 | documento con mensajes. 5 seg 5 seg
8 | mis mensajes. 1 seg 2 seg

Taula 18: Joc de proves final a I’emulador reproduint des de MemoryStreams

61

I si mirem els temps en el dispositiu fisic:

e Inicial (Taula 7):

PROVA PANTALLA | TXT

1 | Apéndice 8 seg X

2 | apendice 2 de mis documentos 18 seg X

3 | mis documentos 8 seg X

4 | pantalla con mensajes 10 seg X

5 | Ventana 3 seg X

6 |2 2 seg X

7 | documento con mensajes 14 seg X

8 | mis mensajes 6 seg X

Taula 7: Joc de proves inicial a la PDA
e Final (Taula 19):
PROVA PANTALLA | TXT

1 | Apéndice. 5 seg 7 seg
2 | apéndice 2 de mis documentos. 14 seg 16 seg
3 | mis documentos. 2 seg 2 seg
4 | Pantalla con mensajes. 7 seg 8 seg
5 | Ventana. 3 seg 3 seg
6 |2 2 seg 2 seg
7 | Documento con mensajes. 9 seg 11 seg
8 | mis mensajes. 3seg 3 seg

Taula 19: Joc de proves final a la PDA reproduint des de MemoryStreams

62

Podem veure aquests temps de millora graficament, podem veure la millora a
I’emulador, on podem veure les barres en color blau com a les proves inicials i les

vermelles les finals:

PROVES

Apéndice

apendice 2 de mis documentos

mis documentos

Pantalla con mensajes

Ventana
2

documento con mensajes

0| N o O B~ W N -

mis mensajes

Taula 5: Proves que es realitzen

16

14

12

10
1%]
Q

€ 8
2

6

4

2

0

1 2 3 4 5 6 7 8
Proves realitzades

Figura 40: Comparacié de les proves realitzades sobre I’emulador

63

De la mateixa manera veiem la comparativa de les proves a la PDA com:

20
18
16
14
12
10

Temps

oON B O
I

1 2 3 4 5 6 7 8

Proves realitzades

Figura 41: Comparacié de les proves realitzades sobre la PDA

Podem veure el temps guanyat a cada una de les proves, a les grafiques
s’observa com a cadascuna de les proves hem guanyat temps, veiem a les seguents
taules quines son aquests guanys, restant-li als temps de I’aplicacid inicial, els actuals
(Taula 20):

PROVES AL EMULADOR | ALAPDA
1 | Apéndice 3 seg 3 seg
2 | apéndice 2 de mis documentos 8 seg 4 seg
3 | mis documentos 6 seg 6 seg
4 | Pantalla con mensajes 5 seg 3seg
5 | Ventana 1 seg 0 seg
6 |2 1 seg 0 seg
7 | documento con mensajes 7 seg 5 seg
8 | mis mensajes 4 seg 3seg

Taula 20: Taula de guanys temporals en la realitzacio del projecte

Amb aquestes dades podem recollir una mitja de temps de millora per
I’emulador i per a la PDA per a aquestes proves, fent la suma d’ells i dividint-lo entre el
numero de proves. Per a I’emulador, tindriem un guany mig de 4.37 segons, i per al

dispositiu mobil de 3 segons.

64

Capitol 5

Treball futur i1 conclusions

En aquest ultim capitol es reflexa les conclusions a les que s’ha arribat una

vegada finalitzat el projecte i com millorar-lo en un treball futur.

5.1 Conclusions

S’ha aconseguit millorar un motor de veu natural per a dispositius mobils que
treballa sobre plataformes Windows Mobile i Windows CE i que tenia alguns
problemes de memoria i de temps de resposta. Es va plantejar de manera que s’anessin
resolvent el problema del temps de resposta, juntament amb els que posteriorment
anessin sortint, com el solapament de sons o problemes de memoria, també han sigut
solventat a mida que anaven sortint. Per tant, aquests colls d’ampolla s’han anat reduint,
ja que gracies a I’ajuda de les implementacions produides s’han anat minimitzant, fins
arribar en alguns punts, com en la reproduccio, a arribar a quantitats de temps gairebé
despreciables. En total s’ha aconseguit un guany mig en segons, entre emulador i
dispositiu fisic, d’uns gairebé 4 segons, tal com es pot veure a la Taula 20. Per tant, els

objectius que s’han anat seguint al llarg de la realitzacio del projecte s’han complert.

65

Aquestes millores s’han aconseguit gracies a les segiients implementacions:

e Lector de pantalla i text: Ara és una aplicacio que pot reproduir paraules

que hi ha a la pantalla de I’aplicacié com des d’arxius de text.

e Optimitzacié del codi: Neteja del codi en bucles i comprovacions

repetides 0 innecessaris.

e Treballar en paral-lel: Fer que I’aplicacio treballi en fils a la vegada.

e Modificacié reproductor: Es solventen els problemes de la memoria.

e Utilitzacié de cerques en XML: S’utilitza un llenguatge estructurat per a

gestionar les bases de dades.

e Reproduccid a traves d’streams: Es reprodueix el so final a traves de

fluxos de memoria i no a través de fitxers.

Totes aquestes millores, tal com s’ha vist en els jocs de proves, han ajudat a
resoldre els problemes de memoria, temps de resposta i de proces del sistema, ja que
son punts critics en aplicacions d’aquest tipus. A més, s’han solucionat situacions
delicades com el solapament de sons entre ells i s’ha fet un sistema més simple de
gestionar, sobretot a nivell de base de dades al treballar amb llenguatges estructurats
com el XML. S’ha comprovat clarament que pot fer-se servir en un dispositiu mobil
com una PDA i per tant és exportable a qualsevol telefon o emulador amb sistemes

operatius de Windows.
Per tant, aquest sistema s’apropa encara més a la finalitat que esperem, que sigui

un sistema capac d’ajudar a gent invident a fer servir un dispositiu mobil, ja que a través

d’aquest motor de veu pot reproduir de manera rapida i clara paraules i texts.

66

5.2 Treball futur

El projecte actual deixa obertes varies tasques que s’haurien de realitzar per tal

de millorar I’aplicacié en un futur:

e Reduir el coll d’ampolla que representa el transcriptor fonétic, estudiar un

algoritme més estructurat i més rapid per a recollir la informaci6 d’aquest.

e Una vegada reduit el coll d’ampolla del transcriptor, fer una reproduccio fluida

entre les paraules, unint-les.

e Lectura de nimeros i acronims del transcriptor.

e Estudiar la entonacié a frases senceres per poder ser un bon lector de text.

e Millorar-lo com a lector de pantalla usant el cursor.

e Adaptar el transcriptor a altres llengles.

67

Capitol 6

Bibliografia i annexes

A continuacid es poden veure annexes que han servit per a la realitzacié del
projecte com parts del codi font fet servit, també es pot consultar la biografia usada,

tant la basica, com la consultada i pagines webs.

Bibliografia

1. QUILIS, A. (1993) Tratado de fonologia y fonética espafiolas. Madrid: Gredos

(Biblioteca Romaénica Hispanica, Manuales, 74).

2. RIOS, A. (1999) La transcripcion fonética automatica del Diccionario
Electronico de Formas Simples Flexivas del espafiol: un estudio fonoldgico en

el lexico. Estudios de Linguistica del Espafiol 4. http://elies.rediris.es/elies4/

3. KLATT, D.H. (1987) Review of Tex-to-Speech Conversion for English. Journal
of the Acoustical Society of America 82,3: 737-793; in ATAL, B.S.& MILLER,
L.J.& KENT, R.D. (Eds.) (1991) Papers in Speech Communication: Speech
Processing. New York: Acoustical Society of America. pp. 57-114.

68

4. DUTOIT, T. (1996) An Introduction to Text-To-Speech Synthesis. Kluwer
Academic Publishers, 326 pp.

5. NAVARRO TOMAS, T. (1918) Manual de pronunciacion espafiola. Madrid:
Consejo Superior de Investigaciones Cientificas, Instituto Miguel de Cervantes
(Publicaciones de la Revista de Filologia Espafiola, Il1). 212 edicion, 1982. -
Madrid Consejo Superior de Investigaciones Cientificas (Textos Universitarios,
3), 25% edicion, 1991.

6. GIL, J. — LLISTERRI, J. (2004) Fonética y fonologia del espafiol en Espafa

(1978 — 2003), Linguistica Espafiola Actual 26, 2: 5-44. ISSN: 0210-6345

http://liceu.uab.es/~joaquim/publicacions/Gil_Llisterri_04 Fonetica_Espanol.pdf

Bibliografia web

1. Organizacién Nacional de Ciegos de Espafia.

http://www.once.es

2. Llibreries MSDN
http://msdn.microsoft.com

3. Usde XML en C#
http://www.devjoker.com/contenidos/Articulos/29/Como-leer-XML-con-C.aspx

4. Usde JAVA en C#
http://www.codeproject.com/KB/cs/csharpikvm.aspx

5. Reproductor de sons
http://msdn2.microsoft.com/es-es/library/ms229685(VS.80).aspx

6. Trancripcién fonética automatica

http://elies.rediris.es/elies4/Cap2.htm

69

10.

11.

12.

Lectors de pantalla

http://es.wikipedia.org/wiki/Lector_de_pantalla

Aplicacions de proves, ATT&T Labs

http://www.research.att.com/~ttsweb/tts/demo.php

Flite
http://www.viksoe.dk/code/flite.htm

Sobre els fonemes

http://es.wikipedia.org/wiki/Fonema

Webs de programacié en C#
http://msdn2.microsoft.com/es-es/library/67ef8sbd(VS.80).aspx
http://www.programacion.com/tutorial.php?id=csharp

http://www.koders.com/zeitgeist/csharp/

Forums de MSDN per C#

http://forums.microsoft.com/MSDN-ES/ShowForum.aspx?ForumID=298&SitelD=11

13.

Altres forums de programacio en C#
http://www.es-asp.net/Foro/foro-c--f.aspx

http://www.lawebdelprogramador.com/news/new.php?id=227 &texto=C%20sharp

70

Annexe A

e WAVE_HEADER (de la classe WaveUTtils):

public struct WAVE_HEADER

{
public string RiffID; // max 4 chars
public uint RiffSize;
public string Waveld; // max 4 chars
public string FmtID; // max 4 chars
public uint FmtSize; //
public ushort wFormatTag;
public ushort nChannels;
public uint nSamplesPerSec;
public uint nAvgBytesPerSec;
public ushort nBlockAlign;
public ushort wBitsPerSample;
public string DatalD; //max 4 chars
public uint nDataBytes; //Longitud de los datos

e RellenaWAVE_HEADER (de la classe WaveUTtils)

#region esta funcién RellenaWAVE_HEADER coge la cabecera de un wav y
la mete en los campos de la estructura WAVE_HEADER
public void RellenaWAVE_HEADER(FileStream fwav, ref
WAVE_HEADER waveHeader, ref BinaryReader fBinR) //SE LE PASA el primer
wav de todos
{

// 1° cogemos el fTilesize del RIFF

this.SeekToFileSize(fwav);

waveHeader _RiffSize = fBinR.ReadUInt32();

// 2° cogemos el resto de los parametros del WAVEfmt

this.SeekTowavefmt(fwav) ;

waveHeader .FmtSize = fBinR.ReadUlnt32();

waveHeader .wFormatTag = fBinR.ReadUlntl16();

waveHeader .nChannels = fBinR.ReadUIntl6();

waveHeader .nSamplesPerSec = fBinR.ReadUInt32();

waveHeader .nAvgBytesPerSec = fBinR.ReadUlnt32();

waveHeader .nBlockAlign = fBinR.ReadUIntl6();

waveHeader .wBitsPerSample = fBinR.ReadUIntl6();

// 3° cogemos el data size

this.SeekToDataSize(fwav);

uint datald = fBinR.ReadUInt32();

waveHeader .nDataBytes = fBinR.Readulnt32();

//Ya tenemos en la estructura toda la cabecera

71

e Classe Reproduce

public class Reproduce
{
private byte[] m_soundBytes;
private enum Flags
{
SND_SYNC = 0x0000, /* play synchronously (default) */
SND_ASYNC = 0x0001, /* play asynchronously */
SND_NODEFAULT = 0x0002, /* silence (!default) if sound
not found */
SND_MEMORY = 0x0004, /* pszSound points to a memory file
SND_LOOP = 0x0008, /* loop the sound until next
sndPlaySound */

SND_NOSTOP = 0x0010, /* don"t stop any currently playing
sound */
SND_NOWAIT = 0x00002000, /* don"t wait if the driver is
busy */

SND_ALIAS = 0x00010000, /* name is a registry alias */

SND_ALIAS_ID = 0x00110000, /* alias is a predefined ID */

SND_FILENAME = 0x00020000, /* name is file name */

SND_RESOURCE = 0x00040004 /* name is resource name or
atom */

}

[DINImport(*'CoreDlI.DLL", EntryPoint="PlaySound",
SetLastError=true)]
private extern static int WCE_PlaySound(string szSound,
IntPtr hMod, int flags);

[DIHImport(*'CoreDlI.DLL", EntryPoint="PlaySound",
SetLastError=true)]
private extern static int WCE_PlaySoundBytes (byte[]szSound,
IntPtr hMod, int flags);

public string directorio = @"\Program
Files\SmartDeviceApplicationl\";
//public string fichero_ final;
public int contador=1;
public FileStream ftmp;
MemoryStream[] buf = new MemoryStream[20];

public int identificador;

/// <summary>

/// Construct the Sound object to play sound data from the
specified stream.

/// </summary>

public void Sound(MemoryStream stream)

{
}

buf[identificador]=stream;

public Reproduce()
{

72

public void ReproduceWav()

{ _
int n=1;
for (int cont2=0;cont2<1000;cont2++)
{
it (buf[n]!=null)
{
MemoryStream stream=buf[n];
// read the data from the stream
m_soundBytes = new byte
[stream.GetBuffer().Length];
m_soundBytes=stream.GetBuffer();
WCE_PlaySoundBytes (m_soundBytes, IntPtr.Zero,
(int) (Flags-SND_SYNC | Flags.SND_MEMORY));
buf[n]=null;
n++;
}
}

e Funcio del programa principal que déna I’ordre de transcriure i reproduir la frase

i crea tots els fils.

private void transcribir_Click(object sender, System.EventArgs e)

{

if(listaFrases.Selectedltem.ToString() = null)

{

try
{

String entrada = listaFrases.Selectedltem.ToString();

char p;
int chartotal=0;
foreach (char c in entrada)
{
p=c;
chartotal++;
}
int numchar=0;
string cacumulada=""";

string f="";

Reproduce r= new Reproduce(); //iniciar estructuras

Thread reproducir = new Thread(new
ThreadStart(r.ReproduceWav));

reproducir.Start();

numth=0;

foreach (char c in entrada)

{

73

numchar++;

TranscriptorCF t = new TranscriptorCF(Q);

t.BdD=BdD;
t.directorio=directorio;
t.indicel=indicel;
t.indice2=indice2;
t.indice3=indice3;
t.indiced4=indice4;
t.WaveHeader=WaveHeader;
t.lista _difo=lista difo;
t.lista_fo=lista fo;
t.reproductor=r;

if (numchar<l && (c=="." || c==";
{

numchar=0;

cacumulada=Ff+c;

numth++;

t.identificador=0+numth;
t.frase=cacumulada;
t.reproductor=r;

Thread th2 = new Thread(new

Il c

"))

ThreadStart(t.Transcribe));

th2.Start(Q);

//iniciar

=""";
}
else it (numchar>=1 && (c=="." || c==" " || c==";"
==":"))
{
numchar=0;
if (c=="." || c==" " || c==";" || c==":")
{cacumulada=f;}
else{cacumulada=f+c;}
numth++;
t.identificador=0+numth;
t.frase=cacumulada;
Thread th2 = new Thread(new
ThreadStart(t.Transcribe));
th2.Start(Q);
=""";
}
else
{
f=f+c;
}
}
catch(Exception es)
{
MessageBox.Show(es.ToString());
}

74

75

Resum

S’ha optimitzat un motor de veu natural per a dispositius mobils com una PDA o
un telefon mobil basat en un sistema operatiu Windows. La finalitat d’aquest treball és
la d’ajudar a fer mes facil la utilitzacio d’aquests aparells a gent invident i que pugui

acabar sent una donacio a la ONCE.

Resumen

Se ha optimizado un motor de voz natural para dispositivos méviles como una
PDA o un teléfono movil basado en un sistema operativo Windows. La finalidad de este
trabajo es la de ayudar a hacer mas facil la utilizacion de estos aparatos para gente

invidente i que pueda acabar siendo una donacién a la ONCE.

Summary

A natural voice motor has been optimized for mobile devices such as PDAs or
mobile phones based on a Windows operating system. The purpose of this work is to
help make these devices easy to use for blind people, therefore it may even end up

being a donation to ONCE.

76

	01 portada_i_index.pdf
	02 memoria final.pdf

