

ARQUITECTURA CORPORATIVA

DE WEB SERVICES

Memòria del projecte

d'Enginyeria en Informàtica

realitzat per

Javier Vacas Gallego

i dirigit per

Joan Borrell Viader

J. Carlos Muiño Gallego

Bellaterra, 10 de Juny de 2008

Arquitectura corporativa de web services Javier Vacas Gallego

i

 CERTIFICACIÓ DE DIRECCIÓ

El sotasignat, Joan Borrell Viader

Professor/a de l'Escola Tècnica Superior d'Enginyeria de la UAB,

CERTIFICA:

Que el treball a què correspon aquesta memòria ha estat realitzat sota la seva
direcció per en Javier Vacas Gallego.

I per tal que consti firma la present.

Signat: Joan Borrell Viader

Bellaterra, 10 de Juny de 2008

Arquitectura corporativa de web services Javier Vacas Gallego

ii

CERTIFICACIÓ DE DIRECCIÓ EN EMPRESA

El sotasignat, J. Carlos Muiño Gallego

de l'empresa, Prexon Consulting, S.L.

CERTIFICA

Que el treball a què correspon aquesta memòria ha estat realitzat en l'empresa sota
la seva supervisió mitjançant conveni amb Javier Vacas Gallego

firmat amb la Universitat Autònoma de Barcelona.

Així mateix, l'empresa en té coneixement i dóna el vist-i-plau al contingut que es
detalla en aquesta memòria.

Signat: J. Carlos Muiño Gallego

Santa Coloma de Gramenet, 10 de Juny de 2008

Arquitectura corporativa de web services Javier Vacas Gallego

iii

Índice de contenidos

Capítulo 1: Introducción .. 1

1.1 Motivación del proyecto .. 1

1.2 Objetivos .. 2

1.3 Punto de partida ... 4

1.4 Planificación ... 5

1.5 Organización de la memoria ... 6

Capítulo 2: Entorno, herramientas y alternativas .. 8

2.1 Definición de web service ... 8

2.2 Razón de la elección de web services ... 9

2.3 Estado del arte ... 10

2.4 Estudio de viabilidad .. 11

2.5 Herramientas de desarrollo .. 13

2.6 Sumario del capítulo ... 14

Capítulo 3: Análisis .. 15

3.1 Requisitos ... 15

3.2 Descripción de la arquitectura .. 16

3.3 Lógica de negocio .. 19

3.4 Esquema de la arquitectura .. 21

3.5 Seguridad ... 22

3.6 Sumario del capítulo ... 22

Capítulo 4: Descripción técnica .. 24

4.1 Introducción .. 24

4.2 XML .. 24

 4.2.1 Introducción .. 24

 4.2.2 Usos .. 25

 4.2.3 Sintaxis ... 25

 4.2.4 Elementos ... 27

Arquitectura corporativa de web services Javier Vacas Gallego

iv

 4.2.5 Atributos .. 27

 4.2.6 Sección CDATA .. 29

4.2.7 Namespaces ... 30

4.3 XSD .. 31

4.3.1 Introducción .. 31

 4.3.2 Sintaxis ... 31

 4.3.3 Tipos simples .. 34

 4.3.4 Tipos complejos .. 35

4.4 SOAP ... 37

4.4.1 Introducción .. 37

 4.4.2 Sintaxis ... 37

 4.4.3 Envelope ... 38

 4.4.4 Header .. 39

 4.4.5 Body .. 40

 4.4.6 Fault .. 40

4.4.7 SOAP y HTTP ... 41

4.4.8 Nota crítica .. 41

4.5 WSDL ... 42

4.5.1 Introducción .. 42

 4.5.2 Estructura del documento ... 42

 4.5.3 Elemento <portType> ... 43

 4.5.4 Elemento <message> ... 43

 4.5.5 Elemento <types> ... 43

 4.5.6 Elemento <binding> .. 43

4.5.7 Ejemplo ... 44

4.5.8 Tipos de operaciones .. 44

4.5.9 Operación unidireccional .. 45

4.5.10 Operación petición-respuesta ... 46

4.5.11 Binding .. 46

4.5.12 Sintaxis ... 48

4.6 JPA ... 49

4.6.1 Introducción .. 49

 4.6.2 Entidades .. 49

Arquitectura corporativa de web services Javier Vacas Gallego

v

 4.6.3 Mapeado objeto-relacional .. 49

 4.6.4 Metadatos ... 50

4.7 Sumario del capítulo ... 50

Capítulo 5: Desarrollo .. 51

5.1 La base: XML ... 51

5.2 Esquemas de comunicación ... 52

5.2.1 Introducción .. 52

 5.2.2 Esquema de solicitud de cotización .. 53

 5.2.3 Esquema de respuesta de cotización ... 55

 5.2.4 Esquema de solicitud de emisión.. 56

 5.2.5 Esquema de respuesta de emisión ... 57

 5.2.6 Esquema de listas de valores ... 58

5.3 Flujo de comunicación .. 58

5.4 Problemas encontrados.. 59

5.5 Sumario del capítulo ... 60

Capítulo 6: Pruebas .. 61

6.1 Introducción .. 61

6.2 La Plataforma de Multitarificación .. 62

6.3 Transformaciones XSL ... 67

6.4 Resultado de las pruebas ... 67

6.5 Sumario del capítulo ... 68

Capítulo 7: Conclusiones .. 69

7.1 Revisión de objetivos ... 69

7.2 Revisión de la planificación .. 70

7.3 Futuras vías de desarrollo .. 71

7.4 Valoración y conclusión final .. 72

Bibliografía .. 73

Abstract ... 74

Arquitectura corporativa de web services Javier Vacas Gallego

vi

Tabla de figuras

Figura 1-1 - Diagrama de Gantt del proyecto .. 5

Figura 3-1 – Esquema de la arquitectura del sistema 21

Figura 6-1 – Pantalla principal de la Plataforma de Multitarificación 62

Figura 6-2 – Formulario del tomador de la Plataforma de Multitarificación 63

Figura 6-3 – Formulario de riesgo del seguro de accidentes de la Plataforma de

Multitarificación ... 64

Figura 6-4 – Formulario de riesgo del seguro de automóviles de la Plataforma

de Multitarificación .. 64

Figura 6-5 – Pantalla de resultados para un seguro de salud de la Plataforma

de Multitarificación ... 65

Arquitectura corporativa de web services Javier Vacas Gallego

1

Capítulo 1: Introducción

1.1 Motivación del proyecto

Prexon Consulting S.L. es una consultoría informática especializada en el

sector asegurador y financiero, nacida en 2005 y creada por un equipo de

titulados en Ingeniería Informática. Desde su creación se ha centrado en dar

respuesta a las diversas necesidades que presentan todo tipo de compañías

aseguradoras y financieras, tanto software de gestión como soluciones

orientadas a la expansión comercial de este tipo de empresas.

Uno de los productos estrella de Prexon es la llamada Plataforma de

Multitarificación de Seguros. Esta aplicación RIA (Rich Internet Application) es

una aplicación web con aspecto similar al de una aplicación de escritorio que

permite a un usuario poder consultar el precio de una póliza de seguros para

varios productos (autos, hogar, salud, accidentes, etc.) de manera remota y en

diversas aseguradoras simultáneamente. Lo que por una parte aumenta la

comodidad del cliente final y por otra incrementa la competencia entre

compañías.

Mi trayectoria personal en Prexon se remonta a Marzo de 2006. En ese

momento me integro en el equipo de trabajo encargado de desarrollar la

Plataforma de Multitarificación, concretamente trabajando sobre la capa

intermedia de la aplicación. Esta capa está destinada, básicamente, a recibir

peticiones de los usuarios y hacérselas llegar a cada una de las compañías de

las que el usuario desea obtener precios. Esto nos ha permitido conseguir una

gran experiencia en este tipo de comunicaciones corporativas, consistentes en

Arquitectura corporativa de web services Javier Vacas Gallego

2

envíos telemáticos de pequeño tamaño pero que contienen datos personales y

críticos.

Por otro lado Aura Seguros S.A. es una pequeña aseguradora dedicada

especialmente a los productos de decesos y accidentes. Este proyecto

responde a una petición de Aura hacia Prexon para desarrollar una interfaz de

conexión e integración con la Plataforma de Multitarificación. El objetivo

comercial de Aura es ampliar su red de servicios convencionales añadiéndole

una red externa que amplíe de manera significativa su actual expansión.

En la actualidad las aplicaciones de multitarificación de seguros se están

convirtiendo en grandes herramientas de expansión para todas las compañías

aseguradoras y en especial para las más pequeñas. No sólo porque el proceso

de contratación de pólizas se hace de manera automatizada, ahorrando así

recursos, si no porque, además, estas aplicaciones tienen la ventaja de que

llegan fácilmente a una gran cantidad de posibles clientes a través de Internet.

Gracias a esto las diferencias de presupuesto entre compañías y las

inversiones en marketing o en la red comercial de sucursales no son tan

definitivas como en los canales de ventas convencionales. De este modo, en el

momento de visualizar la lista de precios podemos hacer una comparación de

precios y garantías entre cada aseguradora de manera absoluta. Por tanto, una

pequeña empresa como Aura tendrá la oportunidad de competir directamente

con los grandes gigantes del mundo asegurador.

1.2 Objetivos

Nuestro objetivo principal en este proyecto es llevar a cabo la conexión entre la

compañía de seguros Aura y la Plataforma de Multitarificación de modo que

podamos hacer presupuestos de pólizas para todos los productos que Aura

ofrezca a sus clientes, así como tener la posibilidad de llevar a cabo la

contratación de una póliza en el caso de que alguno de los precios

presupuestados nos interese. Además, si este es el caso, devolveremos al

cliente la documentación acreditativa de que efectivamente ya ha realizado la

contratación de la póliza.

Arquitectura corporativa de web services Javier Vacas Gallego

3

La disposición de Prexon en la realización de este proyecto se sustenta en el

interés de crecimiento del producto de multitarificación. El ofrecer una garantía

de competencia habilitando la posibilidad a los clientes de obtener

presupuestos en la mayor cantidad de aseguradoras posibles es uno de los

puntos clave necesarios para asegurar el éxito comercial de este producto. El

objetivo final es que pueda llegar a convertirse en una herramienta de

referencia para corredurías de seguros y por qué no, para los usuarios finales.

Además, el hecho de poder reutilizar este desarrollo para futuros clientes de

Prexon que quieran formar parte de la Plataforma de Multitarificación, es un

importante activo de cara a su integración en la aplicación.

Como objetivos personales hay que destacar la notable experiencia que

obtendré a lo largo del desarrollo, en particular en el mundo de las tecnologías

de la información correspondientes a los sectores empresariales, corporativos y

comerciales. De la misma, manera también conseguiré importantes

conocimientos técnicos durante la realización de este proyecto, que servirán de

complemento práctico y real a los estudios adquiridos en la carrera de

Ingeniería en Informática. Por último, el hecho de formar parte de un equipo de

trabajo dinámico y enérgico, formado por grandes profesionales del sector con

abundante experiencia, es una razón significativa de la elección de este

proyecto por mi parte.

El hecho de que en Prexon hayamos desarrollado la Plataforma de

Multitarificación nos permite tener una gran experiencia respecto a este tipo de

conexiones entre compañías, de modo que conocemos previamente cual son

las técnicas más usadas, así como las que permiten una mayor flexibilidad,

seguridad y facilidad de uso. Después de realizar un trabajo previo de selección

de la tecnología idónea para las necesidades expuestas por Aura (ver sección

2.2) se ha tomado la decisión de que los web services son la solución

adecuada. Sus ventajas respecto al resto de posibilidades radican en su

interoperabilidad entre distintas plataformas y aplicaciones, así como en la

capacidad que poseen de implementar distintos sistemas de seguridad, debido

a que esta tecnología se apoya en HTTP (HyperText Transfer Protocol).

Arquitectura corporativa de web services Javier Vacas Gallego

4

Es importante destacar el aspecto de la seguridad, el cual toma especial

relevancia dado que se trabajará con datos críticos tanto para el cliente como

para la compañía. En el desarrollo de este proyecto se tendrá especial cuidado

con esta característica del proyecto, por lo que se seguirán de manera

categórica las leyes que regulan el tratamiento de dichos datos, como la Ley

Orgánica de Protección de Datos entre otras.

Este proyecto, por tanto, consistirá en desarrollar un web service con la misión

principal de dar respuesta a las peticiones de presupuesto y contratación de

pólizas en diversos productos, siendo fácilmente escalable, con el objetivo de

que en un futuro se pueda ampliar dando cabido a otros servicios como la

consulta de pólizas por parte de los agentes de seguros o la gestión de partes

de accidentes. Es importante destacar, también, que a pesar de que el

desarrollo de este proyecto es particular para la aseguradora Aura, es un

requisito básico hacerlo de manera que se pueda reutilizar fácilmente en

futuros proyectos corporativos que presenten unas necesidades similares a las

comentadas.

1.3 Punto de partida

Partimos desde una situación en la que encontramos un sistema informático de

gestión de pólizas para agentes en dos vertientes: interno y externo. El sistema

de gestión interno consiste en una aplicación de escritorio que permite llevar a

cabo una amplia gestión comercial y económica sobre la compañía. Por otra

parte el externo radica en una aplicación web que permite a los agentes

disponer de una gestión exhaustiva sobre su cartera de pólizas. Estos dos

entornos trabajan sobre una base de datos, la cual será el punto de conexión

entre los sistemas ya existentes en la compañía y la solución que

desarrollaremos dentro del marco de este proyecto. Como resultado

obtendremos un sistema totalmente integrado en el que los web services

adoptarán un papel principal como uno de los métodos de expansión comercial

de la compañía.

Arqui

1.4

Este

S.L.

La f

com

su d

Prex

que

dedi

Es

itectura corp

Planific

e proyecto

y se hace

figura 1-1

enzar el p

esarrollo. A

xon, no tra

por carga

car mome

studio del esta

Estudio del e

Dis

Elección d

Enlaz

Definició

Fase

Implementa

Fa

D

R

orativa de w

cación

comienza

e un cálculo

muestra

royecto inc

Aunque es

abajaré a t

de trabajo

ntáneame

Fig

Análisis de

ado del arte (W

stado del arte

seño teórico de

de herramienta

Desarrollo d

zar el WS con l

ón y creación d

e de pruebas en

ación de la seg

se de pruebas

Pub

Documentació

Realización de l

web services

a realizar

o aproxima

el diagram

cluyendo lo

ste será el

tiempo com

o o por otro

nte a otros

gura 2-1 - Dia

requerimiento

S Corporativos

(WS Generales

e la arquitectur

as de desarroll

de un WS básic

a base de dato

de las interface

n contexto loca

uridad en el W

en entorno rea

Test de estré

blicación del W

n del desarroll

la memoria fina

se en octu

ado inicial

ma de Ga

os principa

 proyecto

mpleto en

o tipo de a

s proyectos

agrama de Ga

os

s)

s)

ra

lo

co

os

es

al

WS

al

és

WS

lo

al

7d

12d

1

ubre de 20

de seis a o

antt de la

ales pasos

principal a

él, pueden

spectos in

s.

antt del proye

d

10d

20d

2

35d

Jav

007 en Pre

ocho mese

planificac

s que se to

al que esta

n existir d

esperados

ecto

2d

10d

5d

d

15d

25d

20d

10

2

60d

vier Vacas G

xon Consu

es de dura

ión previs

omarán dur

ré asignad

ías o sem

s me tenga

0d

5d

20d

d

allego

ulting

ación.

ta al

rante

do en

anas

a que

5

Arquitectura corporativa de web services Javier Vacas Gallego

6

1.4 Organización de la memoria

La memoria de este proyecto está dividida en cinco capítulos organizados de la

siguiente manera:

• Capítulo 2: Entorno, herramientas y alternativas. Se explica el motivo por

el cual se han elegido WS para solucionar los requisitos planteados, así

como otras alternativas que podíamos haber escogido. Este capítulo

también incluye un repaso sobre el estado del arte de esta tecnología,

así como un estudio de viabilidad incluyendo las herramientas que

usaremos en el desarrollo.

• Capítulo 3: Análisis. En este capítulo se explica qué es un web service y

por qué se han elegido web services para desarrollar este proyecto.

También de describe la arquitectura del sistema haciendo hincapié en

los detalles en los cuales se han tenido que tomar decisiones

complicadas. También se hace un repaso de en qué consiste lógica de

negocio de la aplicación y en qué lugar del sistema estará situada.

• Capítulo 4: Descripción técnica. Contiene la descripción de la parte

técnica del proyecto. También se hace un recorrido por todos los

protocolos y estándares que han sido necesarios utilizar a lo largo del

desarrollo de todo el proyecto.

• Capítulo 5: Desarrollo. En este capítulo se expone de qué manera

hemos usado los protocolos y estándares descritos en el capítulo

anterior para realizar este proyecto. También se hace énfasis en las

características básicas del proyecto, así como en los puntos clave que le

hace diferenciarse de otros proyectos similares.

• Capítulo 6: Pruebas. Se explica las pruebas que se han llevado a cabo,

y los resultados finales obtenidos. También daremos un repaso general

de cómo debería ser una aplicación cliente viendo una visión general del

funcionamiento de la Plataforma de Multitarificación.

Arquitectura corporativa de web services Javier Vacas Gallego

7

• Capítulo 7: Conclusiones. En este capítulo se revisan los objetivos y la

planificación que nos habíamos propuesto al principio del proyecto, y se

valora si se han llegado a conseguir. Además, también se comentan las

posibles futuras vías de desarrollo para el sistema desarrollado en este

proyecto.

Arquitectura corporativa de web services Javier Vacas Gallego

8

Capítulo 2: Entorno, herramientas y alternativas

2.1 Definición de web service

El término web service describe un método de integración de aplicaciones de

tipo web usando los estándares XML (eXtensible Markup Language), SOAP

(Simple Object Acces Protocol) y WSDL (Web Services Description Languge)

sobre Internet. XML se usa para etiquetar los datos, SOAP para transferirlos y

WSDL sirve para describir los servicios de que dispone.

Los web services se usan básicamente como método de comunicación entre

empresas o entre empresas y clientes. Permiten intercambiar datos entre

diferentes organizaciones sin la necesidad de tener un conocimiento recíproco

profundo de cómo están implementados los sistemas informáticos de cada una

de ellas.

A diferencia de los modelos tradicionales de tipo cliente/servidor, los web

services no proporcionan a los usuarios una GUI (Graphic User Interface). En

lugar de esto los web services permiten compartir lógica de negocio, datos y

otros procesos mediante una interfaz que actúa a través de la red. Los

desarrolladores pueden, si lo desean, añadir el web service a una interfaz

gráfica como una página web o un programa ejecutable para ofrecer su

funcionalidad a los usuarios finales.

Los web services permiten que diferentes aplicaciones que provienen de

diferentes fuentes se comuniquen entre ellas sin necesidad de desarrollar

código hecho a medida debido a que toda la comunicación se lleva a cabo con

Arquitectura corporativa de web services Javier Vacas Gallego

9

XML. La concepción básica no está vinculada a ningún sistema operativo o

lenguaje de programación. Por ejemplo, un web service desarrollado en Java

podría ser consumido desde C++ (en la sección 2.3 veremos cómo esto no

siempre es así), así como una aplicación Windows podría comunicarse con

sistemas UNIX. Los web services tampoco requieren el uso de navegadores o

código HTML (HyperText Markup Language).

2.2 Razón de la elección de web services

Para desarrollar nuestro proyecto se ha procedido a realizar de manera previa

un estudio de las tecnologías y técnicas disponibles en la actualidad que nos

permitan solucionar los requisitos expuestos para su realización. Después de

descartar muchas de estas tecnologías por su falta de seguridad o por su

elevada complejidad se ha llegado a la conclusión de que los web services son

la mejor alternativa posible ya que posee diversas posibilidades respecto a la

integración de la seguridad, así como una complejidad mínima en el

tratamiento de los datos. Esto es ideal para una comunicación ágil y eficaz,

necesaria en el entorno corporativo en que nos moveremos, en el que

tendremos picos de tráfico de docenas de transacciones por minuto.

Pese a que se fueron descartando distintas tecnologías, en la recta final

todavía teníamos en consideración un par de ellas, como son por una parte

web services y por otra CORBA (Common Object Request Broker Architecture).

CORBA es un estándar usado para el procesamiento de objetos distribuidos.

Básicamente su objetivo es crear un paquete con código de un lenguaje de

programación en concreto, en el que además se añade información referente a

sus capacidades y a la forma de llamar a los métodos que contiene. De esta

manera ese código puede ser ejecutado por otra máquina desde un programa

no necesariamente escrito en el mismo lenguaje. Además, CORBA también

está diseñado para ser independiente del sistema operativo. El descarte de

CORBA como tecnología para desarrollar nuestro proyecto fue su elevada

complejidad, necesaria para otro tipo de aplicaciones, pero no para la nuestra,

ya que CORBA está considerado como middleware, y esto nos podría producir

Arquitectura corporativa de web services Javier Vacas Gallego

10

algún problema. El uso de CORBA está mayoritariamente orientado al

comercio on-line, banca y finanzas.

Por tanto, la elección de web services se basa en dos aspectos fundamentales

para cumplir con éxito los objetivos del proyecto como son la facilidad y eficacia

de uso, y la seguridad necesaria para no comprometer datos críticos,

asegurando que éstos lleguen al otro extremo de manera totalmente privada.

Cabe destacar que la experiencia obtenida con Plataforma de Multitarificación

también ha hecho decantar la balanza hacia los WS ya que un elevado número

de aseguradoras con las que trabajamos también usan esta tecnología,

algunas de manera altamente satisfactoria y otra no tanto. Finalmente la fuerte

auge que los web services están experimentando en la actualidad y la inmensa

documentación sobre esta materia ha hecho decantarnos por ellos como la

tecnología en que sustentará el desarrollo de nuestro proyecto.

2.3 Estado del arte

Como ya se ha comentado anteriormente este proyecto se ha realizado en una

consultoría informática muy especializada, esto ha permitido adquirir una gran

experiencia respecto a los web services y otras tecnologías similares en el

mundo corporativo y sobretodo asegurador. Se ha podido observar una gran

disparidad de opciones en el uso de este sistema de comunicación y algunos

otros, cosa que ha dificultado significativamente la integración de diversas de

estas compañías en un sistema global como la Plataforma de Multitarificación.

Actualmente podemos encontrar varios escenarios cuando hablamos de WS

corporativos. Existen ciertas entidades que hacen uso del término web services

erróneamente ya que la tecnología de la que realmente están usando es un

simple “http post”. Aunque en principio los web services no están atados a

ningún lenguaje de programación en particular, existen algunas ampliaciones

que sí lo son. De esta manera nos encontramos compañías que dificultan el

desarrollo de la aplicación cliente destinada a consumir su web service

haciéndolo dependiente de software. Este sería el caso, por ejemplo, de los

Arquitectura corporativa de web services Javier Vacas Gallego

11

web services que usan ciertos tipos de datos adjuntos en el intercambio de

información, ya que según su tipo es necesario usar obligatoriamente ciertas

herramientas de desarrollo concretas ya que sólo es soportado por estas.

La seguridad también es un asunto en el que de nuevo podemos observar gran

disparidad de opciones. Existen compañías cuyos web services se basan

únicamente en una autenticación de tipo usuario y contraseña (incrustados en

los datos a intercambiar) para dar acceso a su funcionalidad, con el riesgo que

esto conlleva de una posible intercepción del envío por parte de un tercero si

no usamos cifrado, pudiendo obtener información crítica como números de

cuentas bancarias o tarjetas de crédito. Muchas entidades, sin embargo, usan

un certificado para autentificar al consumidor del web service además de hacer

uso del protocolo SSL (Secure Sockets Layer) para garantizar que la

comunicación se produce con total garantía de privacidad. Otro nivel de

seguridad vendría dado por la necesidad de firmar electrónicamente algunos (o

todos) los datos a enviar.

El intercambio de datos en un WS va claramente asociado a XML (eXtensible

Markup Language). XML es un lenguaje de marcas que nos permite

intercambiar con gran facilidad información estructurada entre diferentes

plataformas, de manera que cualquier dato necesario para realizar una

operación determinada viajará dentro de un documento XML. También existe

una alternativa para transmitir los datos en un web service como son los

attachments o datos adjuntos, esta tecnología se suele utilizar normalmente en

casos en los que hay que enviar grandes cantidades de datos, como pueden

ser documentos de gran tamaño o imágenes.

2.4 Estudio de viabilidad

La realización de este proyecto supone un paso adelante respecto al uso de los

web services en el ámbito corporativo, ya que la inexistencia de un formato

estándar de comunicación e intercambio de información provoca que cada

compañía realice su propia arquitectura, dificultando así una integración global

Arquitectura corporativa de web services Javier Vacas Gallego

12

de varios de estos servicios en una misma aplicación como la Plataforma de

Multitarificación.

En el sector asegurador estamos viendo como el mercado on-line crece día a

día. Podemos observar, por ejemplo, que gran parte de las compañías de

seguros ofrecen en su web un servicio de tarificación de seguros para diversos

ramos o productos. Este sistema obliga al cliente a introducir sus datos en cada

una de las compañías en las que quiera consultar precios, por este motivo

están surgiendo motores de multitarificación que facilitan en gran medida la

comparación entre varias aseguradoras sin necesidad de introducir los mismos

datos una y otra vez. Por tanto, si las compañías de seguros desean ser

competitivas en el mercado on-line deben disponer de un sistema ágil y eficaz

de comunicación con estos motores. Es aquí donde los web services pueden

suponer una gran ayuda para abordar esta situación, de modo que se postulan

como la solución de futuro ideal para llevar a cabo la comunicación entre

aseguradores y motores de multitarificación.

Uno de los aspectos importantes en el desarrollo de este proyecto es que el

web service resultante pueda ser consumido desde cualquier plataforma y por

tanto no sea dependiente de software. Aunque en principio este es un aspecto

general de los web services existen ciertas restricciones con algunos entornos

de desarrollo, sería el caso, por ejemplo, de los tipos de datos adjuntos (o

attachments). Por este motivo se ha ido con especial cuidado respecto a la

elección del lenguaje y entorno de desarrollo del proyecto, que ha sido

estudiado detenidamente (ver sección 2.5).

Como ya se ha mencionado anteriormente, en este proyecto se trabajará con

datos críticos, eso obliga a tener especial cuidado en su manipulación. Como

marco regulador de esta situación encontramos la Ley Orgánica de Protección

de Datos 15/1999, de 13 de diciembre, de obligado cumplimiento para las

empresas que trabajen con este tipo de datos. Por tanto, en la realización de

este proyecto se tendrá en cuenta este aspecto legal, de manera que se

seguirán las pautas indicadas en esta Ley, siendo, además, una norma general

Arquitectura corporativa de web services Javier Vacas Gallego

13

de uso en la empresa en la que se realizará el proyecto, ya que es común el

uso de datos de alta seguridad.

Para concluir subrayaremos que este estudio de viabilidad nos permite afirmar

que el proyecto se podrá realizar con éxito dentro de los plazos predispuestos

en un principio, cumpliendo con los objetivos y requisitos impuestos por parte

del cliente, así como con los impuestos internamente por la política de Prexon.

2.5 Herramientas de desarrollo

Después de un periodo de estudio se ha llegado a la conclusión de que las

herramientas ideales para el desarrollo de nuestro proyecto son las siguientes:

• Java. Utilizaremos el lenguaje de programación Java ya que se está

convirtiendo en la actualidad en el lenguaje de referencia para

aplicaciones web. Además nos facilita la publicación en un servidor web

libre como Apache Tomcat.

• Eclipse. Es el entorno de desarrollo de referencia en Java gracias a su

sencillez y flexibilidad. Además es libre.

• WTP (Web Tools Platform). Es un proyecto que extiende la plataforma

Eclipse con nuevas herramientas que nos facilitan el desarrollo de todo

tipo de aplicaciones web, especialmente web services.

• Apache Tomcat. Es un servidor web libre necesario para publicar el web

service. Sólo será usado para realizar pruebas.

• IBM WebSphere Application Server. Servidor web y de aplicaciones que

ya utilizaba la compañía Aura previamente a la concepción de este

proyecto. Por tanto, la versión final del sistema se publicará aquí.

• Microsoft SQL Server 2005. Es el sistema de gestión de base de datos

que se ha venido usando en la compañía Aura y, por tanto, se usará

también para este proyecto. Además permite el uso de XML de forma

nativa.

Arquitectura corporativa de web services Javier Vacas Gallego

14

La involucración de Aura en el desarrollo de nuestro proyecto es máxima, así

que se dispone de servidores de última generación para albergar la base de

datos, así como el web service. Esto es importante ya que en un corto espacio

de tiempo se esperan recibir picos de docenas de cotizaciones por minuto. De

la misma manera pueden existir instantes en los que haya dos o tres peticiones

simultáneamente.

Para la implementación del código también se dispone de una estación de

trabajo totalmente preparada para hacerse cargo de todo el desarrollo.

2.6 Sumario del capítulo

En este capítulo hemos visto un punto básico de este proyecto, como es el de

la definición de web service, así como una argumentación de por qué se ha

elegido esta tecnología para solucionar los problemas que se nos habían

planteado y no otra. También se incluye los motivos por los que otras

tecnologías han sido descartadas a favor de web services.

De la misma manera, se ha hecho una detallada descripción de la situación del

estado del arte respecto a web services en la actualidad, del cual tenemos gran

experiencia por haber estado trabajando en la Plataforma de Multitarificación

de Prexon.

También se ha hecho referencia al estudio de viabilidad del proyecto, el cual

nos indica que el proyecto se podrá realizar con éxito. Por último se hace un

repaso de las herramientas de desarrollo que se usarán durante la

implementación del proyecto.

Arquitectura corporativa de web services Javier Vacas Gallego

15

Capítulo 3: Análisis

3.1 Requisitos

Los requisitos finales que se acuerdan entre Prexon y Aura en el momento de

empezar nuestro proyecto son los siguientes (después se modificarían algunos

y se añadirían otros):

• Disponer de un sistema escalable, fiable y seguro que permita a

terceros, ya sean los agentes de la compañía, corredurías o los propios

clientes finales llevar a cabo una comunicación telemática con Aura con

un doble objetivo: en primer lugar, ofrecer un servicio de

presupuestación de pólizas en cada uno de los productos ofrecidos

regularmente por las vías tradicionales de venta. En segundo lugar, dar

la posibilidad de contratar una póliza de manera real, devolviendo por

parte de la compañía la documentación acreditativa de que la emisión se

ha realizado exitosamente. Por supuesto para llevar a cabo esta

interacción será necesaria una capa de visualización que interactúe con

nuestro sistema y muestre toda la información que se obtenga por

pantalla, es aquí donde la Plataforma de Multitarificación desarrollada

por Prexon entra en funcionamiento. Pese a esto, de ninguna manera el

WS estará limitado a funcionar únicamente con esta plataforma,

contrariamente los datos de conexión y comunicación con nuestro WS

serán informados a la mayor parte posible de estos motores de

multitarificación existentes en la actualidad para así permitir una

expansión comercial lo más extensa posible.

Arquitectura corporativa de web services Javier Vacas Gallego

16

• Desarrollar este sistema de manera que su funcionalidad pueda ser

incrementada en un futuro para permitir la incorporación de herramientas

como el hecho de ofrecer la posibilidad de introducir partes de siniestros

en el sistema, ahorrando así gran cantidad de papeleo. Otro aspecto que

interesa añadir en un futuro será la consulta de pólizas por parte de

agentes o corredores de la compañía.

Por otra parte, se incluye como requisito interno de Prexon el hecho de que

este sistema no sea un desarrollo específico para Aura Seguros sino que

interesa reutilizarlo en otros proyectos, ya no sobre aspectos únicamente de

seguros, sino más bien sobre encargos corporativos en general.

Es importante destacar de nuevo que el producto que resulte de este proyecto,

necesitará una aplicación cliente para poder aprovechar su funcionalidad y

visualizar sus resultados. Está aplicación no queda dentro de los objetivos del

proyecto aunque sí que veremos algún aspecto básico de cómo debería

funcionar, así como el ejemplo de la Plataforma de Multitarificación.

3.2 Descripción de la arquitectura

Después de un cierto periodo de tiempo como desarrollador de la Plataforma

de Multitarificación hemos podido observar diversos tipos de aplicaciones con

diferentes arquitecturas, de las cuales todas tenían el mismo objetivo. También

hemos podido evaluar cuales de ellas son más estables, fiables, seguras y

sencillas de usar. Esto nos ha servido para coger lo mejor de cada una de

estas arquitecturas con el objetivo de desarrollar un sistema que cumpla con

los requisitos de cliente.

La primera cuestión que hay que tener en cuenta es el hecho de desarrollar un

solo web service que dé cabida a todas las operaciones para todos los

productos que ofrece la compañía, o bien, hacer un web service diferente para

cada una de estas operaciones. Aplicar la lógica directa nos sugeriría que

¿para qué vamos a hacer varios web services si en uno podemos dar cabida a

todas las operaciones que necesitamos simplemente creando diferentes

Arquitectura corporativa de web services Javier Vacas Gallego

17

interfaces? Pues bien, el dilema surge cuando pensamos en el hecho de que

existirán diversos usuarios que puedan consumir nuestro web service, es decir,

puede haber un corredor al que sólo le permitamos hacer presupuestos de

pólizas pero no contrataciones, o un agente que sólo trabaje con el producto de

decesos, por ejemplo. Por este motivo necesitamos algún sistema de

autorización que nos permita diferenciar quien está intentando hacer una

petición, de modo que según nuestra política interna decidamos darle

respuesta a su solicitud o no.

De este modo, disponemos de dos posibilidades, la primera, como ya se ha

mencionado, sería incluir todas las operaciones en el mismo web service de

manera que hagamos la comprobación de las credenciales del usuario que

haga la solicitud dentro del código del web service. La segunda, contrariamente

consistiría en ofrecer diferentes web services para cada tipo de operación y/o

producto que ofrezcamos dando a los clientes diferentes URLs para cada uno

de ellos.

Está claro que este último método puede funcionar para dos o tres operaciones

diferentes, pero en el caso de tener más se podría convertir en un caos, con lo

que conllevaría mucha complejidad a las aplicaciones clientes que consuman

nuestro web service. En nuestro caso concreto trataremos con diversos tipos

de operaciones, ya no sólo hacer una tarificación o una emisión de una póliza,

sino también debemos ofrecer otros métodos necesarios para ciertos aspectos

concretos del producto con el que estemos tratando. Éste sería el caso, por

ejemplo, de los seguros de automóviles, en que debemos ofrecer códigos

internos que permitan a las aplicaciones clientes hablar el mismo idioma que

nosotros. Es decir, si quieren decirnos que el coche que se está intentando

asegurar tiene un dispositivo GPS que queremos declarar en la póliza, es

necesario que nosotros entendamos lo que es. Si nos pasaran directamente

que tiene un accesorio llamado GPS, podríamos malinterpretarlo porque igual

nosotros en vez de llamarlo GPS lo llamamos dispositivo de localización. Por

tanto, una de las interfaces que ofreceremos en nuestro web service será una

lista de accesorios con un código, el cual será el que deberán especificar en su

solicitud.

Arquitectura corporativa de web services Javier Vacas Gallego

18

La solución a la que llegamos es finalmente presentar de manera única un solo

web service que ofrezca una interfaz para cada una de las operaciones que

haya disponibles. Para llevar a cabo el aspecto de la autorización de usuarios

usaremos un sistema de credenciales incrustadas en el documento XML de la

solicitud, que al viajar cifrado por SSL no supondrá ningún riesgo. De todas

maneras, también será necesario disponer de un certificado en el lado del

cliente para comprobar su identidad, de modo que estas credenciales sólo

supondrán un método de autorización pero de ninguna manera de

autenticación.

De este modo guardaremos en la base de datos la lista de agentes, corredores

o cualquier usuario que este autorizado a consumir nuestro web service, junto a

las operaciones que les está permitido hacer. Así se consultará si las

credenciales que nos han hecho llegar le permiten acceder a la petición que

han hecho, y si no es así se les devolverá una respuesta indicándoles que no

están autorizados a ejecutar la operación en concreto.

En el caso en que la operación que nos ha sido solicitada sea una contratación

de una póliza estaremos obligados a retornar unos documentos acreditativos

de que efectivamente la póliza ha sido emitida y está en vigor, así como los

documentos informativos de las condiciones generales y particulares del

seguro. Para hacer llegar a los clientes estos documentos utilizaremos los

propios XML’s de que enviamos en las respuestas, de manera que incluiremos

los documentos en formato PDF y codificados en base64 para que puedan

viajar incrustados en el XML de manera simple y efectiva. Además, será

necesario firmar de manera digital algunos de estos documentos que

contengan la información esencial, como es el documento acreditativo de la

emisión, el cual demuestra que se ha contratado la póliza.

En los capítulos posteriores se entrará más profundamente en este aspecto,

pero es interesante comentar que existirán cinco tipos de esquemas del

documento XML que usaremos para transmitir la información. Por una banda

tenemos el esquema de solicitud de cotización, que será el mismo para todos

los productos. Esto facilita mucho tanto al consumidor del web service como a

nosotros el procesamiento de los datos. Por el mismo motivo el esquema de

Arquitectura corporativa de web services Javier Vacas Gallego

19

respuesta también será el mismo para todos los productos. Del mismo modo,

usaremos dos esquemas más para la emisión de la póliza (solicitud y

respuesta). Por último, existirá un último tipo de esquema que usaremos para

devolver las respuestas a las peticiones de listas de valores, como la del

ejemplo de los accesorios de automóviles.

Finalmente, la arquitectura de nuestro sistema quedará de la siguiente manera:

tendremos un web service que ofrecerá diversas interfaces, cada una de las

cuales ejecutará una operación diferente. Cuando llegue una petición, el

documento XML de la solicitud se insertará directamente en la base de datos

que mediante un trigger comezará a hacer los cálculos necesarios para

devolver el resultado de la solicitud, o bien, generará un error con la

descripción del problema que se haya podido producir. Esta respuesta será

recogida de nuevo por la capa Java que la enviará a través del web service al

solicitante. Para implementar la interacción con la base de datos se usará la

novedosa tecnología JPA (Java Persistance API) (ver sección 4.6). El uso de

esta tecnología no estaba pensado en el momento de empezar la realización

del proyecto, pero se integró a la mitad del desarrollo ya que ofrece muchas

posibilidades para facilitar la independencia entre la capa Java y la capa de

base de datos. Gracias a esto, uno de los objetivos principales de este

proyecto, como es el de hacer un sistema reutilitzable, se puede asegurar

todavía en más medida, ya que incluso, gracias a JPA, es posible ignorar qué

tipo de sistema de gestión de base de datos se está usando, debido a que su

funcionamiento permite trabajar con distintas bases de datos sin necesidad de

retocar el código con las peculiaridades de cada uno de estos sistemas.

3.3 Lógica de negocio

En el momento inicial del planteamiento de la arquitectura que utilizaremos en

el desarrollo del proyecto se abren varios caminos acerca de dónde situar la

lógica de negocio del sistema. Esta lógica contiene, entre otras cosas, la

normativa de contratación de la compañía. Por ejemplo, el hecho de que a un

menor de 25 no le esté permitida la contratación seguro de automóviles o que

Arquitectura corporativa de web services Javier Vacas Gallego

20

no se le haga un seguro de decesos a una persona mayor de 65 años.

También será necesario hacer las comprobaciones rutinarias de consistencia

en los datos, por ejemplo, la comprobación de que una cuenta bancaria es

correcta o, que si se trata de un seguro de automóviles, la matrícula no

corresponda a una fecha anterior a la de fabricación.

De modo que se nos abren dos caminos, por una parte tenemos la posibilidad

de situar la lógica de negocio directamente en la base de datos. En este

supuesto el desarrollo sería más orientado al nivel de datos y la capa Java se

utilizaría únicamente como simple interlocutor de comunicaciones, es decir, la

capa Java consistiría en un WS simple que recoja los datos que le hagan llegar

y llame directamente a un procedimiento almacenado de la base de datos.

Desde ahí se llevarían a cabo todas las comprobaciones correspondientes a la

normativa de contratación y se validaría la consistencia de los datos de la

solicitud.

Por otra parte, toda esta lógica de negocio se podría situar en la capa Java,

relegando a la base de datos a un simple almacén de la información recibida y

transmitida. De modo que ésta trabaje con mucha menos carga de trabajo y

éste recaiga sobre la capa Java que se dividiría en la parte de comunicación en

la que estaría implementado el WS y en la parte de la lógica de negocio.

Finalmente se decide hacer una mezcla entre las dos posibles vías de

implementar el sistema, pese a que la mayoría de la lógica de negocio recaerá

sobre la base de datos. Aunque es cierto que está decisión podría

comprometer el rendimiento global del sistema, es necesaria para poder

cumplir exitosamente el requisito interno de poder reutilizar el desarrollo en el

futuro para futuros proyectos de ámbito corporativo que le puedan surgir a

Prexon. Incluir esta lógica en el núcleo de la aplicación Java no nos permitiría

reaprovechar el sistema ya que tendríamos que hacer un cambio radical de su

código cada vez que queramos usarlo para desarrollar un sistema diferente.

Por tanto, en la capa Java situaremos toda la lógica posible que sea transversal

para cualquier tipo de aplicación corporativa, es decir, comprobaciones de la

consistencia de los datos como NIF’s, cuentas bancarias, códigos postales, etc,

y dejaremos la parte de normativa de contratación en la base de datos. Como

Arquitectura corporativa de web services Javier Vacas Gallego

21

uno de los objetivos principales es que el funcionamiento sea ágil se usará un

servidor de última generación para albergar todo el sistema, además, se usará

XML (eXtensible Markup Language) como el método de representación de

datos nativo. Esto nos permitirá disminuir en gran medida la carga de trabajo

de la base de datos ya que se utilizará Microsoft SQL Server 2005, el cual se

caracteriza por el soporte que ofrece para este formato, de manera que

podremos trabajar directamente con sentencias que actúen contra documentos

XML en lugar de tablas.

3.4 Esquema de la arquitectura

La figura 3-1 muestra el esquema de la arquitectura del sistema:

 PETICIÓN RESPUESTA

 Validación Firma de
 datos documentos

 SOLICITUD RESULTADOS

 LÓGICA DE NEGOCIO

Figura 3-1 – Esquema de la arquitectura del sistema

Base de Datos

INTERNET
SSL

Web Service
(Capa Java)

Cliente Cliente Cliente

AUTENTICACIÓN

AUTORIZACIÓN

Arquitectura corporativa de web services Javier Vacas Gallego

22

3.5 Seguridad

La seguridad también es un aspecto básico de este proyecto. Como ya se ha

mencionado, los datos de alta seguridad serán de uso habitual dentro del flujo

de comunicación entre compañía y clientes. Datos tales como cuentas

bancarias, números de tarjetas de crédito, etc. serán usados habitualmente en

el momento de la contratación de las pólizas.

Para asegurar que estos datos críticos viajan a través de Internet de forma

segura nuestro web service sólo será consumible mediante SSL. Esto nos

asegurará privacidad en el envío y recepción de los datos. Además, será

necesario, por parte de los clientes que se quieran conectar a nuestro web

service, usar un certificado generado por una entidad de certificación

acreditada que les autentique, de manera que nosotros nos aseguremos de

con quién estamos intercambiando información. Ellos nos pasarán la clave

pública de este certificado que nosotros introduciremos en una lista blanca. De

este modo, nosotros podremos identificar la entidad o persona que se está

intentando comunicar con nosotros en cada momento y permitirle o negarle el

acceso según sea el caso.

Independientemente de esto, con el objetivo de afianzar la seguridad global del

sistema, se habilitarán reglas especiales en el firewall hardware del que

dispone Aura. De esta manera nuestros posibles clientes deberán indicarnos

previamente a la comunicación telemática desde que IP se van a conectar de

modo que abriremos una regla en el firewall que permita la entrada de datos a

nuestro sistema únicamente para esa IP. Por supuesto esto sólo lo deberán

hacer cada vez que cambien la IP desde la que se conectar a nuestro web

service.

3.6 Sumario del capítulo

En este capítulo hemos hecho un análisis pormenorizado de cada uno de los

aspectos clave del proyecto. En primer lugar hemos mencionado cual son los

requisitos que tiene nuestra aplicación. En segundo lugar, hemos hecho una

Arquitectura corporativa de web services Javier Vacas Gallego

23

descripción detallada de cómo será la arquitectura del sistema, así como una

explicación de en qué consiste la lógica de negocio y qué papel ocupará en el

desarrollo global. Por último hemos hablado de un aspecto tan importante

como la seguridad y de los métodos que usaremos para garantizarla, como el

uso de la tecnología SSL y certificados.

Arquitectura corporativa de web services Javier Vacas Gallego

24

Capítulo 4: Descripción técnica

4.1 Introducción

Para desarrollar este proyecto se han usado diversos protocolos y estándares

que definen el funcionamiento general de los web services y de nuestro

sistema en particular. En este capítulo veremos una descripción superficial de

estos protocolos y estándares, lo suficiente para que los no iniciados puedan

tener una visión general del proyecto. Seguidamente, en el siguiente capítulo,

veremos la manera específica en que los hemos usado e interrelacionado para

obtener el resultado final de este proyecto.

4.2 XML

4.2.1 Introducción

XML (eXtensible Markup Language) es uno de los aspectos básicos en el

proyecto ya que se usa en todos los niveles. Es nuestro modo de representar la

información, tanto cuando trabajamos contra la base de datos como cuando

intercambiamos datos con el cliente.

Se trata de un metalenguaje extensible de etiquetas que se propone como un

estándar para el intercambio de información estructurada entre diferentes

plataformas. Usa un documento DTD (Document Type Definition) o un XSD

(XML Schema Definition) (ver sección 4.3) para definir la estructura de los

datos que contiene. La flexibilidad que proporciona XML es uno de sus puntos

Arquitectura corporativa de web services Javier Vacas Gallego

25

fuertes ya que a diferencia de otros lenguajes parecidos como HTML

(Hypertext Markup Language), las etiquetas usadas no están prefijadas sino

que es el autor el que define sus propias etiquetas y su propia estructura. Es

importante destacar que XML por sí sólo no tiene ninguna funcionalidad ya que

ha sido diseñado para almacenar, transportar e intercambiar datos.

4.2.2 Usos

En la actualidad muchos sistemas informáticos y bases de datos contienen

información en diversos formatos los cuales son incompatibles entre ellos. El

intercambio de estos datos entre aplicaciones supone un gran desafío para los

programadores. Gracias a XML esta complejidad se reduce y nos permite crear

documentos legibles por cualquier tipo de aplicación, ofreciendo un medio de

intercambio independiente tanto de software como de hardware. Además, cada

vez más aplicaciones hacen uso de XML para almacenar información en

ficheros o directamente en bases de datos.

4.2.3 Sintaxis

Las reglas de sintaxis de XML son simples y fáciles de usar pero muy estrictas,

así que el desarrollo de software que pueda leer y manipular XML es

significativamente asequible.

En el ejemplo siguiente podemos ver un documento sencillo en el cual

observamos que XML es un lenguaje que se auto-describe:

En la primera línea de este ejemplo definimos la versión y la codificación usada

en el documento. En la siguiente línea encontramos el elemento raíz

<?xml version="1.0" encoding="ISO-8859-1"?>
<automovil>
 <marca>Audi</marca>
 <modelo>A4</modelo>
 <versión>1.8T (150 CV)</versión>
 <matricula>3213CRD</matricula>
</automovil>

Arquitectura corporativa de web services Javier Vacas Gallego

26

<automovil> el cual nos indica que la información que encontraremos en el

documento estará relacionada con un automóvil. Esta información se encuentra

en las cuatro líneas siguientes las cuales son los elementos hijos de la raíz.

Finalmente encontramos el fin del elemento raíz. Vemos por tanto, que este

lenguaje es auto-descriptivo ya que a primera vista quedan bastante claras las

características del automóvil en cuestión. También observamos que los

documentos XML no son más que texto plano, esto hace que cualquier editor

de textos sea capaz de leerlos y/o editarlos.

A continuación se describen los requisitos básicos de XML:

• Todos los elementos en un documento deben tener una etiqueta de

clausura que indique su cierre. La declaración XML no tiene esta

etiqueta de clausura ya que no forma parte del documento XML en sí y

por tanto no es un elemento.

• Todas las etiquetas son sensibles a diferencias entre mayúsculas y

minúsculas. Por tanto, las etiquetas de apertura y clausura deben estar

escritas de la misma manera.

• Los elementos deben estar correctamente anidados, el último elemento

en abrirse debe ser el primero en cerrarse. Ejemplo:

• Todos los documentos XML deben tener un elemento raíz único en el

cual estarán incluidos el resto de elementos.

• Los elementos XML pueden tener atributos en pares de nombre-valor.

Estos atributos deben estar entrecomillados.

• Algunos caracteres tienen un significado especial dentro de un

documento XML. Para usarlos utilizaremos referencias igual que

hacemos en HTML (por ejemplo los caracteres “<”, “>” y “&” pasarán a

ser “<”, “%gt” y “&” respectivamente.

<?xml version="1.0" encoding="ISO-8859-1"?>
<raiz>
 <hijo>
 <subhijo>.....</subhijo>
 </hijo>
</raiz>

Arquitectura corporativa de web services Javier Vacas Gallego

27

• La sintaxis para escribir comentarios es la siguiente:

<!-- Esto es un comentario -->

4.2.4 Elementos

Un elemento XML es cualquier cosa que esté entre la etiqueta de principio de

elemento y la etiqueta de final (ambas incluidas). Un elemento puede contener

otros elementos, texto simple o una mezcla de ambos, y aunque se puede usar

cualquier nombre para un elemento, existen ciertas restricciones que se deben

seguir. Son las siguientes:

• Los nombres de los elementos no pueden comenzar por números o

signos de puntuación.

• Los nombres de los elementos no pueden empezar por la secuencia de

letras “xml” (ya sea en mayúscula o minúscula).

• Los nombres de los elementos no pueden contener acentos.

Una importante característica de los elementos XML es que son extensibles.

Añadir nuevos elementos en un documento no impide que una aplicación que

no los espere funcione correctamente. Este, por tanto, es uno de los aspectos

positivos de XML, ya que se puede extender sin perjudicar el funcionamiento

de ninguna aplicación que esté usando ese tipo de documento en concreto.

4.2.5 Atributos

Los atributos pueden proporcionar información adicional sobre los elementos

que los contienen. Esta información no suele formar parte de los datos en sí

mismos, sino que se trata más bien de una indicación para las aplicaciones que

quieran tratar ese documento XML.

En cambio, hay ocasiones en que un atributo se puede usar para representar la

misma información con la que normalmente usaríamos un elemento. Aunque

no hay reglas sobre cuando usar atributos y cuando elementos, ya que se

permite completamente el uso de atributos para representar cualquier tipo de

Arquitectura corporativa de web services Javier Vacas Gallego

28

información, la recomendación es usar siempre que nos sea posible elementos

en lugar de atributos. En el siguiente ejemplo podemos observar esta situación:

Por tanto, es recomendable evitar cuando nos sea posible los atributos, ya que

éstos no pueden contener múltiples valores ni estructuras en forma de árbol

como los elementos. Además, los atributos no son tan fácilmente expandibles

como los son los elementos. A continuación podemos observar un ejemplo de

lo que no deberíamos hacer con el uso de atributos:

Y a continuación vemos esa misma información representada de manera

adecuada.

<vehículo tipo=”motocicleta”>
 <marca>Kawasaki</marca>
 <modelo>Ninja</modelo>
</vehículo>

<vehículo>
 <tipo>motocicleta</tipo>
 <marca>Kawasaki</marca>
 <modelo>Ninja</modelo>
</vehículo>

<mensaje id=”250” dia=”10” mes=”05” año=”2008”
de=”Alberto” para=”Juan”
titulo=”Hola” cuerpo=”Qué tal?”>
</mensaje>

<mensaje id=”250”>
 <fecha>
 <dia>10</dia>
 <mes>05</mes>
 <año>2008</año>
 </fecha>
 <de>Alberto</de>
 <para>Juan</para>
 <titulo>Hola</titulo>
 <cuerpo>Qué tal?</cuerpo>
</mensaje>

Arquitectura corporativa de web services Javier Vacas Gallego

29

Como vemos, sólo usamos un atributo para representar el número de

identificador del mensaje de ejemplo que usamos en este caso. Este

identificador no forma parte de la información que queremos representar sino

de una información adicional y anexa. Por tanto, lo recomendado será usar los

atributos para almacenar los datos sobre los datos (metadatos) y los elementos

para los datos en sí mismos.

4.2.6 Sección CDATA

Normalmente en un documento XML el texto es procesado por el parser, pero

este será ignorado si se encuentra dentro de una sección CDATA. Cuando un

elemento se procesa, el texto entre las etiquetas también es procesado. Esto

es debido a que un elemento puede contener otros elementos en su interior y

por tanto el parser necesita tratar el texto que hay dentro del elemento para

comprobar la existencia de sub-elementos. Este tipo de datos son los llamados

PCDATA (Parsed Character Data).

El término CDATA ((Unparsed) Character Data), por tanto, se usa para indicar

un fragmento de texto que no se procesará por el parser. Esto es

especialmente útil si queremos almacenar en el documento XML algún tipo de

código, por ejemplo, ya que este puede contener caracteres como “<” o “&” que

el parser interpretaría de forma errónea. En el siguiente ejemplo podemos ver

como usaríamos la sección CDATA:

<script>

<![CDATA[
function factorial(a)
{

if (a < 2) then
{
 return 1;
}
else
{
 return a * factorial(a-1);
}

}
]]>

</script>

Arquitectura corporativa de web services Javier Vacas Gallego

30

4.2.7 Namespaces

En XML los nombres de los elementos están definidos manualmente por el

diseñador. Esto suele acabar en conflicto en el momento que nos interesa

mezclar documentos XML de diferentes aplicaciones. Los namespaces o

espacios de nombres nos proporcionan un método para evitar conflictos de

nombre entre elementos.

Este problema se puede solucionar de manera sencilla usando prefijos para

diferenciar las diferentes interpretaciones que queramos darle a los elementos

con el mismo nombre. Cuando usamos estos prefijos en XML se debe definir

un espacio de nombres para cada uno del tipo: xmlns:prefix=”URI”. Además, en

el momento que definamos uno de estos prefijos en un elemento, todos sus

hijos con el mismo prefijo también quedarán asociados con el mismo espacio

de nombres. Los espacios de nombres se pueden crear directamente en los

elementos que van a hacer uso de ellos o directamente en la raíz del

documento XML. A continuación podemos ver un ejemplo del uso de los

espacios de nombres:

Como podemos ver el objetivo es dar a los nombres de espacios un nombre

único, aunque en ocasiones algunas compañías lo usan para indicar una

página web que contenga información sobre este espacio de nombres. En el

caso de que definamos el espacio de nombres directamente en cada uno de

los elementos no será necesario repetir el prefijo en cada hijo de ese elemento.

<raiz xmlns:c="http://www.prexon.com/Coches"
 xmlns:l="http://www.prexon.com/Libros">

<c:producto>
 <c:marca>Audi</c:marca>
 <c:modelo>A4</c:modelo>
</c:producto>

<l:producto>
 <l:nombre>Un mundo sin fin</l:nombre>
 <l:autor>Ken Follet</l:autor>
</l:producto>

</raiz>

Arquitectura corporativa de web services Javier Vacas Gallego

31

4.3 XSD

4.3.1 Introducción

Para poder enviar los datos desde el cliente hacia nosotros o a la inversa, es

esencial que ambos esperamos la misma estructura en el contenido de los

datos que nos van a llegar. Esto lo llevamos a cabo mediante los esquemas

XSD (XML Schema Definition) que nos permiten describir la estructura de un

documento XML, de modo que el que envía los datos lo hará de una manera

que el receptor pueda entender. Podemos decir que los esquemas XSD son los

esqueletos de los documentos XML.

Un esquema XSD nos define los bloques con los que construiremos un

documento XML de manera que nos indica:

• Qué elementos pueden aparecer en el documento XML.

• Qué atributos pueden aparecer en el documento XML.

• Qué elementos son elementos hijo.

• El orden de los elementos hijo.

• El número de los elemento hijo.

• Si un elemento está vacío o puede contener texto.

• Los tipos de datos para los elementos y atributos.

• Valores fijos y/o por defecto para los elementos y atributos.

Otras características importantes de los esquemas XSD es que son fácilmente

extensibles, están escritos en XML y son tipados. Esto nos permite utilizar

esquemas dentro de otros esquemas, crear nuestros propios tipos de datos

derivados de los tipos estándar y referenciar múltiples esquemas en el mismo

documento.

4.3.2 Sintaxis

Para que un esquema sea correcto y no contenga errores el primer paso es

asegurarnos de que está bien formado. Las reglas básicas para comprobar

esto son:

Arquitectura corporativa de web services Javier Vacas Gallego

32

• Debe empezar con una declaración XML.

• Sólo puede tener un único elemento raíz.

• Las etiquetas de comienzo deben tener etiquetas de finalización.

• Hay distinción entre mayúsculas y minúsculas en el nombre de los

elementos.

• Los elementos deben estar anidados correctamente.

• Los valores de los atributos deben estar entrecomillados.

A continuación podemos ver un esquema XSD que nos define los elementos de

un documento XML:

En este ejemplo podemos ver el uso de complexType, usado para indicar que

un elemento contiene hijos. El resto de elementos son de tipo simple ya que no

contienen otros elementos. El elemento <schema> es siempre la raíz de

cualquier esquema XSD y puede contener diversos atributos con información

sobre espacios de nombres, etc. A continuación vamos a ver una breve

descripción de los atributos que usamos en la raíz del esquema:

• xmlns:xs=”http://www.w3.org/2001/XMLSchema”

Indicamos que los tipos de datos usados en el esquema provienen de

http://www.w3.org/2001/XMLSchema.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.prexon.es"
 xmlns="http://www.prexon.es"
 elementFormDefault="qualified">

<xs:element name="tomador">
 <xs:complexType>
 <xs:sequence>

 <xs:element name="nombre" type="xs:string"/>
 <xs:element name="apellidos" type="xs:string"/>
 <xs:element name="direccion" type="xs:string"/>
 <xs:element name="poblacion" type="xs:string"/>

 </xs:sequence>
 </xs:complexType>
</xs:element>

</xs:schema>

Arquitectura corporativa de web services Javier Vacas Gallego

33

• targetNamespace="http://www.prexon.es"

Indicamos que los elementos definidos en este esquema provienen de

http://www.prexon.es.

• xmlns=”http://www.prexon.es”

Indicamos que el espacio de nombres por defecto es

http://www.prexon.es.

• elementFormDefault="qualified"

Indicamos que cualquier elemento que se use por un documento XML y

que esté declarado en este esquema debe ser asignado a un espacio de

nombres.

En el siguiente ejemplo observamos cómo el documento XML correspondiente

hace referencia a su esquema XSD:

Vemos como también tenemos atributos en el elemento raíz del documento, su

significado es el siguiente:

• xmlns=”http://www.prexon.es”

Indicamos que el espacio de nombres por defecto, en este caso

http://www.prexon.es. Esta declaración señala que todos los elementos

usados en este documento XML están declarados en el espacio de

nombres http://www.prexon.es.

• xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

Definimos la instancia del espacio de nombres del esquema XSD.

<?xml version="1.0"?>
<tomador xmlns="http://www.prexon.es"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.prexon.es mensaje.xsd">

 <nombre>Alberto</nombre>
 <apellidos>Gómez Pérez</apellidos>
 <direccion>Avda. Mediterraneo 3, 4 A</direccion>
 <poblacion>Badalona</poblacion>

</tomador>

Arquitectura corporativa de web services Javier Vacas Gallego

34

• xsi:schemaLocation="http://www.prexon.es mensaje.xsd"

Este atributo tiene dos parámetros. El primero es el espacio de nombres

que utilitzaremos. En el segundo indicamos la localización del esquema

XSD que vamos a usar para ese espacio de nombres.

4.3.3 Tipos simples

Un elemento de tipo simple es un elemento XML que únicamente contiene

texto. No puede contener otros elementos o atributos. Para definir uno de estos

elementos se debe indicar su nombre y su tipo. También podemos especificar

los valores por defecto o fijos de los elementos. Vamos a ver algunos ejemplos:

Todos los atributos son definidos como tipos simples, así que su declaración es

similar a la de los elementos:

Con los atributos también podemos definir valores por defecto o fijos, pero

como vemos en el anterior ejemplo también podemos indicar que son

obligatorios (por defecto son opcionales).

<marca>Audi</marca>
<antigüedad>4</antigüedad>
<fecha_matriculacion>2004-04-27</fecha_matriculacion>
<color>blanco</color>
<tipo>coche</tipo>

<xs:element name="marca" type="xs:string"/>
<xs:element name="antigüedad" type="xs:integer"/>
<xs:element name="fecha_matriculacion" type="xs:date"/>
<xs:element name="color" type="xs:string" default=”blanco”/>
<xs:element name="tipo" type="xs:string" fixed=”coche”/>

<marca id=”23”>Audi</marca>

<xs:attribute name="id" type="xs:integer" use=”required”/>

Arquitectura corporativa de web services Javier Vacas Gallego

35

También podemos hacer uso de las llamadas restricciones, usadas para indicar

los valores que son aceptados para elementos XML o atributos. Existen más de

diez tipos de restricciones distintos. A continuación podemos ver un ejemplo de

un par de ellas. En el primero estamos definiendo el conjunto de valores que

serán aceptados en el elemento marca, y en el segundo decimos el rango de

valores correcto para el elemento edad.

4.3.4 Tipos complejos

Un el elemento de tipo complejo contiene otros elementos y/o atributos.

Disponemos de cuatro tipos de elementos complejos: los vacíos, los que

contienen únicamente otros elementos, los que contienen sólo texto y los que

contienen ambos elementos y texto. En el siguiente ejemplo vemos la manera

en que definiremos elementos complejos:

<xs:element name="marca">
<xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Audi"/>
 <xs:enumeration value="Seat"/>
 <xs:enumeration value="Renault"/>
 </xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element name="edad">
<xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="120"/>
 </xs:restriction>
</xs:simpleType>
</xs:element>

Arquitectura corporativa de web services Javier Vacas Gallego

36

En el anterior ejemplo vemos como el elemento <vehículo> hace uso del tipo

complejo. También podemos observar el uso del indicador <sequence> que

nos señala que los elementos hijo deben situarse en el mismo orden en que

han estado declarados.

Un elemento complejo vacío no podrá tener ningún contenido excepto por lo

que se refiere a atributos. En el siguiente ejemplo vemos como habría que

declarar uno de estos elementos vacíos:

Los indicadores se usan para controlar de qué manera vamos a controlar los

elementos en los documentos XML. En total hay siete indicadores divididos en

tres grupos:

<vehiculo>
 <marca>Audi</marca>
 <modelo>A4</modelo>
</vehiculo>

<xs:element name="vehiculo">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="marca" type="xs:string"/>
 <xs:element name="modelo" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<poliza id="2344" />

<xs:element name="poliza">
 <xs:complexType>
 <xs:attribute name="id" type="xs:positiveInteger"/>
 </xs:complexType>
</xs:element>

Arquitectura corporativa de web services Javier Vacas Gallego

37

• Orden: estos indicadores se usan para fijar el orden en que debe

aparecer cada elemento.

• Ocurrencia: indica el número mínimo y/o máximo de veces que se puede

repetir un elemento.

• De grupo: se usan para definir conjuntos de atributos.

4.4 SOAP

4.4.1 Introducción

SOAP (Simple Object Acces Protocol) es el pilar en que se basa este proyecto

así como cualquier web service. Como ya hemos explicado, cada vez se están

invirtiendo más esfuerzos en el desarrollo de aplicaciones para optimizar la

comunicación entre ellas. Hasta ahora cuando una aplicación quería

comunicarse con otra de manera remota se solía usar Remote Procedure Calls

(RPC), pese a que este sistema presenta problemas de compatibilidad y

seguridad debido a que el tráfico que genera es normalmente bloqueado por

firewalls y proxys. Para mejorar esta comunicación se pensó en usar HyperText

Transfer Protocol (HTTP) que, aunque no está diseñado para esta situación,

está soportado por la gran mayoría de sistemas. De este modo nació SOAP, el

cual ofrece el medio perfecto para que las aplicaciones se comuniquen entre

ellas independientemente de que estén ejecutándose en diferentes sistemas

operativos o estén desarrolladas con distintos lenguajes de programación.

4.4.2 Sintaxis

Un mensaje SOAP no es más que XML ordinario que contiene los siguientes

elementos:

• Envelope: contiene la identificación del documento XML como un

mensaje SOAP.

Arquitectura corporativa de web services Javier Vacas Gallego

38

• Header: es un elemento opcional que contiene la información de

cabecera.

• Body: contiene toda la información ya sea de llamada o de respuesta.

• Fault: contiene información de los posibles errores que hayan ocurrido

en el procesamiento del mensaje. Es un elemento opcional.

Existen ciertas reglas de sintaxis que se deben cumplir cuando hablamos de

mensajes SOAP:

• Debe estar en formato XML.

• Debe usar los espacios de nombres de Envelope y Encoding.

• No debe contener ninguna referencia a documentos DTD (Document

Type Definition)

• No debe contener ninguna instrucción de procesamiento de XML.

En la siguiente figura se puede observar el esqueleto de un mensaje SOAP:

4.4.3 Envelope

El elemento Envelope debe ser la raíz del documento XML en el que éste se

define como un mensaje SOAP. Dentro de este elemento encontramos la

definición del espacio de nombres xmlns:soap, el cual debe estar siempre

asociado con "http://www.w3.org/2001/12/soap-envelope", de manera que si

<?xml version="1.0"?>
<soap:Envelope
 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:Header>
 ...
 ...
</soap:Header>
<soap:Body>
 ...
 ...
 <soap:Fault>
 ...
 ...
 </soap:Fault>
</soap:Body>
</soap:Envelope>

Arquitectura corporativa de web services Javier Vacas Gallego

39

se usa un espacio de nombres diferente la aplicación debe generar un error y

descartar el mensaje. Por otra parte el atributo encodingStyle se usa para

definir los tipos de datos usados en el documento. Este atributo puede aparecer

en cualquier elemento del mensaje, de manera que se aplicará sobre los

contenidos de ese elemento y sus elementos hijos. Un aspecto importante a

destacar es que un mensaje SOAP no tiene ningún tipo de dato definido por

defecto.

4.4.4 Header

El elemento Header contiene información específica del mensaje como podría

ser la autenticación. Este elemento es opcional y en el caso que exista debe

ser el primer elemento hijo de envelope. SOAP define tres atributos en el

espacio de nombres por defecto, los cuales son actor, mustUnderstand y

encodingStyle. A continuación veremos una breve descripción de cada uno de

ellos:

• actor: cuando un mensaje SOAP es enviado puede pasar por varios

puntos intermedios antes de llegar al destino final. En ocasiones nos

puede interesar pasar parte del mensaje a uno de estos puntos

intermedios. El atributo actor, por tanto, se usa para dirigir el elemento

Header a algún punto intermedio particular.

• mustUnderstand: este atributo se usa para indicar cuando el receptor

debe procesar el elemento Header obligatoriamente o bien hacerlo de

manera opcional.

• encodingStyle: como hemos explicado antes este atributo indica los tipos

de datos de los que se va a hacer uso en el elemento que lo contenga

(en este caso Header).

Arquitectura corporativa de web services Javier Vacas Gallego

40

4.4.5 Body

El elemento Body (de obligada presencia) es el que contiene el mensaje que se

desea hacer llegar al punto de destino final. El ejemplo siguiente consiste en un

mensaje SOAP el cual solicita el precio de un libro concreto y recibe como

resultado otro mensaje con la información requerida. Nótese que el hijo del

elemento Body debe siempre contener el espacio de nombres al cual

pertenece.

Respuesta SOAP:

4.4.6 Fault

El elemento opcional Fault contiene los errores que se hayan podido producir y

el estado del mensaje SOAP. Si este elemento está presente debe aparecer

como hijo de Body y sólo en una ocasión. Dentro de Fault podemos encontrar

los siguientes subelementos:

• faultcode: código identificatorio del error. Existen los siguientes valores

para este subelemento:

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:Body>
 <m:GetPriceResponse xmlns:m="http://www.w3schools.com/prices">
 <m:Price>19.95</m:Price>
 </m:GetPriceResponse>
</soap:Body>
</soap:Envelope>

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:Body>
 <m:GetPrice xmlns:m="http://www.w3schools.com/prices">
 <m:Item>World without end</m:Item>
 </m:GetPrice>
</soap:Body>
</soap:Envelope>

Arquitectura corporativa de web services Javier Vacas Gallego

41

o VersionMismatch: el espacio de nombres del elemento Envelope

es incorrecto.

o MustUnderstand: el atributo mustUnderstand tiene valor 1

(procesamiento obligatorio) pero, a su vez, el elemento Header no

se ha entendido.

o Client: el mensaje no está formado correctamente o contiene

información inválida.

o Server: hubo un problema con el servidor y el mensaje no pudo

ser procesado.

• faultstring: explicación del error en formato legible.

• faultactor: contiene información acerca de quién ha causado el error.

• detail: contiene información específica del error.

4.4.7 SOAP y HTTP

La transferencia de un mensaje SOAP no es más que un par petición-

respuesta HTTP que cumple con las reglas de codificación de SOAP. El envío

de la petición SOAP se puede realizar ya sea mediante un HTTP POST o bien

con un HTTP GET. En el caso de llevar a cabo el envío a través de un HTTP

POST se deben incluir de manera obligatoria las siguientes cabeceras HTTP:

Content-Type, en la que indicaremos que se trata un mensaje SOAP; y

Content-Length, la cual contendrá el número de bytes que contiene el elemento

Body.

4.4.8 Nota crítica

Como cualquier tecnología existente, SOAP tienes ciertas ventajas y ciertos

inconvenientes. En la siguiente lista se pueden ver algunas de las más

significativas:

• Ventajas

o Usar SOAP sobre HTTP facilita la comunicación a través de

proxys y firewalls.

Arquitectura corporativa de web services Javier Vacas Gallego

42

o SOAP es muy versátil, de manera que puede ser usado con

diferentes protocolos de comunicación. El protocolo estándar es

HTTP aunque también se pueden usar otros como SMTP.

• Desventajas

o XML usa texto raso para representar la información, esto provoca

que SOAP sea considerablemente más lento que otras

tecnologías como CORBA (Common Object Request Broker

Architecture). Esto no es muy grave si los mensajes enviados son

de reducido tamaño, como es el caso de este proyecto.

4.5 WSDL

4.5.1 Introducción

WSDL es un lenguaje escrito en XML que nos permite describir web services.

Un documento WSDL especifica la localización del servicio así como las

operaciones o métodos de que dispone. Por tanto, lo usaremos en este

proyecto para indicar a nuestros clientes la funcionalidad del web service así

como el lugar desde donde puede ser consumido.

4.5.2 Estructura del documento

Para describir un web service los documentos WSDL disponen de los

siguientes elementos:

• <portType>: contiene las operaciones que el web service puede llevar a

cabo.

• <message>: contiene los mensajes usados por el web service.

• <types>: contiene los tipos de datos que el web service utiliza.

• <binding>: especifica los protocolos de comunicación del web service.

Arquitectura corporativa de web services Javier Vacas Gallego

43

Un documento WSDL puede contener, también, otros elementos de extensión

o bien un elemento del servicio que se encarga de hacer posible la agrupación

de las definiciones de diversos WS en un único documento WSDL.

4.5.3 Elemento <portType>

Este elemento es el más importante de un documento WSDL. En él se incluye

la descripción del web services, las operaciones que pueden ser ejecutadas así

como los mensajes que están involucrados.

Si los analizamos desde el punto de vista de un lenguaje de programación

tradicional el elemento <portType> se puede equiparar con una librería de

funciones (o con una clase).

4.5.4 Elemento <message>

Este elemento permite definir los datos de cualquiera de las operaciones que

realice el web service. Cada uno de estos mensajes puede consistir en una o

varias partes, las cuales, siguiendo el símil de los lenguajes tradicionales son

comparables a los parámetros pasados a una función al llamarla.

4.5.5 Elemento <types>

Como su nombre indica este elemento define qué tipos de datos van a ser

usados por el web service. Para evitar problemas de dependencias de

plataformas, WSDL usa el esquema XML para definir estos tipos de datos.

4.5.6 Elemento <binding>

Este elemento simplemente nos indica el formato del mensaje y los detalles del

protocolo usado por cada una de las operaciones definidas en el elemento

<portType>.

Arquitectura corporativa de web services Javier Vacas Gallego

44

4.5.7 Ejemplo

A continuación se puede observar lo que sería una versión bastante

simplificada de un documento WSDL:

En este ejemplo podemos ver como el elemento <portType> nos indica que hay

un puerto con nombre bookPrices el cual contiene la operación getPrice. Esta

operación tiene el mensaje de consulta getPriceRequest y el mensaje de

respuesta getPriceResponse.

Por otra banda en los elementos <message> observamos las partes de cada

mensaje (en este caso sólo una por mensaje) así como los tipos de datos

asociados.

Si lo comparamos con un lenguaje de programación tradicional bookPrices

sería la librería de funciones, getPrice sería una función concreta que tendría

como parámetro de entrada getPriceRequest y como parámetro de salida

getPriceResponse.

4.5.8 Tipos de operaciones

Básicamente los tipos de operaciones más utilizados en WSDL son los pares

petición-respuesta, pero también disponemos de los siguientes tipos:

<message name="getPriceRequest">
 <part name="book" type="xs:string"/>
</message>

<message name="getPriceResponse">
 <part name="price" type="xs:string"/>
</message>

<portType name="bookPrices">
 <operation name="getPrice">
 <input message="getPriceRequest"/>
 <output message="getPriceResponse"/>
 </operation>
</portType>

Arquitectura corporativa de web services Javier Vacas Gallego

45

• Unidireccional: la operación puede recibir un mensaje pero no retornará

ninguna respuesta.

• Petición-respuesta: como se ha mencionado anteriormente la operación

puede recibir una petición y enviará una respuesta.

• Solicitud-respuesta: la operación puede enviar una petición y esperará

una respuesta.

• Notificación: la operación puede enviar un mensaje pero no esperará

ningún tipo de respuesta.

4.5.9 Operación unidireccional

Un ejemplo de operación de tipo unidireccional sería el siguiente:

En este ejemplo vemos que el puerto bookPrices define un tipo de operación

unidireccional llamado setPrice, el cual permite la entrada de nuevos mensajes

de tipo newBookPrice con los parámetros de entrada book y price, sin embargo

observamos como no hay ningún parámetro de salido definido.

<message name="newBookPrice">
 <part name="book" type="xs:string"/>
 <part name="price" type="xs:string"/>
</message>

<portType name="bookPrices">
 <operation name="setPrice">
 <input name="newPrice" message="newBookPrices"/>
 </operation>
</portType >

Arquitectura corporativa de web services Javier Vacas Gallego

46

4.5.10 Operación petición-respuesta

El siguiente ejemplo muestra como sería una operación petición-respuesta:

Aquí observamos como existe una operación de petición-respuesta con nombre

getPrice que requiere un mensaje de entrada, en este caso getPriceRequest

con parámetro book, y devuelve un mensaje llamado getPriceResponse con

parámtro price.

4.5.11 Binding

Para poder describir mejor la funcionalidad del elemento binding veámos el

siguiente ejemplo:

<message name="getPriceRequest">
 <part name="book" type="xs:string"/>
</message>

<message name="getPriceResponse">
 <part name="price" type="xs:string"/>
</message>

<portType name="bookPrices">
 <operation name="getPrice">
 <input message="getPriceRequest"/>
 <output message="getPriceResponse"/>
 </operation>
</portType>

Arquitectura corporativa de web services Javier Vacas Gallego

47

En este ejemplo el elemento binding tiene dos atributos como son el nombre y

el tipo. Este último nos apunta hacia el puerto del binding que en este caso es

bookPrices.

De la misma manera el elemento soap:binding también contiene dos atributos.

Por una parte el atributo style puede tener o bien el valor “rpc”, o bien el valor

“document”. Por otra parte el atributo transport define la versión concreta del

protocolo SOAP que se va a usar, en este caso HTTP.

Finalmente el elemento operation define cada una de las operaciones que

incluye el puerto. Para cada una de estas operaciones se debe definir la

correspondiente acción SOAP, así como la manera en que los parámetros de

entrada y salida se codifican, en nuestro caso usamos “literal”.

<message name="getPriceRequest">
 <part name="book" type="xs:string"/>
</message>
<message name="getPriceResponse">
 <part name="price" type="xs:string"/>
</message>

<portType name="bookPrices">
 <operation name="getPrice">
 <input message="getPriceRequest"/>
 <output message="getPriceResponse"/>
 </operation>
</portType>

<binding type="bookPrices " name="b1">

<soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <operation>
 <soap:operation
 soapAction="http://ejemplo.com/getPrice"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>

Arquitectura corporativa de web services Javier Vacas Gallego

48

4.5.12 Sintaxis

A continuación se expone un listado de la sintaxis completa de WSDL 1.2.

<wsdl:definitions name="nmtoken"? targetNamespace="uri">
 <import namespace="uri" location="uri"/> *
 <wsdl:documentation /> ?
 <wsdl:types> ?
 <wsdl:documentation /> ?
 <xsd:schema /> *
 </wsdl:types>
 <wsdl:message name="ncname"> *
 <wsdl:documentation /> ?
 <part name="ncname" element="qname"? type="qname"?/> *
 </wsdl:message>
 <wsdl:portType name="ncname"> *
 <wsdl:documentation /> ?
 <wsdl:operation name="ncname"> *
 <wsdl:documentation /> ?
 <wsdl:input message="qname"> ?
 <wsdl:documentation /> ?
 </wsdl:input>
 <wsdl:output message="qname"> ?
 <wsdl:documentation /> ?
 </wsdl:output>
 <wsdl:fault name="ncname" message="qname"> *
 <wsdl:documentation /> ?
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:serviceType name="ncname"> *
 <wsdl:portType name="qname"/> +
 </wsdl:serviceType>
 <wsdl:binding name="ncname" type="qname"> *
 <wsdl:documentation /> ?
 <-- binding details --> *
 <wsdl:operation name="ncname"> *
 <wsdl:documentation /> ?
 <-- binding details --> *
 <wsdl:input> ?
 <wsdl:documentation /> ?
 <-- binding details -->
 </wsdl:input>
 <wsdl:output> ?
 <wsdl:documentation /> ?
 <-- binding details --> *
 </wsdl:output>
 <wsdl:fault name="ncname"> *
 <wsdl:documentation /> ?
 <-- binding details --> *
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="ncname" serviceType="qname"> *
 <wsdl:documentation /> ?
 <wsdl:port name="ncname" binding="qname"> *
 <wsdl:documentation /> ?
 <-- address details -->
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Arquitectura corporativa de web services Javier Vacas Gallego

49

4.6 JPA

4.6.1 Introducción

JPA (Java Persistence API) es una plataforma desarrollada para el lenguaje de

programación Java que permite gestionar datos relacionales con el objetivo de

usar las ventajas del modelo de orientación a objetos al interactuar con bases

de datos relacionales. El funcionamiento de JPA se basa en POJOs (Plain Old

Java Object) para usar persistencia en nuestras aplicaciones.

4.6.2 Entidades

Cuando hablamos de persistencia normalmente nos referimos a los datos que

son permanentes en nuestra aplicación y que se suelen almacenar en medios

tales como bases de datos o ficheros. Sin embargo en JPA, estos datos se

llaman entidades. Estas entidades hacen referencia a una colección lógica de

datos que pueden ser almacenados y recuperados como un todo.

Las entidades forman el núcleo de JPA y disponen de diferentes características

y propiedades. Las más importantes son las siguientes:

• Persistencia. Se encarga de almacenar y recuperar las entidades de un

medio persistente como una base de datos.

• Identidad. Esta propiedad se usa para identificar una entidad única

entre diferentes entidades en una base de datos.

• Transaccionabilidad. Las operaciones de crear, actualizar y borrar de

las entidades se llevan a cabo en un contexto transaccional.

4.6.3 Mapeado objeto-relacional

Sabemos que el modelo de orientación a objetos funciona con clases, de la

misma manera que las bases de datos lo hacen con tablas. A partir de ahora,

gracias al uso de JPA, no trabajaremos con tablas sino con objetos, y, por

tanto, realizaremos todas las operaciones y consultas contra objetos. Esto nos

Arquitectura corporativa de web services Javier Vacas Gallego

50

permitirá evitar la utilización del lenguaje relacional asociado a tablas,

columnas, claves, etc. Por tanto, usar este modelo nos proporcionará

características propias del paradigma de orientación a objetos como por

ejemplo la herencia.

4.6.4 Metadatos

En cada entidad tendremos asociado un conjunto de metadatos que la

describirán y permitirán a la capa de persistencia que sea reconocida,

interpretada y gestionada de manera correcta, desde el momento en que se

carga hasta que es invocada. Existen dos maneras distintas de especificar los

metadatos dependiendo, únicamente, de la elección del desarrollador. Son las

siguientes:

• Anotaciones. Permiten añadir metadatos al código de una manera

estructurada. Fueron introducidas por primera vez como parte de la

plataforma Java SE 5. Es el tipo de metadatos que hemos usado en este

proyecto.

• XML. Esta modalidad permite especificar los metadatos de cada entidad

de manera externa al código mediante un documento XML.

4.7 Sumario del capítulo

En este capítulo hemos hecho un extenso repaso a las tecnologías usadas en

la realización del proyecto. Hemos empezado por la base de representación y

almacenamiento de datos, como es XML, y hemos visto como definimos la

estructura de estos datos para coordinarnos con los clientes. También hemos

hecho un repaso por el protocolo de comunicación que hemos utilizado en el

proyecto, como es SOAP, así como la manera en que describimos esta

comunicación, WSDL. Por último hemos repasado una innovadora tecnología

de persistencia, llamada JPA, que nos permite separar la capa de base de

datos totalmente de la capa Java.

Arquitectura corporativa de web services Javier Vacas Gallego

51

Capítulo 5: Desarrollo

5.1 La base: XML

Podemos considerar que en este proyecto el lenguaje XML toma un papel

especialmente significativo, ya que no sólo lo usamos para el envío y la

recepción de los datos que necesitaremos para llevar a cabo todas las

operaciones de nuestro web service, sino que, además, utilizaremos XML como

sistema nativo de datos. Es decir, en la base de datos guardaremos y

recuperaremos la información directamente en formato XML.

Como ya hemos comentado XML se ha convertido en uno de los métodos más

usados para representar datos siendo independiente de plataforma. Gracias a

esto, su uso es de mucha utilidad para llevar a cabo transacciones de

información entre distintas aplicaciones o sistemas. Las ventajas que ofrece el

hecho de almacenar documentos XML en una base de datos son amplias.

También lo es el tipo de aplicaciones que se pueden llegar a desarrollar con

esta tecnología, por ejemplo:

• Aplicaciones que permiten recuperar ciertos documentos basándose en

su contenido.

• Aplicaciones que sólo quieran recuperar un contenido parcial del

documento.

• Aplicaciones con la posibilidad de agregar documentos.

La razón por la que hemos usado una base de datos relacional para almacenar

datos XML en este proyecto, es porque Microsoft SQL Server 2005 nos

Arquitectura corporativa de web services Javier Vacas Gallego

52

proporciona poderosas herramientas respecto a la consulta y modificación de

datos, de la misma manera que lo hace con los datos relacionales

tradicionales. Para llevar a cabo esto se ha creado en SQL Server 2005 un

nuevo tipo de datos nativo llamado XML, que nos permite almacenar en la

misma base de datos tanto datos relacionales como documentos XML

simultáneamente.

Para llevar a cabo estas operaciones y consultas de los datos almacenados en

forma de XML se utiliza el lenguaje XQuery. Además, XQuery también incluye

XPath, que nos permite modificar directamente los datos XML, como por

ejemplo, añadir o borrar sub-árboles del documento o actualizar ciertos valores.

En forma de conclusión, destacaremos los grandes beneficios que aporta para

el desarrollador el hecho de no tener que diseminar los datos para

almacenarlos en la base de datos, y aún más importante, tener que reconstruir

el documento XML manualmente que se va a enviar como respuesta a una

solicitud.

5.2 Esquemas de comunicación

5.2.1 Introducción

De nada nos valdría realizar un sistema de comunicación como nuestro web

service si no sabemos qué datos nos van a llegar ni cómo tratarlos. Así pues,

necesitamos definir una estructura fija que sepamos tanto nosotros como el

consumidor del web service, de manera que lo que obtengamos de esa

transmisión de datos sea una información, para la cual, nuestros sistemas

estén preparados para procesar.

Sabemos que en nuestro web service dispondremos de diversos tipos de

operaciones que nos definirán toda la funcionalidad del sistema. Algunas de

estas operaciones tendrán muchos puntos en común respecto a los datos que

necesitan para llevarse a cabo. Por ejemplo, los datos del tomador del seguro

serán necesarios tanto para un producto del ramo de autos, como de

accidentes o de hogar. Por este motivo definiremos básicamente cinco

Arquitectura corporativa de web services Javier Vacas Gallego

53

esquemas XSD que darán forma a los documentos XML, los cuales contendrán

todos los datos con los que trabajaremos.

5.2.2 Esquema de solicitud de cotización

El esquema de solicitud de cotización nos definirá la estructura del documento

XML que nuestros clientes nos harán llegar cuando deseen hacer una petición

de cualquier tipo de operación de cotización. Es decir, se usará el mismo

esquema ya sea una solicitud para una póliza de decesos, salud, autos, etc. y

siempre cuando se trate de una cotización, ya que para las emisiones se usará

otro tipo de esquema.

El primer elemento de este esquema será el de identificación, en él haremos

constar los datos básicos del tomador del seguro, ya sea persona física o

jurídica, así como sus datos de contacto. En este elemento como datos

opcionales dependiendo del tipo de producto del que se trate, también

incorporamos los datos del propietario, este sería el caso, por ejemplo, de los

seguros de hogar o automóviles.

El segundo y principal elemento que incluiremos en nuestro esquema es el que

contendrá los datos del riesgo. La información que este elemento aporte nos

servirá para hacer el cálculo del precio de la póliza para la cual el cliente haya

hecho la solicitud. Como nuestro objetivo es hacer un sistema reutilitzable

daremos soporte a los ramos más comunes del mundo asegurador, aunque en

un principio Aura no los comercialice. Por tanto, para especificar el riesgo

dispondremos de los siguientes elementos:

• Personales. Utilizaremos este elemento cuando lo que queramos

asegurar sea una persona, por ejemplo, estaríamos hablando de

seguros de decesos, accidentes, salud o repatriación. Necesitaremos,

por tanto, datos como fechas de nacimiento, sexo o profesión, así como

país de destino en el caso del seguro de repatriación para inmigrantes.

• Inmuebles. Este elemento lo usaremos con los ramos relacionados con

los bienes inmuebles, básicamente el seguro de hogar. En el incluiremos

Arquitectura corporativa de web services Javier Vacas Gallego

54

la información de la localización del inmueble, los datos a cerca de su

construcción como materiales, años de antigüedad, etc. También

necesitaremos hacer constar los datos sobre la seguridad de la que

dispone (alarmas, vigilante, etc.). Por último, también será necesaria

especificar los capitales, es decir, contenido, continente, objetos de

valor, caja fuerte, etc.

• Embarcaciones. Este es un elemento simple ya que nos sirve para el

ramo de embarcaciones. En él simplemente incluiremos los datos de la

embarcación que se desee asegurar.

• Vehículos. Este es uno de los ramos más complejos, ya que se incluyen

automóviles de diversas categorías como motocicletas o coches. Lo

primero que necesitaremos saber es de que modelo de vehículo de

trata, esta información la obtendremos a partir del código

correspondiente de la base de datos oficial de modelos de automóviles

de España llamada Base SIETE. A partir de aquí se harán tres

distinciones dependiendo de la categoría del vehículo:

o Categoría 1 (Coches). Si el automóvil del que se quiere hacer el

seguro es un coche, necesitaremos saber qué uso se le va a dar

(particular, transporte público, etc), los accesorios que se incluyen

y su valor, y el código postal de circulación.

o Categoría 2 (Vehículos industriales). Para esta categoría lo

primero que necesitamos saber es qué tipo de vehículo es y las

características que tiene. También nos interesará saber su peso,

el uso que se le va a dar, así como la mercancía que va a

transportar.

o Categoría 3 (Motos). En este caso simplemente nos interesará

saber el valor de los accesorios que pueda tener y el código

postal de circulación.

En estos tres casos, por supuesto, también nos interesará saber la

matrícula. Una vez que tengamos los datos del vehículo, necesitamos

obtener los del conductor o conductores. Estos datos serán simplemente

Arquitectura corporativa de web services Javier Vacas Gallego

55

el tipo de conductor (habitual u ocasional), su número de identificación y

su sexo. Por último también nos interesará saber la siniestralidad que ha

sufrido el conductor habitual en los últimos años para poder hacer un

cálculo de una posible bonificación ya sea positiva o negativa.

• Asistencia Jurídica. Este producto consiste en ofrecer los servicios de

un abogado para dar respuesta cuando el cliente lo estime oportuno a

las dudas jurídicas que le puedan surgir. Por tanto, simplemente

necesitamos el volumen de consultas que se quieren contratar.

Una vez que disponemos de los datos del riesgo, necesitamos otros datos

complementarios, los cuales formarán el tercer de los principales elementos de

nuestro esquema de solicitud. Estos datos son la fecha de efecto en la que

entrará en vigor la póliza, el fraccionamiento con el que el cliente desea hacer

la contratación, así como los datos del seguro en vigor (en caso de que ya

disponga de uno del mismo tipo en otra compañía).

Por último también se incluirá un elemento en el que el cliente se identificará

con unas credenciales que le habremos proporcionado previamente y que

servirán para autorizarle a realizar la operación que solicita.

5.2.3 Esquema de respuesta de cotización

En el esquema de respuesta de las cotizaciones dispondremos básicamente la

mínima información que el cliente necesite para evaluar si está interesado en la

contratación del producto que le ofrecemos. Para ello le enviaremos la

siguiente información:

• Ramo. En este elemento informaremos del ramo del que se ha obtenido

la solicitud.

• Precios. Este es un elemento que se puede repetir varias veces ya que

en ocasiones ofreceremos diferentes modalidades (como terceros, todo

riesgo, etc. en el seguro de autos). Por tanto, este elemento contendrá la

modalidad, el importe del primer recibo, de los siguientes recibos y el

Arquitectura corporativa de web services Javier Vacas Gallego

56

precio anual, así como el tipo de fraccionamiento. Por último, también

contendrá un identificador como atributo que servirá para identificar esta

modalidad en concreto en caso de que el cliente desee contratar la

póliza. Dentro de este elemento se incluirá otro que ofrecerá información

sobre las coberturas que están incluidas en cada una de las

modalidades que se ofrezcan.

• Condiciones. En este elemento haremos constar cualquier condición

que sea necesaria para contratar la póliza. Por ejemplo, en una póliza de

autos podría ser necesario que un perito revisara el coche que se quiere

asegurar a todo riesgo para comprobar que está en buen estado.

• Documentos. Aquí haremos constar cualquier documento que pueda

necesitar el cliente para decidirse por la contratación de la póliza, como

por ejemplo, las condiciones generales del seguro. Cualquier documento

que deseemos hacer llegar al cliente será en formato PDF y estará

codificado en base 64 para poder hacer el envío a través de XML de una

manera satisfactorio.

5.2.4 Esquema de solicitud de emisión

En el esquema de cotización hemos pedido ciertos datos personales básicos

del tomador como el nombre o el NIF. Sin embargo, en el momento de realizar

la contratación, el cliente nos debe informar de todos sus datos de manera

pormenorizada, de manera que completemos los datos de los que ya

disponíamos en la cotización. Estos nuevos datos consistirán en aspectos

como la dirección, población, número o números de teléfono, dirección de

correo electrónico, etc. Además, dependiendo del producto también habrá que

informar de datos similares para el conductor o conductores si se trata de un

seguro de autos.

También es muy importante la información de cobro. Actualmente en Aura,

para pólizas nuevas, sólo existe la posibilidad de llevar a cabo el cobro por

Arquitectura corporativa de web services Javier Vacas Gallego

57

domiciliación bancaria. De todas maneras, dispondremos otros medios de pago

por si en algún momento necesitan ser utilizados.

Por último, también necesitaremos hacer constar cual es concretamente la

modalidad del seguro que el cliente desea contratar. En la respuesta de la

solicitud de cotización se le ofrecerán diversos precios, con distintas

modalidades y fraccionamientos, cada uno con un identificador único que nos

tendrá que comunicar en la solicitud de emisión para que nosotros podamos

localizar la oferta que el cliente desea contratar.

5.2.5 Esquema de respuesta de emisión

Esta será la información final que el cliente recibirá y certificará que la póliza ya

ha sido emitida de manera correcta. La información que contendrá este último

esquema es la siguiente:

• Número de póliza. Este es un dato crucial para poder llevar a cabo la

identificación de una póliza.

• Estado. En ocasiones la póliza no podrá ser emitida de manera directa

sino que es posible que se necesite algún tipo de documentación para

verificar los datos que el cliente nos ha comunicado. Por ejemplo, si se

trata de un seguro de autos, necesitaríamos el carné de conducir, la

documentación del automóvil que se quiere asegurar, etc.

• Requisitos. Será en este elemento en el que se le comunicará al cliente

qué documentos debe aportar para emitir definitivamente su póliza. Se

usará sólo en caso de que sea necesario.

• Documentos. En este elemento se transmitirán al cliente los

documentos que sean necesarios para demostrar que tiene una póliza

en vigor. También se le enviarán otro tipo de documento como las

condiciones particulares del seguro que ha contratado.

Arquitectura corporativa de web services Javier Vacas Gallego

58

• Información complementaria. Cualquier otra información que pueda

ser necesaria transmitir al cliente o al corredor se situará en este

elemento.

5.2.6 Esquema de listas de valores

Como ya hemos comentado en ocasiones el consumidor de nuestro web

service necesitará usar unos códigos para ciertos campos de las operaciones

de solicitud, por ejemplo, para especificar los accesorios que tiene un coche. El

esquema para este tipo de información será muy simple, ya que únicamente

existirá un tipo de elemento que se repetirá tantas veces como sea necesario

(dependiendo del tipo de lista que se haya solicitado), donde se especificará un

código numérico y su correspondiente descripción. Este código es que nos

tendrán que envían para que nosotros reconozcamos a lo que está haciendo

referencia.

5.3 Flujo de comunicación

Una vez que ya está clara la forma en que representaremos los datos y la

estructura de estos, es el momento para establecer la comunicación. El primer

paso, como es lógico, lo establecerá el consumidor del web service, ya sea un

agente o corredor, o bien un cliente final, en el caso de que la consulta se

realice desde un motor de multitarificación de acceso público.

Una vez que nosotros recibamos el documento XML con la información

correspondiente a la solicitud de cotización, haremos las comprobaciones y

cálculos pertinentes para devolver al cliente la información que nos ha

requerido. En caso de que las características que el cliente nos indica no

entren dentro de nuestra política de negocio, también devolveremos una

descripción del motivo del rechazo. De la misma manera, si se produce algún

error de tipo técnico, como datos incorrectos, lo informaremos en la respuesta,

aunque ya será el motor de multitarificación el que se encargue de trasladar el

motivo de la problemática al cliente final.

Arquitectura corporativa de web services Javier Vacas Gallego

59

En el caso de que hayamos conseguido realizar correctamente el proceso

hasta aquí y el cliente esté de acuerdo con una de las ofertas que le

exponemos, deberá enviarnos de nuevo una solicitud de emisión de la póliza

indicando qué oferta es la que escoge (si es que le hemos ofrecido más de

una), así como el resto de datos necesario para tramitar la contratación del

seguro.

El último paso será devolver al cliente una confirmación de la contratación del

seguro, con un número de póliza y un conjunto de documentos que lo

acrediten. En el caso de que la póliza quede pendiente de emisión, es decir,

que está aceptada pero el cliente nos tenga que hacer llegar algún tipo de

documento, se le informará y se esperara a la tramitación de estos documentos

para emitir la póliza definitivamente.

5.4 Problemas encontrados

En la realización de este proyecto no se han encontrado grandes problemas

que hayan propiciado una ralentización significativa del mismo. Por supuesto,

han existido ciertas dificultades que se han ido solucionando sin mayor

novedad. Básicamente han existido dos puntos clave que nos han generado

pequeños contratiempos.

Por una parte nos encontramos con el tema de la seguridad y los certificados

digitales, el desarrollo de la infraestructura necesaria para llevar a cabo las

autenticaciones de los clientes ha sido una de las partes más costosas de

realizar en el sistema.

Por otro lado, la integración de la tecnología JPA también ha sido laboriosa ya

que es muy novedosa y no disponíamos de ninguna clase de experiencia en

esta materia. Además, su integración se produjo en la recta final del desarrollo.

Esto complicó la situación aunque era importante usar JPA y familiarizarse con

esta tecnología ya que se iba a tener que utilizar en futuros proyectos por parte

de Prexon.

Arquitectura corporativa de web services Javier Vacas Gallego

60

5.5 Sumario del capítulo

En este capítulo hemos comprobado que el lenguaje XML forma el núcleo de

todo nuestro sistema ya que es la manera en que tratamos los datos en todas

sus capas, desde su transmisión hasta su almacenamiento. Hemos repasado,

también, como se estructura toda la información que vamos a intercambiar con

los clientes de modo que haya una coordinación que permita llevar a cabo la

transacción con éxito. También hemos visto como debería ser un flujo de

comunicación ideal entre el consumidor del web service (parte cliente) y

nuestra parte (parte servidor). Por último, hemos comprobado que no han

existido grandes problemas durante la realización del proyecto sino pequeñas

dificultades que no han retrasado la fecha prevista de término.

Arquitectura corporativa de web services Javier Vacas Gallego

61

Capítulo 6: Pruebas

6.1 Introducción

Para poder comprobar que nuestro sistema funciona de manera correcta se ha

usado la Plataforma de Multitarificación de Prexon. Esto nos ha permitido hacer

una evaluación exhaustiva del web service ya que nos proporciona el medio

ideal para la introducción de datos y la visualización de resultados de manera

directa e intuitiva. Por supuesto, la plataforma se ha tenido que adaptar a las

particularidades de nuestro sistema, como lo ha hecho con el de cada una de

las compañías con las que trabaja. Podemos incluir, también, esta integración

como parte de este proyecto.

Las pruebas se han ido realizando según se desarrollaba cada una de las

partes del sistema. Si bien, es en el momento en que el proyecto estaba

básicamente acabado cuando se han realizado todo tipo de pruebas y

comprobaciones a fondo para poder asegurarnos de que la funcionalidad del

sistema es la correcta. No sólo se han probado situaciones lógicas, sino que

también se han introducido todo tipo de combinaciones absurdas de los datos o

se han intentado realizar operaciones no autorizadas, de modo que viésemos

que nuestro sistema genera el error correspondiente a cada una de estas

situaciones.

Arquitectura corporativa de web services Javier Vacas Gallego

62

6.2 La Plataforma de Multitarificación

Como ya hemos explicado en el capítulo introductorio, esta aplicación es uno

de los productos más importantes de Prexon, ya que es usada habitualmente

por diversos agentes y corredores, y trabaja directamente con grandes

aseguradoras como Allianz, Mapfre o Zurich entre muchas otras. Esta

plataforma no es pública, es decir, sólo se usa de manera interna por las

corredurías, por lo que un cliente final no tendrá acceso a ella. De cualquier

modo el departamento comercial de Aura se encargará de ofrecer a otros

motores de tarificación (públicos o privados) ya existentes la posibilidad de

integración con los web services de Aura. Hay que destacar que sin una

aplicación cliente de este estilo todo nuestro sistema no tendría ninguna utilidad

ya que necesitamos una aplicación cliente que interactúe con nuestro web

service.

La Plataforma de Multitarificación es una aplicación RIA (Rich Internet

Application) desarrollada en la parte de visualización mediante Adobe Flex 2.0.

Esta tecnología es la heredera de Flash ya que amplía su potencialidad de

manera significativa aunque también se basa en Action Script. La aplicación

está dividida en tres capas: de datos, intermedia y de visualización. Estas tres

capas se comunican entre ellas para llevar a cabo toda la funcionalidad del

sistema. En particular, es la capa intermedia la que se encarga de comunicarse

con las compañías aseguradoras integradas en la plataforma. Por tanto, será

en esta capa donde situaremos toda la lógica que necesitemos para que Aura

pueda formar parte de Plataforma de Multitarificación. También habrá que

hacer ligerísimos retoques en las otras dos capas, como por ejemplo

almacenar el logotipo de Aura para que se pueda ver en los resultados.

Arquitectura corporativa de web services Javier Vacas Gallego

63

Figura 6-1 – Pantalla principal de la Plataforma de Multitarificación

A continuación vamos a ver algunas pinceladas de la Plataforma de

Multitarificación. En la figura 6-1 podemos a echar un vistazo a la pantalla

principal de elección de producto (por supuesto, hay un paso previo que es la

introducción de unas credenciales de autorización que no es necesario

mostrar).

Como podemos ver en la figura anterior, la pantalla principal de la aplicación

nos permite escoger el ramo con el que queremos trabajar. Aura no tiene

productos para todos estos ramos por lo que sólo está integrada en algunos de

ellos. A continuación vamos a ver una captura de pantalla del formulario del

seguro de accidentes, con el que sí trabaja Aura. En este formulario

especificaremos la información básica del tomador que necesitemos para

calcular el presupuesto de la póliza:

Arquitectura corporativa de web services Javier Vacas Gallego

64

Figura 6-2 – Formulario del tomador de la Plataforma de Multitarificación

Para completar la cotización del seguro necesitamos la información específica

del riesgo, en este caso, de un seguro de accidentes. En la figura 6-3 podemos

observar el formulario de introducción de los datos de riesgo para el producto

de accidentes:

Figura 6-3 – Formulario de riesgo del seguro de accidentes de la Plataforma de Multitarificación

Arquitectura corporativa de web services Javier Vacas Gallego

65

La figura 6-3 nos muestra un formulario de riesgo bastante simple. En la figura

6-4 podemos ver uno de los más complejos como es del seguro de

automóviles:

Figura 6-4 – Formulario de riesgo del seguro de automóviles de la Plataforma de Multitarificación

En la figura 6-5 podemos ver la pantalla de resultados de un seguro de salud.

En ella vemos los precios todas las compañías que han respondido a la

solicitud (entre ellas Aura). Si nos interesara alguna de estas ofertas,

podríamos emitirla pulsando el botón de “Continuar” de las que nos interese.

Arquitectura corporativa de web services Javier Vacas Gallego

66

Figura 6-5 – Pantalla de resultados para un seguro de salud de la Plataforma de Multitarificación

Finalmente, el último paso sería rellenar el formulario de emisión para contratar

la póliza. En este formulario simplemente haremos constar los datos

personales que no hemos especificado en la cotización y los datos del pago.

En ese momento se hará la solicitud de emisión a la compañía del que el

cliente haya seleccionado la oferta. Puede haber diversos resultados:

• No emitida. Esto sucederá cuando se produzca algún tipo de error

técnico en la comunicación y, o bien la compañía no haya recibido

nuestra petición, o la respuesta de la aseguradora viene con errores.

• Pendiente. Este será el caso en que el cliente deba llevar a cabo alguna

operación física para acabar de emitir la póliza, por ejemplo, enviar

algún tipo de documentación.

• Aceptación comercial. En este caso la póliza también queda

pendiente, pero el que debe resolver la situación será alguno de los

comerciales de la compañía, el cual deberá decidir si le interesa a la

compañía contratar esa póliza.

• Emitida. Todo ha ido bien, la póliza se ha emitido correctamente y el

cliente ya puede disfrutar de su seguro.

Arquitectura corporativa de web services Javier Vacas Gallego

67

6.3 Transformaciones XSL

Para que la Plataforma de Multitarificación pueda trabajar con distintas

compañías es necesario mantener un orden en la representación y

almacenamiento de los datos. Cada compañía tiene sus propios esquemas

XSD, y mantener la plataforma con decenas de esquemas diferentes

simultáneamente es una misión imposible. Por tanto, es obligado tener un

sistema que permita pasar del esquema propio de cada una de las compañías

al particular que usa la plataforma. Esto se puede llevar a cabo mediante

transformaciones XSL (eXtensible Stylesheet Language) y en particular en

lenguaje XSLT (XSL Transformations).

Gracias a estas transformaciones podemos pasar de un documento XML con

una estructura determinada a otro XML con una estructura distinta, es decir, se

lleva a cabo un mapeado de datos. Este mapeado no necesariamente debe ser

directo de un elemento a otro, o de un atributo a otro, sino que se pueden

añadir operaciones lógicas y aritméticas para transformar los tipos de

representación de datos que se usan en un documento al formato del otro.

XSLT es un documento XML que usa XPath para navegar por los XMLs con los

que va a llevar a cabo las transformaciones.

La plataforma usa esta tecnología para hacer cada una de las transformaciones

de su formato propio al de los esquemas de las compañías y a la inversa. De

esta manera, se pueden realizar todas las operaciones de manera rápida y

eficaz. Por tanto, en la realización de este proyecto se han elaborado cuatro de

estas transformaciones (una por cada operación básica de solicitud y

respuesta) para poder integrar el sistema de web services de Aura realizado en

este proyecto.

6.4 Resultado de las pruebas

Como se ha comentado anteriormente, las pruebas que se han llevado a cabo

en este proyecto se han ido haciendo de manera incremental a medida que

cada una de sus partes se iba realizando. El proceso de pruebas empezó con

Arquitectura corporativa de web services Javier Vacas Gallego

68

la primera versión del web service, que simplemente nos devolvía un “Hola

mundo!”. A medida que se fueron añadiendo nuevas funcionalidades, se iba

probando todo el sistema. Por cada nueva interfaz que se realizaba, se hacían

pruebas a fondo, incluyendo la comprobación de casos absurdos y datos

incoherentes. Con esto no sólo se verificaba que el sistema devolvía las

respuestas con los correspondientes precios y modalidades que habían sido

solicitados, sino que, además, en caso de que existiese algún tipo de error,

nuestro sistema sería capaz de detectarlo y describir el problema al consumidor

del web service.

La segunda fase de pruebas que se realizó hacía referencia a la seguridad, se

probó todo el sistema usando el protocolo SSL y comprobando que el cliente

hacía uso de un certificado emitido por una entidad certificadora acreditada

para poder hacer uso de nuestro web service.

Finalmente, después de la integración en la Plataforma de Multitarificación de

Prexon (parte cliente), se realizó la fase de pruebas más importante. El hecho

de haber realizado pruebas duras en la fase de desarrollo evitó que se

produjesen errores graves en esta fase de la verificación del sistema. Se han

llegado a hacer cientos de cotizaciones y emisiones con todo tipo de datos para

comprobar que todo nuestro sistema es fiable al ciento por ciento. El resultado

obtenido, es, por tanto, inmejorable.

6.5 Sumario del capítulo

En este capítulo hemos hecho un repaso por las pruebas que hemos realizado

para comprobar que nuestro sistema funciona a la perfección. Hemos hecho un

pequeño repaso sobre la Plataforma de Multitarificación para observar cómo

funciona un motor de multitarificación y como deberían comportarse los clientes

que se conecten a nuestro web service. Por último, hemos explicado en qué

han consistido estas pruebas, así como cada uno de los pasos que hemos

dado en su realización, obteniendo unos resultados óptimos.

Arquitectura corporativa de web services Javier Vacas Gallego

69

Capítulo 7: Conclusiones

7.1 Revisión de objetivos

El objetivo principal de este proyecto, que consistía en facilitar la conexión

entre la compañía de seguros Aura y la Plataforma de Multitarificación de

Prexon, así como otros motores de multarificación, se ha cumplido totalmente.

A partir de ahora Aura dispondrá de una vía telemática de comunicación con

sus agentes y corredores, así como la posibilidad de hacerlo con clientes

finales. Esto se sustenta en las interfaces que hemos puesto a disposición de

Aura para que pueda ofrecer servicios de cotización y emisión de pólizas de

manera remota, asegurando eficacia, rapidez, fiabilidad y seguridad en estas

transacciones.

En la parte correspondiente a Prexon también se han cumplido sobradamente

los objetivos planteados en un principio. No sólo se ha logrado entregar un

proyecto en el plazo acordado, sino que se ha impulsado el crecimiento de la

Plataforma de Multitarificación integrando una compañía más. Esto ha

favorecido a incrementar la competencia entre aseguradoras y, por tanto,

reforzar el interés tanto de corredurías como de otras compañías para hacerse

con el producto.

Un segundo objetivo que impuso Prexon es que la aplicación fuera

completamente reutilitzable para futuros proyectos con similares necesidades.

Este requisito, que podía parecer difícil de cumplir al ciento por ciento, se ha

efectuado con bastante éxito, ya que el uso de JPA o el hecho de ubicar una

Arquitectura corporativa de web services Javier Vacas Gallego

70

parte de la lógica de negocio en la base de datos ha colaborado a su

materialización.

Respecto a los objetivos personales planteados también hay que hacer una

valoración positiva. En primer lugar, he obtenido valiosa experiencia, así como

conocimientos técnicos durante la realización de este proyecto, que

complementan así los estudios de Ingeniería en Informática. Además, he tenido

la oportunidad de trabajar con un equipo de grandes profesionales que no han

hecho más que inculcarme conocimientos técnicos pero también ganas y

motivación por el trabajo bien hecho.

En relación a los requisitos técnicos del proyecto cabe destacar que este ha

sido uno de los apartados en los que se ha obtenido un éxito más rotundo. Los

objetivos de escalabilidad, fiabilidad y seguridad se han cumplido plenamente,

haciendo especial hincapié en la seguridad, la cual se ha apuntalado de

manera severa debido al uso de datos críticos en las transacciones de

información. También se ha verificado que el sistema sea escalable de modo

que Aura pueda, en un futuro, incrementar su funcionalidad añadiéndole

nuevos ramos o productos, así como otro tipo de operaciones corporativas o de

gestión.

7.2 Revisión de la planificación

La planificación global del desarrollo que se había calculado inicialmente es

bastante acertada respecto a la duración integral del proyecto. También se

aproxima bastante a la duración particular de cada una de las tareas por

separado, aunque en este aspecto ha habida pequeñas diferencias en algunas

estimaciones de duración. Además, el uso de la tecnología JPA no estaba

pensado en un principio, lo que ha hecho variar ligeramente la planificación

inicial.

Arquitectura corporativa de web services Javier Vacas Gallego

71

7.3 Futuras vías de desarrollo

Las posibles vías de desarrollo que el sistema desarrollado en este proyecto

puede abarcar son numerosas ya que podemos ampliar su funcionalidad de

manera que se convierta en un auténtico motor no sólo comercial sino también

de gestión de la propia compañía. A continuación podemos ver una lista de

estas posibles mejoras:

• Ampliación de ramos. Esta mejora ya ha estado prevista durante la

realización del proyecto gracias al requisito de escalabilidad. En la

actualidad Aura está tramitando la ampliación de ramos con los que

trabaja. Es por este motivo que el sistema que hemos realizado ya está

completamente preparado para hacerse cargo de estos nuevos

productos.

• Partes de accidentes. Sería interesante que, igual que un corredor

puede emitir una póliza telemáticamente desde Internet, por qué no

hacer un parte de siniestro. Esto sería muy útil, por ejemplo, en los

seguros de hogar o automóviles, en los que se ahorraría mucho tiempo

además de papeleo. De la misma manera que se hace con las

cotizaciones o emisiones, existiría un esquema de datos XSD en que

hiciéramos constar todos los datos del siniestro, así como documentos

escaneados en caso necesario.

• Gestión de cartera. De la misma manera que con la mejora anterior,

también sería muy útil para los agentes de Aura poder disfrutar de una

gestión de su cartera de pólizas, es decir, poder consultar los datos de

las pólizas que ha emitido. Incluso, dependiendo del agente, permitirle

modificar o dar de baja pólizas.

• Interfaz gráfica. Ya hemos comentado en diversas ocasiones que el

sistema desarrollado en este proyecto es inútil sin una capa cliente que

se encargue de obtener los datos que se necesitan para responder a las

Arquitectura corporativa de web services Javier Vacas Gallego

72

solicitudes que le lleguen y de mostrar los correspondientes resultados

que se obtengan. En los objetivos de este proyecto no se hacía constar

el desarrollo de una interfaz gráfica ya que, tanto a Aura como a Prexon,

les interesaba utilizar la Plataforma de Multarificación como la parte

cliente desde la cual se consume nuestro web service. A pesar de esto,

la realización de una interfaz gráfica sencilla, posiblemente colgada de la

página web de Aura, en la que se le ofrezca al cliente la posibilidad de

llevar a cabo solicitudes de cotizaciones de seguros e, incluso, llegar a

emitirlos, puede ser una posible vía de trabajo fututo que puede dar

beneficios comerciales a Aura.

7.4 Valoración y conclusión final

Como conclusiones finales destacaremos que se han cumplido de manera

rotunda los objetivos y requisitos impuestos al principio del proyecto, así como

la planificación temporal prevista, si bien es cierto que el uso de la tecnología

JPA (que no estaba planeado en el arranque del proyecto) ha hecho variar

ínfimamente los plazos concretos de término de algunos de los avances

planificados.

Mi valoración personal también es favorable. La realización de este proyecto no

sólo me ha servido para aprender y asimilar nuevos conceptos en el ámbito

técnico, sino que ha colaborado a la integración en un gran equipo de

profesionales. He vivido, así, una experiencia en una situación real de un

proyecto en el ámbito corporativo con unos requisitos que se deben cumplir y

un plazo de entrega que hay que satisfacer.

Arquitectura corporativa de web services Javier Vacas Gallego

73

Bibliografía

[1] Graham, S., Davis, D., Simeonov, S., Daniels, G., Brittenham, P.,
Nakamura, Y., Fremantle, P., Koenig, D., Zentner, C., “Building Web Services
with Java: Making Sense of XML, SOAP, WSDL, and UDDI”, Sams, 2nd
Edition, 2004.

[2] Keith, M., Schincariol, M., “Pro EJB 3: Java Persistence API”, Apress, 1st
Edition, 2006.

[3] Snell, J., Tidwell, D., Kulchenko, P., “Programming Web Services with
SOAP”, O’Really Media, 1st Edition, 2001.

[4] W3Schools Online Web Tutorials [en línea], http://www.w3schools.com/

[5] MSDN: Microsoft Developer Network (XML Support in Microsoft SQL Server
2005) [en línea], http://msdn.microsoft.com/en-us/library/ms345117.aspx

Arquitectura corporativa de web services Javier Vacas Gallego

74

Abstract

Este proyecto consiste en la realización de un sistema informático que se

encargue de ampliar la red comercial de una compañía de seguros a través de

Internet. Para ello se utiliza la tecnología de web services, que nos permite

efectuar transacciones de datos de manera rápida, fiable y segura. El web

service que se ha diseñado se encarga de resolver y dar respuesta tanto a

peticiones de solicitud de precios como de emisión de pólizas en varios ramos.

El objetivo es ofrecer al cliente final un método sencillo y próximo de cotización

y emisión de seguros.

Aquest projecte consisteix en la realització d’un sistema informàtic que

s’encarregui d’ampliar la xarxa comercial d’una companyia d’assegurances

mitjançant Internet. Per a això s’utilitza la tecnologia de web services, que ens

permet efectuar transaccions de dades de manera ràpida, fiable i segura. El

web service que s’ha dissenyat s’encarrega de resoldre i donar resposta tant a

peticions de sol·licitud de preus com d’emissió de pòlisses en diversos rams.

L’objectiu es oferir al client final un mètode senzill i pròxim de cotització i

emissió d’assegurances.

This project consists of a computer based system to be responsible for

expanding the business network of an insurance company via the Internet. It

uses web services technology, which allows us to make data transactions in a

fast, reliable and secure way. The web service that has been designed handles

to resolve and respond to requests for prices solicitation and insurance policies

emission in several classes. The aim is to give customers an easy and near

way of trading and issuance insurances.

