Universitat
A Autonoma
de Barcelona

ARQUITECTURA CORPORATIVA
DE WEB SERVICES

Memoria del projecte
d'Enginyeria en Informatica
realitzat per

Javier Vacas Gallego

1 dirigit per

Joan Borrell Viader

J. Carlos Muifio Gallego
Bellaterra, 10 de Juny de 2008

Arquitectura corporativa de web services Javier Vacas Gallego

CERTIFICACIO DE DIRECCIO

El sotasignat, Joan Borrell Viader

Professor/a de I'Escola Tecnica Superior d'Enginyeria de la UAB,

CERTIFICA:

Que el treball a qué correspon aquesta memoria ha estat realitzat sota la seva
direccio per en Javier Vacas Gallego.

I per tal que consti firma la present.

Signat: Joan Borrell Viader

Bellaterra, 10 de Juny de 2008

Arquitectura corporativa de web services Javier Vacas Gallego

CERTIFICACIO DE DIRECCIO EN EMPRESA

El sotasignat, J. Carlos Muifio Gallego

de I'empresa, Prexon Consulting, S.L.

CERTIFICA

Que el treball a que correspon aquesta memoria ha estat realitzat en I'empresa sota
la seva supervisié mitjancant conveni amb Javier Vacas Gallego

firmat amb la Universitat Autonoma de Barcelona.

Aix{ mateix, I'empresa en té coneixement i dona el vist-i-plau al contingut que es
detalla en aquesta memoria.

Signat: J. Carlos Muifio Gallego

Santa Coloma de Gramenet, 10 de Juny de 2008

Arquitectura corporativa de web services Javier Vacas Gallego

Indice de contenidos

Capitulo 1: INtrodUCCIONcvveiii e e e e e eaaaans 1
1.1 Motivacion del PrOoYECIO.......uuii it e e e e e eaaens 1
1.2 ODJELIVOS ... e e e e et e e e e e e e e e e e e e aaaaan 2
RS U] (o T o [T 0T 1 [- SR 4
1.4 PIANITICACION ... 5
1.5 Organizacion de la MEeMOKIA.cceivieeiiiiei e e et e e e e e e e e e e eeannes 6
Capitulo 2: Entorno, herramientas y alternativas..........cccccevvvvviiiiieeeeeeeeeennnnns 8
2.1 Definicion de WED SEIVICE........ccooeeiei e 8
2.2 Razon de la eleccion de Web ServiCes ..., 9
PRGN =L =T [0 0 (=T = T g (RPN 10
2.4 Estudio de viabilidadccoooeiiiiiiiiiiiii e 11
2.5 Herramientas de desarrollo ... 13
2.6 Sumario del CapitulO......ccooeeeeee e 14
Capitulo 3: ANAIISIS cooieii i 15
T80 = =0 [U 1 (01 7SS 15
3.2 Descripcion de la arquUIteCtura..........ccevvvieeeiiiiiiiiieceeeeeeeeeeeeeeeeeeeeee e 16
ICTRC T oo [o= o (=N 0 1= To o Tox o TR 19
3.4 Esquema de la arqUItECIUINA............uuiiiieeeieeeeecc e 21
3.5 SEQUIAAU 22
3.6 SumMario del CapitulO........coeeeieiiieec e 22
Capitulo 4: DesCripCiONn tECNICAceuuuiiiie e 24
vt [1 £ o 18 o o1 (o] o PP 24
A2 XML oottt et e e e e e e e e e raaaaaeaeans 24

v 07200 N [1 £ To 18 o o1 (o] IS 24

A © £ 0 1 J PP 25

e TS|] €= V(SRR 25

A =T 0= (o 1SRRI 27

Arquitectura corporativa de web services Javier Vacas Gallego

4.2.5 ATTDULOS. ... 27
4.2.6 SECCION CDATA ...ttt e e e e s 29
4.2.7 NAIMESPACESuuiiiriieiiiieieiie ettt e et e et a e et e e ea e e eaneee 30
A3 XS ittt e e e e e n i rraaaeaaaans 31
4.3. 1 INTFOAUCCION ...t 31
G T] ¢ V(T 31
4.3.3 TIPOS SIMPIES .. e e e e e e e e e e e e eeenannas 34
4.3.4 TIPOS COMPIEJOS .. .ttt e e e e e e eeanennn 35
A4 SOAP ..t a e e e e e e a e aaaaaaea e 37
4. 4.1 INTFOAUCCION ...t 37
S |] €= V(USRI 37
4. 4.3 ENVEIOPEuuiiiiiiiiiiiiiiiiiiiiiiit b nne 38
N Y o =Y Lo [T PSSR 39
B = To e OO 40
A A6 FAUIL.....oooii e 40
o Y @) N YA o 1 I N 41
v [] = W o (o= 41
A5 WS o 42
4.5. 1 INIFOAUCCION ... snnnnnnnnnne 42
4.5.2 Estructura del dOCUMENTOovieiiiiiiiiiiiiie e 42
4.5.3 Elemento <portTYPe>oooviiiiiii e 43
4.5.4 Elemento SMESSAQE™ccuuviiiieeeeeeeeeiiiis e e e e e e e e e e e e eeenens 43
4.5.5 Elemento <tYPeS>.....ccooiiiiieiei e 43
4.5.6 Elemento <binding>...........oiiiiiiii e 43
A.5.7 EJEMPIO ... e 44
4.5.8 TIPOS A€ OPEIACIONES.......cevvviiiiieeeeeeeeeeeiiie e e e e e e e e e et eeeeeeaanns 44
4.5.9 Operacion unidireCCioNalcceeeviveeiiiiiiiie e e e e 45
4.5.10 Operacion petiCiON-reSPUESEAuuuieieeeeeeeeeeiiiiiiieeeeeeeeeeennnnns 46
W0t 5 = 11 o 1T PP 46
TN S 1 €= V(T 48
4.6 JPA et e e e e e e e et eaaaaeeaaaas 49
4.6.1 INIFOAUCCIONuiiiiiiiiii s ennnnnnnnnnnnes 49

Arquitectura corporativa de web services Javier Vacas Gallego

4.6.3 Mapeado objeto-relacional.............cccouviiiiii i 49

4.6.4 METAAALOSuuuiiiiiiii e 50
4.7 SuMario del CapitulO........coiee i i i 50
Capitulo 5: DESArrollOoevveiiie e 51
5.1 Labase: XML ..cooooiiiieeeeeee 51
5.2 Esquemas de COMUNICACION............uuuuuuiieeeeeeeeeeeiiiiis e e e e e e e eeeasaaae e e e eeeeeenenes 52

CS 02 I [o1 o o 18 Tod o [0] IS 52

5.2.2 Esquema de solicitud de cotizacCion............ccevvvvvvvvvvevvereenninennnnnee, 53

5.2.3 Esquema de respuesta de cotizacionc.c.eevvvevvvvevevenevennnnnnn. 55

5.2.4 Esquema de solicitud de emisiOn..............ceevvvvvvveviieeiveiniieiiiienenn, 56

5.2.5 Esquema de respuesta de emiSiOn...............evvvvvervverinrereeerenennennn.. 57

5.2.6 Esquema de listas de Valoresueeeveeeieeeeieeiieiiiieeiieieeeeeeeene 58
5.3 Flujo de COmMUNICACIONccoeee e 58
5.4 Problemas enCONradoS.ooooiiiiiiiiiiiiie et eeeeaeeees 59
5.5 Sumario del Capitulo.......coooeeeeeeeeeeeeee 60
Capitulo 6: Pruebas.......cooooiiiiiii 61
6.1 INrOTUCCION ... 61
6.2 La Plataforma de Multitarificacioncccooeeieeii e 62
6.3 Transformacion@s XSLccooviiiii i 67
6.4 Resultado de 1as Pruebas..........coovviviiiiiiiie e 67
6.5 Sumario del CapitulO..........ueiiii i 68
Capitulo 7: CONCIUSIONESvviiiiie e e e e e aeanns 69
7.1 ReVISION d€ ODJELIVOS ...ceevviiiiiie ettt e e e e e e e e e 69
7.2 Revision de la planificacionouuuuiiiiiic e 70
7.3 Futuras vias de desarrollo ..., 71
7.4 Valoracion y conclusion finaleeeiiiiiiieeeeee e 72
BibDlOgrafia.. ..o e e e 73

YA o 151 £ = 1o TP 74

Arquitectura corporativa de web services Javier Vacas Gallego

Tabla de figuras

Figura 1-1 - Diagrama de Gantt del proyectoccceevvvvveiiiiiiiee e 5
Figura 3-1 — Esquema de la arquitectura del sistemaccccevvvvevveeeeenennee. 21
Figura 6-1 — Pantalla principal de la Plataforma de Multitarificacion 62

Figura 6-2 — Formulario del tomador de la Plataforma de Multitarificacion 63

Figura 6-3 — Formulario de riesgo del seguro de accidentes de la Plataforma de

MURIEAITICACION ... e 64

Figura 6-4 — Formulario de riesgo del seguro de automoviles de la Plataforma
de MUIIANTICACION......cce e e e e e e e eaaaes 64

Figura 6-5 — Pantalla de resultados para un seguro de salud de la Plataforma

de MURIEATICACIONon e 65

Vi

Arquitectura corporativa de web services Javier Vacas Gallego

Capitulo 1: Introduccion

1.1 Motivacion del proyecto

Prexon Consulting S.L. es una consultoria informatica especializada en el
sector asegurador y financiero, nacida en 2005 y creada por un equipo de
titulados en Ingenieria Informatica. Desde su creacion se ha centrado en dar
respuesta a las diversas necesidades que presentan todo tipo de compafias
aseguradoras y financieras, tanto software de gestion como soluciones

orientadas a la expansion comercial de este tipo de empresas.

Uno de los productos estrella de Prexon es la llamada Plataforma de
Multitarificacién de Seguros. Esta aplicacion RIA (Rich Internet Application) es
una aplicacién web con aspecto similar al de una aplicacién de escritorio que
permite a un usuario poder consultar el precio de una podliza de seguros para
varios productos (autos, hogar, salud, accidentes, etc.) de manera remota y en
diversas aseguradoras simultdneamente. Lo que por una parte aumenta la
comodidad del cliente final y por otra incrementa la competencia entre

companias.

Mi trayectoria personal en Prexon se remonta a Marzo de 2006. En ese
momento me integro en el equipo de trabajo encargado de desarrollar la
Plataforma de Multitarificaciébn, concretamente trabajando sobre la capa
intermedia de la aplicacién. Esta capa esta destinada, basicamente, a recibir
peticiones de los usuarios y hacérselas llegar a cada una de las compafiias de
las que el usuario desea obtener precios. Esto nos ha permitido conseguir una

gran experiencia en este tipo de comunicaciones corporativas, consistentes en

Arquitectura corporativa de web services Javier Vacas Gallego

envios telematicos de pequefio tamafio pero que contienen datos personales y

criticos.

Por otro lado Aura Seguros S.A. es una pequefia aseguradora dedicada
especialmente a los productos de decesos y accidentes. Este proyecto
responde a una peticion de Aura hacia Prexon para desarrollar una interfaz de
conexion e integracion con la Plataforma de Multitarificacion. El objetivo
comercial de Aura es ampliar su red de servicios convencionales afiadiéndole

una red externa que amplie de manera significativa su actual expansion.

En la actualidad las aplicaciones de multitarificacion de seguros se estan
convirtiendo en grandes herramientas de expansion para todas las compariias
aseguradoras y en especial para las mas pequefas. No sélo porque el proceso
de contratacion de pdlizas se hace de manera automatizada, ahorrando asi
recursos, si no porque, ademas, estas aplicaciones tienen la ventaja de que
llegan facilmente a una gran cantidad de posibles clientes a través de Internet.
Gracias a esto las diferencias de presupuesto entre compafiias y las
inversiones en marketing o en la red comercial de sucursales no son tan
definitivas como en los canales de ventas convencionales. De este modo, en el
momento de visualizar la lista de precios podemos hacer una comparacion de
precios y garantias entre cada aseguradora de manera absoluta. Por tanto, una
pequefia empresa como Aura tendra la oportunidad de competir directamente

con los grandes gigantes del mundo asegurador.

1.2 Objetivos

Nuestro objetivo principal en este proyecto es llevar a cabo la conexion entre la
compafia de seguros Aura y la Plataforma de Multitarificacion de modo que
podamos hacer presupuestos de polizas para todos los productos que Aura
ofrezca a sus clientes, asi como tener la posibilidad de llevar a cabo la
contratacion de una pdliza en el caso de que alguno de los precios
presupuestados nos interese. Ademas, si este es el caso, devolveremos al
cliente la documentacion acreditativa de que efectivamente ya ha realizado la

contratacion de la pdliza.

Arquitectura corporativa de web services Javier Vacas Gallego

La disposicién de Prexon en la realizacion de este proyecto se sustenta en el
interés de crecimiento del producto de multitarificacion. El ofrecer una garantia
de competencia habilitando la posibilidad a los clientes de obtener
presupuestos en la mayor cantidad de aseguradoras posibles es uno de los
puntos clave necesarios para asegurar el éxito comercial de este producto. El
objetivo final es que pueda llegar a convertirse en una herramienta de
referencia para corredurias de seguros y por qué no, para los usuarios finales.
Ademas, el hecho de poder reutilizar este desarrollo para futuros clientes de
Prexon que quieran formar parte de la Plataforma de Multitarificacion, es un

importante activo de cara a su integracion en la aplicacion.

Como objetivos personales hay que destacar la notable experiencia que
obtendré a lo largo del desarrollo, en particular en el mundo de las tecnologias
de la informacién correspondientes a los sectores empresariales, corporativos y
comerciales. De la misma, manera también conseguiré importantes
conocimientos técnicos durante la realizacion de este proyecto, que serviran de
complemento practico y real a los estudios adquiridos en la carrera de
Ingenieria en Informatica. Por altimo, el hecho de formar parte de un equipo de
trabajo dinamico y enérgico, formado por grandes profesionales del sector con
abundante experiencia, es una razon significativa de la eleccion de este

proyecto por mi parte.

El hecho de que en Prexon hayamos desarrollado la Plataforma de
Multitarificacidbn nos permite tener una gran experiencia respecto a este tipo de
conexiones entre compafiias, de modo que conocemos previamente cual son
las técnicas mas usadas, asi como las que permiten una mayor flexibilidad,
seguridad y facilidad de uso. Después de realizar un trabajo previo de seleccién
de la tecnologia idénea para las necesidades expuestas por Aura (ver seccién
2.2) se ha tomado la decision de que los web services son la solucion
adecuada. Sus ventajas respecto al resto de posibilidades radican en su
interoperabilidad entre distintas plataformas y aplicaciones, asi como en la
capacidad que poseen de implementar distintos sistemas de seguridad, debido
a que esta tecnologia se apoya en HTTP (HyperText Transfer Protocol).

Arquitectura corporativa de web services Javier Vacas Gallego

Es importante destacar el aspecto de la seguridad, el cual toma especial
relevancia dado que se trabajara con datos criticos tanto para el cliente como
para la compafia. En el desarrollo de este proyecto se tendra especial cuidado
con esta caracteristica del proyecto, por lo que se seguiran de manera
categorica las leyes que regulan el tratamiento de dichos datos, como la Ley

Organica de Proteccion de Datos entre otras.

Este proyecto, por tanto, consistird en desarrollar un web service con la mision
principal de dar respuesta a las peticiones de presupuesto y contratacion de
pélizas en diversos productos, siendo facilmente escalable, con el objetivo de
que en un futuro se pueda ampliar dando cabido a otros servicios como la
consulta de polizas por parte de los agentes de seguros o la gestién de partes
de accidentes. Es importante destacar, también, que a pesar de que el
desarrollo de este proyecto es particular para la aseguradora Aura, es un
requisito basico hacerlo de manera que se pueda reutilizar facilmente en
futuros proyectos corporativos que presenten unas necesidades similares a las

comentadas.

1.3 Punto de partida

Partimos desde una situacién en la que encontramos un sistema informatico de
gestion de polizas para agentes en dos vertientes: interno y externo. El sistema
de gestion interno consiste en una aplicacion de escritorio que permite llevar a
cabo una amplia gestibn comercial y econdmica sobre la compafia. Por otra
parte el externo radica en una aplicacibn web que permite a los agentes
disponer de una gestion exhaustiva sobre su cartera de pélizas. Estos dos
entornos trabajan sobre una base de datos, la cual sera el punto de conexién
entre los sistemas ya existentes en la compafiia y la solucion que
desarrollaremos dentro del marco de este proyecto. Como resultado
obtendremos un sistema totalmente integrado en el que los web services
adoptaran un papel principal como uno de los métodos de expansion comercial

de la compaiia.

Arquitectura corporativa de web services Javier Vacas Gallego

1.4 Planificacion

Este proyecto comienza a realizarse en octubre de 2007 en Prexon Consulting
S.L. y se hace un calculo aproximado inicial de seis a ocho meses de duracion.
La figura 1-1 muestra el diagrama de Gantt de la planificacién prevista al
comenzar el proyecto incluyendo los principales pasos que se tomaran durante
su desarrollo. Aunque este sera el proyecto principal al que estaré asignado en
Prexon, no trabajaré a tiempo completo en él, pueden existir dias 0 semanas
gue por carga de trabajo o por otro tipo de aspectos inesperados me tenga que

dedicar momentaneamente a otros proyectos.

Anélisis de requerimientos b‘ 7d
Estudio del estado del arte (WS Corporativos) | [_] 12d
Estudio del estado del arte (WS Generales) | u 10d
Disefio tedrico de la arquitectura l__] 20d

Elecciéon de herramientas de desarrollo ﬂ 2d

Desarrollo de un WS basico 10d

Enlazar el WS con la base de datos u 5d

Definicion y creacion de las interfaces 35d | I
Fase de pruebas en contexto local 15d l_]
Implementacién de la seguridad en el WS 25d l_._]
Fase de pruebas en entorno real 200 l_]
Test de estrés 10d L.
Publicacion del WS | 5d L

Documentacion del desarrollo 20d L.

Realizacion de la memoria final 60d]

Figura 2-1 - Diagrama de Gantt del proyecto

Arquitectura corporativa de web services Javier Vacas Gallego

1.4 Organizacion de la memoria

La memoria de este proyecto esta dividida en cinco capitulos organizados de la

siguiente manera:

e Capitulo 2: Entorno, herramientas y alternativas. Se explica el motivo por
el cual se han elegido WS para solucionar los requisitos planteados, asi
como otras alternativas que podiamos haber escogido. Este capitulo
también incluye un repaso sobre el estado del arte de esta tecnologia,
asi como un estudio de viabilidad incluyendo las herramientas que

usaremos en el desarrollo.

e Capitulo 3: Analisis. En este capitulo se explica qué es un web service y
por qué se han elegido web services para desarrollar este proyecto.
También de describe la arquitectura del sistema haciendo hincapié en
los detalles en los cuales se han tenido que tomar decisiones
complicadas. También se hace un repaso de en qué consiste légica de

negocio de la aplicacion y en qué lugar del sistema estara situada.

e Capitulo 4: Descripcion técnica. Contiene la descripcion de la parte
técnica del proyecto. También se hace un recorrido por todos los
protocolos y estdndares que han sido necesarios utilizar a lo largo del

desarrollo de todo el proyecto.

e Capitulo 5: Desarrollo. En este capitulo se expone de qué manera
hemos usado los protocolos y estandares descritos en el capitulo
anterior para realizar este proyecto. También se hace énfasis en las
caracteristicas basicas del proyecto, asi como en los puntos clave que le
hace diferenciarse de otros proyectos similares.

e Capitulo 6: Pruebas. Se explica las pruebas que se han llevado a cabo,
y los resultados finales obtenidos. También daremos un repaso general
de como deberia ser una aplicacion cliente viendo una vision general del

funcionamiento de la Plataforma de Multitarificacion.

Arquitectura corporativa de web services Javier Vacas Gallego

Capitulo 7: Conclusiones. En este capitulo se revisan los objetivos y la
planificaciébn que nos habiamos propuesto al principio del proyecto, y se
valora si se han llegado a conseguir. Ademas, también se comentan las
posibles futuras vias de desarrollo para el sistema desarrollado en este

proyecto.

Arquitectura corporativa de web services Javier Vacas Gallego

Capitulo 2: Entorno, herramientas y alternativas

2.1 Definicion de web service

El término web service describe un método de integracion de aplicaciones de
tipo web usando los estandares XML (eXtensible Markup Language), SOAP
(Simple Object Acces Protocol) y WSDL (Web Services Description Languge)
sobre Internet. XML se usa para etiquetar los datos, SOAP para transferirlos y

WSDL sirve para describir los servicios de que dispone.

Los web services se usan basicamente como método de comunicacion entre
empresas 0 entre empresas y clientes. Permiten intercambiar datos entre
diferentes organizaciones sin la necesidad de tener un conocimiento reciproco
profundo de como estén implementados los sistemas informaticos de cada una

de ellas.

A diferencia de los modelos tradicionales de tipo cliente/servidor, los web
services no proporcionan a los usuarios una GUI (Graphic User Interface). En
lugar de esto los web services permiten compartir I6gica de negocio, datos y
otros procesos mediante una interfaz que actia a través de la red. Los
desarrolladores pueden, si lo desean, afadir el web service a una interfaz
grafica como una pagina web o un programa ejecutable para ofrecer su

funcionalidad a los usuarios finales.

Los web services permiten que diferentes aplicaciones que provienen de
diferentes fuentes se comuniquen entre ellas sin necesidad de desarrollar

codigo hecho a medida debido a que toda la comunicacion se lleva a cabo con

Arquitectura corporativa de web services Javier Vacas Gallego

XML. La concepcion basica no esta vinculada a ningun sistema operativo o
lenguaje de programacion. Por ejemplo, un web service desarrollado en Java
podria ser consumido desde C++ (en la seccion 2.3 veremos cOmo esto no
siempre es asi), asi como una aplicacion Windows podria comunicarse con
sistemas UNIX. Los web services tampoco requieren el uso de navegadores o

codigo HTML (HyperText Markup Language).

2.2 Razon de la eleccidn de web services

Para desarrollar nuestro proyecto se ha procedido a realizar de manera previa
un estudio de las tecnologias y técnicas disponibles en la actualidad que nos
permitan solucionar los requisitos expuestos para su realizacion. Después de
descartar muchas de estas tecnologias por su falta de seguridad o por su
elevada complejidad se ha llegado a la conclusion de que los web services son
la mejor alternativa posible ya que posee diversas posibilidades respecto a la
integracion de la seguridad, asi como una complejidad minima en el
tratamiento de los datos. Esto es ideal para una comunicaciéon agil y eficaz,
necesaria en el entorno corporativo en que nos moveremos, en el que

tendremos picos de trafico de docenas de transacciones por minuto.

Pese a que se fueron descartando distintas tecnologias, en la recta final
todavia teniamos en consideracion un par de ellas, como son por una parte
web services y por otra CORBA (Common Object Request Broker Architecture).
CORBA es un estandar usado para el procesamiento de objetos distribuidos.
Basicamente su objetivo es crear un paquete con cédigo de un lenguaje de
programacion en concreto, en el que ademas se afiade informacion referente a
sus capacidades y a la forma de llamar a los métodos que contiene. De esta
manera ese codigo puede ser ejecutado por otra maquina desde un programa
no necesariamente escrito en el mismo lenguaje. Ademéas, CORBA también
esta diseflado para ser independiente del sistema operativo. El descarte de
CORBA como tecnologia para desarrollar nuestro proyecto fue su elevada
complejidad, necesaria para otro tipo de aplicaciones, pero no para la nuestra,
ya que CORBA esta considerado como middleware, y esto nos podria producir

Arquitectura corporativa de web services Javier Vacas Gallego

algun problema. El uso de CORBA esta mayoritariamente orientado al

comercio on-line, banca y finanzas.

Por tanto, la eleccién de web services se basa en dos aspectos fundamentales
para cumplir con éxito los objetivos del proyecto como son la facilidad y eficacia
de uso, y la seguridad necesaria para no comprometer datos criticos,
asegurando que éstos lleguen al otro extremo de manera totalmente privada.
Cabe destacar que la experiencia obtenida con Plataforma de Multitarificacion
también ha hecho decantar la balanza hacia los WS ya que un elevado niumero
de aseguradoras con las que trabajamos también usan esta tecnologia,
algunas de manera altamente satisfactoria y otra no tanto. Finalmente la fuerte
auge que los web services estan experimentando en la actualidad y la inmensa
documentacién sobre esta materia ha hecho decantarnos por ellos como la
tecnologia en que sustentara el desarrollo de nuestro proyecto.

2.3 Estado del arte

Como ya se ha comentado anteriormente este proyecto se ha realizado en una
consultoria informatica muy especializada, esto ha permitido adquirir una gran
experiencia respecto a los web services y otras tecnologias similares en el
mundo corporativo y sobretodo asegurador. Se ha podido observar una gran
disparidad de opciones en el uso de este sistema de comunicacién y algunos
otros, cosa que ha dificultado significativamente la integracion de diversas de

estas companiias en un sistema global como la Plataforma de Multitarificacion.

Actualmente podemos encontrar varios escenarios cuando hablamos de WS
corporativos. Existen ciertas entidades que hacen uso del término web services
errbneamente ya que la tecnologia de la que realmente estan usando es un
simple “http post”. Aunque en principio los web services no estan atados a
ningun lenguaje de programacioén en particular, existen algunas ampliaciones
que si lo son. De esta manera nos encontramos compafiias que dificultan el
desarrollo de la aplicacion cliente destinada a consumir su web service

haciéndolo dependiente de software. Este seria el caso, por ejemplo, de los

10

Arquitectura corporativa de web services Javier Vacas Gallego

web services que usan ciertos tipos de datos adjuntos en el intercambio de
informacion, ya que segun su tipo es necesario usar obligatoriamente ciertas

herramientas de desarrollo concretas ya que sélo es soportado por estas.

La seguridad también es un asunto en el que de nuevo podemos observar gran
disparidad de opciones. Existen compafiias cuyos web services se basan
Gnicamente en una autenticacion de tipo usuario y contrasefa (incrustados en
los datos a intercambiar) para dar acceso a su funcionalidad, con el riesgo que
esto conlleva de una posible intercepcion del envio por parte de un tercero si
no usamos cifrado, pudiendo obtener informacioén critica como numeros de
cuentas bancarias o tarjetas de crédito. Muchas entidades, sin embargo, usan
un certificado para autentificar al consumidor del web service ademas de hacer
uso del protocolo SSL (Secure Sockets Layer) para garantizar que la
comunicacién se produce con total garantia de privacidad. Otro nivel de
seguridad vendria dado por la necesidad de firmar electrénicamente algunos (o

todos) los datos a enviar.

El intercambio de datos en un WS va claramente asociado a XML (eXtensible
Markup Language). XML es un lenguaje de marcas que nos permite
intercambiar con gran facilidad informacion estructurada entre diferentes
plataformas, de manera que cualquier dato necesario para realizar una
operacion determinada viajard dentro de un documento XML. También existe
una alternativa para transmitir los datos en un web service como son los
attachments o datos adjuntos, esta tecnologia se suele utilizar normalmente en
casos en los que hay que enviar grandes cantidades de datos, como pueden

ser documentos de gran tamafio o imagenes.

2.4 Estudio de viabilidad

La realizacion de este proyecto supone un paso adelante respecto al uso de los
web services en el ambito corporativo, ya que la inexistencia de un formato
estandar de comunicacion e intercambio de informacion provoca que cada

compafia realice su propia arquitectura, dificultando asi una integracién global

11

Arquitectura corporativa de web services Javier Vacas Gallego

de varios de estos servicios en una misma aplicacion como la Plataforma de

Multitarificacion.

En el sector asegurador estamos viendo como el mercado on-line crece dia a
dia. Podemos observar, por ejemplo, que gran parte de las compaiiias de
seguros ofrecen en su web un servicio de tarificacion de seguros para diversos
ramos o productos. Este sistema obliga al cliente a introducir sus datos en cada
una de las compafias en las que quiera consultar precios, por este motivo
estan surgiendo motores de multitarificacion que facilitan en gran medida la
comparacion entre varias aseguradoras sin necesidad de introducir los mismos
datos una y otra vez. Por tanto, si las compafias de seguros desean ser
competitivas en el mercado on-line deben disponer de un sistema agil y eficaz
de comunicacion con estos motores. Es aqui donde los web services pueden
suponer una gran ayuda para abordar esta situacion, de modo que se postulan
como la solucion de futuro ideal para llevar a cabo la comunicacién entre

aseguradores y motores de multitarificacion.

Uno de los aspectos importantes en el desarrollo de este proyecto es que el
web service resultante pueda ser consumido desde cualquier plataforma y por
tanto no sea dependiente de software. Aunque en principio este es un aspecto
general de los web services existen ciertas restricciones con algunos entornos
de desarrollo, seria el caso, por ejemplo, de los tipos de datos adjuntos (0
attachments). Por este motivo se ha ido con especial cuidado respecto a la
eleccion del lenguaje y entorno de desarrollo del proyecto, que ha sido

estudiado detenidamente (ver seccion 2.5).

Como ya se ha mencionado anteriormente, en este proyecto se trabajara con
datos criticos, eso obliga a tener especial cuidado en su manipulacion. Como
marco regulador de esta situacion encontramos la Ley Organica de Proteccion
de Datos 15/1999, de 13 de diciembre, de obligado cumplimiento para las
empresas que trabajen con este tipo de datos. Por tanto, en la realizacion de
este proyecto se tendrd en cuenta este aspecto legal, de manera que se

seguiran las pautas indicadas en esta Ley, siendo, ademas, una norma general

12

Arquitectura corporativa de web services Javier Vacas Gallego

de uso en la empresa en la que se realizara el proyecto, ya que es comun el

uso de datos de alta seguridad.

Para concluir subrayaremos que este estudio de viabilidad nos permite afirmar
que el proyecto se podra realizar con éxito dentro de los plazos predispuestos
en un principio, cumpliendo con los objetivos y requisitos impuestos por parte

del cliente, asi como con los impuestos internamente por la politica de Prexon.

2.5 Herramientas de desarrollo

Después de un periodo de estudio se ha llegado a la conclusién de que las

herramientas ideales para el desarrollo de nuestro proyecto son las siguientes:

e Java. Utilizaremos el lenguaje de programacion Java ya que se esta
convirtiendo en la actualidad en el lenguaje de referencia para
aplicaciones web. Ademas nos facilita la publicacion en un servidor web
libre como Apache Tomcat.

e Eclipse. Es el entorno de desarrollo de referencia en Java gracias a su
sencillez y flexibilidad. Ademas es libre.

e WTP (Web Tools Platform). Es un proyecto que extiende la plataforma
Eclipse con nuevas herramientas que nos facilitan el desarrollo de todo
tipo de aplicaciones web, especialmente web services.

e Apache Tomcat. Es un servidor web libre necesario para publicar el web
service. Solo sera usado para realizar pruebas.

e |IBM WebSphere Application Server. Servidor web y de aplicaciones que
ya utilizaba la compafiia Aura previamente a la concepcion de este
proyecto. Por tanto, la version final del sistema se publicara aqui.

e Microsoft SQL Server 2005. Es el sistema de gestién de base de datos
que se ha venido usando en la compafiia Aura y, por tanto, se usara
también para este proyecto. Ademas permite el uso de XML de forma

nativa.

13

Arquitectura corporativa de web services Javier Vacas Gallego

La involucracion de Aura en el desarrollo de nuestro proyecto es maxima, asi
que se dispone de servidores de Ultima generacion para albergar la base de
datos, asi como el web service. Esto es importante ya que en un corto espacio
de tiempo se esperan recibir picos de docenas de cotizaciones por minuto. De
la misma manera pueden existir instantes en los que haya dos o tres peticiones

simultdneamente.

Para la implementacién del cédigo también se dispone de una estacion de

trabajo totalmente preparada para hacerse cargo de todo el desarrollo.

2.6 Sumario del capitulo

En este capitulo hemos visto un punto basico de este proyecto, como es el de
la definicion de web service, asi como una argumentacion de por qué se ha
elegido esta tecnologia para solucionar los problemas que se nos habian
planteado y no otra. También se incluye los motivos por los que otras

tecnologias han sido descartadas a favor de web services.

De la misma manera, se ha hecho una detallada descripciéon de la situacion del
estado del arte respecto a web services en la actualidad, del cual tenemos gran
experiencia por haber estado trabajando en la Plataforma de Multitarificacion

de Prexon.

También se ha hecho referencia al estudio de viabilidad del proyecto, el cual
nos indica que el proyecto se podra realizar con éxito. Por ultimo se hace un
repaso de las herramientas de desarrollo que se usaran durante la

implementacion del proyecto.

14

Arquitectura corporativa de web services Javier Vacas Gallego

Capitulo 3: Analisis

3.1 Requisitos

Los requisitos finales que se acuerdan entre Prexon y Aura en el momento de

empezar nuestro proyecto son los siguientes (después se modificarian algunos

y se afiadirian otros):

Disponer de un sistema escalable, fiable y seguro que permita a
terceros, ya sean los agentes de la compaiiia, corredurias o los propios
clientes finales llevar a cabo una comunicacion telematica con Aura con
un doble objetivo: en primer lugar, ofrecer un servicio de
presupuestacion de pdlizas en cada uno de los productos ofrecidos
regularmente por las vias tradicionales de venta. En segundo lugar, dar
la posibilidad de contratar una poliza de manera real, devolviendo por
parte de la compafia la documentacion acreditativa de que la emision se
ha realizado exitosamente. Por supuesto para llevar a cabo esta
interaccidn sera necesaria una capa de visualizacion que interactle con
nuestro sistema y muestre toda la informacion que se obtenga por
pantalla, es aqui donde la Plataforma de Multitarificacion desarrollada
por Prexon entra en funcionamiento. Pese a esto, de ninguna manera el
WS estard limitado a funcionar Unicamente con esta plataforma,
contrariamente los datos de conexidn y comunicacién con nuestro WS
seran informados a la mayor parte posible de estos motores de
multitarificacion existentes en la actualidad para asi permitir una

expansion comercial lo mas extensa posible.

15

Arquitectura corporativa de web services Javier Vacas Gallego

e Desarrollar este sistema de manera que su funcionalidad pueda ser
incrementada en un futuro para permitir la incorporacion de herramientas
como el hecho de ofrecer la posibilidad de introducir partes de siniestros
en el sistema, ahorrando asi gran cantidad de papeleo. Otro aspecto que
interesa afadir en un futuro serd la consulta de poélizas por parte de
agentes o corredores de la compafiia.

Por otra parte, se incluye como requisito interno de Prexon el hecho de que
este sistema no sea un desarrollo especifico para Aura Seguros sino que
interesa reutilizarlo en otros proyectos, ya no sobre aspectos Unicamente de

seguros, sino mas bien sobre encargos corporativos en general.

Es importante destacar de nuevo que el producto que resulte de este proyecto,
necesitara una aplicacion cliente para poder aprovechar su funcionalidad y
visualizar sus resultados. Esta aplicacion no queda dentro de los objetivos del
proyecto aunque si que veremos algun aspecto basico de como deberia

funcionar, asi como el ejemplo de la Plataforma de Multitarificacion.

3.2 Descripcion de la arquitectura

Después de un cierto periodo de tiempo como desarrollador de la Plataforma
de Multitarificacion hemos podido observar diversos tipos de aplicaciones con
diferentes arquitecturas, de las cuales todas tenian el mismo objetivo. También
hemos podido evaluar cuales de ellas son mas estables, fiables, seguras y
sencillas de usar. Esto nos ha servido para coger lo mejor de cada una de
estas arquitecturas con el objetivo de desarrollar un sistema que cumpla con

los requisitos de cliente.

La primera cuestion que hay que tener en cuenta es el hecho de desarrollar un
solo web service que dé cabida a todas las operaciones para todos los
productos que ofrece la compafia, o bien, hacer un web service diferente para
cada una de estas operaciones. Aplicar la légica directa nos sugeriria que
¢para qué vamos a hacer varios web services si en uno podemos dar cabida a

todas las operaciones que necesitamos simplemente creando diferentes

16

Arquitectura corporativa de web services Javier Vacas Gallego

interfaces? Pues bien, el dilema surge cuando pensamos en el hecho de que
existiran diversos usuarios que puedan consumir nuestro web service, es decir,
puede haber un corredor al que sélo le permitamos hacer presupuestos de
pélizas pero no contrataciones, o un agente que sélo trabaje con el producto de
decesos, por ejemplo. Por este motivo necesitamos algun sistema de
autorizacidbn que nos permita diferenciar quien estd intentando hacer una
peticion, de modo que segun nuestra politica interna decidamos darle

respuesta a su solicitud o no.

De este modo, disponemos de dos posibilidades, la primera, como ya se ha
mencionado, seria incluir todas las operaciones en el mismo web service de
manera que hagamos la comprobacion de las credenciales del usuario que
haga la solicitud dentro del cédigo del web service. La segunda, contrariamente
consistiria en ofrecer diferentes web services para cada tipo de operacion y/o
producto que ofrezcamos dando a los clientes diferentes URLs para cada uno

de ellos.

Esta claro que este ultimo método puede funcionar para dos o tres operaciones
diferentes, pero en el caso de tener mas se podria convertir en un caos, con lo
gue conllevaria mucha complejidad a las aplicaciones clientes que consuman
nuestro web service. En nuestro caso concreto trataremos con diversos tipos
de operaciones, ya no solo hacer una tarificacion o una emision de una pdliza,
sino también debemos ofrecer otros métodos necesarios para ciertos aspectos
concretos del producto con el que estemos tratando. Este seria el caso, por
ejemplo, de los seguros de automodviles, en que debemos ofrecer codigos
internos que permitan a las aplicaciones clientes hablar el mismo idioma que
nosotros. Es decir, si quieren decirnos que el coche que se esta intentando
asegurar tiene un dispositivo GPS que queremos declarar en la pdliza, es
necesario que nosotros entendamos lo que es. Si nos pasaran directamente
que tiene un accesorio llamado GPS, podriamos malinterpretarlo porque igual
nosotros en vez de llamarlo GPS lo llamamos dispositivo de localizacion. Por
tanto, una de las interfaces que ofreceremos en nuestro web service serd una
lista de accesorios con un cédigo, el cual sera el que deberan especificar en su

solicitud.

17

Arquitectura corporativa de web services Javier Vacas Gallego

La solucion a la que llegamos es finalmente presentar de manera Unica un solo
web service que ofrezca una interfaz para cada una de las operaciones que
haya disponibles. Para llevar a cabo el aspecto de la autorizacion de usuarios
usaremos un sistema de credenciales incrustadas en el documento XML de la
solicitud, que al viajar cifrado por SSL no supondra ningun riesgo. De todas
maneras, también serd necesario disponer de un certificado en el lado del
cliente para comprobar su identidad, de modo que estas credenciales sélo
supondrdn un método de autorizacion pero de ninguna manera de

autenticacion.

De este modo guardaremos en la base de datos la lista de agentes, corredores
o cualquier usuario que este autorizado a consumir nuestro web service, junto a
las operaciones que les esta permitido hacer. Asi se consultard si las
credenciales que nos han hecho llegar le permiten acceder a la peticion que
han hecho, y si no es asi se les devolvera una respuesta indicandoles que no

estan autorizados a ejecutar la operacion en concreto.

En el caso en que la operacion que nos ha sido solicitada sea una contratacion
de una pdliza estaremos obligados a retornar unos documentos acreditativos
de que efectivamente la pdliza ha sido emitida y est4 en vigor, asi como los
documentos informativos de las condiciones generales y particulares del
seguro. Para hacer llegar a los clientes estos documentos utilizaremos los
propios XML'’s de que enviamos en las respuestas, de manera que incluiremos
los documentos en formato PDF y codificados en base64 para que puedan
vigjar incrustados en el XML de manera simple y efectiva. Ademas, sera
necesario firmar de manera digital algunos de estos documentos que
contengan la informacion esencial, como es el documento acreditativo de la

emision, el cual demuestra que se ha contratado la pdliza.

En los capitulos posteriores se entrara mas profundamente en este aspecto,
pero es interesante comentar que existiran cinco tipos de esquemas del
documento XML que usaremos para transmitir la informacién. Por una banda
tenemos el esquema de solicitud de cotizacion, que sera el mismo para todos
los productos. Esto facilita mucho tanto al consumidor del web service como a

nosotros el procesamiento de los datos. Por el mismo motivo el esquema de

18

Arquitectura corporativa de web services Javier Vacas Gallego

respuesta también sera el mismo para todos los productos. Del mismo modo,
usaremos dos esgquemas mAas para la emision de la poliza (solicitud y
respuesta). Por dltimo, existira un ultimo tipo de esquema que usaremos para
devolver las respuestas a las peticiones de listas de valores, como la del

ejemplo de los accesorios de automoviles.

Finalmente, la arquitectura de nuestro sistema quedara de la siguiente manera:
tendremos un web service que ofrecera diversas interfaces, cada una de las
cuales ejecutard una operacion diferente. Cuando llegue una peticion, el
documento XML de la solicitud se insertara directamente en la base de datos
que mediante un trigger comezara a hacer los célculos necesarios para
devolver el resultado de la solicitud, o bien, generard un error con la
descripcion del problema que se haya podido producir. Esta respuesta sera
recogida de nuevo por la capa Java que la enviara a través del web service al
solicitante. Para implementar la interaccion con la base de datos se usara la
novedosa tecnologia JPA (Java Persistance API) (ver seccion 4.6). El uso de
esta tecnologia no estaba pensado en el momento de empezar la realizacion
del proyecto, pero se integré a la mitad del desarrollo ya que ofrece muchas
posibilidades para facilitar la independencia entre la capa Java y la capa de
base de datos. Gracias a esto, uno de los objetivos principales de este
proyecto, como es el de hacer un sistema reutilitzable, se puede asegurar
todavia en mas medida, ya que incluso, gracias a JPA, es posible ignorar qué
tipo de sistema de gestion de base de datos se estd usando, debido a que su
funcionamiento permite trabajar con distintas bases de datos sin necesidad de

retocar el cédigo con las peculiaridades de cada uno de estos sistemas.

3.3 Lbogica de negocio

En el momento inicial del planteamiento de la arquitectura que utilizaremos en
el desarrollo del proyecto se abren varios caminos acerca de donde situar la
l6gica de negocio del sistema. Esta l6gica contiene, entre otras cosas, la
normativa de contratacion de la compaiiia. Por ejemplo, el hecho de que a un

menor de 25 no le esté permitida la contratacion seguro de automdéviles o que

19

Arquitectura corporativa de web services Javier Vacas Gallego

no se le haga un seguro de decesos a una persona mayor de 65 afos.
También sera necesario hacer las comprobaciones rutinarias de consistencia
en los datos, por ejemplo, la comprobacién de que una cuenta bancaria es
correcta 0, que si se trata de un seguro de automoviles, la matricula no

corresponda a una fecha anterior a la de fabricacion.

De modo que se nos abren dos caminos, por una parte tenemos la posibilidad
de situar la légica de negocio directamente en la base de datos. En este
supuesto el desarrollo seria mas orientado al nivel de datos y la capa Java se
utilizaria anicamente como simple interlocutor de comunicaciones, es decir, la
capa Java consistiria en un WS simple que recoja los datos que le hagan llegar
y llame directamente a un procedimiento almacenado de la base de datos.
Desde ahi se llevarian a cabo todas las comprobaciones correspondientes a la
normativa de contratacion y se validaria la consistencia de los datos de la

solicitud.

Por otra parte, toda esta légica de negocio se podria situar en la capa Java,
relegando a la base de datos a un simple almacén de la informacion recibida y
transmitida. De modo que ésta trabaje con mucha menos carga de trabajo y
éste recaiga sobre la capa Java que se dividiria en la parte de comunicacion en

la que estaria implementado el WS y en la parte de la l6gica de negocio.

Finalmente se decide hacer una mezcla entre las dos posibles vias de
implementar el sistema, pese a que la mayoria de la I6gica de negocio recaera
sobre la base de datos. Aunque es cierto que estd decisibn podria
comprometer el rendimiento global del sistema, es necesaria para poder
cumplir exitosamente el requisito interno de poder reutilizar el desarrollo en el
futuro para futuros proyectos de ambito corporativo que le puedan surgir a
Prexon. Incluir esta logica en el nucleo de la aplicacion Java no nos permitiria
reaprovechar el sistema ya que tendriamos que hacer un cambio radical de su

cbdigo cada vez que queramos usarlo para desarrollar un sistema diferente.

Por tanto, en la capa Java situaremos toda la l6gica posible que sea transversal
para cualquier tipo de aplicacién corporativa, es decir, comprobaciones de la
consistencia de los datos como NIF’s, cuentas bancarias, codigos postales, etc,

y dejaremos la parte de normativa de contratacion en la base de datos. Como

20

Arquitectura corporativa de web services Javier Vacas Gallego

uno de los objetivos principales es que el funcionamiento sea agil se usara un
servidor de ultima generacion para albergar todo el sistema, ademas, se usara
XML (eXtensible Markup Language) como el método de representacion de
datos nativo. Esto nos permitird disminuir en gran medida la carga de trabajo
de la base de datos ya que se utilizara Microsoft SQL Server 2005, el cual se
caracteriza por el soporte que ofrece para este formato, de manera que
podremos trabajar directamente con sentencias que actlien contra documentos

XML en lugar de tablas.

3.4 Esquema de la arquitectura

La figura 3-1 muestra el esquema de la arquitectura del sistema:

Cliente Cliente Cliente

AUTENTICACION

PETICION RESPUESTA
Web Service
(Capa Java)
Validacion . Firma de
datos AUTORIZACION documentos
SOLICITUD RESULTADOS

Base de Datos

ULOGICA DE NEGOCIO

Figura 3-1 — Esquema de la arquitectura del sistema

21

Arquitectura corporativa de web services Javier Vacas Gallego

3.5 Seguridad

La seguridad también es un aspecto basico de este proyecto. Como ya se ha
mencionado, los datos de alta seguridad seran de uso habitual dentro del flujo
de comunicaciéon entre compafiia y clientes. Datos tales como cuentas
bancarias, numeros de tarjetas de crédito, etc. seran usados habitualmente en

el momento de la contratacién de las polizas.

Para asegurar que estos datos criticos viajan a través de Internet de forma
segura nuestro web service sblo sera consumible mediante SSL. Esto nos
asegurara privacidad en el envio y recepcion de los datos. Ademas, sera
necesario, por parte de los clientes que se quieran conectar a nuestro web
service, usar un certificado generado por una entidad de certificacion
acreditada que les autentique, de manera que nosotros nos aseguremos de
con quién estamos intercambiando informacion. Ellos nos pasaran la clave
publica de este certificado que nosotros introduciremos en una lista blanca. De
este modo, nosotros podremos identificar la entidad o persona que se esta
intentando comunicar con nosotros en cada momento y permitirle o negarle el

acceso segun sea el caso.

Independientemente de esto, con el objetivo de afianzar la seguridad global del
sistema, se habilitaran reglas especiales en el firewall hardware del que
dispone Aura. De esta manera nuestros posibles clientes deberan indicarnos
previamente a la comunicacion telematica desde que IP se van a conectar de
modo que abriremos una regla en el firewall que permita la entrada de datos a
nuestro sistema Unicamente para esa IP. Por supuesto esto sélo lo deberan
hacer cada vez que cambien la IP desde la que se conectar a nuestro web

service.

3.6 Sumario del capitulo

En este capitulo hemos hecho un andlisis pormenorizado de cada uno de los
aspectos clave del proyecto. En primer lugar hemos mencionado cual son los

requisitos que tiene nuestra aplicacién. En segundo lugar, hemos hecho una

Arquitectura corporativa de web services Javier Vacas Gallego

descripcion detallada de como sera la arquitectura del sistema, asi como una
explicacion de en qué consiste la l6gica de negocio y qué papel ocupara en el
desarrollo global. Por dltimo hemos hablado de un aspecto tan importante
como la seguridad y de los métodos que usaremos para garantizarla, como el

uso de la tecnologia SSL y certificados.

23

Arquitectura corporativa de web services Javier Vacas Gallego

Capitulo 4: Descripcion técnica

4.1 Introduccion

Para desarrollar este proyecto se han usado diversos protocolos y estandares
que definen el funcionamiento general de los web services y de nuestro
sistema en particular. En este capitulo veremos una descripcion superficial de
estos protocolos y estandares, lo suficiente para que los no iniciados puedan
tener una vision general del proyecto. Seguidamente, en el siguiente capitulo,
veremos la manera especifica en que los hemos usado e interrelacionado para

obtener el resultado final de este proyecto.

4.2 XML

4.2.1 Introduccion

XML (eXtensible Markup Language) es uno de los aspectos bésicos en el
proyecto ya que se usa en todos los niveles. Es nuestro modo de representar la
informacion, tanto cuando trabajamos contra la base de datos como cuando

intercambiamos datos con el cliente.

Se trata de un metalenguaje extensible de etiquetas que se propone como un
estandar para el intercambio de informacion estructurada entre diferentes
plataformas. Usa un documento DTD (Document Type Definition) o un XSD
(XML Schema Definition) (ver seccion 4.3) para definir la estructura de los

datos que contiene. La flexibilidad que proporciona XML es uno de sus puntos

24

Arquitectura corporativa de web services Javier Vacas Gallego

fuertes ya que a diferencia de otros lenguajes parecidos como HTML
(Hypertext Markup Language), las etiqguetas usadas no estan prefijadas sino
gue es el autor el que define sus propias etiquetas y su propia estructura. Es
importante destacar que XML por si s6lo no tiene ninguna funcionalidad ya que

ha sido disefiado para almacenar, transportar e intercambiar datos.

4.2.2 Usos

En la actualidad muchos sistemas informéticos y bases de datos contienen
informacion en diversos formatos los cuales son incompatibles entre ellos. El
intercambio de estos datos entre aplicaciones supone un gran desafio para los
programadores. Gracias a XML esta complejidad se reduce y nos permite crear
documentos legibles por cualquier tipo de aplicacion, ofreciendo un medio de
intercambio independiente tanto de software como de hardware. Ademas, cada
vez mas aplicaciones hacen uso de XML para almacenar informacion en

ficheros o directamente en bases de datos.

4.2.3 Sintaxis

Las reglas de sintaxis de XML son simples y faciles de usar pero muy estrictas,
asi que el desarrollo de software que pueda leer y manipular XML es

significativamente asequible.

En el ejemplo siguiente podemos ver un documento sencillo en el cual

observamos que XML es un lenguaje que se auto-describe:

<?xml version="1.0" encoding=""15S0-8859-1"?7>
<automovil>
<marca>Audi</marca>
<modelo>A4</model o>
<version>1.8T (150 CV)</version>
<matricula>3213CRD</matricula>
</automovil>

En la primera linea de este ejemplo definimos la version y la codificacion usada

en el documento. En la siguiente linea encontramos el elemento raiz

25

Arquitectura corporativa de web services Javier Vacas Gallego

<automovil> el cual nos indica que la informacion que encontraremos en el
documento estara relacionada con un automovil. Esta informacion se encuentra
en las cuatro lineas siguientes las cuales son los elementos hijos de la raiz.
Finalmente encontramos el fin del elemento raiz. Vemos por tanto, que este
lenguaje es auto-descriptivo ya que a primera vista quedan bastante claras las
caracteristicas del automdvil en cuestion. También observamos que los
documentos XML no son mas que texto plano, esto hace que cualquier editor
de textos sea capaz de leerlos y/o editarlos.

A continuacién se describen los requisitos basicos de XML.:

e Todos los elementos en un documento deben tener una etiqueta de
clausura que indique su cierre. La declaracibn XML no tiene esta
etiqueta de clausura ya que no forma parte del documento XML en si y
por tanto no es un elemento.

e Todas las etiquetas son sensibles a diferencias entre mayudsculas y
minUsculas. Por tanto, las etiquetas de apertura y clausura deben estar
escritas de la misma manera.

e Los elementos deben estar correctamente anidados, el dltimo elemento

en abrirse debe ser el primero en cerrarse. Ejemplo:

<?xml version="1.0" encoding=""1S0-8859-1"?>
<raiz>
<hijo>
<subhijo>..... </subhijo>
</hijo>
</raiz>

e Todos los documentos XML deben tener un elemento raiz unico en el
cual estaran incluidos el resto de elementos.

e Los elementos XML pueden tener atributos en pares de nombre-valor.
Estos atributos deben estar entrecomillados.

e Algunos caracteres tienen un significado especial dentro de un
documento XML. Para usarlos utilizaremos referencias igual que
hacemos en HTML (por ejemplo los caracteres “<”, “>" y “&” pasaran a

ser “&It;”, “%gt” y “&” respectivamente.

26

Arquitectura corporativa de web services Javier Vacas Gallego

e La sintaxis para escribir comentarios es la siguiente:

<l-- Esto es un comentario -->

4.2.4 Elementos

Un elemento XML es cualquier cosa que esté entre la etiqueta de principio de
elemento y la etiqueta de final (ambas incluidas). Un elemento puede contener
otros elementos, texto simple o una mezcla de ambos, y aunque se puede usar
cualquier nombre para un elemento, existen ciertas restricciones que se deben

seguir. Son las siguientes:

e Los nombres de los elementos no pueden comenzar por nimeros o
signos de puntuacion.

e Los nombres de los elementos no pueden empezar por la secuencia de
letras “xml” (ya sea en mayuscula o minuscula).

e Los nombres de los elementos no pueden contener acentos.

Una importante caracteristica de los elementos XML es que son extensibles.
Afadir nuevos elementos en un documento no impide que una aplicacién que
no los espere funcione correctamente. Este, por tanto, es uno de los aspectos
positivos de XML, ya que se puede extender sin perjudicar el funcionamiento

de ninguna aplicacién que esté usando ese tipo de documento en concreto.

4.2.5 Atributos

Los atributos pueden proporcionar informacion adicional sobre los elementos
que los contienen. Esta informacion no suele formar parte de los datos en si
mMismos, sino que se trata mas bien de una indicacion para las aplicaciones que

guieran tratar ese documento XML.

En cambio, hay ocasiones en que un atributo se puede usar para representar la
misma informacion con la que normalmente usariamos un elemento. Aunque
no hay reglas sobre cuando usar atributos y cuando elementos, ya que se

permite completamente el uso de atributos para representar cualquier tipo de

27

Arquitectura corporativa de web services Javier Vacas Gallego

informacion, la recomendacion es usar siempre que nos sea posible elementos

en lugar de atributos. En el siguiente ejemplo podemos observar esta situacion:

<vehiculo tipo="motocicleta>
<marca>Kawasaki</marca>
<modelo>Ninja</modelo>
</vehiculo>

<vehiculo>
<tipo>motocicleta</tipo>
<marca>Kawasaki</marca>
<modelo>Ninja</modelo>
</vehiculo>

Por tanto, es recomendable evitar cuando nos sea posible los atributos, ya que
éstos no pueden contener multiples valores ni estructuras en forma de arbol
como los elementos. Ademas, los atributos no son tan facilmente expandibles
como los son los elementos. A continuacion podemos observar un ejemplo de

lo que no deberiamos hacer con el uso de atributos:

<mensaje 1d="250" dia="10" mes="05" afio=""2008
de="Alberto” para="Juan”

titulo="Hola” cuerpo="Qué tal?”>

</mensaje>

Y a continuacion vemos esa misma informacion representada de manera

adecuada.

<mensaje i1d="250">
<fecha>
<dia>10</dia>
<mes>05</mes>
<afio>2008</afo>
</fecha>
<de>Alberto</de>
<para>Juan</para>
<titulo>Hola</titulo>
<cuerpo>Qué tal?</cuerpo>
</mensaje>

Arquitectura corporativa de web services Javier Vacas Gallego

Como vemos, soOlo usamos un atributo para representar el numero de
identificador del mensaje de ejemplo que usamos en este caso. Este
identificador no forma parte de la informacidon que queremos representar sino
de una informacion adicional y anexa. Por tanto, lo recomendado sera usar los
atributos para almacenar los datos sobre los datos (metadatos) y los elementos

para los datos en si mismos.

4.2.6 Seccion CDATA

Normalmente en un documento XML el texto es procesado por el parser, pero
este sera ignorado si se encuentra dentro de una seccién CDATA. Cuando un
elemento se procesa, el texto entre las etiquetas también es procesado. Esto
es debido a que un elemento puede contener otros elementos en su interior y
por tanto el parser necesita tratar el texto que hay dentro del elemento para
comprobar la existencia de sub-elementos. Este tipo de datos son los llamados
PCDATA (Parsed Character Data).

El término CDATA ((Unparsed) Character Data), por tanto, se usa para indicar
un fragmento de texto que no se procesard por el parser. Esto es
especialmente Gtil si queremos almacenar en el documento XML algun tipo de
codigo, por ejemplo, ya que este puede contener caracteres como “<” 0 “&” que
el parser interpretaria de forma errénea. En el siguiente ejemplo podemos ver

como usariamos la seccion CDATA:

<script>
<V[CDATAL
function factorial(a)
{
if (a < 2) then
{
return 1;
}
else
{
return a * factorial(a-1);
}
}
11>
</script>

29

Arquitectura corporativa de web services Javier Vacas Gallego

4.2.7 Namespaces

En XML los nombres de los elementos estan definidos manualmente por el
disefiador. Esto suele acabar en conflicto en el momento que nos interesa
mezclar documentos XML de diferentes aplicaciones. Los namespaces 0
espacios de nombres nos proporcionan un método para evitar conflictos de

nombre entre elementos.

Este problema se puede solucionar de manera sencilla usando prefijos para
diferenciar las diferentes interpretaciones que queramos darle a los elementos
con el mismo nombre. Cuando usamos estos prefijos en XML se debe definir
un espacio de nombres para cada uno del tipo: xmins:prefix="URI”. Ademas, en
el momento que definamos uno de estos prefijos en un elemento, todos sus
hijos con el mismo prefijo también quedaran asociados con el mismo espacio
de nombres. Los espacios de nombres se pueden crear directamente en los
elementos que van a hacer uso de ellos o directamente en la raiz del
documento XML. A continuacion podemos ver un ejemplo del uso de los

espacios de nombres:

<raiz xmIns:c="http://www.prexon.com/Coches"
xmIns: 1="http://www.prexon.com/Libros">

<c:producto>
<c:marca>Audi</c:marca>
<c:modelo>A4</c:modelo>

</c:producto>

<l :producto>
<l :nombre>Un mundo sin fin</l:nombre>
<l:autor>Ken Follet</Il:autor>
</1:producto>

</raiz>

Como podemos ver el objetivo es dar a los nombres de espacios un nombre
anico, aunque en ocasiones algunas compafias lo usan para indicar una
pagina web que contenga informacién sobre este espacio de nombres. En el
caso de que definamos el espacio de nombres directamente en cada uno de

los elementos no sera necesario repetir el prefijo en cada hijo de ese elemento.

30

Arquitectura corporativa de web services Javier Vacas Gallego

4.3 XSD

4.3.1 Introduccion

Para poder enviar los datos desde el cliente hacia nosotros o a la inversa, es
esencial que ambos esperamos la misma estructura en el contenido de los
datos que nos van a llegar. Esto lo llevamos a cabo mediante los esquemas
XSD (XML Schema Definition) que nos permiten describir la estructura de un
documento XML, de modo que el que envia los datos lo hara de una manera
que el receptor pueda entender. Podemos decir que los esquemas XSD son los

esqueletos de los documentos XML.

Un esquema XSD nos define los blogues con los que construiremos un

documento XML de manera que nos indica:

e Qué elementos pueden aparecer en el documento XML.
e Qué atributos pueden aparecer en el documento XML.

¢ Qué elementos son elementos hijo.

e El orden de los elementos hijo.

e El nimero de los elemento hijo.

e Siun elemento esta vacio o puede contener texto.

e Los tipos de datos para los elementos y atributos.

e Valores fijos y/o por defecto para los elementos y atributos.

Otras caracteristicas importantes de los esquemas XSD es que son facilmente
extensibles, estan escritos en XML y son tipados. Esto nos permite utilizar
esquemas dentro de otros esquemas, crear nuestros propios tipos de datos
derivados de los tipos estandar y referenciar multiples esquemas en el mismo

documento.

4.3.2 Sintaxis

Para que un esquema sea correcto y no contenga errores el primer paso es
asegurarnos de que esta bien formado. Las reglas basicas para comprobar

esto son:

Arquitectura corporativa de web services Javier Vacas Gallego

Debe empezar con una declaracion XML.

e Soélo puede tener un anico elemento raiz.

e Las etiquetas de comienzo deben tener etiquetas de finalizacion.

e Hay distinciébn entre mayusculas y minusculas en el nombre de los
elementos.

e Los elementos deben estar anidados correctamente.

e Los valores de los atributos deben estar entrecomillados.

A continuacién podemos ver un esquema XSD que nos define los elementos de

un documento XML:

<?xml version="1.0"?7>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www_prexon.es"
xmIns="http://www.prexon.es"
elementFormDefault=""qualified'>

<xs:element name='""tomador'>
<xs:complexType>
<Xs:sequence>
<xs:element name="‘nombre' type="'xs:string"/>
<xs:element name="'apellidos" type="'Xs:string"/>
<xs:element name="'direccion’ type="'xs:string"/>
<xs:element name="poblacion’ type=''xs:string"/>
</Xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

En este ejemplo podemos ver el uso de complexType, usado para indicar que
un elemento contiene hijos. El resto de elementos son de tipo simple ya que no
contienen otros elementos. El elemento <schema> es siempre la raiz de
cualquier esquema XSD y puede contener diversos atributos con informacién
sobre espacios de nombres, etc. A continuacion vamos a ver una breve

descripcion de los atributos que usamos en la raiz del esquema:

e xmlIns:xs="http://www.w3.0rg/2001/XMLSchema™
Indicamos que los tipos de datos usados en el esquema provienen de
http://www.w3.0rg/2001/XMLSchema.

32

Arquitectura corporativa de web services Javier Vacas Gallego

targetNamespace=""http://www.prexon.es"

Indicamos que los elementos definidos en este esquema provienen de
http://www.prexon.es.

xmlns="http://www.prexon.es”

Indicamos que el espacio de nombres por defecto es
http://www.prexon.es.

elementFormDefault=""qualified"

Indicamos que cualquier elemento que se use por un documento XML y
gue esté declarado en este esquema debe ser asignado a un espacio de

nombres.

En el siguiente ejemplo observamos cémo el documento XML correspondiente

hace referencia a su esquema XSD:

<?xml

<tomador xmlns="http://www.prexon.es"

</tomador>

version="1.0"?>

xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=""http://www.prexon.es mensaje.xsd">

<nombre>Alberto</nombre>

<apellidos>Gomez Pérez</apellidos>
<direccion>Avda. Mediterraneo 3, 4 A</direccion>
<poblacion>Badalona</poblacion>

Vemos como también tenemos atributos en el elemento raiz del documento, su

significado es el siguiente:

xmlns="http://www.prexon.es”

Indicamos que el espacio de nombres por defecto, en este caso
http://www.prexon.es. Esta declaracion sefala que todos los elementos
usados en este documento XML estdn declarados en el espacio de
nombres http://www.prexon.es.
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”

Definimos la instancia del espacio de nombres del esquema XSD.

33

Arquitectura corporativa de web services Javier Vacas Gallego

e Xxsi:schemalLocation=""http://www.prexon.es mensaje.xsd"
Este atributo tiene dos parametros. El primero es el espacio de nombres
que utilitzaremos. En el segundo indicamos la localizacién del esquema

XSD gque vamos a usar para ese espacio de nombres.

4.3.3 Tipos simples

Un elemento de tipo simple es un elemento XML que Unicamente contiene
texto. No puede contener otros elementos o atributos. Para definir uno de estos
elementos se debe indicar su nombre y su tipo. También podemos especificar

los valores por defecto o fijos de los elementos. Vamos a ver algunos ejemplos:

<marca>Audi</marca>

<antiguedad>4</antiguedad>
<fecha_matriculacion>2004-04-27</fecha_matriculacion>
<color>blanco</color>

<tipo>coche</tipo>

<xs:element name="marca' type="'xs:string'/>

<xs:element name="antigledad" type=''xs:integer"/>
<xs:element name=""fecha _matriculacion” type="'xs:date'/>
<xs:element name="'color" type="'xs:string" default="blanco”/>
<xs:element name="tipo" type=''xs:string" fixed="coche”/>

Todos los atributos son definidos como tipos simples, asi que su declaracién es

similar a la de los elementos:

<marca i1d="23">Audi</marca>

<xs:attribute name="id" type='Xxs:integer™ use="required’/>

Con los atributos también podemos definir valores por defecto o fijos, pero
como vemos en el anterior ejemplo también podemos indicar que son

obligatorios (por defecto son opcionales).

34

Arquitectura corporativa de web services Javier Vacas Gallego

También podemos hacer uso de las llamadas restricciones, usadas para indicar
los valores que son aceptados para elementos XML o atributos. Existen mas de
diez tipos de restricciones distintos. A continuacién podemos ver un ejemplo de
un par de ellas. En el primero estamos definiendo el conjunto de valores que
seran aceptados en el elemento marca, y en el segundo decimos el rango de

valores correcto para el elemento edad.

<xs:element name="marca'>
<xs:simpleType>
<xs:restriction base="'xs:string">
<xs:enumeration value="Audi'/>
<xs:enumeration value="'Seat"'/>
<xs:enumeration value="Renault'/>
</Xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element name="edad">
<xs:simpleType>
<xs:restriction base="'xs:integer'>
<xs:minlnclusive value="0"/>
<xs:maxInclusive value="120"/>
</Xs:restriction>
</xs:simpleType>
</xs:element>

4.3.4 Tipos complejos

Un el elemento de tipo complejo contiene otros elementos y/o atributos.
Disponemos de cuatro tipos de elementos complejos: los vacios, los que
contienen Unicamente otros elementos, los que contienen sélo texto y los que
contienen ambos elementos y texto. En el siguiente ejemplo vemos la manera

en gque definiremos elementos complejos:

35

Arquitectura corporativa de web services Javier Vacas Gallego

<vehiculo>
<marca>Audi</marca>
<modelo>A4</modelo>
</vehiculo>

<xs:element name="vehiculo'>
<xs:complexType>
<xs:sequence>
<xs:element name="'marca' type=''xs:string'/>
<xs:element name="modelo" type="'xs:string"/>
</Xs:sequence>
</xs:complexType>
</xs:element>

En el anterior ejemplo vemos como el elemento <vehiculo> hace uso del tipo
complejo. También podemos observar el uso del indicador <sequence> que
nos sefiala que los elementos hijo deben situarse en el mismo orden en que

han estado declarados.

Un elemento complejo vacio no podra tener ningun contenido excepto por lo
que se refiere a atributos. En el siguiente ejemplo vemos como habria que

declarar uno de estos elementos vacios:

<poliza id="2344" />

<xs:element name="poliza'">
<xs:complexType>
<xs:attribute name="id" type="'Xs:positivelnteger'/>
</xs:complexType>
</xs:element>

Los indicadores se usan para controlar de qué manera vamos a controlar los
elementos en los documentos XML. En total hay siete indicadores divididos en

tres grupos:

36

Arquitectura corporativa de web services Javier Vacas Gallego

e Orden: estos indicadores se usan para fijar el orden en que debe
aparecer cada elemento.

e Ocurrencia: indica el niUmero minimo y/o maximo de veces que se puede
repetir un elemento.

e De grupo: se usan para definir conjuntos de atributos.

4.4 SOAP

4.4.1 Introduccion

SOAP (Simple Object Acces Protocol) es el pilar en que se basa este proyecto
asi como cualquier web service. Como ya hemos explicado, cada vez se estan
invirtiendo mas esfuerzos en el desarrollo de aplicaciones para optimizar la
comunicacién entre ellas. Hasta ahora cuando una aplicacion queria
comunicarse con otra de manera remota se solia usar Remote Procedure Calls
(RPC), pese a que este sistema presenta problemas de compatibilidad y
seguridad debido a que el trafico que genera es normalmente bloqueado por
firewalls y proxys. Para mejorar esta comunicacion se penso en usar HyperText
Transfer Protocol (HTTP) que, aunque no esta disefiado para esta situacion,
esta soportado por la gran mayoria de sistemas. De este modo nacio SOAP, el
cual ofrece el medio perfecto para que las aplicaciones se comuniquen entre
ellas independientemente de que estén ejecutandose en diferentes sistemas
operativos o estén desarrolladas con distintos lenguajes de programacion.

4.4.2 Sintaxis

Un mensaje SOAP no es mas que XML ordinario que contiene los siguientes

elementos:

e Envelope: contiene la identificacibn del documento XML como un

mensaje SOAP.

37

Arquitectura corporativa de web services Javier Vacas Gallego

e Header: es un elemento opcional que contiene la informacion de
cabecera.

e Body: contiene toda la informacién ya sea de llamada o de respuesta.

e Fault: contiene informacion de los posibles errores que hayan ocurrido

en el procesamiento del mensaje. Es un elemento opcional.

Existen ciertas reglas de sintaxis que se deben cumplir cuando hablamos de

mensajes SOAP:

e Debe estar en formato XML.

e Debe usar los espacios de nombres de Envelope y Encoding.

e No debe contener ninguna referencia a documentos DTD (Document
Type Definition)

¢ No debe contener ninguna instruccion de procesamiento de XML.

En la siguiente figura se puede observar el esqueleto de un mensaje SOAP:

<?xml version="1.0"?7>

<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle=""http://www.w3.0rg/2001/12/soap-encoding">
<soap:Header>

</ééép:Header>
<soap:Body>

<soap:Fault>

</ééép:Fault>
</soap:Body>
</soap:Envelope>

4.4.3 Envelope

El elemento Envelope debe ser la raiz del documento XML en el que éste se
define como un mensaje SOAP. Dentro de este elemento encontramos la
definicion del espacio de nombres xmins:soap, el cual debe estar siempre

asociado con "http://www.w3.0rg/2001/12/soap-envelope”, de manera que Si

38

Arquitectura corporativa de web services Javier Vacas Gallego

se usa un espacio de nombres diferente la aplicacion debe generar un error y
descartar el mensaje. Por otra parte el atributo encodingStyle se usa para
definir los tipos de datos usados en el documento. Este atributo puede aparecer
en cualquier elemento del mensaje, de manera que se aplicard sobre los
contenidos de ese elemento y sus elementos hijos. Un aspecto importante a
destacar es que un mensaje SOAP no tiene ningun tipo de dato definido por

defecto.

4.4.4 Header

El elemento Header contiene informacién especifica del mensaje como podria
ser la autenticacion. Este elemento es opcional y en el caso que exista debe
ser el primer elemento hijo de envelope. SOAP define tres atributos en el
espacio de nombres por defecto, los cuales son actor, mustUnderstand y
encodingStyle. A continuacion veremos una breve descripcion de cada uno de

ellos:

e actor: cuando un mensaje SOAP es enviado puede pasar por varios
puntos intermedios antes de llegar al destino final. En ocasiones nos
puede interesar pasar parte del mensaje a uno de estos puntos
intermedios. El atributo actor, por tanto, se usa para dirigir el elemento
Header a algun punto intermedio particular.

e mustUnderstand: este atributo se usa para indicar cuando el receptor
debe procesar el elemento Header obligatoriamente o bien hacerlo de
manera opcional.

e encodingStyle: como hemos explicado antes este atributo indica los tipos
de datos de los que se va a hacer uso en el elemento que lo contenga

(en este caso Header).

39

Arquitectura corporativa de web services Javier Vacas Gallego

4.4.5 Body

El elemento Body (de obligada presencia) es el que contiene el mensaje que se
desea hacer llegar al punto de destino final. El ejemplo siguiente consiste en un
mensaje SOAP el cual solicita el precio de un libro concreto y recibe como
resultado otro mensaje con la informacion requerida. Nétese que el hijo del
elemento Body debe siempre contener el espacio de nombres al cual

pertenece.

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope™”
soap:encodingStyle=""http://www.w3.0rg/2001/12/soap-encoding">
<soap:Body>

<m:GetPrice xmlns:m="http://www.w3schools.com/prices'>

<m: Item>World without end</m: Item>

</m:GetPrice>
</soap:Body>
</soap:Envelope>

Respuesta SOAP:

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"’
soap:encodingStyle=""http://www.w3.0rg/2001/12/soap-encoding">
<soap:Body>

<m:GetPriceResponse xmlns:m="http://www.w3schools.com/prices'>

<m:Price>19.95</m:Price>

</m:GetPriceResponse>
</soap:Body>
</soap:Envelope>

4.4.6 Fault

El elemento opcional Fault contiene los errores que se hayan podido producir y
el estado del mensaje SOAP. Si este elemento esta presente debe aparecer
como hijo de Body y sélo en una ocasion. Dentro de Fault podemos encontrar

los siguientes subelementos:

e faultcode: codigo identificatorio del error. Existen los siguientes valores

para este subelemento:

40

Arquitectura corporativa de web services Javier Vacas Gallego

o VersionMismatch: el espacio de nombres del elemento Envelope
es incorrecto.

0 MustUnderstand: el atributo mustUnderstand tiene valor 1
(procesamiento obligatorio) pero, a su vez, el elemento Header no
se ha entendido.

o Client: el mensaje no esta formado correctamente o contiene
informacion invalida.

o Server: hubo un problema con el servidor y el mensaje no pudo
ser procesado.

e faultstring: explicacién del error en formato legible.
o faultactor: contiene informacion acerca de quién ha causado el error.

e detail: contiene informacion especifica del error.

4.4.7 SOAPy HTTP

La transferencia de un mensaje SOAP no es mas que un par peticion-
respuesta HTTP que cumple con las reglas de codificacion de SOAP. El envio
de la peticion SOAP se puede realizar ya sea mediante un HTTP POST o bien
con un HTTP GET. En el caso de llevar a cabo el envio a través de un HTTP
POST se deben incluir de manera obligatoria las siguientes cabeceras HTTP:
Content-Type, en la que indicaremos que se trata un mensaje SOAP; y
Content-Length, la cual contendra el nimero de bytes que contiene el elemento
Body.

4.4.8 Nota critica

Como cualquier tecnologia existente, SOAP tienes ciertas ventajas y ciertos
inconvenientes. En la siguiente lista se pueden ver algunas de las mas

significativas:

e Ventajas
0 Usar SOAP sobre HTTP facilita la comunicacion a través de

proxys y firewalls.

41

Arquitectura corporativa de web services Javier Vacas Gallego

o SOAP es muy versétil, de manera que puede ser usado con
diferentes protocolos de comunicacion. El protocolo estandar es

HTTP aunque también se pueden usar otros como SMTP.

e Desventajas
0 XML usa texto raso para representar la informacion, esto provoca
gque SOAP sea considerablemente méas lento que otras
tecnologias como CORBA (Common Object Request Broker
Architecture). Esto no es muy grave si los mensajes enviados son

de reducido tamafio, como es el caso de este proyecto.

4.5 WSDL

4.5.1 Introduccion

WSDL es un lenguaje escrito en XML que nos permite describir web services.
Un documento WSDL especifica la localizaciébn del servicio asi como las
operaciones o meétodos de que dispone. Por tanto, lo usaremos en este
proyecto para indicar a nuestros clientes la funcionalidad del web service asi

como el lugar desde donde puede ser consumido.

4 5.2 Estructura del documento

Para describir un web service los documentos WSDL disponen de los

siguientes elementos:

e <portType>: contiene las operaciones que el web service puede llevar a
cabo.

e <message>: contiene los mensajes usados por el web service.

e <types>: contiene los tipos de datos que el web service utiliza.

e <binding>: especifica los protocolos de comunicacion del web service.

42

Arquitectura corporativa de web services Javier Vacas Gallego

Un documento WSDL puede contener, también, otros elementos de extension
o bien un elemento del servicio que se encarga de hacer posible la agrupacion

de las definiciones de diversos WS en un Unico documento WSDL.

4.5.3 Elemento <portType>

Este elemento es el mas importante de un documento WSDL. En él se incluye
la descripcidn del web services, las operaciones que pueden ser ejecutadas asi

como los mensajes que estan involucrados.

Si los analizamos desde el punto de vista de un lenguaje de programacion
tradicional el elemento <portType> se puede equiparar con una libreria de

funciones (o con una clase).

4.5.4 Elemento <message>

Este elemento permite definir los datos de cualquiera de las operaciones que
realice el web service. Cada uno de estos mensajes puede consistir en una o
varias partes, las cuales, siguiendo el simil de los lenguajes tradicionales son

comparables a los parametros pasados a una funcion al llamarla.

4.5.5 Elemento <types>

Como su nombre indica este elemento define qué tipos de datos van a ser
usados por el web service. Para evitar problemas de dependencias de

plataformas, WSDL usa el esquema XML para definir estos tipos de datos.

4.5.6 Elemento <binding>

Este elemento simplemente nos indica el formato del mensaje y los detalles del
protocolo usado por cada una de las operaciones definidas en el elemento

<portType>.

43

Arquitectura corporativa de web services Javier Vacas Gallego

4.5.7 Ejemplo

A continuacibn se puede observar lo que seria una version bastante

simplificada de un documento WSDL.:

<message name="‘getPriceRequest''>
<part name="book" type=''xs:string"/>
</message>

<message nhame="‘getPriceResponse'>
<part name="price" type='xs:string'/>
</message>

<portType name="'bookPrices'>
<operation name=''getPrice">
<input message="'getPriceRequest' />
<output message="‘getPriceResponse’/>
</operation>
</portType>

En este ejemplo podemos ver como el elemento <portType> nos indica que hay
un puerto con nombre bookPrices el cual contiene la operacion getPrice. Esta
operacion tiene el mensaje de consulta getPriceRequest y el mensaje de

respuesta getPriceResponse.

Por otra banda en los elementos <message> observamos las partes de cada
mensaje (en este caso s6lo una por mensaje) asi como los tipos de datos

asociados.

Si lo comparamos con un lenguaje de programacion tradicional bookPrices
seria la libreria de funciones, getPrice seria una funcion concreta que tendria
como parametro de entrada getPriceRequest y como pardmetro de salida

getPriceResponse.

4.5.8 Tipos de operaciones

Basicamente los tipos de operaciones mas utilizados en WSDL son los pares

peticibn-respuesta, pero también disponemos de los siguientes tipos:

Arquitectura corporativa de web services Javier Vacas Gallego

e Unidireccional: la operacion puede recibir un mensaje pero no retornara
ninguna respuesta.

e Peticidn-respuesta: como se ha mencionado anteriormente la operacion
puede recibir una peticién y enviara una respuesta.

e Solicitud-respuesta: la operaciéon puede enviar una peticion y esperara
una respuesta.

e Notificacion: la operacién puede enviar un mensaje pero no esperara

ningun tipo de respuesta.

4.5.9 Operacion unidireccional

Un ejemplo de operacion de tipo unidireccional seria el siguiente:

<message hame='‘newBookPrice'>
<part name="book" type="'xs:string'/>
<part name="price" type='xs:string'/>
</message>

<portType name="'bookPrices'>
<operation name="setPrice">
<input name="newPrice" message="'newBookPrices'/>
</operation>
</portType >

En este ejemplo vemos que el puerto bookPrices define un tipo de operacion
unidireccional llamado setPrice, el cual permite la entrada de nuevos mensajes
de tipo newBookPrice con los parametros de entrada book y price, sin embargo

observamos como no hay ningun parametro de salido definido.

45

Arquitectura corporativa de web services Javier Vacas Gallego

4.5.10 Operacion peticion-respuesta

El siguiente ejemplo muestra como seria una operacién peticion-respuesta:

<message hame="‘getPriceRequest''>
<part name="book" type="'xs:string'/>
</message>

<message hame="‘getPriceResponse'>
<part name="price" type=''xs:string'/>
</message>

<portType name="bookPrices'>
<operation name=''getPrice">
<input message="'getPriceRequest'/>
<output message="'getPriceResponse'/>
</operation>
</portType>

Aqui observamos como existe una operaciéon de peticién-respuesta con nombre
getPrice que requiere un mensaje de entrada, en este caso getPriceRequest
con parametro book, y devuelve un mensaje llamado getPriceResponse con
paramtro price.

4.5.11 Binding

Para poder describir mejor la funcionalidad del elemento binding veamos el
siguiente ejemplo:

Arquitectura corporativa de web services Javier Vacas Gallego

<message hame="‘getPriceRequest'>

<part name="book" type='"xs:string'/>
</message>
<message hame="‘getPriceResponse'>

<part name="price'" type="xs:string"/>
</message>

<portType name="'bookPrices'>
<operation name='‘getPrice'">
<input message="'getPriceRequest'/>
<output message="'getPriceResponse’/>
</operation>
</portType>

<binding type="bookPrices name=""bl'">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<operation>
<soap:operation
soapAction="http://ejemplo.com/getPrice'/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>

En este ejemplo el elemento binding tiene dos atributos como son el nombre y
el tipo. Este ultimo nos apunta hacia el puerto del binding que en este caso es

bookPrices.

De la misma manera el elemento soap:binding también contiene dos atributos.
Por una parte el atributo style puede tener o bien el valor “rpc”, o bien el valor
“document”. Por otra parte el atributo transport define la versién concreta del

protocolo SOAP que se va a usar, en este caso HTTP.

Finalmente el elemento operation define cada una de las operaciones que
incluye el puerto. Para cada una de estas operaciones se debe definir la
correspondiente accion SOAP, asi como la manera en que los parametros de

entrada y salida se codifican, en nuestro caso usamos “literal”.

47

Arquitectura corporativa de web services

4.5.12 Sintaxis

Javier Vacas Gallego

A continuacion se expone un listado de la sintaxis completa de WSDL 1.2.

<wsdl :definitions name="nmtoken"? targetNamespace="uri'>
<import namespace="uri" location="uri"/> *

<wsdl :documentation /> ?
<wsdl :types> ?
<wsdl :documentation /> ?
<xsd:schema /> *

</wsdl :types>
<wsdl :message name="‘ncname’> *
<wsdl :documentation /> ?

<part name='ncname’ element="‘gname™? type="‘gname’?/> *

</wsdl :message>
<wsdl :portType name="‘ncname™> *
<wsdl :documentation /> ?
<wsdl :operation name="ncname"> *
<wsdl :documentation /> ?
<wsdl : input message="‘gname'> ?
<wsdl :documentation /> ?
</wsdl: input>
<wsdl :output message=''gname''> ?
<wsdl :documentation /> ?
</wsdl :output>
<wsdl :fault name="'ncname' message="‘gname''> *
<wsdl :documentation /> ?
</wsdl :fault>
</wsdl :operation>
</wsdl :portType>
<wsdl:serviceType name=""nchame”> *
<wsdl :portType name="‘gname" /> +
</wsdl:serviceType>
<wsdl:binding name=""ncname" type='"‘gname''> *
<wsdl :documentation /> ?
<-- binding details --> *
<wsdl :operation name="ncname'> *
<wsdl :documentation /> ?
<-- binding details --> *
<wsdl:input> ?
<wsdl :documentation /> ?
<-- binding details -->
</wsdl: input>
<wsdl :output> ?
<wsdl :documentation /> ?
<-- binding details --> *
</wsdl :output>
<wsdl :fault name=""ncname’"> *
<wsdl :documentation /> ?
<-- binding details --> *
</wsdl :fault>
</wsdl :operation>
</wsdl:binding>
<wsdl:service name="'ncname’ serviceType=''gname"> *

<wsdl:documentation /> ?
<wsdl :port name=""ncname"™ binding="‘gname'> *
<wsdl:documentation /> ?

<-- address details -->
</wsdl:port>
</wsdl:service>
</wsdl :definitions>

48

Arquitectura corporativa de web services Javier Vacas Gallego

4.6 JPA

4.6.1 Introduccion

JPA (Java Persistence API) es una plataforma desarrollada para el lenguaje de
programacion Java que permite gestionar datos relacionales con el objetivo de
usar las ventajas del modelo de orientacién a objetos al interactuar con bases
de datos relacionales. El funcionamiento de JPA se basa en POJOs (Plain Old

Java Object) para usar persistencia en nuestras aplicaciones.

4.6.2 Entidades

Cuando hablamos de persistencia normalmente nos referimos a los datos que
son permanentes en nuestra aplicaciéon y que se suelen almacenar en medios
tales como bases de datos o ficheros. Sin embargo en JPA, estos datos se
llaman entidades. Estas entidades hacen referencia a una coleccién légica de

datos que pueden ser almacenados y recuperados como un todo.

Las entidades forman el nucleo de JPA y disponen de diferentes caracteristicas

y propiedades. Las mas importantes son las siguientes:

e Persistencia. Se encarga de almacenar y recuperar las entidades de un
medio persistente como una base de datos.

e Identidad. Esta propiedad se usa para identificar una entidad Unica
entre diferentes entidades en una base de datos.

e Transaccionabilidad. Las operaciones de crear, actualizar y borrar de

las entidades se llevan a cabo en un contexto transaccional.

4.6.3 Mapeado objeto-relacional

Sabemos que el modelo de orientacion a objetos funciona con clases, de la
misma manera que las bases de datos lo hacen con tablas. A partir de ahora,
gracias al uso de JPA, no trabajaremos con tablas sino con objetos, y, por

tanto, realizaremos todas las operaciones y consultas contra objetos. Esto nos

49

Arquitectura corporativa de web services Javier Vacas Gallego

permitira evitar la utilizacion del lenguaje relacional asociado a tablas,
columnas, claves, etc. Por tanto, usar este modelo nos proporcionara
caracteristicas propias del paradigma de orientacibn a objetos como por
ejemplo la herencia.

4.6.4 Metadatos

En cada entidad tendremos asociado un conjunto de metadatos que la
describiran y permitirdn a la capa de persistencia que sea reconocida,
interpretada y gestionada de manera correcta, desde el momento en que se
carga hasta que es invocada. Existen dos maneras distintas de especificar los
metadatos dependiendo, Unicamente, de la eleccidén del desarrollador. Son las

siguientes:

e Anotaciones. Permiten afiadir metadatos al cédigo de una manera
estructurada. Fueron introducidas por primera vez como parte de la
plataforma Java SE 5. Es el tipo de metadatos que hemos usado en este
proyecto.

e XML. Esta modalidad permite especificar los metadatos de cada entidad

de manera externa al cédigo mediante un documento XML.

4.7 Sumario del capitulo

En este capitulo hemos hecho un extenso repaso a las tecnologias usadas en
la realizacion del proyecto. Hemos empezado por la base de representacion y
almacenamiento de datos, como es XML, y hemos visto como definimos la
estructura de estos datos para coordinarnos con los clientes. También hemos
hecho un repaso por el protocolo de comunicacion que hemos utilizado en el
proyecto, como es SOAP, asi como la manera en que describimos esta
comunicacion, WSDL. Por ultimo hemos repasado una innovadora tecnologia
de persistencia, llamada JPA, que nos permite separar la capa de base de

datos totalmente de la capa Java.

50

Arquitectura corporativa de web services Javier Vacas Gallego

Capitulo 5: Desarrollo

5.1 La base: XML

Podemos considerar que en este proyecto el lenguaje XML toma un papel
especialmente significativo, ya que no sélo lo usamos para el envio y la
recepcion de los datos que necesitaremos para llevar a cabo todas las
operaciones de nuestro web service, sino que, ademas, utilizaremos XML como
sistema nativo de datos. Es decir, en la base de datos guardaremos y

recuperaremos la informacién directamente en formato XML.

Como ya hemos comentado XML se ha convertido en uno de los métodos mas
usados para representar datos siendo independiente de plataforma. Gracias a
esto, su uso es de mucha utilidad para llevar a cabo transacciones de
informacion entre distintas aplicaciones o sistemas. Las ventajas que ofrece el
hecho de almacenar documentos XML en una base de datos son amplias.
También lo es el tipo de aplicaciones que se pueden llegar a desarrollar con

esta tecnologia, por ejemplo:

e Aplicaciones que permiten recuperar ciertos documentos basandose en
su contenido.

e Aplicaciones que sbélo quieran recuperar un contenido parcial del
documento.

e Aplicaciones con la posibilidad de agregar documentos.

La razon por la que hemos usado una base de datos relacional para almacenar

datos XML en este proyecto, es porque Microsoft SQL Server 2005 nos

51

Arquitectura corporativa de web services Javier Vacas Gallego

proporciona poderosas herramientas respecto a la consulta y modificacion de
datos, de la misma manera que lo hace con los datos relacionales
tradicionales. Para llevar a cabo esto se ha creado en SQL Server 2005 un
nuevo tipo de datos nativo llamado XML, que nos permite almacenar en la
misma base de datos tanto datos relacionales como documentos XML

simultdneamente.

Para llevar a cabo estas operaciones y consultas de los datos almacenados en
forma de XML se utiliza el lenguaje XQuery. Ademas, XQuery también incluye
XPath, que nos permite modificar directamente los datos XML, como por

ejemplo, afadir o borrar sub-arboles del documento o actualizar ciertos valores.

En forma de conclusién, destacaremos los grandes beneficios que aporta para
el desarrollador el hecho de no tener que diseminar los datos para
almacenarlos en la base de datos, y aun mas importante, tener que reconstruir
el documento XML manualmente que se va a enviar como respuesta a una

solicitud.

5.2 Esquemas de comunicacion

5.2.1 Introduccioén

De nada nos valdria realizar un sistema de comunicacion como nuestro web
service si no sabemos qué datos nos van a llegar ni como tratarlos. Asi pues,
necesitamos definir una estructura fija que sepamos tanto nosotros como el
consumidor del web service, de manera que lo que obtengamos de esa
transmision de datos sea una informacion, para la cual, nuestros sistemas

estén preparados para procesar.

Sabemos que en nuestro web service dispondremos de diversos tipos de
operaciones que nos definirdn toda la funcionalidad del sistema. Algunas de
estas operaciones tendran muchos puntos en comudn respecto a los datos que
necesitan para llevarse a cabo. Por ejemplo, los datos del tomador del seguro
seran necesarios tanto para un producto del ramo de autos, como de

accidentes o de hogar. Por este motivo definiremos basicamente cinco

52

Arquitectura corporativa de web services Javier Vacas Gallego

esquemas XSD que daran forma a los documentos XML, los cuales contendran

todos los datos con los que trabajaremos.

5.2.2 Esquema de solicitud de cotizacion

El esquema de solicitud de cotizacién nos definira la estructura del documento
XML que nuestros clientes nos haran llegar cuando deseen hacer una peticion
de cualquier tipo de operacion de cotizacién. Es decir, se usara el mismo
esquema ya sea una solicitud para una poliza de decesos, salud, autos, etc. y
siempre cuando se trate de una cotizacion, ya que para las emisiones se usara

otro tipo de esquema.

El primer elemento de este esquema sera el de identificacion, en él haremos
constar los datos basicos del tomador del seguro, ya sea persona fisica o
juridica, asi como sus datos de contacto. En este elemento como datos
opcionales dependiendo del tipo de producto del que se trate, también
incorporamos los datos del propietario, este seria el caso, por ejemplo, de los
seguros de hogar o automaviles.

El segundo y principal elemento que incluiremos en nuestro esquema es el que
contendra los datos del riesgo. La informacion que este elemento aporte nos
servira para hacer el célculo del precio de la pdliza para la cual el cliente haya
hecho la solicitud. Como nuestro objetivo es hacer un sistema reutilitzable
daremos soporte a los ramos mas comunes del mundo asegurador, aunque en
un principio Aura no los comercialice. Por tanto, para especificar el riesgo

dispondremos de los siguientes elementos:

e Personales. Utilizaremos este elemento cuando lo que queramos
asegurar sea una persona, por ejemplo, estariamos hablando de
seguros de decesos, accidentes, salud o repatriacion. Necesitaremos,
por tanto, datos como fechas de nacimiento, sexo o profesion, asi como

pais de destino en el caso del seguro de repatriacion para inmigrantes.

e Inmuebles. Este elemento lo usaremos con los ramos relacionados con

los bienes inmuebles, basicamente el seguro de hogar. En el incluiremos

53

Arquitectura corporativa de web services Javier Vacas Gallego

la informacion de la localizacion del inmueble, los datos a cerca de su
construccion como materiales, afilos de antigledad, etc. También
necesitaremos hacer constar los datos sobre la seguridad de la que
dispone (alarmas, vigilante, etc.). Por ultimo, también sera necesaria
especificar los capitales, es decir, contenido, continente, objetos de

valor, caja fuerte, etc.

Embarcaciones. Este es un elemento simple ya que nos sirve para el
ramo de embarcaciones. En él simplemente incluiremos los datos de la

embarcacion que se desee asegurar.

Vehiculos. Este es uno de los ramos mas complejos, ya que se incluyen
automoviles de diversas categorias como motocicletas o coches. Lo
primero que necesitaremos saber es de que modelo de vehiculo de
trata, esta informacion la obtendremos a partir del cddigo
correspondiente de la base de datos oficial de modelos de automoviles
de Espafa llamada Base SIETE. A partir de aqui se haran tres
distinciones dependiendo de la categoria del vehiculo:

o Categoria 1 (Coches). Si el automévil del que se quiere hacer el
seguro es un coche, necesitaremos saber qué uso se le va a dar
(particular, transporte publico, etc), los accesorios que se incluyen

y su valor, y el cédigo postal de circulacion.

o Categoria 2 (Vehiculos industriales). Para esta categoria lo
primero que necesitamos saber es qué tipo de vehiculo es y las
caracteristicas que tiene. También nos interesara saber su peso,
el uso que se le va a dar, asi como la mercancia que va a

transportar.

o Categoria 3 (Motos). En este caso simplemente nos interesara
saber el valor de los accesorios que pueda tener y el cédigo
postal de circulacion.

En estos tres casos, por supuesto, también nos interesara saber la
matricula. Una vez que tengamos los datos del vehiculo, necesitamos

obtener los del conductor o conductores. Estos datos seran simplemente

54

Arquitectura corporativa de web services Javier Vacas Gallego

el tipo de conductor (habitual u ocasional), su numero de identificacion y
su sexo. Por ultimo también nos interesara saber la siniestralidad que ha
sufrido el conductor habitual en los ultimos afios para poder hacer un

calculo de una posible bonificacion ya sea positiva o negativa.

e Asistencia Juridica. Este producto consiste en ofrecer los servicios de
un abogado para dar respuesta cuando el cliente lo estime oportuno a
las dudas juridicas que le puedan surgir. Por tanto, simplemente

necesitamos el volumen de consultas que se quieren contratar.

Una vez que disponemos de los datos del riesgo, necesitamos otros datos
complementarios, los cuales formaran el tercer de los principales elementos de
nuestro esquema de solicitud. Estos datos son la fecha de efecto en la que
entrara en vigor la poéliza, el fraccionamiento con el que el cliente desea hacer
la contratacién, asi como los datos del seguro en vigor (en caso de que ya

disponga de uno del mismo tipo en otra compania).

Por ultimo también se incluird un elemento en el que el cliente se identificara
con unas credenciales que le habremos proporcionado previamente y que

serviran para autorizarle a realizar la operacion que solicita.

5.2.3 Esquema de respuesta de cotizacion

En el esquema de respuesta de las cotizaciones dispondremos basicamente la
minima informacion que el cliente necesite para evaluar si esté interesado en la
contratacion del producto que le ofrecemos. Para ello le enviaremos la

siguiente informacion:

e Ramo. En este elemento informaremos del ramo del que se ha obtenido

la solicitud.

e Precios. Este es un elemento que se puede repetir varias veces ya que
en ocasiones ofreceremos diferentes modalidades (como terceros, todo
riesgo, etc. en el seguro de autos). Por tanto, este elemento contendra la

modalidad, el importe del primer recibo, de los siguientes recibos y el

55

Arquitectura corporativa de web services Javier Vacas Gallego

precio anual, asi como el tipo de fraccionamiento. Por ultimo, también
contendra un identificador como atributo que servira para identificar esta
modalidad en concreto en caso de que el cliente desee contratar la
pdliza. Dentro de este elemento se incluird otro que ofreceré informacion
sobre las coberturas que estan incluidas en cada una de las

modalidades que se ofrezcan.

e Condiciones. En este elemento haremos constar cualquier condicion
que sea necesaria para contratar la péliza. Por ejemplo, en una péliza de
autos podria ser necesario que un perito revisara el coche que se quiere

asegurar a todo riesgo para comprobar que esta en buen estado.

e Documentos. Aqui haremos constar cualquier documento que pueda
necesitar el cliente para decidirse por la contratacion de la pdliza, como
por ejemplo, las condiciones generales del seguro. Cualquier documento
que deseemos hacer llegar al cliente sera en formato PDF y estara
codificado en base 64 para poder hacer el envio a través de XML de una

manera satisfactorio.

5.2.4 Esquema de solicitud de emisidn

En el esquema de cotizacion hemos pedido ciertos datos personales basicos
del tomador como el nombre o el NIF. Sin embargo, en el momento de realizar
la contratacion, el cliente nos debe informar de todos sus datos de manera
pormenorizada, de manera que completemos los datos de los que ya
disponiamos en la cotizacion. Estos nuevos datos consistiran en aspectos
como la direccidén, poblacion, nimero o numeros de teléfono, direccion de
correo electrénico, etc. Ademas, dependiendo del producto también habra que
informar de datos similares para el conductor o conductores si se trata de un

seguro de autos.

También es muy importante la informacién de cobro. Actualmente en Aura,

para pélizas nuevas, solo existe la posibilidad de llevar a cabo el cobro por

56

Arquitectura corporativa de web services Javier Vacas Gallego

domiciliacion bancaria. De todas maneras, dispondremos otros medios de pago

por si en algin momento necesitan ser utilizados.

Por dltimo, también necesitaremos hacer constar cual es concretamente la
modalidad del seguro que el cliente desea contratar. En la respuesta de la
solicitud de cotizacion se le ofreceran diversos precios, con distintas
modalidades y fraccionamientos, cada uno con un identificador Unico que nos
tendra que comunicar en la solicitud de emisién para que nosotros podamos

localizar la oferta que el cliente desea contratar.

5.2.5 Esquema de respuesta de emision

Esta sera la informacion final que el cliente recibira y certificara que la poéliza ya
ha sido emitida de manera correcta. La informacién que contendra este Ultimo

esquema es la siguiente:

e Numero de pdliza. Este es un dato crucial para poder llevar a cabo la
identificacion de una pdliza.

e Estado. En ocasiones la pdliza no podra ser emitida de manera directa
sino que es posible que se necesite algun tipo de documentacion para
verificar los datos que el cliente nos ha comunicado. Por ejemplo, si se
trata de un seguro de autos, necesitariamos el carné de conducir, la

documentacién del automévil que se quiere asegurar, etc.

e Requisitos. Sera en este elemento en el que se le comunicard al cliente
gué documentos debe aportar para emitir definitivamente su pdliza. Se

usara soélo en caso de que sea necesario.

e Documentos. En este elemento se transmitiran al cliente los
documentos que sean necesarios para demostrar que tiene una podliza
en vigor. También se le enviaran otro tipo de documento como las

condiciones particulares del seguro que ha contratado.

57

Arquitectura corporativa de web services Javier Vacas Gallego

e Informacién complementaria. Cualquier otra informacion que pueda
ser necesaria transmitir al cliente o al corredor se situard en este

elemento.

5.2.6 Esquema de listas de valores

Como ya hemos comentado en ocasiones el consumidor de nuestro web
service necesitara usar unos codigos para ciertos campos de las operaciones
de solicitud, por ejemplo, para especificar los accesorios que tiene un coche. El
esquema para este tipo de informacion sera muy simple, ya que Unicamente
existira un tipo de elemento que se repetira tantas veces como sea necesario
(dependiendo del tipo de lista que se haya solicitado), donde se especificara un
cédigo numérico y su correspondiente descripcién. Este codigo es que nos
tendran que envian para que nosotros reconozcamos a lo que esta haciendo

referencia.

5.3 Flujo de comunicacion

Una vez que ya esta clara la forma en que representaremos los datos y la
estructura de estos, es el momento para establecer la comunicacion. El primer
paso, como es logico, lo establecera el consumidor del web service, ya sea un
agente o corredor, o bien un cliente final, en el caso de que la consulta se

realice desde un motor de multitarificacion de acceso publico.

Una vez que nosotros recibamos el documento XML con la informacion
correspondiente a la solicitud de cotizacién, haremos las comprobaciones y
calculos pertinentes para devolver al cliente la informacibn que nos ha
requerido. En caso de que las caracteristicas que el cliente nos indica no
entren dentro de nuestra politica de negocio, también devolveremos una
descripcion del motivo del rechazo. De la misma manera, si se produce algun
error de tipo técnico, como datos incorrectos, lo informaremos en la respuesta,
aungue ya sera el motor de multitarificacion el que se encargue de trasladar el

motivo de la problematica al cliente final.

58

Arquitectura corporativa de web services Javier Vacas Gallego

En el caso de que hayamos conseguido realizar correctamente el proceso
hasta aqui y el cliente esté de acuerdo con una de las ofertas que le
exponemos, deberd enviarnos de nuevo una solicitud de emisidén de la pdliza
indicando qué oferta es la que escoge (si es que le hemos ofrecido mas de
una), asi como el resto de datos necesario para tramitar la contratacion del

seguro.

El dltimo paso sera devolver al cliente una confirmacioén de la contratacion del
seguro, con un numero de poliza y un conjunto de documentos que lo
acrediten. En el caso de que la pdliza quede pendiente de emisién, es decir,
que esta aceptada pero el cliente nos tenga que hacer llegar algun tipo de
documento, se le informara y se esperara a la tramitacion de estos documentos

para emitir la poliza definitivamente.

5.4 Problemas encontrados

En la realizacion de este proyecto no se han encontrado grandes problemas
qgue hayan propiciado una ralentizacion significativa del mismo. Por supuesto,
han existido ciertas dificultades que se han ido solucionando sin mayor
novedad. Basicamente han existido dos puntos clave que nos han generado

pequefios contratiempos.

Por una parte nos encontramos con el tema de la seguridad y los certificados
digitales, el desarrollo de la infraestructura necesaria para llevar a cabo las
autenticaciones de los clientes ha sido una de las partes mas costosas de

realizar en el sistema.

Por otro lado, la integracion de la tecnologia JPA también ha sido laboriosa ya
gue es muy novedosa y no disponiamos de ninguna clase de experiencia en
esta materia. Ademas, su integracion se produjo en la recta final del desarrollo.
Esto complico la situacion aunque era importante usar JPA y familiarizarse con
esta tecnologia ya que se iba a tener que utilizar en futuros proyectos por parte

de Prexon.

59

Arquitectura corporativa de web services Javier Vacas Gallego

5.5 Sumario del capitulo

En este capitulo hemos comprobado que el lenguaje XML forma el nucleo de
todo nuestro sistema ya que es la manera en que tratamos los datos en todas
sus capas, desde su transmision hasta su almacenamiento. Hemos repasado,
también, como se estructura toda la informacién que vamos a intercambiar con
los clientes de modo que haya una coordinacién que permita llevar a cabo la
transaccion con éxito. También hemos visto como deberia ser un flujo de
comunicacion ideal entre el consumidor del web service (parte cliente) y
nuestra parte (parte servidor). Por ultimo, hemos comprobado que no han
existido grandes problemas durante la realizacion del proyecto sino pequefias

dificultades que no han retrasado la fecha prevista de término.

60

Arquitectura corporativa de web services Javier Vacas Gallego

Capitulo 6: Pruebas

6.1 Introduccidn

Para poder comprobar que nuestro sistema funciona de manera correcta se ha
usado la Plataforma de Multitarificacion de Prexon. Esto nos ha permitido hacer
una evaluacion exhaustiva del web service ya que nos proporciona el medio
ideal para la introduccién de datos y la visualizacion de resultados de manera
directa e intuitiva. Por supuesto, la plataforma se ha tenido que adaptar a las
particularidades de nuestro sistema, como lo ha hecho con el de cada una de
las compafias con las que trabaja. Podemos incluir, también, esta integracién

como parte de este proyecto.

Las pruebas se han ido realizando segun se desarrollaba cada una de las
partes del sistema. Si bien, es en el momento en que el proyecto estaba
basicamente acabado cuando se han realizado todo tipo de pruebas y
comprobaciones a fondo para poder asegurarnos de que la funcionalidad del
sistema es la correcta. No sélo se han probado situaciones logicas, sino que
también se han introducido todo tipo de combinaciones absurdas de los datos o
se han intentado realizar operaciones no autorizadas, de modo que viésemos
que nuestro sistema genera el error correspondiente a cada una de estas

situaciones.

61

Arquitectura corporativa de web services Javier Vacas Gallego

6.2 La Plataforma de Multitarificacion

Como ya hemos explicado en el capitulo introductorio, esta aplicacion es uno
de los productos mas importantes de Prexon, ya que es usada habitualmente
por diversos agentes y corredores, y trabaja directamente con grandes
aseguradoras como Allianz, Mapfre o Zurich entre muchas otras. Esta
plataforma no es publica, es decir, so6lo se usa de manera interna por las
corredurias, por lo que un cliente final no tendra acceso a ella. De cualquier
modo el departamento comercial de Aura se encargara de ofrecer a otros
motores de tarificacion (publicos o privados) ya existentes la posibilidad de
integracion con los web services de Aura. Hay que destacar que sin una
aplicacion cliente de este estilo todo nuestro sistema no tendria ninguna utilidad
ya que necesitamos una aplicacion cliente que interactie con nuestro web

service.

La Plataforma de Multitarificacion es una aplicacion RIA (Rich Internet
Application) desarrollada en la parte de visualizacion mediante Adobe Flex 2.0.
Esta tecnologia es la heredera de Flash ya que amplia su potencialidad de
manera significativa aunque también se basa en Action Script. La aplicacion
esta dividida en tres capas: de datos, intermedia y de visualizacion. Estas tres
capas se comunican entre ellas para llevar a cabo toda la funcionalidad del
sistema. En particular, es la capa intermedia la que se encarga de comunicarse
con las compariias aseguradoras integradas en la plataforma. Por tanto, sera
en esta capa donde situaremos toda la l6gica que necesitemos para que Aura
pueda formar parte de Plataforma de Multitarificacion. También habra que
hacer ligerisimos retoques en las otras dos capas, como por ejemplo

almacenar el logotipo de Aura para que se pueda ver en los resultados.

62

Arquitectura corporativa de web services Javier Vacas Gallego

- Mozilla Firefox |Z]|E‘ g]

Seguro de Circulacién LPS Seguro para Flotas de Transportes Seguro de Embarcaciones

[Presupuesto | |44 Informacién |

|| Mastrar filtras

Leida &

Figura 6-1 — Pantalla principal de la Plataforma de Multitarificacion

A continuacibn vamos a ver algunas pinceladas de la Plataforma de
Multitarificacién. En la figura 6-1 podemos a echar un vistazo a la pantalla
principal de eleccion de producto (por supuesto, hay un paso previo que es la
introduccién de unas credenciales de autorizacion que no es necesario

mostrar).

Como podemos ver en la figura anterior, la pantalla principal de la aplicacion
nos permite escoger el ramo con el que queremos trabajar. Aura no tiene
productos para todos estos ramos por lo que sélo esta integrada en algunos de
ellos. A continuacién vamos a ver una captura de pantalla del formulario del
seguro de accidentes, con el que si trabaja Aura. En este formulario
especificaremos la informacién basica del tomador que necesitemos para

calcular el presupuesto de la poliza:

63

Arquitectura corporativa de web services Javier Vacas Gallego

[] E Seguro de Accidentes - Muewo Presupuesto

{_:,:J Datos del Tomador () Datos del Riesgo Q Datos Complementarios n\‘_;) Coberturas

MIFFCIF Marmbre Prirmer Apellida Segunda Apellida
0937634 2R Fruebal Fruebaz Pruebas

Céadige Postal Poblacidn

asz10 L_| Buscar L BARBERA DEL WALLES 'rJ

Tipo Wia Mormbre Mirmera Resto

[Calle > | Cisnes =4 S

Ernail Idioma preferente de contacto

Lista de Teléfonos: 1 Muevo ndmero E124377926
= 9zazvsezz i@ | Tipo de Teléfons M&Ewil -
[anadir || cancelar |

o mies | (RN

Figura 6-2 — Formulario del tomador de la Plataforma de Multitarificacion

Para completar la cotizacion del seguro necesitamos la informacion especifica
del riesgo, en este caso, de un seguro de accidentes. En la figura 6-3 podemos

observar el formulario de introduccion de los datos de riesgo para el producto

de accidentes:

O E Seguro de Accidentes - Nuevo Presupuesto
Q Datos del Tomador @ Datos del Riesgo \‘_:) Datos Complementarios Q Coberturas

Listas de asegurados: 1 Fecha de Macimiento 12/08/1981 _j

=
Ln 1770771983 id Sexo |_J) Hombre L®) Mujer

Profesion: | INFORMATICO

L | ¢Practica actividades o deportes de riesgo?

|i’| cUtiliza motocicleta?

L | iéTiene pensado wiajar fuera de la U.E. en los préximos 12 meses?

i o | (D | nodi | | concelor |

Figura 6-3 — Formulario de riesgo del seguro de accidentes de la Plataforma de Multitarificacion

64

Arquitectura corporativa de web services Javier Vacas Gallego

La figura 6-3 nos muestra un formulario de riesgo bastante simple. En la figura

6-4 podemos ver uno de los mas complejos como es del seguro de
automoviles:

O [0 seguro de Automéviles -> Presupuesto #6404

(L) Datosdel Tomador (J) Datosdel Riesgo () Datos Complementarios () Coberturas 4 Precios Obtenidos / Datos Precisados

Motor Marca Modelo wersidn

L Gasolina YJ L CITROEN YJ L SAXD YJ 1.1 5% 3P (60 C¥) Lanz. 12,/2000

|| Mostrar todas las marcas
Matricula Fecha Compra F. Matriculacidn

OS3Z2BRH 15/1z/z001 4 1s/1zizo01 g [Sin rmatricular o rat desconocida

[| Pernacta en Garaje [| Utiliza rernalque

Tipo de uso | Particular =a

CP de Circulacidn Poblacién

4gg00 || Buscar REALON, DE (AP) | v

Musicales Mo Musicales

Walor Accesorios o £ g €

& 11/01/1980 i

e s | D

Ne de afios sin siniestros | 5 Ij || Justificables

Figura 6-4 — Formulario de riesgo del seguro de automoéviles de la Plataforma de Multitarificacion

En la figura 6-5 podemos ver la pantalla de resultados de un seguro de salud.
En ella vemos los precios todas las compafiias que han respondido a la
solicitud (entre ellas Aura). Si nos interesara alguna de estas ofertas,

podriamos emitirla pulsando el botén de “Continuar” de las que nos interese.

65

Arquitectura corporativa de web services Javier Vacas Gallego

¥ - Mozilla Firefox

0 H segurode salud -> Presupuesto #6481 (=
() Datos del Tomador () Datosdel Riesgo () Datos i) & precios i @ patos
Do Resultados: 11/12 [5]
PRECIO 2,
SEEEEI i) QI(V CUADRO MEDICO en DKY Ty
Tipo de Fraccionamiento T e
{GHEHSUAL 24| MENSUAL:
tompaiiias ¥ Tepas (pfontinuar. () B s e e b it que hayan oo 3 an fa misma
. =7 —
& AURA - [¥] AuRa adeslas == CUADRO MEDICO en ADESLAS g gtk akais
=
DIEV 7o TOTAL: coN coPAGOo B

=~ MENSUAL:
adeslas S5~ [¥| spestas |
Conti
s | Sontinuar &) * Garentia da protaccidn da pages v cirugia para fa correccién de mispia |
i [¥] MUTUA MaD,
MUTUANADHLENA

A & AURA CUADRG MEDICO en AURA YR
SANITAS |, [#] swras

e TOTAL coN capaGo
& corvpaciomitua () ack. mUTUR || MEnsUAL: —
* inelupe homeopatis y ostespati

Continuar
lufentinuarn, A i SR B el e

1

SANITAS | CUADRO MEDICO en SANITAS rirfninly
TOTAL: CON COPAGO

MENSUAL: ¢

Conti
|tantnuar. Nd) * Puade sar contrateds pars asequradss menores solas (in atro asequrads mayer de cdsd)

Mm‘;fﬁ;‘”” CUADRO MEDICO en MUTUA MAD. .
TOTAL: £ CON COPAGO + DENTAL
MENSUAL:

* Inchiye homeopatiz p ostecpatiz

; =
Continuar
| tontinar. &9/ - Compremise de vicita concertads en menos da 7 dias faborabias.

~
adeslas @= REEMBOLSO0 en ADESLAS
= Lt
5 LIMITE (150000 €
Filtrar Resultados [V] garat ¢ 2
MENSIIAL: -l
Transfiriendo datos desde -

Figura 6-5 — Pantalla de resultados para un seguro de salud de la Plataforma de Multitarificacion

Finalmente, el Ultimo paso seria rellenar el formulario de emisidén para contratar
la pdliza. En este formulario simplemente haremos constar los datos
personales que no hemos especificado en la cotizacidon y los datos del pago.
En ese momento se hara la solicitud de emisién a la compafia del que el

cliente haya seleccionado la oferta. Puede haber diversos resultados:

e No emitida. Esto sucederd cuando se produzca algun tipo de error
técnico en la comunicacion y, o bien la compafia no haya recibido
nuestra peticion, o la respuesta de la aseguradora viene con errores.

e Pendiente. Este serd el caso en que el cliente deba llevar a cabo alguna
operacion fisica para acabar de emitir la pdliza, por ejemplo, enviar
algun tipo de documentacion.

e Aceptacion comercial. En este caso la poéliza también queda
pendiente, pero el que debe resolver la situacion sera alguno de los
comerciales de la compafiia, el cual debera decidir si le interesa a la
compafia contratar esa poliza.

e Emitida. Todo ha ido bien, la pdliza se ha emitido correctamente y el

cliente ya puede disfrutar de su seguro.

66

Arquitectura corporativa de web services Javier Vacas Gallego

6.3 Transformaciones XSL

Para que la Plataforma de Multitarificacion pueda trabajar con distintas
compafiias es necesario mantener un orden en la representacién vy
almacenamiento de los datos. Cada compafiia tiene sus propios esquemas
XSD, y mantener la plataforma con decenas de esquemas diferentes
simultdneamente es una mision imposible. Por tanto, es obligado tener un
sistema que permita pasar del esquema propio de cada una de las compairiias
al particular que usa la plataforma. Esto se puede llevar a cabo mediante
transformaciones XSL (eXtensible Stylesheet Language) y en particular en

lenguaje XSLT (XSL Transformations).

Gracias a estas transformaciones podemos pasar de un documento XML con
una estructura determinada a otro XML con una estructura distinta, es decir, se
lleva a cabo un mapeado de datos. Este mapeado no necesariamente debe ser
directo de un elemento a otro, o de un atributo a otro, sino que se pueden
afadir operaciones ldégicas y aritméticas para transformar los tipos de
representacion de datos que se usan en un documento al formato del otro.
XSLT es un documento XML que usa XPath para navegar por los XMLs con los

que va a llevar a cabo las transformaciones.

La plataforma usa esta tecnologia para hacer cada una de las transformaciones
de su formato propio al de los esquemas de las compaiiias y a la inversa. De
esta manera, se pueden realizar todas las operaciones de manera rapida y
eficaz. Por tanto, en la realizacion de este proyecto se han elaborado cuatro de
estas transformaciones (una por cada operacion béasica de solicitud y
respuesta) para poder integrar el sistema de web services de Aura realizado en

este proyecto.

6.4 Resultado de las pruebas

Como se ha comentado anteriormente, las pruebas que se han llevado a cabo
en este proyecto se han ido haciendo de manera incremental a medida que

cada una de sus partes se iba realizando. El proceso de pruebas empez6 con

Arquitectura corporativa de web services Javier Vacas Gallego

la primera version del web service, que simplemente nos devolvia un “Hola
mundo!”. A medida que se fueron afiadiendo nuevas funcionalidades, se iba
probando todo el sistema. Por cada nueva interfaz que se realizaba, se hacian
pruebas a fondo, incluyendo la comprobacién de casos absurdos y datos
incoherentes. Con esto no soOlo se verificaba que el sistema devolvia las
respuestas con los correspondientes precios y modalidades que habian sido
solicitados, sino que, ademas, en caso de que existiese algun tipo de error,
nuestro sistema seria capaz de detectarlo y describir el problema al consumidor

del web service.

La segunda fase de pruebas que se realizé hacia referencia a la seguridad, se
probé todo el sistema usando el protocolo SSL y comprobando que el cliente
hacia uso de un certificado emitido por una entidad certificadora acreditada
para poder hacer uso de nuestro web service.

Finalmente, después de la integracion en la Plataforma de Multitarificacion de
Prexon (parte cliente), se realiz6 la fase de pruebas mas importante. El hecho
de haber realizado pruebas duras en la fase de desarrollo evitd que se
produjesen errores graves en esta fase de la verificacion del sistema. Se han
llegado a hacer cientos de cotizaciones y emisiones con todo tipo de datos para
comprobar que todo nuestro sistema es fiable al ciento por ciento. El resultado

obtenido, es, por tanto, inmejorable.

6.5 Sumario del capitulo

En este capitulo hemos hecho un repaso por las pruebas que hemos realizado
para comprobar que nuestro sistema funciona a la perfeccion. Hemos hecho un
pequefio repaso sobre la Plataforma de Multitarificacion para observar como
funciona un motor de multitarificacion y como deberian comportarse los clientes
gue se conecten a nuestro web service. Por ultimo, hemos explicado en qué
han consistido estas pruebas, asi como cada uno de los pasos que hemos

dado en su realizacion, obteniendo unos resultados 6ptimos.

68

Arquitectura corporativa de web services Javier Vacas Gallego

Capitulo 7: Conclusiones

7.1 Revision de objetivos

El objetivo principal de este proyecto, que consistia en facilitar la conexion
entre la compafia de seguros Aura y la Plataforma de Multitarificacion de
Prexon, asi como otros motores de multarificacion, se ha cumplido totalmente.
A partir de ahora Aura dispondra de una via telematica de comunicacion con
sus agentes y corredores, asi como la posibilidad de hacerlo con clientes
finales. Esto se sustenta en las interfaces que hemos puesto a disposicion de
Aura para que pueda ofrecer servicios de cotizacion y emision de poélizas de
manera remota, asegurando eficacia, rapidez, fiabilidad y seguridad en estas

transacciones.

En la parte correspondiente a Prexon también se han cumplido sobradamente
los objetivos planteados en un principio. No sélo se ha logrado entregar un
proyecto en el plazo acordado, sino que se ha impulsado el crecimiento de la
Plataforma de Multitarificacion integrando una compafiia mas. Esto ha
favorecido a incrementar la competencia entre aseguradoras y, por tanto,
reforzar el interés tanto de corredurias como de otras compariias para hacerse

con el producto.

Un segundo objetivo que impuso Prexon es que la aplicacion fuera
completamente reutilitzable para futuros proyectos con similares necesidades.
Este requisito, que podia parecer dificil de cumplir al ciento por ciento, se ha

efectuado con bastante éxito, ya que el uso de JPA o el hecho de ubicar una

69

Arquitectura corporativa de web services Javier Vacas Gallego

parte de la logica de negocio en la base de datos ha colaborado a su

materializacion.

Respecto a los objetivos personales planteados también hay que hacer una
valoracion positiva. En primer lugar, he obtenido valiosa experiencia, asi como
conocimientos técnicos durante la realizacibn de este proyecto, que
complementan asi los estudios de Ingenieria en Informatica. Ademas, he tenido
la oportunidad de trabajar con un equipo de grandes profesionales que no han
hecho mas que inculcarme conocimientos técnicos pero también ganas y

motivacion por el trabajo bien hecho.

En relacién a los requisitos técnicos del proyecto cabe destacar que este ha
sido uno de los apartados en los que se ha obtenido un éxito mas rotundo. Los
objetivos de escalabilidad, fiabilidad y seguridad se han cumplido plenamente,
haciendo especial hincapié en la seguridad, la cual se ha apuntalado de
manera severa debido al uso de datos criticos en las transacciones de
informacion. También se ha verificado que el sistema sea escalable de modo
que Aura pueda, en un futuro, incrementar su funcionalidad afiadiéndole
nuevos ramos o productos, asi como otro tipo de operaciones corporativas o de

gestion.

7.2 Revision de la planificacion

La planificacion global del desarrollo que se habia calculado inicialmente es
bastante acertada respecto a la duracién integral del proyecto. También se
aproxima bastante a la duracion particular de cada una de las tareas por
separado, aunque en este aspecto ha habida pequefas diferencias en algunas
estimaciones de duracién. Ademas, el uso de la tecnologia JPA no estaba
pensado en un principio, lo que ha hecho variar ligeramente la planificacion

inicial.

70

Arquitectura corporativa de web services Javier Vacas Gallego

7.3 Futuras vias de desarrollo

Las posibles vias de desarrollo que el sistema desarrollado en este proyecto

puede abarcar son numerosas ya que podemos ampliar su funcionalidad de

manera que se convierta en un auténtico motor no sélo comercial sino también

de gestion de la propia compafiia. A continuacion podemos ver una lista de

estas posibles mejoras:

Ampliacion de ramos. Esta mejora ya ha estado prevista durante la
realizacion del proyecto gracias al requisito de escalabilidad. En la
actualidad Aura esta tramitando la ampliacibn de ramos con los que
trabaja. Es por este motivo que el sistema que hemos realizado ya esta
completamente preparado para hacerse cargo de estos nuevos

productos.

Partes de accidentes. Seria interesante que, igual que un corredor
puede emitir una poliza telematicamente desde Internet, por qué no
hacer un parte de siniestro. Esto seria muy util, por ejemplo, en los
seguros de hogar o automaviles, en los que se ahorraria mucho tiempo
ademas de papeleo. De la misma manera que se hace con las
cotizaciones o emisiones, existiria un esquema de datos XSD en que
hiciéramos constar todos los datos del siniestro, asi como documentos

escaneados en caso necesario.

Gestion de cartera. De la misma manera que con la mejora anterior,
también seria muy util para los agentes de Aura poder disfrutar de una
gestion de su cartera de pdlizas, es decir, poder consultar los datos de
las pdlizas que ha emitido. Incluso, dependiendo del agente, permitirle

modificar o dar de baja pdlizas.

Interfaz gréfica. Ya hemos comentado en diversas ocasiones que el
sistema desarrollado en este proyecto es inutil sin una capa cliente que

se encargue de obtener los datos que se necesitan para responder a las

71

Arquitectura corporativa de web services Javier Vacas Gallego

solicitudes que le lleguen y de mostrar los correspondientes resultados
gue se obtengan. En los objetivos de este proyecto no se hacia constar
el desarrollo de una interfaz grafica ya que, tanto a Aura como a Prexon,
les interesaba utilizar la Plataforma de Multarificacion como la parte
cliente desde la cual se consume nuestro web service. A pesar de esto,
la realizacion de una interfaz gréafica sencilla, posiblemente colgada de la
pagina web de Aura, en la que se le ofrezca al cliente la posibilidad de
llevar a cabo solicitudes de cotizaciones de seguros e, incluso, llegar a
emitirlos, puede ser una posible via de trabajo fututo que puede dar

beneficios comerciales a Aura.

7.4 Valoracion y conclusion final

Como conclusiones finales destacaremos que se han cumplido de manera
rotunda los objetivos y requisitos impuestos al principio del proyecto, asi como
la planificacion temporal prevista, si bien es cierto que el uso de la tecnologia
JPA (que no estaba planeado en el arranque del proyecto) ha hecho variar
infimamente los plazos concretos de término de algunos de los avances

planificados.

Mi valoracion personal también es favorable. La realizacion de este proyecto no
s6lo me ha servido para aprender y asimilar nuevos conceptos en el ambito
técnico, sino que ha colaborado a la integracibn en un gran equipo de
profesionales. He vivido, asi, una experiencia en una situacion real de un
proyecto en el ambito corporativo con unos requisitos que se deben cumplir y

un plazo de entrega que hay que satisfacer.

72

Arquitectura corporativa de web services Javier Vacas Gallego

Bibliografia

[1] Graham, S., Davis, D., Simeonov, S., Daniels, G., Brittenham, P.,
Nakamura, Y., Fremantle, P., Koenig, D., Zentner, C., “Building Web Services
with Java: Making Sense of XML, SOAP, WSDL, and UDDI”, Sams, 2nd
Edition, 2004.

[2] Keith, M., Schincariol, M., “Pro EJB 3: Java Persistence API”, Apress, 1st
Edition, 2006.

[3] Snell, J., Tidwell, D., Kulchenko, P., “Programming Web Services with
SOAP”, O’'Really Media, 1st Edition, 2001.

[4] W3Schools Online Web Tutorials [en linea], http://www.w3schools.com/

[5] MSDN: Microsoft Developer Network (XML Support in Microsoft SQL Server
2005) [en linea], http://msdn.microsoft.com/en-us/library/ms345117.aspx

73

Arquitectura corporativa de web services Javier Vacas Gallego

Abstract

Este proyecto consiste en la realizacibn de un sistema informético que se
encargue de ampliar la red comercial de una compafia de seguros a través de
Internet. Para ello se utiliza la tecnologia de web services, que nos permite
efectuar transacciones de datos de manera rapida, fiable y segura. ElI web
service que se ha disefiado se encarga de resolver y dar respuesta tanto a
peticiones de solicitud de precios como de emision de pdlizas en varios ramos.
El objetivo es ofrecer al cliente final un método sencillo y préximo de cotizacion

y emision de seguros.

Aquest projecte consisteix en la realitzacio d'un sistema informatic que
s’encarregui d’ampliar la xarxa comercial d’'una companyia d’assegurances
mitjancant Internet. Per a aix0 s'utilitza la tecnologia de web services, que ens
permet efectuar transaccions de dades de manera rapida, fiable i segura. El
web service que s’ha dissenyat s’encarrega de resoldre i donar resposta tant a
peticions de sol-licitud de preus com d’emissié de polisses en diversos rams.
L'objectiu es oferir al client final un metode senzill i proxim de cotitzacio i

emissio d'assegurances.

This project consists of a computer based system to be responsible for
expanding the business network of an insurance company via the Internet. It
uses web services technology, which allows us to make data transactions in a
fast, reliable and secure way. The web service that has been designed handles
to resolve and respond to requests for prices solicitation and insurance policies
emission in several classes. The aim is to give customers an easy and near

way of trading and issuance insurances.

74

