
DISPOSITIUS HANDHELD PER A APLICACIONS MÈDIQUES.
DISSENY I IMPLEMENTACIÓ DʼINTERFÍCIES DEL PROTOCOL START.

Universitat Autònoma de
Barcelona

Escola Tècnica Superior
d’Enginyeria

Memòria del projecte de final de carrera
corresponent als estudis dʼEnginyeria
Superior en Informàtica presentat per
Xavier Jurado Cristóbal i dirigit per
Ramon Martí Escalé.

Bellaterra, juny de 2008

ii

El firmant, Ramon Martí Escalé, professor del
Departament dʼEnginyeria de la Informació i de
les Comunicacions de la Universitat Autònoma de
Barcelona

CERTIFICA:

Que la present memòria ha sigut realitzada sota
la seva direcció per Xavier Jurado Cristóbal

Bellaterra, juny de 2008

Firmat: Ramon Martí Escalé

iii

A tots els que mʼheu recolzat durant aquests anys

iv

Agraïments
Vull donar les gràcies a totes les persones amb qui he tingut el plaer de coincidir en aquests
cinc anys de carrera. A tots els companys amb qui he compartit incomptables hores de feina

i també de diversió. A lʼAbraham, el Carlos, el Ferran i, especialment, al Gerard, per tots els
moments viscuts.

Gràcies també als projectistes de SeNDA, al departament i en especial al meu director de
projecte, Ramon Martí, per la seva paciència i els seus consells.

I gràcies a la meva família, que mʼha mostrat un suport incondicional durant tots aquests
anys.

v

vi

Índex

Capítol 1. Introducció
 1
1.1 Objectius
 3

1.2 Metodologia
 3

1.3 Estructura de la memòria
 4

Capítol 2. Estat de lʼart
 6
2.1 Triatge
 6

...2.1.1 Triatge simple
 6

...2.1.2 Etiquetes de triatge
 7

..2.1.3 START
 7

2.2 GPS
 8

2.3 RFID
 9

...2.3.1 Tipus dʼetiquetes
 9

2.4 Agents
 10

Capítol 3. Anàlisi
 13
3.1 Descripció de la proposta
 13

..3.1.1 Requeriments funcionals
 13

...3.1.2 Requeriments no funcionals
 14

vii

3.2 Triatge
 14

...3.2.1 Lʼalgorisme START
 14

..3.2.2 Etiquetes de triatge
 16

3.3 Components software
 16

...3.3.1 Interfícies gràfiques per dispositius mòbils
 16

..3.3.2 Agents en aplicacions mèdiques
 17

3.4 Components hardware
 18

..3.4.1 Dispositiu mòbil: lʼN810
 18

...3.4.2 Mòdul GPS
 24

..3.4.3 Mòdul RFID
 25

3.5 Estudi de viabilitat
 28

..3.5.1 Viabilitat tècnica
 28

...3.5.2 Viabilitat operativa
 28

..3.5.3 Viabilitat econòmica
 28

..3.5.4 Viabilitat legal
 29

..3.5.5 Planificació inicial de la proposta
 29

Capítol 4. Disseny i implementació
 31

4.1 Disseny global de lʼaplicació
 31

...4.1.1 Components
 31

...4.1.2 Arquitectura
 32

..4.1.3 JADE
 33

..4.1.4 SWT
 33

4.2 Agent interfície gràfica
 34

4.3 Agent dʼemmagatzematge
 35

...4.3.1 TriageDataAgent
 35

..4.3.2 TriageData
 35

viii

4.4 Controlador
 38

4.5 Model
 39

4.6 Vista general
 40

...4.6.1 Layout
 41

...4.6.2 Menú
 42

...4.6.3 Controls específics
 43

4.7 Vista de preferències
 47

...4.7.1 Descripció
 47

..4.7.2 Disseny
 47

4.8 Vista de triatge
 48

...4.8.1 Descripció
 48

..4.8.2 Disseny
 49

4.9 Vista START
 49

...4.9.1 Descripció
 49

..4.9.2 Disseny
 50

4.10 Vista dʼedició manual
 54

...4.10.1 Descripció
 54

...4.10.2 Disseny
 55

4.11 Mòdul GPS
 60

...4.11.1 Descripció
 60

..4.11.2 GPSController.java
 61

..4.11.3 GPSController.c
 61

4.12 Mòdul RFID
 62

..4.12.1 SerialBluetoothController
 62

...4.12.2 IDBlueController
 63

ix

Capítol 5. Proves i integració
 66

5.1 Proves
 66

...5.1.1 Mòdul GPS
 66

..5.1.2 Mòdul IDBlue/RFID
 67

..5.1.3 Interfície gràfica
 67

5.2 Test dʼintegració
 68

Capítol 6. Conclusions i línies dʼampliació
 70

Bibliografia
 74

Annex 1. Java
 77

Annex 2. Instal·lació i configuració de lʼN810
 82

Annex 3. Disseny dʼicones per la interfície
 86

x

xi

Capítol 1. Introducció
El 12 de maig del 2008, a la província de Sichuan de la República Popular de la Xina, un
terratrèmol de 8.3 graus va acabar amb la vida de més de 60.000 persones i en va ferir

370.000 més.

Any rere any, casos com el de Sichuan sʼhan anat repetint; terratrèmols, tsunamis,

inundacions o huracans han provocat situacions dʼemergència on sʼhi han vist involucrades
un número desorbitant de persones.

És en aquests casos quan es despleguen mecanismes dissenyats específicament per
situacions de pèrdues humanes massives. Lʼorganització dels recursos disponibles durant

els primers dies de lʼincident és imprescindible per maximitzar el nombre de supervivents.

Mètodes de la medicina d'emergències com el triatge permeten a equips mèdics reduïts

classificar les víctimes sobre el terreny segons la seva gravetat. Dʼaquesta manera, quan els
primers equips dʼassistència aconsegueixen arribar a la zona poden centrar-se en donar

tractament a aquelles persones que més ho necessiten.

Al llarg dels anys han anat apareixent diferents mecanismes de triatge per una gran varietat

de situacions. De tots ells, el protocol conegut amb el nom de START ha estat utilitzat amb
èxit en situacions dʼemergència reals. Aquest mètode es caracteritza principalment per ser

capaç de diagnosticar lʼestat dʼuna persona en un temps no superior als 60 segons.

Per tal de facilitar la feina als equips mèdics que arriben amb posterioritat a la zona, molts

mètodes de triatge, inclòs START, lliga al voltant del coll o a les extremitats del pacient una
etiqueta on, seguint un esquema de colors, sʼinforma de la seva necessitat dʼatenció. A

lʼetiqueta, a més, sʼhi emmagatzema informació breu sobre lʼestat del pacient. Dʼaquesta
manera es pot decidir, no sense implicacions morals, quins pacients seran atesos amb

prioritat.

1

La tecnologia ha estat, generalment, absent en tots aquests escenaris. La inexistència

dʼinfraestructures operatives no ha fet aconsellable la utilització de dispositius informàtics.
Afortunadament, la industria aposta per desenvolupar sistemes cada vegada més petits i

amb més autonomia; sistemes amb una potència i prestacions semblants a les dʼun
ordinador de sobretaula.

Dʼentre totes les famílies dʼaparells, la dels dispositius mòbils (també coneguda amb el nom
de handheld devices) sʼha centrat en oferir productes altament portables, dʼuna mida

suficientment reduïda com per poder ser transportats en una butxaca. Se solen caracteritzar
també per tenir una pantalla normalment tàctil de dimensions considerables (en relació amb

la resta del cos).

Aquests aparells mòbils són especialment utilitzats en entorns empresarials, donada la

capacitat dʼintegrar una gran quantitat dʼinformació en un espai tan reduït. Però creiem que
també tenen qualitats adequades per ser utilitzats en les situacions dʼemergència descrites.

El procés de triatge, per la seva simplicitat, pot ser realitzat per equips amb una mínima
preparació mèdica, com poden ser bombers, policies o militars. El personal amb més

coneixements generalment és destinat a lʼatenció directa de les víctimes un cop són
recollides de la zona del desastre.

Al mateix temps, però, el sistema no és suficientment intuïtiu com per ser utilitzat per
persones que desconeguin què és el triatge. Si no es coneix lʼalgorisme a seguir per

assignar un o altre estat a partir dels signes vitals del pacient, no es podrà ajudar activament
en el procés.

Per altra banda, en tot procés de triatge és habitual trobar casos on no sʼha assignat lʼestat
més recomanable al pacient. Si es tria una prioritat major a la que el pacient necessita

(overtriage), es corre el risc de saturar els pocs recursos mèdics disponibles amb persones
que no requereixen atenció immediata. Per altra banda, assignar una prioritat menor a la

real (undertriage), és a dir, infravalorar la necessitat dʼatenció del pacient, pot portar a un
empitjorament del seu estat i, ocasionalment, a la seva mort.

El sistema de triatge clàssic presenta també una limitació important alhora de donar a
conèixer quines són les zones amb més gent afectada. Als equips dʼassistència mèdica,

capaços de recollir les víctimes i portar-les a hospitals, els hi pot interessar anar a zones ja
analitzades on sʼhi trobin els pacients més greus, però no coneixeran aquestes dades a

priori perquè les etiquetes que contenen aquesta informació es troben lligades físicament a
les víctimes.

2
 CAPÍTOL 1. INTRODUCCIÓ

Per totes aquestes raons, un sistema informatitzat que sigui capaç dʼescollir lʼestat del

pacient de forma semiautomàtica i emmagatzemar-lo té la seva utilitat. La utilització de
dispositius mòbils en aquest entorn no entorpeix la tasca habitual de triatge; la seva

autonomia pot ser suficient per aguantar més dʼun dia de funcionament, i poden oferir
avantatges únics que justifiquin la seva implantació.

Aquest és el punt de partida del nostre projecte.

1.1 Objectius
• Disseny i implementació dʼun assistent per al protocol de triatge START, que pugui ser

utilitzat per personal sense coneixements de lʼalgorisme en sí, sense que això suposi un
increment significatiu en el temps de triatge.

• Disseny i implementació d'una interfície interactiva que permeti la introducció de les
dades de forma manual, per tot aquella gent que no desitgi utilitzar lʼassistent.

• Creació dʼuna estructura capaç dʼemmagatzemar totes les dades recollides de cada
pacient, és a dir, una versió virtual de les etiquetes de triatge tradicionals.

• Juntament amb l'estat mèdic, les possibles dades personals (si es coneixen) o dʼaltres
anotacions que es creguin convenients, l'aplicació haurà d'anotar la localització del

pacient a través d'un dispositiu GPS.

• El sistema també haurà de ser capaç de llegir un RFID col·locat al pacient i

dʼemmagatzemar-lo juntament amb totes les dades recollides, per tal de facilitar les
tasques d'identificació.

• Integració de tot el sistema desenvolupat en dispositius Nokia N810, tenint en compte
les limitacions i necessitats específiques de plataformes mòbils, molt especialment les

relacionades amb la usabilitat dʼinterfícies gràfiques.

• Integració del sistema en un entorn dʼagents.

1.2 Metodologia
Per acomplir els objectius marcats, seguirem els següents passos:

1. Primer estudiarem les característiques del Nokia N810. De forma general, haurem de

descobrir què suposa dissenyar i implementar aplicacions per a dispositius mòbils.
Però també haurem dʼanalitzar les capacitats del nostre dispositiu, i trobar-ne les

seves limitacions.
2. Tot seguit haurem dʼestudiar el mètode START en detall, així com tota la terminologia

bàsica relacionada amb la medicina dʼemergències.

3
 CAPÍTOL 1. INTRODUCCIÓ

3. Un cop coneguem tota aquesta informació, estarem en disposició de realitzar un

anàlisi dels requeriments funcionals i no funcionals del nostre sistema.
4. A continuació, haurem de dissenyar tots i cadascun dels elements en què hàgim

decidit dividir el projecte.
5. Implementarem la totalitat del sistema utilitzant les eines que tinguem disponibles en

el nostre dispositiu mòbil, intentant seguir patrons de disseny adequats a la nostra
problemàtica.

6. Validarem la feina feta comprovant que tots els mòduls del sistema compleixen els
requeriments exposats durant la fase dʼanàlisi.

7. Finalment, valorarem la feina feta, determinarem les seves limitacions i establirem un
conjunt de línies futures de desenvolupament.

1.3 Estructura de la memòria
Tenint en compte la metodologia utilitzada, hem estructurat la memòria de la següent forma:

• Capítol 2: Estat de lʼart. En aquest capítol donarem coneixements necessaris per

poder entendre la resta de la memòria. Parlarem del triatge i el mètode START, de la
tecnologia GPS i RFID i del concepte dʼagent i plataforma.

• Capítol 3: Anàlisi. Farem un anàlisi detallat dels requeriments funcionals i no
funcionals del projecte. Mostrarem els principals mòduls en què es dividirà el projecte i

realitzarem un estudi de viabilitat, oferint la planificació inicial de la proposta.

• Capítol 4: Disseny i implementació. En aquest capítol mostrarem els detalls del

disseny i implementació de cadascun dels mòduls descrits en lʼanterior capítol.

• Capítol 5: Proves i integració. Tal com el seu nom indica, en aquest capítol es

realitzaran proves del sistema per comprovar que compleix amb els requisits exposats.
Es provaran, per una banda, els diferents components de forma individual, per acabar

realitzant un test dʼintegració de tot el sistema.

• Capítol 6: Conclusions i línies dʼampliació. Amb els resultats a la mà, veurem si hem

acomplert els objectius del projecte plantejats en aquest capítol, i veurem línies
dʼinvestigació futures.

• Annexes. Hi mostrarem informació addicional relacionada amb el projecte, agrupada
de forma temàtica.

4
 CAPÍTOL 1. INTRODUCCIÓ

5
 CAPÍTOL 1. INTRODUCCIÓ

Capítol 2. Estat de lʼart
Al llarg dʼaquest capítol presentarem alguns conceptes necessaris per entendre el projecte:
què són i per què sʼutilitzen els mètode de triatge, característiques del protocol START, la

tecnologia GPS i RFID i el paradigma dels agents.

2.1 Triatge
El triatge és un mètode de la medicina dʼemergències i desastres per la selecció i

classificació dels pacients, basat en el seu estat així com en els recursos mèdics
disponibles. Ideat pel baró Dominique-Jean Larrey (1766-1842), metge cirurgià francès sota

les ordres de Napoleó, el triatge té com a objectiu primordial maximitzar el nombre de vides
salvades.

Per aconseguir-ho, assigna a cada pacient un nivell de prioritat (mort, immediat, endarrerit o
menor) dʼacord amb les seva necessitat dʼatenció. Així, un nivell que indiqui que el pacient

pot ser demorat no vol dir que el seu diagnòstic final no sigui greu, sinó que a mesura que
passin les hores el seu estat no variarà sensiblement.

Un cop classificats, els pacients seran atesos per les unitats mèdiques dʼacord el nivell
assignat durant el triatge.

2.1.1 Triatge simple
El triatge en situacions de pèrdues humanes massives on els pacients han de romandre a la
zona afectada (lʼanomenada zona dʼemergència) durant llargs períodes de temps, com per

exemple després dʼun terratrèmol de magnitud elevada, difereix en gran mesura dels
mètodes de triatge tradicional.

Les zones amb víctimes són molt àmplies, i les infraestructures existents no estan
operatives. Els recursos mèdics disponibles són limitats, lʼevacuació no és possible i els

equips dʼemergència de la zona no solen rebre ajuda exterior de manera immediata.

6

De tots els mètodes de triatge existents, el triatge simple és el dissenyat específicament per

aquestes situacions. Es tracta, per tant, dʼun procés que es realitza en la mateixa zona on es
troben les víctimes. El seu objectiu és identificar aquells pacients que necessiten atenció

prioritària i/o transport immediat cap a lʼhospital de campanya més proper.

2.1.2 Etiquetes de triatge
Al finalitzar el procés de triatge, una etiqueta coneguda amb el nom triage tag és col·locada

en el cos del pacient on sʼindica lʼestat assignat. Per tal de poder identificar a simple vista
quin és lʼestat dʼuna persona, les etiquetes acostumen a seguir un esquema de colors:

• Negre (mort): quan el pacient ha mort o no és possible fer res per salvar-li la vida

• Vermell (immediat): quan necessita atenció immediata

• Groc (endarrerit): quan, malgrat les ferides, la seva atenció pot ser retardada

• Verd (menor): quan té ferides lleus

A més de l'esquema de colors, a l'etiqueta de triatge se solen anotar dades com els signes
vitals detectats, el tractament preventiu aplicat, les dades personals del pacient (si són

conegudes) i un esquema del cos amb les ferides detectades.

No totes les dades són complimentades al mateix temps i pel mateix personal; s'ha de veure

l'etiqueta com un petit informe mèdic d'urgència que es va ampliant a mesura que el pacient
rep l'atenció necessària.

2.1.3 START
START (Simple Triage And Rapid Treatment) és una implementació del mètode de triatge
simple orientat a personal amb poca experiència mèdica (voluntaris, personal dʼemergència,

bombers, policies, etc). Aquest és un fet determinant ja que permet lʼaprofitament dʼuna bona
part dels recursos humans disponibles.

Va ser desenvolupat lʼany 1983 per membres de lʼhospital Hoah en col·laboració amb el cos
de bombers de Newport Beach (Califòrnia, EUA), i actualitzat lʼany 1996 pel centre mèdic

Eisenhower [1]. En lʼactualitat és un dels pocs mètodes de triatge que ha demostrat la seva
eficàcia en situacions reals dʼemergència [2].

El protocol START recomana que, en una primera instància, el personal faci una crida per tal
que totes les víctimes que es vegin amb cor de moureʼs es desplacin cap a una zona

determinada, o bé ajudin en les tasques de triatge. La gent que respon favorablement a la
crida és classificada amb etiquetes de color verd, és a dir, el menor grau de gravetat.

7
 CAPÍTOL 2. ESTAT DE LʼART

A continuació, sʼavaluen les funcions respiratòries, circulatòries i neuronals de les víctimes

restants. Dʼacord amb els resultats dʼaquestes proves (que solen durar, en conjunt, menys
de 60 segons), els pacients són classificats en una de les tres categories restants. Més

endavant veurem en detall lʼalgorisme de decisió utilitzat pel protocol.

2.2 GPS
El Sistema de posicionament global, conegut amb el nom de GPS, és l'únic sistema de

navegació per satèl·lit funcional a dia d'avui. Utilitzant una constel·lació de més de 24
satèl·lits que orbiten a 20.200 quilòmetres de la Terra, el sistema permet a qualsevol

receptor GPS conèixer la seva situació, velocitat, direcció i hora. El sistema va ser
desenvolupat i instal·lat, i actualment és operat, pel departament de Defensa dels Estats

Units.

Per tal de calcular aquestes dades, el receptor GPS ha de localitzar les emissions de com a

mínim amb 4 satèl·lits de la xarxa, dels quals rep uns senyals de navegació [3] indicant:

• Lʼhora i el dia del sistema (obtingut del rellotge atòmic que tenen abord), així com lʼestat

de funcionament del satèl·lit.

• Les efemèrides, informació orbital que permet al receptor calcular la posició a lʼespai del

satèl·lit; tenen una validesa de no més de quatre hores.

• Les dades conegudes amb el nom dʼalmanac, formades per lʼestat, lʼòrbita i codis

dʼidentificació de tots els satèl·lits GPS; al contrari que les efemèrides, aquestes dades
són vàlides durant uns 180 dies.

Sobre aquesta base, l'aparell sincronitza amb el seu rellotge intern i calcula el retard de les
senyals, és a dir, la distància a cada satèl·lit. Conegudes les distàncies, es determina

fàcilment la pròpia posició relativa respecte als satèl·lits. Coneixent a més les coordenades
de cadascun d'ells, s'obtenen les coordenades reals del punt de mesurament. A la pràctica

també s'utilitzen altres dades per tal d'obtenir resultats més precisos.

La fiabilitat depèn principalment del nombre de satèl·lits descoberts i de l'existència d'efectes

atmosfèrics adversos que afectin a la velocitat de transmissió del senyal. Els GPS d'ús comú
tenen un error de precisió de 15 metres, i si ens posem en contacte amb 9 satèl·lits enlloc

dels 4 necessaris poden aconseguir precisions inferiors als 2,5 metres.

8
 CAPÍTOL 2. ESTAT DE LʼART

2.3 RFID
La identificació per radiofreqüència o RFID (de lʼanglès Radio Frequency Identification) és un

sistema automàtic d'identificació dʼobjectes basat en l'emmagatzematge i recuperació remot
de dades utilitzant les anomenades etiquetes o tags RFID.

El mode de funcionament dels sistemes RFID és simple. Lʼetiqueta RFID, adherida a un
objecte, transmet un identificador únic utilitzant un senyal de radiofreqüència. El senyal pot

ser captat a distància per un lector RFID, el qual sʼencarrega de llegir i transmetre aquesta
informació a lʼaplicació específica que utilitza RFID.

Les etiquetes estan formades per dos components. Per una banda, un circuit integrat per
emmagatzemar i processar informació, així com per modular el senyal; conté un número

d'identificació únic, i opcionalment, una memòria no volàtil (EEPROM). Per altra banda,
l'etiqueta disposa d'una antena per rebre i transmetre els senyals.

2.3.1 Tipus dʼetiquetes
Segons les necessitats dʼalimentació elèctrica, podem distingir tres famílies dʼetiquetes
RFID: actives, semi-passives o passives.

Etiquetes passives
Els tags passius són aquells que no necessiten alimentació interna. Són capaços d'alimentar
el circuit integrat a partir del corrent elèctric induït a l'antena per les senyals de ràdio

freqüència que emet el lector RFID.

Es poden llegir a distàncies que varien des dʼuns 10 mm fins a 6 m [4], depenent del disseny

i la mida de lʼantena, així com de la potència del lector. Les transmissions, però, duren el
temps just per transmetre el número dʼidentificació.

Degut al seu disseny simple es poden crear a través dʼun procés dʼimpressió que se sol
integrar en un adhesiu.

Etiquetes actives
A diferència de les etiquetes passives, les actives tenen la seva pròpia font dʼalimentació
autònoma, que utilitzen per donar corrent als circuits integrats i propagar la seva senyal cap

al lector. Conseqüentment, aquests tags són molt més fiables que els passius i poden ser
llegits a majors distàncies (centenars de metres), però la seva mida el seu preu són també

molt superiors.

Alguns dʼells integren sensors (de temperatura, humitat, llum, etc) per observar lʼentorn al

qual es troben adherit.

9
 CAPÍTOL 2. ESTAT DE LʼART

Etiquetes semi-passives
Aquesta família dʼetiquetes incorporen també una font dʼalimentació pròpia, però només la

utilitzen per alimentar el xip i no per transmetre el senyal. De cara al lector, doncs, es
comporta com una etiqueta passiva.

El xip intern, gràcies a la seva alimentació continuada, pot mantenir una màquina dʼestats
funcionant. Aquest fet sol aprofitar-se per oferir respostes basades en lʼestat anterior de

lʼetiqueta i les dades transmeses pel lector.

Les etiquetes semi-passives ofereixen una fiabilitat semblant a les etiquetes actives i un

temps de vida superior.

2.4 Agents
Un agent és una abstracció software, una idea, de la mateixa manera que “objecte” és un

concepte abstracte de la programació orientada a objectes. El terme agent engloba una
entitat complexa de software capaç dʼactuar amb un cert grau dʼautonomia i acomplir

tasques en nom dʼun usuari o un altre programa.

La majoria dʼautors coincideixen en els següents aspectes alhora de definir el concepte

dʼagent [5]:

• Persistència: el codi no és executat sota demanda, sinó que ho fa de forma continuada i

decideix per si mateix quan ha de realitzar les seves activitats.

• Autonomia: els agents tenen la capacitat de seleccionar, prioritzar i coordinar les seves

tasques sense intervenció humana.

• Habilitat social: els agents són capaços dʼiniciar altres components utilitzant

mecanismes de comunicació, i poden ser capaços de cooperar en una acció
determinada.

• Reactivitat: els agents són conscients de lʼentorn on sʼestan executant i tenen la
capacitat dʼadaptar-sʼhi.

Així, a diferència dels objectes que són definits en termes de mètodes i atributs, un agent es
defineix en termes del seu comportament. Per tal dʼexecutar-se, els agents necessiten

residir en un entorn anomenat plataforma o agència, que disposa dʼeines bàsiques per tal
de permetreʼn la seva existència i operativitat.

Una de les plataformes desenvolupades sota el paradigma dels agents és JADE (Java Agent
DEvelopment Framework), un framework totalment implementat en Java que proporciona

eines per l'execució, migració i comunicació entre agents.

10
 CAPÍTOL 2. ESTAT DE LʼART

JADE. Interfície gràfica (agent RMA) de la plataforma.

11
 CAPÍTOL 2. ESTAT DE LʼART

12
 CAPÍTOL 2. ESTAT DE LʼART

Capítol 3. Anàlisi
Al llarg dʼaquest capítol donarem una visió general del projecte i dels seus requeriments
funcionals i no funcionals. Per una banda parlarem de lʼestructura del projecte i, per lʼaltra,

analitzarem de forma individual cadascun dels mòduls en què hem dividit el nostre treball i
nʼexposarem, si sʼescau, els seus requeriments específics. Finalment, veurem també un

estudi de la viabilitat del projecte.

3.1 Descripció de la proposta
Volem crear un sistema que implementi el protocol START en un dispositiu portàtil, que

inclogui a més la localització GPS del pacient i un identificador únic en forma de RFID.

Les dades recollides durant el procés les emmagatzemarem en un agent, que romandrà en

el dispositiu portàtil per poder ser processat a posteriori (ja que no és objectiu del nostre
projecte entrar en aquesta fase).

3.1.1 Requeriments funcionals
Sense entrar en detalls, aquests són els requeriments funcionals que demanem al nostre
projecte:

• Sʼhaurà de crear una interfície gràfica que permeti als usuaris dels equips dʼemergència
completar un procés de triatge seguint el mètode START sense necessitat de conèixer

el procediment en si.

• També haurà de permetre completar un procés de triatge sense lʼajuda del protocol

START (seleccionant lʼestat del pacient de forma manual).

• En qualsevol dels casos anteriors, sʼhauran de poder complimentar les dades recollides

amb dʼaltres que el personal mèdic consideri rellevants.

• El sistema ha de ser capaç de recuperar la posició GPS actual i incloure-la amb les

dades del pacient.

13

• També ha de poder llegir el número dʼidentificació dʼetiquetes RFID adherides als

pacients.

• Per cada pacient classificat, sʼhaurà de crear un agent amb tota la informació recollida.

• Sʼhaurà de poder cancel·lar el procés de triatge que sʼestà duent a terme.

• Serà necessari que el personal mèdic sʼidentifiqui abans de poder utilitzar lʼaplicació, i

que aquesta identificació sʼinclogui en totes les dades recollides.

• Es podran personalitzar alguns aspectes del comportament de lʼaplicació, com lʼidioma

de la interfície gràfica o el mètode de triatge a utilitzar.

3.1.2 Requeriments no funcionals
• El sistema serà utilitzat pel personal dʼemergències: se suposen uns coneixements

mínims sobre el triatge, així que el temps dʼaprenentatge de lʼaplicació haurà de ser de
pocs minuts.

• Sʼhauran de prendre decisions de forma automàtica (sense la intervenció de lʼusuari)
sempre que sigui possible. La tasca de lʼusuari haurà de centrar-se en el procés de

triatge.

• Lʼaplicació encarregada de realitzar el procés START haurà de ser accessible de forma

tàctil amb els dits. La resta de la interfície serà dissenyada també amb aquest objectiu,
però no serà obligatori que el compleixi.

• El triatge dʼun pacient seguint el mètode START sʼha de poder realitzar en menys de 60
segons.

• Sʼhauran de minimitzar els recursos utilitzats pel sistema, donat que haurem de treballar
en aparells portàtils amb molta menys potència que un ordinador de sobretaula.

• El sistema sʼha de poder utilitzar fins i tot quan no existeixin dades del GPS ni de
lʼetiqueta RFID.

• Haurem de treballar amb dispositius mòbils Nokia N810, però la interfície gràfica haurà
de ser portable a altres dispositius.

• El sistema sʼhaurà de poder integrar en una plataforma dʼagents JADE.

• El lector dʼRFID utilitzat serà lʼIDBlue de la companyia Cathexis/Baracoda.

3.2 Triatge
3.2.1 Lʼalgorisme START
Com hem comentat en lʼanterior tema, el protocol START defineix que totes aquelles
persones que puguin caminar i desplaçar-se cap a una zona determinada seran etiquetades

amb el color verd, indicant que no necessiten atenció immediata.

14
 CAPÍTOL 3. ANÀLISI

Lʼestat de les persones que no han respòs a la crida dels membres de lʼequip dʼemergència

és avaluat segons la resposta a una sèrie de proves. En una primera instància, es
comproven les funcions respiratòries:

1. Si la víctima no respira, el personal neteja les vies respiratòries i aplica les maniobres
necessàries per aconseguir que la víctima torni a respirar.

1.1. Si els intents fracassen, es pressuposa que el pacient és mort i, per tant, és
classificat amb lʼetiqueta de color negre.

1.2. Si sʼaconsegueix reanimar la funció respiratòria del pacient, la víctima és
etiquetada de color vermell indicant la seva necessitat dʼatenció immediata.

2. Si la víctima respira, aleshores es mesura amb quina freqüència ho fa.
2.1. Si aquest valor és superior a les 30 respiracions per minut, la víctima és

marcada amb lʼetiqueta dʼatenció immediata de color vermell ja que aquest és
un dels principals senyals de shock.

2.2. Si la freqüència és inferior a 30 inspiracions (o expiracions) per minut,
aleshores es passa a mesurar el pols i les funcions circulatòries.

2.2.1. Si no es troba el pols, es mesure el seu capillary refill, és a dir, el temps
que tarda la sang a emplenar vasos capil·lars buits. Aquesta valor es

mesura calculant els segons que tarda la punta del dit a recuperar el
color després de ser pressionat pel personal de triatge.

2.2.1.1. Si el temps és superior als dos segons, la víctima necessita atenció
immediata i és marcada amb lʼetiqueta vermella.

2.2.1.2. En cas contrari, es procedeix a avaluar lʼestat mental de la víctima
tal com expliquem en el següent punt.

2.2.2. Si es troba el pols, aleshores es mesura lʼestat mental del pacient.
2.2.2.1. Si és capaç de seguir instruccions senzilles, el pacient és marcat

amb lʼetiqueta de color groc indicant que la seva atenció pot ser
aplaçada unes hores.

2.2.2.2. Si no és capaç de seguir-les, aleshores el vermell és el color de
lʼetiqueta escollida per indicar la necessitat dʼatenció immediata.

La versió inicial del protocol només tenia en compte lʼestat mental, la freqüència de
respiració i el test capil·lar del pacient. Una de les modificacions plantejades lʼany 1996 [6],

inclosa en aquesta versió, va ser mesurar també el pols. És un canvi eficaç en situacions de
baixes temperatures, on el resultat del test capil·lar no és concloent.

15
 CAPÍTOL 3. ANÀLISI

La nostra versió del protocol START haurà dʼimplementar lʼalgorisme de triatge exactament

com lʼhem descrit en aquest apartat. Assignarà lʼestat del pacient de forma automàtica
segons les dades entrades per lʼusuari. No hi haurà lloc per les situacions dʼundertriage o

overtriage descrites en la introducció.

3.2.2 Etiquetes de triatge
Ja que no existeix cap normativa al respecte, els camps i la forma de les etiquetes de triatge

clàssiques varien de fabricant en fabricant. Així i tot, la majoria inclouen les següents
seccions:

• Els quatre estats en els quals es pot classificar el pacient

• Informació sobre els signes vitals detectats

• Pols, pressió sanguínia, estat mental, número dʼinspiracions per minut, etc)

• Informació personal del pacient

• Sexe, nom, adreça, etc

• Situació de les ferides del pacient (generalment dibuixades sobre un esquema)

A més a més, certs camps de les etiquetes estan preparades ser omplerts vàries vegades,
indicant així lʼevolució del pacient al llarg del temps.

Totes aquestes característiques les volem mantenir i millorar amb el nostre sistema. No
només oferirem els camps més habituals descrits, sinó que a més els relacionarem amb la

persona que els ha introduït al sistema. Serà possible entrar una mateixa dada tantes
vegades com es vulgui, i tots els valors proporcionats seran guardats juntament amb lʼhora

en què van ser introduïts.

3.3 Components software
3.3.1 Interfícies gràfiques per dispositius mòbils
Usabilitat
Crear una interfície és un repte per qualsevol enginyer. Es tracta dʼun dels molts

components que formen un projecte, però és la principal característica que serà avaluada
pels usuaris. La nostra no és una aplicació comercial, però la usabilitat serà igualment un fet

determinant, ja què es traduirà directament en la velocitat del procés de triatge i, per tant, en
el número de persones que podran ser ateses.

16
 CAPÍTOL 3. ANÀLISI

En primer lloc hem de tenir present que interactuar amb una interfície utilitzant els dits és

molt diferent de fer-ho a través dʼun mouse, o fins i tot a través dʼun llapis. La interfície ha de
continuar essent accessible, el que suposa que els controls hauran de tenir una certa mida

per facilitar-ne la seva selecció. Per norma general, aquesta mida mínima és dʼ1cm2 [7].

En segon lloc, hem de recordar que estem treballant amb una pantalla de 800 per 480

píxels, menor a la dʼun ordinador personal. És un error comú creure que reduir la mida de la
interfície és la millor solució. Tot al contrari, hem de sintetitzar el que volem mostrar a

lʼusuari per pantalla i, com hem comentat, augmentar la seva mida perquè sigui accessible.

Finalment, hem de tenir present que lʼN810 no disposa de cap sistema de reconeixement

dʼescriptura o de veu. Lʼúnica forma dʼescriure és utilitzant el teclat QWERTY de lʼaparell,
però és una feina feixuga degut a la mida de les tecles. Per tant, hem dʼintentar reduir

lʼentrada de text.

Portabilitat
Ja que el nostre sistema sʼha dʼintegrar en una plataforma dʼagents JADE, desenvolupada

completament en Java, creiem que és una bona idea realitzar la interfície gràfica en aquest
mateix llenguatge.

Això ens ofereix els següents avantatges:

• Poder accedir de forma nadiua a JADE, sense la necessitat de cap middleware

• Poder desenvolupar i executar aquesta part del projecte en qualsevol sistema que
suporti Java, no exclusivament en el dispositiu mòbil

• Produir un software portable de forma implícita

• Facilitar el procés de desenvolupament gràcies a les característiques del llenguatge

(gestió de memòria automàtica, gran quantitat dʼAPIs a la nostra disposició, etc)

3.3.2 Agents en aplicacions mèdiques
Un dels requeriments no funcionals enumerats al començament dʼaquest capítol ha estat la
necessitat dʼintegrar el nostre sistema en una plataforma JADE. El nostre projecte podria ser

dissenyat sense utilitzar agents, però hem volgut preparar-lo per poder funcionar en aquest
entorn.

17
 CAPÍTOL 3. ANÀLISI

Revistes de referència en lʼàrea com IEEE: Intelligent Systems han dedicat un número

complet [8] a parlar de les aplicacions mèdiques que sʼestan desenvolupant utilitzant la
tecnologia dʼagents. Els avantatges són clars: poder dotar els agents amb un cert grau

dʼintel·ligència permet prendre decisions en temps real que ajudin al diagnòstic o al
tractament de pacients de forma automatitzada.

Quin paper tindran els agents en el nostre sistema? Per una banda, seran els encarregats
d'emmagatzemar els resultats de tot el procés, és a dir, les dades resultants de diagnosticar

cada pacient. Un cop creats, els agents romandran en la plataforma a lʼespera de rebre
instruccions. No implementarem cap comportament: aquest és un punt que deixem obert a

línies futures dʼinvestigació.

Per altra banda, la nostra interfície també estarà continguda dins dʼun sol agent; dʼaquesta

manera, podrem accedir fàcilment a JADE per anar llençant els agents dʼemmagatzematge
necessaris.

3.4 Components hardware
3.4.1 Dispositiu mòbil: lʼN810
Consideracions prèvies
Tal com detallaven a la introducció del capítol, un dels requeriments del nostre projecte és el
dʼutilitzar aparells Nokia N810 com a dispositius mòbils. Aquesta decisió ha estat presa pel

grup SeNDA, a les ordres del qual hem desenvolupat aquest treball. De totes maneres,
creiem convenient fer una descripció de les necessitats que hauria de complir qualsevol

aparell per ser considerat una opció viable.

El nostre projecte planteja la possibilitat dʼutilitzar dispositius de mà en aplicacions

mèdiques, i busca demostrar la viabilitat dʼaquesta idea implementant una interfície del
protocol START pel triatge de pacients en situacions dʼemergències mèdiques.

Volem, a més, millorar el procés de triatge incorporant una mesura de la posició GPS de
cada pacient, i per fer-ho necessitem un receptor GPS. També necessitem un lector

dʼetiquetes RFID per poder identificar de forma única cada pacient, de cara a la nostra
aplicació.

18
 CAPÍTOL 3. ANÀLISI

Els requisits pel nostre dispositiu mòbil es perfilen dʼaquesta manera: ha de complir les

qualitats necessàries per poder ser transportat i utilitzat fàcilment per una sola persona,
incorporar un receptor de GPS i alguna interfície amb què interactuar amb un lector RFID.

La pantalla ha de ser suficientment gran com per poder treballar-hi amb les mans, sense la
necessitat dʼutilitzar llapis, perquè aquest és un element que es podria perdre fàcilment en

una situació real dʼemergència.

A més a més, de cara a facilitar la nostra feina de desenvolupament, seria desitjable que

utilitzés alguna distribució de Linux com a sistema operatiu, tant per lʼaspecte monetari com
per la gran quantitat de programari lliure que existeix per aquesta plataforma i que podríem

utilitzar en el nostre benefici.

Descripció general de lʼaparell
El Nokia N810 ha estat el model escollit amb el qual haurem de realitzar la totalitat del

nostre projecte. Compleix sobre el paper, com veurem a continuació, els requisits plantejats
en lʼanterior punt.

L'N810 és un dispositiu de mà de Nokia per xarxes sense fils. Malgrat la relació entre la

companyia i els terminals de telefonia mòbils, aquests aparell no és un telèfon. El dispositiu
està dissenyat principalment per ser utilitzat com un terminal de connexió a Internet, i ho pot

fer utilitzant la tarja Wi-Fi integrada o mitjançant una connexió Bluetooth amb un altre
dispositiu.

N810. Visió general del dispositiu amb el teclat desplegat.

19
 CAPÍTOL 3. ANÀLISI

El sistema operatiu de l'aparell sʼanomena Internet Tablet OS 2008 (OS2008), i està basat

en la plataforma de desenvolupament maemo 4.0 (que, al seu torn, està basada en Debian).
Internament, és molt semblant a aquesta distribució de Linux.

Característiques tècniques
• Mida

• 128 x 72 x 14 mm

• 226 g

• Pantalla

• 800 x 480 píxels a 65.536 colors (16 bits)

• Tàctil

• Processador

• Texas Instruments OMAP 2420 a 400Mhz

• Memòria

• 128 MB RAM DDR

• 256 MB sistema arxius

• 2 GB de memòria flash interna (/media/mmc2)

• Ranura dʼexpansió miniSD, compatible també amb microSD

• Energia

• 4 hores ús continuat (navegació)

• 14 dies en repòs

• Hardware integrat

• GPS chipset Texas Instruments 5300

• Micròfon i altaveus

• Càmera VGA

• Sensor de llum ambiental

• WLAN (IEEE 802.11b/g) STLC4550

• Bluetooth 2.0 EDR

• Connector Micro USB 2.0 High Speed

• Teclat QWERTY

maemo
maemo és una plataforma de desenvolupament construïda amb components de software

lliure i basada en Debian, una de les distribucions de Linux més estables i conegudes. La
plataforma va ser presentada l'any 2005 per Nokia, juntament amb el primer dispositiu que

l'utilitzava, l'Internet Tablet 770. El nom comercial del sistema operatiu d'aquestes unitats es
va anomenar Nokia Internet Tablet OS 2006.

20
 CAPÍTOL 3. ANÀLISI

Nokia, amb l'ajuda de la comunitat Open Source, ha continuat desenvolupant noves versions

de maemo, i les ha anat incorporant en els dispositius N800 i N810, amb el nom d'Internet
Tablet OS 2007 i 2008 respectivament.

Arquitectura
El kernel de maemo és una versió de la sèrie 2.6 del kernel de Linux. Tots els dispositius

sobre els quals corre maemo disposen d'un microprocessador de la sèrie OMAP de Texas
Instrument, format per un processador ARM de propòsit general i un DSP (Processador

Digital del Senyal).

El software a l'espai d'usuari linka amb la llibreria GNU C estàndard (i no amb la llibreria

uClib d'altres dispositius mòbils). D'aquesta manera, maemo intenta disminuir el cost de
portar aplicacions d'altres sistemes Linux.

El sistema de gestió de paquets, la jerarquia del sistema de fitxers i d'altres polítiques de
disseny són molt semblants a les d'una distribució Debian. D'aquesta manera, per exemple,

podem gestionar la instal·lació de software directament des del terminal amb la comanda
apt-get.

Lʼentorn gràfic de maemo sʼanomena Hildon, i es pot considerar una versió per dispositius
portàtils de GNOME. Aquest, al seu torn, està basat en dues llibreries: GTK+, per totes

aquelles funcions purament gràfiques, i la llibreria de propòsit general GLib (desenvolupada
pel mateix equip). A baix nivell, GTK+ fa ús de lʼentorn de finestres XOrg i Xephyr.

Versió Codename Nokia OS Dispositius compatibles

maemo 2.2 Gregale OS2006 Nokia N770

maemo 3.X Bora OS2007 Nokia N800

maemo 4.0 Chinook OS2008 Nokia N810 i N800 (actualitzable)

maemo 4.1 Diablo N/A N/A

Versions de la plataforma maemo. La versió 4.1 encara es troba en desenvolupament.

21
 CAPÍTOL 3. ANÀLISI

Arquitectura de maemo. Llistat exhaustiu dels components que formen el sistema [9]

22
 CAPÍTOL 3. ANÀLISI

Desenvolupant per maemo 4.0 ʻChinookʼ
Com hem vist, a molts nivells maemo és una plataforma idèntica a qualsevol distribució

Debian. Així i tot, existeixen una sèrie de components que han estat desenvolupats per
Nokia i que no se nʼha fet públic el codi font. Alguns exemple són el sistema de control del

GPS, totes les funcions de connexió WiFi o la interfície gràfica Hildon.

Per tal de poder aprofitar aquestes funcionalitats, maemo ofereix una sèrie dʼAPIs més o

menys documentades [10]. Les APIs oficials de estan escrites en llenguatge C estàndard, i
disposen de bindings per C++ i Python.

Malgrat és possible instal·lar un compilador (per exemple, GCC) en el nostre N810, les
limitacions de potència i memòria no fan aconsellable aquesta tècnica.

Així, per desenvolupar aplicacions per maemo fa falta un sistema de compilació creuada que
ens permeti enllaçar codi amb les llibreries de la plataforma i compilar-lo a llenguatge

assemblador ARM, independentment de l'arquitectura nadiua del sistema on realitzem el
desenvolupament (x86, PowerPC...). Amb aquest fi, maemo utilitza el joc d'eines que ofereix

Scratchbox, un projecte open source dissenyat per resoldre aquest problema.

Scratchbox inclou un compilador creuat basat en GCC, un conjunt d'scripts per crear un

sistema de fitxers virtual i instal·lar-hi el sistema base de maemo (necessari tant pels
headers com per les llibreries amb les quals s'han d'enllaçar els binaris) i un emulador

(QEMU) per poder executar les nostres aplicacions sense haver de disposar de cap aparell
extern. Scratchbox només funciona sobre Linux i sobre plataformes x86.

Java
Per tal de poder executar software Java en un sistema, fa falta una JVM (veure Annex 1).
Malauradament, ni Sun ni Nokia ofereixen una màquina virtual per lʼN810 (ni per cap altra

sistema que utilitzi maemo). És un fet excepcional, donada la gran acceptació dʼaquesta
tecnologia en dispositius mòbils.

Per sort, existeixen alternatives (no oficials) de codi lliure que haurem dʼanalitzar per trobar
la que millor sʼadapti a les nostres necessitats:

• Llibreries de classe estàndard (necessari per poder executar Jade amb garanties)

• Alguna API gràfica (per la nostra interfície)

• Suport per JNI (com veurem més endavant serà necessari per accedir al GPS)

• Velocitat dʼexecució acceptable

23
 CAPÍTOL 3. ANÀLISI

Seguint aquests criteris, hem avaluat les solucions disponibles i hem obtingut els següents

resultats:

JVM JNI GUI Velocitat

cacaovm

PhoneME

JamVM

Kaffe

Sí Sí (SWT) Moderada

No No Ràpida

Parcial No Lenta

Sí Sí (AWT) Lenta

Les dues úniques implementacions que suporten JNI i ofereixen una API gràfica són Kaffe i
cacaovm. La primera, però, lʼhem de descartar perquè un cop instal·lada ocupa més de 100

MB, i ens deixa gairebé sense espai a la unitat arrel (que recordem, és de 256 MB) .

Per tant, cacaovm és la nostra única opció. Com a característiques generals, es tracta dʼuna

implementació de JVM que ofereix compilació Just-In-Time (JIT) per accelerar lʼexecució
dels programes, i utilitza la llibreria de classes de GNU coneguda amb el nom de GNU

classpath.

Podríem instal·lar cacaovm a partir de les fonts, però existeix una versió compilada que

inclou totes les dependències gràcies a Jalimo. El projecte Jalimo té com a objectiu proveir a
dispositius mòbils basats en Linux un entorn Java estable i complet; les instruccions

dʼinstal·lació dʼaquest i dʼaltres paquets poden ser consultades a lʼAnnex 2.

3.4.2 Mòdul GPS
LʼN810 disposa dʼun receptor intern de GPS que utilitzarem per aconseguir les coordenades

del pacient en el moment del diagnòstic (latitud i longitud). Aquestes dades poden ser de
gran ajuda pels equips dʼemergència, ja que els permetria conèixer a priori no només lʼestat

de les víctimes, sinó la distribució de les mateixes sobre el terreny.

Funcionament
maemo utilitza gpsd, un daemon que llegeix les dades provinents del receptor GPS (en el

nostres cas, a través del port sèrie /dev/pgps), els hi dóna format i les distribueix a totes

aquelles aplicacions que les necessiten utilitzant sockets TCP/IP.

En un sistema linux tradicional, generalment es controla el funcionament del GPS utilitzant
únicament gpsd. En maemo, però, això no és possible perquè no podem iniciar directament

aquesta aplicació.

24
 CAPÍTOL 3. ANÀLISI

http://www.kaffe.org/
http://www.kaffe.org/
http://www.cacaovm.org/
http://www.cacaovm.org/
http://www.gnu.org/software/classpath/
http://www.gnu.org/software/classpath/
http://www.gnu.org/software/classpath/
http://www.gnu.org/software/classpath/
http://gpsd.berlios.de/
http://gpsd.berlios.de/

El motiu, és que el port sèrie a través del qual ha de llegir les dades no està sempre

disponible. Aquest port és creat per un middleware, propietari de Nokia, anomenat gpsdriver.
És lʼencarregat dʼiniciar el xip intern GPS, carregar-hi lʼalmanac més recent (des de lʼarxiu /

var/lib/gps/nvd_data) per agilitzar el procés de sincronització, crear el port sèrie i,

finalment, arrencar el propi gpsd. També inicia un petit applet al menú del sistema (/usr/

libexec/navicore-gpsd-helper) perquè lʼusuari tingui coneixement que el GPS està encès.

A més a més, gpsdriver manté un llistat de les aplicacions que han demanat accés al GPS, i

quan no nʼhi ha cap executant-se, atura gpsd, lʼapplet i el propi receptor per tal dʼestalviar
energia.

Amb tot, el temps de sincronització amb el sistema GPS varia de 3 a 5 minuts en condicions
òptimes. És un temps molt elevat comparat amb altres receptors GPS del mercat, que solen

sincronitzar en menys dʼun minut. La causa sembla ser un bug que se solucionarà amb la
propera actualització de maemo [11].

maemo, per tant, es veu obligat a oferir la seva pròpia API per accedir al navegador GPS:
Liblocation. Es tracta dʼuna llibreria orientada a objectes, escrita en C utilitzant GLib, que

posa a disposició dels programadors mètodes per iniciar, aturar i recuperar dades del
navegador GPS.

Accés al GPS
Ja que lʼúnica forma viable de controlar el GPS en lʼN810 és utilitzant lʼAPI de localització
escrita en C, hem dʼestudiar com accedir-hi des de la nostra aplicació Java.

Existeixen dues solucions al nostre problema: programar una daemon en C que
emmagatzemi les dades a disc i llegir-les des de Java, o bé utilitzar JNI (veure Annex 1).

Hem escollit lʼopció de JNI perquè ens permetrà tenir un control real sobre el receptor GPS i
consumirà menys recursos que la primera opció (no haurà dʼaccedir a disc contínuament).

3.4.3 Mòdul RFID
Consideracions prèvies
Tal com detallàvem en el llistat de requeriments no funcionals, haurem de treballar amb un
lector (i gravador) RFID anomenat IDBlue. La decisió dʼutilitzar aquest model ha estat presa

novament pel grup SeNDA, però en aquest cas no existia cap altre dispositiu en el mercat
que complís les necessitats del nostre projecte: lʼIDBlue és lʼúnic lector dʼRFID de mà amb

una interfície Bluetooth.

25
 CAPÍTOL 3. ANÀLISI

Necessitàvem un aparell que es pogués comunicar amb lʼN810 sense necessitat de cable

(no disposa de cap interfície on hi podem connectar físicament perifèrics) i que a més
tingués unes dimensions i pes adequats per poder ser portat a sobre, idealment, penjat al

voltant del coll o en una bandolera (accessible en tot moment, perquè sʼutilitzarà amb cada
pacient).

IDBlue

IDBlue és un dispositiu lector i gravador d'etiquetes RFID amb interfície Bluetooth. Presenta

un disseny portable en forma de llapis que permet ser utilitzat com a punter en pantalles
tàctils (força útil en el nostre cas). Presenta un sol botó, la utilitat del qual pot ser configurada

a través del seu driver.

IDBlue funciona sobre una plataforma RISC de 8 bits amb una freqüència de rellotge de

8Mhz [12]. Disposa d'una memòria flash interna de 128 KB que permet emmagatzemar fins
a 1000 tag ids. Disposa també d'una bateria NimH (recarregable) amb una autonomia de 4

hores d'ús continuat. Al cap de dos minuts de no ser utilitzat sʼapaga automàticament, fet
que ajuda a allargar la vida útil de la bateria.

LʼIDBlue és un dispositiu Bluetooth 1.1 de classe 2, amb un rang màxim teòric de 15 metres.
Opera a freqüències d'entre 2.40 i 2.48 Ghz. Al seu torn, el lector RFID opera a una

freqüència de 13.56 Mhz, amb un rang màxim teòric de 4 cm. A la pràctica, aquest rang
disminueix sensiblement depenent de l'etiqueta RFID utilitzada, arribant a ser necessari

realitzar un contacte físic entre l'aparell i l'RFID.

És capaç de llegir etiquetes ISO 15693-2, 15693-3, Tag-it™ HF/HFI i Philips I-Code SL. En

el nostre cas, utilitzarem etiquetes passives Tag-it™, de Texas Instruments, ja que no
requereixen alimentació i tenen un rang de lectura acceptable.

IDBlue™. Fotografia del lector i gravador RFID

26
 CAPÍTOL 3. ANÀLISI

http://www.ti.com/rfid/docs/manuals/pdfSpecs/HF-IOverallProdBulletin.pdf
http://www.ti.com/rfid/docs/manuals/pdfSpecs/HF-IOverallProdBulletin.pdf

Connexió
Oficialment, el controlador de l'IDBlue només suporta plataformes MS Windows [12]. Gràcies

al datasheet de lʼaparell [13], però, sabem que implementa el profile Bluetooth SPP (Serial
Port Profile) i que utilitza un protocol sèrie RFCOMM. Existeix, per tant, una possibilitat de

connectar-nos-hi de la següent manera:

1. Utilitzar BlueZ (l'stack Bluetooth de Linux que també utilitza maemo) per establir una

connexió sèrie des de lʼN810 cap a lʼIDBLue.
2. Enviar les comandes necessàries, disponibles en el datasheet, a través de la

connexió sèrie.

Per realitzar el primer pas, és possible establir una connexió de forma manual utilitzant les

comandes “hcitool scan” i “rfcomm connect <MAC> <channel>”. Però aquesta solució no és

viable perquè, òbviament, necessitem realitzar aquesta operació de forma automàtica des

de la nostra aplicació en Java.

Malauradament, ens tornem a trobar en una situació similar al cas del GPS: la versió

estàndard de Java no suporta per defecte cap tipus de comunicació amb dispositius
Bluetooth, perquè són funcionalitats que depenen completament del host on s'executi la

màquina virtual i, per tant, necessitem d'una implementació específica (generalment a través
de JNI).

Les versions de Java 2 Mobile Edition, pel contrari, solen oferir aquesta funcionalitat perquè
implementen l'especificació JSR-82 [14], una extensió de Java per oferir accés genèric a

dispositius Bluetooth. Però la llibreria de classes que utilitzem, GNU Classpath, està basada
en les especificacions de Java 2 SE i no lʼimplementa.

La solució trobada ha estat AvetanaBT, una implementació per Linux (basada en BlueZ) i
Java 2 SE del JSR-82. Es troba en fase de desenvolupament, però està ben documentada,

és gratuïta i proporciona exactament el que necessitem. Lʼhaurem de compilar manualment
utilitzant lʼSDK de maemo.

Un cop establerta la connexió, haurem de realitzar el segon i últim pas: enviar les comandes
necessàries per llegir els RFID. Això ho aconseguirem utilitzant jIDBlue, una versió per Java

2 SE (i ME) del controlador de Cathexis i Baracoda. Es troba en un estat molt inicial de
desenvolupament, no sʼha actualitzat des de lʼany 2005 i no suporta totes les funcionalitats

del controlador original per Windows, però gràcies a que és un projecte de codi obert
podrem implementar tot allò que ens faci falta.

27
 CAPÍTOL 3. ANÀLISI

http://sourceforge.net/projects/avetanabt/
http://sourceforge.net/projects/avetanabt/
http://auriga.wearlab.de/projects/jidblue/
http://auriga.wearlab.de/projects/jidblue/

3.5 Estudi de viabilitat
3.5.1 Viabilitat tècnica
Els coneixements tècnics necessaris pel desenvolupament del projecte inclouen la

programació en Java i en C/C++, així com els paradigmes bàsics de la programació
orientada a objectes i les tècniques dʼenginyeria del software. Tots ells han estat coberts per

la formació rebuda durant la carrera.

L'equip necessari inclou estacions de treball x86, dispositius mòbils (Nokia N810, on

s'instal·larà i es provarà l'aplicació) i lectors RFID Bluetooth. Tot lʼequip ha estat proporcionat
pel departament.

3.5.2 Viabilitat operativa
El personal dʼemergències, usuari final del sistema, hauria de realitzar la tasca habitual de
triatge. Substituir per complet les etiquetes de triatge pel nostre sistema seria viable en un

panorama on tot el personal disposés de lʼequip necessari per recuperar la informació
recollida en temps real.

Aquesta situació, però, és una utopia. Els recursos davant dʼuna emergència mèdica de
grans dimensions són limitats, els contratemps imprevisibles, i de ben segur que la nostra

solució no és perfecte. Utilitzar-la de forma única és arriscar les vides dels pacients en cas
que, per exemple, lʼaplicació fallés o algun dispositiu hardware deixés de funcionar (bateria,

accidents, etc).

Per tant, haurem de conviure amb el mètode de triatge tradicional. Proposem que les dades

siguin recollides a través de la nostra interfície (i, per tant, emmagatzemades en els
dispositius), però també siguin copiades a mà en les etiquetes clàssiques (si no en la

totalitat, només les parts més rellevants).

Lʼúnica modificació serà lʼús dʼuna etiqueta RFID per tal de poder identificar el pacient en el

nostre sistema. Lʼusuari, per tant, haurà de llegir aquesta etiqueta abans dʼabandonar el
pacient. Des de la nostra interfície recordarem que aquest pas ha de ser realitzat.

3.5.3 Viabilitat econòmica
Tot el software utilitzat és gratuït (i, en gran part, també de codi lliure) i no suposa cap
despesa addicional. Farà falta adquirir els ja esmentats dispositius Nokia N810 i els lectors

RFID; està previst fer-ho amb el pressupost del departament.

No és objectiu dʼaquest projecte, però, fer un estudi del cost dʼimplantació de la nostra

solució en situacions reals.

28
 CAPÍTOL 3. ANÀLISI

3.5.4 Viabilitat legal
En el sí del projecte no hem de tenir en compte qüestions legals. Les dades dels pacients

són recollides i emmagatzemades en un dispositiu que no és accessibles des de fora. A
més, part dʼaquestes dades serien anònimes (la informació personal del pacient no sempre

sol anotar-se, ja sigui perquè és desconeguda o perquè és irrellevant).

3.5.5 Planificació inicial de la proposta
Oferim una versió preliminar del diagrama de Gantt en relació al qual s'ha estructurat el

projecte.

La data d'inici del projecte ha estat fixada el 18 de febrer, una setmana després de la

finalització dels exàmens del primer semestre. Idealment, el projecte finalitzarà l'última
setmana de maig.

L'entrega de la memòria està prevista pel dia 16 de juny. La data de la presentació serà el
dia 7 de juliol.

29
 CAPÍTOL 3. ANÀLISI

30
 CAPÍTOL 3. ANÀLISI

Capítol 4. Disseny i
implementació
En aquest capítol començarem realitzant una descripció global del sistema, identificant els
mòduls principals en què lʼhem dividit. Per cada components del projecte, anirem veient

quines solucions sʼhan proposat per cobrir les necessitats extretes en la fase de disseny, així
com els detalls de la seva implementació.

4.1 Disseny global de lʼaplicació
4.1.1 Components
En el capítol dʼanàlisi hem pogut identificar els components bàsics que formaran part de la
nostra aplicació i el funcionament que en requerim:

• Agent interfície gràfica: lʼencarregat dʼoferir al personal dʼemergències una interfície
del protocol START que permeti realitzar la seva tasca de triatge sense tenir

coneixement previ del mètode de triatge en sí.

• Mòdul lector RFID: lʼencarregat de llegir lʼidentificador únic de lʼRFID incorporat en

cada etiqueta dels pacients.

• Mòdul de localització GPS: lʼencarregat dʼiniciar el receptor GPS de lʼN810 i

proporcionar-nos les dades de localització tant aviat com estiguin disponibles.

• Agents dʼemmagatzematge: encarregats dʼemmagatzemar les dades produïdes per la

interfície, lʼidentificador únic RFID i la posició GPS del pacient en el moment de la
diagnosi.

També hem decidit que Java serà el llenguatge utilitzat per realitzar el desenvolupament de
tots ells, a excepció del mòdul de localització GPS que serà implementat parcialment en C

per tal de interactuar utilitzant el framework JNI amb lʼAPI de localització de maemo.

Amb aquesta distribució en ment, hem decidit organitzar lʼaplicació en diferents paquets:

31

• mabett: lʼarrel del projecte, contindrà les classes destinades a iniciar lʼaplicació

• mabett.core: contindrà les classes de control

• mabett.devices: contindrà les classes corresponents als mòduls hardware de

lʼaplicació

• mabett.devices.bt: pel mòdul de lectura de lʼRFID

• mabett.devices.gps: en el cas del mòdul de localització GPS

• mabett.gui: contindrà totes les classes de la interfície gràfica

• mabett.gui.resources: contindrà els recursos de la interfície (com per exemple
les imatges) i les classes que els gestionen

• mabett.gui.triage: per totes les classes de la interfície destinades a realitzar el
procés de triatge

• mabett.gui.widgets: contindrà les classes que implementin controls gràfics
personalitzats

• mabett.triage: en formaran part totes les classes de lʼagent dʼemmagatzematge

• org.tzi.rfid.jidblue: el controlador del lector dʼRFID del projecte jIDBlue (és el nom

original del paquet)

4.1.2 Arquitectura
En línies generals hem dissenyat la nostra aplicació seguint un patró arquitectural model-

vista-controlador (MVC, Model-View-Controller).

• Model: representat per la classe mabett.core.Configuration, serà el component que

emmagatzemarà les dades recuperades de cada sessió (preferències dʼusuari) i tots
aquells valors estàtics utilitzats per més dʼuna classe.

• Vista: representat, principalment, per la classe MetaInterface (interfície general del
sistema), PreferencesComposite (vista de preferències) i TriageComposite (vista de

triatge) del paquet mabett.gui.

• Controlador: representat per la classe mabett.core.Controller, serà el component

encarregat de dur a terme tasques requerides per lʼusuari i per altres classes

La principal raó dʼutilitzar aquest patró ha estat, per una banda, la claredat que ofereix alhora

dʼanalitzar el codi (donat que les classes estan fortament separades per funcionalitats), i per
lʼaltra, la robustesa que dóna quan algun dels components sʼha de modificar (per exemple,

podem canviar o eliminar una vista sense haver de retocar ni el model ni el controlador).

No tots els mòduls, però, han estat dissenyats amb aquest patró com a referència. Lʼhem

adaptat a les nostres necessitats intentant aprofitar els seus beneficis sense que això ens
compliqués excessivament lʼetapa de desenvolupament.

32
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

4.1.3 JADE
Com hem explicat en el capítol dʼestat de lʼart, qualsevol agent necessita una plataforma on

poder-se executar. JADE és la agència que utilitzarem, i necessitem per tant que es trobi en
execució per poder iniciar lʼagent interfície i, des dʼaquí, anar llançant els agents

dʼemmagatzematge amb les dades de cada pacient.

Hem cregut convenient instal·lar JADE en lʼN810 com un servei més, que sʼiniciï quan

encenem lʼaparell. Dʼaquesta manera, podrem iniciar i aturar el nostre sistema en qualsevol
moment amb la seguretat que JADE ja està en execució. Els detalls dʼinstal·lació es poden

consultar a lʼAnnex 2.

Cal tenir en compte que la interfície podria ser aturada en tot moment, però els agents

dʼemmagatzematge continuaran executant-se en la plataforma de manera totalment
independent. Aquest és un dels avantatges dʼutilitzar la tecnologia dʼagents.

4.1.4 SWT
SWT (Standard Widget Toolkit) és una API gràfica de codi lliure per la plataforma Java que
actualment és desenvolupada (i utilitzada) pel projecte Eclipse. És una alternativa a AWT i

Swing, desenvolupades per Sun Microsystems com a part de Java SE.

Utilitzarem SWT per implementar les nostres interfícies perquè, com hem pogut veure durant

la fase dʼanàlisi, és lʼúnica API gràfica suportada per la llibreria de classes escollida. Des del
punt de vista de disseny i implementació, haurem de tenir en compte:

• SWT recupera la filosofia original dʼAWT dʼutilitzar components nadius, intentant
adoptar un estil consistent en totes les plataformes. Així, un mateix programa es veurà

de forma diferent segons la plataforma on lʼexecutem, però el seu comportament serà
idèntic.

• En el nostre cas, aquest primer punt implica que tots els components que es
visualitzaran a lʼN810 seran idèntics als que ofereix Hildon (la interfície gràfica de

maemo).

• SWT no implementa lʼarquitectura MVC de forma nadiua [15]. Per tant, lʼhaurem

dʼimplementar manualment.

• SWT utilitza, en canvi, un model dʼinterfície dʼusuari dʼun sol thread. En aquest model,

només el thread que ha creat la interfície pot accedir als seus mètodes. Si es vol
accedir des de fora, es poden utilitzar dos mètodes que ofereix la classe Display:

syncExec(Runnable runnable) i asyncExec(Runnable runnable).

33
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

http://www.eclipse.org/swt/
http://www.eclipse.org/swt/

• Aquest fet lʼhaurem de tenir molt en compte alhora dʼimplementar els mòduls que es

comuniquin amb components hardware, ja que es tracta de mòduls que sʼexecuten
de forma asíncrona i normalment han de notificar a la interfície de les dades que

han recollit.

4.2 Agent interfície gràfica
En el moment en que sʼinicia JADE (com a servei), es crea la plataforma amb un contenidor

dʼagents principal. En aquest contenidor sʼhi llancen automàticament lʼagent AMS (Agent
Management System) i lʼagent DF (Directory Facilitator). El primer és lʼencarregat de

controlar lʼaccés i la utilització de la plataforma per part de la resta dʼagents; entre dʼaltres,
ofereix un servei de pàgines blanques per conèixer quins agents sʼestan executant a la

plataforma. El DF és lʼagent que ofereix el servei de pàgines grogues, és a dir, ens permet
conèixer quins serveis ofereixen els agents que es troben en la plataforma.

Quan iniciem la nostra aplicació, ho farem demanant a JADE que es connecti a la plataforma
existent i que hi llanci el nostre agent interfície, BootAgent. La seva única funció és la de

iniciar la interfície gràfica, utilitzant el mètode startWithinJade del controlador Controller.

Per tal de dur a terme els seus objectius, els agents defineixen behaviours. El nostre

comportament GuiBehaviour és molt simple i només sʼha de realitzar una vegada. Tenint en
compte això, hem decidit instanciar un comportament ja definit a JADE anomenat

OneShotBehaviour.

Lʼesquema de classes del nostre agent serà el següent:

Diagrama de classes de lʼAgent interfície. En cursiva les
classes externes, en negreta les pròpies.

BootAgent

GuiBehaviourOneShotBehaviour

Agent

1

1

1

1

Controller
<< singleton >>

34
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

Com hem comentat a lʼanàlisi, la nostra aplicació podria funcionar sense utilitzar agents.

Prova dʼaixò és la classe Boot, disponible en el mateix paquet que BootAgent, que inicia la
interfície gràfica fora de JADE.

Si lʼaplicació és iniciada dʼaquesta manera no es llacen agents amb les dades dels pacients.
De cara al desenvolupament i la fase de proves, però, ens ha estat molt útil.

4.3 Agent dʼemmagatzematge
4.3.1 TriageDataAgent
Així com lʼagent interfície és lʼencarregat dʼiniciar la interfície gràfica, les instàncies de lʼagent
d'emmagatzematge són creades per la pròpia interfície cada vegada que es diagnostica un

pacient.

El paper dʼaquest agent és absolutament trivial: un cop creat, romandrà a la plataforma

sense fer res. Per aquesta raó, no implementa cap behaviour. Com comentàvem a la fase
dʼanàlisi, el nostre projecte no tractarà les dades creades, simplement les emmagatzemarà a

la plataforma en forma dʼagents.

4.3.2 TriageData
Internament, lʼagent conté un objecte de la classe TriageData amb totes les dades dʼun

pacient que han estat omplertes per lʼusuari del sistema utilitzant alguna de les vistes que
veurem més endavant.

Aquesta classe és la nostra implementació de les etiquetes de triatge tradicionals, i per tant
oferirà els camps dels quals vam parlar durant la fase d'anàlisi, a més dʼalguns valors

específics del nostre projecte com la localització GPS i lʼetiqueta RFID del pacient.

Segons el número dʼentrades dʼun mateix camp podem dividir les dades en dues grans

famílies:

• Camps estàtics: camps que són emplenats una sola vegada

• Camps dinàmics: camps que poden ser emplenats múltiples vegades

Segons les necessitats dʼidentificació dels camps, a més, també les podem dividir en dos

grups:

• Camps anònims: camps dels quals no ens interessa qui els va emplenar

• Camps signats: camps dels quals volem saber qui els va emplenar i quan ho va fer.

35
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

Seguint aquesta classificació, hem definit tots els camps de la classe TriageData de la

següent manera:

Valor Estàtic Dinàmic Anònim Signat Tipus

Id del pacient

(RFID)

Posició GPS

Dades
personals

Signes vitals

Lesions del
cos

Anotacions

√ √
atribut de la pròpia classe

(String)

√ √ classe GPSPosition

√ √ classe PersonalData

√ √ classe VitalSignsEntry

√ √ classe InjuriesEntry

√ √ classe NoteEntry

Així, emmagatzemarem els camps dinàmics en vectors. Els camps signats, a més, hauran
de ser una subclasse de AsRequired, el constructor de la qual emplenarà automàticament

lʼhora i lʼidentificador dʼusuari quan es crei una instància la classe.

La pròpia classe TriageData serà també una subclasse de AsRequired, de manera que

podrem conèixer quan va ser creat per primera vegada lʼobjecte i qui ho va fer.

Cal tenir en compte que el fet de permetre dades dinàmiques i/o signades no té una utilitat

directa en el nostre projecte, perquè les dades són entrades una sola vegada al sistema.

Es tracta, però, de característiques que podrien ser utilitzades per altres projectes futurs, i

ens ha semblat una bona idea implementar-les.

GPSPosition
Els atributs que ofereix aquesta classe són la latitud i la longitud, ambdós de tipus long.

PersonalData
Els atributs que ofereix aquesta classe són:

• Nom del pacient: String

• Sexe: enumeració Gender, de valors MALE i FEMALE.

• Edat: enter

• Adreça: String

• Identificació: representa qualsevol codi dʼidentificació que el pacient, com per exemple

el seu DNI o equivalent. String.

36
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

VitalSignsEntry
Els atributs que ofereix són:

• Pressió sanguínia (en mm Hg, mil·límetres de mercuri): enter

• Pulsacions per minut: enter

• Tipus de pols: enumeració Pulse de valors FULL, WEAK, REGULAR i IRREGULAR.

• Respiracions per minut: enter

• Test capil·lar: enter

• Estat del pacient: enumeració LabelStatus de valors DECEASED, IMMEDIATE,

DELAYED o MINOR.

• Estat mental: enumeració MentalStatus de valors SANE o INSANE.

InjuriesEntry
Ofereix un sol atribut, les parts del cos amb lesions: enumeració BodyPart de valors HEAD,
LEFT_ARM, RIGHT_ARM, CHEST, ABDOMEN, LEFT_LEG i RIGHT_LEG.

NoteEntry
Ofereix també un sol atribut, una nota de tipus String.

La classe TriageTag, ofereix setters i getters per accedir als diferents camps i les diferents

versions dels mateixos si són dinàmics. Les classes que implementen els camps, al seu
torn, també ofereixen getters i setters per accedir a tots els atributs.

Totes les classes de lʼagent dʼemmagatzematge es troben en el paquet mabett.triage.

TriageData

VitalSignsEntry

AsRequired

InjuriesEntry NoteEntry

PersonalData GPSPosition

0..* 0..* 0..*

0..1 0..*

1

1

TriageData. Diagrama de classes.

37
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

4.4 Controlador
El controlador, per la seva naturalesa, només sʼinstancia una vegada (de forma mandrosa) i

és utilitzat per qualsevol classe que el necessiti. Per tal de reforçar aquest comportament,
hem aplicat el patró de disseny conegut amb el nom de Singleton, que assegura l'existència

d'una única instància per una classe i la creació d'un mecanisme d'accés global a aquesta
instància. La classe que lʼimplementa és mabett.core.Controller.

Els mètodes principals que haurà dʼoferir el controlador són:

• startWithinJade: aquest mètode, cridat per lʼagent, ha dʼiniciar, per una banda, un

thread amb el controlador GPS, que intentarà connectar-se al número mínim de
satèl·lits tan aviat com sigui possible. Per altra banda, iniciarà la interfície gràfica

utilitzant la classe MetaInterface. El mètode és bloquejant, i no finalitzarà fins que
lʼusuari tanqui lʼaplicació.

• start: idèntic a lʼanterior mètode, però utilitzat quan volem iniciar lʼaplicació fora de

JADE.

• openPanel: utilitzant aquest mètode qualsevol altra classe podrà demanar canviar la

vista que actualment sʼestà mostrant.

• getCurrentPanel: de la mateixa manera, qualsevol classe podrà conèixer quina és la

vista actual.

• requiredPreferencesAreSet: retornarà cert si les preferències dʼusuari han estat

entrades correctament, fals en cas que no sigui així; consultarà les dades necessàries

del model de lʼaplicació, la classe Configuration.
• sendTriageData: permetrà llançar agents emmagatzemadors TriageDataAgent del

paquet mabbet.triage amb les dades recollides de la diagnosi dʼun pacient.

Controller
<< singleton >>

Configuration
<< singleton >>

1 1 1

MetaInterface GPSThread

11

1

1

ThreadGPSController
1 1

Controlador. Diagrama de classes.

38
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

• getCurrentGPSPosition: retornarà la posició actual en valors de latitud i longitud,

encapsulats en una instància de la classe GPSPosition; en cas que no sʼhagi pogut
connectar amb el sistema GPS, retornarà la posició 0,0.

• quit: cridat quan lʼusuari tanqui lʼaplicació, serà lʼencarregat dʼaturar el thread de

captura de dades GPS i dʼemmagatzemar les preferències dʼusuari utilitzant el mètode

store de la classe Configuration.

4.5 Model
El model, implementat en la classe Configuration del paquet mabett.core, és lʼencarregat

dʼemmagatzemar dades que poden ser útils per altres classes. Tal com passava amb el
controlador, aquesta classe només sʼha dʼinstanciar una vegada, i per tant implementa el

patró de disseny Singleton.

Aquesta classe ha de ser capaç de recuperar (i mantenir carregats) els valors corresponents

a les preferències dʼusuari de lʼaplicació. Java ofereix dues classes destinades a aquest fi: la
classe Properties i la classe Preferences. Lʼúltima és la més completa, però malauradament

no està disponible en la llibreria de classes que utilitzem a lʼN810 [16]. Haurem dʼutilitzar la
primera; els valors que haurà d'emmagatzemar de sessió en sessió són:

• Mètode de triatge escollit (START o manual)

• Identificador i nom dʼusuari

• Adreça Bluetooth del lector dʼRFID IDBlue

• Idioma de lʼaplicació (anglès, castellà o català)

El model també contindrà una quantitat elevada de valors utilitzats per més dʼuna classe; al
estar definits en un sol lloc els podrem canviar de manera consistent. Seran valors constants

que no es podran modificar en temps dʼexecució (fet que reforçarem declarant totes les
variables amb els modificadors static i final).

Configuration
<< singleton >>

1

Properties

1

1

Model. Diagrama de classes.

39
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

Els principals mètodes a implementar són:

• getProperty: recupera un valor de les preferències. Necessita com a paràmetres la clau

(String) del valor a recuperar i el valor per defecte que es desitja en cas que no es trobi

la clau (dʼaquesta manera ens assegurem que el mètode sempre retorni un valor
consistent). Internament, la classe Properties emmagatzema els valors en una taula

hash.
• setPropperty: permet modificar un valor determinat de les preferències.

• store: desa les dades a disc, en el fitxer $HOME/.mabett/mabett.properties. Lʼestructura

de lʼarxiu ve determinada per la classe Properties.

4.6 Vista general
La nostra interfície gràfica serà capaç de mostrar les següents vistes:

• Vista de preferències: per consultar o modificar les preferències de lʼaplicació

• Vista de triatge: segons les preferències de lʼusuari, mostrarà:

• Vista de triatge START, per diagnosticar un pacient utilitzant lʼalgorisme START

• Vista de triatge manual, per diagnosticar un pacient de forma manual

A lʼinici de lʼaplicació, si les preferències sʼhan pogut carregar es mostrarà la vista de triatge
escollida. En cas contrari, es mostrarà la vista de preferències fins que les dades no hagin

estat entrades.

Si lʼusuari prem en qualsevol moment la tecla ESC, que en lʼN810 està localitzada en el

cantó esquerra de la pantalla, es cancel·larà el procés de triatge actual o bé, si es troba en la
vista de preferències, se sortirà de lʼaplicació. En tots dos casos, es demanarà una

confirmació de lʼoperació utilitzant un popup.

#MABETT
#Fri Jun 13 13:24:45 CEST 2008
triage_method=START
userid=12344415G
idBlue_MAC=00\:A0\:96\:17\:B2\:B9
username=Xavier
language=0

Model. Contingut de lʼarxiu de preferències

40
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

4.6.1 Layout
Estem executant la nostra aplicació Java en un dispositiu mòbil amb un processador a 400

Mhz i 128 MB de RAM, utilitzant una versió no oficial de la màquina virtual de Java i de les
llibreries de classe. La suma de tots aquests factors provoca que la velocitat dʼexecució del

sistema (de la qual parlarem amb més detall en el següent capítol) no sigui molt elevada en
comparació amb un ordinador de sobretaula.

Els punts crítics detectats en les nostres proves han estat la inicialització de les aplicacions i
lʼobertura de noves finestres. Per aquesta raó, hem pres la decisió dʼintegrar tota la interfície

gràfica en una sola finestra, en pantalla completa per aprofitar al màxim lʼespai disponible.

Per tal de poder mostrar les diferents vistes de què consta la nostra aplicació, actualitzarem

el contingut (dʼuna part) de lʼúnica finestra existent, implementada per la classe
MetaInterface. El disseny dʼaquesta vista es mantindrà constant.

Vista general. Inici de lʼaplicació.

41
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

La disposició dels elements no ha estat escollida de forma arbitrària. El menú lateral està en

una posició fàcilment accessible per una de les dues mans agafades al dispositiu. El
contingut de cada vista ocupa una zona central, i el títol permet descobrir ràpidament quina

vista està activa.

Per tal de poder mostrar més dʼun element en un sol contingut, totes les vistes seran una

subclasse de Composite, una classe dʼSWT que expressa un conjunt de controls agrupats
amb una certa estructura i una funcionalitat comuna.

4.6.2 Menú
Ja que integrem tota la interfície gràfica en una sola finestra, hem dʼoferir algun mètode a
lʼusuari perquè pugui canviar de vista de forma àgil amb les mans. La solució proposada és

implementar una barra lateral que farà de menú.

La implementació dʼaquesta funcionalitat la trobem a la classe mabett.gui.MenuBar. Es

tracta també dʼuna subclasse de Composite dividida en dues parts iguals:

• Una part superior per accedir a les vistes de triatge

• Una part inferior per accedir a les preferències

Ambdós parts es comporten dʼuna manera semblant a com ho faria un botó tradicional; són

també una subclasse de Composite, amb un fons i una imatge determinades, que varien de
color segons si es troben o no seleccionats.

B
a
rr

a
 d

e
 m

e
n

ú
 e

s
q

u
e
rr

a
(i
m

m
u

ta
b

le
)

Títol de la vista (24 punts)

Contingut
(variable)

100 píxels

800 píxels

480 píxels

10 píxels 10 píxels

10 píxels

10 píxels

10 píxels

Vista general. Disseny.

42
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

Com podem veure, el botó que es troba seleccionat és dʼun color més clar al que no ho està

per ajudar a identificar quina és la vista activa; un dels dos botons sempre estarà actiu. Per
tal de permetre al controlador canviar la vista, la classe implementa un sol mètode:

• selectButton: canvia la vista actual per la que li passem per paràmetre. Els

identificadors de vista es troben definits a la classe Configuration.

4.6.3 Controls específics
Tal com hem comentat, SWT utilitza els controls que de forma nadiua estan disponibles en
cada sistema. Malauradament, tots els controls de Hildon estan dissenyats per ser utilitzats

amb el llapis tàctil, i el requeriment de poder utilitzar lʼaplicació amb els dits ens obligarà a
implementar els nostres propis controls.

SWT desaconsella [17] crear subclasses dels controls estàndard. Per tant, tots els controls
hauran de ser subclasse dʼun Composite i hauran dʼimplementar manualment tots els

mètodes que necessitem.

Hem decidit dissenyar un tipus de control simple i tres de compostos. Els controls que

anomenem simples són aquells que hem creat des de zero, mentre que els compostos els
hem creat utilitzant dos o més controls existents (propis o dʼSWT).

480 píxels

100 píxels

Vista de

triatge

Vista de

preferències

Menú. Diagrama de classes i implementació.

MenuBar

Composite

Controller
<< singleton >>

Configuration
<< singleton >>

Composite

1

1 1 *

43
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

Tots ells tindran una mida mínima aproximada dʼun centímetre quadrat perquè puguin ser

seleccionats fàcilment amb el dit. En la pantalla de lʼN810, això es tradueix en uns 80 píxels
quadrats. Les classes dels controls es troben en el paquet mabett.gui.widgets.

La interfície Selectable que podem veure a la figura ha estat creada per identificar controls

amb dos botons i tres estats: un estat positiu (un botó pres), un de negatiu (lʼaltre botó pres),
i un de neutre (cap botó seleccionat). Els mètodes que proposa aquesta interfície són:

• getSelection: retorna una enumeració de tipus ButtonSelection amb tres valors

possibles: YES, NO o NONE, per indicar lʼestat del control.

• setSelection: selecciona lʼestat del control indicat, activant i desactivant els botons

necessaris.

CustomButton
Es tracta dʼun control simple que representa un botó sense estat que només serveix per
llençar accions quan es premut. La particularitat que ens ha obligat a implementar aquest

control ha estat el fet que necessitàvem poder incloure imatges de fons en aquests botons.
SWT suporta aquesta opció, però no assegura que els controls nadius la respectin, i Hildon

no ho fa.

Composite

CustomSpinner
<< Selectable >>

CustomToggleButton
CustomButton

<< Selectable >>

CustomOptionalSpinner

1 1

1

1

Controls específics. Diagrama de classes.

80 píxels

80 píxels

CustomButton. Disseny i proporcions.

44
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

A més del disseny de la figura, aquest control també serà capaç de mostrar una imatge amb

un signe menys i imatges amb el signe “>” en les quatre direccions cardinals (veure Annex
3).

Aquest control sobrecarrega i implementa un únic mètode:

• addMouseListener: per defecte, aquest mètode dʼSWT sʼutilitza per afegir un

esdeveniment en el gestor dʼesdeveniments del ratolí. Dʼaquesta manera es poden
executar mètodes propis cada cop que lʼusuari interacciona amb la zona de la pantalla

on es troba el control. Lʼhem de sobrecarregar per dirigir l'esdeveniment a la imatge del
botó i no al Composite.

CustomToggleButton
Aquest control compost està format per dos toggle buttons botons amb el text Yes i No.
Aquest tipus de botons mantenen lʼestat (activats o desactivats) i el canvien quan lʼusuari els

prem.

Ara bé, nosaltres necessitem que quan un botó sigui seleccionat, lʼaltre deixi dʼestar-ho

automàticament; els dos podran romandre, però, sense seleccionar. En resum, sʼhan de
comportar com una sola entitat, i aquesta és la raó de ser dʼaquest control compost.

Aquesta classe implementa els mètodes de la interfície Selectable, i com passava amb

lʼanterior control, també sobrecarrega el mètode addMouseListener.

CustomSpinner
Els spinner són controls que es caracteritzen per tenir dos botons que permeten incrementar

o disminuir el valor dʼun camp de text. En Hildon, la mida dʼaquests controls és estàtica, i
estan pensats per ser utilitzats amb el llapis.

Per aquesta raó, hem de dissenyar un control compost de tipus spinner amb els dos botons i
el camp de text dʼuna mida acceptable. No es podrà editar el valor del camp manualment

(utilitzant el teclat).

Sí No80 píxels

100 píxels

50 píxels

Font

32 punts

CustomToggleButton. Disseny i proporcions.

45
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

Utilitzarem dos botons de la classe CustomButton amb les imatges corresponents dʼafegir i

sostraure, separats per un camp de text amb el valor seleccionat. La separació serà
variable, i serà el triple de la mida dʼun sol caràcter de la font que sʼestà utilitzant. Aquest

valor es pot aconseguir utilitzant el mètode getFontMetrics().getAverageCharWidth() de la

classe GC (Graphic Canvas) de SWT.

Els principals mètodes que implementa aquesta classe són:

• setMinium: estableix el valor mínim del control, per sota del qual les peticions de

decrement no seran ateses
• setMaximum: estableix el valor màxim del control

• setIncrement: estableix quantes unitats sʼincrementen o es disminueixen cada cop que

es prem el botó

• getSelection: retorna el valor actual del control

• setSelection: estableix el valor actual del control, sempre que estigui entre els límits

establerts

CustomOptionalSpinner
Aquest control compost combina un CustomToggleButton a la part superior amb un

CustomSpinner a lʼinferior que només és visible quan lʼusuari selecciona el botó afirmatiu del
primer. Implementarà també la interfície Selectable, i el següent mètode:

• getSpinner: retornarà un objecte de tipus CustomSpinner per tal de poder utilitzar tots

els seus mètodes.

80 píxels

80 píxels

4 x mida caràcter

estàndard

Spinner estàndard de Hildon a lʼesquerra, i CustomSpinner a la dreta. Les proporcions entre els dos
controls són reals.

46
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

4.7 Vista de preferències
4.7.1 Descripció
La vista de preferències ens ha de servir per demanar a lʼusuari certs valors necessaris pel

correcte funcionament de lʼaplicació. Aquests valors coincideixen amb els valors que hem
definit en el model:

• Nom de lʼusuari: utilitzant un camp de text, hem de demanar el nom de lʼusuari que està
utilitzant el sistema. És un camp obligatori.

• Identificador dʼusuari: en un altre camp de text demanarem lʼidentificador dʼusuari; cada
membre de lʼequip dʼemergències disposarà dʼalgun identificador que haurà d'introduir

en aquest camp. És també obligatori.

• Adreça del dispositiu IDBlue: lʼúltim camp obligatori, el necessitem per conèixer lʼadreça

física del lector RFID a utilitzar.

• Idioma de lʼaplicació: permetrà escollir entre els idiomes suportats (anglès, català i

castellà). Per defecte, estarà en anglès. Implementat amb un menú desplegable, és un
camp opcional.

• Mètode de triatge: START o manual (cap). Per defecte, estarà seleccionat el mètode
START. Implementat també amb un menú desplegable, és un camp opcional.

4.7.2 Disseny
Aquesta vista està pensada per ser utilitzada amb el llapis, no amb les mans. La raó és que
les dades que sʼhi presenten han de ser introduïdes un sol cop, i mai durant el procés de

triatge en si. A més a més, els tres camps obligatoris necessiten dades que sʼhan dʼentrar
obligatòriament amb el teclat, raó per la qual no podríem utilitzar únicament els dits encara

que volguéssim.

Vista de preferències. Implementació.

47
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

La interfície sʼha dʼassegurar que lʼusuari ha entrat les dades obligatòries. Per fer-ho

comprova que els camps no estiguin buits i que lʼadreça Bluetooth sigui de la forma
XX:XX:XX:XX:XX:XX (utilitzant lʼexpressió regular ([a-fA-F0-9]{2}:){5}[a-fA-F0-9]{2}). Si

no és així, mostra un avís a lʼusuari quan aquest intenta desar els canvis.

4.8 Vista de triatge
4.8.1 Descripció
Lʼobjectiu principal del projecte era crear una interfície pel protocol de triatge simple START.

Així i tot hem volgut preparar la nostra aplicació per poder ser utilitzada amb qualsevol altre
mètode de triatge.

La raó és senzilla: START no és lʼúnic protocol existent, ni és aplicable a totes els situacions.
Hi han mètodes creats específicament per situacions bèl·liques (triatge invers), dʼaltres

pensats per a nens o fins i tot mètodes dissenyats per ser aplicats en instal·lacions
mèdiques quan els recursos disponibles són inferiors als necessaris per atendre a tots els

pacients.

Per tant, hem volgut preparar el nostre sistema per poder-hi afegir mètodes de triatge

simplement implementant la vista que correspongui al nou mètode.

Vista de preferències. Avís de dades incorrectes

48
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

4.8.2 Disseny
TriageComposite
Aquesta classe del paquet mabett.gui serà lʼencarregada de crear totes les vistes de triatge

juntament amb la vista dʼedició manual. Internament, estarà formada per un sol Composite
on hi mostrarà la vista de triatge. Quan aquesta finalitzi, i si així ho desitja, mostrarà la vista

dʼedició manual (implementada a la classe TTBuilder) per poder modificar o afegir qualsevol
dada abans de ser emmagatzemada.

Els mètodes que haurà dʼimplementar aquesta classe són:

• newCase: inicia un nou procés de triatge mostrant la vista del mètode escollit a les

preferències. En cas que lʼusuari no hagi escollit cap mètode, mostrarà directament la
vista dʼedició manual

• openBuilder: obre la vista dʼedició manual

TriageMethod
Es tracta dʼuna classe abstracta del paquet mabett.gui.triage que haurà de ser

implementada per qualsevol protocol de triatge que es vulgui afegir a lʼaplicació. Consta dʼun
sol mètodes:

• newTriageProcess: mètode cridat per TriageComposite quan lʼusuari desitgi iniciar un

nou procés de triatge amb el nostre protocol. La crida té un sol paràmetre de la classe

TriageData, que és on haurem dʼemmagatzemar tota la informació del pacient recollida.

4.9 Vista START
4.9.1 Descripció
Hem dʼimplementar una interfície interactiva pel protocol START. Aquesta és, juntament amb

la vista manual que analitzarem en el següent punt, la part més important de la nostra
aplicació.

TTBuilder TriageComposite

Composite

TriageMethod
1 0..*

Vista de triatge. Diagrama de classes.

49
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

Durant lʼanàlisi vam definir tots els passos que lʼalgorisme du a terme per assignar un estat a

cada pacient segons les seves constants vitals. Ja que volem que una persona sense
coneixements del protocol START pugui fer servir la nostra aplicació, creiem que la millor

forma dʼimplementar aquest algorisme és utilitzant un assistent.

Lʼassistent preguntarà les dades del pacient en lʼordre especificat per lʼalgorisme. Segons la

resposta a cada pregunta, demanarà una o altra informació fins a poder assignar-li un dels
quatre estats.

Al finalitzar lʼalgorisme, la vista START es tancarà i en el seu lloc es mostrarà la vista
manual, on el personal mèdic podrà modificar qualsevol dada (inclòs lʼestat del pacient

assignat automàticament) o afegir-ne de noves. Serà aquesta classe la que, finalment,
cridarà al controlador per tal que llanci un nou agent dʼemmagatzematge amb les dades

recollides.

4.9.2 Disseny
Creiem que la millor forma de dissenyar lʼassistent és utilitzant un arbre de decisió binari, on

cada node representarà una pregunta a realitzar i les fulles lʼestat escollit. Lʼesquema
resultant el podem observar en la figura de la pàgina següent, on a més a més hi hem inclòs

el tipus de pregunta que seʼns demana a cada node:

• Per conèixer la resposta a una pregunta de tipus afirmatiu/negatiu (Y/N), utilitzarem un

control de la classe CustomToggleButton.

• En el cas de preguntes quantitatives (Spinner), utilitzarem un CustomSpinner.

• Finalment, en el cas de preguntes quantitatives opcionals (Y/N + Spinner), utilitzarem
un control de la classe CustomOptionalSpinner.

50
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

Podem dissenyar aquest arbre de dues formes ben diferents:

• Creant tantes vistes com nodes té lʼarbre (sense contar les fulles), i anar mostrant la
vista adequada a mesura que lʼusuari respongui a les preguntes.

• Emmagatzemar en lʼarbre la pregunta en qüestió, implementar una sola vista i anar
actualitzant-la.

La segona opció ens sembla molt més recomanable per les limitacions de memòria i
potència que ja hem comentat anteriorment.

Walking wounded
(Y/N)

Respirations
(Y/N)

MINOR

Respirations after
position airway
(Y/N + Spinner)

Frequency > 30/min
(Spinner)

DECEASED IMMEDIATE

Radial pulse after
perfusion

(Y/N + Spinner)
IMMEDIATE

Capillary Refill
under 2 seconds

(Spinner)

Can follow simple
commands

(Y/N)

IMMEDIATE DELAYED

IMMEDIATE

Affirmative

Negative

Vista START. Arbre binari de decisió de lʼalgorisme START.

51
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

TriageMethodSTART

Aquesta classe, subclasse de TriageMethod, representarà lʼassistent del mètode START.

Volem mantenir una interfície el més simple possible, i per tant lʼúnic que mostrarem serà:

• Una icona representativa de cada pregunta, que permetrà a aquells usuaris que ja
hagin utilitzat lʼaplicació identificar ràpidament què sʼestà preguntant a partir dʼuna

imatge (imatges disponibles a lʼAnnex 3).

• El text de la pregunta en sí.

• El control necessari per respondre la pregunta.

• Un botó a prémer per passar al següent nivell de lʼalgorisme (serà un botó de la classe

CustomButton).

TriageMethod

TriageMethodSTART

TriageMethodSTARTPanel

1..*

Vista START. Diagrama de classes

Mètode de triatge: START

700 píxels

480 píxels

10 píxels 10 píxels

20 píxels

10 píxels

10 píxels

Icona

Botó
next

Pregunta

Control Composite

100 x 100

píxels

20 píxels

Vista START. Disseny general.

52
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

Internament, aquesta classe crearà lʼarbre de decisió binari i lʼanirà recorrent des de lʼarrel

fins a les fulles, mostrant el contingut de cada node en la seva pròpia vista.

Els principals mètodes que implementa són:

• buildTree: crea lʼarbre de decisió binari, amb tants TriageMethodSTARTPanel com

nodes hi han a lʼarbre.

• showPanel: mostra un dels nodes de lʼarbre.

• next: descendeix un nivell en lʼarbre de decisió binari; si el node actual és una fulla,

demanarà a a TriageComposite que mostri la vista manual TTBuilder i finalitza
lʼassistent. En cas contrari, crida al mètode showPanel perquè mostri el node fill.

• newTriageProcess: inicia de nou lʼalgorisme de decisió mostrant lʼarrel de lʼarbre.

TriageMethodSTARTPanel
Aquesta classe abstracta representa un node de lʼarbre de decisió. Haurà de contenir la

icona, la pregunta i el tipus de control a mostrar. I diem el tipus i no el control en sí perquè
aquests es crearan en la classe TriageMethodSTART, que els anirà mostrant segons ho

demanem.

A més a més, cada node haurà de conèixer quin són els seus dos fills per tal de comunicar a

lʼalgorisme que recorre lʼarbre quin dels dos és el següent node a visitar, tenint en compte
les dades introduïdes per lʼusuari.

La classe haurà dʼoferir els següents mètodes:

• setAffirmativeNode: enllaça amb el node corresponent a una avaluació positiva.

• setNegativeNode: enllaça amb el node corresponent a una avaluació negativa.

• getImage: retorna la imatge a mostrar.

• getQuestion: retorna el text de la pregunta a mostrar.

• getControlType: retorna el tipus de control que sʼajusta a la pregunta.

• preEvalute: aquest mètode serà cridat per TriageMethodSTART abans de mostrar un

determinat node, i permet que inicialitzem els controladors amb valors personalitzats.

• evaluate: aquest mètode serà cridat quan lʼusuari decideixi prémer el botó de “següent”.

Ha de retornar true si lʼusuari ha entrat totes les dades necessàries per poder decidir

quin dels dos fills és lʼescollit.
• postEvaluate: serà cridat només si lʼanterior mètode sʼavalua a cert, i haurà de retornar

el node escollit.

Els tres últims mètodes són abstractes i han de ser implementats per cada instància.

53
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

Amb tot, la classe TriageMethodSTART i TriageMethodSTARTPanel utilitzen el patró de

disseny Template, perquè en la primera classe definim lʼestructura de lʼalgoritme a utilitzar i
en les diferents instàncies de la segona classe implementem cada node de lʼarbre de decisió

binari.

4.10 Vista dʼedició manual
4.10.1 Descripció
La vista dʼedició manual ha de mostrar una interfície amb tots aquells camps habituals de les

etiquetes de triatge vists durant lʼanàlisi. A més, en cas que lʼusuari hagi executat amb
anterioritat un algorisme de triatge, la vista ha ser capaç de llegir les dades ja recollides i

mostrar-les en els camps adequats. Totes les dades de les vistes sʼemmagatzemaran en un
objecte de la classe TriageData compartit entre totes les vistes.

Per altra banda, aquesta vista serà lʼúltim pas abans de crear lʼagent dʼemmagatzematge;
per tant, també haurà dʼoferir una interfície per llegir lʼetiqueta RFID col·locada en el pacient.

Amb tot, ens trobem que hem dʼoferir un número elevat de dades, que hem decidit dividir en
cinc vistes diferents:

• Informació general: permetrà afegir o modificar dades relacionades amb els signes
vitals del pacient.

• Lesions localitzades: oferirà un esquema del cos humà on es podran seleccionar parts
del cos lesionades.

Vista START. Implementació dʼun dels nodes amb un control de tipus
CustomOptionalSpinner

54
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

• Informació personal del pacient: permetrà introduir dades personals com el nom o

lʼadreça del pacient.

• Notes addicionals: oferirà un espai en blanc perquè el personal dʼemergències pugui

escriure notes.

• Confirmació: oferirà un petit assistent per tal de recuperar lʼidentificador de lʼetiqueta

RFID del pacient.

Tal com passava amb la vista de preferències, alguns dʼaquests camps hauran de ser

introduïts a través del teclat, així que la vista no podrà ser utilitzada exclusivament amb els
dits.

4.10.2 Disseny
TTBuilder
Aquesta classe tindrà una funcionalitat molt semblant a la de la classe MetaInterface.
Definirà el layout de tota la vista dʼedició manual i mostrarà diferent vistes utilitzant un menú

lateral.

Al contrari que la classe MetaInterface, però, el menú lateral estarà integrat en la pròpia

classe. Deixant de banda que haurà de mostrar cinc elements, el seu funcionament serà
idèntic.

B
a
rr

a
 d

e
 m

e
n

ú
 d

re
ta

Títol de la sub-vista

Contingut

100 píxels

700 píxels

480 píxels

10 píxels 10 píxels

10 píxels

10 píxels

10 píxels

Vista dʼedició manual. Disseny.

55
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

Els mètodes que implementarà aquesta classe són:

• setTriageData: demanarà a totes les vistes que actualitzin les seves dades i mostrarà la

vista dʼinformació general.

• showPanel: permetrà canviar de vista.

• saveData: informarà a totes les vistes que desin les dades introduïdes en els seus

camps. Serà cridada just abans dʼenviar un nou agent dʼemmagatzematge.

Per facilitar la feina dʼinformar a totes les sub-vistes existents de que han dʼactualitzar o

desar les dades en un moment donat, hem creat la interfície Updatable, amb els mètodes
saveData i loadData.

TTBuilderGeneral
Serà la vista encarregada de mostrar els signes vitals del pacient així com lʼestat de triatge

assignat.

Alguns camps dʼaquesta vista, com per exemple les respiracions per minut, el pols o la

pròpia categoria poden haver estat introduïts durant el procés de triatge; lògicament, es
podran modificar si així ho desitja lʼusuari.

El camp de localització GPS es mostra a caire informatiu, ja que en aquesta vista sʼintentarà
recuperar la posició actual amb la crida a getCurrentGPSPosition al controlador de lʼaplicació

i emmagatzemar-la en lʼobjecte TriageData.

Composite

TTBuilder

<< Updatable >>

TTBuilderGeneral

<< Updatable >>

TTBuilderInfo

<< Updatable >>

TTBuilderNotes

<< Updatable >>

TTBuilderBody

TTBuilderConfirm TriageData

Vista dʼedició manual. Diagrama de classes.

56
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

TTBuilderBody
En aquesta vista mostrarem lʼesquema dʼun cos creat amb botons de tipus toggle. Podran

ser seleccionats de manera individual i serviran per que el personal mèdic pugui indicar
zones del cos del malalt que requereixen especial atenció.

Vista dʼedició manual. Vista dʼinformació general.

Vista dʼedició manual. Vista de lesions localitzades.

57
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

TTBuilderInfo
Aquesta vista mostrarà camps dʼinformació personal del pacient.

TTBuilderNotes
Mostrarà un camp de text per ser emplenat amb la informació que es consideri rellevant.

Vista dʼedició manual. Vista dʼinformació personal.

Vista dʼedició manual. Vista de notes.

58
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

TTBuilderConfirm
La funcionalitat dʼaquesta vista difereix de la resta. Aquest serà el punt final de qualsevol

procés de triatge, i el seu objectiu és llegir lʼidentificador únic RFID de lʼetiqueta del pacient i
emmagatzemar-lo juntament amb les dades recollides en la instància compartida de la

classe TriageData.

El procés de lectura de lʼRFID es durà a terme en un thread separat utilitzant la nostra

classe IDBlueController. Es realitzarà una connexió amb lʼIDBlue, es demanarà que ens
retorni el pròxim identificador RFID que sigui llegit i finalment ens desconnectarem. El procés

complet es pot realitzar en menys de 5 segons.

Al contrari que el sistema GPS, que està funcionant contínuament, per cada nou procés de

triatge ens connectarem i desconnectarem de lʼIDBlue. Dʼaquesta manera, intentarem reduir
el consum de les bateries del lector RFID i de lʼN810.

La vista, al mateix temps, anirà mostrant en temps real els passos que ha de seguir lʼusuari.
Tant si sʼaconsegueix llegir lʼRFID com si no, al final del procés es permetrà “enviar” les

dades.

Com ja hem anat realitzant en altres casos, crearem una sola vista i anirem actualitzant els

seus camps segons convingui: en aquest cas, només haurem de mostrar una imatge
representativa del procés de lectura RFID, un missatge que indicarà què ha de fer lʼusuari i

un botó perquè ens comuniqui quan ho ha fet. El procés de lectura RFID serà el següent:

1. Al iniciar la vista, demanem a lʼusuari que encengui el seu lector RFID. Quan premi el

botó de la pantalla iniciarem el thread del mòdul RFID.
1.1. Si no aconseguim iniciar el mòdul RFID (per exemple, si Bluetooth està

desactivat), o bé si no podem contactar amb lʼIDBlue, anirem a B.
1.2. Si hem contactat, demanarem a lʼusuari que llegeixi lʼetiqueta RFID

1.2.1. Si rebem el seu valor, anirem a A
1.2.2. Si no el rebem, anirem a B

A. Mostrem un missatge conforme hem llegit lʼetiqueta i el botó mostrarà la paraula

“Enviar”. Quan lʼusuari el premi, cridarem al mètode sendTriageData del controlador

enviant-li lʼobjecte TriageData emplenat i finalitzarem el procés de diagnosi del

pacient cridant al mètode newCase de la classe TriageComposite.

B. Mostrem un missatge conforme no hem pogut llegir lʼetiqueta i el botó mostrarà el

missatge “Enviar”. A partir dʼaquí, realitzarà el mateix procés que A.

59
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

4.11 Mòdul GPS
4.11.1 Descripció
Tal com hem vist durant la fase dʼanàlisi, aquest mòdul serà lʼencarregat de gestionar el

receptor GPS de lʼN810. Per fer-ho, hem decidit utilitzar el framework JNI de Java, perquè
lʼAPI de maemo pel control del GPS està escrita en C.

El disseny i la implementació dʼaquest mòdul es troba dividit, per tant, en una classe Java
disponible en el paquet mabett.devices.gps, i en una llibreria JNI escrita en C que

implementa els mètodes nadius declarats en Java (veure Annex 1).

Vista dʼedició manual. Vista de confirmació amb lectura dʼRFID
correcta (cas A)

Vista dʼedició manual. Vista de confirmació amb lectura dʼRFID
incorrecta (cas B)

60
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

4.11.2 GPSController.java
GPSController és la classe que ens permetrà interactuar amb el receptor GPS des de Java.

Com qualsevol classe que fa ús de JNI, defineix tots aquells mètodes nadius que sʼhan
dʼimplementar en C utilitzant el modificador native. Aquests mètodes són:

• native private void gpsdInit(): serà lʼencarregat dʼiniciar el receptor GPS.

• native private boolean gpsdCheckConnection(): retornarà cert si ja es disposen de

dades de localització, fals en cas contrari.
• native private GPSPosition gpsdGetLocation(): retornarà la posició actual en una

instància de la classe GPSPosition.
• native private void gpsdFree(): aturarà el receptor GPS i alliberarà tots els recursos

de memòria de C.

Degut a la complexitat de JNI, els mètodes nadius implementen funcionalitats molt simples.

Com podem observar, no hi ha cap mètode que explícitament es connecti al receptor GPS.
Hem optat per anar comprovant si hi han dades disponibles cridant el mètode

gpsdCheckConnection des de Java:

• GPSController: constructor per defecte de la classe que cridarà al mètode nadiu

gpsdInit.

• connect: mètode bloquejant que iniciarà un timer per anar comprovant si hi han dades

disponibles a través del mètode nadiu gpsdCheckConnection. Retornarà quan aquest

mètode retorni cert, o bé quan hagin passat 5 minuts (timeout).

• getCurrentPosition: si el sistema està connectat, retornarà lʼúltim valor del receptor

GPS.

• isConnected: mètode que ens permetrà conèixer si connect ha retornat perquè

efectivament hem pogut detectar suficients satèl·lits i obtenir la nostra posició, o be

perquè sʼha esgotat el timeout.
• finalize: mètode privat cridat pel recol·lector de brossa de Java quan un objecte està a

punt de ser esborrat. L'utilitzarem per cridar a gpsdFree.

4.11.3 GPSController.c
Aquesta és lʼúnica part del nostre projecte que no està escrita en Java. Consta dʼun conjunt

de funcions que han dʼimplementar els mètodes que sʼhan definit amb el modificar nadiu en
la classe GPSController.

Consta dʼun sol arxiu que ha de ser compilat utilitzant lʼSDK de maemo i instal·lat en el
directori /usr/lib/jni/ de lʼN810.

61
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

Com hem comentat durant lʼanàlisi, Liblocation és lʼAPI amb la que haurem dʼinteractuar per

comunicar-nos amb el receptor GPS. Utilitza GLib, fet que ens obliga a realitzar certes crides
a funcions dʼaquesta llibreria.

gpsdInit
En aquesta funció inicialitzarem la llibreria GLib i recuperarem una instància del controlador
GPS que ofereix LibLocation. També calcularem els identificadors de classe i mètode per

poder crear, més endavant, instàncies de la classe GPSPosition des de JNI.

Crearem també un thread que executarà un main loop de GLib en un context propi. Això és

necessari perquè GLib està dissenyada per ser utilitzades en programes amb un bucle de
gestió dʼesdeveniments. Sense aquest thread no rebríem les dades de posició perquè no

sʼactualitzarien mai.

gpsdCheckConnection
Comprovarà si lʼestructura de dades que ens ofereix LibLocation ja disposa de valors actuals

de localització. Retornarà cert si és així, o fals en qualsevol altre cas.

gpsdGetLocation
Crearà una nova instància de la classe GPSPosition utilitzant els identificadors calculats

anteriorment, amb els valors de latitud i longitud extrets de lʼestructura de dades de
LibLocation.

gpsdFree
Aturarà el thread amb el main-loop i el controlador GPS. Alliberarà també els recursos de
GLib necessaris.

4.12 Mòdul RFID
4.12.1 SerialBluetoothController
Tal com hem indicat en la fase d'anàlisi, el primer pas a realitzar és connectar-se físicament
amb lʼIDBlue utilitzant els mètodes de control de Bluetooth que ofereix lʼespecificació

JSR-82.

Aquesta primera part ha resultat un procés trivial si coneixem lʼadreça MAC de lʼaparell,

valor que podem recuperar des del controlador de la nostra aplicació ja que forma part dels
camps obligatoris que lʼusuari haurà dʼomplir per poder utilitzar el sistema.

Els mètodes necessaris per dur a terme aquest procés es troben en la classe
SerialBluetoothController:

62
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

• SerialBluetoothController(String connectionURL): constructor de la classe,

necessita lʼanomenada URL de connexió. Aquesta no és més que un string amb la
següent estructura: btspp://AABBCCDDEEFF:1;master=true.

• btsp:// indica que es tracta dʼuna connexió sèrie sobre bluetooth.

• AABBCCDDEEFF haurà de ser substituït pel valor de lʼadreça MAC del dispositiu al qual

ens volem connectar.
• :1 és el canal de connexió.

• master=true indica que nosaltres som els iniciadors de la connexió.

• getOutputStream: retorna un OutputStream de la connexió sèrie establerta a partir de

lʼURL subministrada.
• getInputStream: retorna un InputStream de la connexió sèrie.

• closeSerialConnection: tanca la connexió sèrie.

Com podem veure, aquesta és una classe totalment independent de lʼIDBlue, i podria ser

utilitzada per establir una connexió amb qualsevol dispositiu Bluetooth que utilitzés un profile
sèrie.

4.12.2 IDBlueController
Aquesta classe serà la responsable dʼenviar i rebre les comandes necessàries per llegir els
identificadors RFID. Utilitzarà org.tzi.rfid.jidblue.IDBlue, el controlador existent de codi

lliure en Java per lʼIDBlue.

El controlador ofereix un mecanisme dʼenviament i recepció dʼuna part dels missatges que

apareixen en les especificacions del producte [13]. Per sort, amb la part implementada en
tenim prou per poder recuperar un RFID en mode reactiu, és a dir, de manera asíncrona

quan lʼusuari premi el botó de lʼIDBlue.

Precisament, hem hagut dʼimplementar un nou mètode dʼinicialització del mode reactiu

(reqSET_MODE_REACTIVE) que en el controlador original estava pensat per les primeres

versions de lʼIDBlue i no funcionava correctament amb la versió 2.4 del firmware que té el

nostre dispositiu.

Un cop realitzat aquest canvi en el controlador, només ens resta implementar els següents

mètodes:

• connect: obrirà una connexió amb el dispositiu utilitzant els streams que ens proporcioni

la classe SerialBluetoothController.
• readRFID: el principal mètode de la classe, ens permetrà recuperar el següent RFID que

llegeixi lʼIDBlue de forma asíncrona.

63
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

• disconnect: tancarà la connexió amb lʼIDBlue

IDBlueController org.tzi.rfid.jidblue.IDBlue IDBlue (device)

2: reqSET_MODE_REACTIVE

1: start

4: SET_MODE_REACTIVE ACK

13: stop

5: incomingEventBlocked

6: BUTTON_PRESS

7: reqREQ_START

9: reqTAG_ID

12: reqREQ_DONE

3: SET_MODE_REACTIVE

8: REQ_START

10: GET_TAG_ID

13: REQ_DONE

11: GET_TAG_ID

Mòdul RFID. Diagrama de seqüència dʼuna operació de lectura readRFID

64
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

65
 CAPÍTOL 4. DISSENY I IMPLEMENTACIÓ

Capítol 5. Proves i integració
En aquest capítol es descriuen tot un seguit de proves que sʼhan dut a terme per avaluar el
sistema i comprovar que compleix amb els requisits exposats. Es provaran els diferents

components de forma individual, per acabar realitzant un test dʼintegració de tot el sistema.

5.1 Proves
5.1.1 Mòdul GPS
Les proves del mòdul GPS han anat orientades a comprovar dos aspectes principals: que el

sistema era capaç de connectar-se al receptor GPS, i que les dades que ens proporcionava
són correctes.

Per comprovar el primer punt, vam crear la classe mabett.devices.gps.GPSTest, que
realitzava una crida seqüencial als mètodes oferts per GPSController. Si ens trobàvem en

una zona a lʼaire lliure, el sistema era capaç de retornar la nostra posició en
aproximadament uns 4 minuts [11]. Execucions consecutives de la classe de prova un cop

havíem aconseguit recuperar la nostra localització, es completaven en pocs segons.

En proves realitzades dins dʼedificis, en canvi, sʼexhauria el timeout sense haver recuperat

cap dada.

Per tal de comprovar el segon punt, vam comparar la posició calculada per lʼN810 amb la

posició aproximada extreta de Google Maps (ja que no disposàvem de cap altre receptor
GPS); coincidien amb un alt grau de precisió:

N810 Google Maps

Latitud

Longitud

41.563381 41.563854

1.996530 1.996508

66

http://maps.google.es/
http://maps.google.es/

5.1.2 Mòdul IDBlue/RFID
Les proves del mòdul de lectura de RFID utilitzant lʼIDBlue sʼhan centrat, novament, en os

punts: comprovar que es podia establir una connexió amb el dispositiu a distàncies
prudencials i que els identificadors recuperats eren correctes.

Per comprovar el primer punt, vam crear una classe de prova, mabett.devices.bt.BTTest, que
cridava els mètodes de la classe IDBlueController. Els resultats han estat satisfactoris, ja

que hem estat capaços de connectar-nos a un IDBlue situat a tres metres de distància, un
valor més que suficient per cobrir les nostres necessitats.

La pròpia lectura de lʼRFID, en canvi, necessita que lʼIDBlue i lʼetiqueta es trobin a no més
dʼun o dos centímetres. És un fet habitual en les etiquetes amb tecnologia de connexió

passiva.

Lʼúnic problema que hem tingut en el procés de connexió ha estat quan la bateria de lʼIDBlue

es trobava baixa; en aquesta situació, el procés de connexió fallava o sʼinterrompia al cap
dʼuns segons. El problema se soluciona carregant de nou el dispositiu.

Per comprovar el segon punt, donat que no disposem de cap altre lector RFID, hem realitzat
una prova molt simple: hem comprovat que, una mateixa etiqueta llegida múltiples vegades

retorna sempre el mateix identificador. Al seu torn, també hem comprovat que dues etiquetes
diferents tenen valors també diferents. Els resultats, en ambdós casos, han estat

satisfactoris.

5.1.3 Interfície gràfica
Per tal de provar la interfície gràfica dʼuna manera aïllada, lʼhem iniciat fora de la plataforma

JADE utilitzant la classe mabett.Boot. Al seu torn, hem desactivat el suport GPS i Bluetooth i
ens hem centrat en comprovar els següents punts:

• Lʼaplicació és capaç dʼiniciar-se sense cap fitxer de preferències en el sistema.

• Lʼaplicació és capaç dʼemmagatzemar les dades introduïdes en la vista de preferències

(nom dʼusuari, identificador, mètode de triatge escollit, etcètera) i recuperar-les en una
nova sessió.

• Totes les dades introduïdes durant un triatge amb mètode START són visibles en la
vista manual i corresponen efectivament als valors entrats.

• Lʼalgorisme START se segueix de forma estricta, i lʼestat assignat coincideix amb lʼestat
que indica el protocol manual

• Es pot realitzar un triatge amb el mètode START utilitzant només els dits.

Tots els tests van ser satisfactoris.

67
 CAPÍTOL 5. PROVES i INTEGRACIÓ

5.2 Test dʼintegració
Un cop comprovat el funcionament dels mòduls per separat, hem realitzat un conjunt de

proves destinades a tot el sistema per observar que els mòduls interactuen de manera
adequada dins de lʼentorn de producció.

Sʼhan comprovat específicament els següents aspectes:

• Un error en qualsevol dels mòduls externs (RFID i GPS) en forma d'excepció, no

provoca que lʼaplicació deixi de funcionar (per exemple, si no tenim dades GPS,
senzillament no seran emplenades; o si no aconseguim llegir lʼRFID del pacient,

podrem llançar igualment lʼagent TriageDataAgent).

• Els agents amb les dades dels pacients són llançats a la plataforma

• Es pugui realitzar un procés de triatge amb el mètode START en un temps inferior als
60 segons.

• Lʼaplicació respon a totes les peticions de lʼusuari de forma ràpida (canviar de vista,
llançar lʼagent, etc).

Lʼúnic punt a comentar és el relacionat amb la velocitat del sistema. L'aplicació tarda uns 10
segons en obrir-se per primera vegada, i uns 5 segons més en mostrar la vista de triatge per

primera vegada. Un cop iniciada lʼaplicació, però, la navegació per totes les vistes és fluïda i
no sʼexperimenten més alentiments.

La raó dʼaquests alentiments lʼhem de buscar a la màquina de Java utilitzada, cacaovm, o en
la velocitat de processament de lʼN810, perquè no sʼexperimenta aquest problema executant

lʼaplicació en un ordinador de sobretaula. En qualsevol cas, són factors on no hi podem
intervenir.

Per tant, creiem que novament tots els resultats han estat satisfactoris.

68
 CAPÍTOL 5. PROVES i INTEGRACIÓ

69
 CAPÍTOL 5. PROVES i INTEGRACIÓ

Capítol 6. Conclusions i línies
dʼampliació
Hem arribat a lʼúltim capítol de la memòria i és moment de fer un petit resum de tota la feina
feta.

A lʼinici del projecte hem plantejat algunes de les limitacions que, des del nostre punt de
vista, presenten els mètodes de triatge tradicionals. Nʼhem escollit un dʼells, START, i ens

hem proposat integrar-lo en un sistema informàtic capaç dʼaprofitar els avantatges que
ofereixen els dispositius mòbils i altres tecnologies com la localització GPS, lʼetiquetatge

RFID o els sistemes dʼagents.

Per desenvolupar aquesta idea, hem exposat els conceptes clau al llarg del capítol 2, que al

seu torn ens han permès afrontar lʼetapa dʼanàlisi amb uns coneixements sobre la matèria
suficients. Així, en el capítol 3 hem estat capaços dʼenumerar els requeriments funcionals i

no funcionals que han començat a donar forma al nostre projecte.

Ha estat també durant la fase dʼanàlisi quan hem dividit el sistema en diferents mòduls per

facilitar la feina que vindria a posteriori.

Dʼaquesta manera, en el quart capítol hem dissenyat i implementat un sistema en base als

requeriments exposats. Hem començat dissenyant els aspectes més generals del lʼaplicació,
com la seva arquitectura, i hem acabat implementat tots i cadascun dels mòduls exposats.

En el cinquè capítol hem recollit tota la feina feta, lʼhem provada de forma individual,
respectant les divisions establertes ja des de la fase dʼanàlisi, i finalment també de forma

íntegra.

70

Ha arribat el moment, per tant, dʼavaluar la feina feta.

• Hem implementat un assistent per al protocol de triatge START que és capaç de
preguntar de forma interactiva les dades que necessita per assignar un estat de triatge

a la persona que sʼestà diagnosticant. Lʼusuari del sistema no ha de conèixer, per tant,
lʼalgorisme en sí, només sʼha de limitar a contestar les preguntes.

• Hem implementat una segona interfície en la qual un usuari pot entrar de forma manual
totes les dades relacionades amb el pacient. Hem inclòs una col·lecció de camps molt

àmplia, que no sempre estan presents en les etiquetes de triatge tradicionals. A més,
hem inclòs automàticament les dades de localització GPS del pacient si aquestes es

troben disponibles.

• Hem incorporat les dues interfícies en una sola aplicació, dissenyada a més per poder

suportar altres mètodes de triatge. La usabilitat ha estat un dels objectius que ens hem
marcat en el disseny de les interfícies gràfiques, i creiem que lʼhem complert creant

interfícies estructurades, minimitzant lʼentrada de text i incorporant elements de
referència visual sempre que ens ha estat possible.

• Hem creat una estructura capaç dʼemmagatzemar les dades de cada pacient,
independentment del mètode amb el qual hagin estat recollides. No només podem

guardar un conjunt de dades, sinó tot un historial de valors que poden anar variant al
llarg del temps. Malgrat no ser una funcionalitat que aprofitem en el nostre projecte, tota

aquesta informació sʼha incorporat en un sistema intel·ligent com és un agent, facilitant
així una futura integració amb altres sistemes mèdics basats en el mateix paradigma.

• Per tal dʼidentificar de manera única cada pacient, hem incorporat també la tecnologia
RFID, tant a la interfície gràfica com a lʼestructura de dades.

• Finalment, tot el sistema descrit ha esta dissenyat pensant en lʼN810, tenint en compte
els avantatges (GPS, pantalla tàctil, etc) i els inconvenients (recursos limitats). Tot i així

el producte resultant es pot executar en qualsevol altra plataforma que tingui una
màquina virtual de Java. Bona proba dʼaixò és que tot el desenvolupament sʼha realitzat

en un ordinador de sobretaula que és capaç dʼexecutar lʼaplicació de la mateixa manera
en com ho fa lʼN810.

Arribats a aquest punt podem concloure que els objectius inicials sʼhan complert
satisfactòriament.

71
 CAPÍTOL 6. CONCLUSIONS I LÍNIES DʼAMPLIACIÓ

La feina, però, no sʼacaba aquí, i a continuació mostrem algunes línies dʼinvestigació que

han sorgit durant el desenvolupament del nostre projecte:

1. Creació dʼinterfícies de protocols de triatge diferents a START. Existeixen situacions

on sʼhan dʼaplicar mètodes de triage específics, i el nostre sistema està preparat per
soportar-los. Un exemple podria ser implementar el protocol START pediàtric, una

versió dʼSTART adaptada a menors, que té en compte símptomes diferents dels
adults.

2. Modificar la estructura de dades dels pacients per afegir-hi camps dinàmics sobre els
tractaments preventius aplicats, o informació sobre lʼestat de radiació i contaminació

química del pacient.
3. Tractar totes les dades que han estat recollides: implementar un servidor dʼagents

capaç dʼanalitzar i posar en comú la informació de tots equips dʼemergència. Una
aplicació immediata podria ser, a partir de les dades de localització GPS de tots els

pacients i del seu estat, elaborar camins òptims de recollida i atenció.
4. Integrar la nostra aplicació en sistemes mèdics existents.

72
 CAPÍTOL 6. CONCLUSIONS I LÍNIES DʼAMPLIACIÓ

73
 CAPÍTOL 6. CONCLUSIONS I LÍNIES DʼAMPLIACIÓ

Bibliografia
(1) W. Sacco, D. Navin, K. Fiedler, R. Waddell, W. Long, and R. Buckman. Precise formulation

and evidence-based application of resource-constrained triage. Acad Emerg Med, 12:759–
770, Aug 2005.

(2) A. Garner, A. Lee, K. Harrison, and C. Schultz. Comparative analysis of multiple-casualty
incident triage algorithms. Ann Emerg Med, 38:541–548, Nov 2001.

(3) Wikipedia. Global Positioning System [online]. June 2008. Available from: http://
en.wikipedia.org/wiki/Global_Positioning_System.

(4) Wikipedia. Radio-frequency identification [online]. June 2008. Available from: http://
en.wikipedia.org/wiki/RFID.

(5) Wikipedia. Software agent [online]. June 2008. Available from: http://en.wikipedia.org/wiki/
Software_agent.

(6) [M. Benson, K. Koenig, and C. Schultz. Disaster triage: START, then SAVE–a new method of
dynamic triage for victims of a catastrophic earthquake. Prehosp Disaster Med, 11:117–124,
1996.

(7) B. Spencer. Application User Interface Design Guide. Available from: http://www.moblin.org/
pdfs/MID_app_design_guide.pdf.

(8) P. M. Vieira-Marques, S. Robles, J. Cucurull, R. J. Cruz-Correia, G. Navarro, and R. Martì.
Secure integration of distributed medical data using mobile agents. IEEE Intelligent Systems,
21(6):47–54, 2006.

(9) Maemo 4.0 architecture [online]. June 2008. Available from: http://maemo.org/development/
documentation/how-tos/4-x/maemo_architecture.html.

(10) Maemo 4.0 api references [online]. June 2008. Available from: http://maemo.org/
development/documentation/apis/4-0-x/.

(11) Maemo Bugzilla bug 2878 [online]. June 2008. Available from: https://bugs.maemo.org/
show_bug.cgi?id=2878.

(12) Baracoda. IDBlue. An efficient way to add RFID reader/encoder to bluetooth PDA & mobile
phones., December 2004. Available from: http://www.baracoda.ch/Bluetooth-
Barcodescanner/IDBlue.pdf.

74

http://en.wikipedia.org/wiki/Global_Positioning_System
http://en.wikipedia.org/wiki/Global_Positioning_System
http://en.wikipedia.org/wiki/Global_Positioning_System
http://en.wikipedia.org/wiki/Global_Positioning_System
http://en.wikipedia.org/wiki/RFID
http://en.wikipedia.org/wiki/RFID
http://en.wikipedia.org/wiki/RFID
http://en.wikipedia.org/wiki/RFID
http://en.wikipedia.org/wiki/Software_agent
http://en.wikipedia.org/wiki/Software_agent
http://en.wikipedia.org/wiki/Software_agent
http://en.wikipedia.org/wiki/Software_agent
http://www.moblin.org/pdfs/MID_app_design_guide.pdf
http://www.moblin.org/pdfs/MID_app_design_guide.pdf
http://www.moblin.org/pdfs/MID_app_design_guide.pdf
http://www.moblin.org/pdfs/MID_app_design_guide.pdf
http://maemo.org/development/documentation/how-tos/4-x/maemo_architecture.html
http://maemo.org/development/documentation/how-tos/4-x/maemo_architecture.html
http://maemo.org/development/documentation/how-tos/4-x/maemo_architecture.html
http://maemo.org/development/documentation/how-tos/4-x/maemo_architecture.html
http://maemo.org/development/documentation/apis/4-0-x/
http://maemo.org/development/documentation/apis/4-0-x/
http://maemo.org/development/documentation/apis/4-0-x/
http://maemo.org/development/documentation/apis/4-0-x/
https://bugs.maemo.org/show_bug.cgi?id=2878
https://bugs.maemo.org/show_bug.cgi?id=2878
https://bugs.maemo.org/show_bug.cgi?id=2878
https://bugs.maemo.org/show_bug.cgi?id=2878
http://www.baracoda.ch/Bluetooth-Barcodescanner/IDBlue.pdf
http://www.baracoda.ch/Bluetooth-Barcodescanner/IDBlue.pdf
http://www.baracoda.ch/Bluetooth-Barcodescanner/IDBlue.pdf
http://www.baracoda.ch/Bluetooth-Barcodescanner/IDBlue.pdf

(13) Baracoda. IDBlue. Programmers Serial Interface Specification, 2.4.2 edition, March 2006.
Available from: http://baracoda.com/baracoda/librairie-doc/ID-Blue-Communication-
Protocolo_820.pdf

(14) JSR 82: Java™ APIs for Bluetooth [online]. Available from: http://jcp.org/en/jsr/detail?id=82.
(15) Standard widget toolkit [online]. June 2008. Available from: http://en.wikipedia.org/wiki/

Standard_Widget_Toolkit#Design.
(16) Jalimo on Maemo [online]. Available from: https://wiki.evolvis.org/jalimo/index.php/

Maemo#Limitations [cited June 2008].
(17) S. Northover and C. MacLeod. Creating Your Own Widgets using SWT. Object Technology

International, March 2001. Available from: http://www.eclipse.org/articles/Article-Writing
%20Your%20Own%20Widget/Writing%20Your%20Own%20Widget.htm.

(18) S. Liang. The Java™ Native Interface. Programmerʼs Guide and Specification. Sun
Microsystems, 1999. Available from: http://java.sun.com/docs/books/jni/download/jni.pdf.

75
 BIBLIOGRAFIA

http://baracoda.com/baracoda/librairie-doc/ID-Blue-Communication-Protocolo_820.pdf
http://baracoda.com/baracoda/librairie-doc/ID-Blue-Communication-Protocolo_820.pdf
http://baracoda.com/baracoda/librairie-doc/ID-Blue-Communication-Protocolo_820.pdf
http://baracoda.com/baracoda/librairie-doc/ID-Blue-Communication-Protocolo_820.pdf
http://jcp.org/en/jsr/detail?id=82
http://jcp.org/en/jsr/detail?id=82
http://en.wikipedia.org/wiki/Standard_Widget_Toolkit#Design
http://en.wikipedia.org/wiki/Standard_Widget_Toolkit#Design
http://en.wikipedia.org/wiki/Standard_Widget_Toolkit#Design
http://en.wikipedia.org/wiki/Standard_Widget_Toolkit#Design
https://wiki.evolvis.org/jalimo/index.php/Maemo#Limitations
https://wiki.evolvis.org/jalimo/index.php/Maemo#Limitations
https://wiki.evolvis.org/jalimo/index.php/Maemo#Limitations
https://wiki.evolvis.org/jalimo/index.php/Maemo#Limitations
http://www.eclipse.org/articles/Article-Writing%20Your%20Own%20Widget/Writing%20Your%20Own%20Widget.htm
http://www.eclipse.org/articles/Article-Writing%20Your%20Own%20Widget/Writing%20Your%20Own%20Widget.htm
http://www.eclipse.org/articles/Article-Writing%20Your%20Own%20Widget/Writing%20Your%20Own%20Widget.htm
http://www.eclipse.org/articles/Article-Writing%20Your%20Own%20Widget/Writing%20Your%20Own%20Widget.htm
http://java.sun.com/docs/books/jni/download/jni.pdf
http://java.sun.com/docs/books/jni/download/jni.pdf

76
 BIBLIOGRAFIA

Annex 1. Java
Java és el nom amb què es coneix el conjunt de software i especificacions desenvolupades
per Sun Microsystems que ofereixen un entorn de desenvolupament i implantació multi

plataforma. Es tracta d'una tecnologia present en gairebé tot l'espectre de sistemes
informàtics, des de plataformes encastades fins a servidors, passant per telèfons mòbils (on

és especialment utilitzada) i ordinadors personals.

Plataforma
La plataforma Java és el conjunt de software que Sun ofereix per desenvolupar i/o executar

programes escrits, principalment, en el llenguatge de programació Java. No és específica de
cap arquitectura o sistema operatiu, però necessita que tant el motor d'execució (anomenat

màquina virtual) com el compilador (i una sèrie de llibreries estàndard relacionades) sí
estiguin disponibles pel sistema. Complerts aquests requeriments, un programa Java

s'executarà de forma idèntica en qualsevol sistema.

Existeixen diferents edicions de la plataforma:

• Java ME (Micro Edition): Especifica diferents profiles per dispositius amb limitacions
tècniques que impedeixen el suport a la totalitat de les llibreries de Java (per raons de

memòria, capacitat de procés, etc). És habitual trobar implementacions de Java ME en
telèfons mòbils.

• Java SE (Standard Edition): Es tracta de la versió de propòsit general que utilitzen tant
ordinadors personals com servidors.

• Java EE (Enterprise Edition): Combina Java SE amb APIs útils per aplicacions client
servidor complexes en entorns empresarials.

77

Llenguatge de programació Java
La paraula Java s'utilitza també per referir-se al llenguatge de programació Java, que va ser

presentat conjuntament amb la plataforma l'any 1995. La seva filosofia es pot resumir en 5
punts:

• Presentar una metodologia orientada a objectes

• "Write Once, Run Anywhere": permetre que un mateix programa, un cop compilat, sigui

executat en múltiples sistemes operatius i arquitectures

• Oferir suport integrat d'accés a xarxes

• Permetre executar codi remot de forma segura

• Integrar conceptes d'altres llenguatges de programació orientat a objectes

(especialment C++).

El llenguatge no ofereix elements de baix nivell com punters. Té un model de memòria

relativament senzill gestionat de forma automàtica per un garbage collector, el que fa
innecessari l'existència de mètodes manuals per reservar o alliberar memòria.

Compilador de Java
La seva tasca és compilar codi font en l'anomenat bytecode, per ser interpretat més tard a la
VM (Virtual Machine) de Java. Aquest codi màquina intermedi presenta una semàntica de

baix nivell que recorda al codi assemblador. Generalment, els compiladors només processen
codi escrit en Java, però n'hi han que accepten altres llenguatges com Python, Ruby o

Groovy.

Existeixen també compiladors de Java que compilen el codi de forma estàtica, és a dir,

directament a codi nadiu, com ho faria un compilador de C o C++. GCJ (GNU Compiler for
Java) n'és un exemple. Ofereixen un millor rendiment en comparació amb les aplicacions

executades a la màquina virtual. Per altra banda, però, es perd la possibilitat d'executar el
mateix binari en cap altre arquitectura, fet que entra en conflicte amb la filosofia de Java.

Màquina virtual de Java (Java VM)
La màquina virtual és considerada el nucli de la plataforma, ja que té la capacitat
d'interpretar i executar arxius bytecode. Les primeres implementacions tan sols interpretaven

bytecode, de manera que el rendiment dels programes era inferior a l'obtingut amb altres
llenguatges com C o C++. Versions més actuals utilitzen diverses tècniques d'optimització

per solucionar el problema.

78
 ANNEX 1. JAVA

http://gcc.gnu.org/java/
http://gcc.gnu.org/java/

Una d'aquestes tècniques, l'anomenada compilació JIT (just-in-time), permet traduir

bytecode en codi nadiu en temps d'execució (de la mateixa manera que ho faria un
compilador estàtic de Java). Això provoca que, després d'un període inicial, el rendiment de

l'aplicació sigui comparable al de programes nadius.

Una altra tècnica, anomenada recompilació dinàmica, és capaç d'analitzar el funcionament

de l'aplicació en temps d'execució, i optimitzar aquelles parts del codi que considera
crítiques (generalment bucles). Generalment, aquest mètode permet un rendiment superior a

l'obtingut amb una compilació estàtica.

Llibreries de classes Java
Degut al fet que Java és independent del sistema operatiu on s'executi, les aplicacions Java

no poden dependre de llibreries existents. En comptes d'això, la plataforma oferix un conjunt
propi de llibreries estàndard (API) que duen a terme les següents funcions:

• Proveir als programadors d'un conjunt d'estructures de dades, tipus de dades, i
mètodes associats típics de qualsevol llenguatge modern, tals com mantenir un llistat

d'elements o treballar de forma fluïda amb strings.

• Oferir una interfície abstracta a tasques especialment dependents del maquinari i el

sistema operatiu, com l'accés a la xarxa (java.net) o al sistema de fitxers (java.io).

• Quan el sistema on corre la plataforma real no suporta algunes característiques de

Java, permetre emular-ne el comportament amb els recursos disponibles, o bé oferir un
mecanisme consistent per tal de conèixer les limitacions.

JNI
JNI (Java Native Interface) és un framework que permet que codi Java executant-se en una
JVM pugui cridar i ser cridat per aplicacions nadiues (programes específics dʼun sistema

operatiu i una arquitectura) i llibreries escrites en altres llenguatges, com C i C++.

JNI sʼacostuma a utilitzar per accedir a recursos que no ofereixen a les llibreries de classe, o

bé per implementar funcions dʼalt rendiment utilitzant llenguatges de baix nivell (C o
assemblador). Internament, algunes classes de Java depenen dʼaquestes funcions (I/O,

xarxa o so entra dʼaltres), però és un fet transparent a lʼusuari.

Abans dʼutilitzar JNI, haurem de tenir en compte que:

• No és trivial i necessita un esforç considerable per entendre el seu funcionament.

79
 ANNEX 1. JAVA

• Errors en la seva utilització poden desestabilitzar tota la JVM i causar problemes molt

difícils de reproduir i de depurar.

• Una aplicació que necessiti utilitzar JNI perd la portabilitat que ofereix Java.

• Dins del codi JNI no hi ha recol·lecció de memòria automàtica, amb la qual cosa fa falta
gestionar-la de manera manual.

Accés de Java a JNI
En JNI, els mètodes nadius són implementat en forma de funcions en fitxers C o C++. Quan
des de Java invoquem aquests mètodes, hi passem de forma automàtica un punter a una

interfície per accedir a la JVM, un altre punter que fa referència a lʼobjecte que ha fet la crida
i tots aquells arguments que necessitem.

Per exemple, aquest seria el template que hauríem dʼutilitzar per implementar un mètode
“methodName” de la classe “ClassName” del paquet “package.name” al qual li passem un

string.

//C code
JNIEXPORT void JNICALL Java_ package_name_ClassName_methodName
 (JNIEnv *env, jobject obj, jstring javaString) {
 //Get the native string from javaString
 const char *nativeString = (*env)->GetStringUTFChars(env, javaString, 0);

 //Do something with the nativeString

 //DON'T FORGET THIS LINE!!!
 (*env)->ReleaseStringUTFChars(env, javaString, nativeString);
}

Per a més informació, consulteu el manual de referència de JNI [18].

Versions
A Abril de 2008, Java 6 és l'última versió estable. Sun ofereix dues versions de cadascuna
de les plataformes (SE, ME, EE):

• Java Runtime Environment (JRE): conjunt de components format per la màquina
virtual i les llibreries. És tot el que necessitem per executar aplicacions Java al nostre

sistema.

• Java Development Kit (JDK): conté totes les eines necessàries per desenvolupar

aplicacions en Java. Està format pel compilador, depurador i altres eines de utilitat
diversa, juntament amb una còpia completa del JRE.

80
 ANNEX 1. JAVA

Llicència
La plataforma Java de Sun havia estat una plataforma propietària des dels seus inicis.

Malgrat part del codi font estava disponible, els termes de la llicència restringien en gran
mesura la seva utilització.

L'any 2006, Sun va anunciar que Java esdevindria software gratuït i de codi obert. En una
primera instància, va alliberar el codi de la seva màquina virtual (HotSpot). A començaments

de l'any 2007, Sun va fer el mateix amb gairebé la totalitat de la llibreria de classes (en el
que va anomenar OpenJDK Class Library). Algunes parts de la plataforma, però, encara no

han estat alliberades ja que Sun no en té tots els drets. Actualment, tant Sun com la
comunitat Open Source està treballant en substituir aquests components per altres de codi

obert.

81
 ANNEX 1. JAVA

Annex 2. Instal·lació i
configuració de lʼN810
En aquest annex volem descriure els passos necessaris per configurar des de zero un
dispositiu N810 per poder ser utilitzat en el nostre projecte.

Atenció: aquest procés elimina tota la informació de la partició principal de lʼN810, procediu
amb precaució.

Actualització del firmware
Les actualitzacions del sistema operatiu de lʼN810 es realitzen actualitzant el firmware de
lʼaparell, que correspon a la partició principal de 256 MB on resideix tot el sistema. Si ve és

possible instal·lar i realitzar actualitzacions menors utilitzant el gestor de paquets de maemo,
les grans actualitzacions requereixen una actualització del firmware.

Descàrrega del firmware
En primer lloc he de dirigir-nos a la pàgina que Nokia ofereix per descarregar-nos la última
versió del sistema: http://tablets-dev.nokia.com/nokia_N810.php

Seʼns demanarà que introduïm lʼadreça MAC de la tarja de xarxa de lʼN810 abans de
procedir. Un cop introduïda, seʼns mostrarà un llistat amb totes les versions del firmware

publicades; escollirem al més actual i la descarregarem (a juny del 2008, lʼúltima versió és
OS 2008 2.2007.51-3, i ocupa 135 MB).

Descàrrega de la utilitat dʼactualització
És necessari disposar dʼuna aplicació, disponible també des del mateix web http://tablets-
dev.nokia.com/d3.php, per flashejar lʼN810 amb el firmware descarregat. Només fa falta que

descarreguem la versió que es correspongui amb el nostre sistema operatiu i la desem al
mateix directori on hem descarregat el firmware.

82

http://tablets-dev.nokia.com/nokia_N810.php
http://tablets-dev.nokia.com/nokia_N810.php
http://tablets-dev.nokia.com/d3.php
http://tablets-dev.nokia.com/d3.php
http://tablets-dev.nokia.com/d3.php
http://tablets-dev.nokia.com/d3.php

Actualització
Amb la bateria de lʼN810 ben carregada, apagar el dispositiu i connectar-lo al port USB de

lʼordinador. A continuació, executar la comanda:

$./flasher-2.0 -F <<nom de l’arxiu de firmware >> -f --enable-rd-mode -R

Quan seʼns mostri el missatge “Suitable USB device not found, waiting”, encendre lʼN810 tot

prement el botó de canvi de finestra. Si tot ha anat bé, hauria dʼaparèixer un output semblant
al següent:

SW version in image: RX-44_2008SE_2.2007.51-3_PR_MR0
Image 'kernel', size 1529984 bytes
	 Version 2.6.21.0-200749osso2
Image 'initfs', size 1954560 bytes
	 Version 0.95-70
Image 'rootfs', size 137625600 bytes
	 Version RX-34+RX-44_2008SE_2.2007.51-3_PR_MR0
Image '2nd', size 8192 bytes
	 Valid for RX-44: 0801, 0802, 0803, 0804, 0805, 0806, 0901, 0902
	 Version 1.1.11-1
Image 'xloader', size 9216 bytes
	 Valid for RX-44: 0801, 0802, 0803, 0804, 0805, 0806, 0901, 0902
	 Version 1.1.11-1
Image 'secondary', size 99968 bytes
	 Valid for RX-44: 0801, 0802, 0803, 0804, 0805, 0806, 0901, 0902
	 Version 1.1.11-1
Suitable USB device not found, waiting
USB device found found at bus 005, device address 006-0421-0105-02-00
Found device RX-44, hardware revision 0805
NOLO version 1.1.7
Version of 'sw-release': RX-44_2008SE_2.2007.50-2_PR_MR0
Sending xloader image (9 kB)...
100% (9 of 9 kB, avg. 3000 kB/s)
Sending secondary image (97 kB)...
100% (97 of 97 kB, avg. 10847 kB/s)
Flashing bootloader... done.
Sending kernel image (1494 kB)...
100% (1494 of 1494 kB, avg. 12555 kB/s)
Flashing kernel... done.
Sending initfs image (1908 kB)...
100% (1908 of 1908 kB, avg. 12896 kB/s)
Flashing initfs... done.
Sending and flashing rootfs image (134400 kB)...
100% (134400 of 134400 kB, avg. 7033 kB/s)
Finishing flashing... done
The device is now in R&D mode

83
 ANNEX 2. INSTAL·LACIÓ I CONFIGURACIÓ DE LʼN810

Root
La primera vegada que encenem lʼN810 després dʼactualitzar el sistema, ens demanarà un

conjunt de dades de configuració dʼidioma, hora, xarxa, etc.

Com que hem activat el mode R+D en el dispositiu, podrem entrar com a root utilitzant la

comanda “sudo gainroot”. No és aconsellable deixar activat aquest mode, així que el primer

qua farem serà modificar lʼscript gainroot per poder utilitzar-lo també sense el mode R+D.

Obrirem lʼarxiu /usr/sbin/gainroot i canviarem la línia:

MODE=enabled `/usr/sbin/chroot /mnt/initfs cal-tool --get-rd-mode`

per:

MODE=enabled

Finalment, des del nostre ordinador desactivarem el mode R+D de la mateixa manera que
hem actualitzat el firmware, però utilitzant la comanda:

$./flasher-2.0 --disable-rd-mode

Instal·lant nous paquets de software
Des de lʼN810, podem visitar la pàgina http://gronmayer.com/it per instal·lar automàticament
tots aquells repositoris que ens interessin. En el nostre cas, necessitem instal·lar el del

projecte Jalimo per instal·lar Java. Ho podem fer a través dʼaquest web o visitant la pàgina
del projecte: https://wiki.evolvis.org/jalimo/index.php/Maemo.

Jalimo
Podem instal·lar tots els paquets necessaris per tenir un entorn operatiu de Java (cacaovm,
GNU classpath i llibreries SWT) amb la comanda:

$ apt-get install jalimo-swt-example

AvetanaBT
Malauradament no hi ha cap repositori amb una versió compilada dʼAvetanaBT. Ens haurem
de descarregar les fonts i compilar-les en lʼSDK de maemo. La pàgina del projecte és http://

sourceforge.net/projects/avetanabt/, i un cop compilat hauríem dʼobtenir dos arxius que
haurem de copiar al nostre N810:

• avetanaBT.jar: el copiarem a /usr/share/java/

• libavetanaBT.so: el copiarem a /usr/lib/jni/

84
 ANNEX 2. INSTAL·LACIÓ I CONFIGURACIÓ DE LʼN810

http://gronmayer.com/it
http://gronmayer.com/it
https://wiki.evolvis.org/jalimo/index.php/Maemo
https://wiki.evolvis.org/jalimo/index.php/Maemo
http://sourceforge.net/projects/avetanabt/
http://sourceforge.net/projects/avetanabt/
http://sourceforge.net/projects/avetanabt/
http://sourceforge.net/projects/avetanabt/

JADE
Per instal·lar JADE, simplement haurem de descarregar la versió estàndard compilada del

framework des de la pàgina web del projecte: http://jade.tilab.com/download.php

Un cop descarregat, necessitarem copiar a lʼN810 els següents arxius, preferiblement a un

directori de lʼestil /usr/local/jade:

commons-codec-1.3.jar
http.jar
iiop.jar
jade.jar
jadeTools.jar

Script dʼexecució
Per tal dʼexecutar JADE a lʼinici del sistema només haurem de crear un script a /etc/rc5.d/

que executi la següent comanda:

java -cp 	 /usr/local/jade/commons-codec-1.3.jar: \
	 	 /usr/local/jade/http.jar: 		 	 \
	 	 /usr/local/jade/iiop.jar: 		 	 \
	 	 /usr/local/jade/jade.jar: 		 	 \
	 	 /usr/local/jade/jadeTools.jar	 	 \
	 	 jade.Boot >/var/log/jade.log &

Problemes amb missatges de consola incomplets
Els missatges de registre que JADE imprimeix per pantalla apareixen incomplets, hi manca

la informació de la classe i el mètode que ha realitzat la petició de log.

11/06/2008 12:12:18 <unknown> <unknown>

No és un problema greu, però lʼexplicació és la següent (informació extreta de [http://

java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html):

''[…] For this second set of methods [void warning(String msg)], the Logging framework will

make a "best effort" to determine which class and method called into the logging framework
and will add this information into the !LogRecord. However, it is important to realize that this

automatically inferred information may only be approximate. The latest generation of virtual
machines perform extensive optimizations when JITing and may entirely remove stack

frames, making it impossible to reliably locate the calling class and method.''

La nostra màquina virtual utilitza, efectivament, la compilació JIT per executar els mètodes

de java de forma nadiua. Per tant, aquesta podria ser la causa.

85
 ANNEX 2. INSTAL·LACIÓ I CONFIGURACIÓ DE LʼN810

http://jade.tilab.com/download.php
http://jade.tilab.com/download.php
http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html
http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html
http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html
http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html

Annex 3. Disseny dʼicones per la
interfície
En el desenvolupament de lʼaplicació hem dissenyat un conjunt nombrós dʼicones i imatges
amb lʼobjectiu de facilitar als usuaris la utilització de la nostra interfície. En aquest annex

mostrem totes les icones creades, classificades segons la vista on sʼhan utilitzat.

3.1 Icones dels menús

i
John Doe

09F9 1102 9D74 E35B D841 56C5 6356 88C0

Notes Personal Data

Confirm

General Information Body injuries

MINOR

DELAYED

IMMEDIATE

MORGUE

?

Triage Tag Preferences

3.1.1 Obres originals
• General Information: http://commons.wikimedia.org/wiki/Image:Star_of_life.svg

• Personal Data: http://commons.wikimedia.org/wiki/Image:Gnome-preferences-desktop-
personal.svg

• Confirm: http://commons.wikimedia.org/wiki/Image:Artículo_bueno.svg

86

http://commons.wikimedia.org/wiki/Image:Star_of_life.svg
http://commons.wikimedia.org/wiki/Image:Star_of_life.svg
http://commons.wikimedia.org/wiki/Image:Gnome-preferences-desktop-personal.svg
http://commons.wikimedia.org/wiki/Image:Gnome-preferences-desktop-personal.svg
http://commons.wikimedia.org/wiki/Image:Gnome-preferences-desktop-personal.svg
http://commons.wikimedia.org/wiki/Image:Gnome-preferences-desktop-personal.svg
http://commons.wikimedia.org/wiki/Image:Art%C3%ADculo_bueno.svg
http://commons.wikimedia.org/wiki/Image:Art%C3%ADculo_bueno.svg

3.2 Icones del protocol START

3.3 Icones dels controls

Right Left UpDown

Add Substract

Pulse

Capillar refill

Mental status

WalkingBreath

Retry breath
BPM

87
 ANNEX 3. DISSENY DʼICONES PER LA INTERFÍCIE

88
 ANNEX 3. DISSENY DʼICONES PER LA INTERFÍCIE

89

Firmat: Xavier Jurado Cristóbal.
Bellaterra, juny de 2008

Resum
Els sistemes dʼatenció mèdica en situacions de pèrdues humanes massives

necessiten classificar un número molt elevat de víctimes en un temps limitat i amb
pocs recursos disponibles. Els mètodes clàssics es basen en una etiqueta de triatge

de paper on el personal dʼemergències anota lʼestat del pacient juntament amb una
quantitat reduïda dʼinformació. En aquest projecte descrivim lʼanàlisi, disseny i

implementació dʼinterfícies gràfiques per dispositius mòbils pel protocol de triatge
START, per ser utilitzades pels equips dʼemergència. Els components del projecte

inclouen un dispositiu portàtil Nokia N810 amb connexió GPS, i IDBlue, un lector
dʼetiquetes RFID per Bluetooth.

Resumen
Los sistemas de atención médica en situaciones de pérdidas humanas masivas
necesitan clasificar un número muy elevado de víctimas en un tiempo limitado y con

pocos recursos disponibles. Los métodos clásicos se basan en una etiqueta de papel
donde el personal de emergencias anota el estado del paciente juntamente con una

cantidad limitada de información. En este proyecto describimos el análisis, diseño y
implementación de varias interfaces gráficas para dispositivos móviles del protocolo de

triage START, para ser utilizadas por los equipos de emergencias. Los componentes
del proyecto incluyen un dispositivo portátil Nokia N810 con conexión GPS, y IDBlue,

un lector de etiquetas RFID por Bluetooth.

Abstract
Medical care at mass casualty incidents requires rapid triage of an overwhelming

numbers of victims, in a limited time and with little resources available. Traditional
systems rely on a paper triage tag on which rescuers and medical providers mark the

patientʼs triage status and record limited information. In this project, we describe the
analysis, design and development of handheld device oriented graphical user

interfaces based on START triage method for use by rescuers responding to disasters.
The components of this project includes a Nokia N810 mobile device with GPS

capabilities and a IDBlue, a Bluetooth based RFID reader.

