UNB

Universitat Autonoma de
Barcelona

etse)

Escola Técnica Superior
d’Enginyeria

DISPOSITIUS HANDHELD PER A APLICACIONS MEDIQUES.
DISSENY | IMPLEMENTACIO D’INTERFICIES DEL PROTOCOL START.

Memoria del projecte de final de carrera
corresponent als estudis d’Enginyeria
Superior en Informatica presentat per
Xavier Jurado Cristébal i dirigit per
Ramon Marti Escalé.

Bellaterra, juny de 2008

El firmant, Ramon Marti Escalé, professor del
Departament d’Enginyeria de la Informaci6 i de
les Comunicacions de la Universitat Autonoma de
Barcelona

CERTIFICA:

Que la present memoria ha sigut realitzada sota
la seva direcci6d per Xavier Jurado Cristébal

Bellaterra, juny de 2008

Firmat: Ramon Marti Escalé

A tots els que m’heu recolzat durant aquests anys

Agraiments

Vull donar les gracies a totes les persones amb qui he tingut el plaer de coincidir en aquests
cinc anys de carrera. A tots els companys amb qui he compartit incomptables hores de feina
i també de diversio. A I’Abraham, el Carlos, el Ferran i, especialment, al Gerard, per tots els

moments viscuts.

Gracies també als projectistes de SeNDA, al departament i en especial al meu director de

projecte, Ramon Marti, per la seva paciéncia i els seus consells.

| gracies a la meva familia, que m’ha mostrat un suport incondicional durant tots aquests

anys.

Vi

Index

Capitol 1. Introduccié

1.1 Objectius

1.2 Metodologia

1.3 Estructura de la memoria
Capitol 2. Estat de I'art

2.1 Triatge

2.1.1 Triatge Simple.......ooeee e
2.1.2 Etiquetes de triatge........cueveeeeieeiiiiiiiiiiiieiis

2. 1.3 START ..

2.2 GPS
2.3 RFID

2.3.1 Tipus d’etiquetes.........ooouvuuiiiiiiiiii e,

2.4 Agents

Capitol 3. Analisi

3.1 Descripcio de la proposta

3.1.1 Requeriments funcionals..........cccccceveeeiiiiiiieeennnnnnn.

3.1.2 Requeriments no funcionals............ccccccvvvennnnnnnnn.

3.2 Triatge

3.2.1 L’algorisme STARTcooiiiiiieeee e

3.2.2 Etiquetes de triatge...........uuummmimmiiiiiiiiiiiiie

3.3 Components software

3.3.1 Interficies grafiques per dispositius mobils

3.3.2 Agents en aplicacions mediques............ooeevvveeeniienennn.

3.4 Components hardware

3.4.1 Dispositiu mobil: PN810.......cccvvvveiiiiiiiiiieiiiiieee
B.4.2MOAUI GPS.....co

3.4.3 MOAUI RFID......ciiiiiiiiiiieee e

3.5 Estudi de viabilitat

3.5.1 Viabilitat teCniCa............ueuiiiiiiiiiiiiiiiis
3.5.2 Viabilitat operativa............ccooeeiiiiiiiiii
3.5.3 Viabilitat econdmica..........c.eueevieiiiiiiiiiiie e
3.5.4 Viabilitat l[egal.........cccceeeriereiiiee e

3.5.5 Planificacio inicial de la proposta..........c.c.cooeviviiinenes

Capitol 4. Disseny i implementacio

4.1 Disseny global de I'aplicacié

4.1.1 COMPONENTS....uttiiiiiiiiiiiiiiiiiieeae e
4.1.2 ArqUItECIUNaL......cooeeiee e
4B UADE. ...

414 SWT ..o s

4.2 Agent interficie grafica

4.3 Agent d’emmagatzematge

4.3.1 TriageDataAgent.........ccooooriiiiiiiiiiiiie e

4.3.2 TriageData..........uuueeiiiiiiiiiiiiii

viii

4.4 Controlador 38
4.5 Model 39
4.6 Vista general 40
4.6.7 LAYOUL. ...ttt e e e e e e e e e e aae s 41
4.8.2 MENUL.....euiiiiiiiiiee e 42
4.6.3 Controls €SPECifiCS.......coiiiiiiieee e 43
4.7 Vista de preferéncies 47
A T 1< T3] o7 o J PSR 47
4.7.2 DISSENY ...t a e 47
4.8 Vista de triatge 48
S T I 1T oo o JU PP PP PPPPRPP 48
4.8.2 DISSENYciiiiiiii et 49
4.9 Vista START 49
v/ T I 1Yo] o7 o J PP 49
4.9.2 DISSENY ...cciiieiieie ettt e e e e e e e e neeees 50
4.10 Vista d’edicié manual 54
4.10.1 DESCHIPCIO...ccieieieeeeeeee ettt ettt e e e e e e e e e e e e e s e e e e e eeees 54
4.710.2 DISSENY ...ttt ettt e e e e e e e e 55
4.11 Modul GPS 60
o T O T I =T o Yo o PSP 60
4.11.2 GPSCONIrOlEr.java...........eeeiiiiiiiiiiee et 61
4.11.3 GPSCONIIOIEI.C.....eeee et 61
4.12 Modul RFID 62
4.12.1 SerialBluetoothController..............ooooi i 62
4.12.2 IDBIUECONTIOIIET.......eiiieiiiieeee e 63

Capitol 5. Proves i integracio

5.1 Proves

5.1.1 MOAUI GPS.....oei e
5.1.2 MOdUl IDBIUE/RFID........eviiiiiiiicieieee e

5.1.3 Interficie grafiCa..........coiiiiii

5.2 Test d’integracio6
Capitol 6. Conclusions i linies d’ampliacio
Bibliografia
Annex 1. Java
Annex 2. Instal-lacié i configuracié de ’N810

Annex 3. Disseny d’icones per la interficie

Xi

Capitol 1. Introduccio

El 12 de maig del 2008, a la provincia de Sichuan de la Republica Popular de la Xina, un
terratrémol de 8.3 graus va acabar amb la vida de més de 60.000 persones i en va ferir
370.000 més.

Any rere any, casos com el de Sichuan s’han anat repetint; terratrémols, tsunamis,
inundacions o huracans han provocat situacions d’emergéncia on s’hi han vist involucrades

un numero desorbitant de persones.

Es en aquests casos quan es despleguen mecanismes dissenyats especificament per
situacions de pérdues humanes massives. L’'organitzacié dels recursos disponibles durant

els primers dies de l'incident és imprescindible per maximitzar el nombre de supervivents.

Metodes de la medicina d'emergéncies com el triatge permeten a equips medics reduits
classificar les victimes sobre el terreny segons la seva gravetat. D’aquesta manera, quan els
primers equips d’assistencia aconsegueixen arribar a la zona poden centrar-se en donar

tractament a aquelles persones que més ho necessiten.

Al llarg dels anys han anat apareixent diferents mecanismes de triatge per una gran varietat
de situacions. De tots ells, el protocol conegut amb el nom de START ha estat utilitzat amb
exit en situacions d’emergéencia reals. Aquest métode es caracteritza principalment per ser

capac de diagnosticar I'estat d’'una persona en un temps no superior als 60 segons.

Per tal de facilitar la feina als equips médics que arriben amb posterioritat a la zona, molts
métodes de triatge, inclos START, lliga al voltant del coll 0 a les extremitats del pacient una
etiqueta on, seguint un esquema de colors, s’informa de la seva necessitat d’atenci6. A
I’'etiqueta, a més, s’hi emmagatzema informacié breu sobre l'estat del pacient. D’aquesta
manera es pot decidir, no sense implicacions morals, quins pacients seran atesos amb

prioritat.

2 CAPITOL 1. INTRODUCCIO

La tecnologia ha estat, generalment, absent en tots aquests escenaris. La inexistencia
d’infraestructures operatives no ha fet aconsellable la utilitzacié de dispositius informatics.
Afortunadament, la industria aposta per desenvolupar sistemes cada vegada més petits i
amb més autonomia; sistemes amb una poténcia i prestacions semblants a les d’un

ordinador de sobretaula.

D’entre totes les families d’aparells, la dels dispositius mobils (també coneguda amb el nom
de handheld devices) s’ha centrat en oferir productes altament portables, d’una mida
suficientment reduida com per poder ser transportats en una butxaca. Se solen caracteritzar
també per tenir una pantalla normalment tactil de dimensions considerables (en relaci6 amb

la resta del cos).

Aquests aparells mobils sén especialment utilitzats en entorns empresarials, donada la
capacitat d’integrar una gran quantitat d’informacié en un espai tan reduit. Pero creiem que

també tenen qualitats adequades per ser utilitzats en les situacions d’emergéncia descrites.

El procés de triatge, per la seva simplicitat, pot ser realitzat per equips amb una minima
preparaci6 meédica, com poden ser bombers, policies o militars. El personal amb més
coneixements generalment és destinat a I'atencié directa de les victimes un cop so6n

recollides de la zona del desastre.

Al mateix temps, pero, el sistema no és suficientment intuitiu com per ser utilitzat per
persones que desconeguin qué és el triatge. Si no es coneix l'algorisme a seguir per
assignar un o altre estat a partir dels signes vitals del pacient, no es podra ajudar activament

en el procés.

Per altra banda, en tot procés de triatge és habitual trobar casos on no s’ha assignat I'estat
més recomanable al pacient. Si es tria una prioritat major a la que el pacient necessita
(overtriage), es corre el risc de saturar els pocs recursos medics disponibles amb persones
que no requereixen atencié immediata. Per altra banda, assignar una prioritat menor a la
real (undertriage), és a dir, infravalorar la necessitat d’atencié del pacient, pot portar a un

empitjorament del seu estat i, ocasionalment, a la seva mort.

El sistema de triatge classic presenta també una limitacié important alhora de donar a
coneéixer quines son les zones amb més gent afectada. Als equips d’assisténcia médica,
capacos de recollir les victimes i portar-les a hospitals, els hi pot interessar anar a zones ja
analitzades on s’hi trobin els pacients més greus, perd no coneixeran aquestes dades a
priori perquée les etiquetes que contenen aquesta informacio es troben lligades fisicament a

les victimes.

Per

CAPITOL 1. INTRODUCCIO

totes aquestes raons, un sistema informatitzat que sigui capa¢ d’escollir I'estat del

pacient de forma semiautomatica i emmagatzemar-lo té la seva utilitat. La utilitzacié de

dispositius mobils en aquest entorn no entorpeix la tasca habitual de triatge; la seva

autonomia pot ser suficient per aguantar més d’'un dia de funcionament, i poden oferir

avantatges unics que justifiquin la seva implantacio.

Aquest és el punt de partida del nostre projecte.

1.1 Objectius

Disseny i implementacié d’un assistent per al protocol de triatge START, que pugui ser
utilitzat per personal sense coneixements de I'algorisme en si, sense que aixd suposi un
increment significatiu en el temps de triatge.

Disseny i implementacié d'una interficie interactiva que permeti la introduccid de les
dades de forma manual, per tot aquella gent que no desitgi utilitzar I'assistent.

Creaci6 d’una estructura capa¢ d’emmagatzemar totes les dades recollides de cada
pacient, és a dir, una versi6 virtual de les etiquetes de triatge tradicionals.

Juntament amb l'estat médic, les possibles dades personals (si es coneixen) o d’altres
anotacions que es creguin convenients, l'aplicaci6 haura d'anotar la localitzacié del
pacient a través d'un dispositiu GPS.

El sistema també haura de ser capa¢ de llegir un RFID col-locat al pacient i
d’emmagatzemar-lo juntament amb totes les dades recollides, per tal de facilitar les
tasques d'identificacié.

Integraci6 de tot el sistema desenvolupat en dispositius Nokia N810, tenint en compte
les limitacions i necessitats especifiques de plataformes mobils, molt especialment les
relacionades amb la usabilitat d’interficies grafiques.

Integracio del sistema en un entorn d’agents.

1.2 Metodologia

Per acomplir els objectius marcats, seguirem els segients passos:

1.

2.

Primer estudiarem les caracteristiques del Nokia N810. De forma general, haurem de
descobrir qué suposa dissenyar i implementar aplicacions per a dispositius mobils.
Perd també haurem d’analitzar les capacitats del nostre dispositiu, i trobar-ne les
seves limitacions.

Tot seguit haurem d’estudiar el metode START en detall, aixi com tota la terminologia

basica relacionada amb la medicina d’emergéncies.

4 CAPITOL 1. INTRODUCCIO

3. Un cop coneguem tota aquesta informacio, estarem en disposicié de realitzar un
analisi dels requeriments funcionals i no funcionals del nostre sistema.

4. A continuacié, haurem de dissenyar tots i cadascun dels elements en qué hagim
decidit dividir el projecte.

5. Implementarem la totalitat del sistema utilitzant les eines que tinguem disponibles en
el nostre dispositiu mobil, intentant seguir patrons de disseny adequats a la nostra
problematica.

6. Validarem la feina feta comprovant que tots els modduls del sistema compleixen els
requeriments exposats durant la fase d’analisi.

7. Finalment, valorarem la feina feta, determinarem les seves limitacions i establirem un

conjunt de linies futures de desenvolupament.

1.3 Estructura de la memoria

Tenint en compte la metodologia utilitzada, hem estructurat la memoria de la seguient forma:

- Capitol 2: Estat de I'art. En aquest capitol donarem coneixements necessaris per
poder entendre la resta de la memoria. Parlarem del triatge i el métode START, de la
tecnologia GPS i RFID i del concepte d’agent i plataforma.

- Capitol 3: Analisi. Farem un analisi detallat dels requeriments funcionals i no
funcionals del projecte. Mostrarem els principals moduls en qué es dividira el projecte i
realitzarem un estudi de viabilitat, oferint la planificacio inicial de la proposta.

- Capitol 4: Disseny i implementacié. En aquest capitol mostrarem els detalls del
disseny i implementacié de cadascun dels moduls descrits en I'anterior capitol.

- Capitol 5: Proves i integracié. Tal com el seu nom indica, en aquest capitol es
realitzaran proves del sistema per comprovar que compleix amb els requisits exposats.
Es provaran, per una banda, els diferents components de forma individual, per acabar
realitzant un test d’integracio6 de tot el sistema.

- Capitol 6: Conclusions i linies d’ampliacié. Amb els resultats a la ma, veurem si hem
acomplert els objectius del projecte plantejats en aquest capitol, i veurem linies
d’investigacioé futures.

- Annexes. Hi mostrarem informacié addicional relacionada amb el projecte, agrupada
de forma tematica.

CAPITOL 1. INTRODUCCIO

Capitol 2. Estat de I’art

Al llarg d’aquest capitol presentarem alguns conceptes necessaris per entendre el projecte:
que sbén i per qué s’utilitzen els métode de triatge, caracteristiques del protocol START, la

tecnologia GPS i RFID i el paradigma dels agents.

2.1 Triatge

El triatge és un metode de la medicina d’emergéncies i desastres per la seleccio i
classificacié dels pacients, basat en el seu estat aixi com en els recursos medics
disponibles. Ideat pel bar6 Dominique-Jean Larrey (1766-1842), metge cirurgia frances sota
les ordres de Napoled, el triatge té com a objectiu primordial maximitzar el nombre de vides

salvades.

Per aconseguir-ho, assigna a cada pacient un nivell de prioritat (mort, immediat, endarrerit o
menor) d’acord amb les seva necessitat d’atencid. Aixi, un nivell que indiqui que el pacient
pot ser demorat no vol dir que el seu diagnostic final no sigui greu, sind que a mesura que

passin les hores el seu estat no variara sensiblement.

Un cop classificats, els pacients seran atesos per les unitats médiques d’acord el nivell

assignat durant el triatge.

2.1.1 Triatge simple

El triatge en situacions de perdues humanes massives on els pacients han de romandre a la
zona afectada ('anomenada zona d’emergéncia) durant llargs periodes de temps, com per
exemple després d’un terratremol de magnitud elevada, difereix en gran mesura dels

metodes de triatge tradicional.

Les zones amb victimes s6n molt amplies, i les infraestructures existents no estan
operatives. Els recursos medics disponibles sén limitats, I'evacuacié no és possible i els

equips d’emergencia de la zona no solen rebre ajuda exterior de manera immediata.

7 CAPITOL 2. ESTAT DE L’ART

De tots els métodes de triatge existents, el triatge simple és el dissenyat especificament per
aquestes situacions. Es tracta, per tant, d’un procés que es realitza en la mateixa zona on es
troben les victimes. El seu objectiu és identificar aquells pacients que necessiten atencio

prioritaria i/o transport immediat cap a I’hospital de campanya més proper.

2.1.2 Etiquetes de triatge
Al finalitzar el procés de triatge, una etiqueta coneguda amb el nom triage tag és col-locada

en el cos del pacient on s’indica I'estat assignat. Per tal de poder identificar a simple vista

quin és I'estat d’una persona, les etiquetes acostumen a seguir un esquema de colors:

« Negre (mort): quan el pacient ha mort o no és possible fer res per salvar-li la vida
« Vermell (immediat): quan necessita atencié immediata
Groc (endarrerit): quan, malgrat les ferides, la seva atenci6 pot ser retardada
Verd (menor): quan té ferides lleus

A més de l'esquema de colors, a l'etiqueta de triatge se solen anotar dades com els signes
vitals detectats, el tractament preventiu aplicat, les dades personals del pacient (si sén

conegudes) i un esquema del cos amb les ferides detectades.

No totes les dades s6n complimentades al mateix temps i pel mateix personal; s'ha de veure
I'etiqueta com un petit informe médic d'urgéncia que es va ampliant a mesura que el pacient

rep l'atencié necessaria.

2.1.3 START

START (Simple Triage And Rapid Treatment) és una implementacié del métode de triatge
simple orientat a personal amb poca experiéncia médica (voluntaris, personal d’emergéncia,
bombers, policies, etc). Aquest és un fet determinant ja que permet I'aprofitament d’una bona

part dels recursos humans disponibles.

Va ser desenvolupat I'any 1983 per membres de I'hospital Hoah en col-laboracié amb el cos
de bombers de Newport Beach (California, EUA), i actualitzat I'any 1996 pel centre médic
Eisenhower [1]. En I'actualitat és un dels pocs métodes de triatge que ha demostrat la seva

eficacia en situacions reals d’emergéencia [2].

El protocol START recomana que, en una primera instancia, el personal faci una crida per tal
que totes les victimes que es vegin amb cor de moure’s es desplacin cap a una zona
determinada, o bé ajudin en les tasques de triatge. La gent que respon favorablement a la
crida és classificada amb etiquetes de color verd, és a dir, el menor grau de gravetat.

8 CAPITOL 2. ESTAT DE L’ART

A continuacié, s’avaluen les funcions respiratories, circulatories i neuronals de les victimes
restants. D’acord amb els resultats d’aquestes proves (que solen durar, en conjunt, menys
de 60 segons), els pacients son classificats en una de les tres categories restants. Més

endavant veurem en detall I'algorisme de decisié utilitzat pel protocol.

2.2 GPS

El Sistema de posicionament global, conegut amb el nom de GPS, és I'Unic sistema de
navegacio per satél'lit funcional a dia d'avui. Utilitzant una constel-laci6 de més de 24
satel-lits que orbiten a 20.200 quildmetres de la Terra, el sistema permet a qualsevol
receptor GPS conéixer la seva situacid, velocitat, direccié i hora. El sistema va ser
desenvolupat i installat, i actualment és operat, pel departament de Defensa dels Estats

Units.

Per tal de calcular aquestes dades, el receptor GPS ha de localitzar les emissions de com a

minim amb 4 satél-lits de la xarxa, dels quals rep uns senyals de navegacio [3] indicant:

- L’hora i el dia del sistema (obtingut del rellotge atdomic que tenen abord), aixi com I'estat
de funcionament del satel-lit.

+ Les efemeérides, informacio orbital que permet al receptor calcular la posici6 a I'espai del
satel-lit; tenen una validesa de no més de quatre hores.

- Les dades conegudes amb el nom d’almanac, formades per I'estat, I'orbita i codis
d’identificacié de tots els satel-lits GPS; al contrari que les efemeérides, aquestes dades

soOn valides durant uns 180 dies.

Sobre aquesta base, I'aparell sincronitza amb el seu rellotge intern i calcula el retard de les
senyals, és a dir, la distancia a cada satel-lit. Conegudes les distancies, es determina
facilment la propia posicio relativa respecte als satel-lits. Coneixent a més les coordenades
de cadascun d'ells, s'obtenen les coordenades reals del punt de mesurament. A la practica

també s'utilitzen altres dades per tal d'obtenir resultats més precisos.

La fiabilitat depén principalment del nombre de satél-lits descoberts i de I'existéncia d'efectes
atmosfeérics adversos que afectin a la velocitat de transmissio del senyal. Els GPS d'us comu
tenen un error de precisié de 15 metres, i si ens posem en contacte amb 9 satél-lits enlloc

dels 4 necessaris poden aconseguir precisions inferiors als 2,5 metres.

9 CAPITOL 2. ESTAT DE L’ART

2.3 RFID

La identificacié per radiofrequencia o RFID (de I'anglés Radio Frequency Identification) és un
sistema automatic d'identificacié d’objectes basat en I'emmagatzematge i recuperacié remot

de dades utilitzant les anomenades etiquetes o tags RFID.

El mode de funcionament dels sistemes RFID és simple. L'etiqueta RFID, adherida a un
objecte, transmet un identificador Unic utilitzant un senyal de radiofreqiiéncia. El senyal pot
ser captat a distancia per un lector RFID, el qual s’encarrega de llegir i transmetre aquesta

informacié a I'aplicaci6 especifica que utilitza RFID.

Les etiquetes estan formades per dos components. Per una banda, un circuit integrat per
emmagatzemar i processar informacio, aixi com per modular el senyal; conté un numero
d'identificacié Unic, i opcionalment, una memodria no volatii (EEPROM). Per altra banda,
I'etiqueta disposa d'una antena per rebre i transmetre els senyals.

2.3.1 Tipus d’etiquetes
Segons les necessitats d’alimentacié eléctrica, podem distingir tres families d’etiquetes

RFID: actives, semi-passives o passives.

Etiquetes passives
Els tags passius sén aquells que no necessiten alimentacié interna. Sén capacos d'alimentar
el circuit integrat a partir del corrent eléctric induit a l'antena per les senyals de radio

frequéncia que emet el lector RFID.

Es poden llegir a distancies que varien des d’'uns 10 mm fins a 6 m [4], depenent del disseny
i la mida de I'antena, aixi com de la potencia del lector. Les transmissions, pero, duren el

temps just per transmetre el nUmero d’identificacié.

Degut al seu disseny simple es poden crear a través d’un procés d’impressié que se sol

integrar en un adhesiu.

Etiquetes actives

A diferéncia de les etiquetes passives, les actives tenen la seva propia font d’alimentacié
autonoma, que utilitzen per donar corrent als circuits integrats i propagar la seva senyal cap
al lector. Conseqiientment, aquests tags sbn molt més fiables que els passius i poden ser
llegits a majors distancies (centenars de metres), pero la seva mida el seu preu soén també

molt superiors.

Alguns d’ells integren sensors (de temperatura, humitat, llum, etc) per observar I'entorn al

qual es troben adherit.

10 CAPITOL 2. ESTAT DE L’ART

Etiquetes semi-passives
Aquesta familia d’etiquetes incorporen també una font d’alimentacié propia, perd només la

utilitzen per alimentar el xip i no per transmetre el senyal. De cara al lector, doncs, es

comporta com una etiqueta passiva.

El xip intern, gracies a la seva alimentacié continuada, pot mantenir una maquina d’estats
funcionant. Aquest fet sol aprofitar-se per oferir respostes basades en l'estat anterior de

I’etiqueta i les dades transmeses pel lector.

Les etiquetes semi-passives ofereixen una fiabilitat semblant a les etiquetes actives i un

temps de vida superior.

2.4 Agents

Un agent és una abstraccidé software, una idea, de la mateixa manera que “objecte” és un
concepte abstracte de la programacié orientada a objectes. El terme agent engloba una
entitat complexa de software capa¢ d’actuar amb un cert grau d’autonomia i acomplir

tasques en nom d’un usuari o un altre programa.

La majoria d’autors coincideixen en els seglents aspectes alhora de definir el concepte
d’agent [5]:

- Persisténcia: el codi no és executat sota demanda, sin6 que ho fa de forma continuada i
decideix per si mateix quan ha de realitzar les seves activitats.

- Autonomia: els agents tenen la capacitat de seleccionar, prioritzar i coordinar les seves
tasques sense intervencié humana.

- Habilitat social: els agents so6n capacos d’iniciar altres components utilitzant
mecanismes de comunicacid, i poden ser capagos de cooperar en una accio
determinada.

- Reactivitat: els agents sén conscients de I'entorn on s’estan executant i tenen la
capacitat d’adaptar-s’hi.

Aixi, a diferéncia dels objectes que son definits en termes de métodes i atributs, un agent es
defineix en termes del seu comportament. Per tal d’executar-se, els agents necessiten
residir en un entorn anomenat plataforma o agéncia, que disposa d’eines basiques per tal

de permetre’n la seva existéncia i operativitat.

Una de les plataformes desenvolupades sota el paradigma dels agents és JADE (Java Agent
DEvelopment Framework), un framework totalment implementat en Java que proporciona

eines per l'execucid, migracié i comunicaci6é entre agents.

11 CAPITOL 2. ESTAT DE L’ART

8500 R europa.Vialact \DE - JA
File Actions Remote Platforms Help

oelde¥sd @@ O@ Fel JeE
v (1 AgentPlatforms name |addresses |state | owner |
v (1 "europa.Vialactea:1099/JADE" df@europa.Via... http://europa.Vi... active ~NONE
v E2Main-Container
RMA@europa.Vialactea:1099/JADE
ams@europa.Vialactea:1099/JADE
® df@europa.Vialactea:1099/JADE

JADE. Interficie grafica (agent RMA) de la plataforma.

12

CAPITOL 2. ESTAT DE L’ART

Capitol 3. Analisi

Al llarg d’aquest capitol donarem una visi6 general del projecte i dels seus requeriments
funcionals i no funcionals. Per una banda parlarem de I’estructura del projecte i, per I'altra,
analitzarem de forma individual cadascun dels moduls en qué hem dividit el nostre treball i
n’exposarem, si s’escau, els seus requeriments especifics. Finalment, veurem també un

estudi de la viabilitat del projecte.

3.1 Descripcio de la proposta

Volem crear un sistema que implementi el protocol START en un dispositiu portatil, que

inclogui a més la localitzacié GPS del pacient i un identificador unic en forma de RFID.

Les dades recollides durant el procés les emmagatzemarem en un agent, que romandra en
el dispositiu portatil per poder ser processat a posteriori (ja que no és objectiu del nostre
projecte entrar en aquesta fase).

3.1.1 Requeriments funcionals
Sense entrar en detalls, aquests son els requeriments funcionals que demanem al nostre

projecte:

- S’haura de crear una interficie grafica que permeti als usuaris dels equips d’emergencia
completar un procés de triatge seguint el métode START sense necessitat de coneixer
el procediment en si.

- També haura de permetre completar un procés de triatge sense I'ajuda del protocol
START (seleccionant I'estat del pacient de forma manual).

« En qualsevol dels casos anteriors, s’hauran de poder complimentar les dades recollides
amb d’altres que el personal medic consideri rellevants.

- El sistema ha de ser capag¢ de recuperar la posici6 GPS actual i incloure-la amb les

dades del pacient.

13

14 CAPITOL 3. ANALISI

- També ha de poder llegir el numero d’identificacido d’etiquetes RFID adherides als
pacients.

- Per cada pacient classificat, s’haura de crear un agent amb tota la informaci6 recollida.

« S’haura de poder cancel-lar el procés de triatge que s’esta duent a terme.

« Sera necessari que el personal medic s’identifiqui abans de poder utilitzar I'aplicacid, i
que aquesta identificacié s’inclogui en totes les dades recollides.

- Es podran personalitzar alguns aspectes del comportament de I’aplicacio, com l'idioma

de la interficie grafica o el metode de triatge a utilitzar.

3.1.2 Requeriments no funcionals

- El sistema sera utilitzat pel personal d’emergéncies: se suposen uns coneixements
minims sobre el triatge, aixi que el temps d’aprenentatge de I'aplicacié haura de ser de
pocs minuts.

- S’hauran de prendre decisions de forma automatica (sense la intervencié de l'usuari)
sempre que sigui possible. La tasca de l'usuari haura de centrar-se en el procés de
triatge.

- L’aplicacié encarregada de realitzar el procés START haura de ser accessible de forma
tactil amb els dits. La resta de la interficie sera dissenyada també amb aquest objectiu,
perd no sera obligatori que el compleixi.

- El triatge d’'un pacient seguint el métode START s’ha de poder realitzar en menys de 60
segons.

« S’hauran de minimitzar els recursos utilitzats pel sistema, donat que haurem de treballar
en aparells portatils amb molta menys poténcia que un ordinador de sobretaula.

- El sistema s’ha de poder utilitzar fins i tot quan no existeixin dades del GPS ni de
I'etiqueta RFID.

- Haurem de treballar amb dispositius mobils Nokia N810, pero la interficie grafica haura
de ser portable a altres dispositius.

- El sistema s’haura de poder integrar en una plataforma d’agents JADE.

« El lector d’RFID utilitzat sera I'lDBlue de la companyia Cathexis/Baracoda.

3.2 Triatge

3.2.1 L’algorisme START
Com hem comentat en l'anterior tema, el protocol START defineix que totes aquelles
persones que puguin caminar i desplacar-se cap a una zona determinada seran etiquetades

amb el color verd, indicant que no necessiten atencié immediata.

15 CAPITOL 3. ANALISI

L’estat de les persones que no han respos a la crida dels membres de I'equip d’emergéencia
és avaluat segons la resposta a una serie de proves. En una primera instancia, es

comproven les funcions respiratories:

1. Si la victima no respira, el personal neteja les vies respiratories i aplica les maniobres
necessaries per aconseguir que la victima torni a respirar.

1.1. Si els intents fracassen, es pressuposa que el pacient és mort i, per tant, és
classificat amb I'etiqueta de color negre.

1.2. Si s’aconsegueix reanimar la funcié respiratoria del pacient, la victima és
etiquetada de color vermell indicant la seva necessitat d’atencié immediata.

2. Sila victima respira, aleshores es mesura amb quina freqiéncia ho fa.

2.1. Si aquest valor és superior a les 30 respiracions per minut, la victima és
marcada amb l'etiqueta d’atencié immediata de color vermell ja que aquest és
un dels principals senyals de shock.

2.2. Si la frequencia és inferior a 30 inspiracions (0 expiracions) per minut,
aleshores es passa a mesurar el pols i les funcions circulatories.

2.2.1. Sino es troba el pols, es mesure el seu capillary refill, és a dir, el temps
que tarda la sang a emplenar vasos capil-lars buits. Aquesta valor es
mesura calculant els segons que tarda la punta del dit a recuperar el
color després de ser pressionat pel personal de triatge.

2.2.1.1. Si el temps és superior als dos segons, la victima necessita atencié
immediata i és marcada amb I'etiqueta vermella.

2.2.1.2. En cas contrari, es procedeix a avaluar I'’estat mental de la victima
tal com expliquem en el seglient punt.

2.2.2. Sies troba el pols, aleshores es mesura I'estat mental del pacient.

2.2.2.1. Si és capac de seguir instruccions senzilles, el pacient és marcat
amb I'etiqueta de color groc indicant que la seva atencié pot ser
aplacada unes hores.

2.2.2.2. Si no és capag¢ de seguir-les, aleshores el vermell és el color de

I’etiqueta escollida per indicar la necessitat d’atencié immediata.

La versio inicial del protocol només tenia en compte I'estat mental, la freqiéncia de
respiracié i el test capil-lar del pacient. Una de les modificacions plantejades I'any 1996 [6],
inclosa en aquesta versio, va ser mesurar també el pols. Es un canvi eficac en situacions de

baixes temperatures, on el resultat del test capil-lar no és concloent.

16 CAPITOL 3. ANALISI

La nostra versié del protocol START haura d’implementar I'algorisme de triatge exactament
com I'hem descrit en aquest apartat. Assignara l'estat del pacient de forma automatica
segons les dades entrades per l'usuari. No hi haura lloc per les situacions d’undertriage o

overtriage descrites en la introduccio.

3.2.2 Etiquetes de triatge
Ja que no existeix cap normativa al respecte, els camps i la forma de les etiquetes de triatge

classiques varien de fabricant en fabricant. Aixi i tot, la majoria inclouen les seglents

seccions:

- Els quatre estats en els quals es pot classificar el pacient
« Informacié sobre els signes vitals detectats

- Pols, pressi6 sanguinia, estat mental, nUmero d’inspiracions per minut, etc)
« Informacié personal del pacient

- Sexe, nom, adreca, etc

- Situacio de les ferides del pacient (generalment dibuixades sobre un esquema)

A més a més, certs camps de les etiquetes estan preparades ser omplerts varies vegades,

indicant aixi I'evoluci6 del pacient al llarg del temps.

Totes aquestes caracteristiques les volem mantenir i millorar amb el nostre sistema. No
només oferirem els camps més habituals descrits, sind que a més els relacionarem amb la
persona que els ha introduit al sistema. Sera possible entrar una mateixa dada tantes
vegades com es vulgui, i tots els valors proporcionats seran guardats juntament amb I'hora

en queé van ser introduits.

3.3 Components software

3.3.1 Interficies grafiques per dispositius mobils

Usabilitat

Crear una interficie és un repte per qualsevol enginyer. Es tracta d’'un dels molts
components que formen un projecte, perd és la principal caracteristica que sera avaluada
pels usuaris. La nostra no és una aplicacié comercial, pero la usabilitat sera igualment un fet
determinant, ja qué es traduira directament en la velocitat del procés de triatge i, per tant, en

el niumero de persones que podran ser ateses.

17 CAPITOL 3. ANALISI

En primer lloc hem de tenir present que interactuar amb una interficie utilitzant els dits és
molt diferent de fer-ho a través d’un mouse, o fins i tot a través d’un llapis. La interficie ha de
continuar essent accessible, el que suposa que els controls hauran de tenir una certa mida

per facilitar-ne la seva selecci6. Per norma general, aquesta mida minima és d’1cm2 [7].

En segon lloc, hem de recordar que estem treballant amb una pantalla de 800 per 480
pixels, menor a la d’un ordinador personal. Es un error comu creure que reduir la mida de la
interficie és la millor solucié. Tot al contrari, hem de sintetitzar el que volem mostrar a

'usuari per pantalla i, com hem comentat, augmentar la seva mida perque sigui accessible.

Finalment, hem de tenir present que I’'N810 no disposa de cap sistema de reconeixement
d’escriptura o de veu. L’Unica forma d’escriure és utilitzant el teclat QWERTY de l'aparell,
perd és una feina feixuga degut a la mida de les tecles. Per tant, hem d’intentar reduir
’entrada de text.

Portabilitat

Ja que el nostre sistema s’ha d’integrar en una plataforma d’agents JADE, desenvolupada
completament en Java, creiem que €s una bona idea realitzar la interficie grafica en aquest

mateix llenguatge.

Aixo0 ens ofereix els seglents avantatges:

Poder accedir de forma nadiua a JADE, sense la necessitat de cap middleware

Poder desenvolupar i executar aquesta part del projecte en qualsevol sistema que

suporti Java, no exclusivament en el dispositiu mobil

Produir un software portable de forma implicita

Facilitar el procés de desenvolupament gracies a les caracteristiques del llenguatge

(gesti6é de memoria automatica, gran quantitat d’APIs a la nostra disposicid, etc)

3.3.2 Agents en aplicacions mediques

Un dels requeriments no funcionals enumerats al comengcament d’aquest capitol ha estat la
necessitat d’integrar el nostre sistema en una plataforma JADE. El nostre projecte podria ser
dissenyat sense utilitzar agents, perd hem volgut preparar-lo per poder funcionar en aquest

entorn.

18 CAPITOL 3. ANALISI

Revistes de referéncia en l'area com IEEE: Intelligent Systems han dedicat un numero
complet [8] a parlar de les aplicacions mediques que s’estan desenvolupant utilitzant la
tecnologia d’agents. Els avantatges son clars: poder dotar els agents amb un cert grau
d’intel-ligencia permet prendre decisions en temps real que ajudin al diagnostic o al

tractament de pacients de forma automatitzada.

Quin paper tindran els agents en el nostre sistema? Per una banda, seran els encarregats
d'emmagatzemar els resultats de tot el procés, és a dir, les dades resultants de diagnosticar
cada pacient. Un cop creats, els agents romandran en la plataforma a I'espera de rebre
instruccions. No implementarem cap comportament: aquest €s un punt que deixem obert a

linies futures d’investigacio.

Per altra banda, la nostra interficie també estara continguda dins d’'un sol agent; d’aquesta
manera, podrem accedir facilment a JADE per anar llengant els agents d’emmagatzematge

necessaris.

3.4 Components hardware

3.4.1 Dispositiu mobil: I’'N810

Consideracions prévies

Tal com detallaven a la introducci6 del capitol, un dels requeriments del nostre projecte és el
d’utilitzar aparells Nokia N810 com a dispositius mobils. Aquesta decisi6 ha estat presa pel
grup SeNDA, a les ordres del qual hem desenvolupat aquest treball. De totes maneres,

creiem convenient fer una descripcié de les necessitats que hauria de complir qualsevol

aparell per ser considerat una opci6 viable.

El nostre projecte planteja la possibilitat d’utilitzar dispositius de ma en aplicacions
meédiques, i busca demostrar la viabilitat d’aquesta idea implementant una interficie del

protocol START pel triatge de pacients en situacions d’emergéncies mediques.

Volem, a més, millorar el procés de triatge incorporant una mesura de la posicid GPS de
cada pacient, i per fer-ho necessitem un receptor GPS. També necessitem un lector
d’etiquetes RFID per poder identificar de forma Unica cada pacient, de cara a la nostra
aplicacio.

19 CAPITOL 3. ANALISI

Els requisits pel nostre dispositiu mobil es perfilen d’aquesta manera: ha de complir les
qualitats necessaries per poder ser transportat i utilitzat facilment per una sola persona,
incorporar un receptor de GPS i alguna interficie amb qué interactuar amb un lector RFID.
La pantalla ha de ser suficientment gran com per poder treballar-hi amb les mans, sense la
necessitat d’utilitzar llapis, perqué aquest és un element que es podria perdre facilment en

una situacio6 real d’emergéncia.

A més a més, de cara a facilitar la nostra feina de desenvolupament, seria desitjable que
utilitzés alguna distribucié de Linux com a sistema operatiu, tant per I'aspecte monetari com
per la gran quantitat de programari lliure que existeix per aquesta plataforma i que podriem

utilitzar en el nostre benefici.

Descripcié general de I’'aparell
El Nokia N810 ha estat el model escollit amb el qual haurem de realitzar la totalitat del

nostre projecte. Compleix sobre el paper, com veurem a continuacio, els requisits plantejats

en l'anterior punt.

N810. Visio general del dispositiu amb el teclat desplegat.

L'N810 és un dispositiu de ma de Nokia per xarxes sense fils. Malgrat la relacié entre la
companyia i els terminals de telefonia mobils, aquests aparell no és un teléfon. El dispositiu
esta dissenyat principalment per ser utilitzat com un terminal de connexi6 a Internet, i ho pot
fer utilitzant la tarja Wi-Fi integrada o mitjangant una connexi6é Bluetooth amb un altre

dispositiu.

20 CAPITOL 3. ANALISI

El sistema operatiu de I'aparell s'anomena Internet Tablet OS 2008 (0S2008), i esta basat
en la plataforma de desenvolupament maemo 4.0 (que, al seu torn, esta basada en Debian).

Internament, és molt semblant a aquesta distribucié de Linux.

Caracteristiques técniques
» Mida
+ 128 x 72 x 14 mm
« 226 g
Pantalla
« 800 x 480 pixels a 65.536 colors (16 bits)

« Tactil

Processador
. Texas Instruments OMAP 2420 a 400Mhz

« Memoria
- 128 MB RAM DDR
- 256 MB sistema arxius
- 2 GB de memoria flash interna (/media/mmc2)
» Ranura d’expansié miniSD, compatible també amb microSD
+ Energia
+ 4 hores us continuat (navegacio)
« 14 dies en repos
« Hardware integrat
« GPS chipset Texas Instruments 5300
« Microfon i altaveus
- Camera VGA
« Sensor de llum ambiental
WLAN (IEEE 802.11b/g) STLC4550
« Bluetooth 2.0 EDR
Connector Micro USB 2.0 High Speed
- Teclat QWERTY

maemo

maemo és una plataforma de desenvolupament construida amb components de software
lliure i basada en Debian, una de les distribucions de Linux més estables i conegudes. La
plataforma va ser presentada I'any 2005 per Nokia, juntament amb el primer dispositiu que
I'utilitzava, I'Internet Tablet 770. El nom comercial del sistema operatiu d'aquestes unitats es

va anomenar Nokia Internet Tablet OS 2006.

21 CAPITOL 3. ANALISI

Nokia, amb l'ajuda de la comunitat Open Source, ha continuat desenvolupant noves versions
de maemo, i les ha anat incorporant en els dispositius N800 i N810, amb el nom d'Internet
Tablet OS 2007 i 2008 respectivament.

Versioé Codename | Nokia OS Dispositius compatibles
maemo 2.2 Gregale 0S2006 Nokia N770
maemo 3.X Bora 0S2007 Nokia N800
maemo 4.0 Chinook 0S2008 Nokia N810 i N800 (actualitzable)
maemo 4.1 Diablo N/A N/A

Versions de la plataforma maemo. La versio 4.1 encara es troba en desenvolupament.

Arquitectura
El kernel de maemo és una versio de la série 2.6 del kernel de Linux. Tots els dispositius

sobre els quals corre maemo disposen d'un microprocessador de la serie OMAP de Texas
Instrument, format per un processador ARM de proposit general i un DSP (Processador

Digital del Senyal).

El software a l'espai d'usuari linka amb la llibreria GNU C estandard (i no amb la llibreria
uClib d'altres dispositius mobils). D'aquesta manera, maemo intenta disminuir el cost de

portar aplicacions d'altres sistemes Linux.

El sistema de gesti6 de paquets, la jerarquia del sistema de fitxers i d'altres politiques de
disseny sdn molt semblants a les d'una distribucié Debian. D'aquesta manera, per exemple,
podem gestionar la instal-lacié de software directament des del terminal amb la comanda

apt-get.

L’entorn grafic de maemo s’anomena Hildon, i es pot considerar una versid per dispositius
portatils de GNOME. Aquest, al seu torn, esta basat en dues llibreries: GTK+, per totes
aquelles funcions purament grafiques, i la llibreria de propodsit general GLib (desenvolupada
pel mateix equip). A baix nivell, GTK+ fa Us de I’entorn de finestres XOrg i Xephyr.

2 CAPITOL 3. ANALISI

N

Applications
Fonts Sounds lcons
Connectivity System UI Search Text Input MIME Types
Home Applets Control Panel Task Navigator Status Bar
Backup Installer Alarm Help Launcher

Sapwood Hildon Widgets Hildon File Ul HTML Widget

Samba GPS Obex ConiC UPnP JPEG PNG TIFF SVG Matchbox
D-BUS HAL SQLite curl HTTP Clipboard
SSL System SW Cert. mgnt libosso X
Libstd C++ Compression dpka apt Freetype Fontconfig
Sysvinit Base Files Busybox GNU C Library Core Libs Core Utils Core Daemons
BlueZ Power Management WLAN security ALSA Video4Linux
Bootloader Linux kernel including JFFS2 , TCP/IP InitFS including uClibc dsme

Arquitectura de maemo. Llistat exhaustiu dels components que formen el sistema [9]

23 CAPITOL 3. ANALISI

Desenvolupant per maemo 4.0 ‘Chinook’
Com hem vist, a molts nivells maemo és una plataforma idéntica a qualsevol distribucié

Debian. Aixi i tot, existeixen una serie de components que han estat desenvolupats per
Nokia i que no se n’ha fet public el codi font. Alguns exemple son el sistema de control del

GPS, totes les funcions de connexié WiFi o la interficie grafica Hildon.

Per tal de poder aprofitar aquestes funcionalitats, maemo ofereix una série d’APIls més o
menys documentades [10]. Les APIs oficials de estan escrites en llenguatge C estandard, i
disposen de bindings per C++ i Python.

Malgrat és possible instal-lar un compilador (per exemple, GCC) en el nostre N810, les

limitacions de poténcia i memoria no fan aconsellable aquesta técnica.

Aixi, per desenvolupar aplicacions per maemo fa falta un sistema de compilacié creuada que
ens permeti enllagar codi amb les llibreries de la plataforma i compilar-lo a llenguatge
assemblador ARM, independentment de l'arquitectura nadiua del sistema on realitzem el
desenvolupament (x86, PowerPC...). Amb aquest fi, maemo utilitza el joc d'eines que ofereix

Scratchbox, un projecte open source dissenyat per resoldre aquest problema.

Scratchbox inclou un compilador creuat basat en GCC, un conjunt d'scripts per crear un
sistema de fitxers virtual i instal-lar-hi el sistema base de maemo (necessari tant pels
headers com per les llibreries amb les quals s'han d'enllagar els binaris) i un emulador
(QEMU) per poder executar les nostres aplicacions sense haver de disposar de cap aparell

extern. Scratchbox només funciona sobre Linux i sobre plataformes x86.

Java

Per tal de poder executar software Java en un sistema, fa falta una JVM (veure Annex 1).
Malauradament, ni Sun ni Nokia ofereixen una maquina virtual per I'N810 (ni per cap altra
sistema que utilitzi maemo). Es un fet excepcional, donada la gran acceptaci6 d’aquesta

tecnologia en dispositius mobils.

Per sort, existeixen alternatives (no oficials) de codi lliure que haurem d’analitzar per trobar

la que millor s’adapti a les nostres necessitats:

Llibreries de classe estandard (necessari per poder executar Jade amb garanties)

Alguna API grafica (per la nostra interficie)

Suport per JNI (com veurem més endavant sera necessari per accedir al GPS)

Velocitat d’execuci6 acceptable

24 CAPITOL 3. ANALISI

Seguint aquests criteris, hem avaluat les solucions disponibles i hem obtingut els seglents

resultats:

JVM JNI GUI Velocitat
cacaovm Si Si (SWT) Moderada
PhoneME No No Rapida

JamVM Parcial No Lenta

Kaffe Si Si (AWT) Lenta

Les dues uniques implementacions que suporten JNI i ofereixen una API grafica sén Kaffe i
cacaovm. La primera, per0, ’hem de descartar perqué un cop instal-lada ocupa més de 100

MB, i ens deixa gairebé sense espai a la unitat arrel (que recordem, és de 256 MB) .

Per tant, cacaovm és la nostra Unica opci6. Com a caracteristiques generals, es tracta d’una
implementacié6 de JVM que ofereix compilacié Just-In-Time (JIT) per accelerar I'execucid
dels programes, i utilitza la llibreria de classes de GNU coneguda amb el nom de GNU

classpath.

Podriem instal-lar cacaovm a partir de les fonts, perd existeix una versié compilada que
inclou totes les dependencies gracies a Jalimo. El projecte Jalimo té com a objectiu proveir a
dispositius mobils basats en Linux un entorn Java estable i complet; les instruccions

d’instal-lacié d’aquest i d’altres paquets poden ser consultades a ’Annex 2.

3.4.2 Modul GPS
L’N810 disposa d’un receptor intern de GPS que utilitzarem per aconseguir les coordenades

del pacient en el moment del diagnostic (latitud i longitud). Aquestes dades poden ser de
gran ajuda pels equips d’emergencia, ja que els permetria coneixer a priori no només I'estat

de les victimes, sin6 la distribucio de les mateixes sobre el terreny.

Funcionament
maemo utilitza gpsd, un daemon que llegeix les dades provinents del receptor GPS (en el

nostres cas, a través del port série /dev/pgps), els hi déna format i les distribueix a totes

aquelles aplicacions que les necessiten utilitzant sockets TCP/IP.

En un sistema linux tradicional, generalment es controla el funcionament del GPS utilitzant
Unicament gpsd. En maemo, perd, aixd no és possible perqué no podem iniciar directament

aquesta aplicacio.

http://www.kaffe.org/
http://www.kaffe.org/
http://www.cacaovm.org/
http://www.cacaovm.org/
http://www.gnu.org/software/classpath/
http://www.gnu.org/software/classpath/
http://www.gnu.org/software/classpath/
http://www.gnu.org/software/classpath/
http://gpsd.berlios.de/
http://gpsd.berlios.de/

25 CAPITOL 3. ANALISI

El motiu, és que el port série a través del qual ha de llegir les dades no esta sempre
disponible. Aquest port és creat per un middleware, propietari de Nokia, anomenat gpsdriver.
Es I'encarregat d’iniciar el xip intern GPS, carregar-hi I'almanac més recent (des de l'arxiu /
var/1lib/gps/nvd_data) per agilitzar el procés de sincronitzacid, crear el port série |,
finalment, arrencar el propi gpsd. També inicia un petit applet al mena del sistema (/usr/

libexec/navicore-gpsd-helper) perqué 'usuari tingui coneixement que el GPS esta enceés.

A més a més, gpsdriver manté un llistat de les aplicacions que han demanat accés al GPS, i
quan no n’hi ha cap executant-se, atura gpsd, I'applet i el propi receptor per tal d’estalviar

energia.

Amb tot, el temps de sincronitzacié amb el sistema GPS varia de 3 a 5 minuts en condicions
optimes. Es un temps molt elevat comparat amb altres receptors GPS del mercat, que solen
sincronitzar en menys d’un minut. La causa sembla ser un bug que se solucionara amb la

propera actualitzacié de maemo [11].

maemo, per tant, es veu obligat a oferir la seva propia APl per accedir al navegador GPS:
Liblocation. Es tracta d’una llibreria orientada a objectes, escrita en C utilitzant GLib, que
posa a disposicid dels programadors métodes per iniciar, aturar i recuperar dades del

navegador GPS.

Accés al GPS
Ja que I'lnica forma viable de controlar el GPS en I'N810 és utilitzant I’API de localitzacié
escrita en C, hem d’estudiar com accedir-hi des de la nostra aplicacié Java.

Existeixen dues solucions al nostre problema: programar una daemon en C que

emmagatzemi les dades a disc i llegir-les des de Java, o bé utilitzar JNI (veure Annex 1).

Hem escollit 'opcidé de JNI perqué ens permetra tenir un control real sobre el receptor GPS i

consumira menys recursos que la primera opcié (no haura d’accedir a disc continuament).

3.4.3 Modul RFID

Consideracions prévies

Tal com detallavem en el llistat de requeriments no funcionals, haurem de treballar amb un
lector (i gravador) RFID anomenat IDBlue. La decisio d’utilitzar aquest model ha estat presa
novament pel grup SeNDA, perd en aquest cas no existia cap altre dispositiu en el mercat
que complis les necessitats del nostre projecte: I'IDBlue és I'inic lector d’'RFID de ma amb

una interficie Bluetooth.

26 CAPITOL 3. ANALISI

Necessitavem un aparell que es pogués comunicar amb I'N810 sense necessitat de cable
(no disposa de cap interficie on hi podem connectar fisicament periférics) i que a més
tingués unes dimensions i pes adequats per poder ser portat a sobre, idealment, penjat al
voltant del coll o en una bandolera (accessible en tot moment, perque s’utilitzara amb cada

pacient).
IDBlue

IDBlue és un dispositiu lector i gravador d'etiquetes RFID amb interficie Bluetooth. Presenta
un disseny portable en forma de llapis que permet ser utilitzat com a punter en pantalles
tactils (forca util en el nostre cas). Presenta un sol boto, la utilitat del qual pot ser configurada

a través del seu driver.

>

A

IDBlue ™. Fotografia del lector i gravador RFID

IDBlue funciona sobre una plataforma RISC de 8 bits amb una frequéncia de rellotge de
8Mhz [12]. Disposa d'una memoria flash interna de 128 KB que permet emmagatzemar fins
a 1000 tag ids. Disposa també d'una bateria NimH (recarregable) amb una autonomia de 4
hores d'Us continuat. Al cap de dos minuts de no ser utilitzat s’apaga automaticament, fet

que ajuda a allargar la vida util de la bateria.

L’IDBlue és un dispositiu Bluetooth 1.1 de classe 2, amb un rang maxim tedric de 15 metres.
Opera a frequencies d'entre 2.40 i 2.48 Ghz. Al seu torn, el lector RFID opera a una
frequéncia de 13.56 Mhz, amb un rang maxim teoric de 4 cm. A la practica, aquest rang
disminueix sensiblement depenent de l'etiqueta RFID utilitzada, arribant a ser necessari

realitzar un contacte fisic entre I'aparell i I'RFID.

Es capa¢ de llegir etiquetes ISO 15693-2, 15693-3, Tag-it™ HF/HFI i Philips I-Code SL. En
el nostre cas, utilitzarem etiquetes passives Tag-it™, de Texas Instruments, ja que no

requereixen alimentacio i tenen un rang de lectura acceptable.

http://www.ti.com/rfid/docs/manuals/pdfSpecs/HF-IOverallProdBulletin.pdf
http://www.ti.com/rfid/docs/manuals/pdfSpecs/HF-IOverallProdBulletin.pdf

27 CAPITOL 3. ANALISI

Connexié
Oficialment, el controlador de I'lDBlue només suporta plataformes MS Windows [12]. Gracies

al datasheet de I'aparell [13], perd, sabem que implementa el profile Bluetooth SPP (Serial
Port Profile) i que utilitza un protocol serie RFCOMM. Existeix, per tant, una possibilitat de

connectar-nos-hi de la segtient manera:

1. Utilitzar BlueZ (I'stack Bluetooth de Linux que també utilitza maemo) per establir una
connexi6 série des de I’'N810 cap a I'IDBLue.
2. Enviar les comandes necessaries, disponibles en el datasheet, a través de la

connexio serie.

Per realitzar el primer pas, és possible establir una connexié de forma manual utilitzant les
comandes “hcitool scan” i “rfcomm connect <MAC> <channel>”. Perd aquesta solucié no és
viable perque, obviament, necessitem realitzar aquesta operacié de forma automatica des

de la nostra aplicacié en Java.

Malauradament, ens tornem a trobar en una situaci6 similar al cas del GPS: la versio
estandard de Java no suporta per defecte cap tipus de comunicaci6 amb dispositius
Bluetooth, perque sén funcionalitats que depenen completament del host on s'executi la
maquina virtual i, per tant, necessitem d'una implementacié especifica (generalment a través
de JNI).

Les versions de Java 2 Mobile Edition, pel contrari, solen oferir aquesta funcionalitat perque
implementen l'especificacié JSR-82 [14], una extensié de Java per oferir accés geneéric a
dispositius Bluetooth. Perd la llibreria de classes que utilitzem, GNU Classpath, esta basada
en les especificacions de Java 2 SE i no I'implementa.

La soluci6 trobada ha estat AvetanaBT, una implementacié per Linux (basada en BlueZ) i
Java 2 SE del JSR-82. Es troba en fase de desenvolupament, pero esta ben documentada,
és gratuita i proporciona exactament el que necessitem. L’haurem de compilar manualment

utilitzant I'SDK de maemo.

Un cop establerta la connexid, haurem de realitzar el segon i Gltim pas: enviar les comandes
necessaries per llegir els RFID. Aixd ho aconseguirem utilitzant jIDBlue, una versié per Java
2 SE (i ME) del controlador de Cathexis i Baracoda. Es troba en un estat molt inicial de
desenvolupament, no s’ha actualitzat des de I'any 2005 i no suporta totes les funcionalitats
del controlador original per Windows, pero gracies a que €s un projecte de codi obert

podrem implementar tot alld que ens faci falta.

http://sourceforge.net/projects/avetanabt/
http://sourceforge.net/projects/avetanabt/
http://auriga.wearlab.de/projects/jidblue/
http://auriga.wearlab.de/projects/jidblue/

28 CAPITOL 3. ANALISI

3.5 Estudi de viabilitat

3.5.1 Viabilitat tecnica

Els coneixements técnics necessaris pel desenvolupament del projecte inclouen la
programacié en Java i en C/C++, aixi com els paradigmes basics de la programacio
orientada a objectes i les técniques d’enginyeria del software. Tots ells han estat coberts per

la formaci6 rebuda durant la carrera.

L'equip necessari inclou estacions de treball x86, dispositius mobils (Nokia N810, on
s'instal-lara i es provara l'aplicacio) i lectors RFID Bluetooth. Tot 'equip ha estat proporcionat

pel departament.

3.5.2 Viabilitat operativa

El personal d’emergéncies, usuari final del sistema, hauria de realitzar la tasca habitual de
triatge. Substituir per complet les etiquetes de triatge pel nostre sistema seria viable en un
panorama on tot el personal disposés de l'equip necessari per recuperar la informacio

recollida en temps real.

Aquesta situacid, pero, és una utopia. Els recursos davant d’'una emergéncia medica de
grans dimensions sén limitats, els contratemps imprevisibles, i de ben segur que la nostra
solucié no és perfecte. Utilitzar-la de forma Unica és arriscar les vides dels pacients en cas
que, per exemple, I'aplicacio fallés o algun dispositiu hardware deixés de funcionar (bateria,

accidents, etc).

Per tant, haurem de conviure amb el métode de triatge tradicional. Proposem que les dades
siguin recollides a través de la nostra interficie (i, per tant, emmagatzemades en els
dispositius), perd també siguin copiades a ma en les etiquetes classiques (si no en la

totalitat, només les parts més rellevants).

L’Gnica modificaci6é sera I's d’'una etiqueta RFID per tal de poder identificar el pacient en el
nostre sistema. L’usuari, per tant, haura de llegir aquesta etiqueta abans d’abandonar el

pacient. Des de la nostra interficie recordarem que aquest pas ha de ser realitzat.

3.5.3 Viabilitat economica
Tot el software utilitzat és gratuit (i, en gran part, també de codi lliure) i no suposa cap
despesa addicional. Fara falta adquirir els ja esmentats dispositius Nokia N810 i els lectors

RFID; esta previst fer-ho amb el pressupost del departament.

No és objectiu d’aquest projecte, pero, fer un estudi del cost d'implantacié de la nostra

solucié en situacions reals.

29 CAPITOL 3. ANALISI

3.5.4 Viabilitat legal
En el si del projecte no hem de tenir en compte qlestions legals. Les dades dels pacients

sbn recollides i emmagatzemades en un dispositiu que no és accessibles des de fora. A
més, part d’aquestes dades serien andnimes (la informacié personal del pacient no sempre

sol anotar-se, ja sigui perquée és desconeguda o perque és irrellevant).

3.5.5 Planificacié inicial de la proposta
Oferim una versi6 preliminar del diagrama de Gantt en relacié al qual s'ha estructurat el

projecte.

Tarea or. 2008 marg 2008 abr. 2008 maig 2008
e 1) Analisi
e 2) Disseny
e 3) Desenvolupament (

e 4) Aplicacio
e 5) Redaccio Memaria

e 6) Preparacio presentacio

La data d'inici del projecte ha estat fixada el 18 de febrer, una setmana després de la
finalitzacié dels examens del primer semestre. Idealment, el projecte finalitzara I'Gltima

setmana de maig.

L'entrega de la memoria esta prevista pel dia 16 de juny. La data de la presentaci6 sera el

dia 7 de juliol.

30

CAPITOL 3. ANALISI

Capitol 4. Disseny i
implementacio

En aquest capitol comengarem realitzant una descripcié global del sistema, identificant els
moduls principals en qué I'hem dividit. Per cada components del projecte, anirem veient
quines solucions s’han proposat per cobrir les necessitats extretes en la fase de disseny, aixi

com els detalls de la seva implementacio.

4.1 Disseny global de I'aplicacié

4.1.1 Components
En el capitol d’analisi hem pogut identificar els components basics que formaran part de la

nostra aplicacio i el funcionament que en requerim:

- Agent interficie grafica: 'encarregat d’oferir al personal d’emergéncies una interficie
del protocol START que permeti realitzar la seva tasca de triatge sense tenir
coneixement previ del métode de triatge en si.

- Modul lector RFID: I'encarregat de llegir I'identificador Unic de I'RFID incorporat en
cada etiqueta dels pacients.

- Modul de localitzacié GPS: I'encarregat d’iniciar el receptor GPS de I'N810 i
proporcionar-nos les dades de localitzacié tant aviat com estiguin disponibles.

- Agents d’emmagatzematge: encarregats d’emmagatzemar les dades produides per la
interficie, l'identificador Unic RFID i la posici6 GPS del pacient en el moment de la
diagnosi.

També hem decidit que Java sera el llenguatge utilitzat per realitzar el desenvolupament de
tots ells, a excepci6 del modul de localitzaci6 GPS que sera implementat parcialment en C

per tal de interactuar utilitzant el framework JNI amb I’API de localitzacié de maemo.

Amb aquesta distribucié en ment, hem decidit organitzar I'aplicacio en diferents paquets:

31

32 CAPITOL 4. DISSENY | IMPLEMENTACIO

- mabett: I'arrel del projecte, contindra les classes destinades a iniciar I'aplicacio
- mabett.core: contindra les classes de control
- mabett.devices: contindra les classes corresponents als modduls hardware de
I'aplicacio
- mabett.devices.bt: pel modul de lectura de 'RFID
- mabett.devices.gps: en el cas del modul de localitzacié GPS
- mabett.gui: contindra totes les classes de la interficie grafica
- mabett.gui.resources: contindra els recursos de la interficie (com per exemple
les imatges) i les classes que els gestionen
- mabett.gui.triage: per totes les classes de la interficie destinades a realitzar el
procés de triatge
- mabett.gui.widgets: contindra les classes que implementin controls grafics
personalitzats
- mabett.triage: en formaran part totes les classes de I'agent d’emmagatzematge
- org.tzi.rfid.jidblue: el controlador del lector d’'RFID del projecte jIDBlue (és el nom

original del paquet)

4.1.2 Arquitectura
En linies generals hem dissenyat la nostra aplicacié seguint un patrd arquitectural model-

vista-controlador (MVC, Model-View-Controller).

- Model: representat per la classe mabett.core.Configuration, sera el component que
emmagatzemara les dades recuperades de cada sessid (preferencies d’usuari) i tots
aquells valors estatics utilitzats per més d’una classe.

- Vista: representat, principalment, per la classe Metalnterface (interficie general del
sistema), PreferencesComposite (vista de preferéncies) i TriageComposite (vista de
triatge) del paquet mabett.gui.

- Controlador: representat per la classe mabett.core.Controller, sera el component

encarregat de dur a terme tasques requerides per l'usuari i per altres classes

La principal ra6 d’utilitzar aquest patré ha estat, per una banda, la claredat que ofereix alhora
d’analitzar el codi (donat que les classes estan fortament separades per funcionalitats), i per
I’altra, la robustesa que dbna quan algun dels components s’ha de modificar (per exemple,

podem canviar o eliminar una vista sense haver de retocar ni el model ni el controlador).

No tots els moduls, perd, han estat dissenyats amb aquest patré6 com a referéncia. L’hem
adaptat a les nostres necessitats intentant aprofitar els seus beneficis sense que aixd ens

compliqués excessivament I'etapa de desenvolupament.

33 CAPITOL 4. DISSENY | IMPLEMENTACIO

4.1.3 JADE
Com hem explicat en el capitol d’estat de I'art, qualsevol agent necessita una plataforma on

poder-se executar. JADE és la agéncia que utilitzarem, i necessitem per tant que es trobi en
execucid per poder iniciar l'agent interficie i, des d’aqui, anar llancant els agents

d’emmagatzematge amb les dades de cada pacient.

Hem cregut convenient instal-lar JADE en I'N810 com un servei més, que s’inicii quan
encenem l'aparell. D’aquesta manera, podrem iniciar i aturar el nostre sistema en qualsevol
moment amb la seguretat que JADE ja esta en execucié. Els detalls d’instal-lacié es poden

consultar a ’Annex 2.

Cal tenir en compte que la interficie podria ser aturada en tot moment, perd els agents
d’emmagatzematge continuaran executant-se en la plataforma de manera totalment

independent. Aquest é€s un dels avantatges d’utilitzar la tecnologia d’agents.

4.1.4 SWT
SWT (Standard Widget Toolkit) és una API grafica de codi lliure per la plataforma Java que
actualment és desenvolupada (i utilitzada) pel projecte Eclipse. Es una alternativa a AWT i

Swing, desenvolupades per Sun Microsystems com a part de Java SE.

Utilitzarem SWT per implementar les nostres interficies perqué, com hem pogut veure durant
la fase d’analisi, és I'lnica API grafica suportada per la llibreria de classes escollida. Des del

punt de vista de disseny i implementacid, haurem de tenir en compte:

« SWT recupera la filosofia original d’AWT d’utilitzar components nadius, intentant
adoptar un estil consistent en totes les plataformes. Aixi, un mateix programa es veura
de forma diferent segons la plataforma on I'executem, pero el seu comportament sera
idéntic.

« En el nostre cas, aquest primer punt implica que tots els components que es
visualitzaran a I'N810 seran idéntics als que ofereix Hildon (la interficie grafica de
maemo).

« SWT no implementa larquitectura MVC de forma nadiua [15]. Per tant, I'haurem
d’implementar manualment.

- SWT utilitza, en canvi, un model d’interficie d’'usuari d’'un sol thread. En aquest model,
només el thread que ha creat la interficie pot accedir als seus metodes. Si es vol
accedir des de fora, es poden utilitzar dos métodes que ofereix la classe Display:

syncExec(Runnable runnable) i asyncExec(Runnable runnable).

http://www.eclipse.org/swt/
http://www.eclipse.org/swt/

34 CAPITOL 4. DISSENY | IMPLEMENTACIO

« Aquest fet I’haurem de tenir molt en compte alhora d’implementar els moduls que es
comuniquin amb components hardware, ja que es tracta de mdduls que s’executen
de forma asincrona i normalment han de notificar a la interficie de les dades que

han recollit.

4.2 Agent interficie grafica

En el moment en que s’inicia JADE (com a servei), es crea la plataforma amb un contenidor
d’agents principal. En aquest contenidor s’hi llancen automaticament I'agent AMS (Agent
Management System) i I'agent DF (Directory Facilitator). El primer és l'encarregat de
controlar I'accés i la utilitzacioé de la plataforma per part de la resta d’agents; entre d’altres,
ofereix un servei de pagines blanques per conéixer quins agents s’estan executant a la
plataforma. El DF és I'agent que ofereix el servei de pagines grogues, és a dir, ens permet

coneixer quins serveis ofereixen els agents que es troben en la plataforma.

Quan iniciem la nostra aplicaci6, ho farem demanant a JADE que es connecti a la plataforma
existent i que hi llanci el nostre agent interficie, BootAgent. La seva unica funcié és la de

iniciar la interficie grafica, utilitzant el métode startWithinlade del controlador Controller.

Per tal de dur a terme els seus objectius, els agents defineixen behaviours. El nostre
comportament GuiBehaviour és molt simple i només s’ha de realitzar una vegada. Tenint en
compte aix0, hem decidit instanciar un comportament ja definit a JADE anomenat

OneShotBehaviour.

L’esquema de classes del nostre agent sera el seguent:

Agent <]— BootAgent

1

1

OneShotBehaviour GuiBehaviour

i

1

1

Controller
<< singleton >>

Diagrama de classes de I’Agent interficie. En cursiva les
classes externes, en negreta les propies.

35 CAPITOL 4. DISSENY | IMPLEMENTACIO

Com hem comentat a I'analisi, la nostra aplicacié podria funcionar sense utilitzar agents.
Prova d’aixd és la classe Boot, disponible en el mateix paquet que BootAgent, que inicia la
interficie grafica fora de JADE.

Si I'aplicacié és iniciada d’aquesta manera no es llacen agents amb les dades dels pacients.

De cara al desenvolupament i la fase de proves, pero, ens ha estat molt util.

4.3 Agent d’emmagatzematge

4.3.1 TriageDataAgent
Aixi com I'agent interficie és I'encarregat d’iniciar la interficie grafica, les instancies de I'agent
d'emmagatzematge sén creades per la propia interficie cada vegada que es diagnostica un

pacient.

El paper d’aquest agent és absolutament trivial: un cop creat, romandra a la plataforma
sense fer res. Per aquesta rad, no implementa cap behaviour. Com comentavem a la fase
d’analisi, el nostre projecte no tractara les dades creades, simplement les emmagatzemara a

la plataforma en forma d’agents.

4.3.2 TriageData
Internament, I'agent conté un objecte de la classe TriageData amb totes les dades d’un

pacient que han estat omplertes per I'usuari del sistema utilitzant alguna de les vistes que

veurem més endavant.

Aquesta classe és la nostra implementacié de les etiquetes de triatge tradicionals, i per tant
oferira els camps dels quals vam parlar durant la fase d'analisi, a més d’alguns valors

especifics del nostre projecte com la localitzacié GPS i I'etiqueta RFID del pacient.

Segons el numero d’entrades d’un mateix camp podem dividir les dades en dues grans

families:

- Camps estatics: camps que sén emplenats una sola vegada

- Camps dinamics: camps que poden ser emplenats multiples vegades
Segons les necessitats d’identificacio dels camps, a més, també les podem dividir en dos
grups:

- Camps anonims: camps dels quals no ens interessa qui els va emplenar

- Camps signats: camps dels quals volem saber qui els va emplenar i quan ho va fer.

36 CAPITOL 4. DISSENY | IMPLEMENTACIO

Seguint aquesta classificacid, hem definit tots els camps de la classe TriageData de la

seguent manera:

Valor Estatic | Dinamic | Anonim | Signat Tipus
Id del pacient J J atribut de la propia classe
(RFID) (String)
Posicié GPS v v classe GPSPosition
Dades
e v v classe PersonalData
Signes vitals v v classe VitalSignsEntry
Lesions del oo
cos v Vv classe InjuriesEntry
Anotacions v v classe NoteEntry

Aixi, emmagatzemarem els camps dinamics en vectors. Els camps signats, a més, hauran
de ser una subclasse de AsRequired, el constructor de la qual emplenara automaticament

I’hora i l'identificador d’usuari quan es crei una instancia la classe.

La propia classe TriageData sera també una subclasse de AsRequired, de manera que

podrem conéixer quan va ser creat per primera vegada I'objecte i qui ho va fer.

Cal tenir en compte que el fet de permetre dades dinamiques i/o signades no té una utilitat

directa en el nostre projecte, perque les dades sén entrades una sola vegada al sistema.

Es tracta, perd, de caracteristiques que podrien ser utilitzades per altres projectes futurs, i

ens ha semblat una bona idea implementar-les.

GPSPosition
Els atributs que ofereix aquesta classe son la latitud i la longitud, ambdés de tipus long.

PersonalData
Els atributs que ofereix aquesta classe sén:

« Nom del pacient: String

- Sexe: enumeracioé Gender, de valors MALE i FEMALE.

- Edat: enter

« Adreca: String

- Identificacio: representa qualsevol codi d’identificacié que el pacient, com per exemple

el seu DNI o equivalent. String.

37

VitalSignsEntry

CAPITOL 4. DISSENY | IMPLEMENTACIO

Els atributs que ofereix sén:

« Pressi6 sanguinia (en mm Hg, mil-limetres de mercuri): enter

Pulsacions per minut: enter
Tipus de pols: enumeracié Pulse de valors FULL, WEAK, REGULAR i IRREGULAR.
Respiracions per minut: enter
Test capil-lar: enter

Estat del pacient: enumeracié LabelStatus de valors DECEASED, IMMEDIATE,

DELAYED o MINOR.

InjuriesEntry

Estat mental: enumeracié MentalStatus de valors SANE o INSANE.

Ofereix un sol atribut, les parts del cos amb lesions: enumeracié BodyPart de valors HEAD,

LEFT_ARM, RIGHT_ARM, CHEST, ABDOMEN, LEFT_LEG i RIGHT_LEG.

NoteEntry

Ofereix també un sol atribut, una nota de tipus String.

AsRequired

VitalSignsEntry

InjuriesEntry

NoteEntry

0.*

TriageData

0..1

1

0..*

PersonalData

GPSPosition

TriageData. Diagrama de classes.

0..*

0..*

La classe TriageTag, ofereix setters i getters per accedir als diferents camps i les diferents

versions dels mateixos si son dinamics. Les classes que implementen els camps, al seu

torn, també ofereixen getters i setters per accedir a tots els atributs.

Totes les classes de I'agent d’'emmagatzematge es troben en el paquet mabett.triage.

38 CAPITOL 4. DISSENY | IMPLEMENTACIO

4.4 Controlador

El controlador, per la seva naturalesa, només s’instancia una vegada (de forma mandrosa) i
és utilitzat per qualsevol classe que el necessiti. Per tal de reforcar aquest comportament,
hem aplicat el patr6 de disseny conegut amb el nom de Singleton, que assegura l'existéncia
d'una unica instancia per una classe i la creacié d'un mecanisme d'accés global a aquesta

instancia. La classe que I'implementa és mabett.core.Controller.

1 Controller 1 1| Configuration
<< singleton >> << singleton >>
1
1 1 1
11
Metalnterface GPSController GPSThread —[> Thread

Controlador. Diagrama de classes.

Els métodes principals que haura d’oferir el controlador sén:

- startWithinJade: aquest métode, cridat per I'agent, ha d’iniciar, per una banda, un
thread amb el controlador GPS, que intentara connectar-se al numero minim de
satel-lits tan aviat com sigui possible. Per altra banda, iniciara la interficie grafica
utilitzant la classe Metalnterface. EI métode és bloquejant, i no finalitzara fins que
l'usuari tanqui I'aplicacio.

- start: idéntic a I'anterior métode, pero utilitzat quan volem iniciar I'aplicaci6é fora de
JADE.

- openPanel: utilitzant aquest métode qualsevol altra classe podra demanar canviar la
vista que actualment s’esta mostrant.

- getCurrentPanel: de la mateixa manera, qualsevol classe podra coneixer quina és la
vista actual.

- requiredPreferencesAreSet: retornara cert si les preferéencies d’usuari han estat
entrades correctament, fals en cas que no sigui aixi; consultara les dades necessaries
del model de I'aplicacio, la classe Configuration.

- sendTriageData: permetra llancar agents emmagatzemadors TriageDataAgent del

paquet mabbet.triage amb les dades recollides de la diagnosi d’'un pacient.

39 CAPITOL 4. DISSENY | IMPLEMENTACIO

- getCurrentGPSPosition: retornara la posicid actual en valors de latitud i longitud,
encapsulats en una instancia de la classe GPSPosition; en cas que no s’hagi pogut
connectar amb el sistema GPS, retornara la posici6 0, 0.

- quit: cridat quan l'usuari tanqui l'aplicacié, sera I'encarregat d’aturar el thread de
captura de dades GPS i demmagatzemar les preferéncies d’usuari utilitzant el méetode

store de la classe Configuration.

4.5 Model

El model, implementat en la classe Configuration del paquet mabett.core, és I'encarregat
d’emmagatzemar dades que poden ser Utils per altres classes. Tal com passava amb el
controlador, aquesta classe només s’ha d’instanciar una vegada, i per tant implementa el

patr6 de disseny Singleton.

Aquesta classe ha de ser capag¢ de recuperar (i mantenir carregats) els valors corresponents
a les preferéncies d’usuari de I'aplicacié. Java ofereix dues classes destinades a aquest fi: la
classe Properties i la classe Preferences. L’Ultima és la més completa, perd malauradament
no esta disponible en la llibreria de classes que utilitzem a I’'N810 [16]. Haurem d'utilitzar la

primera; els valors que haura d'emmagatzemar de sessi6 en sessié son:

- Métode de triatge escollit (START o manual)

- ldentificador i nom d’usuari

+ Adreca Bluetooth del lector d’RFID IDBlue

- Idioma de I'aplicacié (anglés, castella o catala)

El model també contindra una quantitat elevada de valors utilitzats per més d’una classe; al
estar definits en un sol lloc els podrem canviar de manera consistent. Seran valors constants
que no es podran modificar en temps d’execucio (fet que reforcarem declarant totes les

variables amb els modificadors static i final).

I

1 Configuration
<< singleton >>

1

1

Properties

Model. Diagrama de classes.

40 CAPITOL 4. DISSENY | IMPLEMENTACIO

Els principals métodes a implementar son:

- getProperty: recupera un valor de les preferéncies. Necessita com a parametres la clau
(String) del valor a recuperar i el valor per defecte que es desitja en cas que no es trobi
la clau (d’aquesta manera ens assegurem que el métode sempre retorni un valor
consistent). Internament, la classe Properties emmagatzema els valors en una taula
hash.

- setPropperty: permet modificar un valor determinat de les preferéncies.

- store: desa les dades a disc, en el fitxer SHOME/.mabett/mabett.properties. L’estructura

de I'arxiu ve determinada per la classe Properties.

#MABETT
#Fri Jun 13 13:24:45 CEST 2008
triage_method=START

userid=12344415G
1dBlue_MAC=00\:A0\:96\:17\:B2\:B9
username=Xavier

language=0

Model. Contingut de I'arxiu de preferencies

4.6 Vista general
La nostra interficie grafica sera capag¢ de mostrar les seglents vistes:

- Vista de preferéncies: per consultar o modificar les preferéncies de I'aplicacié
- Vista de triatge: segons les preferéncies de I'usuari, mostrara:
- Vista de triatge START, per diagnosticar un pacient utilitzant I'algorisme START

- Vista de triatge manual, per diagnosticar un pacient de forma manual

A Pinici de I'aplicacid, si les preferéncies s’han pogut carregar es mostrara la vista de triatge
escollida. En cas contrari, es mostrara la vista de preferéncies fins que les dades no hagin

estat entrades.

Si Pusuari prem en qualsevol moment la tecla ESC, que en I'N810 esta localitzada en el
cant6 esquerra de la pantalla, es cancel-lara el procés de triatge actual o bé, si es troba en la
vista de preferéncies, se sortira de l'aplicaci6. En tots dos casos, es demanara una

confirmaci6 de I'operaci6 utilitzant un popup.

41 CAPITOL 4. DISSENY | IMPLEMENTACIO

Triage Method: START
[

A
/\

Is the patient walking?

73)
No Yes @

Vista general. Inici de I'aplicacio.

4.6.1 Layout
Estem executant la nostra aplicacié Java en un dispositiu mobil amb un processador a 400

Mhz i 128 MB de RAM, utilitzant una versi6é no oficial de la maquina virtual de Java i de les
llibreries de classe. La suma de tots aquests factors provoca que la velocitat d’execuci6 del
sistema (de la qual parlarem amb més detall en el seglent capitol) no sigui molt elevada en

comparacié amb un ordinador de sobretaula.

Els punts critics detectats en les nostres proves han estat la inicialitzacié de les aplicacions i
I’obertura de noves finestres. Per aquesta rad, hem pres la decisié d’integrar tota la interficie

grafica en una sola finestra, en pantalla completa per aprofitar al maxim I’espai disponible.

Per tal de poder mostrar les diferents vistes de qué consta la nostra aplicacio, actualitzarem
el contingut (d’una part) de [Idnica finestra existent, implementada per la classe

Metalnterface. El disseny d’aquesta vista es mantindra constant.

42 CAPITOL 4. DISSENY | IMPLEMENTACIO

800 pixels
100 pixels
- 10 pixels
Titol de la vista (24 punts) 10 pixels
g
5]
=]
g~
)
®3
28
480 pixels aé g Contingut
o £ (variable)
T <
g
]
m
10 pixels
10 pixels 10 pixels

Vista general. Disseny.

La disposici6 dels elements no ha estat escollida de forma arbitraria. EIl menu lateral esta en
una posicié facilment accessible per una de les dues mans agafades al dispositiu. El
contingut de cada vista ocupa una zona central, i el titol permet descobrir rapidament quina

vista esta activa.

Per tal de poder mostrar més d’un element en un sol contingut, totes les vistes seran una
subclasse de Composite, una classe d’SWT que expressa un conjunt de controls agrupats

amb una certa estructura i una funcionalitat comuna.

4.6.2 Menu
Ja que integrem tota la interficie grafica en una sola finestra, hem d’oferir algun métode a

'usuari perqué pugui canviar de vista de forma agil amb les mans. La solucié proposada és

implementar una barra lateral que fara de menu.

La implementacié6 d’aquesta funcionalitat la trobem a la classe mabett.gui.MenuBar. Es

tracta també d’una subclasse de Composite dividida en dues parts iguals:

- Una part superior per accedir a les vistes de triatge

- Una part inferior per accedir a les preferencies

Ambdoés parts es comporten d’'una manera semblant a com ho faria un bot6 tradicional; sén
també una subclasse de Composite, amb un fons i una imatge determinades, que varien de

color segons si es troben o no seleccionats.

43 CAPITOL 4. DISSENY | IMPLEMENTACIO

100 pixels

Composite Vista de
triatge
MenuBar
1 480 pixels
1 1
Configuration Controller .
<< singleton >> << singleton >> Composite Vista de
preferéncies

Menu. Diagrama de classes i implementacio.

Com podem veure, el botd que es troba seleccionat és d’un color més clar al que no ho esta
per ajudar a identificar quina és la vista activa; un dels dos botons sempre estara actiu. Per

tal de permetre al controlador canviar la vista, la classe implementa un sol métode:

- selectButton: canvia la vista actual per la que li passem per parametre. Els

identificadors de vista es troben definits a la classe Configuration.

4.6.3 Controls especifics

Tal com hem comentat, SWT utilitza els controls que de forma nadiua estan disponibles en
cada sistema. Malauradament, tots els controls de Hildon estan dissenyats per ser utilitzats
amb el llapis tactil, i el requeriment de poder utilitzar I'aplicacié amb els dits ens obligara a

implementar els nostres propis controls.

SWT desaconsella [17] crear subclasses dels controls estandard. Per tant, tots els controls
hauran de ser subclasse d’'un Composite i hauran d’implementar manualment tots els

meétodes que necessitem.

Hem decidit dissenyar un tipus de control simple i tres de compostos. Els controls que
anomenem simples sén aquells que hem creat des de zero, mentre que els compostos els

hem creat utilitzant dos 0 més controls existents (propis o d’SWT).

44 CAPITOL 4. DISSENY | IMPLEMENTACIO

Tots ells tindran una mida minima aproximada d’un centimetre quadrat perqué puguin ser
seleccionats facilment amb el dit. En la pantalla de 'N810, aix0 es tradueix en uns 80 pixels
quadrats. Les classes dels controls es troben en el paquet mabett.gui.widgets.

Composite

<< Selectable >>

1 .
CustomButton CustomSpinner CustomToggleButton

1 1

1

<< Selectable >>
CustomOptionalSpinner

Controls especifics. Diagrama de classes.

La interficie Selectable que podem veure a la figura ha estat creada per identificar controls
amb dos botons i tres estats: un estat positiu (un botd pres), un de negatiu (I’altre botd pres),
i un de neutre (cap botd seleccionat). Els métodes que proposa aquesta interficie son:

- getSelection: retorna una enumeracié de tipus ButtonSelection amb tres valors
possibles: YES, NO o NONE, per indicar I'estat del control.
- setSelection: selecciona I'estat del control indicat, activant i desactivant els botons

necessaris.

CustomButton

Es tracta d’un control simple que representa un boté sense estat que només serveix per
llencar accions quan es premut. La particularitat que ens ha obligat a implementar aquest
control ha estat el fet que necessitavem poder incloure imatges de fons en aquests botons.
SWT suporta aquesta opciod, perd no assegura que els controls nadius la respectin, i Hildon

no ho fa.

80 pixels

80 pixels

CustomButton. Disseny i proporcions.

45 CAPITOL 4. DISSENY | IMPLEMENTACIO

A més del disseny de la figura, aquest control també sera capa¢ de mostrar una imatge amb
un signe menys i imatges amb el signe “>” en les quatre direccions cardinals (veure Annex

3).

Aquest control sobrecarrega i implementa un Unic métode:

- addMouselistener: per defecte, aquest meétode d’SWT s'utilitza per afegir un
esdeveniment en el gestor d’esdeveniments del ratoli. D’aquesta manera es poden
executar metodes propis cada cop que l'usuari interacciona amb la zona de la pantalla
on es troba el control. L’hem de sobrecarregar per dirigir I'esdeveniment a la imatge del

bot6 i no al Composite.

CustomToggleButton
Aquest control compost esta format per dos toggle buttons botons amb el text Yes i No.

Aquest tipus de botons mantenen I'estat (activats o desactivats) i el canvien quan l'usuari els

prem.

Ara bé, nosaltres necessitem que quan un bot6 sigui seleccionat, I'altre deixi d’estar-ho
automaticament; els dos podran romandre, perd, sense seleccionar. En resum, s’han de

comportar com una sola entitat, i aquesta és la raé de ser d’aquest control compost.

100 pixels

80 pixels I, N Font
32 punts

50 pixels
CustomToggleButton. Disseny i proporcions.

Aquesta classe implementa els métodes de la interficie Selectable, i com passava amb

I’anterior control, també sobrecarrega el metode addMouseListener.

CustomSpinner
Els spinner s6n controls que es caracteritzen per tenir dos botons que permeten incrementar

o disminuir el valor d’'un camp de text. En Hildon, la mida d’aquests controls és estatica, i

estan pensats per ser utilitzats amb el llapis.

Per aquesta rad, hem de dissenyar un control compost de tipus spinner amb els dos botons i
el camp de text d’'una mida acceptable. No es podra editar el valor del camp manualment

(utilitzant el teclat).

46 CAPITOL 4. DISSENY | IMPLEMENTACIO

Utilitzarem dos botons de la classe CustomButton amb les imatges corresponents d’afegir i
sostraure, separats per un camp de text amb el valor seleccionat. La separaci6é sera
variable, i sera el triple de la mida d’un sol caracter de la font que s’esta utilitzant. Aquest
valor es pot aconseguir utilitzant el métode getFontMetrics().getAverageCharWidth() de la
classe GC (Graphic Canvas) de SWT.

Els principals métodes que implementa aquesta classe son:

- setMinium: estableix el valor minim del control, per sota del qual les peticions de
decrement no seran ateses

- setMaximum: estableix el valor maxim del control

- setIncrement: estableix quantes unitats s'incrementen o es disminueixen cada cop que
es prem el botd

- getSelection: retorna el valor actual del control

- setSelection: estableix el valor actual del control, sempre que estigui entre els limits

establerts

80 pixels

4 x mida caracter

MI nutes: 0 80 pixels estandard

Spinner estandard de Hildon a I'esquerra, i CustomSpinner a la dreta. Les proporcions entre els dos
controls sén reals.

CustomOptionalSpinner
Aquest control compost combina un CustomToggleButton a la part superior amb un

CustomSpinner a l'inferior que només és visible quan l'usuari selecciona el bot6 afirmatiu del

primer. Implementara també la interficie Selectable, i el segiient metode:

- getSpinner: retornara un objecte de tipus CustomSpinner per tal de poder utilitzar tots

els seus métodes.

47 CAPITOL 4. DISSENY | IMPLEMENTACIO

4.7 Vista de preferéencies

4.7.1 Descripcio
La vista de preferéencies ens ha de servir per demanar a l'usuari certs valors necessaris pel

correcte funcionament de I'aplicaci6. Aquests valors coincideixen amb els valors que hem

definit en el model:

« Nom de l'usuari: utilitzant un camp de text, hem de demanar el nom de I'usuari que esta
utilitzant el sistema. Es un camp obligatori.

« Identificador d’usuari: en un altre camp de text demanarem l'identificador d’'usuari; cada
membre de I'equip d’emergéncies disposara d’algun identificador que haura d'introduir
en aquest camp. Es també obligatori.

- Adreca del dispositiu IDBlue: I'Ultim camp obligatori, el necessitem per conéixer I'adreca
fisica del lector RFID a utilitzar.

- Idioma de l'aplicacié: permetra escollir entre els idiomes suportats (anglés, catala i
castella). Per defecte, estara en anglés. Implementat amb un menu desplegable, és un
camp opcional.

- Métode de triatge: START o manual (cap). Per defecte, estara seleccionat el metode

START. Implementat també amb un menu desplegable, és un camp opcional.

4.7.2 Disseny
Aquesta vista esta pensada per ser utilitzada amb el llapis, no amb les mans. La rad és que
les dades que s’hi presenten han de ser introduides un sol cop, i mai durant el procés de
triatge en si. A més a més, els tres camps obligatoris necessiten dades que s’han d’entrar
obligatoriament amb el teclat, ra6 per la qual no podriem utilitzar anicament els dits encara
que volguéssim.

Application Settings

Required information

Your Name: Xavier

ID: 12344415G

IdBlue MAC: 00:A0:96:17:B2:B9

Optional features

a»
—

Application language: | English

a»
—

Triage Method: | START

o
[Save

Vista de preferencies. Implementacio.

48 CAPITOL 4. DISSENY | IMPLEMENTACIO

La interficie s’ha d’assegurar que l'usuari ha entrat les dades obligatories. Per fer-ho
comprova que els camps no estiguin buits i que l'adreca Bluetooth sigui de la forma
XXXXXXKEXXXX: XX (utilitzant I'expressio regular ([a-fA-FO-9]1{2}:){5}[a-fA-F@-9]1{2}). Si

no és aixi, mostra un avis a l'usuari quan aquest intenta desar els canvis.

Application Settings

Required information

Your Name:

ID: 12344415G

IdBlue MAC: 00:A0:96:17:B2:B9

Optional features

ar
e/

Application language: | English

Triage Method: | START

&

Please fill required fields

([Save

Vista de preferéncies. Avis de dades incorrectes

4.8 Vista de triatge

4.8.1 Descripcio
L’objectiu principal del projecte era crear una interficie pel protocol de triatge simple START.
Aixi i tot hem volgut preparar la nostra aplicacidé per poder ser utilitzada amb qualsevol altre

métode de triatge.

La rad és senzilla: START no és I'unic protocol existent, ni és aplicable a totes els situacions.
Hi han meétodes creats especificament per situacions bél-liques (triatge invers), d’altres
pensats per a nens o fins i tot metodes dissenyats per ser aplicats en instal-lacions
meédiques quan els recursos disponibles son inferiors als necessaris per atendre a tots els

pacients.

Per tant, hem volgut preparar el nostre sistema per poder-hi afegir metodes de triatge

simplement implementant la vista que correspongui al nou métode.

49 CAPITOL 4. DISSENY | IMPLEMENTACIO

4.8.2 Disseny

TriageComposite

Aquesta classe del paquet mabett.gui sera I'encarregada de crear totes les vistes de triatge
juntament amb la vista d’edici6 manual. Internament, estara formada per un sol Composite
on hi mostrara la vista de triatge. Quan aquesta finalitzi, i si aixi ho desitja, mostrara la vista
d’edici6 manual (implementada a la classe TTBuilder) per poder modificar o afegir qualsevol
dada abans de ser emmagatzemada.

Els métodes que haura d’implementar aquesta classe son:

- newCase: inicia un nou procés de triatge mostrant la vista del metode escollit a les
preferéncies. En cas que l'usuari no hagi escollit cap métode, mostrara directament la
vista d’edici6 manual

- openBuilder: obre la vista d’edici6 manual

TriageMethod
Es tracta d’una classe abstracta del paquet mabett.gui.triage que haura de ser

implementada per qualsevol protocol de triatge que es vulgui afegir a I'aplicaci6. Consta d’un

sol métodes:

- newTriageProcess: metode cridat per TriageComposite quan l'usuari desitgi iniciar un
nou procés de triatge amb el nostre protocol. La crida té un sol parametre de la classe

TriageData, que és on haurem d’emmagatzemar tota la informacié del pacient recollida.

Composite

TTBuilder TriageComposite TriageMethod

Vista de triatge. Diagrama de classes.

4.9 Vista START

4.9.1 Descripcio
Hem d’implementar una interficie interactiva pel protocol START. Aquesta és, juntament amb
la vista manual que analitzarem en el seglent punt, la part més important de la nostra

aplicacio.

50 CAPITOL 4. DISSENY | IMPLEMENTACIO

Durant I'analisi vam definir tots els passos que I'algorisme du a terme per assignar un estat a
cada pacient segons les seves constants vitals. Ja que volem que una persona sense
coneixements del protocol START pugui fer servir la nostra aplicacid, creiem que la millor

forma d’implementar aquest algorisme és utilitzant un assistent.

L’assistent preguntara les dades del pacient en I'ordre especificat per I'algorisme. Segons la
resposta a cada pregunta, demanara una o altra informacio fins a poder assignar-li un dels

quatre estats.

Al finalitzar l'algorisme, la vista START es tancara i en el seu lloc es mostrara la vista
manual, on el personal medic podra modificar qualsevol dada (inclos I'estat del pacient
assignat automaticament) o afegir-ne de noves. Sera aquesta classe la que, finalment,
cridara al controlador per tal que llanci un nou agent d’'emmagatzematge amb les dades

recollides.

4.9.2 Disseny
Creiem que la millor forma de dissenyar I'assistent és utilitzant un arbre de decisié binari, on

cada node representara una pregunta a realitzar i les fulles I'estat escollit. L’esquema
resultant el podem observar en la figura de la pagina seglient, on a més a més hi hem inclos

el tipus de pregunta que se’ns demana a cada node:

- Per coneixer la resposta a una pregunta de tipus afirmatiu/negatiu (Y/N), utilitzarem un
control de la classe CustomToggleButton.

 En el cas de preguntes quantitatives (Spinner), utilitzarem un CustomSpinner.

- Finalment, en el cas de preguntes quantitatives opcionals (Y/N + Spinner), utilitzarem

un control de la classe CustomOptionalSpinner.

51 CAPITOL 4. DISSENY | IMPLEMENTACIO

(- ---=--= ~
I Walking wounded !
1 (Y/N) 1
Negative N
Affirmative
— v \
—— —— -

I
. MINOR
I

(Y/N)

T

Respirations atfter | I Frequency > 30/min !
position airway | : |
(Y/N + Spinner) | 1 (Spinner)

SR
y v .

Radial pulse after |
perfusion

(Y/N + Spinner)

| G

-
| Respirations
1

\

f
I
|

DECEASED

——— -_———
Capillary Refill |
under 2 seconds

(Spinner)

: Can follow simple 1

commands
1 (Y/N)
\

DELAYED

Vista START. Arbre binari de decisié de I'algorisme START.

Podem dissenyar aquest arbre de dues formes ben diferents:

- Creant tantes vistes com nodes té I'arbre (sense contar les fulles), i anar mostrant la
vista adequada a mesura que l'usuari respongui a les preguntes.
- Emmagatzemar en l'arbre la pregunta en questi6, implementar una sola vista i anar

actualitzant-la.

La segona opcié ens sembla molt més recomanable per les limitacions de memoria i

poténcia que ja hem comentat anteriorment.

52 CAPITOL 4. DISSENY | IMPLEMENTACIO

TriageMethodSTART

TriageMethod

TriageMethodSTART

1.*

TriageMethodSTARTPanel

Vista START. Diagrama de classes

Aquesta classe, subclasse de TriageMethod, representara I'assistent del métode START.
Volem mantenir una interficie el més simple possible, i per tant I'Unic que mostrarem sera:

- Una icona representativa de cada pregunta, que permetra a aquells usuaris que ja
hagin utilitzat P'aplicacié identificar rapidament qué s’esta preguntant a partir d’'una
imatge (imatges disponibles a I’Annex 3).

- El text de la pregunta en si.

« El control necessari per respondre la pregunta.

« Un botd a prémer per passar al seguent nivell de I'algorisme (sera un botd de la classe

CustomButton).
700 pixels
R _ 10 pixels
Meétode de triatge: START)
10 pixels
1OOI><1OO lcona
pixels
20 pixels
480 pixels Pregunta Boto
next 20 pixels
Control Composite
10 pixels 10 pixels

Vista START. Disseny general.

53 CAPITOL 4. DISSENY | IMPLEMENTACIO

Internament, aquesta classe creara I'arbre de decisi6 binari i I'anira recorrent des de l'arrel

fins a les fulles, mostrant el contingut de cada node en la seva propia vista.
Els principals métodes que implementa sén:

- buildTree: crea l'arbre de decisié binari, amb tants TriageMethodSTARTPanel com
nodes hi han a l'arbre.

- showPanel: mostra un dels nodes de I'arbre.

- next: descendeix un nivell en l'arbre de decisi6 binari; si el node actual és una fulla,
demanara a a TriageComposite que mostri la vista manual TTBuilder i finalitza
I'assistent. En cas contrari, crida al métode showPanel perque mostri el node fill.

- newTriageProcess: inicia de nou I'algorisme de decisié6 mostrant I’arrel de I'arbre.

TriageMethodSTARTPanel
Aquesta classe abstracta representa un node de l'arbre de decisi6. Haura de contenir la

icona, la pregunta i el tipus de control a mostrar. | diem el tipus i no el control en si perqué
aquests es crearan en la classe TriageMethodSTART, que els anira mostrant segons ho

demanem.

A més a més, cada node haura de coneixer quin sén els seus dos fills per tal de comunicar a
I’algorisme que recorre I'arbre quin dels dos és el seguent node a visitar, tenint en compte

les dades introduides per l'usuari.
La classe haura d’oferir els seglients métodes:

- setAffirmativeNode: enllaga amb el node corresponent a una avaluaci6 positiva.

- setNegativeNode: enllaga amb el node corresponent a una avaluacié negativa.

- getImage: retorna la imatge a mostrar.

- getQuestion: retorna el text de la pregunta a mostrar.

- getControlType: retorna el tipus de control que s’ajusta a la pregunta.

- preEvalute: aquest metode sera cridat per TriageMethodSTART abans de mostrar un
determinat node, i permet que inicialitzem els controladors amb valors personalitzats.

- evaluate: aquest metode sera cridat quan l'usuari decideixi prémer el bot6 de “seglent”.
Ha de retornar true si I'usuari ha entrat totes les dades necessaries per poder decidir
quin dels dos fills és I'escollit.

. postEvaluate: sera cridat només si I'anterior métode s’avalua a cert, i haura de retornar

el node escollit.

Els tres Gltims metodes son abstractes i han de ser implementats per cada instancia.

54 CAPITOL 4. DISSENY | IMPLEMENTACIO

Amb tot, la classe TriageMethodSTART i TriageMethodSTARTPanel utilitzen el patr6 de
disseny Template, perqué en la primera classe definim I'estructura de I'algoritme a utilitzar i
en les diferents instancies de la segona classe implementem cada node de I'arbre de decisio

binari.

Triage Method: START

Radial pulse detected (BPM, beats per minute):
:,\)
No Yes N4
7~ N\ 7 1 N
©" O
N4 N\ 4

Vista START. Implementacié d’un dels nodes amb un control de tipus
CustomOptionalSpinner

4.10 Vista d’edicié manual

4.10.1 Descripcio

La vista d’edici6 manual ha de mostrar una interficie amb tots aquells camps habituals de les
etiquetes de triatge vists durant I'analisi. A més, en cas que l'usuari hagi executat amb
anterioritat un algorisme de triatge, la vista ha ser capag¢ de llegir les dades ja recollides i
mostrar-les en els camps adequats. Totes les dades de les vistes s’emmagatzemaran en un
objecte de la classe TriageData compartit entre totes les vistes.

Per altra banda, aquesta vista sera I'Gltim pas abans de crear I'agent d’emmagatzematge;

per tant, també haura d’oferir una interficie per llegir I'etiqueta RFID col-locada en el pacient.

Amb tot, ens trobem que hem d’oferir un nimero elevat de dades, que hem decidit dividir en

cinc vistes diferents:

- Informacié general: permetra afegir o modificar dades relacionades amb els signes
vitals del pacient.
+ Lesions localitzades: oferira un esquema del cos huma on es podran seleccionar parts

del cos lesionades.

55 CAPITOL 4. DISSENY | IMPLEMENTACIO

« Informacié personal del pacient: permetra introduir dades personals com el nom o
I’adreca del pacient.

- Notes addicionals: oferira un espai en blanc perqué el personal d’emergéncies pugui
escriure notes.

« Confirmacio: oferira un petit assistent per tal de recuperar l'identificador de I'etiqueta
RFID del pacient.

Tal com passava amb la vista de preferéncies, alguns d’aquests camps hauran de ser
introduits a través del teclat, aixi que la vista no podra ser utilitzada exclusivament amb els
dits.

4.10.2 Disseny
TTBuilder
Aquesta classe tindra una funcionalitat molt semblant a la de la classe Metalnterface.

Definira el layout de tota la vista d’edici6 manual i mostrara diferent vistes utilitzant un menu

lateral.
700 pixels
100 pixels
10 pixels i ;
) Titol de la sub-vista

10 pixels
o
o
©
)}
c
g 480 pixels

Contingut o

o
o
3
m

10 pixels

10 pixels 10 pixels

Vista d’edicio manual. Disseny.

Al contrari que la classe Metalnterface, perd, el menu lateral estara integrat en la propia
classe. Deixant de banda que haura de mostrar cinc elements, el seu funcionament sera

idéntic.

56 CAPITOL 4. DISSENY | IMPLEMENTACIO

Els métodes que implementara aquesta classe sén:

- setTriageData: demanara a totes les vistes que actualitzin les seves dades i mostrara la
vista d’'informaci6 general.

- showPanel: permetra canviar de vista.

- saveData: informara a totes les vistes que desin les dades introduides en els seus

camps. Sera cridada just abans d’enviar un nou agent d’'emmagatzematge.

Per facilitar la feina d’informar a totes les sub-vistes existents de que han d’actualitzar o

desar les dades en un moment donat, hem creat la interficie Updatable, amb els métodes

saveData i loadData.

Composite

<< Updatable >>
TTBuilderGeneral

<< Updatable >>
TTBuilderinfo

<< Updatable >>]
TTBuilderNotes TTBuilder
<< Updatable >>
TTBuilderBody

TTBuilderConfirm TriageData

Vista d’edicio manual. Diagrama de classes.

TTBuilderGeneral
Sera la vista encarregada de mostrar els signes vitals del pacient aixi com I'estat de triatge

assignat.

Alguns camps d’aquesta vista, com per exemple les respiracions per minut, el pols o la
propia categoria poden haver estat introduits durant el procés de triatge; ldgicament, es

podran modificar si aixi ho desitja 'usuari.

El camp de localitzaci6 GPS es mostra a caire informatiu, ja que en aquesta vista s’intentara

recuperar la posicié actual amb la crida a getCurrentGPSPosition al controlador de I'aplicacié

i emmagatzemar-la en I'objecte TriageData.

CAPITOL 4. DISSENY | IMPLEMENTACIO

57
General Information
Breaths: 25
O
Pulse: 80
OFull
Pulse type: O
(O Regular
Capillary refill: DELAYED ®
Mental Status: (@) Sane
Blood Pressure: - O
Latitude: 123.45
Longitude: 678.9
Vista d’edicié manual. Vista d’informacioé general.
TTBuilderBody

En aquesta vista mostrarem I'’esquema d’un cos creat amb botons de tipus toggle. Podran

ser seleccionats de manera individual i serviran per que el personal medic pugui indicar

zones del cos del malalt que requereixen especial atencio.

Body injuries

L Left Arm
Left Leg J
Head Chest Abdomen
Right Leg ’
Right Arm

Vista d’ediciéo manual. Vista de lesions localitzades.

58 CAPITOL 4. DISSENY | IMPLEMENTACIO

TTBuilderinfo

Aquesta vista mostrara camps d’informacié personal del pacient.

Personal Data

Name:

Identification:
Gender: @ Female () Male
Age: 19

Address:

Vista d’edicié manual. Vista d’informacié personal.
TTBuilderNotes

Mostrara un camp de text per ser emplenat amb la informaci6 que es consideri rellevant.

Additional Notes

Hello World

Vista d’edicié6 manual. Vista de notes.

59 CAPITOL 4. DISSENY | IMPLEMENTACIO

TTBuilderConfirm
La funcionalitat d’aquesta vista difereix de la resta. Aquest sera el punt final de qualsevol

procés de triatge, i el seu objectiu és llegir I'identificador unic RFID de I'etiqueta del pacient i
emmagatzemar-lo juntament amb les dades recollides en la instancia compartida de la

classe TriageData.

El procés de lectura de I'RFID es dura a terme en un thread separat utilitzant la nostra
classe IDBlueController. Es realitzara una connexié amb I'IDBlue, es demanara que ens
retorni el proxim identificador RFID que sigui llegit i finalment ens desconnectarem. El procés

complet es pot realitzar en menys de 5 segons.

Al contrari que el sistema GPS, que esta funcionant continuament, per cada nou procés de
triatge ens connectarem i desconnectarem de I'IDBlue. D’aquesta manera, intentarem reduir

el consum de les bateries del lector RFID i de ’'N810.

La vista, al mateix temps, anira mostrant en temps real els passos que ha de seguir l'usuari.
Tant si s’aconsegueix llegir 'RFID com si no, al final del procés es permetra “enviar” les

dades.

Com ja hem anat realitzant en altres casos, crearem una sola vista i anirem actualitzant els
seus camps segons convingui: en aquest cas, només haurem de mostrar una imatge
representativa del procés de lectura RFID, un missatge que indicara qué ha de fer l'usuari i

un bot6 perquée ens comuniqui quan ho ha fet. El procés de lectura RFID sera el seguent:

1. Al iniciar la vista, demanem a I'usuari que encengui el seu lector RFID. Quan premi el
botd de la pantalla iniciarem el thread del modul RFID.
1.1. Si no aconseguim iniciar el modul RFID (per exemple, si Bluetooth esta
desactivat), o bé si no podem contactar amb I'lDBlue, anirem a B.
1.2. Si hem contactat, demanarem a l'usuari que llegeixi I'etiqueta RFID
1.2.1. Sirebem el seu valor, anirem a A

1.2.2. Sino el rebem, anirema B

A. Mostrem un missatge conforme hem llegit I'etiqueta i el boté6 mostrara la paraula
“Enviar”. Quan l'usuari el premi, cridarem al métode sendTriageData del controlador
enviant-li I'objecte TriageData emplenat i finalitzarem el procés de diagnosi del
pacient cridant al métode newCase de la classe TriageComposite.

B. Mostrem un missatge conforme no hem pogut llegir I'etiqueta i el boté mostrara el

missatge “Enviar”. A partir d’aqui, realitzara el mateix procés que A.

60 CAPITOL 4. DISSENY | IMPLEMENTACIO

Confirmation Panel

=

RFID read succefully

| Send |

Vista d’edici6 manual. Vista de confirmaci6 amb lectura d’RFID
correcta (cas A)

Confirmation Panel

RFID could not be retrieved

Send ‘

Vista d’edici6 manual. Vista de confirmaci6 amb lectura d’RFID
incorrecta (cas B)

4.11 Modul GPS

4.11.1 Descripcid
Tal com hem vist durant la fase d’analisi, aquest modul sera I'encarregat de gestionar el

receptor GPS de I'N810. Per fer-ho, hem decidit utilitzar el framework JNI de Java, perqué
I’API de maemo pel control del GPS esta escrita en C.

El disseny i la implementacié d’aquest modul es troba dividit, per tant, en una classe Java
disponible en el paquet mabett.devices.gps, i en una llibreria JNI escrita en C que

implementa els metodes nadius declarats en Java (veure Annex 1).

61 CAPITOL 4. DISSENY | IMPLEMENTACIO

4.11.2 GPSController.java
GPSController és la classe que ens permetra interactuar amb el receptor GPS des de Java.

Com qualsevol classe que fa Us de JNI, defineix tots aquells métodes nadius que s’han

d’implementar en C utilitzant el modificador native. AQuests métodes soén:

- native private void gpsdInit(): sera I’encarregat d’iniciar el receptor GPS.

- native private boolean gpsdCheckConnection(): retornara cert si ja es disposen de
dades de localitzacio, fals en cas contrari.

- native private GPSPosition gpsdGetLocation(): retornara la posicié actual en una
instancia de la classe GPSPosition.

- native private void gpsdFree(): aturara el receptor GPS i alliberara tots els recursos

de memoria de C.

Degut a la complexitat de JNI, els metodes nadius implementen funcionalitats molt simples.
Com podem observar, no hi ha cap metode que explicitament es connecti al receptor GPS.
Hem optat per anar comprovant si hi han dades disponibles cridant el métode

gpsdCheckConnection des de Java:

- GPSController: constructor per defecte de la classe que cridara al métode nadiu
gpsdInit.

- connect: metode bloquejant que iniciara un timer per anar comprovant si hi han dades
disponibles a través del metode nadiu gpsdCheckConnection. Retornara quan aquest
meétode retorni cert, 0 bé quan hagin passat 5 minuts (timeout).

- getCurrentPosition: si el sistema esta connectat, retornara I'Gltim valor del receptor
GPS.

- isConnected: métode que ens permetra conéixer si connect ha retornat perqué
efectivament hem pogut detectar suficients satel-lits i obtenir la nostra posicio, o be
perqué s’ha esgotat el timeout.

- finalize: meétode privat cridat pel recol-lector de brossa de Java quan un objecte esta a

punt de ser esborrat. L'utilitzarem per cridar a gpsdFree.

4.11.3 GPSController.c
Aquesta és I'Unica part del nostre projecte que no esta escrita en Java. Consta d’un conjunt

de funcions que han d’'implementar els métodes que s’han definit amb el modificar nadiu en

la classe GPSController.

Consta d’un sol arxiu que ha de ser compilat utilitzant 'SDK de maemo i instal-lat en el
directori /usr/1ib/jni/ de 'N810.

62 CAPITOL 4. DISSENY | IMPLEMENTACIO

Com hem comentat durant I'analisi, Liblocation és I’API amb la que haurem d’interactuar per

comunicar-nos amb el receptor GPS. Utilitza GLib, fet que ens obliga a realitzar certes crides
a funcions d’aquesta llibreria.

gpsdinit
En aquesta funci6 inicialitzarem la llibreria GLib i recuperarem una instancia del controlador
GPS que ofereix LibLocation. També calcularem els identificadors de classe i métode per

poder crear, més endavant, instancies de la classe GPSPosition des de JNI.

Crearem també un thread que executara un main loop de GLib en un context propi. Aix0 és
necessari perqué GLib esta dissenyada per ser utilitzades en programes amb un bucle de
gesti6 d’esdeveniments. Sense aquest thread no rebriem les dades de posicié perqué no

s’actualitzarien mai.

gpsdCheckConnection
Comprovara si I'estructura de dades que ens ofereix LibLocation ja disposa de valors actuals

de localitzacié. Retornara cert si és aixi, o fals en qualsevol altre cas.

gpsdGetLocation
Creara una nova instancia de la classe GPSPosition utilitzant els identificadors calculats

anteriorment, amb els valors de latitud i longitud extrets de l'estructura de dades de

LibLocation.

gpsdFree
Aturara el thread amb el main-loop i el controlador GPS. Alliberara també els recursos de

GLib necessaris.

4.12 Modul RFID

4.12.1 SerialBluetoothController

Tal com hem indicat en la fase d'analisi, el primer pas a realitzar és connectar-se fisicament
amb P'IDBlue utilitzant els métodes de control de Bluetooth que ofereix I'especificacio
JSR-82.

Aquesta primera part ha resultat un procés trivial si coneixem l'adreca MAC de I'aparell,
valor que podem recuperar des del controlador de la nostra aplicacio ja que forma part dels

camps obligatoris que I'usuari haura d’omplir per poder utilitzar el sistema.

Els meétodes necessaris per dur a terme aquest procés es troben en la classe

SerialBluetoothController:

63 CAPITOL 4. DISSENY | IMPLEMENTACIO

- SerialBluetoothController(String connectionURL): constructor de la classe,
necessita 'anomenada URL de connexi6. Aquesta no és més que un string amb la
seguent estructura: btspp://AABBCCDDEEFF:1;master=true.

- btsp:// indica que es tracta d’una connexid série sobre bluetooth.

- AABBCCDDEEFF haura de ser substituit pel valor de 'adreca MAC del dispositiu al qual
ens volem connectar.

- :1 és el canal de connexio.

- master=true indica que nosaltres som els iniciadors de la connexi6.

- getOutputStream: retorna un OutputStream de la connexid série establerta a partir de
’'URL subministrada.

- getInputStream: retorna un InputStream de la connexio serie.

. closeSerialConnection: tanca la connexi6 serie.

Com podem veure, aquesta és una classe totalment independent de I'IDBlue, i podria ser
utilitzada per establir una connexié amb qualsevol dispositiu Bluetooth que utilitzés un profile

serie.

4.12.2 IDBlueController
Aquesta classe sera la responsable d’enviar i rebre les comandes necessaries per llegir els

identificadors RFID. Utilitzara org.tzi.rfid.jidblue.IDBlue, el controlador existent de codi

lliure en Java per I'IDBlue.

El controlador ofereix un mecanisme d’enviament i recepcié d’una part dels missatges que
apareixen en les especificacions del producte [13]. Per sort, amb la part implementada en
tenim prou per poder recuperar un RFID en mode reactiu, és a dir, de manera asincrona

quan l'usuari premi el bot6 de I'IDBlue.

Precisament, hem hagut d’'implementar un nou metode d’inicialitzacié del mode reactiu
(reqSET_MODE_REACTIVE) que en el controlador original estava pensat per les primeres
versions de I'IDBlue i no funcionava correctament amb la versio 2.4 del firmware que té el

nostre dispositiu.

Un cop realitzat aquest canvi en el controlador, només ens resta implementar els seglents

meétodes:

- connect: obrira una connexié amb el dispositiu utilitzant els streams que ens proporcioni

la classe SerialBluetoothController.

- readRFID: el principal métode de la classe, ens permetra recuperar el segiient RFID que

llegeixi I'IDBlue de forma asincrona.

64

CAPITOL 4. DISSENY | IMPLEMENTACIO

. disconnect: tancara la connexi6 amb I'lDBlue

IDBlueController org.tzi.rfid.jidblue.IDBlue IDBlue (device)

1: start

>
2: reqSET_MODE_REACTIVE
>

5: incomingEventBlocked

7: reqREQ_START

9:reqTAG_ID

12: reqREQ_DONE

\/

13: stop

3: SET_MODE_REACTIVE

4: SET_MODE_REACTIVE ACK

6: BUTTON_PRESS

8: REQ_START

10: GET_TAG_ID

11: GET_TAG_ID

13: REQ_DONE

Maddul RFID. Diagrama de sequéncia d’una operacio de lectura readRFID

65

CAPITOL 4. DISSENY | IMPLEMENTACIO

Capitol 5. Proves i integracio

En aquest capitol es descriuen tot un seguit de proves que s’han dut a terme per avaluar el
sistema i comprovar que compleix amb els requisits exposats. Es provaran els diferents

components de forma individual, per acabar realitzant un test d’integraci6 de tot el sistema.

5.1 Proves

5.1.1 Modul GPS
Les proves del modul GPS han anat orientades a comprovar dos aspectes principals: que el

sistema era capag¢ de connectar-se al receptor GPS, i que les dades que ens proporcionava

sOn correctes.

Per comprovar el primer punt, vam crear la classe mabett.devices.gps.GPSTest, que
realitzava una crida sequencial als métodes oferts per GPSController. Si ens trobavem en
una zona a laire lliure, el sistema era capa¢c de retornar la nostra posicié en
aproximadament uns 4 minuts [11]. Execucions consecutives de la classe de prova un cop

haviem aconseguit recuperar la nostra localitzacio, es completaven en pocs segons.

En proves realitzades dins d’edificis, en canvi, s’exhauria el timeout sense haver recuperat

cap dada.

Per tal de comprovar el segon punt, vam comparar la posicié calculada per 'N810 amb la
posicié aproximada extreta de Google Maps (ja que no disposavem de cap altre receptor

GPS); coincidien amb un alt grau de precisio:

N810 Google Maps
Latitud 41.563381 41.563854
Longitud 1.996530 1.996508

66

http://maps.google.es/
http://maps.google.es/

67 CAPITOL 5. PROVES i INTEGRACIO

5.1.2 Modul IDBlue/RFID
Les proves del modul de lectura de RFID utilitzant I'IDBlue s’han centrat, novament, en os

punts: comprovar que es podia establir una connexid6 amb el dispositiu a distancies

prudencials i que els identificadors recuperats eren correctes.

Per comprovar el primer punt, vam crear una classe de prova, mabett.devices.bt.BTTest, que
cridava els metodes de la classe IDBlueController. Els resultats han estat satisfactoris, ja
que hem estat capacos de connectar-nos a un IDBlue situat a tres metres de distancia, un

valor més que suficient per cobrir les nostres necessitats.

La propia lectura de I'RFID, en canvi, necessita que I'IDBlue i I'etiqueta es trobin a no més
d’un o dos centimetres. Es un fet habitual en les etiquetes amb tecnologia de connexi6

passiva.

L’anic problema que hem tingut en el procés de connexid ha estat quan la bateria de I'IDBlue
es trobava baixa; en aquesta situacio, el procés de connexi6 fallava o s’interrompia al cap

d’uns segons. El problema se soluciona carregant de nou el dispositiu.

Per comprovar el segon punt, donat que no disposem de cap altre lector RFID, hem realitzat
una prova molt simple: hem comprovat que, una mateixa etiqueta llegida multiples vegades
retorna sempre el mateix identificador. Al seu torn, també hem comprovat que dues etiquetes
diferents tenen valors també diferents. Els resultats, en ambdods casos, han estat

satisfactoris.

5.1.3 Interficie grafica
Per tal de provar la interficie grafica d’'una manera aillada, ’hem iniciat fora de la plataforma

JADE utilitzant la classe mabett.Boot. Al seu torn, hem desactivat el suport GPS i Bluetooth i

ens hem centrat en comprovar els seglents punts:

- L’aplicacié és capag¢ d’iniciar-se sense cap fitxer de preferéncies en el sistema.

- L’aplicacié és capa¢ d’emmagatzemar les dades introduides en la vista de preferéncies
(nom d’usuari, identificador, métode de triatge escollit, etcétera) i recuperar-les en una
nova sessio.

- Totes les dades introduides durant un triatge amb metode START sén visibles en la
vista manual i corresponen efectivament als valors entrats.

. L’algorisme START se segueix de forma estricta, i I'estat assignat coincideix amb I'estat
que indica el protocol manual

- Es pot realitzar un triatge amb el métode START utilitzant només els dits.

Tots els tests van ser satisfactoris.

68 CAPITOL 5. PROVES i INTEGRACIO

5.2 Test d’integracio

Un cop comprovat el funcionament dels moduls per separat, hem realitzat un conjunt de
proves destinades a tot el sistema per observar que els moduls interactuen de manera

adequada dins de I'entorn de produccio.
S’han comprovat especificament els seguients aspectes:

« Un error en qualsevol dels moduls externs (RFID i GPS) en forma d'excepcié, no
provoca que l'aplicaci6 deixi de funcionar (per exemple, si no tenim dades GPS,
senzillament no seran emplenades; o si no aconseguim llegir I'RFID del pacient,
podrem llancar igualment 'agent TriageDataAgent).

- Els agents amb les dades dels pacients son llancgats a la plataforma

- Es pugui realitzar un procés de triatge amb el métode START en un temps inferior als
60 segons.

« L’aplicacié respon a totes les peticions de l'usuari de forma rapida (canviar de vista,

llancar I'agent, etc).

L’anic punt a comentar és el relacionat amb la velocitat del sistema. L'aplicacié tarda uns 10
segons en obrir-se per primera vegada, i uns 5 segons més en mostrar la vista de triatge per
primera vegada. Un cop iniciada I'aplicaci6, pero, la navegacio per totes les vistes és fluida i

no s’experimenten més alentiments.

La ra6 d’aquests alentiments I’'hnem de buscar a la maquina de Java utilitzada, cacaovm, o en
la velocitat de processament de I’'N810, perqué no s’experimenta aquest problema executant
I'aplicacié en un ordinador de sobretaula. En qualsevol cas, sén factors on no hi podem

intervenir.

Per tant, creiem que novament tots els resultats han estat satisfactoris.

69

CAPITOL 5. PROVES i INTEGRACIO

y u

Capitol 6. Conclusions i linies
d’ampliacio

Hem arribat a I'GItim capitol de la memoria i €s moment de fer un petit resum de tota la feina

feta.

A linici del projecte hem plantejat algunes de les limitacions que, des del nostre punt de
vista, presenten els métodes de triatge tradicionals. N'hem escollit un d’ells, START, i ens
hem proposat integrar-lo en un sistema informatic capa¢ d’aprofitar els avantatges que
ofereixen els dispositius mobils i altres tecnologies com la localitzaci6 GPS, l'etiquetatge

RFID o els sistemes d’agents.

Per desenvolupar aquesta idea, hem exposat els conceptes clau al llarg del capitol 2, que al
seu torn ens han permés afrontar I'etapa d’analisi amb uns coneixements sobre la matéria
suficients. Aixi, en el capitol 3 hem estat capagos d’enumerar els requeriments funcionals i

no funcionals que han comencat a donar forma al nostre projecte.

Ha estat també durant la fase d’analisi quan hem dividit el sistema en diferents moduls per

facilitar la feina que vindria a posteriori.

D’aquesta manera, en el quart capitol hem dissenyat i implementat un sistema en base als
requeriments exposats. Hem comencat dissenyant els aspectes més generals del I'aplicacid,

com la seva arquitectura, i hem acabat implementat tots i cadascun dels mdduls exposats.

En el cinqué capitol hem recollit tota la feina feta, 'hem provada de forma individual,
respectant les divisions establertes ja des de la fase d’analisi, i finalment també de forma

integra.

70

71 CAPITOL 6. CONCLUSIONS | LINIES D’AMPLIACIO

Ha arribat el moment, per tant, d’avaluar la feina feta.

- Hem implementat un assistent per al protocol de triatge START que és capa¢ de
preguntar de forma interactiva les dades que necessita per assignar un estat de triatge
a la persona que s’esta diagnosticant. L'usuari del sistema no ha de coneixer, per tant,
I’algorisme en si, només s’ha de limitar a contestar les preguntes.

- Hem implementat una segona interficie en la qual un usuari pot entrar de forma manual
totes les dades relacionades amb el pacient. Hem inclds una col-leccié de camps molt
amplia, que no sempre estan presents en les etiquetes de triatge tradicionals. A més,
hem incldos automaticament les dades de localitzaci6 GPS del pacient si aquestes es
troben disponibles.

- Hem incorporat les dues interficies en una sola aplicacié, dissenyada a més per poder
suportar altres metodes de triatge. La usabilitat ha estat un dels objectius que ens hem
marcat en el disseny de les interficies grafiques, i creiem que 'hem complert creant
interficies estructurades, minimitzant I'entrada de text i incorporant elements de
referéncia visual sempre que ens ha estat possible.

- Hem creat una estructura capa¢ d’emmagatzemar les dades de cada pacient,
independentment del métode amb el qual hagin estat recollides. No només podem
guardar un conjunt de dades, sin6 tot un historial de valors que poden anar variant al
llarg del temps. Malgrat no ser una funcionalitat que aprofitem en el nostre projecte, tota
aquesta informaci6 s’ha incorporat en un sistema intel-ligent com és un agent, facilitant
aixi una futura integracié amb altres sistemes medics basats en el mateix paradigma.

- Per tal d’identificar de manera Unica cada pacient, hem incorporat també la tecnologia
RFID, tant a la interficie grafica com a I'estructura de dades.

- Finalment, tot el sistema descrit ha esta dissenyat pensant en I’'N810, tenint en compte
els avantatges (GPS, pantalla tactil, etc) i els inconvenients (recursos limitats). Tot i aixi
el producte resultant es pot executar en qualsevol altra plataforma que tingui una
maquina virtual de Java. Bona proba d’aix0 és que tot el desenvolupament s’ha realitzat
en un ordinador de sobretaula que és capac¢ d’executar I'aplicacié de la mateixa manera

en com ho fa I'N810.

Arribats a aquest punt podem concloure que els objectius inicials s’han complert

satisfactoriament.

72

CAPITOL 6. CONCLUSIONS I LINIES D’AMPLIACIO

La feina, perd, no s’acaba aqui, i a continuacid® mostrem algunes linies d’investigacié que

han sorgit durant el desenvolupament del nostre projecte:

1.

4.

Creaci6 d’interficies de protocols de triatge diferents a START. Existeixen situacions
on s’han d’aplicar métodes de triage especifics, i el nostre sistema esta preparat per
soportar-los. Un exemple podria ser implementar el protocol START pediatric, una
versi6 d’START adaptada a menors, que té en compte simptomes diferents dels
adults.

Modificar la estructura de dades dels pacients per afegir-hi camps dinamics sobre els
tractaments preventius aplicats, o informaci6 sobre I'estat de radiaci6é i contaminacio
qguimica del pacient.

Tractar totes les dades que han estat recollides: implementar un servidor d’agents
capac d’analitzar i posar en comu la informacié de tots equips d’emergencia. Una
aplicacié immediata podria ser, a partir de les dades de localitzacié GPS de tots els
pacients i del seu estat, elaborar camins Optims de recollida i atenci6.

Integrar la nostra aplicaci6 en sistemes medics existents.

73

CAPITOL 6. CONCLUSIONS | LINIES D’AMPLIACIO

Bibliografia

(1)

(10)

(11)

(12)

W. Sacco, D. Navin, K. Fiedler, R. Waddell, W. Long, and R. Buckman. Precise formulation
and evidence-based application of resource-constrained triage. Acad Emerg Med, 12:759—
770, Aug 2005.

A. Garner, A. Lee, K. Harrison, and C. Schultz. Comparative analysis of multiple-casualty
incident triage algorithms. Ann Emerg Med, 38:541-548, Nov 2001.

Wikipedia. Global Positioning System [online]. June 2008. Available from: http:/

en.wikipedia.org/wiki/Global Positioning System.

Wikipedia. Radio-frequency identification [online]. June 2008. Available from: http:/
en.wikipedia.org/wiki/RFID.

Wikipedia. Software agent [online]. June 2008. Available from: http:/en.wikipedia.org/wiki/

Software agent.
[M. Benson, K. Koenig, and C. Schultz. Disaster triage: START, then SAVE—a new method of

dynamic triage for victims of a catastrophic earthquake. Prehosp Disaster Med, 11:117—124,
1996.

B. Spencer. Application User Interface Design Guide. Available from: http://www.moblin.org/

pdfs/MID_app_design guide.pdf.

P. M. Vieira-Marques, S. Robles, J. Cucurull, R. J. Cruz-Correia, G. Navarro, and R. Marti.
Secure integration of distributed medical data using mobile agents. IEEE Intelligent Systems,
21(6):47-54, 2006.

Maemo 4.0 architecture [online]. June 2008. Available from: http://maemo.org/development/

documentation/how-tos/4-x/maemo architecture.html.

Maemo 4.0 api references [online]. June 2008. Available from: http://maemo.org/

development/documentation/apis/4-0-x/.

Maemo Bugzilla bug 2878 [online]. June 2008. Available from: https://bugs.maemo.org/
show_bug.cqi?id=2878.
Baracoda. IDBlue. An efficient way to add RFID reader/encoder to bluetooth PDA & mobile

phones., December 2004. Available from: http://www.baracoda.ch/Bluetooth-

Barcodescanner/IDBlue.pdf.

74

http://en.wikipedia.org/wiki/Global_Positioning_System
http://en.wikipedia.org/wiki/Global_Positioning_System
http://en.wikipedia.org/wiki/Global_Positioning_System
http://en.wikipedia.org/wiki/Global_Positioning_System
http://en.wikipedia.org/wiki/RFID
http://en.wikipedia.org/wiki/RFID
http://en.wikipedia.org/wiki/RFID
http://en.wikipedia.org/wiki/RFID
http://en.wikipedia.org/wiki/Software_agent
http://en.wikipedia.org/wiki/Software_agent
http://en.wikipedia.org/wiki/Software_agent
http://en.wikipedia.org/wiki/Software_agent
http://www.moblin.org/pdfs/MID_app_design_guide.pdf
http://www.moblin.org/pdfs/MID_app_design_guide.pdf
http://www.moblin.org/pdfs/MID_app_design_guide.pdf
http://www.moblin.org/pdfs/MID_app_design_guide.pdf
http://maemo.org/development/documentation/how-tos/4-x/maemo_architecture.html
http://maemo.org/development/documentation/how-tos/4-x/maemo_architecture.html
http://maemo.org/development/documentation/how-tos/4-x/maemo_architecture.html
http://maemo.org/development/documentation/how-tos/4-x/maemo_architecture.html
http://maemo.org/development/documentation/apis/4-0-x/
http://maemo.org/development/documentation/apis/4-0-x/
http://maemo.org/development/documentation/apis/4-0-x/
http://maemo.org/development/documentation/apis/4-0-x/
https://bugs.maemo.org/show_bug.cgi?id=2878
https://bugs.maemo.org/show_bug.cgi?id=2878
https://bugs.maemo.org/show_bug.cgi?id=2878
https://bugs.maemo.org/show_bug.cgi?id=2878
http://www.baracoda.ch/Bluetooth-Barcodescanner/IDBlue.pdf
http://www.baracoda.ch/Bluetooth-Barcodescanner/IDBlue.pdf
http://www.baracoda.ch/Bluetooth-Barcodescanner/IDBlue.pdf
http://www.baracoda.ch/Bluetooth-Barcodescanner/IDBlue.pdf

75

(13)

(14)
(15)

(16)

(17)

(18)

BIBLIOGRAFIA

Baracoda. IDBlue. Programmers Serial Interface Specification, 2.4.2 edition, March 2006.
Available from: http://baracoda.com/baracoda/librairie-doc/ID-Blue-Communication-

Protocolo 820.pdf
JSR 82: Java™ APIs for Bluetooth [online]. Available from: http://jcp.org/en/jsr/detail ?id=82.

Standard widget toolkit [online]. June 2008. Available from: http://en.wikipedia.org/wiki/

Standard Widget Toolkit#Design.
Jalimo on Maemo [online]. Available from: https://wiki.evolvis.org/jalimo/index.php/

Maemo#Limitations [cited June 2008].

S. Northover and C. MacLeod. Creating Your Own Widgets using SWT. Object Technology
International, March 2001. Available from: http://www.eclipse.org/articles/Article-Writing
%20Your%200wn%20Widget/Writing%20Your%200wn%20Widget.htm.

S. Liang. The Java™ Native Interface. Programmer’s Guide and Specification. Sun

Microsystems, 1999. Available from: http://java.sun.com/docs/books/jni/download/jni.pdf.

http://baracoda.com/baracoda/librairie-doc/ID-Blue-Communication-Protocolo_820.pdf
http://baracoda.com/baracoda/librairie-doc/ID-Blue-Communication-Protocolo_820.pdf
http://baracoda.com/baracoda/librairie-doc/ID-Blue-Communication-Protocolo_820.pdf
http://baracoda.com/baracoda/librairie-doc/ID-Blue-Communication-Protocolo_820.pdf
http://jcp.org/en/jsr/detail?id=82
http://jcp.org/en/jsr/detail?id=82
http://en.wikipedia.org/wiki/Standard_Widget_Toolkit#Design
http://en.wikipedia.org/wiki/Standard_Widget_Toolkit#Design
http://en.wikipedia.org/wiki/Standard_Widget_Toolkit#Design
http://en.wikipedia.org/wiki/Standard_Widget_Toolkit#Design
https://wiki.evolvis.org/jalimo/index.php/Maemo#Limitations
https://wiki.evolvis.org/jalimo/index.php/Maemo#Limitations
https://wiki.evolvis.org/jalimo/index.php/Maemo#Limitations
https://wiki.evolvis.org/jalimo/index.php/Maemo#Limitations
http://www.eclipse.org/articles/Article-Writing%20Your%20Own%20Widget/Writing%20Your%20Own%20Widget.htm
http://www.eclipse.org/articles/Article-Writing%20Your%20Own%20Widget/Writing%20Your%20Own%20Widget.htm
http://www.eclipse.org/articles/Article-Writing%20Your%20Own%20Widget/Writing%20Your%20Own%20Widget.htm
http://www.eclipse.org/articles/Article-Writing%20Your%20Own%20Widget/Writing%20Your%20Own%20Widget.htm
http://java.sun.com/docs/books/jni/download/jni.pdf
http://java.sun.com/docs/books/jni/download/jni.pdf

76

BIBLIOGRAFIA

Annex 1. Java

Java és el nom amb qué es coneix el conjunt de software i especificacions desenvolupades
per Sun Microsystems que ofereixen un entorn de desenvolupament i implantacié multi
plataforma. Es tracta d'una tecnologia present en gairebé tot I'espectre de sistemes
informatics, des de plataformes encastades fins a servidors, passant per telefons mobils (on

és especialment utilitzada) i ordinadors personals.

Plataforma

La plataforma Java és el conjunt de software que Sun ofereix per desenvolupar i/o0 executar
programes escrits, principalment, en el llenguatge de programaci6 Java. No és especifica de
cap arquitectura o sistema operatiu, perd necessita que tant el motor d'execucidé (anomenat
maquina virtual) com el compilador (i una série de llibreries estandard relacionades) si
estiguin disponibles pel sistema. Complerts aquests requeriments, un programa Java

s'executara de forma idéntica en qualsevol sistema.
Existeixen diferents edicions de la plataforma:

- Java ME (Micro Edition): Especifica diferents profiles per dispositius amb limitacions
tecniques que impedeixen el suport a la totalitat de les llibreries de Java (per raons de
memoria, capacitat de procés, etc). Es habitual trobar implementacions de Java ME en
telefons mobils.

- Java SE (Standard Edition): Es tracta de la versio de propodsit general que utilitzen tant
ordinadors personals com servidors.

- Java EE (Enterprise Edition): Combina Java SE amb APIs utils per aplicacions client

servidor complexes en entorns empresarials.

77

78 ANNEX 1. JAVA

Llenguatge de programacio Java

La paraula Java s'utilitza també per referir-se al llenguatge de programacié Java, que va ser
presentat conjuntament amb la plataforma I'any 1995. La seva filosofia es pot resumir en 5

punts:

 Presentar una metodologia orientada a objectes

- "Write Once, Run Anywhere": permetre que un mateix programa, un cop compilat, sigui
executat en multiples sistemes operatius i arquitectures

- Oferir suport integrat d'accés a xarxes

- Permetre executar codi remot de forma segura

- Integrar conceptes d'altres llenguatges de programacidé orientat a objectes

(especialment C++).

El llenguatge no ofereix elements de baix nivell com punters. Té un model de memoria
relativament senzill gestionat de forma automatica per un garbage collector, el que fa

innecessari l'existéencia de métodes manuals per reservar o alliberar memoria.

Compilador de Java

La seva tasca és compilar codi font en I'anomenat bytecode, per ser interpretat més tard a la
VM (Virtual Machine) de Java. Aquest codi maquina intermedi presenta una semantica de
baix nivell que recorda al codi assemblador. Generalment, els compiladors només processen
codi escrit en Java, perd n'hi han que accepten altres llenguatges com Python, Ruby o

Groovy.

Existeixen també compiladors de Java que compilen el codi de forma estatica, és a dir,
directament a codi nadiu, com ho faria un compilador de C o C++. GCJ (GNU Compiler for
Java) n'és un exemple. Ofereixen un millor rendiment en comparacié amb les aplicacions
executades a la maquina virtual. Per altra banda, perd, es perd la possibilitat d'executar el

mateix binari en cap altre arquitectura, fet que entra en conflicte amb la filosofia de Java.

Maquina virtual de Java (Java VM)

La maquina virtual és considerada el nucli de la plataforma, ja que té la capacitat
d'interpretar i executar arxius bytecode. Les primeres implementacions tan sols interpretaven
bytecode, de manera que el rendiment dels programes era inferior a l'obtingut amb altres
llenguatges com C o C++. Versions més actuals utilitzen diverses técniques d'optimitzacié

per solucionar el problema.

http://gcc.gnu.org/java/
http://gcc.gnu.org/java/

79 ANNEX 1. JAVA

Una d'aquestes técniques, l'anomenada compilacié JIT (just-in-time), permet traduir
bytecode en codi nadiu en temps d'execucié (de la mateixa manera que ho faria un
compilador estatic de Java). Aixo provoca que, després d'un periode inicial, el rendiment de

I'aplicaci6 sigui comparable al de programes nadius.

Una altra tecnica, anomenada recompilacié dinamica, és capa¢ d'analitzar el funcionament
de l'aplicaci6 en temps d'execucid, i optimitzar aquelles parts del codi que considera
critiques (generalment bucles). Generalment, aquest métode permet un rendiment superior a

I'obtingut amb una compilaci6 estatica.

Llibreries de classes Java

Degut al fet que Java és independent del sistema operatiu on s'executi, les aplicacions Java
no poden dependre de llibreries existents. En comptes d'aix0d, la plataforma oferix un conjunt

propi de llibreries estandard (API) que duen a terme les seguents funcions:

+ Proveir als programadors d'un conjunt d'estructures de dades, tipus de dades, i
metodes associats tipics de qualsevol llenguatge modern, tals com mantenir un llistat
d'elements o treballar de forma fluida amb strings.

. Oferir una interficie abstracta a tasques especialment dependents del maquinari i el
sistema operatiu, com l'accés a la xarxa (java.net) o al sistema de fitxers (java.io).

- Quan el sistema on corre la plataforma real no suporta algunes caracteristiques de
Java, permetre emular-ne el comportament amb els recursos disponibles, o bé oferir un

mecanisme consistent per tal de conéixer les limitacions.

JNI

JNI (Java Native Interface) és un framework que permet que codi Java executant-se en una
JVM pugui cridar i ser cridat per aplicacions nadiues (programes especifics d’un sistema

operatiu i una arquitectura) i llibreries escrites en altres llenguatges, com C i C++.

JNI s’acostuma a utilitzar per accedir a recursos que no ofereixen a les llibreries de classe, o
bé per implementar funcions d’alt rendiment utilitzant llenguatges de baix nivell (C o
assemblador). Internament, algunes classes de Java depenen d’aquestes funcions (1/O,

xarxa o so entra d’altres), perd és un fet transparent a 'usuari.
Abans d’utilitzar JNI, haurem de tenir en compte que:

« No és trivial i necessita un esfor¢ considerable per entendre el seu funcionament.

80 ANNEX 1. JAVA

- Errors en la seva utilitzacié6 poden desestabilitzar tota la JVM i causar problemes molt
dificils de reproduir i de depurar.

- Una aplicacié que necessiti utilitzar JNI perd la portabilitat que ofereix Java.

+ Dins del codi JNI no hi ha recol-leccié6 de memoria automatica, amb la qual cosa fa falta

gestionar-la de manera manual.

Accés de Java a JNI

En JNI, els métodes nadius sén implementat en forma de funcions en fitxers C o C++. Quan
des de Java invoquem aquests metodes, hi passem de forma automatica un punter a una
interficie per accedir a la JVM, un altre punter que fa referéncia a I'objecte que ha fet la crida

i tots aquells arguments que necessitem.

Per exemple, aquest seria el template que hauriem d’utilitzar per implementar un métode

“methodName” de la classe “ClassName” del paquet “package.name” al qual li passem un

string.

//C code
JINIEXPORT void JINICALL Java_ package_name_ClassName_methodName
(INIEnv *env, jobject obj, jstring javaString) {
//Get the native string from javaString
const char *nativeString = (*env)->GetStringUTFChars(env, javaString, 0);

//Do something with the nativeString

//DON'T FORGET THIS LINE!!!
(*env)->ReleaseStringUTFChars(env, javaString, nativeString);

Per a més informacié, consulteu el manual de referéncia de JNI [18].

Versions

A Abril de 2008, Java 6 és l'Ultima versi6 estable. Sun ofereix dues versions de cadascuna
de les plataformes (SE, ME, EE):

- Java Runtime Environment (JRE): conjunt de components format per la maquina
virtual i les llibreries. Es tot el que necessitem per executar aplicacions Java al nostre
sistema.

- Java Development Kit (JDK): conté totes les eines necessaries per desenvolupar
aplicacions en Java. Esta format pel compilador, depurador i altres eines de utilitat

diversa, juntament amb una copia completa del JRE.

81 ANNEX 1. JAVA

Llicéncia
La plataforma Java de Sun havia estat una plataforma propietaria des dels seus inicis.

Malgrat part del codi font estava disponible, els termes de la llicencia restringien en gran

mesura la seva utilitzacio.

L'any 2006, Sun va anunciar que Java esdevindria software gratuit i de codi obert. En una
primera instancia, va alliberar el codi de la seva maquina virtual (HotSpot). A comencaments
de l'any 2007, Sun va fer el mateix amb gairebé la totalitat de la llibreria de classes (en el
que va anomenar OpenJDK Class Library). Algunes parts de la plataforma, pero, encara no
han estat alliberades ja que Sun no en té tots els drets. Actualment, tant Sun com la

comunitat Open Source esta treballant en substituir aquests components per altres de codi

obert.

Annex 2. Instal-lacid i
configuraci6 de I’N810

En aquest annex volem descriure els passos necessaris per configurar des de zero un

dispositiu N810 per poder ser utilitzat en el nostre projecte.

Atencio: aquest procés elimina tota la informacié de la particié principal de ’'N810, procediu

amb precaucio.

Actualitzacio del firmware

Les actualitzacions del sistema operatiu de 'N810 es realitzen actualitzant el firmware de
I'aparell, que correspon a la particié principal de 256 MB on resideix tot el sistema. Si ve és
possible instal-lar i realitzar actualitzacions menors utilitzant el gestor de paquets de maemao,

les grans actualitzacions requereixen una actualitzacié del firmware.

Descarrega del firmware

En primer lloc he de dirigir-nos a la pagina que Nokia ofereix per descarregar-nos la ultima

versio del sistema: hittp://tablets-dev.nokia.com/nokia N810.php

Se’ns demanara que introduim l'adreca MAC de la tarja de xarxa de I’'N810 abans de
procedir. Un cop introduida, se’ns mostrara un llistat amb totes les versions del firmware
publicades; escollirem al més actual i la descarregarem (a juny del 2008, I'Gltima versio és
OS 2008 2.2007.51-3, i ocupa 135 MB).

Descarrega de la utilitat d’actualitzacio
Es necessari disposar d’una aplicacio, disponible també des del mateix web http://tablets-

dev.nokia.com/d3.php, per flashejar 'N810 amb el firmware descarregat. Només fa falta que

descarreguem la versidé que es correspongui amb el nostre sistema operatiu i la desem al

mateix directori on hem descarregat el firmware.

82

http://tablets-dev.nokia.com/nokia_N810.php
http://tablets-dev.nokia.com/nokia_N810.php
http://tablets-dev.nokia.com/d3.php
http://tablets-dev.nokia.com/d3.php
http://tablets-dev.nokia.com/d3.php
http://tablets-dev.nokia.com/d3.php

83 ANNEX 2. INSTAL-LACIO | CONFIGURACIO DE L'N810

Actualitzacié
Amb la bateria de 'N810 ben carregada, apagar el dispositiu i connectar-lo al port USB de

I'ordinador. A continuaci6, executar la comanda:

$./flasher-2.0 -F <<nom de 1’arxiu de firmware >> -f --enable-rd-mode -R

Quan se’ns mostri el missatge “Suitable USB device not found, waiting”, encendre 'N810 tot
prement el bot6 de canvi de finestra. Si tot ha anat bé, hauria d’aparéixer un output semblant

al seguent:

SW version in image: RX-44_2008SE_2.2007.51-3_PR_MRO
Image 'kernel', size 1529984 bytes
Version 2.6.21.0-2007490ss02
Image 'initfs', size 1954560 bytes
Version 0.95-70
Image 'rootfs', size 137625600 bytes
Version RX-34+RX-44_2008SE_2.2007.51-3_PR_MRO
Image '2nd', size 8192 bytes
Valid for RX-44: 0801, 0802, 0803, 0804, 0805, 0806, 0901, 0902
Version 1.1.11-1
Image 'xloader', size 9216 bytes
Valid for RX-44: 0801, 0802, 0803, 0804, 0805, 0806, 0901, 0902
Version 1.1.11-1
Image 'secondary', size 99968 bytes
Valid for RX-44: 0801, 0802, 0803, 0804, 0805, 0806, 0901, 0902
Version 1.1.11-1
Suitable USB device not found, waiting
USB device found found at bus 005, device address 006-0421-0105-02-00
Found device RX-44, hardware revision 0805
NOLO version 1.1.7
Version of 'sw-release': RX-44_2008SE_2.2007.50-2_PR_MRQ
Sending xloader image (9 kB)...
100% (9 of 9 kB, avg. 3000 kB/s)
Sending secondary image (97 kB)...
100% (97 of 97 kB, avg. 10847 kB/s)
Flashing bootloader... done.
Sending kernel image (1494 kB)...
100% (1494 of 1494 kB, avg. 12555 kB/s)
Flashing kernel... done.
Sending initfs image (1908 kB)...
100% (1908 of 1908 kB, avg. 12896 kB/s)
Flashing initfs... done.
Sending and flashing rootfs image (134400 kB)...
100% (134400 of 134400 kB, avg. 7033 kB/s)
Finishing flashing... done
The device is now in R&D mode

84 ANNEX 2. INSTAL-LACIO | CONFIGURACIO DE L'N810

Root

La primera vegada que encenem I'N810 després d’actualitzar el sistema, ens demanara un

conjunt de dades de configuraci6é d’'idioma, hora, xarxa, etc.

Com que hem activat el mode R+D en el dispositiu, podrem entrar com a root utilitzant la
comanda “sudo gainroot”. No és aconsellable deixar activat aquest mode, aixi que el primer

qua farem sera modificar I'script gainroot per poder utilitzar-lo també sense el mode R+D.

Obrirem I'arxiu /usr/sbin/gainroot i canviarem la linia:

MODE=enabled " /usr/sbin/chroot /mnt/initfs cal-tool --get-rd-mode"

per:

MODE=enabled

Finalment, des del nostre ordinador desactivarem el mode R+D de la mateixa manera que

hem actualitzat el firmware, perd utilitzant la comanda:

$./flasher-2.0 --disable-rd-mode

Instal-lant nous paquets de software

Des de I’'N810, podem visitar la pagina http://gronmayer.com/it per instal-lar automaticament
tots aquells repositoris que ens interessin. En el nostre cas, necessitem instal-lar el del

projecte Jalimo per instal-lar Java. Ho podem fer a través d’aquest web o visitant la pagina

del projecte: https://wiki.evolvis.org/jalimo/index.php/Maemo.

Jalimo
Podem instal-lar tots els paquets necessaris per tenir un entorn operatiu de Java (cacaovm,

GNU classpath i llibreries SWT) amb la comanda:

$ apt-get install jalimo-swt-example

AvetanaBT
Malauradament no hi ha cap repositori amb una versié compilada d’AvetanaBT. Ens haurem

de descarregar les fonts i compilar-les en 'SDK de maemo. La pagina del projecte és http://

sourceforge.net/projects/avetanabt/, i un cop compilat hauriem d’obtenir dos arxius que

haurem de copiar al nostre N810:

- avetanaBT.jar: el copiarem a /usr/share/java/

+ libavetanaBT.so: el copiarem a /usr/1ib/jni/

http://gronmayer.com/it
http://gronmayer.com/it
https://wiki.evolvis.org/jalimo/index.php/Maemo
https://wiki.evolvis.org/jalimo/index.php/Maemo
http://sourceforge.net/projects/avetanabt/
http://sourceforge.net/projects/avetanabt/
http://sourceforge.net/projects/avetanabt/
http://sourceforge.net/projects/avetanabt/

85 ANNEX 2. INSTAL-LACIO | CONFIGURACIO DE L'N810

JADE

Per instal-lar JADE, simplement haurem de descarregar la versié estandard compilada del

framework des de la pagina web del projecte: http://jade.tilab.com/download.php

Un cop descarregat, necessitarem copiar a ’'N810 els seglients arxius, preferiblement a un

directori de I'estil /usr/local/jade:

commons-codec-1.3.jar
http.jar

iiop.jar
jade. jar
jadeTools. jar

Script d’execucié
Per tal d’executar JADE a l'inici del sistema només haurem de crear un script a /etc/rc5.d/

que executi la seglient comanda:

java -cp /usr/local/jade/commons-codec-1.3.jar:
/usr/local/jade/http. jar:
/usr/local/jade/iiop. jar:

/usr/local/jade/jade. jar:
/usr/local/jade/jadeTools. jar
jade.Boot >/var/log/jade.log &

Problemes amb missatges de consola incomplets
Els missatges de registre que JADE imprimeix per pantalla apareixen incomplets, hi manca

la informacié de la classe i el métode que ha realitzat la petici6é de log.

11/06/2008 12:12:18 <unknown> <unknown>

No és un problema greu, perd I'explicacié és la seguent (informacié extreta de [http:/
java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html):

"[...] For this second set of methods [void warning(String msg)], the Logging framework will
make a "best effort" to determine which class and method called into the logging framework
and will add this information into the ILogRecord. However, it is important to realize that this
automatically inferred information may only be approximate. The latest generation of virtual
machines perform extensive optimizations when JITing and may entirely remove stack

frames, making it impossible to reliably locate the calling class and method."

La nostra maquina virtual utilitza, efectivament, la compilacié JIT per executar els métodes

de java de forma nadiua. Per tant, aquesta podria ser la causa.

http://jade.tilab.com/download.php
http://jade.tilab.com/download.php
http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html
http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html
http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html
http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html

Annex 3. Disseny d’icones per la
interficie

En el desenvolupament de I'aplicaci6 hem dissenyat un conjunt nombroés d’icones i imatges
amb l'objectiu de facilitar als usuaris la utilitzacié de la nostra interficie. En aquest annex

mostrem totes les icones creades, classificades segons la vista on s’han utilitzat.

3.1 Icones dels menus
[LLLRLUELLTY | J l

|

Notes General Information Personal Data Body injuries

D

Confirm Triage Tag Preferences

3.1.1 Obres originals
- General Information: http://commons.wikimedia.org/wiki/Image:Star of life.svg

« Personal Data: http://commons.wikimedia.org/wiki/Image:Gnome-preferences-desktop-

personal.svg
- Confirm: http://commons.wikimedia.org/wiki/Image:Articulo _bueno.svg

86

http://commons.wikimedia.org/wiki/Image:Star_of_life.svg
http://commons.wikimedia.org/wiki/Image:Star_of_life.svg
http://commons.wikimedia.org/wiki/Image:Gnome-preferences-desktop-personal.svg
http://commons.wikimedia.org/wiki/Image:Gnome-preferences-desktop-personal.svg
http://commons.wikimedia.org/wiki/Image:Gnome-preferences-desktop-personal.svg
http://commons.wikimedia.org/wiki/Image:Gnome-preferences-desktop-personal.svg
http://commons.wikimedia.org/wiki/Image:Art%C3%ADculo_bueno.svg
http://commons.wikimedia.org/wiki/Image:Art%C3%ADculo_bueno.svg

87 ANNEX 3. DISSENY D’ICONES PER LA INTERFICIE

3.2 Icones del protocol START

_-— f.“
ian R

Pulse
Breath Walking

<

BPM

Capillar refill
Retry breath

Mental status

3.3 Icones dels controls

Right Left Down Up

Add Substract

88

ANNEX 3. DISSENY D’ICONES PER LA INTERFICIE

Firmat: Xavier Jurado Cristobal.
Bellaterra, juny de 2008

89

Resum

Els sistemes d’atenci6 medica en situacions de pérdues humanes massives
necessiten classificar un numero molt elevat de victimes en un temps limitat i amb
pocs recursos disponibles. Els métodes classics es basen en una etiqueta de triatge
de paper on el personal d’emergéncies anota I'estat del pacient juntament amb una
quantitat reduida d’informaci6. En aquest projecte descrivim ['analisi, disseny i
implementacié d’interficies grafiques per dispositius mobils pel protocol de triatge
START, per ser utilitzades pels equips d’emergéncia. Els components del projecte
inclouen un dispositiu portatil Nokia N810 amb connexi6 GPS, i IDBlue, un lector
d’etiquetes RFID per Bluetooth.

Resumen

Los sistemas de atencibn médica en situaciones de pérdidas humanas masivas
necesitan clasificar un numero muy elevado de victimas en un tiempo limitado y con
pocos recursos disponibles. Los métodos clasicos se basan en una etiqueta de papel
donde el personal de emergencias anota el estado del paciente juntamente con una
cantidad limitada de informacién. En este proyecto describimos el andlisis, disefio y
implementacion de varias interfaces graficas para dispositivos méviles del protocolo de
triage START, para ser utilizadas por los equipos de emergencias. Los componentes
del proyecto incluyen un dispositivo portatil Nokia N810 con conexién GPS, y IDBlue,

un lector de etiquetas RFID por Bluetooth.

Abstract

Medical care at mass casualty incidents requires rapid triage of an overwhelming
numbers of victims, in a limited time and with little resources available. Traditional
systems rely on a paper triage tag on which rescuers and medical providers mark the
patient’s triage status and record limited information. In this project, we describe the
analysis, design and development of handheld device oriented graphical user
interfaces based on START triage method for use by rescuers responding to disasters.
The components of this project includes a Nokia N810 mobile device with GPS

capabilities and a IDBlue, a Bluetooth based RFID reader.

