Universitat
Autonoma
de Barcelona

etse)

Planificacion y gestion de las herramientas de SCM

aplicadas a un proyecto de desarrollo

Memoria del proyecto

de Ingenieria Informatica
Realizado por:

Robert Garcia Atserias
Y dirigido por:

Xavier Binefa Valls

El SOtasignat,c.coceeeivinirininininicieieiceeeeeeecscecssan,

Professor/a de 1'Escola Tecnica Superior d'Enginyeria de la UAB,

CERTIFICA:

Que el treball a que correspon aquesta memoria ha estat realitzat sota la seva
direcci6 per en

I per tal que consti firma la present.

SIgNAt: o,
Bellaterra, & (T de 200.....

Agradecimientos:

Teniendo en cuenta que me encuentro al final de un ciclo académico,
seria injusto dedicar mis agradecimientos solo a las personas que me han
ayudado en la elaboracion de este proyecto, dicho esto debo agradecer
especialmente el haber llegado donde he llegado a mis padres y
hermano, puesto que sin ellos seguro que todo esto no hubiera sido posible.

Agradezco también a mi primo Carlos Garcia, toda la ayuda
académica y extra-académica que me ha aportado estos ultimos afios.

A Cristina Vélez le debo los animos aportados en la fase final de mi
carrera, sin ella tampoco hubiera sido posible.

Nunca podré estar suficientemente agradecido a Ricard Burriel, quien
me ha aportado todos los conocimientos que tengo en este sector.

Y a muchos otros que no menciono, pero no por ello menos

importantes:

Muchas Gracias

INDICE

L. INtrOdUCCION: ... e 8
1.1. Introduccion y objetivos del proyecto:................ccooiiiiiiiiiciiinnnn, 8
1.1.1. Fase de diSEA0 .uiiuiiiiiii ittt e e 9
1.1.2. Fase de implementacionccooviiiiiiiiiii i 10
1.1.3. Fase de correccidn de defectosc.vvviiiiiiiiiiiiiicicee e, 10
1.2. Objetivos y plande lamemoria..............ccciiiiiiiiiiic s 11
1.3. Definiciones y abreviaciones:coooii i 13
2. Fundamentos teodricos y herramientas utilizadas............................. 14
2.1. Base de datos de las actividades:...............cooiiie 14
2.2. Control de Versiones: ...ttt e 16
2.3. Control de versiones de documentos: ... 26
3. Escenarioaautomatizar ... 27
3.1. Dependencias del Proyectoc.oooiiiiiiiiii i 32
3.2. Automatizacion de las "Releases”c.cccciiiiiiiiiiiiic i, 34
3.3. Automatizacion del desarrollo...............ccoiviiiiiiii e 37
3.3. 1. SeleCt ProjeCt .t s 38

GG 072 11 o o e o 1R PP 40
3.3.3. CheCKOUL .o s 43

G I < S = (V2= o o S U 1 5 1 1 45
3.3.5. REDASE o s 47

G TG TR | (=T | =) = PP 53
3.3.8. PO PONE i s 57
3.4. Reports AUtOMALICOS...........ccoiiiiii 59
3.5, Schedule. ... 60
4. Conclusiones y vias de continuidad....................cc oo, 61
5. Bibliografia y referéncias..............ccccoiiiiiiiiiiiic 64
T X 3 1= o T 65
6.1. ClearQuest Datasheetco i 65
6.2. ClearCase Datasheet ... 68
6.2. ClearCase Datasheet ... 69

1. Introduccion:

1.1. Introduccion y objetivos del proyecto:

El desarrollo de un producto de software, es cada vez mas complejo, el tamafio del
coédigo es mayor, esto hace que el producto sea por un lado mas inestable, puesto que
cuantas mas lineas de codigo contenga, mas errores habra en este, por otro lado, el
cédigo se hace menos trazable, y mas inconsistente. El nimero de desarrolladores
aumenta, hecho que conlleva a un coédigo con redundancias si no hay una buena
comunicacién entre los desarrolladores, por otro lado, el desarrollo distribuido, es cada
vez mas usual, y esto requiere a su vez, una correcta sincronizacién entre todos los

centros que desarrollen un mismo proyecto.

Por todo esto, es fundamental tener claro el papel que desempeiiara el SCM (Software

Configuration Management), dentro del marco de nuestro proyecto.

PRINCIPIOS DE SCM:
SCM es el encargado de controlar las modificaciones efectuadas en el software, con
el fin de garantizar una correcta trazabilidad del proyecto, y un facil mantenimiento

del mismo.

Cuando hablamos de controlar los cambios en el desarrollo del software, nos
referimos a conocer: quien ha realizado cada modificacion, que modificacion ha
realizado, y porqué la ha realizado. Gracias al conocimiento de todo esto, podemos
obtener mejores versiones del producto, y por supuesto, cuantas mas versiones

tengamos de un producto, mejor sera el resultado final del mismo.

Nuestro proyecto tratara de asegurar el correcto cumplimiento del proceso de
desarrollo de SW, por tanto, antes de conocer que se puede mejorar, vamos a tener

una visién global de las partes que forman este desarrollo.

1.1.1. Fase de diseno

La fase de disefio de un proyecto es aquella en que se toman las principales decisiones
en cuanto a disefio del mismo, herramientas a utilizar (Control de versiones del SW,
control de versiones de Documentos, bases de datos de actividades y defectos,

entorno de desarrollo...), y politicas que definen como usar estas herramientas.

Todas estas decisiones afectaran a todos los desarrolladores, y por tanto, deben estar
debidamente documentadas. Esta documentacion a su vez permanecera almacenada, y
debidamente versionada, bajo un control de versiones especifico para documentos. Por
otro lado, mientras el proyecto avance, y se vaya creando nueva documentacion, ésta

sera adjuntada en el mismo directorio, dentro del dicho control de versiones.

En esta primera fase del proyecto, las tareas a desarrollar seran debidamente definidas,
una vez hecho esto, dichas actividades seran insertadas en una base de datos, cuya
Unica funcionalidad sera la de tener el estado de las actividades, junto a la informacién
relacionada con éstas, bajo un control debidamente versionado, y teniendo en
cualquier momento acceso a la informacion en cuanto al estado de la actividad se

refiere.

A la vez que estas actividades son definidas, se van asignando a los correspondientes
desarrolladores, esto nos permitird facilmente reasignar actividades en cualquier
momento del proyecto, asi como consultar el trabajo de cada desarrollador, la

sobrecarga de éstos, asi como tener una vision global del estado del proyecto.

Para finalizar con las herramientas necesarias para desarrollar un proyecto, no

podemos dejar atras el control de versiones del SW.

En la fase de disefio, no Unicamente nos quedaremos definiendo la herramienta a
utilizar, sino que también debemos definir las politicas que deberan seguir los

desarrolladores a lo largo del periodo de implementacion del proyecto.

1.1.2. Fase de implementacion

En esta fase del proyecto, el control de versiones del SW, debe tener claramente
definidas las politicas a seguir por parte de los desarrolladores, mientras que la base
de datos de actividades y el control de versiones de la documentacion seguirdn

recibiendo nuevas entradas.

Debido a esto, podemos llegar a la conclusién que es en la fase de desarrollo, en la
que las aplicaciones anteriormente mencionadas, toman mayor importancia,
implicando esto, que es la fase mas susceptible a errores humanos, y a su vez, la fase

en la que mayor claridad debemos tener.

Es por esto, que para garantizar esta trazabilidad, y evitar los errores humanos,

debemos garantizar el correcto procedimiento en la utilizacién de dichas herramientas.
1.1.3. Fase de correccion de defectos

Una vez el proyecto esta desarrollado, se entrega al equipo de testeo, encargado de
detectar todos los errores de codigo o disefio, que provocan un incorrecto

funcionamiento del producto.

Este equipo, una vez detecta un error, lo introduce en la base de datos de defectos,
posteriormente, el lider del proyecto, se encarga de asignar el defecto a algun

desarrollador, que a su vez lo corregira para una posterior version del mismo.

Si tomamos un defecto como si fuera una actividad a desarrollar, nos encontramos de
nuevo en la fase de desarrollo, y por tanto, debemos tener en cuenta la importancia

gue tiene que éstas correcciones sean de nuevo debidamente versionadas.
Por tanto, en esta fase, es también sumamente importante la utilizacién de una serie

de herramientas que nos garanticen trazabilidad en el cédigo, y nos minimicen al

maximo la introduccion de nuevos errores.

10

1.2. Objetivos y plan de la memoria

Una vez tenemos una vision global del proceso de creacidon de una aplicacién, vamos a

definir los objetivos de nuestro proyecto.

Dada la importancia que hemos observado que tiene mantener el cédigo estable,
trazable, y por tanto rigurosamente versionado y documentado, vamos a definir una
serie de politicas que nos lo garanticen, y una serie de herramientas que nos

aseguraran el cumplimiento del proceso.

El primer punto a tener claro es, por tanto, decidir que herramientas deberemos
utilizar, y segun estas herramientas, definiremos las diferentes politicas a segquir

dentro de dichas herramientas. Esto lo veremos en el punto 2 de esta memoria.

Una vez definamos las herramientas a utilizar, lo siguiente que deberiamos hacer és

asegurar el cumplimiento de estas politicas.

En un proceso donde el nimero de desarrolladores es elevado, y su ubicacidn dispar,
cualquier error puede tener graves repercusiones, de ahi que debamos enfatizar en

este punto.

Con la finalidad de garantizar que el proceso es robusto, definiremos una serie de
herramientas, con las que el desarrollador deberd interactuar, de este modo, al no
actuar directamente sobre las bases de datos, controles de versiones, etc. se reducen

notablemente los posibles errores humanos introducidos por los desarrolladores.

Este apartado constituird el grueso de nuestro proyecto, el disefio de las herramientas
asi como su informacion desarrollada, seran ampliamente explicados en el tercer

apartado de esta misma memoria.

Finalmente, y no por ello menos importante, nos encontramos con la informacién
relacionada con el desarrollo de un proyecto, y con los informes de la evolucion del
mismo, en ellos, la informacién debe ser clara, concisa, y por supuesto, sin errores,
para ello también se ha desarrollado una herramienta especifica, que sera explicada
también en el tercer apartado de esta memoria, junto con las demas herramientas de

automatizacion.

11

Dicho esto, podemos observar que nuestro objetivo es realizar una herramienta, que
haciendo de nexo, tal y como se muestra en la siguiente figura, entre todas estas
aplicaciones y el desarrollador, realice de forma automatica las operaciones que

deberia realizar manualmente el desarrollador.

Control de

Versiones Actividades Defectos

Requerimientos

Saber RM Perforce ClearQuest Saber DM

Herramienta a desarrollar

Desarrollador

Figura 1

Entorno de la aplicacién

Como podemos observar en la figura anterior, no hemos considerado el hecho que la
herramienta opere directamente con la base de datos de Requerimientos, pues no se
puede definir implicitamente un automatismo para ella, considerando que la frecuencia
de acceso a esta base de datos no es la misma para todas las actividades, ni en todos
los momentos, es decir, no podemos determinar en ningun caso, los documentos que
debe consultar el desarrollador para implementar una determinada actividad, es por

esto que las consultas a esta base de datos las hara el usuario de forma manual.

12

1.3. Definiciones y abreviaciones:

Término Descripcion

SCM Software Configuration Management
UCM Unified Change Management

Saber DM Base de datos de Defectos

Saber RM Base de datos de Requerimientos
ClearQuest Base de datos de Actividades
Perforce Control de versiones del proyecto
Acti Time Base de datos para controlar el tiempo de las actividades
Share Point Base de datos de documentos
Baseline Versidn de cddigo etiquetada.
Release Version de codigo lista para entregar

Peer Reviewer

Persona asignada para revisar la implementacion de un

desarrollador.

13

2. Fundamentos teodricos y herramientas utilizadas.

En este apartado hablaremos de las herramientas utilizadas en el desarrollo del
proyecto y de los requerimientos que debemos tener en cuenta en el momento de su
eleccion, y a su vez, de como automatizar los procesos de interaccion entre ellas,

objetivo principal de este proyecto.

2.1. Base de datos de las actividades:

Una mala comunicacion entre los desarrolladores, una mala coordinacién, o bien la
falta de una debida priorizacion en las tareas, puede concluir en que se detecten

redundancias o bien informacion inconsistente en la entrega de un proyecto.

Utilizando una base de datos para almacenar las actividades a desarrollar, y su estado,
podemos tener acceso a de forma clara y rapida a la informacién, permitiendo corregir
los anteriormente mencionados errores, y facilitdindonos ademas la toma de decisiones

de una manera clara y rapida.

Gracias a la utilizacion de esta herramienta, podemos, en cualquier momento del
proyecto conocer el estado de las actividades desarrolladas, y las que estan todavia

pendientes de implementar, documentar o disefar.

En definitiva, usar una base de datos especifica para las actividades, ayuda a la
creacion del proyecto eliminando los errores que ocurririan manejando toda esta
informacion de forma manual, mejora la comunicacién entre los desarrolladores,
mejora la calidad del software, y se puede tener una visidon del proyecto en cualquier

estado de tiempo.

En nuestro caso, como base de datos de actividades, hemos utilizado la herramienta
de IBM, Rational ClearQuest.

Esta herramienta permite la creacion de un esquema asociado a cada proyecto, pues si

bien los requerimientos para un proyecto no son los mismos que para otro, la

informacion de sus actividades también varia.

14

Por otro lado, esta herramienta permite que los desarrolladores hagan sus consultas
personales, asi como al administrador poner queries predefinidas, que seran vistas por

todos los desarrolladores asociados al proyecto.
La aplicacion estara almacenada en un servidor, al que todos los desarrolladores
tendran acceso, y las restricciones vendran dadas por los propios grupos creados

dentro de la misma aplicacion.

A continuacién podemos ver un ejemplo de esta base de datos:

B, Rational ClearQuest - [admin (My Tasks (Defect))]

[CJFle Edit view actions Query Window Help

i | | & El BunOuey | @8] S| dewbsleat ¥ Rl#] ©[m
x| I = T —

=/ {23 Workspare: Queries, Chart cq2saber database Delivered
=3 Personal Queries ADMIMO0000004 cq2saber erar contral ESatserft Deliversd
[T My Tasks ADMIMNOD000025 Perfarce scripts ESAtserRt Delivered
=-E£3 Public Queries ADKIMNODD00023 Wik Calendar ESAtserR Fostponed
@ All Postponed ADMINDOD00029 pastpone soript ESAtzerR Deliversed
@ Al Resolved ADMIMNO0000039 Seripts and Intearation branches for SE3 ESAtzerR Deliversd
T Al Tasks ADMINODON0042 SOAP App for scripts EShtserh Deliversd
5 all Unrsschved ADMINDOO0D043 P Soripts ESArsoifi Dielvered
ADMINDODODD44 S04F &pp Doc ESAtzerR Deliversed
ADMIMNO0000045 Testing SOAP App ESAtzerR Deliversd
" Clanuinnaninis YIRS ECital Dlalivasad
__|ADMINODOODD4S Test SCM Tools ESAtserR Agsigned
Queries personales Result set £ Query editor £ Display editor J
y publicas
Reports | History | Pesr Review |
M
Main I Resolution] SCH I Attachments I Liztado de actvidade
I |ADMING0ON0003 State: | Deliversd
Headine: [cq2saber database
Micro: A ~ | Prioiity A h Frint Record
[ESdtzerRt | Task type:
e = =
A Project phase. [Development - e P
Reviewer Informacion de la tarea
Description: Start Date

Creation of MyS L databaze in esbentdeweb 0l named cg2saber, due ta contral
the status of the cq2saber app,

How ta ispraducs

4| 4]ID: 00000003 |k M

Figura 2

Entorno Rational ClearQuest

Como se puede observar en la figura anterior, esta aplicacion nos aporta un robusto

seguimiento del estado de las actividades, y de su informacion asociada.

Toda esta informacidon estd claramente ampliada en el anexo 1, correspondiente al
datasheet de Rational ClearQuest.

15

2.2. Control de versiones:

El control de versiones, quizas sea la herramienta mas importante de todas las que
veamos a lo largo de este documento. En ella se almacenara el software desarrollado,

debidamente versionado.

Estudiando las herramientas a fondo, podemos observar claramente que IBM nos
ofrece una herramienta muy potente, Rational ClearCase (5000€ por licencia), no
obstante, en nuestro caso, y para este proyecto hemos optado por confiar en una
herramienta, menos sofisticada, y por otro lado mas econdmica: Perforce (600€ por

licencia).

Hemos dicho que IBM nos ofrece un entorno mucho mas potente, con ello nos
referimos a que posiblemente disponga del mejor entorno multisite para este tipo de
herramientas, mediante la técnica de replicar servidores con unas politicas especificas
para su mantenimiento, nos permite realizar un buen desarrollo distribuido. El
mantenimiento de este sistema de réplicas, por otro lado castiga el tiempo del
desarrollador, debido a que los datos subidos a un servidor, tardan un determinado

tiempo en ser replicados.

Por otro lado, otro de los puntos negativos de esta herramienta, es que es sumamente
dificil de administrar, hecho que nos hace tener un administrador dedicado por cada
30-40 desarrolladores, coste este también a tener en cuenta cuando queramos decidir

que herramienta utilizar.

A parte de este coste de administracién, ClearCase no es una herramienta facil de
utilizar para los desarrolladores, requiere de una formacidon especifica, que también
conlleva un coste adicional, por el contrario, cuando hemos adquirido los
conocimientos necesarios para trabajar con este entorno, las posibilidades que nos da

son infinitas en comparacién a cualquier otro control de versiones.

A todo esto debemos afiadir, que usando este control de versiones, las integraciones
no son triviales, y por tanto, toma fuerza la figura de un integrador, persona dedicada
a integrar los cambios en una rama “main”, de la cual saldran las versiones del

producto final.

16

Como ya hemos dicho anteriormente, en nuestro caso nos hemos decidido a trabajar
bajo el entorno Perforce, a continuacidn veremos como opera esta herramienta
internamente.

La siguiente figura nos muestra la conexion entre un servidor de Perforce y un cliente:
este cliente puede tener cualquier sistema operativo, como pueden ser (Windows, Unix
o0 Mac 0OSX), mientras que por otro lado se puede escoger entre tener un servidor
Linux o Windows.

i |
IDE Integrations ["""" _] e
Windows
Mo | b legagl
= = m [" 4 I_.] Cammand-Line Chant
J Ml __Ml e Linux
ol PO
Wemual Clamt ' £ 1 TDF‘”P ”
W Tm| [.
Unix r \,,___,_-f j
2 _m|
. = Dedect Tracking
= J L Windows
! = M
Mesge Tosl Perforce Server
Mac OSX
Figura 3

Servidor Perforce

Puesto que debemos considerar el desarrollo distribuido, vamos a ver como

internamente maneja Perforce un entorno distribuido.

17

P B
A D a3
3 | | ’
: Al '
Windows o~ B — : Liriu
'.H"'\— — — _o—"" I i J
' T -
M &
Uiriix S 5] erforce Proxy A indows
= m| = [} —
&
_J i | T i e — .j I
]] T . =)
. d.-_ o
Mar 5 x m - ™ Mac O5
m " [m
_‘ . — 1 J
T -
rtorce Server L -
Limn Perforce Prooy Uhrbe

Figura 4

Perforce Multisite

En otros controles de versiones, como en el caso de ClearCase, el sistema distribuido
se crea mediante un servidor en cada "“site”, en la que los datos se replican mediante

una sincronizacion periodica.

En el caso de Perforce, y gracias a su mas que excelente Performance, Unicamente es
posible disponer de un servidor, mientras que en cada “site”, dispondremos de un
Proxy para mejorar las comunicaciones. De este modo, y a efectos de los usuarios,

siempre se estd accediendo directamente al servidor central.

Ambos sistemas tienen sus ventajas y sus inconvenientes, en el primer caso, la
sincronizacidon es un proceso que requiere tiempo, y por tanto, puede ser que en un
“site”, se efectlen unos cambios, y en otro tarden un cierto tiempo en verlos, mientras
que en el caso de Perforce esto no ocurre, por otro lado, si un servidor falla, en el caso
de ClearCase, los datos estan replicados en otro y el usuario siempre tiene acceso a él,
mientras que en el caso de Perforce, hasta que no se restaurase el sistema, se

detendria el desarrollo.

Perforce, a su vez tiene como ventajas principales, su velocidad en las transacciones,
punto fuerte de esta herramienta, que permite a los desarrolladores ahorrar mucho

tiempo en las operaciones que atacan al control de versiones. A su vez, el entorno de

18

este control de versiones, es sumamente intuitivo, hecho que hace que la formacién a
los desarrolladores para el uso de esta herramienta sea de bajo coste temporal y

econdmico.

Llegados a este punto, y habiendo seleccionado ya el control de versiones a utilizar,
entramos en la dificil tarea de disenar las politicas que deberan seguir los

desarrolladores al implementar el cédigo bajo un determinado control de versiones.

Debido a que el proyecto, en nuestro caso, cuenta con un numero amplio de
desarrolladores, debemos garantizar que nuestro desarrollo permitird cambios de
forma concurrente, asi como garantizar por otro lado que las integraciones se

efectuaran a menudo, esto nos permitird asegurar la reproducibilidad de las Releases.

Introduciéndonos en el escenario de desarrollo, tendremos un directorio donde se
almacenara el cédigo desarrollado, (rama de integracién), por otro lado, tendremos las
diferentes ramas, donde los desarrolladores implementaran sus actividades, para

posteriormente ser integradas en la rama de integracion.

Para el control de versiones utilizado, la creacion de una rama implica duplicar el
cédigo en el servidor, por este motivo, deberemos conseguir un compromiso en la
creacion de estas, pues la creacion de excesivas ramas puede conllevar a un exceso de
uso de disco, y a unos tiempos de espera indeseados en el momento de actualizar
dichas ramas, mientras que una creacidn insuficiente de las mismas, nos llevaria a

determinados problemas en la trazabilidad del proyecto.

Por otro lado, debemos tener en cuenta, por ejemplo que el proyecto sea desarrollado
desde varios emplazamientos, ya que Perforce Unicamente puede contar con un
servidor centralizado, donde se almacenaria toda la informacién, gracias a la utilizacion

de un Proxy, veremos reducido en gran medida el tiempo de acceso a los datos.
Una manera muy éptima para el desarrollo seria, que cada desarrollador implementara

cada actividad en una rama diferente, y luego se integraran las actividades que se

deseen, como muestra el ejemplo siguiente:

19

Figura 5
Diagrama: 1 rama por actividad

En este caso se desarrolla cada tarea en una rama diferente, la tarea 1 y 2 parten de

la versién uno en la rama de integracion.

Al finalizar la primera se integran los cambios en la rama de integracién,
posteriormente, se desea integrar la segunda, asi que para evitar conflictos, se cogen
los cambios recientes en la rama de integracidn, para posteriormente integrar la tarea

dos en esta rama.

20

De la misma versién de la rama de integracion, se inicia el desarrollo de la tares 3,
como se puede observar, esta tarea esta todavia en desarrollo, o bien se ha finalizado,
pero no se ha deseado integrar, asi que los cambios se mantiene estables en la rama

de desarrollo de la correspondiente tarea.

Del resultado de integrar la tarea 2, se inicia el desarrollo de la tarea 4, tras su
finalizacién, al desear integrar los cambios en la rama de integracién, esta no ha
sufrido cambios, asi que al no haber conflictos, los cambios se pueden integrar

directamente.

Debido a los problemas que hemos comentado anteriormente, este tipo de desarrollo
no seria posible, puesto que el tamafio se aumenta en exceso, y los tiempos de
creacién y destruccion de ramas son excesivos, de modo que debemos buscar una

alternativa.

Teniendo en cuenta las restricciones de la aplicacién de control de versiones utilizada,
hemos decidido utilizar la siguiente politica de ramas:

¢ Una Rama de integracion

e Una Unica rama para cada desarrollador.
De este modo, los desarrolladores implementaran sus cambios en su propia rama, y
posteriormente, los integraran en la rama de integracion. El siguiente esquema

muestra como se efectian éstos cambios.

21

| Rama de Integracion |

u Bév_z 3

Figura 6

Diagrama: 1 rama por desarrollador

Al crear la rama del desarrollador, todos los archivos existentes en la rama de
integracion en ese momento se copian en la nueva rama creada. El desarrollador
efectla unos cambios sobre este fichero, creando la versiéon dos en su propia rama,
para posteriormente integrar estos cambios en la rama de integracion, y creando la

version dos del fichero en integracion.

Posteriormente, se crea la rama de un segundo desarrollador, a partir de la versién
dos del fichero, por tanto, este segundo desarrollador ya tiene integrados en su rama
los cambios efectuados por el primero. Ambos desarrolladores tienen ahora la misma
version del fichero en sus respectivas ramas, y ambos efectian cambios sobre los
mismos ficheros; el segundo desarrollador termina sus cambios primero, y por tanto

puede integrarlos en la rama de integracién. El segundo desarrollador, por su lado, una

22

vez ha finalizado sus modificaciones, debe integrar los cambios efectuados por el

segundo en su rama, para posteriormente integrarlos en la rama de integracién.

Como se puede apreciar, la primera politica nos da una mejor visiéon del desarrollo de
cada actividad, mientras que la segunda politica Unicamente nos permite hacer un
seguimiento del trabajo elaborado por un desarrollador, pero en ningun caso nos

permitird discernir el trabajo efectuado por un desarrollador en diferentes actividades.
Puesto que nuestro sistema no nos permite utilizar la primera propuesta, deberemos
realizar unas pequenas modificaciones en la segunda para conseguir separar el trabajo

realizado en una actividad del realizado en otra.

El siguiente esquema muestra el procedimiento a seguir:

23

Promoted
Baseline

Promoted
Baseline

Figura 7
Diagrama: 1 rama por desarrollador utilizando baselines

24

Mediante el uso de este procedimiento, podemos separar claramente el trabajo
efectuado en cada actividad, desarrolldandolas todas ellas en una misma rama de

desarrollo.

Se crea una rama para cada desarrollador a partir de la ultima baseline estable
(dev_1, Dev_2). El desarrollador 1 termina las modificaciones de la tarea y la integra
en la rama de integracion. En el ejemplo, en ese momento se crea una baseline
estable. Al querer empezar a desarrollar la segunda actividad, la rama de desarrollo
toma el mismo estado que la rama de integracidon en su ultima baseline estable. Igual

gue pasa en la version 5 de esta rama.

De este modo, podemos garantizar exactamente cual ha sido el desarrollo para cada

actividad, realizando todas las actividades en una misma rama.

25

2.3. Control de versiones de documentos:

Una de las partes mas importantes de un proyecto es su documentacion, y por tanto,
ésta, debe estar almacenada de forma segura, y debidamente versionada.

Por otro lado, no todos los usuarios deben poder acceder a toda la informacion.

Para ello hemos decidido utilizar la plataforma SharePoint de Microsoft, ya que ademas
de permitirnos lo anteriormente comentado, soporta todo tipo de formatos, y su
interfaz es ampliamente familiar para todos aquellos que ya hayan usado cualquiera de

las herramientas de Microsoft Office.

26

3. Escenario a automatizar

En todo proyecto, para que éste tenga una correcta organizacion de sus actividades,
tiene que haber un proceso, claramente definido, entre las tareas a realizar, y sus

actores.

En el proceso contemplado, hemos tomado los siguientes roles:
- Managers
- Project leaders

- Developers - Integrador

En el siguiente grafico se puede contemplar como conviven estos roles, con las

herramientas explicadas en el punto anterior. Mas adelante explicaremos este grafico

en detalle.
- 14 i
Wz~
-
—— it——
I k.
B =
Wieakly tﬂ
Report / iy
Add/Modify Tasks Saber RM Get Specs
Create / I E Gt Source Code - e—
fa ' - -
Project ﬁ-i o
Clear Case
— [:; Vo8
- Add Tasks . Deliver i
~ Sl el i s :
P === I Clear Cua
Get Status
s I k . Perforee
| J QJ wnc DEPOT
3 Update
..: | o Update Get Latest Modifications
Update =
| — ’
At Tene w: l:’allyI
Update — . Citiabit Release ?
Redeass | 3 Irf]
Publish Report) '
"‘-
Publish o= \:ﬁ J =} Publish Results
LTIy
SharePaint
Figura 8

Entorno de un proyecto

27

Managers

El siguiente grafico nos muestra el entorno con el que interactia un “Manager”;
basicamente, su funcion en la fase de desarrollo de un proyecto, es la de tener una
visién global del estado de las actividades, y publicar estos estados bajo un control de

versiones de documentacién, (en nuestro caso SharePoint)

ShamePoint

Figura 9

Entorno de actuacién de un Manager

A continuacion vamos a definir el proceso que deberian seguir los managers antes de

publicar la documentacion.

En primer lugar, deberian hacer una consulta a la base de datos de actividades, y

verificar el estado de las actividades.

Una vez verificado el estado de las mismas, el manager realizaria un documento, y

éste seria publicado en SharePoint.

Mas adelante serd mostrada una herramienta cuya finalidad es la de automatizar este

proceso.

28

Project Leader

El siguiente grafico muestra el escenario en el que el Project leader se ve involucrado.
Su funcién principal es la de, mediante los documentos obtenidos de la Release,
reorganizar las tareas existentes en las diferentes bases de datos.

Segun los resultados de estos “reports, el Project leader puede asignar nuevas tareas a
algunos desarrolladores, reorganizar las tareas existentes, o reasignar tareas de

aquellos desarrolladores mas sobrecargados, a otros que no lo sean tanto.

F‘:
i
AddiModify Tasks Saber RM

iject = ﬂJ

H]

- Add Tasks -
=

Tasks I Clear Cuast
Gt Status I
Sync
‘ \
:|‘|
Update =
=i
Ach Teme
—]
‘W'—'
E =
I | P — —
Righiiss
Repaort
Figura 10

Entorno de actuacion de un Project Leader

29

Releases

Todo proyecto debe tener versiones estables y por tanto, etiquetadas especificamente.
Este proceso consiste en la obtencion del cédigo de los debidos repositorios,
posteriormente el Project leader o la persona asignada en cualquier caso, realizaria
una compilacién, revisaria que el proceso fuera correcto, para posteriormente etiquetar
la versién debidamente, realizar un report de los resultados, y publicar el mismo en el

control de versiones de documentos, como muestra el siguiente grafico.

Us

Clear Case
Wog

Perforce
DEPOT

Get Latest Modifications

\

E._. Daily
— i el - Relzase

Rz

Publish Report
4 -‘_I
e
= J == Fublish Resulis
i J' ..l
Wiki
SharePoint
Figura 11

Entorno de actuacion de las Releases

30

Developer

Para finalizar con este apartado, podemos observar un grafico que muestra el entorno
con de accion de un desarrollador.

A grandes rasgos, el desarrollador debe coger las especificaciones de una determinada
base de datos (SaberRM); asimismo, debe empezar a trabajar en una actividad que le
haya sido asignada en otra base de datos (ClearQuest), ademds debe también
actualizar la base de datos que define el tiempo empleado en cada actividad (ActiTime),
para finalmente coger el cédigo del control de versiones (Perforce), y realizar sus
modificaciones.

Una vez el desarrollador haya modificado el cdédigo, éste debe ser correctamente
almacenado en el control de versiones, y de nuevo actualizar todas estas bases de

datos.

td

Sabar RM Get Specs
l r Get Source Code - e—
e Daiky @ﬁ]
\' Wark Clear Case
= VOR
. Wiork on e e Gl
=])
Clear Queast :
I ‘- LS Perforce
Sync DEPOT

* Update

e pate -—

b

Ach Teme

Figura 12

Entorno de actuacién de un desarrollador

31

3.1. Dependencias del proyecto

Antes de desarrollar las herramientas de automatizacién, debemos hacer un estudio de

los requisitos y las dependencias con las demas aplicaciones.

Lo primero que debemos tener en cuenta, es que esta herramienta debera tener
control de multiples parametros de estado, puesto que sera utilizada por muchos
desarrolladores, normalmente, al mismo tiempo, es por eso, que debemos utilizar una

base de datos para controlar cada uno de estos parametros.

La tecnologia utilizada para la creacion de esta base de datos sera MySQL, a

continuacion mostramos un grafico con las tablas y sus relaciones.

Id

Project Mame
Ink Branch
Dev Branch
CQDatabase
Saber Database
culture
Locked by
Micro

Figura 13

Esquema base de datos para el control de la aplicacidon

Con el esquema anteriormente mostrado, nos sera suficiente para controlar todas
nuestras herramientas, esta jamas sera modificada por ningun desarrollador
directamente, pues el control de nuestras aplicaciones se veria afectado ocasionando
pérdidas importantes en cuanto al cédigo se refiere., en caso de error, el administrador

del sistema sera el encargado de volver a dejarlo en un estado estable.

32

Una vez tenemos definida la base de datos, tendremos en cuenta también que para
conectarnos a la base de datos de defectos (Saber DM), necesitaremos utilizar el
protocolo SOAP.

Por otro lado, debemos buscar una herramienta que pueda interactuar tanto con la API

de ClearQuest como con la API de Perforce.

Ademads de todos estos requisitos, necesitamos que nuestra aplicacion sea lo mas

“user friendly” posible.

Por todo esto, nos hemos decidido a desarrollar nuestras herramientas bajo la

tecnologia de Visual Basic .NET.

33

3.2. Automatizacion de las "Releases”

Teniendo en cuenta la politica de desarrollo que sigue nuestro control de versiones, en
la que todos los desarrolladores integran sus cambios en la rama de integracidon (push

model), es muy importante tener un control sobre dicha rama.

Con este fin, diariamente, se tomara el cédigo que haya en la rama de integracion, y
se le aplicaran una serie de test para verificar el estado de este. En funcién del

resultado de estos tests, se evaluara si el estado actual de la rama es correcto o no.

En caso de que sea correcto, se etiquetara esta versidn con un nombre determinado,
por otro lado, si esta versién fallara, se debe etiquetar de una forma distinta, para su

posterior correccion.

En caso de que la release sea correcta, se debe crear un documento con los nuevos
cambios introducidos en la rama de integracién, y publicarlo en SharePoint, para que

los desarrolladores sean debidamente informados.

Por supuesto, durante el proceso de release, la rama de integracién debe estar
bloqueada, consiguiendo asi que nuevos cambios no sean integrados mientras se esta
compilando una versién, o bien se este etiquetando esta. La duracion por tanto de este
proceso varia en funcion del volumen de cddigo que haya en el proyecto, y de los test

gue se deseen pasar para determinar si la version es o no valida.

Asi pues el estado del cédigo quedaria de la siguiente forma:

34

Rama de Integracion |

PROYECTO_20080115_BUILT

PROYECTO_20080116_FAIL

PROYECTO_20080117_BUILT

Figura 14

Rama de integracién

En el ejemplo anterior, podemos observar, que la versién 2 de la rama de integracién
fue una release satisfactoria realizada el dia 15/01, asi como que la version del dia
siguiente no pasd todos los test o bien no compild, mientras que los posibles

problemas fueron resueltos en la release del dia siguiente.

Con el objetivo de automatizar el proceso de creacién de una release, se ha
desarrollado una herramienta que genere estas de forma automatica. Dicha
herramienta se ejecutara como una tarea programada, a las horas que el proyecto

tenga menos carga de desarrollo.

35

Lo primero que hard esta herramienta sera bloquear la rama de integracién, para que
ningln desarrollador pueda modificarla durante este proceso; posteriormente,
descargara la ultima versidon de esta rama, y lanzara la compilacidon, pasara una serie
de tests automaticos, y chequeara los resultados, en funcién de éstos, etiquetara la
rama de una forma u otra, y generara un report, por ultimo la rama de integracion

sera desbloqueada dando por finalizado este proceso.

Dado que todo este proceso puede tardar mas de una hora en realizarse, es muy
importante que éste no necesite interaccidn alguna con una persona, y dado que
requiere que nadie modifique la rama de integracién, es muy importante que se lance

cuando nadie este trabajando, por ejemplo por la noche.

36

3.3. Automatizacion del desarrollo

A continuacién vamos a tratar de automatizar el escenario con el que interactua el

desarrollador. El siguiente grafico nos muestra las transiciones posibles para el

desarrollador para llevar a cabo su implementacion.

Asi que realizaremos un conjunto de aplicaciones para garantizar que cada una de las

actividades se desarrolla rigurosamente bajo este escenario, sin errores, y sin

excepciones.

Developer

SCM
Create
environment

-

l

2 [;

y

)

On

Peer Reviewer

A

Rebase <

N

{ Integrate)

ﬁ/\\

Postpone

N>

(Deliver

N

OK

Integrate

FAILED

Peer Review /

Project Leader

Tomote Baseline

Figura 15

Diagrama de transiciones del desarrollador

37

Como podemos ver en el anterior grafico, el desarrollador, una vez ha
empezado a trabajar en wuna actividad (Work_on), realizard todas las
modificaciones pertinentes en el cédigo, hasta su posterior finalizacion (Deliver),
cuando la tarea llegue a este estado, la persona asignada para revisarlo,
confirmara que los cambios sean correctos, de ser asi, dichos cambios se
integraran directamente en la rama de integracién, para su posterior promocion

en la fase de Release.

3.3.1. Select Project

Debemos contemplar la opcion que nuestros desarrolladores puedan estar
simultdneamente trabajando en dos proyectos a la vez, asi pues, para empezar se ha
disefiado una herramienta para permitir seleccionar el proyecto al que pertenece la

actividad que se desee implementar.

Figura 16
Entorno del SelectProject

Como se muestra en al anterior figura, Unicamente actuara con el usuario, y contra la

base de datos del control de la aplicacién.

Esta aplicacion serd muy simple, mediante un formulario de Windows, mostrara el
listado de proyectos seleccionables para el desarrollador. En caso de que el
desarrollador no esté unido a ningun proyecto, éste debera seleccionar uno para unirse,
si ya se encontrara unido a algun proyecto, debera seleccionar uno para unirse de

igual modo que antes, y automaticamente seria desunido del anterior proyecto.

El usuario interactla con interfaz como el que se muestra a continuacion.

38

TY¥

of joinProject E"ElrE'
Labell

Projects available

PROJECT 1
PROJECT 2
PROJECT_2

Select H Cancel

Figura 17
Interfaz del SelectProject

En caso de que el desarrollador ya se encuentre unido a un proyecto, éste seria
mostrado donde se ve “Label 1”, de otro modo, este campo estaria vacio.

Una vez el desarrollador ya estd unido a un proyecto, estd
trabajar en una actividad.

listo para empezar a

Select Project

4

Mostrar los
proyecto a los que
se puede unir

I

SI Unido a un
' proyecto

Cambiar unién Unir al proyecto

Figura 18

Diagrama de estados del SelectProject

39

3.3.2. Workon
Como se puede observar en la siguiente figura, el ambito de actuacion de esta
aplicacion serd la obtenciéon de las actividades de un desarrollador, asi como el

tratamiento de estas y del control de versiones.

Perloncs
DEPLT

Figura 19

Entorno de actuacion del Workon

Esta herramienta se ha disefnado basicamente para configurar el entorno de desarrollo
antes de empezar a trabajar en una actividad. Basicamente, antes de entrar en mas
detalles sobre esta aplicacidn, lo que hace es listar las actividades que tiene asignadas
un cierto desarrollador, para que, una vez éste haya seleccionado una, configure el

entorno alrededor de ésta.

A continuacién vamos a definir el entorno de esta aplicacién.

Mediante un “Windows form”, se mostraran en dos listados diferentes las actividades a
desarrollar, (ClearQuest), y los defectos a resolver (SaberDM), ademas ésta aplicacion,
cuenta con un textbox, donde se mostraran las descripciones de las correspondientes

tareas seleccionadas.
Por otro lado, y gracias a que ambas bases de datos tienen un entorno web detras de

ellas, haciendo doble click sobre cualquier actividad, se mostrara esta tarea en dicho

entorno.

40

Cuando un desarrollador seleccione empezar a trabajar en una actividad, su estado en
la base de datos correspondiente cambiard de estado, (de asignada a abierta), y
automaticamente, su rama de desarrollo adoptara el estado de la rama de integracion

en su Ultima version estable (latest promoted baseline).

De este modo, el desarrollador tiene su entorno totalmente configurado para empezar

a desarrollar la actividad haciendo tan so6lo un unico click.

La siguiente figura muestra la interfaz de ésta herramienta.

](—;‘E Workon

Saber activities
LiztB oxS aber

Clearfuest achivities
LiztB oxClearluest

Activity link,

Irfa Statuz:

[“Workon] [Cancel

Figura 20
Interfaz del Workon

41

A continuacién podemos ver el diagrama de estados de esta aplicacion, sus conexiones

a las diferentes bases de datos asi como sus acciones frente al control de versiones.

Workon

Unido a un N Mostrar error y
proyecto salir

A

SI

Actividades
abiertas en CQ o
Saber

Doble clic = entorno NO
‘ web de la actividad v
Mostrar
actividades
Un clic = descripcion J asignadas

de la actividad

Actializar la rama
de desarrollo a la
ultima baseline

A

Cambiar estado
de la actividad

A
Salir

Figura 21

Diagrama de estados del Workon

42

3.3.3. Checkout

El marco de actuacién para esta aplicacion queda definido del mismo modo que la
aplicacion anterior, actuando sobre las bases de datos de actividades y defectos, y

contra el control de versiones para realizar los cambios oportunos.

Una vez el desarrollador ya tiene su entorno completamente configurado, es momento

de empezar a hacer modificaciones en la rama de desarrollo.

Para poder editar un fichero, primero hay que realizar un checkout, con el fin de no
tener que abrir la aplicacion de control de versiones para realizar ésta accién, se he

disefiado una nueva herramienta para realizar esta accion.

Esta herramienta realizard un checkout del fichero que se le envie por parametro,
comprobando antes que éste fichero se encuentra en la rama de desarrollo del usuario,

asi como comprueba que éste esté trabajando en una actividad en ese instante.

Esta herramienta como las demas sera integrada en la IDE del desarrollador, pero a
diferencia de las demas no tiene interfaz grafica, simplemente preparara el fichero
para ser editado, y mostrara un mensaje si todo es correcto, o bien un mensaje de

error en caso contrario.

En el siguiente grafico podemos ver reflejado explicitamente su funcionamiento.

43

Actividades
abiertas en CQ

NO

Checkout

Unido a un
proyecto

NO Mostrar errory
salir

SI

Actividades |
abiertas en Saber

Actividades
biertas en C

Yes

Mostrar error y
salir

Fichero en rama
de desarrollo

No Mostrar grror y
salir

Yes

|

Checkout del
fichero

v

Salir

Figura 22

Diagrama de estados del Workon

44

3.3.4. Revert / Submit

Nuevamente, estas aplicaciones actuaran sobre la base de datos de actividades, asi

como contra el control de versiones para realizar las modificaciones oportunas.

Una vez el desarrollador ha efectuado cambios sobre un fichero tiene dos opciones,

crear una versiéon de ellos (submit), o bien, deshacer estos cambios (Revert).

Hemos juntado ambas aplicaciones en un uUnico bloque, pues si bien su funcionalidad

es claramente diferente, el modo de actuacién viene a ser el mismo.

Mediante un formulario se mostraran todos los ficheros que el desarrollador tiene en el
estado de edicion (Checked out), para que posteriormente, el usuario seleccione

aquellos fichero que quiera guardar, o bien deshacer.

El control de versiones nos obliga a insertar una descripcién de los cambios al crear
una nueva version de un fichero, nuestras aplicaciones pondran automaticamente
estos comentarios, insertando en ellos el titulo de la actividad en la que el

desarrollador esté trabajando.

El formulario anteriormente mostrado tiene el siguiente formato: mediante un listbox
multiseleccion, semuestran todos los ficheros que el desarrollador tiene en checkout,
seleccionara los que desee guardar o deshacer, y mediante un simple click, los ficheros

volveran a quedar en un estado estable. Este formulario se muestra a continuacion.

Select files to submit: (Use Chl and Shift keys to multiple selection)

ListB o= peneds

Figura 23
Interfaz del Revert / Submit

45

En la siguiente figura vemos reflejado su diagrama de estados, muy parecido al del
Checkout, pero con ligeras modificaciones, pues este se conecta a las diferentes bases

de datos de actividades y defectos para poder actualizar automaticamente el control de

versiones.

Checkout

Unido a un
proyecto

NO Mostrar errory
salir

Sl

Actividades sI
abiertas en Saber

Actividades
biertas en C

Yes

Mostrar error y
salir

Fichero en rama
de desarrollo

Mostrar error
No . y
salir

Yes

|

Checkout del
fichero

v

Salir

Figura 24

Diagrama de estados del Revert / Submit

46

3.3.5. Rebase

En este caso, el ambito de actuacidn de esta aplicacidn sera Unicamente contra el

control de versiones, tal y como muestra la siguiente figura.

b — 5 — U

MyS0L = Perforce
Databasa DEPOT

Figura 25

Entorno del Rebase

En cualquier momento, el desarrollador puede desear integrar cambios efectuados en
la rama de integracidon, a su rama de desarrollo. Esta operacién se hara mediante la
herramienta de Rebase.

| 55 RebaseFrom

LiztBoxLabels

Figura 26

Interfaz del Rebase

El usuario, mediante un formulario de Windows, como el que se muestra en la figura
anterior, seleccionara la baseline desde la cual quiere obtener los cambios. En este

formulario, se mostraran todas aquellas baselines desde la ultima obtencion de cddigo

47

de la rama de integracién; cabe notar que la primera obtencién de cddigo se hace al

hacer workon de una actividad.

Mostrando las baselines, se da la posibilidad al desarrollador a obtener los estados

estables de cddigo que ha habido en la rama de integracion.

Ademas de dar la posibilidad de obtener el cédigo desde una baseline estable, el
desarrollador también tiene la posibilidad de integrar el Ultimo estado de la rama de
integracion a su rama, conociendo éste que los cambios efectuados en esta tal vez no

sean correctos.

Su manejo se ve claramente reflejado en el grafico de la pagina siguiente.

48

Rebase

Unido a un
proyecto

SI

Checkouts en WS

salir

NO

Actividades

abiertas en Saber

Actividades

Mostrar error y
salir

Actualizar la rama
de desarrollo

4

Salir

biertas en C

Mostrar error y <«

Figura 27
Diagrama de estados del Rebase

49

3.3.6. Deliver

De nuevo esta herramienta requerira de las bases de datos de actividades asi como del

control de versiones, tal y como muestra la siguiente figura.

Prarfoncs
DEPOT

Sabar RM

Figura 28

Entorno de Deliver

Una vez el desarrollador haya finalizado la tarea, esta debera ser revisada por otro
desarrollador, con el objetivo de verificar que el cédigo ha sido desarrollado
correctamente, que las descripciones introducidas son acordes con el codigo
modificado, o bien que el cédigo implementado se cife rigurosamente a las

especificaciones requeridas.

Con este fin, le sera enviado un mail la persona asignada como peer reviewer para esa

actividad.
Por otro lado, se entiende que la actividad ha sido resuelta, esta, tomara el estado de

Resolved en ClearQuest, mostrando un formulario como el siguiente para completar la

informacion de la tarea en la base de datos de actividades.

50

8 ResolutionMotes

R ezolution information

R ezalution type |

Defect Cause |

Peer reviewer |

R ezolution comments

Estended information

Rezolve] [Cancel

Figura 29
Interfaz del Deliver

En la siguiente figura podemos ver la definicion interna de la herramienta.

51

Escoger entre
Revert o Submit

Deliver

Unido a un
proyecto

Checkouts en WS

Actividades
abiertas en CQ
NO

Actividades

Mostrar error y
salir

abiertas en Saber

Actividades

Mostrar error y
salir

A

Adjuntar
informacion de
Deliver

A

Cambiar estado
de la actividad

A

Enviar mails al
peer reviewer

A

Salir

biertas en C

Figura 30

Diagrama de estados del Deliver

52

3.3.7. Integrate
Esta aplicacién tendra su abanico de actuacion comprendido entre las bases de datos
de actividades, el control de versiones y un usuario externo, que tomara el rol de

revisor del cddigo modificado, tal y como muestra la siguiente figura.

il
Claar Oussl
| —
_—
"'- E Perfonce
el DEPOT

—_— _{F

& |
wl] ;

Saler R

Figura 31
Entorno del Integrate

Llegados a este punto, es momento de que el cddigo sea revisado. La persona
asignada ejecutara esta aplicacion, y mediante unas preguntas que ira respondiendo
comprobando el desarrollo de la tarea, debera decidir si la implementacién es correcta

(Accept), o por otro lado se deben hacer modificaciones, (Deny).

El formulario para las revisiones se muestra en la siguiente figura:

53

Clear Degcription in CO about what to be done in thiz tagk

(" ("

| L O\ Clear Description in CO about how to reproduce the problem which we are going to solve

. 8 Clarify necessary documentation needed to start the tagk

- - Check that all thiz documentation is in a shared place

~ ~ ‘3\ Check that what was stated to be done are really done, and only thiz [ho more],
othenwize, change T ask Description.

o L Check that zource code iz readable, and there are enough comments an it

L (" Check that there are not poszible side effects to other features.

T azk Rezolution

v I(X)

f - q Clear dezcription of the steps done to resolved the task in CO

| f 'D\ Clear dezcription about how this rezolution has been tested in CO
T azk Integration

o L |ntearate together the changes into integration branch

Accept Drerw |

|
l
T azk Development

Figura 32
Interfaz del Integrate

Como se puede ver en la figura anterior, las preguntas son de simple respuesta, dando

la posibilidad a comprobar segiin que campos directamente desde la aplicacion.

Tanto en el caso de que la Peer review sea aceptada, como en el caso de que sea
rechazada, se guardaran los resultados en ClearQuest. En el supuesto de que sea
aprobada, los cambios realizados en el software se integraran directamente en la rama

de integracion, y la tarea tomara el estado de Delivered.

54

Si por otro lado la tarea no es aprobada, no se integrara, y su estado no sera
cambiado en ClearQuest, pero si insertados los resultados de la peer review. La tarea
del desarrollador en este momento, serd corregir el cddigo, eliminando los errores

detectados en la peer review.

Una vez estos errores se hayan corregido, no se efectuara una nueva peer review, y

sera el desarrollador el encargado de integrar sus cambios en la rama de integracion.
La misma aplicacion, si ya se ha efectuado una peer review para esa actividad,
automaticamente integrara los cambios, siendo responsabilidad del desarrollador el

haberlos corregido.

Una vez los cambios han sido integrados, la actividad sera puesta en el estado de

“Delivered”, dandola por finalizada.

Ahora el desarrollador podria volver a empezar el ciclo con un nuevo Workon.

La implementacion interna se ve reflejada en el siguiente diagrama de estados.

55

NO

Mostrar error y
salir

resueltas en
cQ

Integrate

Unido a un

Mostrar error y
NO .
proyecto salir
Sl
Actividades si
esueltas en Sabe '
ctividades
No resueltas en
cQ
Yes
Y
Revision
. N
realizada
Mostrar formulario
S| de revision

Integrar Cambios |«

v

Salir

Figura 33

Diagrama de estados del Integrate

56

3.3.8. Postpone

Esta actividad Unicamente tendra efecto sobre la base de datos de las actividades, tal y

como se ve reflejado en la siguiente figura.

ks |
i
= | —_—
w7
[T
&
-
= | —_— .:/
X5 -
Saber RM

Figura 34

Entorno del postpone

En cualquier momento del proyecto, se puede dar el caso de que el desarrollador esté
trabajando en una actividad, y le sea asignada una mas prioritaria, en este caso,
debido a que como hemos visto al definir nuestro sistema, solo permitimos al
desarrollador trabajar en una actividad al mismo tiempo, debemos al menos darle la
posibilidad de empezar una nueva tarea sin por ello perder los cambios efectuados en

la que haya actualmente en curso.

Con este fin, se ha desarrollado el “Postpone”, al ejecutar esta aplicacion, todas las
modificaciones seran automaticamente guardadas en la rama del desarrollador,
almacenando la changelist (nUmero de cambo efectuado en el control de versiones),

en la tarea asociada en ClearQuest.

Una vez almacenado el estado en el control de versiones, y cambiada la actividad de
“Opened” a "“Postponed”, el desarrollador puede hacer un nuevo Workon de otra

actividad.

Al finalizar esta tarea, el desarrollador podra reabrir las actividades que tenga
pospuestas, o bien trabajar en otra nueva, ambos modos se realizaran interactuando

mediante la aplicacion de Workon.

57

Actividades
abiertas en CQ

Postpone

Unido a un NO
proyecto
Sl
Actividades
abiertas en Saber
No

Mostrar error y
salir

A
Guardar
changelist cambiar
estado de
actividad

4

Salir

Actividades
biertas en C

Figura 35

Diagrama de estados del Postpone

58

3.4. Reports Automaticos

Como hemos dicho anteriormente, periédicamente se hacen releases de la rama de
integracion, estas versiones estables de codigo, deben estar debidamente
documentadas, por este motivo se ha implementado una herramienta para generar

estos reports.

La interfaz de dicha herramienta se muestra en la siguiente figura.

ReportForm

Select Range of days to make report

oo

lun mar mié jue wie sab dom [Report]

1 2 3 4
5 B ¥ 8 9 10 M
12 13 14 15 16 17 18 [Preview RR]
19 20 21 22 23 24 25
5 27 oM m 1 ’ Release Repaort]

[IHoy: 30/05/2008 [Esit |

Figura 36

Interfaz de los Reports automaticos

Como podemos observar, dicha aplicacion esta formada principalmente por un
calendario, de esta forma, se puede seleccionar un rango de dias, y generar un report

con las actividades finalizadas o entregadas esos mismos dias.

Por otro lado, al ejecutar la aplicacion, se le pueden pasar por parametro dos fechas,
de este modo, se genera el report automaticamente, sin modo grafico, permitiendo de
esta forma, poderse lanzar como una operacién mas, integrada en la generacion de la

release, y generando automfiaticamente el report.

En un report convencional, se mostrardn las actividades abiertas, resueltas y
entregadas durante el rango de fechas determinado, mientras que para el report de la

release se mostraran Unicamente las actividades entregadas y las confimadas.

En ambos casos, la informacidon mostrada sera, el identificador de la actividad, el

desarrollador que la ha implementado, el estado actual de la misma y su descripcion.

59

3.5. Schedule.

Mombre de tarea Duracian Comienzo Fin Predece
1 =l Herramientas de automatizacio, T0 dias ma 01/01/08 mi 09/04/08
2 =l Fase de disefio 9 dias ma 01/01/08 vi 11/01/08
3 Chjetivos 3 diaz tnia 0 401 08 ju 0301108
4 Ezpecificaciones 5 dias wi 0401 103 U0 s 3
=) Peet review doc. 1 dia wi 11001103 Vi1 08 5.4
B =l P4, CQ, Saber 58 dias vi 11/01/08 jud3ndos 4
7 =l Implementacion 35 dias wvi 11/01/08 ju 28/02/08
] Wyiorkon 7 dias wi 171001108 Iu 2100103
9 Checkout 3 dia= ma 220108 juzZ24m1iog &
10 Revert 3 dias wi 25001 /108 tma 28001058 3
11 Submit 4 diaz i 30401 03 U 0402005 10
12 Rebaze 5 diaz ma 050205 I 110205 11
13 Deliver 3 dias ma 120205 ju 1 4nAns 12
14 Integrate 7 diaz wi 1502108 i 2500208 13
13 Postpone 3 dia= ma 260208 ju 28M208 14
16 =l Testing 8 dias vi 29/02/08 ma 11/03/08
17 Peer reviewy 1 dia Wi 29002/08 Wi 20002008 15
18 Solve errors 2 diaz I 030305 ma 040305 17
19 Teszting Application 5 dias mi 050305 ma 110308 18
20 =l Deployment 15 dias mi 12/03/08 ju 030408 16
21 Deployment 2 dew 5 dia= mi 1200308 ma 180308
22 Deployment 2 dew 5 dia= mi 1903108 ju 270308 |2
23 Deployment all dewvel 5 dia= wi 2800303 ju 03M408 22
24 = Documentacion 3 dias mi 12/03/08 vi 14/03/08 |16
25 Documentos de las ¢ 3 diaz mi 120305 wvi 140305
25 [=] Reports 4 dias Iu17/03/08 ju 20/03/08 5
27 Implementation 3 dias I 170508 mi 19803058
28 Testing 1 dia ju 20308 ju20mE0s 27
29 =] Releases 8 dias ma 25/03/08 ju 030408
30 Implementacion 6 diaz ma 250308 ma 010408 | 5
i Testeo 2 dia= tni 020408 ju 020408 | 30
32 =] Documentacion 4 dias vi 040408 mi 0904708 | 29;26;6

Figura 37

Schedule de la aplicacion

4. Conclusiones y vias de continuidad.

El desarrollo del software, es una actividad que sufre continuas modificaciones, desde
cambios en las especificaciones para cada proyecto, hasta el uso de diferentes
herramientas, teniendo en cuenta que las tecnologias bajo las que se desarrolla un

determinado proyecto, no son las mismas en todos los casos.

Una vez nos hemos introducido en este mundo, vemos que realmente los procesos a
automatizar son inimaginables, pero en todos los casos esta estrechamente ligado al

tipo de proyecto que estemos desarrollando.

Las herramientas de automatizacion desarrolladas se han implementado utilizando la
tecnologia .NET de Microsoft, asi como objetos COM para la comunicacién con el
control de versiones, siguiendo un proceso estandarizado de desarrollo que facilita el

mantenimiento del proyecto como tal.

Dichas aplicaciones utilizan varios protocolos de comunicacién, desde SOAP para
interconectarse con las bases de datos de Defectos, como las API's especificas de
aplicaciones como ClearQuest o Perforce, asi como multiples lenguajes de bases de
datos, como son SQL y SQLAnywhere.

Para todo ello ha sido necesaria una exhaustiva investigacion, fundamentalmente en

Internet, lo que prueba que el uso de estas aplicaciones no esta muy extendida.

Con el uso de estas herramientas se consigue dar solucion al problema de la
inestabilidad en las integraciones de Software, se eliminan en gran parte los errores
introducidos por el desarrollador en la creacién de cédigo, y se proporciona una vision

mucho mas amplia de los diferentes estados del proyecto.

Ademas, no solo se han conseguido los objetivos tanto a nivel de implementacion
como de schedule, sino que se ha implementado una herramienta realmente dindmica,
y facilmente adaptable a muy diversos proyectos encaminandonos de este modo hacia
el “Agile development”, y aledndonos de una tendencia tan intuitiva como peligrosa, el

“extreme programing”.

61

Por otro lado, podemos contemplar el partido que le hemos conseguido sacar a una
aplicacion, como en nuestro caso seria el control de versiones, trabajando de una
forma determinada que el desarrollador manualmente seria incapaz de cumplir
rigurosamente, y que en nuestro caso, explota al maximo la herramienta, incluso en
ocasiones, obligandola a trabajar con un proceso para la cual no ha sido disefada.

Viendo el funcionamiento de dichas herramientas en un entorno real, podemos afirmar
que el uso de estas herramientas optimiza notablemente la trazabilidad del proyecto,

asi como su estabilidad y cohesidn.

La eleccién de una u otra politica bajo un control de versiones determinado, puede
aportarnos unos excelentes resultados o por otro lado producirnos una trazabilidad
excelente en el proceso, en nuestro caso, hubiéramos deseado trabajar creando una
rama para cada actividad, esto nos hubiera reportado una trazabilidad en el proyecto
excelente, de una forma relativamente facil de administrar bajo un control de
versiones como puede ser ClearCase, pero tras haber hecho los estudios coste,
implantacidon del sistema y mantenimiento entre otros, y tras no poder incorporar este

control de versiones, no nos ha sido posible implantar la estrategia deseada.

Al escoger Perforce como herramienta a utilizar por su relaciéon calidad-precio, y tras
ver que es viable su implantacidon, hemos redefinido las politicas para el versionado del

proyecto, de tal forma que podemos conseguir abarcar los requerimientos del proyecto.

Con esto podemos deducir también que trabajar con un control de versiones o con otro,
varian las estrategias a seguir para unos mismos requerimientos, pero en ambos casos,

y gracias a las herramientas implementadas, podemos conseguir el mismo resultado.

Cabe tener en cuenta que el proceso de automatizacidn no es un proceso cerrado, con
esto, nos referimos a que, si bien este procedimiento se puede seguir para multiples
proyectos, siempre tendremos que tener en cuenta los requerimientos de cada uno
para adaptar las herramientas de automatizacion a las especificaciones que debamos

adaptarnos.

Teniendo en cuenta lo dicho anteriormente, podemos observar que estas herramientas

son fruto de un fuerte trabajo de investigacion, que se debe realizar siempre para

62

escoger el correcto funcionamiento de estas herramientas dentro de un determinado

proyecto.

Habiendo conseguido satisfactoriamente los objetivos fijados, es momento de ampliar
la funcionalidad de dichas aplicaciones, o bien plantearnos su uso en diferentes

entornos.

Si bien el uso de estas herramientas se encamina hacia una integracion continuada,
gracias a la implementacién de un esquema “push model”, cabe ahondar mucho mas
en ellas para conseguir un proceso cerrado para poder establecerlas como un unico
producto, pudiéndolas de este modo facilitarselas a un usuario, y que sin necesidad de
un administrador, sea capaz de configurarlas por si mismo para hacer que estas

trabajen de un determinado modo para un determinado proyecto.

Por otro lado, dichas herramientas, son absolutamente dependientes de un entorno
Windows, en el que debe haber instalado .Net Framework y las librerias
correspondientes de las bases de datos utilizadas. Puesto que actualmente el
desarrollo se encamina hacia la creacion de software libre, seria muy importante
realizar un estudio para que dichas herramientas funcionen bajo un entorno Linux,
actuando sobre un control de versiones de libre distribucion, e integrados en una IDE

también de libre adquisicion.

Posteriormente, deberiamos disefiar un sistema que actualizara automaticamente las
versiones instaladas en los desarrolladores de dichas herramientas, evitando asi que se
deban suministrar manualmente dichas versiones cada vez que se efectlen

modificaciones en las herramientas.

63

5. Bibliografia y referéncias
[1]Wikipedia: http://www.wikipedia.org

[2]Perforce: http://www.perforce.com

Informaciéon sobre el control de versiones utilizado para el desarrollo del
proyecto en concreto.
API para el desarrollo y las comunicaciones con el control de versiones
mediante la libreria p4com.dll

[3]IBM: http://www.ibm.com

Informacion sobre el control de versiones ClearCase.

Informacion y API para el desarrollo de una aplicaciéon Visual Basic que
interactla con ClearQuest.

[4]Microsoft: http://www.msdn.microsoft.com

Soporte para la implementaciéon de la comunicacion sobre un protocolo
SOAP

[5]Continous Integration: Improving Software Quality and Reducing Risk
Extraccion y studio de las diferentes politicas implementables, riesgos y
consideraciones.

[6]Agile Software Development

Extraccidon de los fundamentos a seguir y las politicas de SCM

64

6. Anexos
6.1. ClearQuest Datasheet

Automate and control soffware daliary processas
far improved effectivanass

E I software

IBM Rational ClearQuest

Highlights

B Improve projact visiblilty
and control with raaktine,
consolidated reporting and
process enforcement

B Spead sottware deilvery with
Intagratad, automated and-to-
and procassas

B /mprove soffivara quailty
through enterprise qualily
managament

B Enhance toam communication
and coordination wiih
automated workfiows

B Simpilty compliance Wift access
control, efecironic signaturas,
rapeatable processes, audl
tralis and iffecycia fraceablilty

B Scaie from small Workgroups
to geographicaily distributad
antarprises

Gontrol the software lifecyele and
deliver high-quality software, faster
The more versions, team members
and sites imiolved in software delivery,
the greater the risk of software quality
izsues and project delays. Lack of
communication, coordination and
prioritization across workgroups can
affect overall effectivenass. Slops may
be missed or completed incorracthy,
Disconngcted functional teams can
generate redundant or inconsistent

information. And compliance with inter-

nal and external mandates becomes
even more difficult to manage.

IEM Rational® ClearQuest® change
management software enables you o
manage the software lifecycle more
affactivaly. You have access to the
information you need to make batter
decisions. You can more efiactivaly
manage tasks and schedules and
respond rapidly 1o customer neads.
Automated workflows control and
enforce developmeant processes —
from requirements definition through
production—and help improve team
communication and eoordination.

By making process enfarcement trans-
parert, Rational Clear Quest software
enables project teams to stay focusad
on their ultimate goa —delivering
high-quality sottware on time,

Improve visibility and control

When the different groups and func-
tions imolied ina project all use
different tools and processes, it's
difficult to clearly understand what's
occUrring at any point intime across
the software delivery lifecycle. Dispa-
rate systems and processes can also
create serious coordination problems,
making it tough for teams o collabo-
rate onwhat should be inhererntly
connected processes. Baional
ClearQuest software allows you to
customize and enforce consistent
devalopment processes and achigve
anintegrated, consolidated wiew
across the project.

Proces s automation

Rational Clear Ouest software can help
YoU create repeataple, enforceable,
pradictable processes. Workflows arg
provided out of the box to jump-start
Yyour implementation. Workflows can
also e easily customized with the
ClearQuest Dasigner tool to mest your
unigue, specialized neads. States and
actions can be defined, fields can
be added and lists can be modified,

65

Mand atory fields halp to ensure tha
right data is collected. E-mail notifi-
cations help improve responsa time
and kKeap team mambers informed
of changes or updates. By providing
control over your processes, Rational
ClearCuest software helps make sure
nothing falls through the cracks, reduc-
ing overall projact risk.

Heal-time reporting and metrics
Rational Clearluest software Qives
woU insight into your processes with
comprehensive support for querying,
charting and reporting. Distribution,
trend and aging charts help vou visual-
e complex data. Charts can be easily
created and refined 1o allcw you to drill
into the area of data that you nead.

Individual team membears can gain

quick access to thair prichitized devel-
opment activities by generating to-do
lists. Crueries and reports enable you o
view the associations of requirements
and the status of your test planning, test

authoring and test execution activities.

Reports ¢an be run out of the box using
Business Objects Crystal Reports run-
fime libraries {inclided),

Rational ClearQuest software integrates
with IEM Rational Portfolio Manager
software 1o align project information
with information across the portfolio
to help you make more informed busi-
ness decisions. Integration with 1EM

R ational ProjectConsole™ software
provides areal-time graphical dash-
board to view and analyze overall
project trends. Additionally, Rational
ClearQuest software can inftegrate
with the Microsoft® Project application
to help you better manage schedules
and resources.

Defect and change tracking

Fational ClearQuest defect and change
tracking capabilities help you manage
issues throughout the project lifecycle
By documenting and managing issues
to resolution, Rational ClearQuest
software provides closed Hoop change
management that delivers better
project cortral and helps improve

softwara quality.

Lifecyele traceability

Rational ClearQuest software integrates
tightly with requirements, development,
build, test and deploymert tools. By
linking requirameants, code, build rec-
ords, test cases, deployment records
and other development assets, you're
able to extend traceability across the
entire software delivery lifecycle.

Gompress the software delivery
lifexyele

Integrating and automating the soft-
ware lifecycle doesn't just improve
project wigibility and control. 1t also
helps you accelerate delivery.

Fequirements tracking

Requirements records can be rep-
licated directly from 1EM Raficonal
RequisiteFro® software into Rational
ClearCuest software, They canthen
be associated with other development
assets sUch as defect submissions,
build records and test cases. Rational
ClearQuest asaociations are replicated
back into the Rational RequisitePro
application, providing analysts with
connections to Rational ClearQuest
information such as activities, change
requests and test data,

Activity-based change management
Rational ClearQuest and IEM Rational

ClearCase® software work tog ethar 1o
help vou defing and manags changes
to scftware assets as activities. Through
the Unified Change Managameant
capability, file varsions in the Rational
ClearCasze application are grouped
into logical activities and associated
with change requests inthe Rational
ClearGiuest application. This activity-
based approach enables devalopers
to manag e their work at the task level,
instead of managing individual files.
It helps bulld enginests ascertain that
the right files are incorporated into the
build. Testers can readily corfirm that
the right tunctionality and builds are
tested. Quality assurance engineers
can quickly see and validate what has
changed betweesn builds. And project
managers are better able o track
project status.

66

Build tracking and automation

Rational ClearQuest scftware allows
youl o track and automate the process
for building applications. Build records
track when a build starts and when

it ends; they also track build logs

and ather build infarmation. Rational
ClearCiuest software integrates with
IBM Rational Build Forge™ softwara
to automate build and releasse man-
agement. During an automated build
cycle, Rational Build Forge software
can directly create and update Rational
ClearGuest build records. An auto-
mated build that is usable by the entire
team reduces the time spent chasing
dowm compilation and corvergence
issues. It also reduces ermors that
delay downstream testing and d eploy-
ment activities.

Integrated test management

Fational ClearQuest software man-
ages the full range of testing activities
from test planning, to test execution, 1o
the capture and analysis of test results.
Wwith Rational ClearQusest software, youl
can define tast plans, create test cases
and associale test cases with specific
test plans. Integration with awaristy
of test execution tools enakles you to
map test execution scripts authorad
in these tast tools with test cases,
and 1o initiate test execution. Rational
ClearQuest software automatically
captures the test results for reporting
and analysis.

Deployment tracking and automatian
Rational ClearQuest software inte-
grates and automates development
and deployment processes. Daploy-
ment records track deploymeants
through test environments and into
production. For added control, you
can establish approval gates bafora
deploying any of these emvironments.
Deployment records can be associ-
ated with one another and with other
Rational Clearfuest records, such
as build records, test cases and test
results, 1o help you track which builds
wizre tested and deployad.

For deployment automation, Rational
ClearQuest software integrates with
Rational ClearZase and 1IBM Tivoli®
Prowvisioning Manager software, You're
able to deploy approved build files
directly from source code control. In
addition, you can launch the Tivoli
Prowvisioning Manager software directly
from Rational ClearGiuast software to
facilitate deploying the approved build.

Improve software quality

By automating interactions among dis-

parate project functions and groups,
Rational ClearQuest software helps
you aliminate software errors that
occlr bacause of manual processas
and handoffs, miscommunication
and inconsistent information. Buit-in
defect and change tracking capabili-
ties, together with erterprise quality
managament functionality, unify dewvel-
opment and testing activities and

prevent skipped steps or incomplate
activities. Streamlined processes can
lead fo faster and more frequent test
cycles, allowing youto detect errors
gatlier in the software delivery cycle
ou can awoid late patches and shoe-
horned fixes that increase costs and
delay project completion,

Enhance team collaboration

Rational ClearQuest software helps
you improve team communication
and coordination by integrating such
typically siloed processes as analysis,
developrmert, testing and deployment,
Autormated workflows and e-mail noti-
fication help ensure that appropriate
team mermbers are immeadiately alerted
when action is required. They also
recelve complete information about
ary change or update that can impact
their activities. With evaryone on the
team working from the same informa-
tion, issues surface quickly and those
affected by the issues are able to ool-
laborate on corrective action in real
time. Misunderstanding s and missed
steps can be pravented.

Simplify compliance

In addition to process automation and
lifecycle fraceability, security features
such as user authentication, user
authorization, electronic signatures
and audit trails are critical 1o help
ensure compliance with internal and
externd requiremearts.

67

User authertication ¢an be performed
through the Rational ClearQueast
directory of Users or throug h ind ustry
standard directory servers using
Lightweight Directory Access Protoool
{LDAPY. Suppart for Secure Sockets
Layer (35L) encryption allows com-
runication between the Rational
ClearQuest software and LDAP
directory to be secure.

Usar authorzation is performed through
the Rational ClearQuest user database.
U can also extend access contol for
ke secUrity checkpoints through script-
ing. Together, these capabiliies help
ensure that changes are made only by
authorized individuals.

Rational ClearCuest software logs
who changad what, when and wiy.
Changes o activities are tracked in
the history of the activity. In addition,
electronic signatures verify the iderti-
ties of individuals pertorming specific
actions. By documenting all transac-
tions agross the software lifecycle,
yoU ¢an trace the origin and detail of
all activities, and verify authorizations
and sign-offs,

Unparalleled scalability

Rational ClearQuest deplovments
can support thousands of users
working across dozens of sites. A
wide range of access capabilities
helps ensure that Al team members,
local and remote, have access to the
most up-to-date information virtually
anytime, anywhere Whether your
team is 4 small workgroup at asingle
location or a highly distributed team
spanning multiple locations, Rational
ClearQuest software provides the
flexibility and scalability 1o support
your organizational needs.

For more information

To learn more abalt how IBW Rational
ClearGuest software can help yau
manage and control your developmert
processes for improved effectiveness
and delivery speed, visit:

Ibm.comysoftware/rational/
offarings/scm htrml

=)

Capyright |BM Corparation 2007

1Bl Carpearation

Somets, WY 10680

Pracuced in the United States of America
007
AllRights Resared

Build Fatge, CleatCase, ClearQuest, B, the B
locea, Piojectzonsole, Ratianal, ReouistePraand
Tiveli ans trackemarks o reg istered trademarks of
Intarnational B usiness Mac hinas Corparatian in
the United States, ather countries or bath .

hlic oot i 2 trackema ik or registened traclemark
of Wlic tosaft Canporation inthe United States,
cthar countriss arbath,

Othercompany, product and service namas may
be tradematks or sarvice marks of athers,

The infarmation cantained in this cac umentation
iz prowidled for informational pumposas on by Whik
afforts were made towetify thecompletenass

and accuracy of theinformation cantained in this
dacumentation, {is prowided "as is” without war
ranty af any Kind, expressor implied. In addition,
this infarration is basedon IBWMS curkent praduct
phansand stratecy, which are subject o chanoe by
1Bl v itheaut neodice. 1Bl s hall nat be responsible
faramy damaces ansing outof the use of, or oth-
ahwise iskted o, this documentation or any other
dazumentation. Mathing contained in thisdacu-
entation is intendac to, norshall have the afizet
of, Crzating any warranties or representations fram
IBM {ar it su ppliers ar licensors), ar atbeting the
termsandconditons of theapplicable icense
agreament governing the use of IBM software.

68

6.2. ClearCase Datasheet

Wahage and contral soffware assels fov faster application dalivary

software

IBM Rational ClearCase

Highlights

B roreass preductivity wik raraliel
deradamenerrt syt auformnafed
wiwksmace marmgern e, aesof
reuse and acthif-fraced clrarnge
Fnaragernettt

B Deliver Flaf-guadfy code with
Fewer brugs fhrrough secure
Versioer inaragernent aind
ralfalle Fruifds

B Ealaree indiidua! and feam
rreed s Srangl develameners
arnd irfagration cfvagm modals,
frirate worksirmoes amd oullic
Infegrafion areas

B Mzinfain develommeant feadbil-
iy with nfegrafed IDE acoass,
Ifegrafions wWith oper souice
arrd fhird-prarfy fools, chres-
miafformn cupoort, Ferode gocess
arrd discorrrecied usage

B Scale fo accommadate
senall workgrorues as wall
ac farge, geograpficallyr
aieirifrutfed enfermises

Balancing developrnent lexibility with
effective cantral of software aszets
It'sa question of balanca, Onthe ona
hand, wou, as a softwars cavalkopar,
pratar towark in adevelopmeant
ariranmeant whear you have unfat
tered arcesstothe infomation and
aszats you nead tocreate high-quality
sftwars, On the athar hand, your
amanizatcn isaccauntabke for de -
anng businessvalue, which iEnteaasy
hacausa davalopmeant i 2= much
an art as it i2 a scienca. Warking
with distributed team s, adopting
sarvice-nnanted arhitectures (5005
and ensuning com pliance with an
incraasing nurn berof mandates all
ack] com plevity.

|EM Rational® Clean asae® softvwar
can halp halancs your need for flexi-
hility weith the crgani 2ation’s naad for
cartmal. T prewvicles contmlled accoss
tosdtwan assats, including reouina-
meants, design dozumants, modkals,
tast plans and st rasults. Paraliel
develpment support, autom ated

wearkspace managemant and basaline
ranajarmeant anablka vau o craata
applications rapicly. Sacur varsion
managgamant and raliabka buid auditing
help ansure high-guality coda. Dawval-
apmeant and integration modals, private
wirkspaces and public integration
anrzas alkosy vou towaork incke pencknthy,
vt collaborate affective by with the team.
I dzar authe ntication ancd audit ails halp
waur amyanization meaat conm pliance
rajuiramants with minimal administra-
thia hassk for wou, And with accass
virtwally anytimea, amyavhara, Rational
Cleanzaze sxftwan Qivas wou the freae-
chomn fowark efficientty where andwhen
vl nead,

Increaseyour produckiviby

Rational Clear”ase softwane can halp
vl cfet mciks cone inasharksar pe oo
of tina. o don't wasta tina works
ing on the wrang warsans of coda.
And suppart for parallal ceva kegomeant,
activity-basad chanda manasemeant
and assat ruse stheam lines the davel
cpmant process.

69

Corz capahbiliies

IBM Rational

ClearCase LT

IBM Rational
ClkarCase

IBM Ratiomal
ClearCase Muhisite

Warzkan contrl

Automated workspace managemeant

Paralkel devealopmeant support

Activity-hased chanoe managemeant and
chande sats

Support farmidrance developrant

Intagration with leadling IDEs

Lozal, remota (0AN) and Wak client access

Support for disconnected usacge

Acceass contpal with user authentication and
uzar authorization

Audlit frails

Tranzparent, raktime access o files
and directorias

Euild auditing

Suppert for i ainfrarm e devalopmant

Replication and synchonizaton of Ratonal
Cleanzase repositones

Wiab-bhazad acdm inistration consalke

Senerarchiectuns

Sindke sarvar

Multiple, distributed sanvars

Replicated sarvars

Marzh the solution f wour e reararcoent with the (B S anonal Gleanfase famiy of producs,

Sophisticated wversioncaontral

With Rational ClearCase softwans, youl
Can akway's e confident that you'ie
wiotking on the dght versions of the right
anifacts. Ratiohal CleanZase softwans
manages and cortrols source Code,
libraries, documentation, binaries, Wieb
artitacts and virually amy project afifact
that can ke epresented as digital
confent. It also controls wersioning for
directories, subdiectaries and all file
systemobicts. Devaelopers can see
the version, branch and fike they ans

working on simply By viewing the
Rational ClearCase version free. In
addition, Rational C karCass softwals
offers azcess to advanced functions
that allow you o delete previous ver-
sions, cleate and delefe branches, list
version histories, and cormpars and
e e Yersions.

Paraliel development

Rational Clear’ase software provides
e tensiie support for paralkel develop-
rrent, enakling develspers 1o work on

the same code base or eleass, moks

easily resclve conflicts and reduce
cotfusion. Autematic file-branching
functichality isolates specific changes
orversions, allowing multipe develo-
ers on the same and different teams
toowiotk independerntly from the sarme
code base. Develpiment and integra-
tion strzam models define how and
wheh develspers deliver code changes.
Prosen rreriing and diffetencing caps:
bilities accept uncontested changes
and highlight conflicting changes for
faster resolution.

70

Automatedworkspace management

With Rational CleanZase softwars, yoL
hiawe fine- grained control evar your
personal workspaces and seamlass
access fo the exact file and directony
Yersions you need for different Kinds
of develspment activity.

T by pazs of views, of wirtual work-
spaces, are available. T Ramic views
provide transparent access to versions
of elements on the netwo, Snapshot
wiEws five ol the fliexibilty to use kcal
copigs of file versions whilk discon-
hiected fromthe network, and the akility
to easily synchronize changes whean
reconnected to the network, Develop-
ment feams can mi and mafch their
views bagsed on preferences and
project needs.

Actiwity-based change management
Raticnal ClearZase and [BM Rational
ClearCiuest® change management
preucts worl 1 gether 1o alkow you to
defing and manage changes fo soft-
wanke assefs a3 activities. Thiough the
Unified Change Managemeant capalil-
ity, file wersions in Rational CleanCass
software are grouped into Kgical
activities and associated with change
requests in Rational Cleanziuest soft-
wate, This activity-based approach
enakyes you i manage your work o
the task level, instead of managing
individual files. You have a complets
vigw of how devalopment events,
including defects and proposed pro-
ject chanpes, affect specific fikes,
versions, baselines of eleases.

A sset rense

The kess new cocde you have o crashe,
the faster you can deliver software, The
challenge lies in knowing what assets
exist, where they reside and how fo
categorize and reference themin
design and develpment activities.
IEM zupports the Reusable Aszet
Specification (RAS) process, which
defines a standard way 1o package
reusable software assets. The infegra:
tion betwesn the Rational ClearZase,
IEM Rational Softwarne Architect and
IBM Rational Rose® XDE™ Developer
solutions makes iteasy to search for,
bcate, downieadd and apply assets fiom
eusabke asset repos fories locaked
kcally or ahthe Wb,

Delivrer higher-qualily code

Marny prokbdems can oo during soft-
warke developiment: bugs that hawve
been corfected Rappear, pRevious
ekease s of software are impos sible o
find or cannct be rbuitt, files rmyster
oUshy change of disapeear, builds that
previoush worked suddenly break,
The: lafer inyour softwane development
cacle that you find a bug, the higher the
cost and the greater the risk of delays.
Thiough secure versicn management
and reliatle build auditing, and by
alftorrating build and rekease activities,
Rational Cleanzase software helps o
Erevent mistakes, reduce bugs and
identify errrs earliet in the delivery
cycle fo solve them more guickly.

Secure version management

Rational C eantass softwane provides
arbust certralEed rpositony whens
all development assets ake capt ured
and versionsd iha secUs way, Access
control helps ensure that only altho-
rzed indiiduals meke changes. ser
authentication is performed through

operating sy stem authentication meche
anisms o through industry standard
Lightweigght Difeciang Accass Profoco|
(LOA P, Supspectt for uset- and G-
based permissions limits access o filks
and directotes. Userbased oks are
available on Bational ClearC ass objects
ibranches, lakels, elements and
metadats). Programmstic authorza-
tion can occur based on the action
being performed.

Reliable build auditing

Rational CleaiC age soffwar provides
effective build auditing. It belps stieam:
line the edit-build- debug oy le and
accurately reproduces softwans ver
sions. Rafional ClearCase softwate
also prowvides the akility fo generate a
detailed software bill of materials, which
CAan ke used to automatically determine
whan built objects can be reused or
shared by developers Using rmultiode
views, By detecting dependencies,
Eeusing derfied objects whesver pos-
sitsle and producing detailed buoild
audit trails, Rational Cleantase soft-
wake helps ensure the e prod ucibily
of software versions.

Autornated build and reles.se management
To altomates the entfire build and
Eelease menagement process, Rationsl
ClearCage seftwars integrates with IBM
Fational Build Forge™ softwars, The
Fational Build Forge applicafion con-
tinuoushy monitors Rational CleanCase
repositories and executes builds
either when a change occurs of on a
scheduled basis, This automated build
capabity significanty reduces the tinme
yoL and wour tearmmates have o spend
chasing down compilation and con-
veEncs 155Les. [talse rduces ermrs
that can delay downstrearm &sting and
deployment acti ities,

71

Balnce indfridual and leam needs

The develapment and irtegration
stream models in Rational Cleanzass
softwate defing how and when devel-
opers deliver code changes. Through
private developer workspaces and
public integration areas, your nesd
fo work independertl is balanced
with the organization's nesd to effec-
tively integrate your work with that of
your izammates.

hainlain developmenl Hexibilily
Ratichal Cleans ase software gives you
fresdom of choice, Yol can work fioam
where woLwart, using the integrated
development emvirohment (IDE) you
wart, on the platformyol want,

Access from amhere at any time
Rational ClearCase softwane allows for
Ea5 AnCass TRom vaious efvironments
and kcations. Deskiop clients provide
cormplete Rational ClearCase function:
ality in 2 flexible Microsof™ Window &=
interface. Remole and Web clients
enakzk you to access versioned objects
cwver awide ares networl (AR,

Rational Cleantase software provides
integ raticns with keading IDES, including
the IBM Rational Application Deve koper
for Wik Sphe™ Softwals e i nment,

the open source Bolipse framewo i an
Mo soft Wisual Studic 2006, soyou can
wio ik within wour c hosen e nmet.

Heterogeneous cross-platform support
Fational Cleantase software sup-
ports heterogensous emvironments
and coss-platform developiment, Yol
Can develop in vidually any develop-
rrent envirznment, including Mic i soft
Windows, Linu® distributed and
mainframe), UMEE & pple Macintosh
viaWweb browser), and 1B W z/09=
erwitnmets, aswel as the [BM iS50S5,
IEM AL Wiindows and Linu erniron-
ments ¢n the [BM Sy stem ™ platform.
On the server side, your organization
canchose from avatety of supported
platforms o store softwane assets whils
ol andd your amirete s continue o
wo 0 your preferted IDES.

Unparalieled scalabilily

Rational ClearCase deploymants can
support thousands of Lsers, working
at dozens of sites, managing tera
Birtes of data, Whether your teamis a
small workgroup at & single koation
or a highly distributed team span-
hing multipe geod mphies, Rafional
ClearCase software provides the
sCalakility you need for your evoliing
omjanzational needs.

For more infor malion

To kearn mote about how B Rational
Cleanz ase software can help you
rranag e and ot your soffwars
assets across the |fecycle, visit:

Ibm. comfsoftwareTational!
afferings fscm.himl

@

Froduced inbe Unied Staes of America
=07
All Rights Reserved

AlY, BuidForge, CleanCase, Clearluest, [BM,
the2|BM logao, Rafional, Rational Fose, Swstern i,
WebSphem, XD Eand 205 are vademnats or
reg iserd rademarks of Inemational Bus iness
Machines Comporation nbe Unied States, aber
coniries of bath,

L i aregisensd radernark of Linas Torvalds in
thie United States, obar countrises o b,

Microsoftand Windows are rademarks or regis -
tered fradernarks of MicrosoftConporation inhe
United Stakes, other cooniries or both.

LI i areg istensd fradern ark of The Cpen Snoup
in e United States and otber countries.

Crtbier cornp any, prondoct Snd S nvice nannes sy
b rademark s or service marks of others.

The imformationcontained inhis docomentston

is priowided for informnational purpoess onbe. Whiks
afforts were rmade owerify thacompletensss

ard acouracy of e infomnation contained inhis
dacurnertation, it i provided == = withootwar-
rarity of ary kind, espress or mp lied. Inadd fion,
this miormation i based on | BM's comentproduct
plare and strategy, whichare ab jpcttochange by
|BM withoutnatice. IBM shall otberespores bl
forary darnages aris ing outof Heuse of, oroth-
enw e relaed o, this docornentetion or sy oher
docrrertation. Moting contained inthis docua-
rmeristion s mended o, norshallhase e effect
o, Cresiing Sy WaImartiss or repressrtations from
IBM [or iz supp liers or licereors), o abering the
termres and conditions of the spp lcab ke licerss
aqresrrertgoweming e use of |BM sofhwans,

72

6.3. Perforce Datasheet

Perforce, The Fast Software Configuration Management System

Interfaces

 Wiswalc lient for Windowes, Linug, ac &5 X, Solaris, and FresBSD0

+ Standard command line acroes all patforme

* Windowes Explarer plug-in

' Whab bnowesar with thumbnail wiseesr

+ Imbegrates with Microsodt Yietal Stodio, Eclipes, 1B s Rational
Softeans Devalopment Platform, Borland's 1 Builder, Apple’s Xoods,
and mors

iz lient AP for cugtom applicato ns

Configuration Management

' Zlientisardar repositony system

+ Atomic change tran saction s group filks changed at the same tima

+ Fleaibla lxcking: supports both concurrentand esclusie file chechout
+ Wiareion control of filk add s and delkstes fortotal reprod ucibi lity

' Full support for version bbaling

'+ Autormated change notification

+ iFraphical views of complste change higbory awer any time pariod

Digita | Asset Management

* Thumbrail wiswesr landlezall major file formats: IPEG, PMG GIR
EhF, FEM, MG, PShi, PPR, X B, and ¥Pht plug-in AP for
cu=tom and proprietany ormats

' Imbegrates with popular graphics tools: Adobe Photoshop, Aviodecsks
3ds htax and htaya, and Softimage X5I1

International Features

* Support for Unicods

A utormatic charactsr st transhtion across multtipe pltorms
+ lapaness koaliezed GlUlsand eror messages

EBranching

* Uniqua Imer-Fle Eanching™ modsl

+ Unlimited branching for paraliel desslopment and rekames

+ iZomprehensive intsgration histony tracks codeline relationships
+ Sman mengingfconflict resolution

* Imalligant intsg ratio ns simplify bdder merges

+ Treer gyle graph of branch higony

Workspace Management

* Unlimited numbsr of workepacses par ussanpar host

+ S lient wiewe Machaniem salects reposio ny filbs for workspaos
+ Wharkepacss updatsd on demand

 Support for offine opsration

Database and Administration

+ Cantral databass tracks usar activity

+ High-parormancs, integrated databass

* Wiswy- bamed acoe es contiol for partitioning the eposiony

* Large repositories (millio ns of filke) can fit on a =ingle samer

+ A graphical adminigtration 1ol halps viswally manage ussrand
grioUp pa rmiss ns

' Mear zano maimenancs, offline chackpointing for 2457 uptime

' Databass jourmaling for up-to-ther minute recoweny

+ Plin ASCI chaclpaints for sazy maimsnancs

+ Suppons extsrmal user authentication: LOAF, Actis Disctony

Defect Tracking

+ Basic built-in dedect tracking

+ Disfect tracking imegration kit

' Imbegratas with keading defiect tracking systame: Athesiar's 11RA,
Bugzill, Extratiew, Fog Creak’s FogBuge, HF Cruality Samter,
Sarena’s Teamlrack, TechEscals CewTrack, and WA Softweans's
SourcsRonge

Networking

+ True client ssrver achiectuns bailt upon TCRAP

+ Mo file =yEtem mapping or mounting requinsd

* Famots sie caching for offsite or offsho e #ams

' U=able owver networks as slw asdialup speeds

+ U=abls awar the Imtarnat or corporae intransts

+ Dparates through proxies, o reandars, and firswalls

Pla tforms
+ Appke Darwin Powvesr PG + Linux x86
+ Appke Darwin x36 + Linux «26_G4

* hlicrosodt Window = LA G
+ hficno soft Windoew & afid
+ hlicrosodt Window = x25
+ Sun Solaris 10 ©25

* Sun Solaris 10 25 G4

* Sun Solaris 8 SPARC

*Appla hac OS5 X 26
+ Cygwein w36
FeaBS0 586

+ FreaBSD x56 64

+ FeaBSD SPARC B4
CIBM ALK S

Suppo ited Filetypes

+ Plain test * Tawt with exscute bit =t

' Binary + Bimany with esscute bit ==t

+ Symbolic link + Tawt with keywiord expansion
+ Unicode + Macimosh resouncs fork

73

74

Firmado: Robert Garcia Atserias
Bellaterra, Junio de 2008

75

Resumen

El Software es facil de cambiar, demasiado facil, las herramientas de Software
Configuration Management, nos permiten conseguir que un determinado proyecto sea
estable y trazable, siempre y cuando estas se usen debidamente. Tampoco el uso de
estas herramientas es sencillo. El objetivo de nuestro proyecto es el de implementar
una herramienta que haga de nexo entre el desarrollador y todas las herramientas de

desarrollo para asegurar que los cambios son consistentes.

Resum

El software és facil de canviar, massa facil, les eines de Software Configuration
Management, ens permetran que un determinat projecte sigui estable i tracable, sepre
que aquestes s’utilitzin degudament. Tampoc utilitzar aquestes eines es senzill.
L'objectiu del nostre projecte és el d'implementar una eina que faci de nexe entre el
desenvolupador i totes les eines de desenvolupament, per assegurar que els canvis

son consistents.

Abstract

Software is easy to change, too easy, Software Configuration Management tools allows
specific project to be stable and consistent if managements of these ones is correct.
Use these tools is not an easy work. Therefore, the objective of this project is to
implement a tool that work as an interface between developer and development tools,

to ensure that changes are consistents.

76

77

