

Planificación y gestión de las herramientas de SCM

aplicadas a un proyecto de desarrollo

Memoria del proyecto

de Ingeniería Informática

Realizado por:

Robert Garcia Atserias

Y dirigido por:

Xavier Binefa Valls

 2

 3

El sotasignat, ..

Professor/a de l'Escola Tècnica Superior d'Enginyeria de la UAB,

CERTIFICA:

Que el treball a què correspon aquesta memòria ha estat realitzat sota la seva
direcció per en

I per tal que consti firma la present.

Signat: ..
Bellaterra,de...............................de 200.....

 4

 5

Agradecimientos:

Teniendo en cuenta que me encuentro al final de un ciclo académico,

sería injusto dedicar mis agradecimientos solo a las personas que me han

ayudado en la elaboración de este proyecto, dicho esto debo agradecer

especialmente el haber llegado donde he llegado a mis padres y

hermano, puesto que sin ellos seguro que todo esto no hubiera sido posible.

Agradezco también a mi primo Carlos Garcia, toda la ayuda

académica y extra-académica que me ha aportado estos últimos años.

A Cristina Vélez le debo los ánimos aportados en la fase final de mi

carrera, sin ella tampoco hubiera sido posible.

Nunca podré estar suficientemente agradecido a Ricard Burriel, quien

me ha aportado todos los conocimientos que tengo en este sector.

Y a muchos otros que no menciono, pero no por ello menos

importantes:

 Muchas Gracias

 6

 7

 INDICE

1. Introducción: ...8
1.1. Introducción y objetivos del proyecto:...8
1.1.1. Fase de diseño ..9
1.1.2. Fase de implementación ...10
1.1.3. Fase de corrección de defectos ..10

1.2. Objetivos y plan de la memoria..11
1.3. Definiciones y abreviaciones:...13

2. Fundamentos teóricos y herramientas utilizadas.14
2.1. Base de datos de las actividades:...14
2.2. Control de versiones: ...16
2.3. Control de versiones de documentos: ..26

3. Escenario a automatizar ..27
3.1. Dependencias del proyecto ..32
3.2. Automatización de las “Releases” ..34
3.3. Automatización del desarrollo..37
3.3.1. Select Project ..38
3.3.2. Workon ..40
3.3.3. Checkout ..43
3.3.4. Revert / Submit...45
3.3.5. Rebase ...47
3.3.7. Integrate ..53
3.3.8. Postpone ..57

3.4. Reports Automáticos..59
3.5. Schedule. ...60

4. Conclusiones y vías de continuidad..61
5. Bibliografia y referéncias ...64
6. Anexos...65
6.1. ClearQuest Datasheet ..65
6.2. ClearCase Datasheet .. 68
6.2. ClearCase Datasheet .. 69

 8

1. Introducción:

1.1. Introducción y objetivos del proyecto:

El desarrollo de un producto de software, es cada vez más complejo, el tamaño del

código es mayor, esto hace que el producto sea por un lado más inestable, puesto que

cuantas más líneas de código contenga, más errores habrá en este, por otro lado, el

código se hace menos trazable, y más inconsistente. El número de desarrolladores

aumenta, hecho que conlleva a un código con redundancias si no hay una buena

comunicación entre los desarrolladores, por otro lado, el desarrollo distribuido, es cada

vez más usual, y esto requiere a su vez, una correcta sincronización entre todos los

centros que desarrollen un mismo proyecto.

Por todo esto, es fundamental tener claro el papel que desempeñará el SCM (Software

Configuration Management), dentro del marco de nuestro proyecto.

PRINCIPIOS DE SCM:

SCM es el encargado de controlar las modificaciones efectuadas en el software, con

el fin de garantizar una correcta trazabilidad del proyecto, y un fácil mantenimiento

del mismo.

Cuando hablamos de controlar los cambios en el desarrollo del software, nos

referimos a conocer: quien ha realizado cada modificación, que modificación ha

realizado, y porqué la ha realizado. Gracias al conocimiento de todo esto, podemos

obtener mejores versiones del producto, y por supuesto, cuantas más versiones

tengamos de un producto, mejor será el resultado final del mismo.

Nuestro proyecto tratará de asegurar el correcto cumplimiento del proceso de

desarrollo de SW, por tanto, antes de conocer que se puede mejorar, vamos a tener

una visión global de las partes que forman este desarrollo.

 9

 1.1.1. Fase de diseño

La fase de diseño de un proyecto es aquella en que se toman las principales decisiones

en cuanto a diseño del mismo, herramientas a utilizar (Control de versiones del SW,

control de versiones de Documentos, bases de datos de actividades y defectos,

entorno de desarrollo…), y políticas que definen como usar estas herramientas.

Todas estas decisiones afectarán a todos los desarrolladores, y por tanto, deben estar

debidamente documentadas. Ésta documentación a su vez permanecerá almacenada, y

debidamente versionada, bajo un control de versiones específico para documentos. Por

otro lado, mientras el proyecto avance, y se vaya creando nueva documentación, ésta

será adjuntada en el mismo directorio, dentro del dicho control de versiones.

En esta primera fase del proyecto, las tareas a desarrollar serán debidamente definidas,

una vez hecho esto, dichas actividades serán insertadas en una base de datos, cuya

única funcionalidad será la de tener el estado de las actividades, junto a la información

relacionada con éstas, bajo un control debidamente versionado, y teniendo en

cualquier momento acceso a la información en cuanto al estado de la actividad se

refiere.

A la vez que estas actividades son definidas, se van asignando a los correspondientes

desarrolladores, esto nos permitirá fácilmente reasignar actividades en cualquier

momento del proyecto, así como consultar el trabajo de cada desarrollador, la

sobrecarga de éstos, así como tener una visión global del estado del proyecto.

Para finalizar con las herramientas necesarias para desarrollar un proyecto, no

podemos dejar atrás el control de versiones del SW.

En la fase de diseño, no únicamente nos quedaremos definiendo la herramienta a

utilizar, sino que también debemos definir las políticas que deberán seguir los

desarrolladores a lo largo del período de implementación del proyecto.

 10

 1.1.2. Fase de implementación

En esta fase del proyecto, el control de versiones del SW, debe tener claramente

definidas las políticas a seguir por parte de los desarrolladores, mientras que la base

de datos de actividades y el control de versiones de la documentación seguirán

recibiendo nuevas entradas.

Debido a esto, podemos llegar a la conclusión que es en la fase de desarrollo, en la

que las aplicaciones anteriormente mencionadas, toman mayor importancia,

implicando esto, que es la fase más susceptible a errores humanos, y a su vez, la fase

en la que mayor claridad debemos tener.

Es por esto, que para garantizar esta trazabilidad, y evitar los errores humanos,

debemos garantizar el correcto procedimiento en la utilización de dichas herramientas.

 1.1.3. Fase de corrección de defectos

Una vez el proyecto esta desarrollado, se entrega al equipo de testeo, encargado de

detectar todos los errores de código o diseño, que provocan un incorrecto

funcionamiento del producto.

Este equipo, una vez detecta un error, lo introduce en la base de datos de defectos,

posteriormente, el líder del proyecto, se encarga de asignar el defecto a algún

desarrollador, que a su vez lo corregirá para una posterior versión del mismo.

Si tomamos un defecto como si fuera una actividad a desarrollar, nos encontramos de

nuevo en la fase de desarrollo, y por tanto, debemos tener en cuenta la importancia

que tiene que éstas correcciones sean de nuevo debidamente versionadas.

Por tanto, en esta fase, es también sumamente importante la utilización de una serie

de herramientas que nos garanticen trazabilidad en el código, y nos minimicen al

máximo la introducción de nuevos errores.

 11

1.2. Objetivos y plan de la memoria

Una vez tenemos una visión global del proceso de creación de una aplicación, vamos a

definir los objetivos de nuestro proyecto.

Dada la importancia que hemos observado que tiene mantener el código estable,

trazable, y por tanto rigurosamente versionado y documentado, vamos a definir una

serie de políticas que nos lo garanticen, y una serie de herramientas que nos

asegurarán el cumplimiento del proceso.

El primer punto a tener claro es, por tanto, decidir que herramientas deberemos

utilizar, y según estas herramientas, definiremos las diferentes políticas a seguir

dentro de dichas herramientas. Esto lo veremos en el punto 2 de esta memoria.

Una vez definamos las herramientas a utilizar, lo siguiente que deberíamos hacer és

asegurar el cumplimiento de estas políticas.

En un proceso donde el número de desarrolladores es elevado, y su ubicación dispar,

cualquier error puede tener graves repercusiones, de ahí que debamos enfatizar en

este punto.

Con la finalidad de garantizar que el proceso es robusto, definiremos una serie de

herramientas, con las que el desarrollador deberá interactuar, de este modo, al no

actuar directamente sobre las bases de datos, controles de versiones, etc. se reducen

notablemente los posibles errores humanos introducidos por los desarrolladores.

Éste apartado constituirá el grueso de nuestro proyecto, el diseño de las herramientas

así como su información desarrollada, serán ampliamente explicados en el tercer

apartado de esta misma memoria.

Finalmente, y no por ello menos importante, nos encontramos con la información

relacionada con el desarrollo de un proyecto, y con los informes de la evolución del

mismo, en ellos, la información debe ser clara, concisa, y por supuesto, sin errores,

para ello también se ha desarrollado una herramienta específica, que será explicada

también en el tercer apartado de esta memoria, junto con las demás herramientas de

automatización.

 12

Dicho esto, podemos observar que nuestro objetivo es realizar una herramienta, que

haciendo de nexo, tal y como se muestra en la siguiente figura, entre todas estas

aplicaciones y el desarrollador, realice de forma automática las operaciones que

debería realizar manualmente el desarrollador.

Figura 1

Entorno de la aplicación

Como podemos observar en la figura anterior, no hemos considerado el hecho que la

herramienta opere directamente con la base de datos de Requerimientos, pues no se

puede definir implícitamente un automatismo para ella, considerando que la frecuencia

de acceso a esta base de datos no es la misma para todas las actividades, ni en todos

los momentos, es decir, no podemos determinar en ningún caso, los documentos que

debe consultar el desarrollador para implementar una determinada actividad, es por

esto que las consultas a esta base de datos las hará el usuario de forma manual.

 13

1.3. Definiciones y abreviaciones:

Término Descripción

SCM Software Configuration Management

UCM Unified Change Management

Saber DM Base de datos de Defectos

Saber RM Base de datos de Requerimientos

ClearQuest Base de datos de Actividades

Perforce Control de versiones del proyecto

Acti Time Base de datos para controlar el tiempo de las actividades

Share Point Base de datos de documentos

Baseline Versión de código etiquetada.

Release Versión de código lista para entregar

Peer Reviewer Persona asignada para revisar la implementación de un

desarrollador.

 14

2. Fundamentos teóricos y herramientas utilizadas.

En este apartado hablaremos de las herramientas utilizadas en el desarrollo del

proyecto y de los requerimientos que debemos tener en cuenta en el momento de su

elección, y a su vez, de cómo automatizar los procesos de interacción entre ellas,

objetivo principal de este proyecto.

2.1. Base de datos de las actividades:

Una mala comunicación entre los desarrolladores, una mala coordinación, o bien la

falta de una debida priorización en las tareas, puede concluir en que se detecten

redundancias o bien información inconsistente en la entrega de un proyecto.

Utilizando una base de datos para almacenar las actividades a desarrollar, y su estado,

podemos tener acceso a de forma clara y rápida a la información, permitiendo corregir

los anteriormente mencionados errores, y facilitándonos además la toma de decisiones

de una manera clara y rápida.

Gracias a la utilización de esta herramienta, podemos, en cualquier momento del

proyecto conocer el estado de las actividades desarrolladas, y las que están todavía

pendientes de implementar, documentar o diseñar.

En definitiva, usar una base de datos específica para las actividades, ayuda a la

creación del proyecto eliminando los errores que ocurrirían manejando toda esta

información de forma manual, mejora la comunicación entre los desarrolladores,

mejora la calidad del software, y se puede tener una visión del proyecto en cualquier

estado de tiempo.

En nuestro caso, como base de datos de actividades, hemos utilizado la herramienta

de IBM, Rational ClearQuest.

Esta herramienta permite la creación de un esquema asociado a cada proyecto, pues si

bien los requerimientos para un proyecto no son los mismos que para otro, la

información de sus actividades también varía.

 15

Por otro lado, esta herramienta permite que los desarrolladores hagan sus consultas

personales, así como al administrador poner queries predefinidas, que serán vistas por

todos los desarrolladores asociados al proyecto.

La aplicación estará almacenada en un servidor, al que todos los desarrolladores

tendrán acceso, y las restricciones vendrán dadas por los propios grupos creados

dentro de la misma aplicación.

A continuación podemos ver un ejemplo de esta base de datos:

Figura 2

Entorno Rational ClearQuest

Como se puede observar en la figura anterior, esta aplicación nos aporta un robusto

seguimiento del estado de las actividades, y de su información asociada.

Toda esta información está claramente ampliada en el anexo 1, correspondiente al

datasheet de Rational ClearQuest.

 16

2.2. Control de versiones:

El control de versiones, quizás sea la herramienta más importante de todas las que

veamos a lo largo de este documento. En ella se almacenará el software desarrollado,

debidamente versionado.

Estudiando las herramientas a fondo, podemos observar claramente que IBM nos

ofrece una herramienta muy potente, Rational ClearCase (5000€ por licencia), no

obstante, en nuestro caso, y para este proyecto hemos optado por confiar en una

herramienta, menos sofisticada, y por otro lado más económica: Perforce (600€ por

licencia).

Hemos dicho que IBM nos ofrece un entorno mucho mas potente, con ello nos

referimos a que posiblemente disponga del mejor entorno multisite para este tipo de

herramientas, mediante la técnica de replicar servidores con unas políticas específicas

para su mantenimiento, nos permite realizar un buen desarrollo distribuido. El

mantenimiento de este sistema de réplicas, por otro lado castiga el tiempo del

desarrollador, debido a que los datos subidos a un servidor, tardan un determinado

tiempo en ser replicados.

Por otro lado, otro de los puntos negativos de esta herramienta, es que es sumamente

difícil de administrar, hecho que nos hace tener un administrador dedicado por cada

30-40 desarrolladores, coste este también a tener en cuenta cuando queramos decidir

que herramienta utilizar.

A parte de este coste de administración, ClearCase no es una herramienta fácil de

utilizar para los desarrolladores, requiere de una formación específica, que también

conlleva un coste adicional, por el contrario, cuando hemos adquirido los

conocimientos necesarios para trabajar con este entorno, las posibilidades que nos da

son infinitas en comparación a cualquier otro control de versiones.

A todo esto debemos añadir, que usando este control de versiones, las integraciones

no son triviales, y por tanto, toma fuerza la figura de un integrador, persona dedicada

a integrar los cambios en una rama “main”, de la cual saldrán las versiones del

producto final.

 17

Como ya hemos dicho anteriormente, en nuestro caso nos hemos decidido a trabajar

bajo el entorno Perforce, a continuación veremos como opera esta herramienta

internamente.

La siguiente figura nos muestra la conexión entre un servidor de Perforce y un cliente:

este cliente puede tener cualquier sistema operativo, como pueden ser (Windows, Unix

o Mac OSX), mientras que por otro lado se puede escoger entre tener un servidor

Linux o Windows.

Figura 3

Servidor Perforce

Puesto que debemos considerar el desarrollo distribuido, vamos a ver como

internamente maneja Perforce un entorno distribuido.

 18

Figura 4

Perforce Multisite

En otros controles de versiones, como en el caso de ClearCase, el sistema distribuido

se crea mediante un servidor en cada “site”, en la que los datos se replican mediante

una sincronización periódica.

En el caso de Perforce, y gracias a su más que excelente Performance, únicamente es

posible disponer de un servidor, mientras que en cada “site”, dispondremos de un

Proxy para mejorar las comunicaciones. De este modo, y a efectos de los usuarios,

siempre se está accediendo directamente al servidor central.

Ambos sistemas tienen sus ventajas y sus inconvenientes, en el primer caso, la

sincronización es un proceso que requiere tiempo, y por tanto, puede ser que en un

“site”, se efectúen unos cambios, y en otro tarden un cierto tiempo en verlos, mientras

que en el caso de Perforce esto no ocurre, por otro lado, si un servidor falla, en el caso

de ClearCase, los datos están replicados en otro y el usuario siempre tiene acceso a él,

mientras que en el caso de Perforce, hasta que no se restaurase el sistema, se

detendría el desarrollo.

Perforce, a su vez tiene como ventajas principales, su velocidad en las transacciones,

punto fuerte de esta herramienta, que permite a los desarrolladores ahorrar mucho

tiempo en las operaciones que atacan al control de versiones. A su vez, el entorno de

 19

este control de versiones, es sumamente intuitivo, hecho que hace que la formación a

los desarrolladores para el uso de esta herramienta sea de bajo coste temporal y

económico.

Llegados a este punto, y habiendo seleccionado ya el control de versiones a utilizar,

entramos en la difícil tarea de diseñar las políticas que deberán seguir los

desarrolladores al implementar el código bajo un determinado control de versiones.

Debido a que el proyecto, en nuestro caso, cuenta con un número amplio de

desarrolladores, debemos garantizar que nuestro desarrollo permitirá cambios de

forma concurrente, así como garantizar por otro lado que las integraciones se

efectuaran a menudo, esto nos permitirá asegurar la reproducibilidad de las Releases.

Introduciéndonos en el escenario de desarrollo, tendremos un directorio donde se

almacenará el código desarrollado, (rama de integración), por otro lado, tendremos las

diferentes ramas, donde los desarrolladores implementarán sus actividades, para

posteriormente ser integradas en la rama de integración.

Para el control de versiones utilizado, la creación de una rama implica duplicar el

código en el servidor, por este motivo, deberemos conseguir un compromiso en la

creación de estas, pues la creación de excesivas ramas puede conllevar a un exceso de

uso de disco, y a unos tiempos de espera indeseados en el momento de actualizar

dichas ramas, mientras que una creación insuficiente de las mismas, nos llevaría a

determinados problemas en la trazabilidad del proyecto.

Por otro lado, debemos tener en cuenta, por ejemplo que el proyecto sea desarrollado

desde varios emplazamientos, ya que Perforce únicamente puede contar con un

servidor centralizado, donde se almacenaría toda la información, gracias a la utilización

de un Proxy, veremos reducido en gran medida el tiempo de acceso a los datos.

Una manera muy óptima para el desarrollo sería, que cada desarrollador implementara

cada actividad en una rama diferente, y luego se integraran las actividades que se

deseen, como muestra el ejemplo siguiente:

 20

Figura 5

Diagrama: 1 rama por actividad

En este caso se desarrolla cada tarea en una rama diferente, la tarea 1 y 2 parten de

la versión uno en la rama de integración.

Al finalizar la primera se integran los cambios en la rama de integración,

posteriormente, se desea integrar la segunda, así que para evitar conflictos, se cogen

los cambios recientes en la rama de integración, para posteriormente integrar la tarea

dos en esta rama.

 21

De la misma versión de la rama de integración, se inicia el desarrollo de la tares 3,

como se puede observar, esta tarea esta todavía en desarrollo, o bien se ha finalizado,

pero no se ha deseado integrar, así que los cambios se mantiene estables en la rama

de desarrollo de la correspondiente tarea.

Del resultado de integrar la tarea 2, se inicia el desarrollo de la tarea 4, tras su

finalización, al desear integrar los cambios en la rama de integración, esta no ha

sufrido cambios, así que al no haber conflictos, los cambios se pueden integrar

directamente.

Debido a los problemas que hemos comentado anteriormente, este tipo de desarrollo

no sería posible, puesto que el tamaño se aumenta en exceso, y los tiempos de

creación y destrucción de ramas son excesivos, de modo que debemos buscar una

alternativa.

Teniendo en cuenta las restricciones de la aplicación de control de versiones utilizada,

hemos decidido utilizar la siguiente política de ramas:

• Una Rama de integración

• Una única rama para cada desarrollador.

De este modo, los desarrolladores implementarán sus cambios en su propia rama, y

posteriormente, los integrarán en la rama de integración. El siguiente esquema

muestra cómo se efectúan éstos cambios.

 22

Rama de Integracion

1

4

3

2

Dev_2

1

2

Dev_1

1

3

2

4

Figura 6

Diagrama: 1 rama por desarrollador

Al crear la rama del desarrollador, todos los archivos existentes en la rama de

integración en ese momento se copian en la nueva rama creada. El desarrollador

efectúa unos cambios sobre este fichero, creando la versión dos en su propia rama,

para posteriormente integrar estos cambios en la rama de integración, y creando la

versión dos del fichero en integración.

Posteriormente, se crea la rama de un segundo desarrollador, a partir de la versión

dos del fichero, por tanto, este segundo desarrollador ya tiene integrados en su rama

los cambios efectuados por el primero. Ambos desarrolladores tienen ahora la misma

versión del fichero en sus respectivas ramas, y ambos efectúan cambios sobre los

mismos ficheros; el segundo desarrollador termina sus cambios primero, y por tanto

puede integrarlos en la rama de integración. El segundo desarrollador, por su lado, una

 23

vez ha finalizado sus modificaciones, debe integrar los cambios efectuados por el

segundo en su rama, para posteriormente integrarlos en la rama de integración.

Como se puede apreciar, la primera política nos da una mejor visión del desarrollo de

cada actividad, mientras que la segunda política únicamente nos permite hacer un

seguimiento del trabajo elaborado por un desarrollador, pero en ningún caso nos

permitirá discernir el trabajo efectuado por un desarrollador en diferentes actividades.

Puesto que nuestro sistema no nos permite utilizar la primera propuesta, deberemos

realizar unas pequeñas modificaciones en la segunda para conseguir separar el trabajo

realizado en una actividad del realizado en otra.

El siguiente esquema muestra el procedimiento a seguir:

 24

Figura 7

Diagrama: 1 rama por desarrollador utilizando baselines

 25

Mediante el uso de este procedimiento, podemos separar claramente el trabajo

efectuado en cada actividad, desarrollándolas todas ellas en una misma rama de

desarrollo.

Se crea una rama para cada desarrollador a partir de la última baseline estable

(dev_1, Dev_2). El desarrollador 1 termina las modificaciones de la tarea y la integra

en la rama de integración. En el ejemplo, en ese momento se crea una baseline

estable. Al querer empezar a desarrollar la segunda actividad, la rama de desarrollo

toma el mismo estado que la rama de integración en su última baseline estable. Igual

que pasa en la versión 5 de esta rama.

De este modo, podemos garantizar exactamente cuál ha sido el desarrollo para cada

actividad, realizando todas las actividades en una misma rama.

 26

2.3. Control de versiones de documentos:

Una de las partes más importantes de un proyecto es su documentación, y por tanto,

ésta, debe estar almacenada de forma segura, y debidamente versionada.

Por otro lado, no todos los usuarios deben poder acceder a toda la información.

Para ello hemos decidido utilizar la plataforma SharePoint de Microsoft, ya que además

de permitirnos lo anteriormente comentado, soporta todo tipo de formatos, y su

interfaz es ampliamente familiar para todos aquellos que ya hayan usado cualquiera de

las herramientas de Microsoft Office.

 27

3. Escenario a automatizar

En todo proyecto, para que éste tenga una correcta organización de sus actividades,

tiene que haber un proceso, claramente definido, entre las tareas a realizar, y sus

actores.

En el proceso contemplado, hemos tomado los siguientes roles:

- Managers

- Project leaders

- Developers - Integrador

En el siguiente gráfico se puede contemplar como conviven estos roles, con las

herramientas explicadas en el punto anterior. Más adelante explicaremos este gráfico

en detalle.

Figura 8

Entorno de un proyecto

 28

Managers
El siguiente gráfico nos muestra el entorno con el que interactúa un “Manager”;

básicamente, su función en la fase de desarrollo de un proyecto, es la de tener una

visión global del estado de las actividades, y publicar estos estados bajo un control de

versiones de documentación, (en nuestro caso SharePoint)

Figura 9

Entorno de actuación de un Manager

A continuación vamos a definir el proceso que deberían seguir los managers antes de

publicar la documentación.

En primer lugar, deberían hacer una consulta a la base de datos de actividades, y

verificar el estado de las actividades.

Una vez verificado el estado de las mismas, el manager realizaría un documento, y

éste sería publicado en SharePoint.

Más adelante será mostrada una herramienta cuya finalidad es la de automatizar este

proceso.

 29

Project Leader
El siguiente gráfico muestra el escenario en el que el Project leader se ve involucrado.

Su función principal es la de, mediante los documentos obtenidos de la Release,

reorganizar las tareas existentes en las diferentes bases de datos.

Según los resultados de estos “reports, el Project leader puede asignar nuevas tareas a

algunos desarrolladores, reorganizar las tareas existentes, o reasignar tareas de

aquellos desarrolladores más sobrecargados, a otros que no lo sean tanto.

Figura 10

Entorno de actuación de un Project Leader

 30

Releases
Todo proyecto debe tener versiones estables y por tanto, etiquetadas específicamente.

Éste proceso consiste en la obtención del código de los debidos repositorios,

posteriormente el Project leader o la persona asignada en cualquier caso, realizaría

una compilación, revisaría que el proceso fuera correcto, para posteriormente etiquetar

la versión debidamente, realizar un report de los resultados, y publicar el mismo en el

control de versiones de documentos, como muestra el siguiente gráfico.

Figura 11

Entorno de actuación de las Releases

 31

Developer
Para finalizar con este apartado, podemos observar un gráfico que muestra el entorno

con de acción de un desarrollador.

A grandes rasgos, el desarrollador debe coger las especificaciones de una determinada

base de datos (SaberRM); asimismo, debe empezar a trabajar en una actividad que le

haya sido asignada en otra base de datos (ClearQuest), además debe también

actualizar la base de datos que define el tiempo empleado en cada actividad (ActiTime),

para finalmente coger el código del control de versiones (Perforce), y realizar sus

modificaciones.

Una vez el desarrollador haya modificado el código, éste debe ser correctamente

almacenado en el control de versiones, y de nuevo actualizar todas estas bases de

datos.

Figura 12

Entorno de actuación de un desarrollador

 32

3.1. Dependencias del proyecto

Antes de desarrollar las herramientas de automatización, debemos hacer un estudio de

los requisitos y las dependencias con las demás aplicaciones.

Lo primero que debemos tener en cuenta, es que esta herramienta deberá tener

control de múltiples parámetros de estado, puesto que será utilizada por muchos

desarrolladores, normalmente, al mismo tiempo, es por eso, que debemos utilizar una

base de datos para controlar cada uno de estos parámetros.

La tecnología utilizada para la creación de esta base de datos será MySQL, a

continuación mostramos un gráfico con las tablas y sus relaciones.

Figura 13

Esquema base de datos para el control de la aplicación

Con el esquema anteriormente mostrado, nos será suficiente para controlar todas

nuestras herramientas, esta jamás será modificada por ningún desarrollador

directamente, pues el control de nuestras aplicaciones se vería afectado ocasionando

pérdidas importantes en cuanto al código se refiere., en caso de error, el administrador

del sistema será el encargado de volver a dejarlo en un estado estable.

 33

Una vez tenemos definida la base de datos, tendremos en cuenta también que para

conectarnos a la base de datos de defectos (Saber DM), necesitaremos utilizar el

protocolo SOAP.

Por otro lado, debemos buscar una herramienta que pueda interactuar tanto con la API

de ClearQuest como con la API de Perforce.

Además de todos estos requisitos, necesitamos que nuestra aplicación sea lo más

“user friendly” posible.

Por todo esto, nos hemos decidido a desarrollar nuestras herramientas bajo la

tecnología de Visual Basic .NET.

 34

3.2. Automatización de las “Releases”

Teniendo en cuenta la política de desarrollo que sigue nuestro control de versiones, en

la que todos los desarrolladores integran sus cambios en la rama de integración (push

model), es muy importante tener un control sobre dicha rama.

Con este fin, diariamente, se tomará el código que haya en la rama de integración, y

se le aplicarán una serie de test para verificar el estado de este. En función del

resultado de estos tests, se evaluará si el estado actual de la rama es correcto o no.

En caso de que sea correcto, se etiquetará esta versión con un nombre determinado,

por otro lado, si esta versión fallara, se debe etiquetar de una forma distinta, para su

posterior corrección.

En caso de que la release sea correcta, se debe crear un documento con los nuevos

cambios introducidos en la rama de integración, y publicarlo en SharePoint, para que

los desarrolladores sean debidamente informados.

Por supuesto, durante el proceso de release, la rama de integración debe estar

bloqueada, consiguiendo así que nuevos cambios no sean integrados mientras se esta

compilando una versión, o bien se este etiquetando esta. La duración por tanto de este

proceso varía en función del volumen de código que haya en el proyecto, y de los test

que se deseen pasar para determinar si la versión es o no válida.

Así pues el estado del código quedaría de la siguiente forma:

 35

Figura 14

Rama de integración

En el ejemplo anterior, podemos observar, que la versión 2 de la rama de integración

fue una release satisfactoria realizada el dia 15/01, asi como que la versión del dia

siguiente no pasó todos los test o bien no compiló, mientras que los posibles

problemas fueron resueltos en la release del día siguiente.

Con el objetivo de automatizar el proceso de creación de una release, se ha

desarrollado una herramienta que genere estas de forma automática. Dicha

herramienta se ejecutará como una tarea programada, a las horas que el proyecto

tenga menos carga de desarrollo.

 36

Lo primero que hará esta herramienta será bloquear la rama de integración, para que

ningún desarrollador pueda modificarla durante este proceso; posteriormente,

descargará la última versión de esta rama, y lanzará la compilación, pasará una serie

de tests automáticos, y chequeará los resultados, en función de éstos, etiquetará la

rama de una forma u otra, y generará un report, por último la rama de integración

será desbloqueada dando por finalizado este proceso.

Dado que todo este proceso puede tardar más de una hora en realizarse, es muy

importante que éste no necesite interacción alguna con una persona, y dado que

requiere que nadie modifique la rama de integración, es muy importante que se lance

cuando nadie este trabajando, por ejemplo por la noche.

 37

3.3. Automatización del desarrollo

A continuación vamos a tratar de automatizar el escenario con el que interactúa el

desarrollador. El siguiente gráfico nos muestra las transiciones posibles para el

desarrollador para llevar a cabo su implementación.

Así que realizaremos un conjunto de aplicaciones para garantizar que cada una de las

actividades se desarrolla rigurosamente bajo este escenario, sin errores, y sin

excepciones.

Figura 15

Diagrama de transiciones del desarrollador

 38

Como podemos ver en el anterior gráfico, el desarrollador, una vez ha

empezado a trabajar en una actividad (Work_on), realizará todas las

modificaciones pertinentes en el código, hasta su posterior finalización (Deliver),

cuando la tarea llegue a este estado, la persona asignada para revisarlo,

confirmará que los cambios sean correctos, de ser así, dichos cambios se

integrarán directamente en la rama de integración, para su posterior promoción

en la fase de Release.

3.3.1. Select Project

Debemos contemplar la opción que nuestros desarrolladores puedan estar

simultáneamente trabajando en dos proyectos a la vez, así pues, para empezar se ha

diseñado una herramienta para permitir seleccionar el proyecto al que pertenece la

actividad que se desee implementar.

Figura 16

Entorno del SelectProject

Como se muestra en al anterior figura, únicamente actuara con el usuario, y contra la

base de datos del control de la aplicación.

Esta aplicación será muy simple, mediante un formulario de Windows, mostrará el

listado de proyectos seleccionables para el desarrollador. En caso de que el

desarrollador no esté unido a ningún proyecto, éste deberá seleccionar uno para unirse,

si ya se encontrara unido a algún proyecto, deberá seleccionar uno para unirse de

igual modo que antes, y automáticamente sería desunido del anterior proyecto.

El usuario interactúa con interfaz como el que se muestra a continuación.

 39

Figura 17

Interfaz del SelectProject

En caso de que el desarrollador ya se encuentre unido a un proyecto, éste sería

mostrado donde se ve “Label 1”, de otro modo, este campo estaría vacío.

Una vez el desarrollador ya está unido a un proyecto, está listo para empezar a

trabajar en una actividad.

Select Project

Unido a un

proyecto

Unir al proyecto

NOSI

Cambiar unión

Mostrar los

proyecto a los que

se puede unir

Figura 18

Diagrama de estados del SelectProject

 40

3.3.2. Workon

Como se puede observar en la siguiente figura, el ámbito de actuación de esta

aplicación será la obtención de las actividades de un desarrollador, así como el

tratamiento de estas y del control de versiones.

Figura 19

Entorno de actuación del Workon

Esta herramienta se ha diseñado básicamente para configurar el entorno de desarrollo

antes de empezar a trabajar en una actividad. Básicamente, antes de entrar en más

detalles sobre esta aplicación, lo que hace es listar las actividades que tiene asignadas

un cierto desarrollador, para que, una vez éste haya seleccionado una, configure el

entorno alrededor de ésta.

A continuación vamos a definir el entorno de esta aplicación.

Mediante un “Windows form”, se mostrarán en dos listados diferentes las actividades a

desarrollar, (ClearQuest), y los defectos a resolver (SaberDM), además ésta aplicación,

cuenta con un textbox, donde se mostrarán las descripciones de las correspondientes

tareas seleccionadas.

Por otro lado, y gracias a que ambas bases de datos tienen un entorno web detrás de

ellas, haciendo doble click sobre cualquier actividad, se mostrará esta tarea en dicho

entorno.

 41

Cuando un desarrollador seleccione empezar a trabajar en una actividad, su estado en

la base de datos correspondiente cambiará de estado, (de asignada a abierta), y

automáticamente, su rama de desarrollo adoptará el estado de la rama de integración

en su última versión estable (latest promoted baseline).

De este modo, el desarrollador tiene su entorno totalmente configurado para empezar

a desarrollar la actividad haciendo tan sólo un único click.

La siguiente figura muestra la interfaz de ésta herramienta.

Figura 20

Interfaz del Workon

 42

A continuación podemos ver el diagrama de estados de esta aplicación, sus conexiones

a las diferentes bases de datos así como sus acciones frente al control de versiones.

Workon

Unido a un

proyecto

Mostrar error y

salir
NO

Actividades

abiertas en CQ o

Saber

SI

SI

Mostrar

actividades

asignadas

NODoble clic = entorno

web de la actividad

Un clic = descripcion

de la actividad

Actializar la rama

de desarrollo a la

ultima baseline

Cambiar estado

de la actividad

Salir

Figura 21

Diagrama de estados del Workon

 43

3.3.3. Checkout

El marco de actuación para esta aplicación queda definido del mismo modo que la

aplicación anterior, actuando sobre las bases de datos de actividades y defectos, y

contra el control de versiones para realizar los cambios oportunos.

Una vez el desarrollador ya tiene su entorno completamente configurado, es momento

de empezar a hacer modificaciones en la rama de desarrollo.

Para poder editar un fichero, primero hay que realizar un checkout, con el fin de no

tener que abrir la aplicación de control de versiones para realizar ésta acción, se he

diseñado una nueva herramienta para realizar esta acción.

Esta herramienta realizará un checkout del fichero que se le envíe por parámetro,

comprobando antes que éste fichero se encuentra en la rama de desarrollo del usuario,

así como comprueba que éste esté trabajando en una actividad en ese instante.

Esta herramienta como las demás será integrada en la IDE del desarrollador, pero a

diferencia de las demás no tiene interfaz gráfica, simplemente preparará el fichero

para ser editado, y mostrará un mensaje si todo es correcto, o bien un mensaje de

error en caso contrario.

En el siguiente gráfico podemos ver reflejado explícitamente su funcionamiento.

 44

No

Yes

Actividades

abiertas en Saber

SI

NO SI

Yes

No

Yes

NO

Checkout

Unido a un

proyecto

Mostrar error y

salir
NO

Mostrar error y

salir

Actividades

abiertas en CQ

Actividades

abiertas en CQ

Fichero en rama

 de desarrollo

Mostrar error y

salir

Salir

Checkout del

fichero

Figura 22

Diagrama de estados del Workon

 45

3.3.4. Revert / Submit

Nuevamente, estas aplicaciones actuaran sobre la base de datos de actividades, así

como contra el control de versiones para realizar las modificaciones oportunas.

Una vez el desarrollador ha efectuado cambios sobre un fichero tiene dos opciones,

crear una versión de ellos (submit), o bien, deshacer estos cambios (Revert).

Hemos juntado ambas aplicaciones en un único bloque, pues si bien su funcionalidad

es claramente diferente, el modo de actuación viene a ser el mismo.

Mediante un formulario se mostrarán todos los ficheros que el desarrollador tiene en el

estado de edición (Checked out), para que posteriormente, el usuario seleccione

aquellos fichero que quiera guardar, o bien deshacer.

El control de versiones nos obliga a insertar una descripción de los cambios al crear

una nueva versión de un fichero, nuestras aplicaciones pondrán automáticamente

estos comentarios, insertando en ellos el título de la actividad en la que el

desarrollador esté trabajando.

El formulario anteriormente mostrado tiene el siguiente formato: mediante un listbox

multiselección, semuestran todos los ficheros que el desarrollador tiene en checkout,

seleccionará los que desee guardar o deshacer, y mediante un simple click, los ficheros

volverán a quedar en un estado estable. Este formulario se muestra a continuación.

Figura 23

Interfaz del Revert / Submit

 46

En la siguiente figura vemos reflejado su diagrama de estados, muy parecido al del

Checkout, pero con ligeras modificaciones, pues este se conecta a las diferentes bases

de datos de actividades y defectos para poder actualizar automáticamente el control de

versiones.

No

Yes

Actividades

abiertas en Saber

SI

NO SI

Yes

No

Yes

NO

Checkout

Unido a un

proyecto

Mostrar error y

salir
NO

Mostrar error y

salir

Actividades

abiertas en CQ

Actividades

abiertas en CQ

Fichero en rama

 de desarrollo

Mostrar error y

salir

Salir

Checkout del

fichero

Figura 24

Diagrama de estados del Revert / Submit

 47

3.3.5. Rebase

En este caso, el ámbito de actuación de esta aplicación será únicamente contra el

control de versiones, tal y como muestra la siguiente figura.

Figura 25

Entorno del Rebase

En cualquier momento, el desarrollador puede desear integrar cambios efectuados en

la rama de integración, a su rama de desarrollo. Esta operación se hará mediante la

herramienta de Rebase.

Figura 26

Interfaz del Rebase

El usuario, mediante un formulario de Windows, como el que se muestra en la figura

anterior, seleccionará la baseline desde la cual quiere obtener los cambios. En este

formulario, se mostrarán todas aquellas baselines desde la última obtención de código

 48

de la rama de integración; cabe notar que la primera obtención de código se hace al

hacer workon de una actividad.

Mostrando las baselines, se da la posibilidad al desarrollador a obtener los estados

estables de código que ha habido en la rama de integración.

Además de dar la posibilidad de obtener el código desde una baseline estable, el

desarrollador también tiene la posibilidad de integrar el último estado de la rama de

integración a su rama, conociendo éste que los cambios efectuados en esta tal vez no

sean correctos.

Su manejo se ve claramente reflejado en el gráfico de la página siguiente.

 49

SI

Rebase

Unido a un

proyecto

Mostrar error y

salir
NO

Actividades

abiertas en Saber
NO SI

Yes

No

Yes

NO

Mostrar error y

salir

Actividades

abiertas en CQ

Actividades

abiertas en CQ

Salir

Actualizar la rama

de desarrollo

Checkouts en WS SI

NO

Figura 27

Diagrama de estados del Rebase

 50

3.3.6. Deliver

De nuevo esta herramienta requerirá de las bases de datos de actividades así como del

control de versiones, tal y como muestra la siguiente figura.

Figura 28

Entorno de Deliver

Una vez el desarrollador haya finalizado la tarea, esta deberá ser revisada por otro

desarrollador, con el objetivo de verificar que el código ha sido desarrollado

correctamente, que las descripciones introducidas son acordes con el código

modificado, o bien que el código implementado se ciñe rigurosamente a las

especificaciones requeridas.

Con este fin, le será enviado un mail la persona asignada como peer reviewer para esa

actividad.

Por otro lado, se entiende que la actividad ha sido resuelta, esta, tomara el estado de

Resolved en ClearQuest, mostrando un formulario como el siguiente para completar la

información de la tarea en la base de datos de actividades.

 51

Figura 29

Interfaz del Deliver

En la siguiente figura podemos ver la definición interna de la herramienta.

 52

SI

Deliver

Unido a un

proyecto

Mostrar error y

salir
NO

Actividades

abiertas en Saber
NO SI

Yes

No

Yes

NO

Mostrar error y

salir

Actividades

abiertas en CQ

Actividades

abiertas en CQ

Salir

Adjuntar

informacion de

Deliver

Checkouts en WS

NO
Escoger entre

Revert o Submit

SI

Cambiar estado

de la actividad

Enviar mails al

peer reviewer

Figura 30

Diagrama de estados del Deliver

 53

3.3.7. Integrate

Esta aplicación tendrá su abanico de actuación comprendido entre las bases de datos

de actividades, el control de versiones y un usuario externo, que tomará el rol de

revisor del código modificado, tal y como muestra la siguiente figura.

Figura 31

Entorno del Integrate

Llegados a este punto, es momento de que el código sea revisado. La persona

asignada ejecutará esta aplicación, y mediante unas preguntas que irá respondiendo

comprobando el desarrollo de la tarea, deberá decidir si la implementación es correcta

(Accept), o por otro lado se deben hacer modificaciones, (Deny).

El formulario para las revisiones se muestra en la siguiente figura:

 54

Figura 32

Interfaz del Integrate

Como se puede ver en la figura anterior, las preguntas son de simple respuesta, dando

la posibilidad a comprobar según que campos directamente desde la aplicación.

Tanto en el caso de que la Peer review sea aceptada, como en el caso de que sea

rechazada, se guardarán los resultados en ClearQuest. En el supuesto de que sea

aprobada, los cambios realizados en el software se integrarán directamente en la rama

de integración, y la tarea tomará el estado de Delivered.

 55

Si por otro lado la tarea no es aprobada, no se integrará, y su estado no será

cambiado en ClearQuest, pero sí insertados los resultados de la peer review. La tarea

del desarrollador en este momento, será corregir el código, eliminando los errores

detectados en la peer review.

Una vez estos errores se hayan corregido, no se efectuara una nueva peer review, y

será el desarrollador el encargado de integrar sus cambios en la rama de integración.

La misma aplicación, si ya se ha efectuado una peer review para esa actividad,

automáticamente integrará los cambios, siendo responsabilidad del desarrollador el

haberlos corregido.

Una vez los cambios han sido integrados, la actividad será puesta en el estado de

“Delivered”, dándola por finalizada.

Ahora el desarrollador podría volver a empezar el ciclo con un nuevo Workon.

La implementación interna se ve reflejada en el siguiente diagrama de estados.

 56

SI

Integrate

Unido a un

proyecto

Mostrar error y

salir
NO

Actividades

resueltas en Saber
NO SI

Yes

No

Yes

NO

Mostrar error y

salir

Actividades

resueltas en

CQ

Actividades

resueltas en

CQ

Salir

Integrar Cambios

Revisión

realizada

Mostrar formulario

de revisión

NO

SI

Figura 33

Diagrama de estados del Integrate

 57

3.3.8. Postpone

Esta actividad únicamente tendrá efecto sobre la base de datos de las actividades, tal y

como se ve reflejado en la siguiente figura.

Figura 34

Entorno del postpone

En cualquier momento del proyecto, se puede dar el caso de que el desarrollador esté

trabajando en una actividad, y le sea asignada una más prioritaria, en este caso,

debido a que como hemos visto al definir nuestro sistema, solo permitimos al

desarrollador trabajar en una actividad al mismo tiempo, debemos al menos darle la

posibilidad de empezar una nueva tarea sin por ello perder los cambios efectuados en

la que haya actualmente en curso.

Con este fin, se ha desarrollado el “Postpone”, al ejecutar esta aplicación, todas las

modificaciones serán automáticamente guardadas en la rama del desarrollador,

almacenando la changelist (número de cambo efectuado en el control de versiones),

en la tarea asociada en ClearQuest.

Una vez almacenado el estado en el control de versiones, y cambiada la actividad de

“Opened” a “Postponed”, el desarrollador puede hacer un nuevo Workon de otra

actividad.

Al finalizar esta tarea, el desarrollador podrá reabrir las actividades que tenga

pospuestas, o bien trabajar en otra nueva, ambos modos se realizarán interactuando

mediante la aplicación de Workon.

 58

SI

Postpone

Unido a un

proyecto

Mostrar error y

salir
NO

Actividades

abiertas en Saber
NO SI

Yes

No

Yes

NO

Mostrar error y

salir

Actividades

abiertas en CQ

Actividades

abiertas en CQ

Salir

Guardar

changelist cambiar

estado de

actividad

Figura 35

Diagrama de estados del Postpone

 59

3.4. Reports Automáticos

Como hemos dicho anteriormente, periódicamente se hacen releases de la rama de

integración, estas versiones estables de código, deben estar debidamente

documentadas, por este motivo se ha implementado una herramienta para generar

estos reports.

La interfaz de dicha herramienta se muestra en la siguiente figura.

Figura 36

Interfaz de los Reports automáticos

Como podemos observar, dicha aplicación esta formada principalmente por un

calendario, de esta forma, se puede seleccionar un rango de dias, y generar un report

con las actividades finalizadas o entregadas esos mismos dias.

Por otro lado, al ejecutar la aplicación, se le pueden pasar por parámetro dos fechas,

de este modo, se genera el report automáticamente, sin modo gráfico, permitiendo de

esta forma, poderse lanzar como una operación más, integrada en la generación de la

release, y generando automñaticamente el report.

En un report convencional, se mostrarán las actividades abiertas, resueltas y

entregadas durante el rango de fechas determinado, mientras que para el report de la

release se mostrarán únicamente las actividades entregadas y las confimadas.

En ambos casos, la información mostrada será, el identificador de la actividad, el

desarrollador que la ha implementado, el estado actual de la misma y su descripción.

 60

3.5. Schedule.

Figura 37

Schedule de la aplicación

 61

4. Conclusiones y vías de continuidad.

El desarrollo del software, es una actividad que sufre continuas modificaciones, desde

cambios en las especificaciones para cada proyecto, hasta el uso de diferentes

herramientas, teniendo en cuenta que las tecnologías bajo las que se desarrolla un

determinado proyecto, no son las mismas en todos los casos.

Una vez nos hemos introducido en este mundo, vemos que realmente los procesos a

automatizar son inimaginables, pero en todos los casos está estrechamente ligado al

tipo de proyecto que estemos desarrollando.

Las herramientas de automatización desarrolladas se han implementado utilizando la

tecnología .NET de Microsoft, así como objetos COM para la comunicación con el

control de versiones, siguiendo un proceso estandarizado de desarrollo que facilita el

mantenimiento del proyecto como tal.

Dichas aplicaciones utilizan varios protocolos de comunicación, desde SOAP para

interconectarse con las bases de datos de Defectos, como las API’s específicas de

aplicaciones como ClearQuest o Perforce, así como múltiples lenguajes de bases de

datos, como son SQL y SQLAnywhere.

Para todo ello ha sido necesaria una exhaustiva investigación, fundamentalmente en

Internet, lo que prueba que el uso de estas aplicaciones no esta muy extendida.

Con el uso de estas herramientas se consigue dar solución al problema de la

inestabilidad en las integraciones de Software, se eliminan en gran parte los errores

introducidos por el desarrollador en la creación de código, y se proporciona una visión

mucho más amplia de los diferentes estados del proyecto.

Además, no solo se han conseguido los objetivos tanto a nivel de implementación

como de schedule, sino que se ha implementado una herramienta realmente dinámica,

y fácilmente adaptable a muy diversos proyectos encaminándonos de este modo hacia

el “Agile development”, y aleándonos de una tendencia tan intuitiva como peligrosa, el

“extreme programing”.

 62

Por otro lado, podemos contemplar el partido que le hemos conseguido sacar a una

aplicación, como en nuestro caso sería el control de versiones, trabajando de una

forma determinada que el desarrollador manualmente sería incapaz de cumplir

rigurosamente, y que en nuestro caso, explota al máximo la herramienta, incluso en

ocasiones, obligándola a trabajar con un proceso para la cual no ha sido diseñada.

Viendo el funcionamiento de dichas herramientas en un entorno real, podemos afirmar

que el uso de estas herramientas optimiza notablemente la trazabilidad del proyecto,

así como su estabilidad y cohesión.

La elección de una u otra política bajo un control de versiones determinado, puede

aportarnos unos excelentes resultados o por otro lado producirnos una trazabilidad

excelente en el proceso, en nuestro caso, hubiéramos deseado trabajar creando una

rama para cada actividad, esto nos hubiera reportado una trazabilidad en el proyecto

excelente, de una forma relativamente fácil de administrar bajo un control de

versiones como puede ser ClearCase, pero tras haber hecho los estudios coste,

implantación del sistema y mantenimiento entre otros, y tras no poder incorporar este

control de versiones, no nos ha sido posible implantar la estrategia deseada.

Al escoger Perforce como herramienta a utilizar por su relación calidad-precio, y tras

ver que es viable su implantación, hemos redefinido las políticas para el versionado del

proyecto, de tal forma que podemos conseguir abarcar los requerimientos del proyecto.

Con esto podemos deducir también que trabajar con un control de versiones o con otro,

varían las estrategias a seguir para unos mismos requerimientos, pero en ambos casos,

y gracias a las herramientas implementadas, podemos conseguir el mismo resultado.

Cabe tener en cuenta que el proceso de automatización no es un proceso cerrado, con

esto, nos referimos a que, si bien este procedimiento se puede seguir para múltiples

proyectos, siempre tendremos que tener en cuenta los requerimientos de cada uno

para adaptar las herramientas de automatización a las especificaciones que debamos

adaptarnos.

Teniendo en cuenta lo dicho anteriormente, podemos observar que estas herramientas

son fruto de un fuerte trabajo de investigación, que se debe realizar siempre para

 63

escoger el correcto funcionamiento de estas herramientas dentro de un determinado

proyecto.

Habiendo conseguido satisfactoriamente los objetivos fijados, es momento de ampliar

la funcionalidad de dichas aplicaciones, o bien plantearnos su uso en diferentes

entornos.

Si bien el uso de estas herramientas se encamina hacia una integración continuada,

gracias a la implementación de un esquema “push model”, cabe ahondar mucho más

en ellas para conseguir un proceso cerrado para poder establecerlas como un único

producto, pudiéndolas de este modo facilitárselas a un usuario, y que sin necesidad de

un administrador, sea capaz de configurarlas por si mismo para hacer que estas

trabajen de un determinado modo para un determinado proyecto.

Por otro lado, dichas herramientas, son absolutamente dependientes de un entorno

Windows, en el que debe haber instalado .Net Framework y las librerías

correspondientes de las bases de datos utilizadas. Puesto que actualmente el

desarrollo se encamina hacia la creación de software libre, sería muy importante

realizar un estudio para que dichas herramientas funcionen bajo un entorno Linux,

actuando sobre un control de versiones de libre distribución, e integrados en una IDE

también de libre adquisición.

Posteriormente, deberíamos diseñar un sistema que actualizara automáticamente las

versiones instaladas en los desarrolladores de dichas herramientas, evitando así que se

deban suministrar manualmente dichas versiones cada vez que se efectúen

modificaciones en las herramientas.

 64

5. Bibliografia y referéncias

[1]Wikipedia: http://www.wikipedia.org

[2]Perforce: http://www.perforce.com

Información sobre el control de versiones utilizado para el desarrollo del

proyecto en concreto.

API para el desarrollo y las comunicaciones con el control de versiones

mediante la librería p4com.dll

[3]IBM: http://www.ibm.com

 Información sobre el control de versiones ClearCase.

Información y API para el desarrollo de una aplicación Visual Basic que

interactúa con ClearQuest.

[4]Microsoft: http://www.msdn.microsoft.com

Soporte para la implementación de la comunicación sobre un protocolo

SOAP

[5]Continous Integration: Improving Software Quality and Reducing Risk

Extracción y studio de las diferentes políticas implementables, riesgos y

consideraciones.

[6]Agile Software Development

 Extracción de los fundamentos a seguir y las políticas de SCM

 65

6. Anexos

6.1. ClearQuest Datasheet

 66

 67

 68

 69

6.2. ClearCase Datasheet

 70

 71

 72

 73

6.3. Perforce Datasheet

 74

 75

Firmado: Robert Garcia Atserias

Bellaterra, Junio de 2008

 76

Resumen

El Software es fácil de cambiar, demasiado fácil, las herramientas de Software

Configuration Management, nos permiten conseguir que un determinado proyecto sea

estable y trazable, siempre y cuando estas se usen debidamente. Tampoco el uso de

estas herramientas es sencillo. El objetivo de nuestro proyecto es el de implementar

una herramienta que haga de nexo entre el desarrollador y todas las herramientas de

desarrollo para asegurar que los cambios son consistentes.

Resum

El software és fàcil de canviar, massa fàcil, les eines de Software Configuration

Management, ens permetràn que un determinat projecte sigui estable i traçable, sepre

que aquestes s’utilitzin degudament. Tampoc utilitzar aquestes eines es senzill.

L’objectiu del nostre projecte és el d’implementar una eina que faci de nexe entre el

desenvolupador i totes les eines de desenvolupament, per assegurar que els canvis

son consistents.

Abstract

Software is easy to change, too easy, Software Configuration Management tools allows

specific project to be stable and consistent if managements of these ones is correct.

Use these tools is not an easy work. Therefore, the objective of this project is to

implement a tool that work as an interface between developer and development tools,

to ensure that changes are consistents.

 77

